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Chapter 1

Introduction

1.1 Background

Granular materials are in abundance in nature and constitute over seventy five percent of all
raw material feedstock to industry. Processing, handling and storage of particle systems in the
form of granular materials are widespread in all sectors of industry. This includes sand, gravel,
plastic pellets, agricultural grains, coal and other minerals, pharmaceutical powders, sugar and
flour etc. Many of these industrial solid particle systems display unpredictable behavior and
thus are difficult to handle. Problems caused by granular material such as natural disasters or
industry material handling issues lead to extensive economic losses.
One of the first studies on granular materials was carried out by researchers in soil mechanics,
and was later taken up by many other disciplines, in particular chemical, mechanical mining
and food engineers. Due to the complexity of this research field, many physicists and mathe-
maticians are also involved.
There are many open problems to be studied in granular materials. For a single particle, there
can be different size, shape, density, roughness, hardness, moment of initial, crushability, etc.
The interactions between particles are also very complicated. They can be hard or soft contact,
frictional or frictionless, cohesion or cohesionless, time dependent or time independent, parti-
cle fluid interactions, and even long range interactions. All the problems mentioned above are
only in particle scales. If we move to macroscale, all these problems increase exponentially,
which causes qualitative changes of the material behavior. Hence, modeling of granular mate-
rial is a very challenging topic and requires comprehensive research works.
The research works in this dissertation focus on different modeling methods for granular ma-
terials. The topic is ‘linking DEM with micropolar continuum’, which considers both discrete
and continuum methods, the two basic methods of granular material modeling. The aim is to
improve both discrete and continuum methods and find links between them.
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1.2 Discrete and continuum methods

In order to model granular materials, people follow two different approaches, one is discrete
methods on the microscale, the other is continuum modeling on the macroscale. The discrete
methods are based on Newton’s laws and contact mechanics. They use discrete elements to
model individual particles in granular materials. Hence, discrete methods are able to capture
the details of microscale material behavior. However, due to the computational complexity,
discrete methods are too slow to be used for modeling of the macro scale problems. On the
other hand, continuum methods are much faster and simpler for calculations. Continuum
methods assume materials to be continuous and use constitutive models to simulate the ma-
terial behavior. For granular materials, the microstructure behavior can not be very precisely
described by existing constitutive models. In summary, discrete methods are more accurate
but slow, continuum methods are fast but less accurate. There have been many attempts to
link these two methods together. The basic idea in this dissertation is, by using advanced
constitutive models, which are hypoplastic and micropolar models, the microstructure of the
materials can be better described and similar results as by discrete modeling can be obtained.
The most prominent discrete approach is discrete element method (DEM), which is a numer-
ical method used to compute the motion of a large number of particles. In recent decades,
the discrete element method (DEM) has been used and advanced extensively for scientific
purposes and has increased rapidly our understanding of both macroscopic and microscopic
behavior [38, 47]. DEM can be used to simulate a wide variety of granular flow and rock
mechanics situations. It also allows a more detailed study of the microscope characteristics
than is often impossible using physical experiments.
Continuum methods are conventional approaches to model granular materials, yet problems
still exist due to the limitations of constitutive models. Micropolar model is one of the
advanced constitutive models which describe the microrotations of materials. By using
micropolar continuum, researches [42, 46] have shown that many characteristic behavior of
the granular materials such as shear band can be fairly well modeled. However, micropolar
models require additional material parameters. A proper way to calibrate these material
parameters by experiments does not exist since the material behavior in microscope are
very hard to observe or measure. Due to the lack of experimental data, the development of
constitutive model needs to follow a mathematical approach, which is one of the main results
of this dissertation.
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1.3 Contents

The second chapter introduces the theories of discrete element method (DEM) and some
benchmark problems simulated with DEM. There is a section in Chapter 2 about averaging
methods, which obtain continuum terms from DEM. Chapter 3 describes continuum meth-
ods, apart from the basic principles, two important constitutive models are discussed, namely
hypoplastic model and micropolar theory. These two models are the basis of the constitutive
model developed in this dissertation. Chapter 4 shows the mathematical background and the
way to derive the new constitutive model. The finite element (FEM) implementation of the
new model is shown in Chapter 5. In Chapter 6, the results of both DEM and continuum mod-
eling is compared and discussed. Finally, in Chapter 7 conclusions and main findings in this
dissertation are summarized and an outlook is given.
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Chapter 2

Discrete element method

A discrete element method (DEM) is any of family of numerical methods for computing
the motion of a large number of particles of micrometer-scale size and above. The basic
mechanics of DEM is simply contact mechanics and Newton’s second law. However, since
the overall behavior of granular materials are model by a large number of discrete particles,
accumulative complexities are shown in DEM. The idea of DEM is first given by Cundall
[15] in 1979. In the early stage of DEM, only 2D disc elements are realized. Later, 3D ball
elements or elements with certain shape (clumps of balls) can be used, which is more similar
to the granular material in the real world. With advances in computing power and numerical
algorithms for nearest neighbor sorting, it has become possible to numerically simulate
millions of particles on a single processor. Today DEM is becoming widely accepted as an
effective method of addressing engineering problems in granular and discontinuous materials,
especially in granular flows, powder mechanics, and rock mechanics.

2.1 Theory

DEM integrates the motion of a set of discrete particles that represent the individual grains of
the material. Given a particle i with position xi, angular velocity ωi and moment of inertia Ii,
Newton’s equations of motion are

mi
d2

dt2
xi = fi +mig (2.1)

Ii
d

dt
ωi = ti (2.2)
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where fi and ti are the total forces and torques acting on the particle, given by

fi =
∑
c

f ci (2.3)

ti =
∑
c

(lci × f ci + qci) (2.4)

where f ci is the contact force between particle i and its particle at contact c and qci is the
torque induced by the contact (i.e. due to rolling or torsion resistance). These equations are
numerically integrated over time using techniques such as those described in [3, 43].

2.1.1 Contact laws

The contact forces and torques are specified by the normal and tangential contact forces mod-
els, the details of which can depend heavily on the properties of the grains (eg. surface rough-
ness, elasticity, shape, wetting). Numerous examples of contact models exist in the literature.
The most commonly used normal contact models are linear contact model and Hertz-Mindlin
contact model.
Linear normal contact model results in a force that leads to inelastic collisions requires at
least two terms: repulsion and dissipation. The simplest force with the desired properties is the
damped harmonic force:

Fn = −Knδ −Bnδ̇ (2.5)

where Bn is a damping constant, Kn is related to the stiffness of a spring whose compression
is the overlap δ.
Hertz-Mindlin contact model formulates a more refined force than equation (2.5), one can use
the results of the Hertz [27] theory of elastic contacts, which predicts the following repulsive
force for the case of spheres:

Fn = −Knδ
3
2 (2.6)

For the tangential degrees of freedom, there are three different force and torque laws to be
implemented: friction, rolling resistance, and torsion resistance [40].
For dynamic (sliding) and static friction, the relative tangential velocity vt of the contact points
is to be considered for the force and torque computations with the total relative velocity of the
particle surfaces at the contact.

vt = vij − n(n · vij) (2.7)

vij = vi − vj + a′in× ωi + a′in× ωj (2.8)

5



Figure 2.1: Contacts in DEM

where n is the unit vector pointing from j to i, ωi and ωj are angular velocities of i and j
respectively and a′α as corrected particle radius relative to the contact point a′α = aα−δ/2 , for
α = i, j and δ is the overlap. Tangential forces acting on the contacting particles are computed
from the accumulated sliding of the contact points along each other. Two particles can rotate
together, due to both a rotation of the reference frame or a non-central collision. The angular
velocity of the rotating reference has a tangential component which is related to the relative
velocity, while the normal component is not. Also, tangential forces and torques due to sliding
can become active only when the particles are rotating with respect to the common rotating
reference frame [40].
The rolling velocity should quantify the distance that two surfaces roll over each other (without
sliding). Therefore, it is equal for both particles by definition. An objective rolling velocity is
obtained by using the reduced radius:

a′ij =
a′ia
′
j

a′i + a′j
(2.9)

so that
vr = −a′ij(n× ωi − n× ωj) (2.10)

In this case, any common rotation of the two particles vanishes by construction. A more de-
tailed discussion of this issue can be seen in [20, 39] and the references therein. A rolling
velocity defined in analogy to the sliding velocity (n× ωi − n× ωj), would not be objective
in general [20, 39], only in the special cases of equal-sized particles or for a particle rolling
on a fixed flat surface. A rolling velocity will activate torques, acting against the rolling mo-
tion, e.g., when two particles are rotating anti-parallel with spins in the tangential plane. These
torques are then equal in magnitude and opposite in direction.
For torsion resistance, the relative spin along the normal direction,

vo = aij(n · ωi − n · ωj)n (2.11)
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is to be considered, which activates torques when two particles are rotating anti-parallel with
spins parallel to the normal direction. Torsion is not activated by a common rotation of the
particles around the normal direction, which makes the torsion resistance objective.
In summary, the implementation of the tangential force computations is assumed to be
identical, i.e., even the same subroutine is used, but with different parameters. The difference
is that friction leads to a force in the tangential plane (changing both translational and angular
momentum), while rolling- and torsion-resistance lead to quasi-forces in the tangential plane
and the normal direction, respectively, changing the particles angular momentum only. For
more details on tangential contact models, friction, rolling and torsion, see [8, 16, 20, 39].

2.1.2 Calculation procedures

Initialization

Motion update

Contact detection

Contact points/forces
determination

DEM loop

Figure 2.2: General schema of discrete element method

A DEM-simulation is initialized by first generating a model, which results in spatially
orienting all particles and assigning an initial velocity (Initialization). In the next step (Motion
update), the motion of every object in the simulation is computed. Later we search for pairs
of objects which are in contact (Contact detection). The forces which act on each particle
pair are computed from the data and the relevant physical laws and contact models (Contact
points/forces determination), as shown in Figure 2.2. The critical time step is a half period of
the oscillation calculated by:

tcrit =
π

ω
(2.12)

7



where

ω =

√
k

m
+ (

b

2m
)2 (2.13)

where tcrit is the critical time step, m is the average mass of the discrete element, k is the
contact stiffness, b is the damping coefficient. This equation is applied for all contacts and the
minimum critical time step is used for DEM loops.

2.1.3 Discrete element softwares

The most commonly used commercial DEM softwares are PFC (particle flow code) by Itasca
and EDEM by DEM solutions. A variety of open source DEM programs also exist, such as
YADE, LIGGGHTS, etc. Here, PFC 3D 3.10 is used to simulate some element tests for gran-
ular materials.
PFC is a discontinuum code used in analysis, testing, and research in any field where the inter-
action of many discrete objects exhibiting large-strain and/or fracturing is required. Because
PFC is not designed to examine a particular type of problem, its range extends to any analysis
that examines the dynamic behavior of a particulate system.

2.2 Simulations

2.2.1 Biaxial test

The biaxial test is one of the most commonly used tests in granular mechanics carried out
under a plane strain condition. Hence, it is also known as plane strain test. DEM simulations of
biaxial tests are carried out in the following, which have three general steps: model generation,
isotropic loading and biaxial loading.
First, six walls are generated to apply boundary conditions for the biaxial test, two fixed walls
in the plane strain (Y) direction and four walls in perpendicular (X and Z) direction, see Figure
2.3. Then, balls are generated within the area between the walls to model granular materials.
For the generation of balls, the radius expansion method is used. First, balls with smaller radius
is randomly generated in the space. Then, the radius of balls are expanded to obtain the desired
pore ratio. Due to the radius expansion, there are big overlaps between balls. In order to avoid
this, several steps of calculations are carried out until a statical state is reached. During the
generation of balls, all the walls remain stationary. In this model, there are 15000 balls with a
pore ratio of 0.67. Radius of balls are distributed linearly, the ratio of largest to smallest ball
radii is 3 : 2. The friction coefficient on the ball surface is 0.577.
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The second step is isotropic loading in which the model is loaded to an isotropic stress state

Figure 2.3: DEM model of biaxial test, model generation

in X and Z direction. This is realized by a servo mechanism. If the wall stress is larger than the
required stress, the wall will move away from the balls, if the wall stress is smaller than the
required stress, the wall will move towards the balls, see equation (2.14).

∆r =
αA

kwalln

(σwall − σreq) (2.14)

where ∆r is the wall displacement, A is the wall area, kwalln is the contact stiffness on the
wall, σwall and σreq are the wall stress and the required stress, α is a relaxation factor between
0 and 1. kwalln is calculated by summing the contact stiffness of all the balls in contact with the
wall. In this way, the model can be loaded to the required isotropic stress (6000 kPa is used in
this simulation), which is the staring point of biaxial loading.
During the biaxial loading, the lower wall is fixed and the upper wall moves down with a
constant speed, which applies a constant strain rate in Z direction. The stress on X direction
is kept constant by continue applying the servo mechanism (equation (2.14)) on the two walls
perpendicular to X direction. With this loading condition, a shear band can be observed from
the DEM simulation, see Figure 2.4.

