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Abstract 

Plants are economic, safe and clean expression systems with the potential to serve 

as production platforms for recombinant proteins with almost unlimited scalability. 

Integration of transgenes into the chloroplast genome offers the advantage of 

targeted and site specific integration and the obtainable recombinant protein yields 

are mostly higher compared to nuclear transformation. Furthermore, the maternal 

inheritance of chloroplasts in most plant species strongly limits transmission of 

transgenes via pollen. The time consuming construction of plastid transformation 

vectors can be shortened by implementing the Gateway® recombinant cloning 

technology which provides a rapid and highly efficient way to transfer DNA fragments 

between vectors carrying compatible recombination sites. This accelerates the 

development of pharmaceutical products from plastids. Dengue Fever is the most 

rapidly spreading mosquito transmitted viral disease threatening more than 40 % of 

the world’s population. The Dengue virus is typically transmitted by the bite of the 

blood feeding, day active mosquito Aedes aegypti. The virus occurs in four closely 

related but antigenically and genetically distinct serotypes (DEN 1, DEN 2, DEN 3 

and DEN 4) for which currently no approved vaccine is available.  

The present work demonstrates that chloroplasts are a suitable and cost-effective 

production platform for a recombinant protein vaccine candidate based on the 

Dengue virus envelope protein domain III (EDIII). The functionality of the constructed 

Gateway® compatible plastid transformation vector was first proven by the 

expression of GFP using this vector in tobacco chloroplasts. Transplastomic plants 

were generated with the biolistic method, the homoplastomic state of the regenerated 

plants was verified by Southern blot and protein expression levels were analysed by 

Western Blot. The recombinant proteins EDIII 1 and EDIII 3 were obtained through 

constitutive expression in tobacco chloroplasts and expression of EDIII 1, EDIII 2, 

EDIII 4 and EDIII 1-4 was achieved with the inducible expression system upon 

ethanol induction. Furthermore, the Dengue antigenes EDIII 1 and EDIII 1-4 were 

also constitutively expressed in lettuce chloroplasts in order to facilitate the 

development of an oral vaccine candidate.  

The data obtained here demonstrate the feasibility of expressing EDIII based 

antigens in chloroplasts and they contribute to the development of a safe, efficacious 

and affordable vaccine against Dengue fever. 



 

Kurzfassung 

Pflanzen sind wirtschaftliche, sichere und saubere Expressionssysteme und können 

als Produktionsplattformen für rekombinante Proteine mit nahezu unbegrenzter 

Erweiterbarkeit dienen. Die Integration des Transgens in das Chloroplastengenom 

bietet den Vorteil einer gezielten und ortsspezifischen Integration und die erzielten 

Ausbeuten für rekombinante Proteine sind meistens höher als bei 

Kerntransformationen. Außerdem verhindert die maternale Vererbung von 

Chloroplasten in den meisten Pflanzen die Verbreitung der Transgene durch Pollen. 

Die zeitraubende Konstruktion von Plastiden-Transformationsvektoren kann durch 

die Gateway® recombinant cloning technology verkürzt werden. Die Adaption dieser 

Technologie für Plastiden ermöglicht eine schnelle und sehr effiziente Übertragung 

von DNA-Fragmenten zwischen Vektoren mit kompatiblen Rekombinationstellen. 

Dies beschleunigt die Entwicklung von pharmazeutischen Produkten aus Plastiden. 

Dengue-Fieber bedroht mehr als  40% der Weltbevölkerung und ist die am 

raschesten grassierende Viruserkrankung die durch Stechmücken übertragen wird. 

Das Dengue-Virus wird typischerweise durch die Blut saugende, tagaktive Mücke 

Aedes aegypti übertragen. Das Virus tritt in vier eng verwandten, aber antigenisch 

und genetisch unterschiedlichen Serotypen auf (DEN 1, DEN-2, DEN DEN 3 und 4) 

gegen die derzeit kein Impfstoff erhältlich ist. 

Die vorliegende Arbeit zeigt, dass Chloroplasten eine geeignete und kostengünstige 

Produktionsplattform für einen auf dem Dengue Virus Hüllprotein Domäne III (ED III) 

basierenden Impfstoffkandidaten sind. Die Funktionalität des konstruierten 

Gateway® Plastiden-Transformationsvektor wurde zuerst durch die Expression von 

GFP unter Verwendung dieses Vektors in Tabak Chloroplasten überprüft. Die 

rekombinanten Proteine EDIII 1 und EDIII 3 wurden durch konstitutive Expression in 

Tabak-Chloroplasten erzeugt, während die Expression von EDIII 1, EDIII 2, EDIII 4 

und EDIII 1-4 mit dem Ethanol- induzierbaren Expressionssystem erreicht wurde.  

Um die Entwicklung eines oralen Impfstoff-Kandidaten zu erleichtern, wurden die 

Dengue Antigene EDIII 1 und EDIII 1-4 zusätzlich konstitutiv in Salat Chloroplasten 

produziert. 

Die hier präsentierten Daten beweisen, dass die Expression der EDIII basierten 

Antigene in Chloroplasten möglich ist und sie tragen zur Entwicklung eines sicheren, 

wirksamen und erschwinglichen Impfstoffes gegen Dengue-Fieber bei. 
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1 Introduction 

 

1.1 Plants as green factories for pharmaceutical proteins 

Throughout history plants have been gathered, cultivated and processed by mankind 

not only for food and feed, but also as a valuable source for medicinal products. During 

the last three decades, advances in biotechnology have extended the utilization of 

plants well beyond these traditional applications by converting plants into factories for 

diagnostic reagents, pharmaceutical proteins and industrial enzymes (Ma & Wang, 

2012). Although, most of the available recombinant protein drugs are mainly produced 

in mammalian cells, in E.coli, in yeast or insect cells, the recent advances in genetic 

engineering and molecular biology have created the possibility of producing 

biopharmaceutical proteins like antibodies, vaccines, growth factors, enzymes and 

hormones using genetically modified plants (Ma & Wang, 2012). Moreover, the 

conventional fermenter-based approaches are difficult to scale up and the risk of 

contamination with endotoxins or human pathogens results in the need of complex 

purification systems and downstream processing (Daniell et al, 2009; Fischer & Emans, 

2000). Plant based expression systems on the other hand offer an inexpensive, safe 

and clean production platform for recombinant proteins. They are more economic 

compared to mammalian cell culture, due to simple growth requirements and an almost 

unlimited scalability. There is no risk of contamination from potential human pathogens 

as plants are not hosts for human infectious agents and plants possess the ability to 

carry out a couple of post-translational modifications, which are often required for the 

biological function of therapeutic proteins (Bock, 2014; Clarke et al, 2011; Scharff & 

Bock, 2013). For the production of a particular target protein, based on its specific 

characteristics, one of the following expression approaches can be chosen: a) stable 

expression from the nuclear genome achieved either via biolistic transformation or via 

Agrobacterium-mediated transformation; b) expression from the plastid genome; c) 

Agrobacterium-mediated transient expression or; d) expression from plant tissues 

carrying recombinant plant viral sequences (Streatfield, 2007).   

One of the crucial steps in plant based recombinant protein expression is the selection 

of a suitable plant species, which is amenable for transformation, has a high protein 

expression potential, allows the correct folding of the recombinant protein including 

post-translational modifications and has the possibility of extensive accumulation (Tiwari 

et al, 2009). Several plant species have been examined as platforms for the safe 



2 
 

production of pharmaceutical proteins providing advantages such as scalability, 

environmental containment and lower overall costs than conventional manufacturing 

processes (Melnik & Stöger, 2013). Tobacco is an easily transformed plant and it has 

been the model system for plant transformation for decades (Bevan et al, 1983; Horsch 

et al, 1985), but the technology has vastly expanded and the list of plant expression 

hosts now includes leafy crops (alfalfa, lettuce, clover), legumes (soybean, pea, pigeon 

pea), simple plants (Physicomitrella patens, Chlamydomonas reinhardtii, Lemna), 

cereals (rice, wheat, barley, maize), fruits and vegetables (tomato, potato, carrot, 

cabbage, banana), oil crops (oilseed rape and safflower) and the model plant 

Arabidopsis thaliana (Fischer et al, 2004). 

Since the first report on expression of a monoclonal antibody in transgenic tobacco 

(Hiatt et al, 1989) and the expression of the antigenically functional hepatitis B surface 

antigen (HBsAg) as the first vaccine protein ever produced in plants (Mason et al, 

1992), a great number of economically interesting molecules have been obtained from 

plant based expression (Basaran & Rodriguez-Cerezo, 2008; Rybicki, 2010). Many 

plant derived therapeutics are undergoing clinical trials (Yusibov et al, 2011) and 

extensive research in molecular farming lead to the successful production and 

commercialization of several biopharmaceuticals (Faye & Gomord, 2010). 

Three plant-made pharmaceuticals have already been approved for human use:  

1) a secretory IgA used for the prevention of tooth decay produced in transgenic 

tobacco (CaroRxTM from Planet Biotechnology Inc, USA, 

www.planetbiotechnology.com/products.html);  

2) a human intrinsic factor used as a dietary supplement for the treatment of vitamin 

B-12 deficiency produced in A. thaliana leaves (Cobento Biotech AS, Denmark, 

(Fedosov et al, 2003));  

3) the enzyme taliglucerase alfa, a recombinant glucocerebrosidase for treatment of 

Gaucher’s disease, produced in carrot cell suspension culture (Elelyso from 

Pfizer Inc., USA and Protalix BioTherapeutics Inc., Israel, www.elelyso.com).  

In addition, the vaccine against poultry’s Newcastle disease produced in tobacco 

suspension culture by Dow AgroSciences has obtained USDA approval and Medicago 

Inc. (Canada) has reported positive final results from its H5N1 Avian Influenza VLP 

vaccine Phase II trial.   

 

 



3 
 

Since the WHO stated in 2005 that plant derived vaccines are a promising strategy to 

increase the availability of affordable vaccines in resource poor countries (van der Laan 

et al, 2006), plants have become an attractive alternative vaccine production system 

(Arntzen et al, 2005; Daniell et al, 2009; Hefferon, 2013; Streatfield, 2007). These novel 

efforts have led to the production of various antigens in plants and these plant made 

vaccines can be administered orally, intramuscularly or as intravenous injections after 

isolation and purification from the plant tissues (Kwon et al, 2013; Roy et al, 2010a). So 

far, several plant-derived vaccine candidates and antibodies against infectious diseases 

predominantly occurring in developing countries, like hepatitis B virus (Chen et al, 2011; 

Huang et al, 2008; Thanavala et al, 2005), rabies (Roy et al, 2010a; Roy et al, 2010b; 

Yusibov et al, 1997) and human papillomavirus (Maclean et al, 2007; Regnard et al, 

2010; Waheed et al, 2010; Waheed et al, 2011b) have been developed. 
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1.2 Chloroplast based expression of recombinant proteins 

Despite the recent developments and improvements, there are some limitations and 

safety concerns about the use of nuclear transformed plants for vaccine production 

including low transgene expression levels (Daniell et al, 2001b) and the serious problem 

of transgene out-crossing via pollen mediated gene flow (Pilson & Prendeville, 2004). 

Transgene spread can be prevented by the use of plants with male sterility, by plants 

that are infertile and clonally propagated or by transient expression systems for use in 

greenhouse containment. 

Another, effective way to prevent transgene transmission is integration of the 

transgenes into the plastid genome. Valuable improvements can be provided to the 

current state of transgenic plants by application of the transplastome technology (Koop 

et al, 1996; Svab et al, 1990). Remarkable increases in antigen yield have been 

reported for chloroplast based expression systems when compared to nuclear 

approaches (Daniell et al, 2001a; Rigano et al, 2009; Scotti et al, 2009). 

 

1.2.1 Chloroplast transformation 

Chloroplasts are subcellular compartments confined by a double membrane and 

specialized in photosynthesis. These plant cellular organelles contain their own DNA 

(ptDNA) and transcription and translation machinery. The circular double stranded DNA, 

with a size range of 120 to 180 kb depending on the plant species, is highly polyploid 

and in most higher plants organized in a quadripartite way with 2 inverted repeat 

regions (IR) spanning between the long-single-copy and the short-single copy region 

(Shaw et al, 2007). The IR region is characterized by the presence of the ribosomal 

RNA genes and a variable number of additional genes depending on the plant species 

(Staub, 2002). The site specific integration of transgenes into these spacer regions 

avoids position effects and gene silencing (Daniell, 2006). The presence of up to 10.000 

copies of ptDNA in photosynthetic cells (Bendich, 1987) is beneficial to obtain very high 

recombinant protein expression levels (Bock & Warzecha, 2010; Koop et al, 2007; 

Maliga, 2002) with the current reported maximum above 70% of total soluble protein 

(Oey et al, 2009). Chloroplast transformation has emerged as a very precise alternative 

genetic engineering technique to prevent transgene spread via pollen as chloroplasts 

are maternally inherited in most plants (Daniell, 2007) and the absence of plastids in 

pollen eliminates the risk of out-crossing.  Furthermore, the possibility of expressing 

several different transgenes simultaneously using operons (Bock, 2013), the ability of 
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1.2.2 Vaccine candidates expressed in the chloroplast 

Most attempts to produce chloroplast derived antigenes have been made for bacterial 

diseases, but also viral antigens and vaccines targeting protozoan parasites have been 

expressed. Vaccines against enterogenic E.coli (Kang et al, 2004; Kang et al, 2003; 

Rosales-Mendoza et al, 2009; Sim et al, 2009), Clostridium tetani (Tregoning et al, 

2005; Tregoning et al, 2003), Bacillus anthracis (Gorantala et al, 2011; Koya et al, 2005; 

Watson et al, 2004), Yersinia pestis (Arlen et al, 2008), Borrelia burgdorferi (Glenz et al, 

2006) and a multi-epitope vaccine against diphtheria, pertussis and tetanus (Soria-

Guerra et al, 2009) have been produced through the chloroplast. Several viral epitopes 

have been expressed including L1 protein of HPV-16 (Fernandez-San Millan et al, 

2008; Waheed et al, 2010), Vaccinia virus envelope protein (Rigano et al, 2009), 

Hepatitis E E2 (Zhou et al, 2006), Hepatitis C core protein (Madesis et al, 2010) and 

Epstein-Barr viral capsid antigen complex (Lee et al, 2006). Functional evaluation by 

inhibition of proliferation of the malarial parasite have been reported for apical 

membrane antigen-1 and merozoite surface protein-1 expressed in tobacco and lettuce 

chloroplasts (Davoodi-Semiromi et al, 2010). 

 

1.2.3 Inducible transgene expression 

Although, most foreign proteins are non-toxic in chloroplasts in some cases, abnormal 

phenotypes like chlorosis of the leaves, male sterility and growth retardation have been 

reported (Lössl et al, 2003; Oey et al, 2009; Ruf et al, 2007; Tregoning et al, 2003; 

Waheed et al, 2011b). Inducible expression systems could provide a tool to overcome 

these detrimental effects by controlling the transgene expression and production of 

foreign protein at any developmental stage or even post-harvest (Lössl & Waheed, 

2011). Several regulatory systems achieving inducibility through chemicals (Caddick et 

al, 1998; Gatz, 1997; Padidam, 2003), light conditions (Boetti et al, 1999), pathogen 

infection (Johnson et al, 2003; Lebel et al, 1998) or growth stage dependent-conditions 

(Hennig et al, 1993; Hoff et al, 2001) have been investigated. More recently, a synthetic 

plastid encoded riboswitch allowing inducible expression after exogenous theophylline 

application has been reported (Verhounig et al, 2010). 