Colors are used to show the rotational speeds in Y direction of each particles. Red and yellow
show high and medium rotation in clockwise direction, magenta and blue show high and
medium rotation in counterclockwise direction, while green means rotation is almost zero.
This color table are also applied to other DEM simulations in this chapter.
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Figure 2.4: DEM model of biaxial test, loading, ε1 = 0.12

The stress-strain and volume strain curves of the DEM simulation of biaxial test are shown in
Figure 2.5, in which σ1 denotes the stress in Z direction, σ3 is the stress in x direction, ε1 is
the strain in Z direction and εv is the volumetric strain.
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Figure 2.5: Stress strain and volume strain curves of the DEM simulation of biaxial test

It can be seen that the stress-strain behavior and volume strain in biaxial tests can be fairly
well predicted by DEM simulations. In the stress-strain relationship, failure point, softening
and critical state can be clearly observed.
In addition, some microscale information can be obtained from the DEM simulation. For
example, the velocities of individual balls and the contact force net are shown in Figures 2.6.
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Figure 2.6: Ball velocities (left) and contact forces (right) in biaxial simulation from Figure
2.4

The shear band can be observed from the microstructure of the biaxial test simulation. In
the shear band, the particles show large rotation in Y direction and very small moving speed
compared to other particles.

Figure 2.7: Biaxial test simulation with 40000 (ε = 0.11) and 80000 balls (ε = 0.08)

In addition, simulations with 40000 and 80000 balls are carried out with the same material
parameters and boundary conditions. Different shear band patterns are found in these simula-
tions, see Figure 2.7. The stress strain curve and volume strain curve of these two simulations
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are plotted in Figure 2.8 and 2.9.
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Figure 2.8: Stress strain and volume strain curves of the DEM simulation of biaxial test with
40000 balls
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Figure 2.9: Stress strain and volume strain curves of the DEM simulation of biaxial test with
80000 balls

It can be seen that for different particle diameters, the patterns of the shear band are different.
The thickness of the shear band is size dependent, for smaller particles, the thickness is smaller.
However, the inclination angles of the shear bands are the same for all three simulations.
Hence, the shear band angle does not depend on the particle diameter. Also, it can be seen that
if a shear band starts from the middle of a rigid wall, a conjugate shear band must exist.
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2.2.2 Stress boundary condition

In the DEM simulations of biaxial tests in section 2.2.1, the stress boundary conditions are
given by wall elements. However, the walls can not have large deformations. In experiments,
the stress boundary conditions are normally applied by rubber bags with hydraulic pressures,
which allow large deformations. Hence, the real behavior of stress boundary condition in the
biaxial test can not be realized with wall elements.
A novel method of applying stress boundary conditions to DEM simulation is shown here,
which can be applied for both plane or cylindrical boundaries. The general steps of this
method is shown in the following:
First, the balls on the boundaries are found out. This is done by going through all the contacts
on each ball, if all the contact points are in the inside half of the ball, the ball is considered as
a ball on the boundary. For example in Figure 2.10 all the boundary balls are shown with red
color.

Figure 2.10: Stress boundary condition

Then, a force is applied on the boundary balls according to the radius of the ball.

Fb = Pπr2 (2.15)

where Fb is the force applied on the boundary ball, P is the required pressure of the stress
boundary conditions and r is the radius of the ball. In this way, pressures are applied to all the
balls on the boundaries
Founding boundary balls and applying load is carried out in each step of the DEM simulation.
Since the stress boundary is applied separately on each ball, large deformations are allowed.
With this boundary condition, the biaxial test simulation in section 2.2.1 is carried out again.
The stress in horizontal direction is applied with the new method, while in the vertical
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direction, wall elements are still used to apply the vertical strain. The results are shown in
Figure 2.11.

Figure 2.11: Biaxial test simulation with the new stress boundary condition, strain 0.01, 0.02

and 0.0565

It can be seen that the new method allows large deformation on the boundaries. Shear bands
can start from the boundary without a conjugate shear band. The simulation result is different
from the one using wall boundary conditions in Figure 2.4. Hence, the boundary conditions
have a strong effect on the deformation and shear band location in DEM simulations. The
result with new boundary condition will be compared with the continuum modeling in section
6.3.

2.2.3 Simple shear test

The simple shear test is an improvement of the direct shear test since the specimen undergoes
homogeneous strain from the continuum point of view. The test is conducted by applying a
normal stress in oedometeric conditions, then a shear stress is applied and distortions take
place until the specimen fails.
Both 2D and 3D DEM simulations are carried out for simple shear test in PFC. The model
generation and isotropic loading steps are similar as the simulation of biaxial test described in
the section 2.2.1. The simple shear loading is carried out by applying a constant rotation on
the two vertical walls, as shown in Figure 2.12.

In the simple shear test, the rotation of particles are shown with different colors in the same
way as in biaxial test in section 2.2.1. The result of 2D DEM simulation is shown in Figure
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⇒

Figure 2.12: Simulation of simple shear test

2.13, 3D DEM simulation is shown in Figure 2.14.

Figure 2.13: Simulation result of 2D simple shear test, shear strain 0.03

Figure 2.14: Simulation result of 3D simple shear test, shear strain 0.045

It can be seen from the Figures that both 2D and 3D DEM simulation predicted similar
particle rotations. In the middle, a shear band with large particle rotations can be observed.
Large rotations also occurs in all the corners. For the 3D simulation, the result of stress ratio
against shear strain is shown in Figure 2.15, where σs is the shear stress, σ33 is the constant
stress in vertical direction and εs is the shear strain.

From the stress-strain curve, it can be seen that during the simple shear process, the shear
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Figure 2.15: Stress-strain curve of DEM simulation of 3D simple shear test

stress keeps increasing until a limited value is reached. This is consistent with the observations
in experiments. The result of DEM simulation are be compared with the numerical results of
continuum model in section 6.5.

2.3 Averaging methods

Continuum models for particle system were originally derived empirically from experimental
tests and are based on mechanical theoretical principles. Continuum models of granular
materials are largely conceived out of a need to understand the internal structure of a granular
assembly as it has a governing influence on deformation. Since granular materials are discrete
in nature, continuum properties need to be obtained by homogenization/averaging methods.
In this dissertation, only rate-independent materials are considered, which means the material
behavior do not depend on time. Hence, time averaging is not discussed here. In the following
sections, only volume averaging methods are considered.

2.3.1 Stress

The macro-micro relationship between the stress tensor and the contact forces has been
well established for static conditions. Successive researchers have made advances [7, 4, 33].
Landmark achievements were the addition of body forces by Bagi [4], De Saxce et al.’s
consideration of dynamic effects [44] and the derivation of a generalized expression for the
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stress tensor based only on Newton’s second law by Li et al. [36] in 2009. Here, we use the
stress averaging methods to study the stress in the DEM simulations. Since the asymmetry of
stress tensor is an important assumption of the micropolar continuum model, which is one of
the focal point of this dissertation, the non-symmetry of stress is discussed in the following.

⇒

Figure 2.16: Stress averaging

Starting from the biaxial test simulation in the section 2.2.1, we use averaging method to get
stresses inside and outside of the shear band with different averaging volumes.The averaging
method used here is identical to the method used by Bardet and Vardoulakis in [7], in which:

σij =
1

V

∑
e∈E

xaei f
e
j (2.16)

We go through all the particles within the averaging volume, calculate the volume of these
particles within the averaging volume, sum all these volumes to get V . Then, go through
all the contacts e in the averaging volume E to get xaei and f ej , dyadic product of these two
vectors give xaei f

e
j . The sum of xaei f

e
j divided by V is the averaged stress σij . This method is

realized by a FISH program executed in PFC.
With this method, averaging inside and outside the shear band with different averaging lengths
(diameter of the averaging volume) are carried out. For balls with shear stiffness, the stress
tensors obtained by this averaging method are always asymmetric. Hence, the stress tensor can
be separated into a symmetric part and a skew-symmetric part. For the skew-symmetric part,
the maximum skew-symmetrical stress can be found. For the symmetrical part the maximum
and the minimum principle stresses can be found. For different averaging volumes, the ratio
between maximum skew symmetrical stress and maximum principle stress s/σ1, and between
maximum skew symmetrical stress and minimum principle stress s/σ3, are shown in Table
2.1, where da is the diameter of the averaging volume and d50 is the mean ball diameter.
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inside shear band outside shear band
da/d50 s/σ1 s/σ3 s/σ1 s/σ3

4.0 9.03× 10−3 2.42× 10−2 8.72× 10−3 1.74× 10−2

2.0 2.15× 10−2 1.19× 10−1 1.25× 10−2 3.99× 10−2

1.2 4.81× 10−2 8.24× 10−1 4.72× 10−2 5.99× 10−1

Table 2.1: Stresses obtained from different averaging volume inside and outside the shear band.

It is clear from the table that the skew symmetric stress decreases with increasing averaging
volume. The larger the averaging volume, the more symmetric the stress tensor. For the same
averaging volume, the stress asymmetry inside the shear band is larger, which means that the
stress in the shear band is more asymmetric than the stress outside the shear band. Compared to
the principle stresses, the asymmetric stress is negligible unless the averaging size approaching
the particle size. Hence, from the macroscale point of view, the asymmetry of stress tensor can
be neglected.
For granular material with regular shaped particles, i.e. the surface area is small, for an aver-
aging volume, the ratio between volume and surface V/S [7] is proportional to the averaging
length. Bardet and Vardoulakis proved that the stress asymmetry decrease with V/S, which is
also shown in our DEM simulation and averaging results.
From DEM simulations, it has been proved that the stress asymmetry does exist in granular
materials. Consider a continuum constitutive model for granular materials, whether to use a
symmetric or asymmetric stress tensor has to be determined. Some researchers use asymmetric
stress tensor [10, 12, 28], others suggest the stress asymmetry can be neglected for all practical
purposes [13, 15].
Averaging method shows that the stress asymmetry depends on the averaging size, which can
be linked to the characteristic length scale in generalized continuum models with size depen-
dency. If the characteristic length is much larger than the mean particle diameter, the stress
averaging volume is also very large in which case the stress asymmetry can be neglected.
However, if a length scale equivalent to the particle scale is used, the stress asymmetry be-
comes significant comparing to other stress component. In this case, asymmetric stress tensors
should be used to obtain a more precise continuum model.

2.3.2 Strain

The averaging of strain is not as simple as the averaging of stress tensors, since only particles
can have stress but both particles and void can have strain. There are two main ways to obtain
strain tensors from granular materials. One is the equivalent continua theories [4, 5, 6, 33, 36],
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the other is least square best fit theories [37].
Bagi [4, 5, 6] used the Voronoi-Delaunay tessellation concept to describe the geometry of a
two-dimensional granular assembly. This method has the advantage of being mathematically
versatile, but the drawback of not directly representing the contacts between particles. This
hinders the (essential) study of stress-strain relationships.
Significant work has been done by Li and Li [36] who constructed a new two-cell system
where particle geometry is described using the Voronoi-Delaunay tessellation. The particle
geometry is based on particle contacts, and the void space is split into void cells, whose
boundaries form a statically determinant structure.
Durán, Kruyt and Luding [17] extend the equivalent continua method of Bagi to three
dimensions and compared it with several best-fit methods. The comparison shows that the
equivalent continua method of Bagi is the most accurate one, while the best-fit method based
on particles has better performance than the best-fit methods based on contact or edges.
In another paper [18], the 3D equivalent continua method of Bagi is studied in detail and
the difference between the physical contact and visual Delaunay edges are discussed for
isotropically and triaxially deformed granular packing with friction.
The equivalent continua method in three dimensions is realized by carrying out Voronoi-
Delaunay tessellation for all selected balls, as shown in Figure 2.17.

⇒

Figure 2.17: Voronoi-Delaunay tessellation in 3D, colors are used to distinguish different tetra-
hedrons

Then, for each tetrahedron of the Voronoi-Delaunay tessellation, the strain rate tensor Dij can
be calculated with the following equations:

DL
ij =

1

V L

4∑
k=1

vki a
k
j (2.17)

where V L is the volume of the tetrahedron, vki is the velocity of the k-th particle and akj is a
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vector perpendicular to the diagonal face, as shown in Figure 2.18.

Figure 2.18: A tetrahedron of Voronoi-Delaunay tessellation

In the least square best fit theories, the strain rate tensors are obtained by minimize the error
between the predicted average velocities and measured velocities of all balls. The error is given
by:

z =
∑
N

|Vi − vi|2 (2.18)

where N is the particle number, Vi are the measured particle velocities, vi is the predicted
particle velocities given by:

vi = Dijxj (2.19)

where Dij is the strain rate tensor and xj is the coordinates of the balls.
In order to minimize the error, we have:

∂z

∂Dij

= 0 (2.20)

Hence, Dij can be solved.
The least square best fit theories are widely used due to its simplicity. However, this method is
shown to be less accurate than the equivalent continua theories [6].

2.3.3 Micropolar terms

Homogenization methods can also be used to average continuum terms related to micropolar
continuum. Details about micropolar continuum can be found in section 3.3.2. If granular
materials are considered as micropolar continuum, the stress tensor does not have to be
symmetric, and there are more continuum terms, namely the couple stress and the curvature
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tensors.
The examples of micropolar homogenization of 2D granular material systems are given by
Kruyt [32] and Ehlers et al. [19]. Kruyt presented a theoretical framework of discrete Cosserat
(micropolar)-type granular materials for both static and kinematic cases. The homogenization
method of Ehlers considers the particles on the boundary of the homogenization volume, the
optimized averaging area is found to be five times of the mean grain diameter.
A more general averaging method is proposed for cohesionless particle systems by Zhu et al.
[58]. The application of the method to the particle-fluid flow in a gas fluidized bed is studied.
The density, velocity stress and couple stress of the flow are examined. A detailed discussion
has been conducted to understand the dependence of the averaged variables on sample size.
An important assumption of micropolar theory is that the rotation of individual material point
can be different from the continuum rotation. For granular materials, as can be seen from the
DEM simulations, the particles in the shear band have larger rotational velocities than other
particles. However, the particle rotations are not equal to the rotations of material points in
continuum mechanics. Hence, averaging method need to be used.
A new method of rotation averaging for granular material is shown here. This averaging
method is quite simple and works from single particle scale to mesoscale. The method is
shown in 2D case with circle shaped elements. However, it can be easily extended to 3D or
arbitrary shaped elements.
According to Stokes’theorem, the integral over the boundary of some orientable manifold is
equal to the integral of its exterior derivative over the whole manifold. Similarly, in averaging
method, it is equivalent to consider all the elements inside the averaging volume or to consider
all the elements in the averaging boundary. Since rotation is consider here, it is natural to take
a sphere or a circle as averaging volume. For other shapes of averaging volume, this method
can still be used but becomes very complicated.
First an averaging circle needs to be defined (an averaging sphere in 3D case), the radius of
the averaging circle can be chosen arbitrarily. All the particles which intersect with this circle
can be found out. If the radius, position, velocity and rotational velocity of these particles are
known, the rotational velocity of the averaging circle can be calculated with the following
method:
The intersect points of the averaging circle and particles are found out. By knowing the
particle velocity and rotation, the velocity of an intersect point can be calculated by:

vi = vp + ωp × rpi (2.21)

where vi is the velocity of the intersect point, vp is the velocity of the particle center, ωp is the
rotational velocity of the particle and rpi is the vector from the particle center to the intersect
point.
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The velocity vi leads to a rotational velocityωi on the averaging circle, which can be given by:

ωi =
ra × vi
||ra||2

(2.22)

where ra is the vector connecting the center of the averaging circle and the intersect point.
By summing up all the ωi, the rotational velocity of the averaging circle can be obtained:

ωa =
∑ αi

2π
ωi (2.23)

where αi is the angle of the intersecting arc of the averaging circle. In this way, the velocity of
each intersect point is weighted by the arc length on the averaging circle.
In case of 3D averaging, the similar method can be used except equation (2.23) should be:

ωa =
∑ 1

2
sin

αi
2
ωi (2.24)

since the area of the spherical cap equals to 2π||ra||2 sin(αi/2), while the area of the whole
sphere is 4π||ra||2. For arbitrary shaped averaging volume, the determination of surface area
is very complicated and will not be discussed here.

Figure 2.19: Rotation averaging in 2D case

Figure 2.19 shows an example of the averaging method, the small circles are particles and the
large circle is the averaging circle. For each particle, there velocities are shown, the particle
velocity in the particle center vp, the velocity at the intersect point vi and the tangential
projection of vi on the averaging circle. By summing up all the tangential projection velocities,
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the rotation of the averaging circle can be obtained.
In order to show the performance of the model, simple cases with different averaging volumes
are shown. In Figure 2.20, there are five particles with no translational velocity. The center
particle rotates counter-clockwisely and other particles rotate clockwisely. The all particles
have the same radius r.

Figure 2.20: Example for rotation averaging

(a) (b)

(c) (d)

Figure 2.21: Different averaging volumes

Suppose the center of the averaging circle is the same as the center of the middle particle. If
the averaging radius is R and R ≤ r as shown in Figure 2.21 (a), there is only one intersect
point and the intersecting angle is 2π. Hence, the averaged rotation equals to the particle rota-
tion. If r < R < 2r (Figure 2.21 (b)), there are four intersect points. The averaged rotation is
counter-clockwise. For the case R = 2r (Figure 2.21 (c)), the intersect velocities are zero, so
the averaged rotation is also zero, which means all the rotations within the averaging volume
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canceled out. For R > 2r in Figure 2.21(d), the averaged rotation is clockwise.
Using this averaging method, continuum rotation can be averaged from the discrete elements.
Depending on the position and size of the averaging circle, the averaged rotation can be differ-
ent.
Averaging methods bridge the micro and macro scale. It is proved by averaging methods that
there are stress asymmetry (only negligible in large scales) and non-affine rotations in granular
materials. However, the physical meanings of the couple stress and curvature tensors are not
clearly defined. Even for simple granular material in 2D, there are no recognized averaging
methods for couple stress and curvature. Choosing a proper averaging volume is also an open
question. Hence, to obtain a constitutive relation between couple stress and curvature directly
from homogenization method is not feasible.
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Chapter 3

Continuum methods

3.1 Introduction

Continuum mechanics is a branch of mechanics that deals with the analysis of the kinematics
and the mechanical behavior of materials modeled as a continuous mass rather than as discrete
particles. The first and most important assumption in Continuum mechanics is continuity.
Continuity: A material is continuous if it completely fills the space that it occupies, leaving
no pores or empty spaces, and if furthermore its properties are describable by continuous
functions[41].
Since all materials have microstructures, the continuity assumption is not true as far as the
microstructures are considered. However, the bulk behavior of materials shows continuity and
can be described by continuous functions. Even though granular materials have a discrete
microstructure, the assumption of continuity still holds for many macroscale modelings.
Hence, continuum mechanics are still the main methods to model granular materials in most
of the engineering problems.
There are two types of functions in continuum mechanics, general principles and constitutive
equations. General principles are based on basic physic laws, hold for all kinds of materials.
Constitutive equations describes the behavior of certain kind of materials, therefore it is
different from one to another. Together with both sets of equations, solutions can be obtained
for continuum modeling of material behavior.
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3.2 General principles

In this section, general principles in continuum mechanics will be discussed, including
kinematics, mechanics, strain and stress measures, conservation laws. Since micropolar
continuum is concerned in this dissertation, general formulations (including independent
rotations) are shown. Classical general principles can be considered as a special case by
setting the independent rotations to zero.

Kinematics: A general material point has three translational degrees of freedom ui and three
rotational degrees of freedom ωi. Hence, strain tensor and curvature tensor are given by:
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Stain rate tensor, spin tensor and curvature rate tensor can be written as:

D =


∂u̇1

∂x1

1

2
(
∂u̇1

∂x2

+
∂u̇2

∂x1

)
1

2
(
∂u̇1

∂x3

+
∂u̇3

∂x1

)

1

2
(
∂u̇2

∂x1

+
∂u̇1

∂x2

)
∂u̇2

∂x2

1

2
(
∂u̇2

∂x3

+
∂u̇3

∂x2

)

1

2
(
∂u̇3

∂x1

+
∂u̇1

∂x3

)
1

2
(
∂u̇3

∂x2

+
∂u̇2

∂x3

)
∂u̇3

∂x3

 (3.3)

W =


0

1

2
(
∂u̇1

∂x2

− ∂u̇2

∂x1

)
1

2
(
∂u̇1

∂x3

− ∂u̇3

∂x1

)

1

2
(
∂u̇2

∂x1

− ∂u̇1

∂x2

) 0
1

2
(
∂u̇2

∂x3

− ∂u̇3

∂x2

)

1

2
(
∂u̇3

∂x1

− ∂u̇1

∂x3

)
1

2
(
∂u̇3

∂x2

− ∂u̇2

∂x3

) 0

 (3.4)

K =


∂ω̇1

∂x1

∂ω̇1

∂x2

∂ω̇1

∂x3
∂ω̇2

∂x1

∂ω̇2

∂x2

∂ω̇2

∂x3
∂ω̇3

∂x1

∂ω̇3

∂x2

∂ω̇3

∂x3

 (3.5)

26



Mechanics: For each material point, a stress tensor associated with the translational degrees
of freedom and a couple stress tensor associated with the rotational degrees of freedom
can be defined. Stress measures the average internal force per unit area within a con-
tinuum body. Couple stress measures the average internal moment per unit area within a
continuum body. An example of 2D stress and couple stress distribution is shown in Figure 3.1.

Figure 3.1: Stress and couple stress in a 2D continuum element

For equations given in rate form, stress rate needs to be used. However, the rate of Cauchy
stress tensor is not frame independent (objective). Hence, the Jaumann stress rate tensor is
normally used, which can be written as:

T̊ = Ṫ + TW −WT (3.6)

Similarly, the Jaumann couple stress tensor can be defined as:

M̊ = Ṁ + MW −WM (3.7)

Conservation laws:
Conservation of mass, continuity equation:

dρ

dt
+ ρdivv = 0 (3.8)

where ρ is the density and v is the velocity.
Conservation of momentum:
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ρ
Dv

Dt
− divT− ρb = 0 (3.9)

where D/Dt is the material time derivative, T is the stress tensor and b is the body force.
Conservation of angular momentum:

ρ
D(Jω)

Dt
− divM− ρJc− εT = 0 (3.10)

where J is the moment of inertia tensor,ω is the angular velocity, M is the couple stress tensor,
c is the body couple and ε is the permutation symbol.
For a static system without body force or body couple, from equation (3.9) and (3.10), the
following balance equations can be deduced:

Tji,j = 0 (3.11)

Mji,j + εijkTjk = 0 (3.12)

Virtual Work principle

If we have a domain Ω with the boundary ∂Ω and the outward normal vector n. The domain
has a stress of T and a couple stress of M. The body force and body couple are given by
b and c. The force and moment applied on the boundary ∂Ω are t and m. Then, the virtual
power can be written in the following form:

℘(v,ω) =

∫
Ω

(divT + ρb− ρDv

Dt
)vdV −

∫
∂Ω

(T · n− t)vdA (3.13)

+

∫
Ω

(divM + ρc + εT− ρD(Jω)

Dt
)ωdV −

∫
∂Ω

(M · n−m)ωdA

If the virtual displacement and rotation are assumed to be δu and δr, the virtual work can be
given by

Π(δu, δr) =

∫
Ω

(divT + ρb− ρDv

Dt
)δudV −

∫
∂Ω

(T · n− t)δudA (3.14)

+

∫
Ω

(divM + ρc + εT− ρD(Jω)

Dt
)δrdV −

∫
∂Ω

(M · n−m)δrdA

where the internal work of displacement and rotation are given by
∫

Ω
(divT + ρb −

ρDv/Dt)δudV and
∫

Ω
(divM + ρc + εT − ρD(Jω)/Dt)δrdV , the external work of

displacement and rotation are given by
∫
∂Ω

(T · n− t)δudA and
∫
∂Ω

(M · n−m)δrdA.
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General principles are based on physical laws hence valid for all materials. However, it
is not enough to describe the material behavior only with general principles. In addition,
constitutive equations are needed, which is the relationship between stress and stain (couple
stress and curvature for the micropolar continuum). The main problem of continuum modeling
of granular materials is to find proper constitutive models. In the next section, constitutive
models are discussed. Hypoplastic model and micropolar theory are shown. In the next
chapter, these two theories are combined to obtain a new constitutive model.

3.3 Constitutive models

Before starting with the discussion about constitutive models for granular materials, we need
to distinguish the differences between elastic-plastic models and hypoplastic models, and be-
tween classical and generalized theories.
Conventional constitutive models such as Druck-Prag model or Mohr-Cloumb model are based
on elastic-plastic theories, which are still the main methods used in engineering problems. In
elastic-plastic models, the elastic and plastic deformations need to be distinguished and dif-
ferent material parameters need to be used. Hypoplastic model is a new model developed for
granular materials. Unlike elastic-plastic models, there is no clear boundary between elastic
and plastic deformations in hypoplastic model. The behavior of material is described with a
nonlinear tensor equation and a single set of parameters.
Classical theories assume the material point has only translational degrees of freedom, no in-
ternal length scale and not affected by the other material points. Hence, size dependent effects
can not be modeled with classical constitutive theories. The most commonly used generalized
continuum theories include nonlocal theory, strain gradient theory and micropolar theory.
In this thesis, we take the advantages of both hypoplasticity and micropolar theory by linking
them together. In the following sections, hypoplastic model and micropolar theory are intro-
duced separately.