The very first trans-activation system for chloroplast expression was developed using 

ethanol as an inductor and transforming both the nucleus and the plastid genome (Lössl 

et al, 2005). The nuclear encoded, plastid targeted RNA polymerase from λ 

bacteriophage T7 (McBride et al, 1994) is expressed using the ethanol inducible alcA 
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1.3 Gateway® recombinant cloning technology 

The Gateway® recombinant cloning technology is a very accurate cloning method that 

takes advantage of the site-specific recombination properties of bacteriophage lambda 

(Landy, 1989) providing a rapid and highly efficient way to transfer DNA fragments 

between vectors carrying compatible recombination sites (Error! Reference source 

not found.). This system carries out two reactions:  

(1) the BP-reaction: attB x attP → attL + attR mediated by the integrase (Int) and 

integration host factor (IHF) proteins and  

(2) the LR reaction: attL x attR → attB + attP mediated by Int, IHF and 

excisionase (Xis) (Hartley et al, 2000). 

The main limitation of cloning with traditional restriction enzymes that might also cut 

inside the gene of interest’s sequence is circumvented by using the Clonase® enzyme 

mixes (InvitrogenTM) which contains the necessary enzymes for each reaction. The 

Entry clone is created by the Gateway® BP Clonase® enzyme mix mediated transfer of 

the attB sites flanked gene of interest (goi) into the attP site bearing pDONR221TM. The 

fragment containing the goi flanked by attB1 and attB2 can either be produced by PCR 

or by linearizing a suitable plasmid.  Subsequently, the fragment in the Entry clone can 

be transferred to any Destination vector containing attR sites using the Gateway® LR 

Clonase® enzyme mix (Karimi et al, 2002). The att recombination sites in the Donor 

and the Destination vectors flank a ccdB gene (control of cell death) and a 

chloramphenicol-resistance gene (Bernard, 1995), thus can only be propagated in ccdB 

survivalTM E.coli that contain a gyrA462 mutation providing resistance to the lethal 

effects of the ccdB gene. The presence of the counterselectable ccdB gene and the 

chloramphenicol resistance gene in both the Donor and the Destination vector provides 

a unique system of negative selection that eliminates all unwanted by-product plasmids 

after recombination resulting in maximum cloning efficiency.  

The system has been successfully used for the creation of expression vectors for 

different bacterial-, yeast-, mammalian- and insect cell culture- expression systems 

(Katzen, 2007) which are commercially available and marketed by Life Technologies 

(Carlsbad, CA, USA, http://www.lifetechnologies.com). 

Several plant Destination vectors have been constructed for aims including protein 

localization, promoter functional analysis, gene overexpression, gene knockdown by 

RNA interference, production of epitope-tagged proteins for affinity purification, or 

analysis of protein/protein interactions using fluorescence resonance energy transfer 

(FRET), bioluminescence resonance energy transfer (BRET) or bimolecular 
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1.4 Dengue Fever 

Dengue Fever is the most rapidly spreading mosquito-transmitted viral disease 

threatening more than 40 % of the world’s population. This febrile disease is endemic in 

more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east 

Asia and the Western Pacific. Dengue transcends international boundaries and is 

emerging rapidly as the consequence of globalization, rapid unplanned and unregulated 

urban development, improper water storage, unsatisfactory sanitary conditions, climate 

change and global warming (Chaturvedi & Nagar, 2008). In 2010 the first European 

local transmissions of Dengue were reported in France and Croatia and in 2012 an 

outbreak of Dengue on Portugal's island Madeira resulted in over 2 000 cases (WHO, 

2013). Infection with the Dengue viruses can cause Dengue fever (DF), Dengue 

haemorrhagic fever (DHF) and Dengue shock syndrome (DSS). Dengue fever is a flu-

like illness accompanied by symptoms like headache, pain behind the eyes, muscle and 

joint pains, nausea, vomiting, swollen glands or rash. The severe forms DHF and DSS 

are potentially deadly complications due to plasma leaking, fluid accumulation, 

respiratory distress, severe bleeding or organ impairment (WHO, 2013). Dengue 

infections are a significant cause of morbidity and mortality and lead to adverse social 

and economic impacts in many developing tropical countries (Gubler, 2002). The WHO 

estimates 50 - 100 million new infections occurring each year (WHO, 2013), an 

additional 500 000 cases of DHF/DSS and over 20 000 Dengue related deaths each 

year (WHO, 2006). 

The Dengue virus belongs to the genus Flavivirus, family Flaviviridae (Calisher et al, 

1989) and its genome is a ~11 kb long positive single stranded RNA (Schlesinger, 

1977). The RNA is transcribed as polycistrons and the polyprotein  

undergoes post-translational cleavage by viral and host proteases generating three 

structural and 7 non-structural proteins (Clyde et al, 2006; Lindenbach & Rice, 2003). 

The enveloped virus particles are of icosahedral shape with a diameter of 500 Å 

corresponding to 50 nm (Kuhn et al, 2002). The virus is typically transmitted by the bite 

of the blood feeding, day active mosquito Aedes aegypti (WHO, 2009) and occurs in 

four closely related but antigenically and genetically distinct serotypes DEN-1, DEN-2, 

DEN-3 and DEN-4 (Weaver & Vasilakis, 2009). Infection with any one serotype usually 

causes the mild form of the disease (Dengue fever) and provides lifelong homologous 

immunity to that serotype with only transient cross protection against the others (Kurane 

& Ennis, 1992). However, subsequent infection with a different serotype leads to the 

life-threatening forms of the disease: DHF and DSS. Dengue pathogenesis appears to 
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be the result of complex interactions of host and viral factors, with the two most evident 

contributors being antibody dependent enhancement and inherent virulence of the 

Dengue viruses (Swaminathan & Khanna, 2009). One hypothesis for the increased 

severity seen in secondary infections is a mechanism called “antibody dependent 

enhancement” (ADE) (Halstead, 2003). It has been reported that antibodies produced 

during a primary infection are highly cross-reactive and non-neutralizing among the 

Dengue virus serotypes and therefore can complex with and facilitate the uptake of 

heterotypic viruses into Fc-receptor bearing cells which leads to their increased 

replication and potently promotes ADE (Dejnirattisai et al, 2010; Halstead, 1988). 

Phylogenetic analysis identifying two different genotypes of DEN-2: the “Asian” 

genotype associated with DHF and the “American” genotype associated with DF (Rico-

Hesse et al, 1997) go along with the suggestion that certain strains have inherent 

virulence making them capable of causing the severe disease form while other strains 

are associated only with the mild form (Swaminathan & Khanna, 2009). General 

consensus regarding DHF pathogenesis is that a massive cytokine storm triggered 

directly or indirectly by various factors is responsible for endothelial cell damage leading 

to plasma leakage (Pang et al, 2007).  

Currently there is no approved vaccine to protect against Dengue fever (WHO, 2013). 

The treatment of acute Dengue is supportive, using either oral or intravenous 

rehydration for mild or moderate disease, and intravenous fluids and blood transfusions 

for more severe cases. Prevention of Dengue transmission is currently only possible 

through vector control and protection from the bites of infected mosquitos through 

various strategies:   

 the use of personal household protection such as window screens, long-sleeved 

clothes, insecticide treated materials, coils and vaporizers;  

 preventing mosquitoes from accessing egg-laying habitats by environmental 

management, applying appropriate insecticides to water storage outdoor 

containers and removing artificial man-made habitats; 

 application of insecticides as space spraying during outbreaks as one of the 

emergency vector control measures (WHO, 2013). 
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1.5 Vaccine development against Dengue Fever Virus 

The most effective way to reduce disease and mortality rates of infectious diseases is to 

vaccinate susceptible populations at risk. The development of a vaccine against 

Dengue fever offers the potential for effective prevention and long-term control of the 

virus infection. Despite this, more than 60 years after the discovery of the virus and the 

start of systematic research into Dengue vaccines, no such vaccine has been brought to 

the market yet (WHO, 2013). The development of the vaccine has been hindered and 

delayed by the complex pathogenesis of the disease, by the need to control four viruses 

simultaneously and by the lack of a suitable animal model. However the increasing 

spread and intensity of the disease over the past years has triggered new interest and 

investment in Dengue vaccine research.  

 

1.5.1 Current status of vaccine development 

Infection with any one of the Dengue serotypes provides lifelong immunity to that 

serotype, but secondary infection with a different serotype can predispose an individual 

to potentially fatal DHF and DSS. Anti-dengue antibodies specific to one serotype cross-

react with the remaining serotypes, but do not cross-protect against them (Halstead, 

1988). This has prompted the view that an efficient Dengue vaccine must be tetravalent, 

procuring protection against all four virus serotypes at once (Hombach et al, 2005). The 

main strategies applied for vaccine production against Dengue fever consist in 

traditionally and molecularly attenuated live viruses, chimeric live virus vaccines, vector 

based vaccines, DNA vaccines and recombinant subunit vaccines (Guzman et al, 

2009). 

The most advanced Dengue vaccine candidates have been developed as single 

serotype-specific vaccine formulations (monovalent vaccines) and are being evaluated 

as physical four-in-one mixtures for their capacity to elicit protective immunity against 

the four serotypes  (Swaminathan et al, 2010). Empirically attenuated vaccine strains for 

all four Dengue serotypes have been obtained by repeated serial passage in primary 

dog kidney cells (Halstead & Marchette, 2003) by two independent research groups. 

The Mahidol University in Thailand (Bhamarapravati & Yoksan, 2001) licensed their 

vaccine candidate strains to Sanofi Pasteur (France, Mahidol vaccine), while the Walter 

Reed Army Institute of Research (Eckels et al, 2000b) licensed their candidate strains to 

GlaxoSmithKline (Belgium, WRAIR vaccine) for large scale production and further 

evaluation. Repeated reports of unbalanced immune responses in human trials using 
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the attenuated tetravalent vaccine formulations of both, the Mahidol (Edelman et al, 

2003; Kanesa-Thasan et al, 2001) and the WRAIR vaccine (Eckels et al, 2000a; Sun et 

al, 2003) have stalled further development and commercialization of these vaccine 

candidates.  

An alternate strategy has been adopted by Sanofi-Pasteur where the structural genes of 

the empirically attenuated Yellow fever virus strain 17D (YF17D, (Monath, 1997)) were 

replaced with the premembrane (prM) and envelope (E) gene of the Dengue viruses to 

create four monovalent chimeric yellow fever Dengue vaccine strains (CYD strains, 

(Guirakhoo et al, 2001)). Immunization of monkeys with a tetravalent vaccine 

formulation resulted again in an unbalanced immune response with the highest 

response being directed against DEN-2 (Guirakhoo et al, 2001). However, after several 

dose adjustments and promising results of an administration study in healthy adult 

volunteers (Morrison et al, 2010), the tetravalent CYD formulation entered Phase II 

trials. The results reported by the pediatric phase 2b trial in Thailand showed good 

protection against DEN-1, DEN-3 and DEN-4, but not against DEN-2 (Sabchareon et al, 

2012). Currently, the tetravalent vaccine candidate CYD15 is undergoing a phase III 

clinical trial in Dengue-endemic areas in Latin America with the scope of evaluating the 

efficacy and safety of protection in healthy children and adolescents aged 9 to 16 years 

(Sanofi-Pasteur, 2014). 

Other approaches include a deletion of 30 nucleotides in the viral 3’UTR (∆30 vaccines, 

(Durbin et al, 2001)), intertypic chimeric Dengue vaccines  (Bhamarapravati et al, 1996) 

self-destructing virus mutants with a furin protease cleavage site in the membrane 

glycoprotein (Brown, 2004), RepliVax vectors that undergo only one cycle of infection in 

the vaccinated host (Frolov et al, 2007) and the utilization of the live attenuated 

Schwarz measles virus vaccine as a carrier for Dengue antigenes (Brandler et al, 2007). 

 

1.5.2 EDIII based antigene expression in chloroplasts 

The current tetravalent Dengue vaccine candidates, which are in advanced stages of 

development, are based on live-attenuated virus strains or genetically manipulated 

chimeric Flavivirus. However, the continuous difficulties associated with these vaccine 

candidates have necessitated the exploration of alternative non-replicating subunit 

vaccines. The majority of attempts to produce a recombinant protein based vaccine 

focus on the envelope (E) protein of Dengue viruses.  
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The E protein consists of three domains (Modis et al, 2003): the envelope domain I 

(EDI), flanked by a dimerization domain (EDII) containing the fusion peptide and an 

immunoglobulin-like domain (EDIII) which contains the host cell surface receptor 

binding motif (Chen et al, 1997) and several serotype specific neutralizing epitopes 

(Chin et al, 2007; Megret et al, 1992).  The EDIII protrudes from the virus surface to 

facilitate binding to the host cell surface receptor (Crill & Roehrig, 2001) and mediates 

host membrane fusion (Allison et al, 2001). The EDIII domain, spanning amino acids 

300 - 400 of the E protein, appears to have only very low intrinsic potential for eliciting 

cross-reactive antibodies against heterologous serotypes (Hombach et al, 2005) and 

therefore has emerged as the most promising region for vaccine development (Guzman 

et al, 2010). 

Recombinant antigens based on the E protein or the EDIII have been produced using 

bacteria (McDonald et al, 2009; Simmons et al, 1999; Srivastava et al, 2000), yeast 

(Cardoso et al, 2013; Etemad et al, 2008), insect cells (Ivy et al, 2000), and plant 

expression systems (Martinez et al, 2010; Saejung et al, 2007). In order to avoid  the 

unbalanced immune response elicited by tetravalent formulations consisting of 

stoichiometrically mixed monovalent vaccines, a recombinant fusion protein linking the 

EDIII domain of Dengue virus serotypes 1, 2, 3 and 4 has been developed. This fusion 

protein was able to elicit neutralizing antibodies against all four serotypes (Batra et al, 

2007; Etemad et al, 2008). 

For the present study we have opted for the expression of the tetravalent fusion protein 

(EDIII 1-4) and the corresponding monovalent forms (EDIII-1, -2, -3 and -4) in tobacco 

and lettuce chloroplasts, because plant based expression is cheap, easy to up-scale 

and safe regarding contamination with human pathogens. Furthermore, localization of 

the transgene in the maternally inherited chloroplast genome prevents transgene 

spread via pollen, thus increasing the biosafety of the genetically modified plants. 

Tobacco has been used because it is a non-food/non-feed crop, has a relatively good 

tractability to genetic manipulation and is an excellent biomass and seed producer 

(Svab & Maliga, 1993). Unfortunately, the high content of nicotine and alkaloids make 

tobacco a rather unsuitable material for edible vaccines. For the purpose of oral 

administration of the Dengue vaccine, which would eliminate expensive requirements of 

sterile injectables and maintaining a cold-chain (Streatfield, 2006), lettuce has been 

chosen as a more digestible and non-toxic alternative.  
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1.6 Objectives of the work 

This PhD work has a strong focus on utilization of the cost-effective plant production 

platform for the development of a Dengue vaccine at low costs for the benefit of millions 

of people, in particular children in low income countries. To date, there is no vaccine 

against Dengue fever available on the market and therefore the development of an 

efficient, safe and affordable vaccine is of great importance. Chloroplast based 

expression of pharmaceutical proteins offers several advantages. These include high 

expression levels, easy containment due to maternal inheritance of plastids and the 

possibility to express multiple transgenes with one successful transformation event. 

The presented study therefore has the following three main objectives. 

 

1.6.1 Development of a plastid transformation vector introducing the Gateway® 

recombinant cloning technology 

With three expression strategies, two plant species and four different Dengue virus 

serotypes a large number of plastid transformation vectors had to be constructed. 

Conventionally this is done by enzymatic restriction digestions and ligation reactions, 

which are the most time-consuming steps in chloroplast based expression of 

recombinant proteins. This tedious cloning procedure could be shortened and simplified 

by the use of the Gateway® recombinant cloning technology. Gateway® cloning 

introduces the attB1 sequence at the 5´ and the attB2 sequence at the 3´ regions of the 

expression cassette. However, insertion of a novel sequence like attB1 between 

promoter and 5´UTR includes the risk to damage this very sensitive region and to affect 

the critical RNA interactions required for protein expression. 