3.3.1 Hypoplastic model

The basic idea of hypoplasticity is developed by Kolymbas in 1985 [30]. He formulated the
behavior of an elastic material by using nonlinear tensorial function of the rate-type. Hypoplas-
ticity aims to describe the anelastic phenomena without using the additional notions introduced
by elastoplasticity (such as yield surface, plastic potential ect.). Hypoplasticity recognizes that
anelastic deformations may set on from the very beginning of the loading process. It does not
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presumptively distinguish between elastic and plastic deformations. The outstanding feature
of hypoplasticity is its simplicity: it uses only a unique equation (contrary to elastoplastic-
ity) which holds equally for loading and unloading. As with every constitutive equation, there
are several versions of hypoplastic equations, early ones and more advanced ones. The orig-
inal hypoplastic equation given by Kolymbas in 1977 [29] is too complex (at those days the
name of hypoplasticity is not introduced). Later some improved versions have been presented
([54, 53, 9, 52]). The general hypoplastic constitutive equation is presented by Wu and Kolym-
bas in 1990 [54]. Based on the general hypoplastic constitutive equation, a simple hypoplastic
constitutive model is proposed by Wu and Bauer in 1994 [53]. This model shows excessive
contraction (volume reduction) in triaxial extension. In order to remedy this, the constitutive
model is updated by including a new term into the constitutive model.
The formal definition of hypoplasticity is provided by Wu and Kolymbas in 1990 [54] as fol-
lowing:

T̊ = H(T,D) (3.15)

where T is the Cauchy stress tensor, D is the strain rate tensor, T̊ is the Jaumann stress rate
defined as

T̊ = Ṫ + TW −WT (3.16)

where Ṫ is the time derivative of the Cauchy stress T, and W is the rotation rate (spin vector).
Furthermore, the function H in equation (3.15) is required to be not differentiable in and only
in D = 0.
To obtain a concrete formulation, some restrictions are imposed on constitutive equation
(3.15). Some of the restrictions are based on the general principles of continuum mechanics,
while others are based on experimental observations. The behavior to be described is assumed
to be rate-independent. These restrictions are described as following:

1. The function H should be positively homogeneous of the first order in

H(T, λD) = λH(T,D) (3.17)

where λ is a positive but otherwise arbitrary scalar.

2. The function H should fulfill the following condition of objectivity

H(QTQT ,QDQT ) = QH(T,D)QT (3.18)

where Q is an orthogonal tensor. The representation theorem for a tensorial function of
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two symmetric tensors can be written as follows([45, 48, 49])

T̊ = α0I + α1T + α2D + α3T
2 + α4D

2 + α5(TD + DT) (3.19)

+α6(T2D + DT2) + α7(TD2 + D2T) + α8(T2D2 + D2T2)

where I is the unit tensor. The coefficient αi(i = 0, ... , 8) are the function of the invariants
and joint invariants of T and D:

αi = αi(trT, trT
2, trT3, trD, trD2, trD3, trTD, trT2D, trTD2, trT2D2) (3.20)

where tr represents the trace of a tensor. Note that the isotropy of the tensorial function
does not necessarily mean that the response is also isotropic.

3. The function H should be homogeneous in T, i.e.

H(λT,D) = λnH(T,D) (3.21)

where λ an arbitrary scalar and n denotes the order of homogeneity. This restriction
implies that the tangential stiffness is proportional to the nth power if the stress level
(trT)n, so so that experiments conducted under different stress levels can be normalized
by (trT)n.

Without loss in generality, it is assumed that the constitutive equation can be decomposed into
two parts representing reversible and irreversible behavior of the material:

T̊ = L(T,D)−N(T,D) (3.22)

where L is assumed to be linear in D and N is non-linear in D. L(T,D) in equation (3.22)
can be specified by invoking the representation theorem for isotropic tensorial functions, and
the non-linear dependence of N on D should also satisfy the restriction of rate-independence.
Furthermore, the following generalized hypoplastic equation could be assumed ([55]):

T̊ = L(T) : D−N(T)||D|| (3.23)

where L = ∂L/∂D is, in analogy to the elastic stiffness matrix, a fourth-order tensor.
||D|| =

√
trD2 stands for the Euclidean norm. The colon : denotes an inner product between

two tensors. It should be noticed that equation (3.23) can describe the relationship of stress
rates and strain rates without any predefined yield surface and plastic potential. Another ad-
vantage of this hypoplastic model is the decomposition of elastic and plastic parts is not used
in developing the constitutive equation. Moreover, there is even no need to define loading and
unloading explicitly, since they are implied by the constitutive equation.
The following constitutive equation is proposed by Wu (1992)[51]:

T̊ = C1tr(T)D + C2
trTD

trT
T + C3

T2

trT
||D||+ C4

T∗2

trT
||D|| (3.24)
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where Ci (i = 1, 2, 3, 4) are dimensionless parameters.The deviatoric stress tensor T∗ in the
above equation is given by T∗ = T− 1/3(trT)I with I being the unit tensor. The four param-
eters can be identified with a single triaxial compression test. The performance of the model is
shown in great detail by Wu and Bauer (1994)[53].
Some studies show that the parameters calibrated for triaxial compression test do not neces-
sarily lead to critical states for other stress paths, e.g. triaxial extension. It is found out that
critical state is reached for all paths if the two nonlinear terms are merged into one term by
letting (Bauer, 1996[9]):

C3 = −C4 (3.25)

As a consequence, the number of parameters in equation (3.24) reduces from four to three.

T̊ = C1tr(T)D + C2
trTD

trT
T + C3||D||(T + T∗) (3.26)

This severely restricts the adaptability of the model. For instance, the initial Poisson ratio
cannot be varied. To resolve this problem, a new term tr(D)T is added to the above equation
so that the number of parameters regains four:

T̊ = C1tr(T)D + C2tr(D)T + C3
trTD

trT
T + C4||D||(T + T∗) (3.27)

Note that the same notations for the four parameters are retained in the above equation. Obvi-
ously this new term vanishes in critical state with tr(D) = 0. The new term is motivated by a
similar term proposed by Wu in 1999 [52]. This model is studied in the PHD thesis of Wang
[50] and applied to numerical modeling of tunneling.
The four parameters in constitutive equation (3.27) can be identified with a single triaxial com-
pression test under constant confining pressure. The stress rate, stress and strain rate tensors at
the starting point(T̊i,Ti,Di) and failure point(T̊f ,Tf ,Df ) of a triaxial test are:

T̊i =

σ̇i 0 0

0 0 0

0 0 0

 ,Ti =

σc 0 0

0 σc 0

0 0 σc

 ,Di =

ε̇1i 0 0

0 ε̇3i 0

0 0 ε̇3i

 (3.28)

T̊f =

0 0 0

0 0 0

0 0 0

 ,Tf =

σf 0 0

0 σc 0

0 0 σc

 ,Df =

ε̇1f 0 0

0 ε̇3f 0

0 0 ε̇3f

 (3.29)

32



With equation (3.27), four independent equations can be obtained:

σ̇i = C13σcε̇1i + C2(ε̇1i + 2ε̇3i)σc + C3
σc(ε̇1i + 2ε̇3i)

3σc
σc + C4

√
ε̇2

1i + 2ε̇2
3iσc (3.30)

0 = C13σcε̇3i + C2(ε̇1i + 2ε̇3i)σc + C3
σc(ε̇1i + 2ε̇3i)

3σc
σc + C4

√
ε̇2

1i + 2ε̇2
3iσc (3.31)

0 = C1(σf + 2σc)ε̇1f + C2(ε̇1f + 2ε̇3f )σf + C3
(σf ε̇1f + 2σcε̇3f )

σf + 2σc
σf (3.32)

+C4

√
ε̇2

1f + 2ε̇2
3f (σf + σf −

σf + 2σc
3

)

0 = C1(σf + 2σc)ε̇3f + C2(ε̇1f + 2ε̇3f )σc + C3
(σf ε̇1f + 2σcε̇3f )

σf + 2σc
σc (3.33)

+C4

√
ε̇2

1f + 2ε̇2
3f (σc + σc −

σf + 2σc
3

)

The material parameters measured in a triaxial test can be given by:

Ei =
σ̇i
ε̇1i

(3.34)

νi =
ε̇3i

ε̇1i

(3.35)

φ = arcsin(
σf − σc
σf + σc

) (3.36)

νf =
ε̇3f

ε̇1f

=
1 + tanψ

2
(3.37)

whereEi is the initial Young’s modulus, νi is the initial Poisson ratio, φ is the friction angle, νf
is the failure Poisson ratio, ψ is the dilatancy angle. In addition, a stress ratio Rf is assumed,
which is given by:

Rf =
σf
σc

=
1 + sinφ

1− sinφ
(3.38)

Hence, equation array 3.30 can be simplified to:

Ei
σc

= 3C1 + C2(1 + 2νi) + C3
1 + 2νi

3
− C4

√
1 + 2ν2

i (3.39)

0 = 3C1νi + C2(1 + 2νi) + C3
1 + 2νi

3
− C4

√
1 + 2ν2

i (3.40)

0 = C1(Rf + 2) + C2(1 + 2νf )Rf + C3
Rf + 2νf
Rf + 2

Rf − C4

√
1 + 2ν2

f

5Rf − 2

3
(3.41)

0 = C1(Rf + 2)νf + C2(1 + 2νf ) + C3
Rf + 2νf
Rf + 2

+ C4

√
1 + 2ν2

f

Rf − 4

3
(3.42)
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If Ei,νi,φ(Rf ),νf (ψ) are known, parameters C1−C4 can be obtained by solving the following
equation system:


Ei
σc
0

0

0

 =



3 (1 + 2νi)
1 + 2νi

3
−
√

1 + 2ν2
i

3νi (1 + 2νi)
1 + 2νi

3
−
√

1 + 2ν2
i

(Rf + 2) (1 + 2νf )Rf
Rf + 2νf
Rf + 2

Rf −
√

1 + 2ν2
f

5Rf + 2

3

(Rf + 2)νf (1 + 2νf )
Rf − 2νf
Rf + 2

√
1 + 2ν2

f

Rf − 4

3




C1

C2

C3

C4


(3.43)

For example, material parameters of the DEM simulation of biaxial test in the subsection
2.2.1 Figure 2.5 can be calibrated, the results are shown in Table 3.1.

E(MPa)/σc Rf ψ(◦) νi

90 4.25 56.14 0

Table 3.1: Material parameters for the DEM simulation of biaxial test

With equation (3.43), the hypoplastic material parameters can be determined as shown in
Table 3.2.

C1 C2 C3 C4

-30.00 62.65 -446.07 -86.04

Table 3.2: Hypoplastic material parameters for the DEM simulation of biaxial test

Hence, an analytical calculation of biaxial test can be carried out. The resulting stress-strain
and volume strain curves are compared with the result of DEM simulations as shown in Figure
3.2.

From the comparison, it can be seen that with proper material parameters, the result of DEM
simulation can be fairly well reproduced by hypoplastic model.

Further more, for σc = 100 KPa, different material parameters can be calibrated as shown in
Table 3.3.
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Figure 3.2: Stress-strain and volume strain curves of the DEM simulation and hypoplastic
model of biaxial test

E(MPa)/σc φ(◦) ψ(◦) νi C1 C2 C3 C4

170 30

0

0 -56.67 3.58 -531.25 -173.51
0.1 -51.52 -57.46 -482.95 -157.73
0.2 -47.22 -150.09 -442.71 -144.59
0.3 -43.59 -324.31 -408.65 -133.47

10

0 -56.67 37.23 -653.65 -180.66
0.1 -51.52 -19.91 -620.22 -164.23
0.2 -47.22 -104.56 -610.25 -150.55
0.3 -43.59 -261.16 -642.91 -138.97

20

0 -56.67 71.79 -774.44 -186.35
0.1 -51.52 18.74 -755.79 -169.41
0.2 -47.22 -57.56 -775.94 -155.30
0.3 -43.59 -195.74 -874.89 -143.35

30

0 -56.67 108.88 -899.62 -191.00
0.1 -51.52 60.27 -896.37 -173.63
0.2 -47.22 -6.94 -947.87 -159.16
0.3 -43.59 -125.12 -1115.84 -146.92

Table 3.3: Material parameters for hypoplastic model.

35



Several Numerical simulations of triaxial compression and extension tests with different
dilatency angles are carried out. The results of stress-strain curves and different volume strain
curves are shown in Figure 3.3 and 3.4.
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Figure 3.3: Stress-strain curves for triaxial compression and extension

−21 −18 −15 −12 −9 −6 −3 0 3 6 9 12 15 18 21
−2

0

2

4

6

8

10

ε
1
 [%]

ε
v
 [

%
]

0
o

10
o

20
o

30
o

Figure 3.4: Volumetric strain vs. axial strain with different dilatancy angles
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In Case of vanishing initial Poisson ratio (νi = 0), the contour plot of relationship between
different parameters are shown in Figures 3.5.
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Figure 3.5: Contours for parameter identification
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3.3.2 Micropolar theory

Generalized continuum theories have characteristic lengths in the constitutive model and can
be used to solve size dependent problems. The most commonly used generalized continuum
theories include nonlocal theory, strain gradient theory and micropolar theory. Micropolar
theory is also known as Cosserat theory since it is first developed by the Cosserat brothers
[14] in 1909. However, their work is very general and does not use tensor notations, and they
did not give any constitutive relations. Later the Cosserat theory is presented by Ericksen
and Truesdell in [21]. The importance of Cosserat theory is widely noticed in the 1968
Freudenstadt-IUTAM-Symposium on the Mechanics of Generalized Continua edited by
Kröner [31]. An extensive presentation of the Cosserat theory is given by Eringen [22, 23],
and he named Cosserat theory as micropolar theory.
Classical continuum methods consider a continuous material to be made up of an assemblage
of points that can displace linearly in any direction when a force is applied. The response of the
material to an applied surface stress is to move in a straight line in the direction of the stress.
This behavior is described by the Cauchy stress tensor and assumes that a force’s movement
through the material can be described completely as a vector. It neglects couple stresses
and does not consider the moments that are induced from locally varying strain conditions.
Such a model may be insufficient for the description of certain physical phenomena. Particle
rotations and the associated frictional work have been shown to dominate a granular material’s
behavior. Therefore, if granular materials need to be accurately described, a model that can
deal with the discrete rotation of each point as well as its translation will be needed.
In a micropolar continuum, the micro rotations of material points needs to be considered.
Hence, an internal length and other material parameters linked to the microstructure of
the material needs to be determined. However, unlike macro scale material parameters, the
micro scale material parameter cannot be easily determined with experiments. Lakes [35, 34]
showed some experimental methods for elastic micropolar continuum. These experiments are
quite complicate and only works for materials such as metal. For granular materials, there
is no standard experiment for micropolar theory, and no recognized definition of the length
scale. As discussed in section 2.3.3, obtaining a micropolar constitutive model from DEM
and averaging method is also not feasible. Hence, in this stage, setting up a constitutive model
based on experimental data or discrete methods is not possible, mathematical approaches need
to be followed.
Regarding the existing constitutive models of micropolar theory, there are micropolar elastic-
ity, micropolar plasticity and micropolar hypoplasticity.

Micropolar elasticity: The micropolar elasticity is well defined, which has the following
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form:

Tij = λEkkδij + 2µE(i,j) + 2µcE{i,j} (3.44)

Mij = αCkkδij + 2βC(i,j) + 2γC{i,j} (3.45)

where T, E, M and C are stress, strain, couple stress and curvature tensors. Ekk is the spherical
part of tensor E. E(i,j) and E{i,j} respectively denote the symmetric and skew-symmetric part
of Eij . λ and µ are classical Lamé constants. µc, α, β and γ are additional material parameters
for micropolar elasticity. Several length scales can be defined, such as:

l21 =
(µ+ µc)(β + γ)

4µµc
(3.46)

l22 =
α + 2β

4µc
(3.47)

Micropolar plasticity: There are still many unsolved questions in micropolar plasticity. Due
to the micro rotation of material, the classical yield criteria and flow rules cannot be applied
directly. The yield condition depends on both stress and couple stress:

F =
√
a1SijSij + a2SijSji + b1MijMij + b2MijMji − Y (3.48)

where S is the deviatoric stress tensor. a1, a2, b1 and b2 are material parameters and Y is
the isotropic hardening variable, which can be a function of mean stress. In [42], Y is given by:

Y = µ|p| = sinφm|p| (3.49)

where p is the mean stress, µ is the friction coefficient and φm is the friction angle.

From the equations above, it can be seen that there are many additional parameters for
micropolar elasticity and plasticity. The physical meaning of these parameters is not clear yet
and there is no simple experiment to achieve all these parameters.

Micropolar hypoplasticity: A different approach is to link micropolar theory with hypoplas-
ticity. Based on the hypoplastic model given by Gudehus [25] and Bauer [9], a micropolar
hypoplastic model is given by Tejchmann and Bauer [46]:

T̊ = fs[L(T̂, m̂,Dc,kd50) + fdN(T̂)||Dc + kd50||] (3.50)

m̊/d50 = fs[Lm(T̂, m̂,Dc,kd50) + fdNm(m̂)||Dc + kd50||] (3.51)

Where m is the couple stress vector, Dc is the non-symmetric rate-of-deformation tensor, k is
the rate-of-curvature vector, d50 is mean grain diameter. The normalized granular stress tensor
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T̂ and the normalized couple stress vector m̂ are defined by:

T̂ =
T

trT
(3.52)

m̂ =
m

d50trT
(3.53)

Equations fs and fd are defined by:

fs =
hs
nhi

(
ei
e

)β
1 + ei
ei

(
−trT

hs
)1−n (3.54)

fd = (
e− ed
ec − ed

)α (3.55)

with

hi =
1

c2
+

1

3
− (

ei0 − ed0

ec0 − ed0

)α
1

c1

√
3

(3.56)

where hs the granular hardness [25], e is the current void ratio, ec the critical void ratio, ed
denotes the void ratio of maximum densification and ei is the void ratio of maximum loosening,
hs denotes the granular hardness and α, β and n are constants. The values of ei, ed, ec are
assumed to decrease with the pressure level −trT in the following way:

ei = ei0exp[−(−trT/hs)
n] (3.57)

ed = ed0exp[−(−trT/hs)
n] (3.58)

ec = ec0exp[−(−trT/hs)
n] (3.59)

where ei0, ed0, ec0 are the values of ei, ed, ec for the granular pressure equal to zero, respec-
tively.
The tensor-valued functions L, Lm, N, Nm are given by:

L = a2
1Dc + T̂tr(T̂Dc + m̂kd50),N = a1(T̂ + T̂∗) (3.60)

Lm = a2
1kd50 + m̂tr(T̂Dc + m̂kd50),Nm = amm̂ (3.61)

where

a−1
1 = c1 + c2

√
tr(T̂∗2)[1 + 3 cos(θ)], 3 cos(θ) =

√
6tr(T̂∗3)

[tr(T̂∗2)]1.5
(3.62)

c1 =

√
3

8

(3− sinφc)

sinφc
, c2 =

3

8

(3 + sinφc)

sinφc
(3.63)

where φc is the critical angle of internal friction from a triaxial compression test and θ is the
Lode angle. The dimensionless constant am controls the influence of Cosserat quantities on
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the material behavior. T̂∗ denotes the deviatoric part of T̂.
This model extends hypoplastic model with micropolar theory. Numerical simulations show
that the behavior of granular material, including size dependent effects, can be very well pre-
dicted. However, this model is very complicated. The additional material parameter related
to micropolar theory d50 and am cannot be easily determined. The couple-curvature equation
(3.51) is obtained by simple analogy of stress-strain equation (3.50).
In this dissertation, a different approach is given, which links the hypoplasticity with microp-
olar theory with the help of complex tensor formulations. The mathematical details of this
approach are shown in the next chapter.
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Chapter 4

Complex micropolar hypoplastic model

4.1 Mathematical background

4.1.1 Tensor functions

Tensors are geometric objects that describe linear relations between vectors, scalars, and other
tensors. Elementary examples of such relations include the dot product, the cross product,
and linear maps. Vectors and scalars themselves are also tensors. A tensor can be represented
as a multi-dimensional array of numerical values. The order (also degree or rank) of a ten-
sor is the dimensionality of the array needed to represent it. A vector can be represented as
a one-dimensional array and is a first-order tensor. Scalars are single numbers and are thus
zeroth-order tensors.
The stresses inside a solid body or fluid are described by second order tensors. In detail, the
tensor quantifying stress in a three-dimensional solid object has components that can be conve-
niently represented as a three times three array. The three faces of a cube-shaped infinitesimal
volume segment of the solid are each subject to some given force. The force’s vector com-
ponents are also three in number. Thus, three times three, or nine components are required to
describe the stress at this cube-shaped infinitesimal segment. Within the bounds of this solid
is a whole mass of varying stress quantities, each requiring nine quantities to describe. Thus,
a second order tensor is needed. Similarly stain, couple stress and curvature can also be de-
scribed by a second order tensor with nine components.
Consider a tensor-valued function with n variable tensors:

T = F(G1,G2, ...,Gn) (4.1)

For any orthogonal tensor Q such that

QQT = QTQ = I, detQ = ±1 (4.2)
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if we have:
QTQT = F(QG1Q

T ,QG2Q
T , ...,QGnQ

T ) (4.3)

Then function F is an isotropic tensor-valued tensor function.
Isotropic tensor-valued functions must be objective, which means they are independent of
coordinate systems. If a tensor function holds in one coordinate system, it must hold for any
other coordinate systems as well. Physic laws should be independent of coordinate systems,
which means a physic law must be true for observers in different positions and orientations.
Hence, physic laws often are written in the form of tensor functions.

4.1.2 Representation theorem

A theorem which defines a irreducible representation of a tensor-valued function on all variable
tensors is the representation theorem. The representation formulas for tensor-valued isotropic
functions of an arbitrary number of symmetric tensors and skew-symmetric tensors [45, 48, 49]
are:

H(Ai,Wp) =

s1∑
r1=1

αr1Hr1(Ai,Wp) (4.4)

Z(Ai,Wp) =

s2∑
r2=1

αr2Zr2(Ai,Wp) (4.5)

H is the symmetric part of the tensor-valued function, and Z is the skew-symmetric part of the
tensor-valued function. Ai are symmetric tensors and Wp are skew-symmetric tensors. αr1 or
αr2 are scalar-valued isotropic functions of Ai and Wp, which are given by:

αr = αr(trAi, trA
3
i , trA

3
i , trAiAj, trA

2
iAj, trAiA

2
j , trA

2
iA

2
j , trAiAjAk, trW

2
p, trWpWq,

trWpWqWr, trAiW
2
p, trA

2
iW

2
p, trA

2
iW

2
pAiWp, trAiWpWq, trAiWpW

2
q ,

trAiW
2
pWq, trAiAjWp, trAiAjW

2
p, trAiW

2
pAjWp, trAiA

2
jWp, trA

2
iAjWp)

where i, j, k = 1...N ; i < j < k, where p, q, r = 1...M ; p < q < r.
Hr1 are given by:

Ai,A
2
i ,AiAj + AjAi,A

2
iAj + AjA

2
i ,AiA

2
j + A2

jAi,W
2
p,WpWq + WqWp,

WpW
2
q −W2

qWp,W
2
pWq −WqW

2
p,AiWp −WpAi,WpAiWp,

A2
iWp −WpA

2
i ,WpA1W

2
p −W2

pAiWp
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where i, j, k = 1...N ; i < j < k, where p, q, r = 1...M ; p < q < r.
Zr2 are given by:

Wp,WpWq −WqWp,AiAj −AjAi,A
2
iAj −AjA

2
i ,AiA

2
j −A2

jAi,AiAjA
2
i −A2

iAjAi,

AjAiA
2
j −A2

jAiAj,AiAjAk + AjAkAi + AkAiAj −AjAiAk −AiAkAj −AkAjAi,

AiWp + WpAi,AiW
2
p −W2

pAi

where i, j, k = 1...N ; i < j < k, where p, q, r = 1...M ; p < q < r.
The representation theorem defines irreducible representations of tensor functions. For a sim-
ple problem, such as linear elastic constitutive problem, the tensor-valued equation can be
directly obtained from the corresponding representation. However, for problems such as hy-
poplasticity or micropolar model, the representation formulas is too complicated to be used
directly. Hence, some mathematical derivations and assumptions need to be made, which will
be shown in the following sections.

4.1.3 Complex tensor

Analog to complex numbers, tensors can also be put into a complex form A + iB, where A

and B are tensors and i is called the imaginary unit, where i2 = −1. In this expression, A is
called the real part and B is called the imaginary part of the complex tensor. If both A and B

are nth order tensors, A + iB is a nth order complex tensor. In this way the complex tensors
contain the ordinary real tensors while extending them in order to solve problems which have
imaginary parts.
The operation rules of complex tensors are shown in the paper of Xiao [56]. For any complex
tensors S′ = U + iV, T′ = X + iY and complex number λ = α + iβ, we have:

λS′ = (αU− βV) + i(αV + βU) (4.6)

S′ + T′ = (U + X) + i(V + Y) (4.7)

S′ : T′ = (U : X + V : Y) + i(V : X−U : Y) (4.8)

S′ ⊗T′ = (U⊗X−V ⊗Y) + i(U⊗Y + V ⊗X) (4.9)

where : is inner product and ⊗ is tensor product.
Complex tensors are widely used in theoretical physics and continuum mechanics [24, 56].
Goddard showed an idea to implement micropolar theory into hypoplastic model by using
complex formulations [24]. However, he did not get any constitutive equations out of this
formulation.
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4.2 Complex micropolar hypoplastic model

In this section, micropolar theory and hypoplasticity are combined with the help of complex
tensor formulations. Two equations are obtained by derivations and separating the real and
imaginary part. These two equations define the new micropolar hypoplastic model. By as-
suming the the symmetry of each tensor, the model is greatly simplified. The new model is
discussed and compared to the existing micropolar hypoplastic model.