Therefore the aim of this preparatory part of the work was 

a) to investigate if the presence of a novel sequence like attB1 between the rrn16 

PEP+NEP promoter and the 5´ UTR T7g10 has an impact on the transgene 

expression and  

b) to demonstrate the feasibility of the Gateway® cloning system for plastid 

transformation by GFP expression. 
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1.6.2 Expression of EDIII antigens in tobacco using a constitutive and an 

inducible expression system 

Up to now no vaccine against Dengue fever has been brought to the market, mainly due 

to the fact that successful vaccination against all four virus serotypes must be achieved 

at once (Hombach et al, 2005). So far, yeast-expressed monovalent EDIIIs and a fusion 

protein consisting of the EDIIIs of all four serotypes have shown immunogenicity in mice 

(Etemad et al, 2008).  

In order to demonstrate that tobacco plastids are a suitable and cost-effective 

production platform for such putative vaccine candidates, two strategies were 

envisaged:  

a) the constitutive expression approach with a strong plastid derived promoter to obtain 

high yields of recombinant protein and  

b) the ethanol-inducible expression system allowing the controlled expression of EDIII to 

circumvent putative detrimental effects of recombinant protein expression on plant 

growth.  

 

1.6.3 Expression of EDIII antigens in lettuce for the development of oral vaccines 

Although tobacco is still the most preferred species in chloroplast transformation, it is 

less suitable for the expression of proteins with intended oral administration due to its 

high alkaloid content. For subsequent application of the EDIII proteins as an oral 

vaccine it is necessary to express the antigenic proteins in an edible crop like lettuce 

that can be consumed in raw form. 

In order to obtain constitutive expression of EDIII proteins in lettuce, the following steps 

were necessary:  

a) design and construction of lettuce specific plastid transformation vectors and  

b) plant transformation, regeneration of homoplastomic lettuce plants and analysis of 

recombinant protein expression levels. 
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2 Materials and Methods 
 

Materials 

 

2.1 Bacterial strains 

 One Shot® OmniMAX™ 2 T1R chemically competent E.coli (Cat. No. C8540-03, 
InvitrogenTM, Thermo Fisher Scientific Inc., USA) 

 One Shot® ccdB Survival™ 2 T1R chemically competent E.coli (Cat. No. A10460, 
InvitrogenTM, Thermo Fisher Scientific Inc., USA) 

 

2.2 Plant materials 

Tobacco:  
1) Seeds of Nicotiana tabacum cv. Petit Havana: wild-type (wt) 

2) Seeds of Nicotiana tabacum transformed with the T7 RNA Polymerase in the 
nucleus: 285-78-T7 

3) Seeds of Nicotiana tabacum expressing EDIII 1 constitutive: N.t.-EDIII 1 

4) Seeds of Nicotiana tabacum expressing EDIII 2 constitutive: N.t.-EDIII 2 

5) Seeds of Nicotiana tabacum expressing EDIII 3 constitutive: N.t.-EDIII 3 

Lettuce: 
6) Seeds of Lactuca sativa L. cv. Barkley: wild-type (wt) 

 

Constructed transplastomic plant lines: 

Tobacco: 
1) Nicotiana tabacum line expressing GFP constitutive: N.t.-PN-GFP 

2) Nicotiana tabacum line expressing  EDIII 1 inducible: 285-78-T7-EDIII 1 

3) Nicotiana tabacum line expressing  EDIII 2 inducible: 285-78-T7-EDIII 2 

4) Nicotiana tabacum line expressing  EDIII 4 inducible: 285-78-T7-EDIII 4 

5) Nicotiana tabacum line containing  T7-EDIII 1-4 in the plastid: N.t.-T7-EDIII 1-4 

6) Nicotiana tabacum line expressing  EDIII 1-4 inducible: 285-78-T7-EDIII 1-4 

Lettuce: 

7) Lactuca sativa line expressing EDIII 1-4 constitutive: S12-PN-EDIII 1-4 

8) Lactuca sativa line expressing EDIII 1 constitutive: S16-PN-EDIII 1 
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2.3 Chemicals and reagents 

Table 1 Ready to use reagents and Kits. 

Kits Company 

AP-conjugate substrate Kit, Cat. No. 170-6432 Bio-Rad, USA 
DIG-High Prime DNA Labeling and Detection Starter 
Kit II; Kit for chemiluminescent detection with CSPD, 
Cat. No. 11585614910 

Roche Applied Science, USA 

Gateway® BP Clonase® Enzyme Mix, 
Cat. No. 11789-013 

Invitrogen, USA 

Gateway® LR Clonase® Enzyme Mix, 
Cat. No. 11791019 

Invitrogen, USA 

Gateway® Vector Conversion System with One 
Shot® ccdB Survival Cells, Cat. No. 11828-029 

Invitrogen, USA 

Roti®-Nylon plus, pore size 0.45 µm, Cat. No. K058.1 Carl Roth GmbH, Germany 

HisPurTM Cobalt Purification Kit, Cat. No. 90090 Thermo Scientific, USA 

iBlot®Gel Transfer Stacks, Cat. No. IB301001 Life technologies, USA 

Pierce™ BCA Protein Assay Kit, Cat. No. 23227 Thermo Scientific, USA 

Qiagen® Plasmid Maxi Kit, Cat. No. 122637 Qiagen GmbH, Germany 

Qiagen® Plasmid Midi Kit, Cat.No. 12145 Qiagen GmbH, Germany 

QIAprep® Spin Miniprep Kit, Cat. No. 27106 Qiagen GmbH, Germany 

QIAquick® Gel Extraction Kit, Cat. No. 28706 Qiagen GmbH, Germany 

Rapid DNA ligation Kit, Cat.No. 1422 Thermo Scientific, USA 

  
Reagents  

0.6 µm Gold Microcarriers Bio-Rad, USA 

1 kb DNA ladder New England Biolabs, USA 

100 bp DNA ladder New England Biolabs, USA 

100 mM dNTP Set, PCR Grade Invitrogen, USA 

6X Loading Dye Thermo Scientific, USA 

Anti-Rabbit IgG (Fc), AP conjugated, Cat. No. S3731 Promega, USA 

Ethidium bromide 1% in water Carl Roth, Germany 

GeneAmp® 10X PCR Buffer Applied Biosystems, USA 

Lambda DNA/Eco130I (StyI) Marker 16, Fermentas, Lithuania 
Polyclonal rabbit anti-dengue antibody produced 
against amino acid sequence: KFKVVKEIAETQHGT 

Davids Biotechnology, 
Germany 

Polyclonal rabbit anti-GFP antibody, 
Cat. No. ABIN398856 

antibodies-online GmbH, 
Germany 

Protein marker IV Peqlab GmbH, Germany 

Quick StartTM Bovine Serum Albumin Standard Bio-Rad, USA 

Quick StartTM Bradford 1x Dye Reagent Bio-Rad, USA 

SigmafastTM BCIP®/NBT Sigma-Aldrich, USA 

Spectra Multicolor Broad Range Protein Ladder Thermo Scientific, USA 
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Table 2 Primers and probes. Primers were custom-synthesized by Eurofins MWG 
Operon (Germany) and reconstituted with sterile ddH2O to a stock concentration of 100 
mM, further diluted to a working concentration of 10 mM and stored at -20°C in aliquots 
of 500 µl. 

Primer Sequence 5’->3’ 

p1  ACCCATGGCTTCTAAAGGAG 

p2  AGACAGCGACGGGTTCTCTG 

p3  GATCCGAGCCATAGAATTTC 

p4  TGCTGGCCGTACATTTGTACG 

p5  TACCCGGGAATTGTGACCTC 

p6  AGAGTCCGACCACAACGACC 

p7  GCTGAAACTCAACATGGAACTG 

p8  ATGCTTTTTCACCAGCACCT 

p9  TTGCTGAAACTCAACATGGA 

p10  CCAAAAGGAGGTTCAGCTTC 

p11  TGAAGATGGACAAGGAAAAGC 

p12  CTCCACCACCTCCTTTACCA 

p13  ACTACTCAAGCTGCATTATATACC 

p14  GCACCTTTTACTAAGATCAATG 

p15 GGAGGTAGGATGGGCAGTTG 

p16 GGACTCGAACCGCTGACATC 

p17 GGACTCGAACCGCTGACATC 

p18 AACGACCTTTTGGAAACTTC 

p19 TCTGTGAGCGTGACGGTGGT 

p20 TTACGCGAACGCGAAGTCCG 

pM13F GTAAAACGACGGCCAG 

pM13R CAGGAAACAGCTATGACC 

p296 TGACTTATATACTCGTGTCAAC 

p297 CTGCTAATGTCTACTGTTTGT 

  

Probe aadA den1 den2 den3 insl psaB trnA 

 

Table 3 Enzymes. 
Name/Description Company 

AmpliTaq® DNA Polymerase (5U/µl) Applied Biosystems, USA 
ApaI, BglII, SmaI, NcoI, SacII, PstI, 
EcoRV, XbaI, NheI, KpnI 

New England Biolabs, USA 
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Table 4 Chemicals. 

Name/ Description Company 

Acetic acid (CH3COOH) Sigma-Aldrich, USA 

Acrylamide/bis-acrylamide (19:1) 40% Sigma-Aldrich, USA 

Agarose Sigma-Aldrich, USA 

Ammonium acetate (NH4Ac) Sigma-Aldrich, USA 

Ammoniumpersulfate (APS) Sigma-Aldrich, USA 

Ampicillin Sigma-Aldrich, USA 

Bacto Agar Carl Roth, Germany 

Bacto Tryptone Carl Roth, Germany 

BAP (6-benzylaminopurine) Sigma-Aldrich, USA 

Bovine Serum Albumin (BSA) Sigma-Aldrich, USA 

Brilliant Blue G Sigma-Aldrich, USA 

Calcium Chloride Dihydrate Merck, Germany 

Chloramphenicol Duchefa Biochemie, Netherlands 

Chloroform Sigma-Aldrich, USA 

cOmplete Protease Inhibitor Cocktail Roche Applied Science, USA 

Developer AGFA, Belgium 

Dithiothreitol (DTT) Sigma-Aldrich, USA 

EDTA dinatriumsalt Fluka, Switzerland 

Ethanol 96 % Sigma-Aldrich, USA 

Fixer AGFA, Belgium 

Gelzan™ CM Gelrite® Sigma-Aldrich, USA 

Glycerol Carl Roth, Germany 

Glycine Carl Roth, Germany 
Hexadecyl-trimethyl-ammonium bromide 
(CTAB) 

Duchefa Biochemie, Netherlands 

Hydrochloric Acid (HCl) J.T.Baker, Netherlands 

Isopropanol Merck, Germany 

Kanamycin sulfate Sigma-Aldrich, USA 

Magnesium acetate tetrahydrate Sigma-Aldrich, USA 

Magnesium chloride hexahydrate Carl Roth, Germany 

Maleic acid Fluka, Switzerland 

Methanol Fluka, Switzerland 

MS (Murashig&Skoog) incl. vitamins Duchefa Biochemie, Netherlands 
N,N,N',N'-tetramethylethylenediamine 
(Temed) 

Sigma-Aldrich, USA 

Naphtalene acetic acid (NAA) Duchefa Biochemie, Netherlands 

Polyvinylpyrrolidone (PVP) 40 Sigma-Aldrich, USA 

Potassium acetate (KAc) Carl Roth, Germany 

Potassium chloride (KCl) Sigma-Aldrich, USA 

Potassium hydroxide (KOH) Merck, Darmstadt, Germany 
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Potassium phosphate monobasic (KH2PO4) Sigma-Aldrich, USA 

SDS (Sodium lauryl sulfate) Sigma-Aldrich, USA 

Sodium acetate (NaC2H3O2) Merck, Germany 

Sodium Chloride (NaCl) Carl Roth, Germany 

Sodium Citrate tribasic dihydrate Sigma-Aldrich, USA 

Sodium hydroxide (NaOH) Carl Roth, Germany 

Sodium phosphate dibasic (Na2HPO4) Sigma-Aldrich, USA 

Spectinomycin dihydrochloride Sigma-Aldrich, USA 

Spermidine Duchefa Biochemie, Netherlands 

ß-Mercaptoethanol Sigma-Aldrich, USA 

Sucrose Duchefa Biochemie, Netherlands 

Tris Duchefa Biochemie, Netherlands 

Tween 20 Sigma-Aldrich, USA 

Yeast extract Carl Roth, Germany 
 

Table 5 Buffers, solutions and media. 

Name/ Description Recipe 

  
Buffers  

Alkali-Transfer Buffer 5X, 
1 L 

  Concentration 
175,5 g NaCl 3 M 
80 g NaOH 2 M 
1 L H2O  

 

AP color development 
Buffer 1X 

AP color development Buffer 25X was diluted 1:25 in 
distilled water and stored at +4°C. 

Blotting Buffer, 10X, 
pH 8.3, 1 L 

 Concentration 
3.02 g Tris 25 mM 
14.4 g Glycine 192 mM 
200 ml Methanol 20 % 
1 L H2O  

 

CTAB Buffer 1X, 200 ml 
 

  Concentration 
4 g CTAB 2 % 
40 ml 1 M Tris-HCl 200 mM 
8 ml 0.5 M EDTA 20 mM 
16.36 g NaCl 1.4 M 
2 g PVP 40 1 % 

filled to 200 ml with distilled water, sterilized by 
autoclaving and stored at +4°C. 