4.2.1 Formulation

Starting from the updated hypoplastic equation (3.27), which has the following form:

T̊ = C1tr(T)D + C2tr(D)T + C3
trTD

trT
T + C4||D||(T + T∗) (4.10)

The stress rate tensor T̊, stress tensor T and strain rate tensor D can be extended with microp-
olar terms. Hence, the following complex tensors are formulated:

T̊
′

= T̊ + i
M̊

l
(4.11)

T
′

= T + i
M

l
(4.12)

D
′

= D + ilK (4.13)

A characteristic length l is added to balance the dimensions of the real and imaginary part of
the complex formulation. M/l has the same dimension as T and lK has the same dimension
as D. l has an unit of length, unlike d50 used in equations (3.50) and (3.51), l does not have to
be the mean particle diameter.
Substituting these complex tensors into equation (3.27) gives:

T̊
′
= C1tr(T

′
)D

′
+ C2tr(D

′
)T

′
+ C3

trT
′
D

′

trT′ T
′
+ C4||D

′ ||(T′
+ T

′∗) (4.14)

According to the operation rules 4.6-4.9, each term of equation (4.14) can be expanded. The
real part and imaginary part of each term can be calculated and separated as shown in the
following:
The first term:

C1tr(T
′
)D

′
= C1tr(T + i

M

l
)(D + ilK) = C1(tr(T) + i

tr(M)

l
)(D + ilK) (4.15)

= C1(tr(T)D− tr(M)K) + iC1(ltr(T)K +
tr(M)

l
D)
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The second term:

C2tr(D
′
)T

′
= C2tr(D + ilK)(T + i

M

l
) = C2(trD + iltrK)(T + i

M

l
) (4.16)

= C2(tr(D)T− tr(K)M) + iC2(
tr(D)

l
M + ltr(K)T)

The third term:

C3
trT

′
D

′

trT′ T
′

= C3

tr(T + i
M

l
)(D + iKl)

tr(T + i
M

l
)

(T + i
M

l
) (4.17)

= C3

tr(TD−MK) + itr(TKl +
DM

l
)

trT + i
trM

l

(T + i
M

l
)

= C3

[tr(TD−MK) + itr(TKl +
DM

l
)](trT− itrM

l
)

(trT)2 +
(trM)2

l2

(T + i
M

l
)

= C3{
trT[tr(TD)− tr(MK)] +

trM

l
[
tr(MD)

l
+ ltr(TK)]

(trT)2 +
(trM)2

l2

T

−

trM

l
[tr(MK)− tr(TD)] + trT[

tr(MD)

l
− ltr(TK)]

[(trT)2 +
(trM)2

l2
]l

M}

+iC3{
trT[tr(TD)− tr(MK)] +

trM

l
[
tr(MD)

l
+ ltr(TK)]

[(trT)2 +
(trM)2

l2
]l

M

+

trM

l
[tr(MK)− tr(TD)] + trT[

tr(MD)

l
− ltr(TK)]

(trT)2 +
(trM)2

l2

T}

The forth term:

C4||D
′||(T′

+ T
′∗) = C4

√
||D||2 + l2||K||2[(T + i

M

l
) + (T∗ + i

M∗

l
)] (4.18)

= C4

√
||D||2 + l2||K||2[(T + T∗) + i

M + M∗

l
]

= C4

√
||D||2 + l2||K||2(T + T∗) + iC4

√
||D||2 + l2||K||2 M + M∗

l
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Since T̊
′

= T̊ + iM̊/l, the real part and imaginary part of equation (4.14) can be separated
into the following two equations:

T̊ = C1(tr(T)D− tr(M)K) + C2(tr(D)T− tr(K)M) (4.19)

+C3{
trT[tr(TD)− tr(MK)] +

trM

l
[
tr(MD)

l
+ ltr(TK)]

(trT)2 +
(trM)2

l2

T

−

trM

l
[tr(MK)− tr(TD)] + trT[

tr(MD)

l
− ltr(TK)]

[(trT)2 +
(trM)2

l2
]l

M}

+C4

√
||D||2 + l2||K||2(T + T∗)

M̊

l
= C1(ltr(T)K +

tr(M)

l
D) + C2(

tr(D)

l
M + ltr(K)T) (4.20)

+C3{
trT[tr(TD)− tr(MK)] +

trM

l
[
tr(MD)

l
+ ltr(TK)]

[(trT)2 +
(trM)2

l2
]l

M

+

trM

l
[tr(MK)− tr(TD)] + trT[

tr(MD)

l
− ltr(TK)]

(trT)2 +
(trM)2

l2

T}

+C4

√
||D||2 + l2||K||2 M + M∗

l

By multiplying l on both side, equation (4.20) becomes:

M̊ = C1(l2tr(T)K + tr(M)D) + C2(tr(D)M + l2tr(K)T) (4.21)

+C3{
trT[tr(TD)− tr(MK)] +

trM

l
[
tr(MD)

l
+ ltr(TK)]

(trT)2 +
(trM)2

l2

M

+
trM[tr(MK)− tr(TD)] + trT[tr(MD)− l2tr(TK)]

(trT)2 +
(trM)2

l2

T}

+C4

√
||D||2 + l2||K||2(M + M∗)

4.2.2 Assumptions and simplification

Equations 4.19 and 4.21 define the micropolar hypoplastic constitutive model obtained by
complex formulations. However, they are too complicated for practical use. Without any as-
sumptions, all of the tensors T̊, M̊, T, D, M and K have nine independent components.
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However, by assuming the symmetry or skew-symmetry of the tensors, the constitutive equa-
tions can be greatly simplified. Several assumptions are shown in the following.
In micropolar continuum, the stress tensor and strain rate tensor are normally asymmetric.
However, the skew-symmetric part of stress and strain rate tensor is linked to couple stress and
curvature tensor by balance equations.

Mji,j + εijkTjk = 0 (4.22)

Only the symmetric part of stress and strain rate tensor are independent and need to be deter-
mined by constitutive equations. Hence, we can use the symmetric stress and strain rate tensor
in the constitutive equation, which means in equations (4.19) and (4.21), symmetric stress (T)
and strain rate (D) tensors can be used.
Regarding the symmetry of couple stress and curvature tensors, different assumptions have
been used by different researchers. Yang [57] studied elastic couple stress theory and con-
cluded that the couple stress and curvature tensors are symmetric. His constitutive model has
been used by Akgöz[1, 2]. If this assumption is true, the equations (4.19) and (4.21) cannot be
simplified since none of the components in the equations equals to zero.
In another hand, Hadjesfandiari [26, 26] assumed that the couple stress and curvature tensor
are skew-symmetric. In some previous micropolar hypoplastic models [46], vectors, which are
equivalent to skew-symmetric tensors, are used to describe couple stress and curvature rate.
Hence, in these models, couple stress (M) and curvature rate (K) tensor are assumed to be
skew-symmetric.
With the assumptions of skew-symmetry of couple stress and curvature, we have:

tr(M) = 0 (4.23)

tr(K) = 0 (4.24)

tr(MD) = 0 (4.25)

tr(TK) = 0 (4.26)

M∗ = M (4.27)

Hence, equations (4.19) and (4.21) become

T̊ = C1tr(T)D + C2tr(D)T + C3
trTD− trMK

trT
T (4.28)

+C4

√
||D||2 + l2||K||2(T + T∗)

M̊ = C1l
2tr(T)K + C2tr(D)M + C3

trTD− trMK

trT
M (4.29)

+2C4

√
||D||2 + l2||K||2M

By using symmetric stress and strain rate tensors, and assuming the skew-symmetry of the
couple stress and strain rate tensors, the constitutive model is greatly simplified. This model
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is implemented into a finite-element code. The simulation results are shown in the following
chapters.

4.2.3 Discussion of the new model

The new micropolar hypoplastic constitutive model are developed by complex tensor formu-
lations. With the assumptions of symmetric stress, strain rate tensors and skew-symmetric
couple stress, curvature rate tensors, the model can be simplified to equations (4.28) and
(4.29). It is similar to the existing micropolar hypoplastic model (equations (3.50) and (3.51)),
yet there are several differences.

• Equations 3.50 and 3.51 are based on the reduced form of hypoplastic model with only
has three material parameters which restricts the adaptability. Equations 4.28 and 4.29
have additional terms tr(D)T and tr(D)M, so that the number of parameters retains
four. Hence, more material parameters such as the initial Poisson ratio can be included.

• Equations 4.28 and 4.29 have only one additional micropolar material parameter, which
is the internal length l. This length can be determined from the width of the shear band,
detailed discussions can be found in section 6.2. Equations 3.50 and 3.51 use both am
and d50, where d50 is the internal length assumed to be the mean particle diameter. The
meaning of am is not clearly defined. The shear band width depends on both am and d50.

• Unlike equations (3.50) and (3.51), The new model do not have dependence on pore ra-
tio. However, it can be added by introducing a factor on the nonlinear term. For example:

T̊ = C1tr(T)D + C2tr(D)T + C3
trTD− trMK

trT
T (4.30)

+C4[(1− a)
e− emin
ec − emin

+ a]
√
||D||2 + l2||K||2(T + T∗)

M̊ = C1l
2tr(T)K + C2tr(D)M + C3

trTD− trMK

trT
M (4.31)

+2C4[(1− a)
e− emin
ec − emin

+ a]
√
||D||2 + l2||K||2M

where e is the current pore ratio, ec is the critical pore ratio, emin is the minimum pore
ratio and a is a constant less than 1. The evolution of the pore ratio is determined by :

ė = (1 + e)trD (4.32)

The additional factor becomes 1 for e = ec and becomes a for e = emin.
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4.3 Expansion of complex formulation method

The method of using complex formulations to obtain micropolar constitutive equations is not
limited to the hypoplastic model presented above. Principally, for any classical constitutive
equations in tensor form, we can use complex formulation method to generate micropolar
constitutive equations. Some examples are shown in the following.

For a linear elastic constitutive equation with the following form:

Tij = λEkkδij + 2µE(i,j) + 2µcE{i,j} (4.33)

By assuming general stress and strain tensors with the following complex form:

T′ = T + i
M

l
,E′ = E + ilC (4.34)

we have:

T′ij = T + i
M

l
= λE′kkδij + 2µE′(i,j) + 2µcE

′
{i,j} (4.35)

= (λEkkδij + 2µE(i,j) + 2µcE{i,j}) + i(lλCkkδij + 2lµC(i,j) + 2lµcC{i,j})

Hence:

Tij = λEkkδij + 2µE(i,j) + 2µcE{i,j} (4.36)

Mij = l2λCkkδij + 2l2µC(i,j) + 2l2µcC{i,j} (4.37)

These equations are identical to the micropolar elastic constitutive equations (3.44) and (3.45).

For the original hypoplastic model (equation (3.24)), which has the following form:

T̊ = C1tr(T)D + C2
trTD

trT
T + C3

T2

trT
||D||+ C4

T∗2

trT
||D|| (4.38)

Using the same complex formulations and the assumptions of equation (4.28) and (4.29). A
micropolar constitutive model can be obtained:

T̊ = C1tr(T)D + C2
trTD− trMK

trT
T

+(C3
T2 −M2/l2

trT
+ C4

T∗2 −M2/l2

trT
)
√
||D||2 + l2||K||2 (4.39)

M̊ = C1l
2tr(T)K + C2

trTD− trMK

trT
M

+(C3
TM + MT

trT
+ C4

T∗M + MT∗

trT
)
√
||D||2 + l2||K||2 (4.40)

Detailed derivation processes are not shown here. Note that M2/l2 is symmetric and TM +

MT, T∗M + MT∗ are skew-symmetric. Hence, the stress rate tensor T̊ is always symmetric
and the couple stress rate tensor M̊ is always skew-symmetric.
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Chapter 5

Finite element implementation

5.1 Finite element method

The finite element method (FEM) is a numerical method for solving partial differential equa-
tions (PDE) by discretization and integration in time and space. It is a method of approximation
to continuum problems such that the continuum is divided into a finite number of parts (ele-
ments), the behavior of which is specified by a finite number of parameters, and the solution of
the complete system as an assembly of its elements. Although many problems cannot be solved
precisely, by using finite element method, approximate solutions can be obtained. However, if
proper element type and size are used, the FEM solutions have a high accuracy. Also, FEM
can be applied for problems with complex geometries.
The FEM is one of the most frequently used theory in researching and engineering, due to its
low restrictions on the applicability. It can be used to solve problems including static/dynamic
structural analysis, heat transfer, fluid problems, acoustic and electromagnetic problems.
The basic FEM calculation procedures are discretization, element analysis, system analysis
and solution. The general schema of a FEM software include preprocessor, solver and post-
processor, as shown in Figure 5.1.

The most commonly used FEM softwares include commercial softwares Abaqus, ADINA,
MSC, Ansys and many open source FEM codes, such as Dlmer, CalculiX, Code Aster, Impact
and OOFEM. In this dissertation, Abaqus is used to implement the hypoplastic micropolar
constitutive model.
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Preprocessor
Define model geometry,
mesh, element type, mate-
rial parameters and boundary
conditions.

Solver
Solve the equation system.

Postprocessor
View results.

Figure 5.1: General schema of finite element method

5.2 Background of Abaqus

Abaqus is a commercial software package of finite element method, which can be used to
solve a variety of linear or nonlinear problems. There are several analysis programs in Abaqus
including Abaqus/Standard, Abaqus/Explicit and Abaqus/CFD, which can be used to solve
implicit, explicit and fluid dynamic problems. Pre-processing and post-processing tools are
also available in the software package of Abaqus.
The element library of Abaqus includes many types of elements for different applications.
However, sometimes these elements are not enough for special propers. Hence, user-defined-
elements have to be used. An user defined element:

• can be finite elements in the usual sense of representing a geometric part of the model;

• can be feedback links, supplying forces at some points as functions of values of dis-
placement, velocity, etc. at other points in the model;

• can be used to solve equations in terms of nonstandard degrees of freedom;

• can be linear or nonlinear; and

• can access selected materials from the Abaqus material library.