Detection Buffer 1X, 
pH 9.5, 30 ml 

  Concentration 
3 ml 1 M Tris-HCL 0.1 M 
60 µl 5 M NaCl 0.1M 
27 ml H2O  
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Laemmli Buffer (LB) 5X, 
pH 6.8, 50 ml 

  Concentration 
5 g SDS 10 % 
5 ml 13 M ß-MercaptoEtOH 10 % 
25 ml 100 % Glycerol 50 % 
45 µl 100 % Bromphenol Blue 0,09 % 
10.42 ml 1.5 M Tris-HCl, pH 6.8 312.5 mM 
10 ml H2O  

 

Maleic acid Buffer 1X 
pH 7.5, 1 L 

  Concentration 
100 ml Maleic acid 10X 0.1 M 
100 ml 1 M NaCl 0.1 M 
800 ml H2O  

 

PBS 10X, pH 7.4, 1L  Concentration 
80 g NaCl 137 mM 
2 g KCl 2.7 mM 
14.4 g Na2HPO4 100 mM 
2.4 g KH2PO4 2 mM 

Filled to 1 L with distilled water and 22utoclaved. 
PBS-T 1X PBS 10X was diluted 1:10 in distilled water; 1 ml 

Tween-20 was added per 1 L Buffer. 
Plant Extraction Buffer I 
(PEB I), 1X, 10 ml 

 Concentration 
200 µl 5 M NaCl 100 mM 
200 µl 0.5 M EDTA, pH 8 10 mM 
2 ml 1 M Tris-HCl, pH 8 200 mM 
5 µl Tween-20 0.05 % 
100 µl 10 % SDS 0.1 % 
11 µl 13 M ß-MercaptoEtOH 14 mM 
2 ml 1 M Sucrose 200 mM 
200 µl 100 mM PMSF 2 mM 
5.3 ml H2O  

 

Plant Extraction Buffer II 
(PEB II), 1X, 10 ml 

 Concentration 
714 µl 1 M Sucrose 0.7 M 
5 ml 1 M Tris-HCl pH 9.5 0.5 M 
1 ml 0.5 M EDTA 50 mM 
833 µl 1.2 M KCl 0.1 M 
20 µl 13 M ß-MercaptoEtOH 0.2 % 
1 cOmplete mini tablet 1X 
8.7 ml H2O  

 

Running Buffer, 10X, 
pH 8.3, 1L  

 Concentration 
30,2 g Tris 0.25 M 
144 g Glycine  1.92 M 
10 g SDS  1 % 
1 L H2O  

Separating Gel-Buffer 4X, 
pH 8.8, 1 L 

  Concentration 
181.5 g Tris 1.5 M 
2 g SDS 0.2 % 
1 L H2O  

Set pH with concentrated HCl. 
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Stacking Gel-Buffer 4X, 
pH 6.8, 1 L 

  Concentration 
60.5 g Tris 0.5 M 
2 g SDS 0.2 % 
1 L H2O  

Set pH with concentrated HCl 
TAE Buffer 1X, 1 L TAE 50X was diluted 1:50 in distilled water. 
TAE Buffer 50X, 1 L   Concentration 

242 g Tris 2 M 
7.1 ml Acetic acid 0.7 % 
100 ml 0.5 M  EDTA 0.05 M 

Filled to 1 L with distilled water and autoclaved. 
TBS 10X, pH 7.6, 1 L  Concentration 

80 g NaCl 1370 mM 
24.2 g Tris 200 mM 

Filled to 1L with distilled water and autoclaved. 
TBS-T 1X TBS 10X was diluted 1:10 in distilled water; 1 ml Tween 

20 was added per 1 L Buffer 
TE Buffer 1X, pH 5.6, 
100 ml  

  Concentration 
1 ml 1 M Tris-HCl 10 mM 
200 µl 0.5 M EDTA 1 mM 

Filled to 100 ml with distilled water and autoclaved. 
Wash Buffer (WB) 1X, 
pH 7.5, 1 L 

  Concentration 

750 ml 
Maleic acid 
Buffer 1X 1x 

2 ml Tween- 20 0.3 % 
 

SSC Buffer 20X, 1 L   Concentration 
175,32 g NaCl 3 M 
88,2 g Sodium citrate 300 mM 

 

  

Solutions  

Acryl-amide 30 % 37 ml of Acryl-amide (40%) were filled up to 50 ml with 
distilled water and stored at +4°C. 

Ampicillin 25 mg/ml, 10 ml 250 mg ampicillin were dissolved in 10 ml distilled water, 
filter sterilized and stored at -20 °C. 

APS 10 %, 10 ml 1 g Ammonium persulfate was dissolved in 10 ml 
distilled water, aliquoted and store at -20°C. 

BAP 1 mg/ml, 100 ml 
 

100 mg 6-benzylaminopurine were dissolved in 0.5 ml 
1 M NaOH, filled up to 100 ml with distilled water, filter 
sterilized and stored at -20°C. 

Blocking solution 1X for 
Southern Blot  

10X Blocking solution was diluted 1:10 in 1X Maleic acid 
Buffer. 

Blocking solution for 
Western Blot 

0.5 % BSA in 1X TBS-T or 1X PBS-T 

CaCl2 2.5 M, 20 ml 10.8 g CaCl2 x 6 H2O were dissolved in 20 ml distilled 
water, filter sterilized, aliquoted and stored at -20°C. 

Chloramphenicol 3 mg/ml, 
50 ml 
 

150 mg chloramphenicol were dissolved in 5 ml ethanol, 
filled up to 50 ml with distilled water, filter sterilized and 
stored at +4°C. 

DTT 1 M, 50 ml 7.7 g DTT were dissolved in 50 ml water and aliquots 
were stored at -20°C. 
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dNTPs 25 mM each, 100µl 25 µl dATP 
25 µl dCTP 
25 µl dGTP 
25 µl dTTP 
mixed and stored in aliquots at -20°C. 

EDTA 0.5 M, pH 8.0, 
500 ml 
 

84.05 g EDTA  
11.25 g NaOH 
dissolved in 250 ml distilled water and autoclaved. 

Kanamycin 25 mg/ml, 
100 ml 

250 mg kanamycin were dissolved in 100 ml distilled 
water, filter sterilized and stored at -20 °C. 

Maleic acid 10X, pH 7.5, 
1 L 

116 g Maleic acid were dissolved in 1 L of distilled 
water, the pH adjusted with solid NaOH and autoclaved. 

HCl 0.25 M, 1 L 25 ml 37% HCl were diluted with 975 ml distilled water. 
MgAc 0.1 M, 500 ml 10.7 g Magnesium acetate tetrahydrate were dissolved 

in 500 ml distilled water and autoclaved. 
NAA 1mg/ml, 50 ml 50 mg Naphtalene acetic acid were dissolved 50 ml 

distilled water, filter sterilized and stored at -20°C. 
NaCl 1 M, 1 L 58.44 g NaCl were dissolved in 1 L distilled water and 

autoclaved. 
NaCl 5 M, 500 ml 146.4 g NaCl were dissolved in 1 L distilled water and 

autoclaved. 
NaOH 0.4 M, 1 L 16 g NaOH were dissolved in 1 L distilled water. 
NaAc 3 M, pH 5.2, 200 ml 49.2 g Sodium acetate were dissolved in 200 ml distilled 

water. 
0.1 M NH4OAc, 50 ml 0.38 g Ammonium acetate were dissolved in 50 ml 

Methanol and autoclaved. 
KCl 250 mM, 100 ml 1.86 g KCl were dissolved in 100 ml distilled water. 
KAc 3 M, 100 ml pH 5.2 29.44 g KAc were dissolved in 100 ml distilled water. 
SDS 10 %, 100 ml 
 

10 g SDS were added to 100 ml distilled water and 
heated to 68 °C. The pH was adjusted to 7.2 and the 
solution sterilized by autoclaving. 

Spectinomycin (Spec) 
100 mg/ml, 100 ml 

10 g Spectinomycin were dissolved in 100 ml distilled 
water, filter sterilized and stored at -20°C. 

Spermidine 0.1 M, 10 ml 0.255 g Spermidine were dissolved in 10 ml distilled 
water, aliquots were stored at -20°C. 

SSC 0.5X + 0.1 % SDS, 
500 ml 

12.5 ml 20X SSC and 5 ml 10% SDS were filled up to 
500 ml with distilled water. 

SSC 2X + 0.1 % SDS, 
500 ml 

50 ml 20X SSC and 5 ml 10% SDS were filled up to 500 
ml with distilled water. 

Sucrose 1 M, 250 ml 85.5 g Sucrose were dissolved in 250 ml distilled water, 
autoclaved and stored at +4°C. 

Tris-HCl 1 M, 1 L 
 

121.1 g Tris were dissolved in 1000 ml distilled water; 
pH adjusted with concentrated HCl and autoclaved. 

PMSF 100 mM, 50 ml 0.87 g PMSF were dissolved in 50 ml DMSO, aliquots of 
1 ml stored at -20°C. 
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Media  

LB-Medium, pH 7.0, liquid, 
1 L 
 

10 g Bacto Tryptone 
  5 g Yeast extract 
10 g NaCl 
 
Mixed and dissolved in 1 L distilled water, pH adjusted 
to 7.0 and sterilized by autoclaving. 

LB-Medium, pH 7.0, solid, 
1 L 

10 g Bacto Tryptone 
  5 g Yeast extract 
10 g NaCl 
10 g Bacto-Agar 
Mixed and dissolved in 1 L distilled water, pH adjusted 
to 7.0 and sterilized by autoclaving. 

MS-medium, pH 5.8, solid, 
1 L 
 

4.4 g MS-Salt including vitamins 
10 g Sucrose  
3.1 g GelzanTM 

 
Mixed and dissolved in 1 L distilled water, pH adjusted 
to 5.8 and sterilized by autoclaving. 

RMOP medium, pH 5.8, 
solid, 1 L 
 

4.4 g MS-Salt including vitamins  
30 g Sucrose 
3.1 g GelzanTM  
 

Filled up to 1L with distilled water, pH adjusted to 5.8 
and sterilized by autoclaving. After autoclaving the 
following is added: 
 
1 ml BAP (1mg/ml) 
100 µl NAA (1mg/ml) 
5 ml Spec (100 mg/ml). 
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Table 6 Laboratory equipment and material. 
Name/Description Company 

 
 Appliances 

Bombardment chamber PDS1000He Bio-Rad, USA 

SP5 II confocal microscope system  Leica Microsystems, Germany 

Autoclave Matachana, Spain 

Table Top Centrifuge Thermo Scientific, USA 

Clean bench HerasafeTM Thermo Scientific, USA 

Vortex VWR, USA 

pH meter WTW, Germany 

Ultracentrifuge Eppendorf, Germany 

MJ MiniTM Personal Thermo Cycler  Bio-Rad, USA 

Shaker Titertek® Flow Laboratories, USA 

Orbital Shaker SSL3 Stuart, UK 

Nanodrop Thermo Scientific, USA 

Retsch Mill Retsch, Germany 

Water bath Grant, UK 

Heat block Techne Inc, USA 

Hot plate stirrer IKA-Works, USA 

Precision Balance Mettler-Toledo, Switzerland 

Gel electrophorese apparatus Bio-Rad, USA 

Power supply Bio-Rad, USA 

iBlot Blotting device Thermo Scientific, USA 

PAA Electrophorese chamber Bio-Rad, USA 

Gel doc Bio-Rad, USA 

Minitron Incubator Infors HT, Switzerland 

Vacuum pump Edwards Limited, UK 

Fridge Whirlpool, USA 

Freezer -20°C Whirlpool, USA 

Freezer -80°C Sanyo, Japan 

Micro-pipettes Eppendorf, Germany 

Glass plates for PAA Gels Bio-Rad, USA 

Spacers for PAA Gels Bio-Rad, USA 

Gel casting device for PAA Gels Bio-Rad, USA 

Macrocarrier BioRad, USA 

UV-VIS Spectrophotometer Shimadzu, Japan 

Multiplate Reader  Biochrom, UK 

Milli-Q-water purification system Merck-Millipore, Germany 

HM-4000 MultidizerTM Hybridization Oven UVP,USA 
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Consumables  

glasware Schott-Duran, Germany 

25/50 ml plastic tubes Greiner Bio One, USA 

Finntips 10µl, 200µl, 1000µl Thermo Scientifiy, USA 

1.5/2 ml reaction tubes Eppendorf, Germany 

PCR tubes Thermo Scientific, USA 

petridishes VWR, USA 

Magenta-boxes Sigma-Aldrich, USA 

Retsch mill steel beads Retsch, Germany 

Lumi Film for chemiluminescent detection Roche Applied Science, USA 

gloves VWR, USA 

Whatmann filter paper GE Healthcare, UK 
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Methods 

2.4 Bacterial growth conditions 

Overnight cultivation of E.coli was done either on LB plates with 10 g/l Bacto-Agar or in 

5 ml liquid LB medium containing the appropriate antibiotics (Table 7) for maintaining 

the selection pressure at 37°C and shaking at 200 rpm.  

33 % glycerol stocks were made of every liquid culture by mixing 0.5 mL of 100 % 

Glycerol and 1 mL liquid cell culture. The glycerol stocks were shock frozen in liquid N2 

and stored at -80°C.  

Table 7 Final concentration of antibiotics in LB medium used for plates and liquid 
culture of transformed E. coli. 

Antibiotic Final concentration 

ampicillin 100 [mg/L] 

chloramphenicol 30 [mg/L] 

kanamycin 100 [mg/L] 
spectinomycin 500 [mg/L] for tobacco 

30 [mg/L] for lettuce 
 

2.5 Plant growth conditions 

2.5.1 Seed sterilization 

Seeds of Nicotiana tabacum and Lactuca sativa were soaked in 6 % bleach along with a 

few drops of washing liquid for 1 minute. The solution was pipetted out and the seeds 

were then washed in 70 % ethanol for 1 minute, washed three times in distilled water 

and air dried at room temperature in the clean bench. The seeds were stored at 4 °C. 

2.5.2 In vitro plant tissue culture and regeneration 

Seeds were germinated on solid MS-Medium containing the appropriate antibiotic 

(Table 8); young seedlings were transferred to Magenta-Boxes containing the same 

medium. 

Tissue culture of bombarded leave discs was carried out on RMOP-Medium containing 

the appropriate antibiotics (Table 8); young shoots developing from the callus tissue 

were transferred into Magenta-Boxes containing MS-medium incl. antibiotics for rooting 

and further growth.  

All in vitro cultures were incubated at 25°C, at a 16 h light - 8 h dark cycle in growth 

chambers equipped with Universal lamps with white fluorescence, light intensity; 0.5–1 

W/m2 Osram L85 W/25. 
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Table 8 Antibiotic concentrations used in media for seed germination, in vitro culture of 
plants and tissue culture of bombarded leave discs. 

Seeds/plant Medium + Antibiotic 

N. tabacum  
L. sativa 

MS 

285-78-T7 MS + 100 mg/L kanamycin 

N.t.-EDIII 1 
N.t.-EDIII 2 
N.t.-EDIII 3 
N.t.-PN-GFP 

MS + 500 mg/L spectinomycin 

285-78-T7-EDIII 1 
285-78-T7-EDIII 2 
285-78-T7-EDIII 4 
285-78-T7-EDIII 1-4 

MS + 100 mg/L kanamycin 
+ 500 mg/L spectinomycin 

S12-PN-EDIII 1-4 
S16-PN-EDIII 1 

MS + 30 mg/L spectinomycin 

Bombarded N. tabacum wt leave discs RMOP + 500 mg/L spectinomycin 

Bombarded 285-78-T7 leave discs RMOP  + 100 mg/L kanamycin 
+ 500 mg/L spectinomycin 

Bombarded L. sativa leave discs RMOP + 30 mg/L spectinomycin 

 

2.5.3 Greenhouse growth conditions 

Rooted plants were transferred to soil, acclimatized gently and grown in the greenhouse 

with additional light for 16 h and light intensity of 300 μE s-1m-2 at 25°C and relative 

humidity of 60 %. 

2.5.4 Ethanol spray experiments 

Five weeks old plants growing in Magenta boxes on MS medium containing 

spectinomycin were sprayed with ~ 0.5 ml 5 % ethanol on seven consecutive days and 

a whole plant for every plant line was taken as a sample before the spraying (day 0) and 

then every following day before the next spraying (day 1 to day 7).  Plant lines sprayed: 

285-78-T7-EDIII 1, 285-78-T7-EDIII 2, 285-78-T7-EDIII 4, 285-78-T7-EDIII 1-4, 

285-78-T7. 
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2.6 DNA preparation 

2.6.1 Plasmid DNA isolation 

Plasmid DNA was isolated using the Kits purchased from Qiagen (Qiagen® Plasmid 

Maxi Kit, Qiagen® Plasmid Midi Kit and QIAprep® Spin Miniprep Kit) and following the 

instructions supplied with the Kits. 

Briefly, E.coli overnight culture in liquid LB medium was harvested by centrifugation at 

8000 g for 3 min and the pellet was re-suspended in Buffer P1. The bacterial cell pellet 

was lysed by alkaline lysis, the cell debris and other contaminants were precipitated and 

the cleared lysate was applied to the silica membrane to allow DNA binding. After 

several washing steps the DNA was eluted from the column with sterile distilled water 

and stored at +4°C.  

2.6.2 Ethanol-Precipitation of DNA 

Plasmid DNA was precipitated by incubation with 1/10 volume 3 M NaAc and 3 volumes 

96 % ethanol overnight at –20°C. The solution was centrifuged at 14000 rpm at +4°C for 

15 minutes, and the pellet was washed twice with 70 % ethanol, air dried for 20°C at 

room temperature (RT), dissolved in 1X TE Buffer and stored at -20°C. 

2.6.3 Plant DNA isolation 

Total plant DNA is isolated using a modified CTAB – procedure (Murray & Thompson, 

1980). 

Plant leaves were collected and frozen in liquid nitrogen and ground to fine powder 

either using pestle and mortar or a Retsch mill. 500 µl of pre-warmed CTAB Buffer 

(65°C) was added to 200 mg frozen sample material and incubated for 1 hour at 65°C in 

a re-circulating water bath, gently mixed by inverting from time to time. Samples were 

allowed to cool down for 5 minutes at RT before addition of 500 µl chloroform. The 

tubes were shaken for 30 minutes at RT and then centrifuged for 10 minutes at 10000 

rpm at +4°C. The upper watery phase was transferred into a new tube and chilled 

Isopropanol was used to precipitate the DNA. After centrifugation for 10 minutes at 

10000 rpm at +4°C, the pellet was washed twice with 70% ethanol, centrifuged for 1 

minute at 10000 rpm at +4°C and then air dried for 30 minutes. DNA was re-suspended 

in sterile distilled water and stored for later use at -20°C. 
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2.6.4 Quantification of DNA concentration 

The DNA concentration is measured using the Nanodrop (Thermo Scientific) device or 

by visual comparison to the DNA ladder on an agarose gel. 

2.6.5 Agarose gel electrophoresis 

Standard 0.8 % Agarose gels were prepared with 1X TAE Buffer and used to check the 

quality of DNA isolations and to separate PCR products and restriction fragments. 2 µl 

6X LD per 10 µl sample were loaded and the DNA was separated at 80 V. 

2.6.6 Gel extraction 

Gel extraction and purification of restriction fragments or PCR products was carried out 

according to the Qiagen protocol of the Gel Extraction Kit after electrophoretic 

separation of the samples in a 0.8 % Agarose gel. DNA was eluted with 30 µL Elution 

Buffer. 

 

2.7 Cloning and E.coli heat shock transformation 

2.7.1 DNA digestion with restriction enzymes 

Restriction digestion of plasmid DNA or total plant DNA with appropriate restriction 

endonucleases were performed in the corresponding buffer systems provided by the 

manufacturer at 37°C overnight in a reaction volume of 30 µl. Restriction digests were 

heat inactivated by incubation at 65°C for 20 minutes prior to any further utilization. 

2.7.2 Ligation of vector backbone with DNA fragments 

The Rapid DNA Ligation Kit was used to ligate DNA fragments according to the protocol 

provided by the manufacturer and the formula given below was used to determine the 

required amount of insert based on a 3:1 molar ratio of insert to backbone DNA.  

3
1
∗

	 	 	 	
	 	 	 	

∗  
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The following reaction mixture was prepared in a reaction tube and incubated at 16 °C 

overnight (Table 9). 

Table 9 Standard Ligation reaction set-up. 
Substance Amount 
Linear backbone DNA ~ 50 ng 
Insert DNA 3:1 molar ratio of insert to vector DNA 
10X ligation Buffer 1.5 µl 
Ligase enzyme 1.0 µl 
H2O add to 15.0 µl 

 

2.7.3 E. coli transformation 

All Plasmids (1 µl) and ligation products (5 µl) are transformed into chemically 

competent One Shot® E.coli by heat shock according to the manufacturer’s protocol 

(InvitrogenTM). 

The cells were thawed on ice and after addition of the DNA they were incubated for 30 

minutes on ice, followed by a heat shock treatment at 42°C for 30 seconds and two 

minutes incubation on ice. 250 µl of SOC medium were added to 50 µl of initial cell 

culture and incubated at 37°C for 1 hour with gentle shaking. 10 µl and 50 µl of the 

culture were plated on LB plates containing the suitable antibiotics for selection and 

grown at 37°C overnight. The rest of the transformation culture was stored at +4°C and 

if necessary, cells were pelleted, re-suspended in a smaller volume of liquid LB medium 

and plated out again.  

Single colonies were picked and grown overnight in liquid LB-medium containing 

antibiotics, harvested and used for glycerol-stock and plasmid isolation. 

2.7.4 Gene synthesis and sequencing 

The nucleotide sequences encoding the transgenes (EDIII 1-4, EDIII 1, EDIII 2, EDIII 3, 

EDIII 4 and GFP) were codon usage optimized for the tobacco plastid and gene 

synthesis of these custom designed sequences was carried out by GeneArt (Germany) 

resulting in the vectors: pEDIII 1-4, pEDIII 1, pEDIII 2, pEDIII 3, pEDIII 4 and pGFP. In 

these vectors the transgenes already have a C-terminal 6xHis tag and are flanked by 

the attB1 and attB2 sites for Gateway® cloning. 

Plasmid DNA samples were sent to LGC Genomics (Germany) for sequencing and the 

sequencing data were analyzed using the software: Vector NTI advanced® 11.5 

sequence alignment AlignX tool. 
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2.7.5 Gateway® cloning procedure 

All Gateway® cloning steps were carried out according to the protocol provided from 

InvitrogenTM. 

The BP-reaction is performed with the PstI linearized vector including the gene of 

interest (goi) and the Donor vector pDONR221TM and the BP enzyme mix at 25°C for 1 

hour. The LR-reaction is performed with the previously produced Entry- and 

Destination- vectors and the LR enzyme mix for 1 hour at 25°C. The resulting Entry 

vectors and Expression vectors are transformed into One Shot® OmniMAXTM E. coli 

cells by heat shock method. The formula given below is used to calculate the correct 

amounts of goi and Donor vector with X for goi and Donor vector and N for the size in 

bp of the goi and the Donor vector, respectively. The standard set up for the carried out 

BP- and LR-reactions are given in Table 10. The BP- and the LR-reactions were 

stopped by adding 1 µL Proteinase K and incubation at 37°C for 10 minutes. 

50	 ∗ ∗ 660	 ∗ 1	 /10  

 

Table 10 Standard Set-up of BP- and LR-reaction. 
BP-reaction 10µL  LR-reaction 10µL 

goi x µL    
pDONR221TM 160 ng  Destination vector 160 ng

TE Buffer, pH 8.0 3µL  Entry vector 120 ng
BP Clonase II 2µL  LR Clonase II 2 µL 
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2.8 Vector construction  

2.8.1 Destination vectors pDEST-PN-T, pDEST-T7-T and pDEST-PN-L 

In order to obtain the tobacco specific plastid transformation vectors, the Gateway® 

reading frame cassette RfA (Figure 4 (a)) was first inserted into pT7PN-T (Figure 4 (b)) 

to produce pDEST-PN-T (Figure 4 (c)) and subsequently the Prrn16 was cut-out to 

produce pDEST-T7-T (Figure 4 (d)). The lettuce specific plastid transformation vector 

pDEST-PN-L (Figure 4 (e)) was obtained by insertion of the complete aadA expression 

cassette and the Gateway® cassette into a backbone vector containing the regions 

homologous to the trnI/trnA sequence from L. sativum (Ruhlman et al, 2007). 

Insertion of the custom designed fragment psbAT7PN into pT7PHB-NF (Lössl et al, 

2005) yielded the intermediary vector pT7PN-T. Both, the backbone donating vector 

pT7PHB-NF and the insert containing vector pMA-psbAT7PN (obtained from GeneArt) 

were double digested with SacII and NcoI, the digested DNA was separated by gel-

electrophoresis and the 6233 bp backbone and the 685 bp insert fragments were cut 

out from the gel, purified and ligated. The ligation product was transformed into 

chemically competent E.coli by heat shock method. Since this cloning step changes 

also the promoter of the aadA cassette, positive clones were selected on LB-plates 

containing ampicillin and spectinomycin.  Single colonies were picked and plasmid DNA 

isolated from liquid overnight cultures of these positive clones was sent for sequencing 

to verify the correct nucleotide sequence and orientation of the insert.  

Conversion of pT7PN-T into the Gateway® vector was done according to the protocol 

provided by InvitrogenTM using the Gateway® Vector Conversion System. pT7PN-T was 

linearized with EcoRV and after gel-purification blunt-end ligation was used to introduce 

the RfA containing attR recombination sites flanking a ccdB gene and a 

chloramphenicol-resistance gene. After transformation of ccdB survival™ E. coli with 

the ligation product, positive clones were selected on LB plates containing both 

ampicillin and chloramphenicol and the correct orientation of the RfA was verified by 

sequencing. pDEST-T7-T was achieved by double-digestion of the pDEST-PN-T with 

XbaI and NheI, gel extraction of the restricted fragment and subsequent religation of the 

vector. Putative pDEST-T7-T clones are selected on LB plates containing ampicillin 

after transformation of ccdB survivalTM E.coli with the ligation product. The presence of 

only the T7 promoter in the new vector was confirmed by sequencing. 
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2.9 Plastid transformation by biolistic bombardment method 

Transformation of chloroplasts and regeneration of transplastomic plants was achieved 

with the biolistic transformation method using a PDS-1000/He Particle Delivery System 

and following the modified protocol from Verma et al, 2008. Table 12 lists the performed 

transformations and the generated transplastomic plant lines. 

2.9.1 Preparation of plant material 

Leaves of six weeks old plants grown under sterile conditions were harvested, placed 

on RMOP-medium facing the abaxial side up and incubated at 25°C in the dark 

overnight. 

2.9.2 Sterilization of microcarriers 

30 mg of gold particles were accurately weighed and transferred to 1.5 ml Eppendorf 

tube. 1 ml of 70 % ethanol was added to the tube, vortexed for 15 minutes at +4°C and 

centrifuged for 30 seconds at maximum speed. The supernatant was removed and the 

gold pellet was washed again with 70 % ethanol, washing was repeated for two more 

times. After the third wash the supernatant was discarded and the gold particles were 

re-suspended in 500 µl of 50 % glycerol resulting in a final concentration of 60 mg/ml. 

2.9.3 DNA coating of microcarriers 

5 µl DNA (1µg/µl), 50 µl 2.5 M CaCl2 and 20 µl 0.1 M spermidine were added while 

vortexing to 50 µl of sterile microcarriers re-suspended in glycerol. The mixture was 

incubated on ice for 10 minutes and then centrifuged for 1 minute at 8 000 rpm. The 

supernatant was carefully removed and the pellet was first washed with 140 µl 70 % 

ethanol and centrifuged 1 minute at 10000 rpm; second the pellet was washed with 

140 µl of 100 % ethanol for 1 minute and centrifuged at 10000 rpm. The supernatant 

was removed and the DNA-coated microcarriers were carefully re-suspended in 48 µl 

100 % ethanol and kept on ice until used. 

2.9.4 Bombardment  

All the equipment and the bombardment chamber were sterilized with 70 % ethanol. 

6 µl of freshly prepared DNA coated gold particles were loaded on macro carries in the 

macro carrier holder. The sterile rupture disk of 1100 psi was placed in the retaining cap 

and secured to the gas acceleration tube. Plant tissues were bombarded with DNA 

coated gold microcarriers in the vacuum chamber at a pressure of 1100 psi. 
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2.9.5 Selection and regeneration of transformed plants 

The bombarded leaf discs were placed on RMOP medium and incubated in the dark at 

25°C for two days. Then the leaves were cut into small pieces (~ 5 mm2), transferred to 

RMOP medium containing spectinomycin (500 mg/L for tobacco and 30 mg/L for 

lettuce) and kept at 25°C under standard light conditions. Three to four weeks after the 

transformation the resistant shoots started to regenerate and were transferred to fresh 

medium. In order to obtain homoplasmic plants, transplastomic shoots were subjected 

to 2 additional rounds of regeneration on RMOP medium containing spectinomycin. 

Integration of the transgene expression cassette into the tobacco plastid genome was 

verified by a 2552 bp PCR product with primers p3/p4. PCR positive plantlets were used 

for further analysis. Presence of the transgene expression cassette in the lettuce plastid 

genome was verified by a 836 bp PCR product for S16-PN-EDIII 1 and a 1841 bp PCR 

product for S12-PN-EDIII 1-4 with primers p296/p297. 

Table 12 Summary of performed transformation events. 
bombarded leaves transformation vector transplastomic plant lines 
wt tobacco pEXP-PN-GFP-T N.t.-PN-GFP 
285-78-T7 pEXP-T7-EDIII 1-T 285-78-T7-EDIII 1 
285-78-T7 pEXP-T7-EDIII 2-T 285-78-T7-EDIII 2 
285-78-T7 pEXP-T7-EDIII 4-T 285-78-T7-EDIII 4 
285-78-T7 pEXP-T7-EDIII 1-4-T no plants regenerated 
wt tobacco pEXP-T7-EDIII 1-4-T N.t.-T7-EDIII 1-4 
wt lettuce pEXP-PN-EDIII 1-L S16-PN-EDIII 1 
wt lettuce pEXP-PN-EDIII 1-4-L S12-PN-EDIII 1-4 

 

2.9.6 Pollination 

Plant line 285-78-T7-EDIII 1-4 was obtained by manually pollinating plant line 

N.t.-T7-EDIII 1-4 with pollen collected from plant line 285-78-T7. Seeds obtained from 

this pollination were germinated on spectinomycin and kanamycin containing MS 

medium and the presence of the T7 RNA polymerase in the nuclear genome of green 

seedlings was verified by a 603 bp PCR product using primers p19/p20. 
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2.10  Molecular analysis to verify the transformants 

2.10.1 PCR 

PCR reactions were carried out according to the standard protocol (Table 13 and Table 

14). The specific conditions for every reaction are given in Table 15 and the respective 

primers are described in Table 2. Each 10 µl reaction contained 9 µl master-mix and 

1 µl template DNA or one picked colony. Table 15 gives an overview of the performed 

PCR reactions and corresponding conditions. 

Table 13 Standard PCR conditions. Ta and te depend on the specific PCR reaction.  
 