For micropolar continuum model, in addition to the translational degrees of freedom, the ro-
tational degrees of freedom must be included. Rotational degrees of freedom are nonstandard
degrees of freedom. Hence, user defined element is used here to implement the micropolar
hypoplastic model.
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5.3 Implementation

Based on the virtual work principle for micropolar continuum (equation (3.14)), the weak
form of a micropolar boundary value problem can be given by:

∫
Ω

(divT + ρb− ρDv

Dt
)δudV +

∫
Ω

(divM + ρc + εT− ρD(Jω)

Dt
)δrdV (5.1)

−
∫
∂Ω

(T · n− t)δudA−
∫
∂Ω

(M · n−m)δrdA = 0

In our case, the accelerations, body forces and body couples are neglected. Hence, the weak
formulation can be simplified to:∫

Ω

divTδudV +

∫
Ω

(divM + εT)δrdV −
∫
∂Ω

(T · n− t)δudA (5.2)

−
∫
∂Ω

(M · n−m)δrdA = 0

This equation is solved by discretization and approximation with finite element method. The
micropolar hypoplastic constitutive models in the last chapter are used.

Figure 5.2: A 2D element for micropolar continuum in Abaqus

For the finite element implementation, a 2D four node element is used. Each node has both
translational and rotational degrees of freedom. For the micropolar continuum, the generalized
displacement u, generalized velocity u̇, generalized stress Tg and generalized Strain rate Dg
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can be represented as:

u =

u1

u2

ωc3

 , u̇ =

u̇1

u̇2

ω̇c3

 ,Tg =



T11

T22

T33

T12

T21

M31

M32


,Dg =



D11

D22

D33

D12

D21

K31

K32


(5.3)

By applying a standard discretization procedure, a continuum domain can be partitioned into
an assembly of elements. Within a four node element, the interpolation for generalized kine-
matic quantities is given by

u =
4∑

K=1

NKuK , u̇ =
4∑

K=1

NKu̇K ,Dg =
4∑

K=1

βKu̇K (5.4)

Where Nk = NkI and Nk are the standard bilinear shape functions with respect to node
K = 1, 2, 3, 4. Matrix βK has the form of:

βK =



∂NK

∂x1

0 0

0
∂NK

∂x2

0

0 0 0
∂NK

∂x2

0 Nk

0
∂NK

∂x1

−Nk

0 0 l
∂NK

∂x1

0 0 l
∂NK

∂x2



(5.5)

In order to avoid volume locking of a full element integration, a selective reduced integration
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technique is used. This is applied by modifying the kinematical matrix βK :

β̄K =



1

2
(
∂NK

∂x1

+
∂NK

∂x1

)
1

2
(
∂NK

∂x2

− ∂NK

∂x2

) 0

1

2
(
∂NK

∂x1

− ∂NK

∂x1

)
1

2
(
∂NK

∂x2

+
∂NK

∂x2

) 0

0 0 0
∂NK

∂x2

0 Nk

0
∂NK

∂x1

−Nk

0 0 l
∂NK

∂x1

0 0 l
∂NK

∂x2



(5.6)

where
∂NK

∂xi
=

1

Vel

∫
Vel

∂NK

∂xi
dV (5.7)

With the modified matrix, the relation between the rate of curvature and the rate of micropolar
rotation remains unchanged.
In order to get the element stiffness matrix, partial differentiations of the constitutive model
(equations (4.28) and (4.29)) are carried out. The element stiffness matrix for m 6= n is

∂T̊ij

∂Dmn

= C1trT + C3
TmnTij

trT
+ C4(Tij + T∗ij)

Dmn√
||D||2 + l2||K||2

(5.8)

∂M̊ij

∂Dmn

= C3
TmnMij

trT
+ 2C4Mij

Dmn√
||D||2 + l2||K||2

(5.9)

∂T̊ij

∂Kmn

= −C3
MmnTij

trT
+ C4(Tij + T∗ij)

l2Kmn√
||D||2 + l2||K||2

(5.10)

∂M̊ij

∂Kmn

= C1l
2trT− C3

MmnMij

trT
+ 2C4Mij

l2Kmn√
||D||2 + l2||K||2

(5.11)

For m = n, the second term must be added, so equations (5.8) and (5.9) become:

∂T̊ij

∂Dmn

= C1trT + C2Tij + C3
TmnTij

trT
+ C4(Tij + T∗ij)

Dmn√
||D||2 + l2||K||2

(5.12)

∂M̊ij

∂Dmn

= C2Mij + C3
TmnMij

trT
+ 2C4Mij

Dmn√
||D||2 + l2||K||2

(5.13)

while equations (5.10) and (5.11) remain the same.
In case of 2D elements, equations (5.8) (5.12), (5.9) (5.13), (5.10) and (5.11) are (5 × 5),
(5 × 2), (2 × 5) and (2 × 2) matrixes, which result in a system matrix H(T,D,M,K) as
shown in Table 5.1
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∂T̊ij

∂Dmn (5×5)

∂T̊ij

∂Kmn (2×5)

∂M̊ij

∂Dmn (5×2)

∂M̊ij

∂Kmn (2×2)

Table 5.1: Stiffness matrix of micropolar hypoplastic model

The system is integrated by assuming a virtual time step ∆t:

Ttn+1 = Ttn + T̊∆t = Ttn + H(T,D,M,K)D∆t (5.14)

In order to carry out this integration, an initial stress state Tt0 need to be assumed. An isotropic
stress state with a proper mean stress is normally used.
The simulation results with this finite element implementation will be shown in the next chap-
ter.
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Chapter 6

Result and discussion

6.1 Single element simulation

First, a single element simulation with the implemented model is carried out, as shown in Fig-
ure 6.1. Boundary conditions are defined similar as a biaxial test. Starting from an isotropically
loaded case, the element is first loaded and then unloaded with constant vertical deformations.
The results obtained from single element simulation (stress and volume strain) are compared
with analytical simulation with the same constitutive model, see Figure 6.2.

Loading⇒ Unloading⇒

Figure 6.1: Single element simulation in Abaqus

It can be seen that the same stress-strain and volume strain curves are given by FEM element
simulation and analytical solution. Hence, the model is properly implemented into Abaqus
element. However, the micropolar effect cannot be seen in single element test. Hence, some
other simulations are carried out and the results are shown in the following.
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Figure 6.2: Stress-strain and volume strain curves

6.2 Biaxial test

In this section, biaxial tests are simulated with the micropolar hypoplastic model in FEM.
From the simulation result, shear bands with certain width can be obtained. The internal
length can be determined by analyzing the width of shear bands, such that the result matches
the real experimental width.

Model: The model has a height of 100 mm and a width of 25 mm. It is known that strain lo-
calization cannot be modeled in a perfectly homogeneous FEM model. Hence, inhomogeneity
must be added to the model. This is realized by defining some ”soft elements” in the model,
as shown in Figure 6.3. The ”soft elements” have a size of 12.5 mm × 12.5 mm and are 10
mm away to the bottom of the model.

Normal elements have a friction angle of 35◦ and a Young’s module of 200 times the isotropic
stress, the ”soft elements” have a friction angle of 30◦ and a Young’s module of 180 times the
isotropic stress. The material parameters of both elements are calculated with equation (3.43),
and details are shown in Table 6.1.

In order to obtain shear bands with different width, internal lengths between 0.1− 1.0 mm are
used in the model. The mesh size is 0.1 × 0.1 mm. However, it will be shown that the mesh
size do not have big effects on the simulation results.

Boundary conditions: There are two steps in the biaxial test simulation: isotropic loading
and biaxial loading, for both steps appropriate boundary conditions need to be applied. The
first step is isotropic loading. The boundary conditions for the bottom nodes are given by
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Figure 6.3: FEM model of the biaxial test, normal and soft elements are dark and light gray

Normal elements

E(MPa)/σc φ(◦) ψ(◦) νi

200 35 10 0.2

C1 C2 C3 C4

-55.56 -142.55 -523.67 -151.01

Soft elements

E(MPa)/σc φ(◦) ψ(◦) νi

180 30 10 0.2

C1 C2 C3 C4

-50.00 -110.71 -646.15 -159.40

Table 6.1: Material parameters for the FEM simulation of biaxial test

fixing the vertical displacements and the horizontal displacement in the middle point of the
bottom, therefore the model is symmetric. The other three sides of the model is isotropically
loaded with a pressure of 100 kPa, as shown in the left of Figure 6.3. The moment on the all
the boundary nodes are set to be zero. In the biaxial loading step, the rotations in left and
right sides of the sample are set to be free, and all other boundary conditions above remains
the same. In addition, a constant displacement is applied on the nodes on the top of model, as
shown in the right of Figure 6.3.
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Results: The results of simulations with different internal lengths are shown in Figure 6.4 and
6.5, in which colors show the counter-clockwise rotation of nodes.

Figure 6.4: FEM simulation results of the biaxial test on undeformed mesh, internal lengths
0.1, 0.25, 0.5, 0.75 and 1.0 mm

Figure 6.5: FEM simulation results of the biaxial test on deformed shape, internal lengths 0.1,
0.25, 0.5, 0.75 and 1.0 mm, unified deformation and color bar (in radian)

The stress-strain curves of the biaxial tests are shown in Figure 6.6
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Figure 6.6: Stress strain curve of the FEM simulation

Since the same material parameters C1-C4 are used for all simulations, it can be expected that
all stress-strain curves coincide at the beginning. However, for different internal lengths, the
bifurcation points are different. The smaller the internal length the earlier the bifurcation. For
small internal lengths (0.1 and 0.25 mm), the softening effect is so large that the solutions
do not converge shortly after the bifurcation point. For large internal lengths, the softening
continues until a critical state is reached. In classical mechanics, the post-bifurcation behavior
cannot be modeled correctly due to the lack of internal length.

Shear band width: It can be seen from the Figures that the width of the shear band shows a
dependency on the internal length. Larger internal length gives larger shear band width, which
can be expected. It is known that in a FEM simulation using micropolar constitutive model,
the width of the shear band should be mesh independent, which means that different mesh
size should predict the same shear band width with the same set of material parameters. This
is verified by carrying out simulations with finer mesh. For internal length 0.5 and 1.5 mm, the
same biaxial test is modeled with mesh size 0.1 and 0.05 mm. For both fine mesh and coarse
mesh the moment on the boundary nodes are set to be zero, the same material parameters are
used. The results are shown in Figure 6.7.

It can be seen that the same shear band width is predicted by both fine mesh and coarse mesh.
Hence, there is no mesh dependency for the FEM simulation using the micropolar hypoplastic
constitutive model.
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fine mesh coarse mesh fine mesh coarse mesh
l = 0.5 l = 1.5

Figure 6.7: FEM simulation results of the biaxial test with different mesh size

Therefore, a relationship between the shear band width and the internal length should be de-
termined. This can be used for back analysis to obtain the internal length. The relationship
between the shear band width and the internal length is plotted in Figure 6.8.
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Figure 6.8: Relationship between shear band width and internal length

It can be seen that the relationship between the shear band width and the internal length is
linear. Theoretically, the shear band width should be zero if the internal length is zero. However
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this cannot be realized either in numerical calculations or in physical experiments. Hence,
according to the simulations, the shear band width has a starting value (about 4 mm). Taking
away the stating value, the shear band width is about ten times the internal length. Hence, the
internal length can be determined by l = (ls − 4 mm)/10, where ls is the shear band width.

6.3 Pore ratio dependent behavior

The pore ratio dependency can be added to the new model as shown in equations (4.31) and
(4.32) in section 4.2.3. Hence, simulations of pore ratio dependent behavior can be carried out.
Here, the biaxial test is taken as an example to reproduce the experiments of Rechenmacher
in [11]. In the experiment, the sand specimen is 137 mm tall by 39.5 mm wide by 79.7 mm
deep (out-of plane). It is prepared by dry pluviation. By using different dropping heights for
different parts of the specimen, a dense sand specimen with a layer of loose sand is obtained,
as shown in the CT image in Figure 6.9(a).

(a) (b)

Figure 6.9: Pore ratio distribution: (a) CT image (b) FEM simulation

In the FEM simulation, the same pore ratio distribution is used as shown in Figure 6.9(b). The
material parameters are inferred according to the elastic-plastic material parameters used in
[11]. The internal length is assumed to be 0.42 mm, which equals to the mean grain diameter
of the sand sample.
The simulation procedure is the same as the biaxial test simulations in the last section, expect
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the constitutive model defined by equations (4.31) and (4.32) is used and the pore ratios are
updated according to equation (4.32). The results are shown in Figure 6.10, in which colors
show the counter-clockwise rotation of nodes.

Figure 6.10: FEM simulation results of the biaxial test, vertical strain 0.0073, 0.0146, 0.0219
and 0.0292, colorbar in radian

It can be seen that the pore ratio has a clear effect on the behavior of the material. At the
beginning, several small shear bands can be observed. Later, these shear bands localized to
one main shear band. Comparing to the experimental results in Figure 6.11, the shear band
predicted by simulation has the same inclination and appears in the same position. Hence, the
pore ratio dependent behavior of the sand specimen in experiment can be reproduced by the
micropolar hypoplastic model.

As specified in the last section, the shear band width only depends on the internal length. This
also holds for the simulations with pore ratio dependency. By using different internal length,
the results are shown in Figure 6.12.