 

 

 

 

Table 14 Standard Master-mix composition for PCR reactions. 
Substance [µl] for 10 µl reaction Concentration 

H2O 5.65 - 
Taq Buffer 10X 1 1x 
primer 1 10 µM 1 1 µM 
primer 2 10 µM 1 1 µM 
dNTPs 2.5 mM/each 0.25 250 µM/each 
Taq [5U/µl] 0.1 0.025 U/µl 

 

 

 

 

 

 

 

 

 

Step  T [°C] t [min:sec]  

1 initial denaturation 95 03:00  
2 denaturation 95 00:40 

30 cycles 3 annealing  Ta 00:40 
4 elongation  72 te 
5 final elongation 72 10:00  
6 hold 16 ∞  
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Table 15 Summary of performed PCR reactions. Ta: annealing temperature in °C; 
te: elongation time in minutes; template: plasmid DNA or total plant DNA. 
No.  Primer pair Template Ta [°C] te [min] Product [bp] 
1  p17/p18 pKP9 54 1 488 
2a p7/p8 pKP9-EDIII 1 49 0.5 223 
2b  p9/p10 pKP9-EDIII 2 49 0.5 187 
2c p11/p12 pKP9-EDIII 3 49 0.5 197 
3  p5/p6 pDEST-T7-T 54 1 773 
4  p13/p14 pKP9 51 1 518 
5  p15/p16 pDEST-PN-L 57 1 665 
6 p1/p2 N.t.-PN-GFP 53 2,5 2230 
7 p3/p4 N.t.-PN-GFP 

285-78-T7-EDIII 1 
285-78-T7-EDIII 2 
285-78-T7-EDIII 4 
N.t.-T7-EDIII 1-4 
285-78-T7-EDIII 1-4 

53 3 2552 

8 pM13F/pM13R pEntr-EDIII 1-4 
pEntr-EDIII 1 
pEntr-EDIII 2 
pEntr-EDIII 3 
pEntr-EDIII 4   
pEntr-GFP 

50 3 1701 
713 
723  
723  
720 
1171 

9 p296/p297 pEXP-PN-GFP-T 
pEXP-T7-EDIII 1-T 
pEXP-T7-EDIII 2-T 
pEXP-T7-EDIII 3-T 
pEXP-T7-EDIII 4-T 
pEXP-T7-EDIII 1-4-T 
pEXP-PN-EDIII 1-L 
pEXP-PN-EDIII 1-4-L 
S12-PN-EDIII 1-4 
S16-PN-EDIII 1 

50 3 1232 
698 
718 
718 
715 
1696 
853 
1841 
1841 
853 

10 p19/p20 285-78-T7-EDIII 1-4 57 1 603 
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2.10.2 Southern blot analysis 

The Southern Blot analyses were carried out according to the protocol provided with the 

DIG-High Prime DNA Labeling and Detection Starter Kit II (Roche). Plant DNA was 

isolated from transplastomic and wild-type plants after three consecutive rounds of 

selection and subculture on spectinomycin containing RMOP medium and analyzed 

using DIG labeled probes (Table 16) that bind inside the transgene expression 

cassettes and the plastid genome. 10 µg of plant DNA was cut with ApaI (for N.t.-PN-

GFP,  285-78-T-EDIII 1, 285-78-T7-EDIII 2, 285-78-T7-EDIII 4, N.t.-T7-EDIII 1-4 and 

285-78-T7-EDIII 1-4), with SmaI (for S12-PN-EDIII 1-4 and S16-PN-EDIII 1) or with BglII 

(for N.t-EDIII 1, N.t.-EDIII 2 and N.t.-EDIII 3), separated by electrophoresis in a 1 % 

Agarose gel at 50 V overnight and transferred onto a positively charged nylon 

membrane by capillary action using either the alkali-transfer method with 

1X Alkali-Transfer Buffer (for N.t.-GFP) or the semi-dry transfer method, overnight. After 

immobilization of the DNA by baking the membrane at 80°C for 2 hours, the DNA was 

pre-hybridized for 3 hours at 45°C and hybridized with the specific labeled probe (Table 

17) at 45°C overnight to visualize the sequence of interest. Stringency washes were 

performed with 2X SSC + 1 % SDS at RT and 0.5X SSC + 1 % SDS at 65°C. After 

incubation in blocking solution for 30 minutes at RT and incubation in antibody solution 

for 30 minutes at RT, the membrane was washed twice with 1X Wash Buffer, 1 ml of 

CSPD ready to use solution was applied to the membrane and incubated at 37°C for 10 

minutes. The signal was detected by exposure to X-ray film and developer and fixer 

solution were used to develop the X-ray film. 

Table 16 Probes and their binding region. PCR indicates the PCR reaction performed to 
produce the probe (Table 15) for the hybridization with den probe equal amounts of den 
1, den 2 and den 3 probes were mixed and applied to the membrane. 
Probe Size [bp] PCR Binding in 
aadA 488 1 aadA gene inside the transgene expression cassette
den 1 
den 2 
den 3 

223 
187 
197 

2a 
2b 
2c 

dengue gene inside the transgene expression 
cassette 

insl 773  3 tobacco INSL region near trnN 
psaB 518 4 tobacco psaB gene 
trnA 665 5 lettuce INSL region near trnA 
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Table 17 Overview of plant samples and the respective probes used for hybridization. 
Plant line Hybridized with probe 
N.t.-GFP insl 
wt tobacco 
N.t.-EDIII 1 
N.t.-EDIII 2 
N.t.-EDIII 3 

psaB, aadA, den 

285-78-T7 
285-78-T7-EDIII 1 
285-78-T7-EDIII 2 
258-78-T7-EDIII 4 
285-78-T7-EDIII 1-4 

insl 

wt lettuce 
S12-PN-EDIII 1-4 
S16-PN-EDIII 1 

trnA 
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2.10.3 Western blot analysis 

To extract total soluble protein (TSP), 200 mg of frozen leaf sample were ground into 

fine powder using liquid nitrogen and homogenized in 500 µl PEB I by vortexing for 3 

minutes at RT. The supernatant was collected after centrifugation for 10 minutes at 

13000 rpm at +4°, aliquoted and stored at -20°C.   

Alternatively, 200 mg of frozen leaf sample were ground into fine powder using liquid 

nitrogen and homogenized in 500 µl PEB II by vortexing for 1 minute at RT in order to 

extract total protein (TP). 500 µl of Phenol were added to the plant cell extract, vortexed 

briefly and centrifuged at 13000 rpm for 10 minutes at +4°C. 200 µl of the upper green 

supernatant were transferred into a new tube and 1 ml of 0.1 M NH4OAc in Methanol 

was added and the proteins were precipitated for 3 hours at -20°C. After centrifugation 

at 13000 rpm at +4°C for 10 minutes the pellet was washed twice with 500 µl 

0.1 M NH4OAc in Methanol and then air dried at RT. Finally the protein pellet was 

dissolved in 100 µl 1 % SDS and stored at -20°C. 

20 µl of the sample were mixed with 5 µl Laemmli Buffer, denatured at 95°C for 10 

minutes, spun down and loaded onto a 12 % PAA gel. Proteins were separated by 

electrophoresis first at 80 V until the sample had completely entered the separating gel, 

followed by 110 V until the dye front reached the end of the gel, and then transferred 

onto the nitrocellulose membrane and blocked with 0.5 % BSA in TBS-T for 1 hour. The 

membrane was briefly rinsed with TBS-T and then incubated with the primary antibody 

1:1000 diluted in TBS-T overnight at +4°C. The membrane was washed three times with 

TBS-T at RT and incubated for 1 hour with alkaline phosphatase conjugated goat anti-

mouse IgG (Promega) as a secondary antibody diluted 1:10000 in TBS-T at RT. 

Proteins were detected by colorimetric reaction using either the AP color development 

Kit (Bio-Rad, USA) or with SigmafastTM BCIP®/NBT (Sigma). 

Coomassie staining with Brilliant Blue G was carried out in order to verify equal loading 

amounts of proteins. The PAA gels were stained for 1 hour at RT with the Coomassie 

staining solution and de-stained overnight in 10 % Acetic acid. 
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2.11  Fluorescence confocal microscopy 

GFP fluorescence in the plastids of transplastomic plants was observed on a SP5 II 

confocal system (Leica Microsystems, Germany) equipped with a HCX PL APO CS 

63.0x1.20 water objective. The 405-nm line of an argon ion laser was used for 

excitation. Images were taken at the emission bandwidth of 500 – 540 nm for GFP and 

688 – 757 nm for autofluorescence of the chloroplasts and processed using the Leica 

LAS AF software. 

 

2.12  Mass spectrometric analysis 

The MS analyses were kindly carried out at the UMB MS/Proteomics core facility 

(Norwegian University of Life Sciences, IKBM, Ås, Norway). 

Samples bands were cut out from a Coomassie stained gel, digested with Trypsin 

following the protocol by Shevchenko et al, 2006 and peptides were purified and 

concentrated with modified STAGE microcolumns as described in Rappsilber et al, 

2003. 

The mass spectrometer (Q Exactive™ Hybrid Quadrupole - Orbitrap Mass 

Spectrometer) was set up as follows (Top10 method): a full scan (300-1600 m/z) at 

R=70.000 was followed by (up to) 10 MS2 scans at R=35000, using an NCE setting of 

28. Singly charged precursors were excluded for MSMS, as were precursors with z>5. 

Dynamic exclusion was set to 20 seconds. 

Raw files were converted to mgf format using the msconvert module of ProteoWizard 

(http://proteowizard.sourceforge.net/), and submitted to database search (either Dengue 

virus type 1 and type 3, or NCBInr using taxonomy other green plants) on an in-house 

Mascot (v.2.4) server using 10 ppm/20mamu tolerance for MS and MS/MS, 

respectively, and allowing for up to 2 miscleavages. Carbamidomethylated cysteine and 

oxidized methionine were selected as fixed and variable modifications, respectively. 

Data was analyzed with the Scaffold 4.0 Proteomics Software. 
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3 Results 
 

The findings and outcomes of this work can be summarized into three main results. 

First, this study reports the construction of a plastid transformation vector compatible 

with the Gateway® cloning technique and the successful expression of GFP using this 

vector in tobacco chloroplasts with an expression level of 3 % TSP (Gottschamel et al, 

2013).  

Second, the expression of antigen-encoding genes based on the Dengue virus 

envelope protein domain III (EDIII) has been accomplished by engineering the tobacco 

chloroplasts with two different vector systems. The recombinant EDIII 1 and EDIII 3 

proteins were constitutively expressed in tobacco chloroplasts, while expression of 

EDIII 1, EDIII 2, EDIII 4 and EDIII 1-4 was obtained with the inducible expression 

system upon ethanol induction. Third, the constitutive expression of the Dengue 

antigenes EDIII 1 and EDIII 1-4 in lettuce chloroplasts was achieved in order to facilitate 

the development of an oral vaccine candidate.  

 

3.1 Development of a plastid transformation vector introducing the 

Gateway® recombinant cloning technology 

This study has presented a novel Destination vector (pDEST-PN-T) that can be 

converted into a plastid transformation vector in one single step using the Gateway® 

recombinant cloning technology. Furthermore, expression of GFP in transplastomic 

tobacco plants obtained using this vector, demonstrated the feasibility of the Gateway® 

recombinant cloning technology for chloroplast transformation. 

 

3.1.1 Construction of pDEST-PN-T and pEXP-PN-GFP-T 

The plastid transformation vector compatible with the Gateway® recombinant cloning 

system, was constructed by inserting the Gateway® reading frame cassette A (RfA) into 

a tobacco specific plastid transformation vector. The resulting Destination vector 

pDEST-PN-T (Figure 8 (a)) contains the aadA gene expression cassette, the 

constitutive rrn16 PEP+NEP promoter (Ye et al, 2001) for transgene expression and the 

RfA flanked by tobacco specific INSL and INSR. BP reaction of the linearized vector 

containing the attB site flanked gfp and the attP site bearing pDONR221TM resulted in 

pENTR-GFP (Figure 8 (b)). LR reaction of pENTR-GFP and pDEST-PN-T yielded the 

final plastid transformation vector pEXP-PN-GFP-T (Figure 8 (c)). 
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3.2.1.3 Analysis of recombinant protein expression 

Leaves of six weeks old homoplastomic plants growing in the greenhouse were labeled 

L1 (oldest) to L6 (youngest), harvested and both total soluble protein (TSP) and total 

protein (TP) were extracted from each leaf separately. Immunoblot analyses performed 

with TSP extracts detected the EDIII 1 protein, but failed to detect EDIII 2 and EDIII 3 

(Figure 15 (a) – (c)). Furthermore the expression level of EDIII 1 increased from old to 

young leaves. 

Immunoblot analyses performed with the TP extract detected EDIII 1 and EDIII 3, but 

with various signal intensities for the different leaf stages (Figure 15 (d) – (f)). In addition 

to the expected 13 kDa band corresponding to the monovalent Dengue antigen, also 

bands at higher molecular masses: ~28 kDa, ~40 kDa and ~50 kDa were detected. The 

absence of these bands in the wild-type sample indicates that these bands are not due 

to unspecific binding of the antibody to plant protein.  

Mass spectrometric analysis of the additional protein bands (marked *1 - *8 in Figure 

15) showed the presence of the same peptides in all the bands (Table 18), therefore 

confirming the specific binding of the anti-dengue antibody and strengthening the 

hypothesis of dimer/trimer formation of the recombinant EDIII 1 and EDIII 3 proteins. 
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Table 18 Mass spectrometric analysis. All possible peptides obtained after trypsin 
digest of EDIII 1 or EDIII 3, respectively are listed in the first column. The bands cut out 
from the coomassie stained gel were digested with trypsin, and the purified and 
concentrated peptides were analysed by mass spectrometry. *1 - *8 represent the 
bands in Figure 15 and sample 9 was an E.coli derived EDIII 3 as a positive control. + 
indicates the presence of the peptide in the respective sample, - indicates that the 
peptide was not found in this sample. Peptides marked with # were only found as parts 
of bigger peptides due to only partial trypsin digest. 
Peptides for EDIII 1 *1 *2 *3 *4  
1) MSYVMCTGSFK + - - -  
2) #LEK + + + +  
3) EVAETQHGTVLVQVK + + + +  
4) #YEGTDAPCK + + + +  
5) IPFSSQDEK + + + +  
6) #GVTQNGR + + + +  
7) LITANPIVTDK + + + +  
8) EKPVNIEAEPPFGESYIVVGAGEK + + + +  
9) ALK  + + - -  
10) #LSWFK + + - -  
11)  K - - - -  
12)  GSSIGK - - - -  
13)  GGGGGENLYFQGHHHHHH* + + - -  

      
Peptides for EDIII 3 *5 *6 *7 *8 9 
1) MSYAMCLNTFVLK - - - - - 
2) K - - - - - 
3) EVSETQHGTILIK + + + + + 
4) #VEYK + - + + + 
5) #GEDAPCK + - + + + 
6) IPFSTEDGQGK + - + + + 
7) #AHNGR + - - + + 
8) LITANPVVTK + + + + + 
9) EEPVNIEAEPPFGESNIVIGIGDK + - + + + 
10) ALK + - - - - 
11)  #INWYR + - - - - 
12)  GSSIGK - - - - - 
13)  GGGGGENLYFQGHHHHHH* + - + - - 
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4 Discussion 

The present study has described the production of vaccine candidates against Dengue 

fever in green plants. Chloroplast genetic engineering has been employed to develop an 

economic and safe production platform for the recombinant protein vaccine candidates. 

The expression of the tetravalent EDIII fusion protein and the four monovalent EDIII 

forms has been achieved by using chloroplast engineering in tobacco and lettuce, thus 

proving the feasibility of the chosen approaches.  

 

Dengue fever (DF) and Dengue haemorrhagic fever (DHF) are caused by the Dengue 

viruses consisting of four antigenically related but distinct virus serotypes. With an 

estimated 50 – 100 million new infections every year (WHO, 2013), this viral disease is 

a significant cause of morbidity and mortality in developing tropical and subtropical 

countries (Gubler, 2012). Due to its occurrence in four serotypes and its complex 

pathogenesis, so far there is no vaccine available against Dengue fever. The serotype 

specific antibodies, produced in the course of the first infection, cross-react with the 

remaining serotypes during secondary infection, causing the severe forms of the 

disease: Dengue shock syndrome and DHF (Halstead, 1988). Therefore, an effective 

Dengue vaccine must be tetravalent and confer protection against all four virus 

serotypes (Hombach et al, 2005).  

Currently, the most promising tetravalent vaccine candidate (CYD15)  containing four 

monovalent chimeric yellow fever Dengue vaccine strains is undergoing a phase III 

clinical trial (Sanofi-Pasteur, 2014). However, previous difficulties associated with 

tetravalent Dengue vaccine candidates consisting of the four live-attenuated virus 

strains for the Mahidol- (Edelman et al, 2003; Kanesa-Thasan et al, 2001) and the 

WRAIR-vaccine (Eckels et al, 2000a; Sun et al, 2003) have put an increased focus on 

developing a recombinant protein vaccine. The most promising attempts focus on the 

envelope protein domain III (EDIII) (Guzman et al, 2010). This domain contains the 

main serotype specific epitopes (Chin et al, 2007; Megret et al, 1992) and has only very 

low intrinsic potential for eliciting cross-reactive antibodies against heterologous 

serotypes (Hombach et al, 2005). A recombinant fusion protein linking the EDIII 

domains of Dengue virus serotypes 1, 2, 3 and 4 has elicited neutralizing antibodies 

against all four serotypes (Batra et al, 2007; Etemad et al, 2008) and indicates a way to 

avoid unbalanced immune responses reported for tetravalent formulations consisting of 

stoichiometrically mixed monovalent vaccines (Sabchareon et al, 2012). 
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In order to reduce the workload and time necessary for constructing the required plastid 

transformation vectors, the first part of this work consisted in implementing the 

Gateway® recombination cloning technology. Cloning with traditional restriction 

enzymes is laborious and time consuming, because the choice of suitable restriction 

enzymes is frequently limited by the transgene's sequence and often considerable 

adaptations of the transgene's sequence are required to eliminate unwanted cutting 

sites. These major limitations are circumvented by the Gateway® cloning system 

allowing the rapid and efficient insertion of any transgene into the Expression vector 

without considerations regarding interference of internal restriction sites of a candidate 

sequence. Since the construction of the first series of plant Destination vectors (Dubin 

et al, 2008; Earley et al, 2006; Karimi et al, 2007) continual improvements and 

modifications have led to an increasing number of vectors available for different 

purposes (Buntru et al, 2013; Dubin et al, 2010; Karimi et al, 2013; Lyska et al, 2013). 

However, only vectors for transient expression or stable nuclear transformation have 

been reported until we started the attempt of implementing the Gateway® cloning 

system in plastid genome engineering.  

 

A set of novel Destination vectors, that can be converted into a final plastid 

transformation vector in one single step using Gateway® recombinant cloning 

technology, has been developed. The Gateway® cloning introduces the attB1 sequence 

at the 5´ and the attB2 sequence at the 3´ regions of the expression cassette and 

insertions of a novel sequence between promoter and 5´UTR includes the risk of 

damaging this very sensitive region. However, GFP expression achieved in tobacco 

chloroplasts transformed with the Gateway® compatible plastid transformation vector 

proved that the attB1 sequence has no negative effect on the critical RNA interactions 

required for protein expression. The obtained GFP accumulation level of 3% TSP was 

furthermore considerably higher than the results previously generated using the same 

regulatory elements and integration sites in the plastid genome (Waheed et al, 2011a; 

Waheed et al, 2011b). No negative impact of the Gateway® cloning procedure was 

detectable during the whole process of plastid transformation and regeneration of 

transplastomic plants. Thus, taking advantage of the unique properties of the Gateway® 

cloning system, the first Gateway® plastid transformation vector has been created, 

providing a straightforward and streamlined cloning strategy. 
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The transplastomic plant lines containing the transgene expression cassette controlled 

by a strong constitutive rrn16 promoter showed growth retardations and leaf chlorosis. 

According to previous reports, plastid based expression of recombinant proteins mostly 

does not result in abnormal phenotypes. However, there are an increasing number of 

studies where phenotypic alterations of transplastomic plants have been reported. The 

two main reasons underlying pigment deficiency or delay in plant development are 

either toxicity of the transgene product due to interference of the recombinant protein 

with essential processes in the chloroplast or severe metabolic burden due to hyper 

recombinant protein expression levels (Scotti & Cardi, 2014). These detrimental effects 

include male sterility (Lössl et al, 2003), chlorotic leaves  (Tregoning et al, 2003), 

stunted growth (Magee et al, 2004; Tissot et al, 2008) or a combination thereof 

(Waheed et al, 2011b). Although, expression of  up to 72 % of total leaf protein of a 

CTB-Pins fusion protein without negative effects on plant growth has been reported 

(Ruhlman et al, 2010), over-expression of lysine to ~70 % TSP caused phenotypic 

alterations in transformed plants (Oey et al, 2009). In several cases, the aberrant 

phenotype can be directly connected to the foreign protein (Hennig et al, 2007; Ruiz & 

Daniell, 2005). Nevertheless, it could also be the result of exhaustion of the 

chloroplast's gene expression capacity resulting in Rubisco depletion and a general 

decrease in plastid-encoded proteins (Bally et al, 2009; Zhou et al, 2008). The fact that 

the growth retardation and mild chlorosis observed in our transplastomic plants could be 

overcome by expressing the transgene upon ethanol induction, suggests that in our 

case these detrimental effects are more likely an effect of recombinant protein toxicity 

than overload of the chloroplast's metabolism. 

 

The detected levels of constitutively expressed EDIII 1 were varying depending on the 

leaf age with the highest protein accumulation being detected in the youngest leaves. 

Similar findings have been reported for the VP6 protein, suggesting that the protein is 

produced during early leaf development, but then subjected to degradation during plant 

growth (Birch-Machin et al, 2004). In contrast to that, the expression levels of EDIII 3 

remained nearly unchanged in all leaf ages, indicating that this protein might be more 

stable than EDIII 1. 
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Although, the Southern blot pattern confirmed the homoplastomic state of N.t.-EDIII 2, 

Western blot analyses were not able to detect the EDIII 2 protein. Previously, a plastid 

protein with a half-life less than one hour has been reported (Whitney & Andrews, 2001) 

and the high turnover of plastidial protein synthesis can lead to rapid degradation of 

proteins (Kim et al, 1994). A N-end rule for plastid proteins has been proposed where 

the protein stability is influenced by the penultimate N-terminal amino acid residue (Apel 

et al, 2010; De Marchis et al, 2012), but in our case all three EDIII proteins have the 

same penultimate amino acid. 

 
Unexpectedly, the immunoblot analyses revealed the presence of additional protein 

bands with higher molecular masses than the predicted 13 kDa for EDIII 1 and EDIII 3, 

respectively. The size of these bands (~28, ~40 and ~50 kDa) would correlate nicely 

with dimer or trimer formation of the EDIII proteins. The absence of these bands in the 

wild-type sample clearly indicates that they result from specific binding of the 

anti-dengue antibody. To proof our hypothesis, mass spectrometric analyses were 

performed and the data obtained by analyzing the contents of the expected band 

together with the additional bands confirmed that all analyzed samples contain the 

Dengue-peptides. The mature Dengue virus particles are formed by E protein dimers 

organized in a  herringbone configuration on the viral surface (Kuhn et al, 2002) and the 

main dimerization properties are associated with domain II (Modis et al, 2003), while our 

recombinant protein consists only of the domain III of the envelope protein. However, 

the homodimers of the E protein interact closely with each other during the virus life 

cycle (Mukhopadhyay et al, 2005) and the post fusion structure at low pH is 

characterized by a trimeric arrangement of E protein monomers (Modis et al, 2004). 

Therefor it cannot be excluded, that the domain III retains some characteristics that 

favor protein aggregation even when expressed in an isolated way. Such information is 

of importance for our future work and for other studies about the production of 

recombinant proteins in chloroplasts.  

Although this phenomenon has not been reported for similar proteins expressed in 

E.coli (Khanam et al, 2006) or yeast cells (Batra et al, 2010; Cardoso et al, 2013), a 

putative dimeric species has been detected in solubilized inclusion bodies of EDIII 2 

(Jaiswal et al, 2004). The ability to form strong aggregates of the chloroplast produced 

EDIII proteins may be an advantage for the stimulation of the immune system and 

induction of intestinal secretory IgA following oral immunization.  
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The activation of transgene expression after the highly sensitive regeneration phase 

could be a way to avoid phenotypic alterations caused by the recombinant protein. 

Inducible expression systems allow the plants to grow to maturity and then the full 

biomass capacity can be exploited to produce the recombinant protein upon induction. 

Several different induction systems for plastids have been reported (Buhot et al, 2006; 

Mühlbauer & Koop, 2005; Tungsuchat et al, 2006; Verhounig et al, 2010). In this work, 

the ethanol inducible expression system based on the nuclear encoded plastid exported 

T7 RNA Polymerase has been employed for the expression of EDIII 1, EDIII 2, EDIII 4 

and EDIII 1-4. The functionality of this system to overcome growth reduction and male 

sterility caused by the expression of the phb operon has been previously demonstrated 

(Lössl et al, 2005). Plants growing in the greenhouse without ethanol treatment showed 

only a minimal growth delay compared to the wild-type plants and fertile seeds were 

obtained from all plant lines. Protein expression was achieved in all in vitro plant lines 

after repeated ethanol exposure and in accordance with previously reported leakiness 

of the system (Lössl et al, 2005) a low level of recombinant protein was also detectable 

in un-induced plants, most likely causing the slightly slower growth of the transplastomic 

plants.  

 
Interestingly, no protein aggregates were visible on the immunoblots performed with 

protein extracted from the ethanol induced plants, except for EDIII 4. However, EDIII 4 

has also the highest expression level and the aggregates appear with increasing protein 

concentration, suggesting that they might not be distinguishable from the background 

on the other Western blots due to sensitivity reasons.  

 

The expression level obtained from constitutive expression of EDIII 1 is higher than the 

one obtained after ethanol induction. Since in both plant lines the identical protein is 

expressed in the same tobacco background, this cannot be due to protein instability or 

protein degradation by plant proteases. More likely, the availability of the T7RNA 

Polymerase in the plastid constitutes a bottle neck for the recombinant protein 

expression (Lössl et al, 2005). On the other hand, in the case of EDIII 2, where the 

expression level remained below the detection limit with the constitutive approach, the 

ethanol inducible system allowed the expression of detectable EDIII 2 quantities. 

Importantly, the successful expression of the EDIII 2 protein and the hardly notable 

growth alterations in the transplastomic plants demonstrate the usefulness of this trans-

activation system to overcome hurdles in transgene expression and recombinant protein 

related phenotypic alterations. 
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Since the main target group for a Dengue vaccine are the relatively poor people in 

developing countries, an ideal Dengue vaccine should be affordable, effective, heat-

stable, and easily administered. Orally delivered plant produced antigens are bio-

encapsulated by the plant cell wall (Daniell et al, 2009) and stimulated protective 

immune responses (Arlen et al, 2008; Davoodi-Semiromi et al, 2010; Ruhlman et al, 

2007; Verma et al, 2010). Furthermore, recombinant protein-based vaccines expressed 

in edible plants can be produced and delivered using the same cells, completely 

eliminating the cost of purification and formulation (Gregory & Mayfield, 2014).  

 

Homoplastomic lettuce plants expressing the EDIII 1 and the EDIII 1-4 protein were 

obtained by transformation with lettuce specific Gateway® plastid transformation 

vectors and as described in our recent study (Gottschamel et al, 2013), no negative 

effects were observable during plant transformation and regeneration, proving the 

applicability of the Gateway® cloning system also for lettuce. 

The detected expression level for EDIII 1 is considerably lower in lettuce than the one 

obtained with constitutive expression in tobacco. This has been observed for other 

recombinant proteins expressed in both tobacco and lettuce chloroplasts (Davoodi-

Semiromi et al, 2010; Ruhlman et al, 2007) and in addition, the different regulatory 

elements used in this work, presumably also contribute to the variable expression 

levels. In general, it is well documented that the recombinant protein yield depends on 

the regulatory elements used for transgene expression (Cardi et al, 2010; Inka Borchers 

et al, 2012; Koop et al, 2007; Maliga, 2003; Yang et al, 2013), but protein stability plays 

an even more important role in protein accumulation (Apel et al, 2010; Birch-Machin et 

al, 2004; De Marchis et al, 2012; Elghabi et al, 2011).  

As already noticed with the constitutively expressed EDIII 1 and EDIII 3 proteins in 

tobacco, also in lettuce the EDIII 1-4 seems to be more abundant in the insoluble 

fraction than in the total soluble protein extract. A comparison of signal intensities on the 

Western Blots performed with total protein extracted from lettuce and ethanol induced 

tobacco, indicates that not only the EDIII 1-4 concentration is higher in lettuce, but also 

that less degradation is visible in lettuce than in tobacco.  

 

Several other groups have reported the expression of antigens in lettuce as a more 

digestible and non-toxic alternative to tobacco (Davoodi-Semiromi et al, 2010; Ruhlman 

et al, 2007; Ruhlman et al, 2010; Verma et al, 2010). The data obtained from our 

experiments will help to further develop a low-cost and thermo-stable vaccine candidate 

against Dengue fever with the possibility of oral delivery. 
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Recombinant tetravalent and monovalent EDIII antigens have been previously 

expressed in E.coli (Khanam et al, 2006; McDonald et al, 2009; Simmons et al, 1999; 

Srivastava et al, 2000; Tripathi et al, 2008; Tripathi et al, 2011; Zhao et al, 2014), in 

yeast (Arora et al, 2013; Batra et al, 2010; Cardoso et al, 2013; Etemad et al, 2008; 

Nguyen et al, 2013), in insect cells (Ivy et al, 2000) and also in plants (Kim et al, 2009; 

Martinez et al, 2010; Saejung et al, 2007). So far only the expression of a Dengue virus 

serotype-3 premembrane and envelope polyprotein has been reported in plastids 

(Kanagaraj et al, 2011) and the present study provides new insights and detailed 

information on chloroplast based expression of recombinant EDIII proteins. In addition, 

the utilization of three different expression strategies and two plant species confers 

comparative properties to this study that provide valuable information for further 

research in this field. 

 

Although no absolute quantification of the obtained recombinant protein expression 

levels is possible, comparison and rough estimations lead to the conclusion that EDIII 1 

and EDIII 3 are best expressed constitutively in tobacco, while the more problematic 

proteins EDIII 2, EDIII 4 and EDIII 1-4, still can be expressed to a reasonable level in 

tobacco via the ethanol inducible approach. Furthermore, lettuce appears to be an 

especially convenient expression system for EDIII 1-4, with a considerable yield, hardly 

any degradation and an edible background facilitating the processing of the 

pharmaceutical protein for oral administration. 
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5 Conclusion 

In the present study the tetravalent fusion protein (EDIII 1-4) and the corresponding 

monovalent forms (EDIII 1, -2, -3 and -4) have been expressed in tobacco and lettuce 

chloroplasts. The plastid expression system offers transgene confinement, high levels of 

protein expression, absence of gene silencing and other epigenetic mechanisms, the 

possibility of stacking transgenes into operons and highly precise, site-specific 

transgene integration (Bock, 2014). Tobacco is a non-food/non-feed crop, has a 

relatively good tractability to genetic manipulation and is an excellent biomass and seed 

producer (Svab & Maliga, 1993). Furthermore, lettuce has been chosen as an edible 

crop to facilitate the oral administration of the Dengue vaccine. 

 

The constitutive expression levels of EDIII 1 and EDIII 3 clearly show that chloroplasts 

are a suitable production platform for these proteins. Though, the failure to detect 

EDIII 2 and the phenotypic alterations observed in all the constitutively expressing 

tobacco plants indicate that even closely related proteins may behave differently and 

may require different expression conditions. However, the successful expression of 

EDIII 2 alongside with EDIII 1, EDIII 4 and EDIII 1-4 achieved with the ethanol inducible 

expression system, demonstrates that these hurdles can be overcome by choosing a 

suitable expression system. Furthermore, the successful expression of EDIII 1 and 

EDIII 1-4 in lettuce promotes and facilitates the development of orally administrable 

medicament formulations. 

 

Taken together, this work shows (i) for the first time that the Gateway® cloning system 

is adaptable for the construction of plastid transformation vectors allowing the rapid, 

easy and accurate cloning of various different transgenes in parallel reactions; (ii) that 

the expression of the Dengue virus envelope protein domain III is feasible in tobacco 

and lettuce chloroplasts. However since every recombinant protein is unique, this work 

also points out that it is crucial to apply the appropriate expression system for every 

individual recombinant protein in order to achieve satisfying expression levels. 

Expressing challenging proteins via the ethanol inducible expression system offers an 

effective possibility to overcome detrimental effects caused by the recombinant protein 

on plant growth and fertility. The production of the recombinant EDIII proteins that are 

aimed for pharmaceutical purposes in an edible plant, paves the way for a vaccine with 

oral administration.  
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6 Further Perspectives 

 Transcription level analysis 

In order to further investigate the EDIII 2 protein expression in homoplastomic tobacco 

plants, RNA expression and stability of EDIII 1-4 encoding genes will be investigated. 

The data gained from these experiments may help to reveal the cause of the absent 

EDIII 2 protein accumulation in the constitutive expressing transgenic plant lines. 