As a result, an inhomogeneous distribution of the pore ratio acts as imperfection in the
model and triggers the shear band. The position of the shear band depends on the pore ratio
distribution, but the width of the shear band only depends on the internal length, which can be
determined by the grain diameters.
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Figure 6.11: Contour of norm of incremental displacement (
√
u2 + v2) from Digital Image

Correlation (DIC). Color bar in mm, vertical strain 0.06

(a) (b) (c) (d)

Figure 6.12: FEM simulation results of the biaxial test with different internal length: (a) 4.2
mm (b) 2.1 mm (c) 1.05 mm (d) 0.42 mm

With the same model, the DEM simulation in section 2.2.2 can be modeled with FEM. The
initial pore ratio distribution of the DEM simulation is assigned to the FEM model. The
material parameters in Table 6.2 are used. The internal length is set to be 0.05 mm.

The biaxial test simulation is carried out the same way as the examples above. The results for
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E(MPa)/σc φ(◦) ψ(◦) νi

200 20 10 0.2

C1 C2 C3 C4

-55.56 31.52 -1669.95 -271.11

Table 6.2: Material parameters for the FEM simulation of biaxial test with pore ratio depen-
dency

different strains are plotted in Table 6.3(b), while the DEM results of section 2.2.2 are shown
in Table 6.3(a). In both plots the momentary rotations are plotted.

From the comparison, it can be seen that by using the pore ratio dependent micropolar hy-
poplastic model, the result of DEM simulation can be fairly well reproduced with the contin-
uum model. Both methods predict the same shear band location, inclination and width. In the
early stage of loading, several small shear bands can be observed in the upper left corner, these
shear bands disappear when the main shear bands are formed. In the lower right corner, there
are two shear bands parallel to each other at the beginning. Later, these two shear bands merge
into one. All these details in DEM simulations can also be predicted by FEM simulation with
the micropolar hypoplastic model.
It is known that the particle rotations are different from continuum rotations in micropolar
theory. The averaging of discrete rotation depends highly on averaging methods and lengths,
which are not consistent. Hence, a quantitative comparison of continuum and discrete rota-
tions are not feasible. However, from Table 6.3, the width of shear band can be quantitatively
compared. The width of both small and big shear bands are well predicted by the continuum
method.
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6.4 Periodic shear test

The periodic shear test is the shearing of a infinite long sample. The top surface is moving with
a constant speed while the bottom surface is fixed. The model is free in dilation with a constant
vertical pressure applied on the top. Since the model is infinite long, periodic boundary condi-
tion are used, in which the left and right sides of the sample are constrained to have the same
displacement and rotation. With this boundary condition, it is enough to use only one row
of elements, since all the rows in periodic shear are just repetitions of one row, see Figure 6.13.

Figure 6.13: Periodic boundary conditions in periodic shear test

The material parameter used for periodic shear modeling is shown in Table 6.4.

E(MPa)/σc φ(◦) ψ(◦) νi

200 35 0 0.2

C1 C2 C3 C4

-55.56 -180.56 -372.83 -143.92

Table 6.4: Material parameters for the FEM simulation of periodic shear test

Using different internal lengths, the periodic shear test is modeled, the total rotation of nodes
are shown in Figure 6.14. It can be seen that the shear band width depends on the internal
length. The smaller the internal length, the thiner the shear band, which is also shown in the
simulation of biaxial tests. For very small internal length, several shear bands can occur, the
adjacent shear bands have opposite rotations. This can be compared to the rolling of particles,
where the adjacent particles rotate oppositely. The magnitudes of rotations according to the
vertical axes are plotted in Figure 6.15.
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Figure 6.14: FEM simulation results of periodic shear, internal lengths 0.2, 0.5, 1.0 and 2.0

mm, rotations are shown by colors
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Figure 6.15: FEM simulation results of periodic shear, internal lengths 0.2, 0.5, 1.0 and 2.0

mm, magnitude of rotations are shown

Periodic shear is just a theoretical experiment and cannot be realized in physical experiments.
However, a long shear band far from the material boundary can be considered as a periodic
shear. With the new micropolar hypoplastic model, microscopic properties of the shear band
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can be observed.

6.5 Simple shear test

A DEM simulation of simple shear test is shown in section 2.2.3. Although the simple shear
test has a homogeneous strain, the displacements and rotations of individual particles are quite
non-uniform. The particles in each corner show different behavior. In the middle, a shear band
can be observed, see Figure 6.16.

Figure 6.16: DEM simulation of simple shear test

Due to the lack of internal length in classical mechanics, the behavior of simple shear test
cannot be modeled. Here, the micropolar hypoplastic model is used to reproduce the simple
shear test with FEM simulation.
For the simulation of simple shear test, the material parameters in Table 6.5 are used.

E(MPa)/σc φ(◦) ψ(◦) νi

200 35 0 0.2

C1 C2 C3 C4

-55.56 -180.56 -372.83 -143.92

Table 6.5: Material parameters for the FEM simulation of simple shear test

The FEM model of the simple shear test is shown in Figure 6.17. The sample has a height
of 40 mm and length of 80 mm. The bottom of the sample (x = 0) is fixed in all directions.
Initially, an isotropic compressive stress 100 kPa is applied on the model, the couple stress on
the boundaries are set to be zero. The shearing process is simulated by applying a constant
velocity on the upper surface and constant rotations of two sides, which is realized by different
node velocities according to the height of the node (y coordinate). During the shearing
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process, the compressive load on the upper surface kept constant, and all the nodes on the
upper surface are constraint to have the same displacement in y direction. Hence, a constant
normal stress applied by a rigid plate can be simulated. The simulation results are shown in
Figure 6.18.

Figure 6.17: FEM model of simple shear test

Figure 6.18: FEM simulation of simple shear test, colorbar in radian

Colors are used to show the node rotations in clockwise direction. Comparing to Figure 6.16,
in both DEM and FEM model, large rotations in both sides and in the middle can be observed.
It can be seen from the DEM simulation that the shear band in the middle has a small
inclination, this is also shown in the FEM simulation. Also, both models show symmetry
according to the diagonal axises.
The shear force and shear stress according to the shear strain are plotted in Figure 6.19 and
6.20.
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Figure 6.19: Shear force of simple shear test
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Figure 6.20: Shear stress of simple shear test
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6.6 Discussion

All the FEM simulations in this chapter use the new micropolar hypoplastic model (equations
4.28 4.29 and equations (4.31) 4.32) developed in this dissertation, which is obtained by using
complex tensor formulations to add micropolar effect into the hypoplastic model. The new
micropolar hypoplastic model is so simple that it can be easily implemented into FEM code.
Several element tests are simulated. With only one additional material parameter: the internal
length, great changes are introduced to the hypoplastic model. Many material behavior, such
as rotation, shear localization and size dependent effects, can be modeled with the new model,
which is impossible using classical continuum models.
It is shown in the simulations that the shear band width depends on the internal length and
is not influenced by the mesh size. By just changing the internal length, different mechanical
behavior can be obtained. For all the simulation results, the continuum rotations are plotted,
so that the shear bands in these simulations can be easily identified. A relationship between
the shear band width and the internal length is set up, which can be used in back analysis to
determine the internal length from experiments. By adding pore ratio dependent behavior into
the model, it has been shown that the detailed shear band evolution process can be modeled in
a biaxial test simulation, the width of shear band in each step can be quantitatively predicted.
Comparison with DEM simulations shows that the new model can predict the same rotation
profiles as the DEM simulations. However, the FEM simulation is much faster than the DEM
simulation. For example, for simulation of simple shear test, the DEM simulation in Figure
6.16 takes about half an hour, while the FEM simulation in 6.18 takes only a few minutes. If
smaller particles are modeled, several times more particles have to be used in DEM simulation
and the simulation time increases exponentially. In FEM, only the internal length needs to be
changed and the simulation time stays more or less the same. Hence, the continuum model has
advantage dealing with large systems, and the new model is also able to describe the micro
rotations of material due to the internal length and micropolar part, which means this model
bridges the micro and macro scales. Same material behavior can be predicted by this model as
by DEM simulations, yet much lower computational efforts are required.
Although it has been shown that the FEM simulation with this model is mesh independent, the
mesh size should not exceed the width of the shear band. Another limitation of this model is
that the micropolar rotation can only be qualitatively compared with discrete rotations, further
development in averaging methods and better understanding of micropolar rotation are needed.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

Modeling of granular material is a challenging topic. It has been studied in many different
disciplines by many researchers, but there are still many open questions. The modeling
methods can be divided into two main groups, discrete methods and continuum methods. Both
methods have their advantages and limitations, hence, both methods are widely used and links
between these two methods are searched by many researchers.
In this dissertation, both discrete and continuum method are studied. Discrete element method
is taken as an example of discrete method. For the continuum method, some advanced
continuum models are shown, including hypoplastic model and micropolar theory.
The DEM method was invented by Cundall [15] in 1979. With the development of computer
technology, this method become more and more functional. The advantage of DEM is that
it can precisely model the microstructure of granular materials and obtain highly detailed
information in microscale. Several examples are shown in this dissertation. However, this
method is limited by computational power and modeling of a real sized problem is still
unrealistic.
The hypoplastic model is a constitutive model developed for granular materials. The original
idea was given by Kolymbas [29] in 1977. The model is improved and named as hypoplastic
model by Wu and Kolymbas [54] in 1990 . Hypoplastic model are nonlinear tensorial
functions of the rate-type.
Micropolar theory is first developed by the Cosserat brothers [14] in 1909, and widely
noticed since 1968 [31]. Classical continuum theories do not have any internal length scale
and therefore cannot account for problems with scale dependence. The micropolar theory
considers the independent rotational degrees of freedom of each material point. As a result, in
addition to the stress-strain relationship, the relationship between couple stress and curvature
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needs to be consider. The micropolar theory can be used for scale dependent problem, since
a internal length scale is included in this model. Due to the lack of experimental data in
microscale, micropolar constitutive models cannot be set up directly. Hence, micropolar
constitutive models are normally developed through mathematical approaches. However,
calibration of material parameters for these micropolar constitutive models cannot be easily
done.
In this dissertation, a new model is developed which combines the hypoplastic model and
micropolar theory. This is realized by using complex tensor formulations. General complex
tensors are assumed, in which the real parts are classical continuum terms (stress, strain, etc.)
and the imaginary parts are micropolar terms (couple stress, curvature, etc.). A characteristic
length is added in the complex tensors to balance the dimensions. By substituting these
complex tensors into the hypoplastic equations and separating the real and imaginary parts, a
new constitutive model based on hypoplastic model and micropolar theory is obtained. The
model is largely simplified by assuming that the tensors of stress, strain and their rates are
symmetric, the tensors of moment stress, curvature and their rates are antisymmetric. The
resulting model shows coupling between the stress-strain variables and the moment-curvature
variables to some extent and is much simpler than any existing micropolar hypoplastic model.
The only additional material parameter is the characteristic length, which can be determined
from the width of shear band.
Using complex tensor formulations is a novel method to develop micropolar constitutive
models. Complex tensor has been widely used in theoretical physics. It is shown in this thesis
that it works fairly well for developing micropolar constitutive models. This method is not
limited to hypoplastic. It can be used for any constitutive model in tensor form.
This new model is implemented to a 2D FEM element in ABAQUS, each node has three
degrees of freedom (two translation and one rotation). Biaxial tests, periodic shear tests and
simple shear tests are simulated with this model. By using different internal lengths, size
dependent material behavior are shown with the new model. The relationship between the
shear band width and the internal length is discussed. The results of the biaxial test simulation
are compared to the experiments and DEM simulations. The result of simple shear test is
compared with DEM simulation. These comparisons show that the microstructure of the
material can be fairly well predicted with the micropolar hypoplastic model. The width of
shear band can be well predicted. With pore ratio dependent model, the same evolution
process of the shear bands can be observed in both DEM and FEM simulations. However, the
continuum modeling requires much lower computational efforts.
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7.2 Outlook

In this dissertation, a new micropolar hypoplastic constitutive model is developed with the
help of complex tensor formulations. The model is implemented into FEM and compared with
DEM simulations. Based on the results of this dissertation, several problems can be further
studied.
Using complex tensor formulation for micropolar continuum is shown to be applicable. As
shown in section 4.3, this method is not limited to the hypoplastic model. This method offers
a simple mathematical way to obtain micropolar models. It should be further applied to other
classical constitutive models. The physical meaning of the complex part should be discussed,
which leads to a better understanding of the micropolar constitutive model.
More DEM simulations should be carried out and compared with the micropolar hypoplastic
model. The relation between the microscale material parameter and the continuum material
parameters should be studied, which promotes further development of both DEM and contin-
uum methods.
Several simulations with the new micropolar hypoplastic model are carried out in this disser-
tation. It is shown that the model has a well performance with relatively low computational
power. This model should be used to simulated more complicated problems and should be im-
plemented into 3D numerical methods. Due to the simplicity of the model and the capability
of modeling large scale models, it is also possible to apply it to industrial designs.
The model should be further developed. It is shown that the void ratio dependency can be added
into the model. Similarly the model can be extended with cohesion, anisotropy, viscosity and
thermal effects. All these extensions have already been applied to the classical hypoplastic
model and work fairly well. Using micropolar hypoplastic model will bring these constitutive
models into a new level. Many unprecedented problems will be solved.
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