 Quantification of the expression level 

A task that still has to be completed is the quantification of the recombinant protein 

expression level. The production of a purified E.coli derived protein standard has been 

delayed, due to unexpected difficulties with the expression and purification of the 

recombinant EDIII proteins in E.coli. Strategies to overcome these hurdles have been 

developed and the work is in progress. 

 Immunological studies 

The next important step will be to prove the immunogenicity of the produced 

recombinant proteins and to show their ability to confer protection against the Dengue 

virus. Immunological studies have been designed to determine the immune system's 

response in mouse feeding experiments. This assay is ongoing and furthermore, Plaque 

reduction neutralization tests (PRNT) have been scheduled to evaluate the protecting 

capabilities of the EDIII proteins. The outcomes of these studies are expected to provide 

useful information for further Dengue vaccine development. 
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Abstract To analyze the suitability of Gateway�

vectors for transformation of chloroplasts, we con-

verted a standard plastid transformation vector into a

Gateway� destination vector containing the necessary

recombination sites attR1 and attR2. Insertion of the

green fluorescent protein (GFP) coding sequence with

associated T7g10 ribosome binding site into this

destination vector created the expression vector for

transformation of tobacco chloroplasts with the bio-

listic method. Correct integration of the transgene into

the plastid genome was verified by PCR and the

homoplasmic nature of the transformed plants was

confirmed by Southern Blot analysis. Expression of

the GFP reporter protein was monitored by confocal

laser scanning microscopy (CLSM) and quantification

by western blot analysis showed a GFP accumulation

level of 3 % total soluble protein (TSP). The presented

results clearly demonstrate that the Gateway� recom-

bination sites are compatible with all steps of plastid

transformation, from generation of transplastomic

plants to expression of GFP. This is the first report of

a plastid transformation vector made by the Gateway�

recombinant cloning technology, which proves the

suitability of this system for use in chloroplasts.

Keywords Plastid transformation � Gateway�

recombinant cloning technology � GFP

Introduction

Plastid derived recombinant protein expression offers

several advantages including high levels of transgene

expression, absence of epigenetic effects and trans-

gene containment via maternal inheritance (Bock

2007). Plastid transformation is a targeted integration

based on the mechanism of homologous recombina-

tion. Delivery of the plasmid DNA into the plant cell

and the chloroplast is mainly achieved by the biolistic

approach (Svab et al. 1990), but alternatively also PEG

transformation has been used (Golds et al. 1993).

Construction of transformation vectors must combine

a selection marker with the gene of interest flanked by

two insertion sequences for the left and the right

flank (INSL and INSR) which confer homologous
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recombination into the specified region of the plas-

tome (Maliga 2004).

Gateway� recombinant cloning technology is a

very accurate cloning method that takes advantage of

the site-specific recombination properties of bacterio-

phage lambda (Landy 1989) providing a rapid and

highly efficient way to transfer DNA fragments

between vectors carrying compatible recombination

sites. The entry clone is created by the BP Clonase�

enzyme mix mediated transfer of the attB sites flanked

gene of interest into the attP site bearing

pDONR221TM (Fig. 1a). Subsequently, the fragment

in the entry clone can be transferred to any destination

vector containing attR sites using the LR Clonase�

enzyme mix (Fig. 1b) (Karimi et al. 2002). The

presence of the counterselectable ccdB gene and the

chloramphenicol resistance gene in both the donor and

the destination vector provides a unique system of

negative selection that eliminates all unwanted by-

product plasmids after recombination resulting in

maximum cloning efficiency. Plants have been trans-

formed with Gateway� compatible vectors via several

methods including Agrobacterium-mediated delivery,

PEG transformation, particle bombardment and

electroporation, although only vectors for transient

expression or stable nuclear transformation have been

reported up to now (Dubin et al. 2008; Karimi et al.

2007).

Up to now no research group on chloroplast

transformation has ventured to replace the tedious

cloning procedure based on restriction enzymes by the

Gateway� system. Gateway� cloning introduces the

attB1 sequence at the 50 and attB2 at the 30 regions of

the expression cassette. The motifs of the 50 region

however are known to be very sensitive for sequence

alterations, as shown in studies on 50UTR (Eibl et al.

1999; Zou et al. 2003). Functioning of 50UTR with its

ribosomal binding site is very dependent on its proper

interaction with the flanking transcript in the coding

region downstream of the start codon (Kuroda and

Maliga 2001). Insertion of a novel sequence like attB1

between promoter and 50UTR includes the risk to

damage or even destroy these critical RNA interac-

tions required for protein expression.

The aim of this work was first to investigate if the

presence of a novel sequence like attB1 between the

PrrnPEP ? NEP promoter (Ye et al. 2001) and the 50

UTR T7g10 (Studier et al. 1990) has an impact on

Fig. 1 Scheme of Gateway� recombinant cloning technology.

a In the BP reaction (attB x attP ? attL ? attR) the Integrase,

mediates the insertion of the goi sequence into the donor vector

(pDONRTM) yielding the entry clone (pENTRTM). The frag-

ment containing the goi flanked by attB1 and attB2 can either be

produced by PCR or by linearizing a suitable plasmid (pGOI)

with a corresponding restriction enzyme. b In the LR reaction

(attL x attR ? attB ? attP) the goi is then integrated into the

destination vector (pDESTTM) mediated by Integrase and

Excisionase yielding the final Expression clone (pEXPTM-

GOI) which is used for transformation and protein expression

(Hartley et al. 2000). The att recombination sites in the donor

and the destination vectors flank a ccdB gene (control of cell

death) and a CmR (chloramphenicol-resistance) gene (Bernard

1995), thus this vectors can only be propagated in ccdB

survivalTM E. coli that contain a gyrA462 mutation providing

resistance to the lethal effects of ccdB. Am: ampicillin; AmR:

ampicillin resistance gene; Km: kanamycine; KmR: kanamycin

resistance gene; attB1/B2/P1/P2/L1/L2/R1/R2: Gateway�

recombination sites; MCS: multiple cloning site
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gene of interest (goi) expression and second to

demonstrate the feasibility of the Gateway� cloning

system for plastid transformation.

Results and discussion

Construction of plastid transformation vector

In order to construct the plastid transformation vector

compatible with the Gateway� recombinant cloning

system, the Gateway� reading frame cassette A (RfA)

consisting of the ccdB gene and the chloramphenicol

resistance gene flanked by attR1 and attR2 was cloned

into a standard plastid transformation vector. The

resulting destination vector pDEST-PN-T (Fig. 2a)

contains the aadA gene cassette, the constitutive

PrrnPEP ? NEP promoter for transgene expression

and the RfA flanked by tobacco specific INSR and

INSL. The PrrnPEP ? NEP promoter consists of the

nuclear encoded polymerase (Prrn-62NEP) promoter

(Hajdukiewicz et al. 1997) fused downstream to the

plastid-encoded polymerase (PEP) promoter Prrn16

(Svab and Maliga 1993). BP reaction of the linearized

vector containing the attB site flanked green fluores-

cent protein (GFP) and the attP site bearing

pDONR221TM resulted in pENTR-GFP (Fig. 2b).

LR reaction of pENTR-GFP and pDEST-PN-T

yielded the final plastid transformation vector pEXP-

PN-GFP-T (Fig. 2c).

Generation of transplastomic plants

To obtain GFP expressing plants, leaves of Nicotiana

tabacum ‘Petite Havana’ were bombarded with

Fig. 2 Schematic representation of vector construction.

a pDEST-PN-T (8,629 bp) is constructed by blunt end ligation

of the Gateway� RfA cassette (attR1-Cm(R)-ccdB-attR2) into

the EcoRV site of a plastid transformation vector. b pENTR-

GFP (3,347 bp) contains the GFP sequence and the 50UTR of

bacteriophage T7 gene 10 (50T7g10) flanked by attL1 and attL2.

c pEXP-PN-GFP-T (7,777 bp) is created by the LR reaction of

pENTR-GFP and pDEST-PN-T and contains GFP under control

of the PrrnPEP ? NEP promoter (PPN), the aadA gene under

control of the psbA promoter (PpsbA) and 50UTR (50psbA) and

the 30UTR of tobacco rbcL (30T) and chlamydomonas rbcL

(30C), respectively. d Wild type tobacco plastid genome (CP).

e Tobacco plastid genome with integrated transgene expression

cassette. Correct insertion is verified with primers p1/p2 at INSR

and p3/p4 at INSL and the corresponding PCR products are

shown as dotted lines; the 773 bp Southern Blot probe located in

INSL is shown as an arrow and the expected fragments are

shown as arrows marked with their molecular weight. INSR:

right insertion site (containing trnR); INSL: left insertion site

(containing trnN); Amp(R): ampicillin resistance gene; Kan(R):

kanamycin resistance gene; Cm(R): chloramphenicol resistance

gene; ccdB: control of cell death gene; aadA: spectinomycin

resistance gene; attB1/B2/R1/R2/L1/L2: Gateway� recombina-

tion sites
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0.6 lm gold-microcarriers coated with plasmid DNA

using a Bio-Rad Biolistic PDS-1000/He gun (Daniell

1997; Svab and Maliga 1993) and transgenic shoots

were regenerated on RMOP medium containing

spectinomycin (Verma et al. 2008). The site specific

integration of the transgene into the wild type

chloroplast genome (Fig. 2d) due to homologous

recombination generated transplastomic plants

(Fig. 2e). DNA was extracted from in vitro material

of regenerated plant lines by CTAB procedure

(Murray and Thompson 1980) and correct integration

of the transgenic sequence into the plastid genome was

shown by a PCR product of 2,230 bp with p1/p2 and

2,552 bp with p3/p4 (supplementary material). Three

independently transformed and regenerated plant lines

(wt-PN-GFP 1, 2 and 3) were further characterized.

Southern Blot analysis verified the homoplastomic

state by the presence of only the 5,496 bp fragment in

GFP transformed plants, compared to the 2,656 bp

fragment in wild type (Fig. 3a).

Fig. 3 Characterization of transplastomic plants and detection

of GFP expression. a Southern Blot analysis of three transplas-

tomic plant lines (lane 1, 2 and 3) was performed using a 773 bp

DIG labeled probe that binds inside the trnN region (INSL) of

the plastid genome after three consecutive rounds of selection

and subculture on spectinomycin containing RMOP medium.

Plant DNA was cut with ApaI, separated by electrophoresis and

transferred onto a positively charged nylon membrane by alkali-

transfer. b For Immunoblot analysis soluble proteins were

extracted, separated by SDS-PAGE, transferred onto nitrocel-

lulose membrane and western blot analysis with a rabbit-anti-

GFP primary antibody (ABIN398856, antibodies-online.com)

and an AP conjugated anti-rabbit-IgG secondary antibody

(S3731, Promega) was performed. The extract from the

transplastomic plant was loaded in several dilutions and the

GFP standard series was used as a reference. Protein bands were

detected by colorimetric reaction with SigmafastTM BCIP�/

NBT (Sigma). c GFP fluorescence in the plastids of transplas-

tomic plants was observed on a SP5 II confocal system (Leica

Microsystems, Heidelberg, Germany) equipped with a HCX PL

APO CS 63.0 9 1.20 water objective. The 405-nm line of an

argon ion laser was used for excitation. Images were taken at the

emission bandwidth of 500–540 nm for GFP and 688–757 nm

for autofluorescence of the chloroplasts and processed using the

Leica LAS AF software
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Expression and quantification of GFP

For the detection of GFP expression level, protein was

extracted from leaves of transplastomic and wild type

plants (Verma et al. 2008) and total soluble protein

(TSP) was quantified by Bradford assay (Sigma).

Immunoblot analysis performed with the soluble

fraction of protein extract and an anti-GFP primary

antibody showed the expected 28 kDa band (Fig. 3b),

thus proving plastid derived recombinant GFP expres-

sion. Unspecific binding of the antibody to the crude

plant extract results in the band migrating at 33 kDa

which is present also in the wild-type sample. The

quantification of GFP expression by comparison of

band intensity to the GFP standard on the western blot

determined an expression level of 3 % TSP. Visual

detection of GFP expression in leaves was monitored

using confocal laser scanning microscopy and co-

localization of the GFP signal and the plastid

autofluorescence is well observable in leaves of

homoplastomic plants (Fig. 3c).

Conclusion

This study presents a novel destination vector that can

be converted into a plastid transformation vector in one

single step using Gateway� recombinant cloning

technology. GFP expression in tobacco chloroplasts

has been achieved by chloroplast transformation with a

Gateway� compatible transformation vector contain-

ing the reporter gene gfp under control of the consti-

tutive PrrnPEP ? NEP promoter. The homoplastomic

state of the regenerated plants was proven by Southern

Blot hybridization and western analysis showed a GFP

accumulation of 3 % TSP. In this study no negative

impact of the Gateway� cloning procedure was

detectable during the whole process of plastid trans-

formation and regeneration of transplastomic plants.

The presence of the attB1 Gateway� recombination

site between the promoter and the 50UTR did not affect

the recombinant protein expression in the chloroplast

genome. The obtained protein accumulation reported

in this work represents an increase compared to the

expression levels of 1, 5 and 2 %TSP previously

achieved using the same regulatory elements and

integration sites trnN and trnR in the plastid genome

(Waheed et al. 2011a, b). We clearly demonstrate that

this system is adaptable for the construction of plastid

transformation vectors allowing the rapid, easy and

accurate cloning of various different transgenes in

parallel reactions. Moreover, the simultaneous assem-

bly of multiple DNA fragments into one single

destination vector is allowed by the MultiSite Gate-

way� Technology. This will further facilitate con-

structing plastid transformation vectors and thereby

considerably reduce the timeframe required for

recombinant protein expression in chloroplasts.
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Lössl E, Kaul H-P, Lössl AG (2011b) Plastid expression of

a double-pentameric vaccine candidate containing human

papillomavirus-16 L1 antigen fused with LTB as adjuvant:

transplastomic plants show pleiotropic phenotypes. Plant

Biotechnol J 9:651–660

Ye GN, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW,

Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyr-

uvylshikimate-3-phosphate synthase genes provide high

level glyphosate tolerance in tobacco. Plant J 25:261–270

Zou Z, Eibl C, Koop HU (2003) The stem-loop region of the

tobacco psbA 50UTR is an important determinant of

mRNA stability and translation efficiency. Mol Genet

Genomics 269:340–349

1278 Transgenic Res (2013) 22:1273–1278

123

100


	page 35.pdf
	Gottschamel_PhD thesis final.pdf
	Gottschamel_PhD thesis final
	Gottschamel_PhD thesis final
	Acknowledgments final.pdf
	Gottschamel_PhD thesis final.pdf
	Gottschamel_PhD thesis final
	Teil 1 really final.pdf
	Teil 1 final.pdf
	Teil 1.pdf
	prelim.pdf
	Rahmen 2.pdf
	Deckblatt.pdf
	Thesis Rahmen.pdf
	final thesis.pdf
	final thesis.pdf
	final thesis
	Contents







	Abstract final.pdf

	thesis8.pdf
	thesis7.pdf
	thesis 6.pdf
	thesis 5.pdf
	page 31.pdf
	thesis 4.pdf
	page 13.pdf


	page 53.pdf


	CV1.pdf

	Teil 3.pdf
	Rahmen 2.pdf
	Thesis Rahmen.pdf
	final thesis.pdf
	final thesis.pdf
	final thesis
	Gottschamel 2013 for thesis
	A novel chloroplast transformation vector compatible with the Gatewayreg recombination cloning technology
	Abstract
	Introduction
	Results and discussion
	Construction of plastid transformation vector
	Generation of transplastomic plants
	Expression and quantification of GFP

	Conclusion
	Acknowledgments
	References









	page 63.pdf


	page 48.pdf

	page 59.pdf




