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Abstract  

Coupling of the available high-density single nucleotide polymorphisms (SNP) chips with 

efficient genotyping improves the genetic progress that can be achieved by genomic selection 

compared to the traditional selection method. However, genotyping of all selection candidates 

with high-density SNP may not be cost effective. Small subset of SNP selected from the high-

density SNP chip can be used for prediction of direct genomic breeding value (DGV) for each 

trait under selection. Here, we attempt to compare the accuracy of DGV using small subset of 

SNP and the full set of SNP. Subsets comprising different number of SNP were selected from 

Illumina Bovine 50k Beadchip. SNP were selected based on their absolute effect size and also 

randomly from the full set of SNP. De-regressed breeding values for fat percentage, protein 

yield and calving ease for 5556 dual purpose Fleckvieh bulls were used as phenotypic records. 

We found that BayesB slightly outperformed SNP-BLUP for all traits. SNP selected based on 

their absolute effect size gave an accuray within the range of 20 % to 64 % and from 20 % to 

75 %  with SNP-BLUP and BayesB approach, respectively. Whereas an accuracy of 35 % to 

71 % (SNP-BLUP) and 35% to 75% (BayesB) were obtained with the randomly selected 

subsets. GLMSELECT selection procedure resulted in lowest accuray using 100 of the most 

important SNP regardless of the methods used for prediction of DGV. 
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Introduction 

The use of molecular markers for the prediction of genetic merit provides faster genetic gain 

compared to traditional selection schemes only (Meuwissen et al. 2001). In the traditional 

selection strategy, pedigree information and phenotypic records are the basic information 

sources for the prediction of future genotypic merit of livestock. With the advent of high 

throughput genotyping technologies to genotype 1000s of SNP, it is now possible to include 

information about the variation of DNA sequences between individuals in the estimation of 

genetic merits, which makes the prediction of breeding values more accurate (Vazquez et al. 

2010). The principle of genomic selection was first proposed by Meuwissen et al. (2001), in 

which markers that are in linkage disequilibrium with the actual gene that affect the trait are 

used to estimate DGV. 

Genomic selection is based on the estimation of DGV. These are estimated as the sum of SNP 

effects of single markers or haplotypes within a chromosomal segment (Solberg et al. 2008). 

These single genetic markers or haplotypes are assumed to explain most of the genetic 

variance contributed by the quantitative trait loci (QTL) (Hayes et al. 2009). Unavailability of 

dense marker arrays and the higher cost associated with the genotyping these markers have 

been the major obstacles for the implementation of genomic selection (Meuwissen et al. 

2001). Currently, the advancement in the field of molecular genetics’ technology enables the 

wide range application of high density marker chips for selection of livestock species based 

on their genomic merit. 

For the implementation of genomic selection reference populations that are phenotyped and 

genotyped for large sets of markers should be available. The reference populations are used to 

derive the prediction equation for the estimation of DGV (Moser et al. 2010). The prediction 



equation is essentially a set of estimated marker-effects that can be used to predict DGV for 

non-phenotyped individuals based on their genotype. The validation population having both, 

genotypic and phenotypic information is then used to test the prediction equation for its 

accuracy. In the following, DGV can be estimated for the selection candidates that have only 

genotypic information for a given set of markers (Goddard et al., 2007). It was found that 

accuracy of breeding value that was estimated using only marker data on a simulated data can 

reach up to 85 % (Meuwissen et al. 2001). This will reduce the cost for performance testing or 

progeny testing of the selection candidates for the traits of interest.  

 Illumina Inc. currently launched available the BovineHD BeadChip (Illumina. Inc. 2010) 

with more than 777,000 SNP in addition to the Bovine3K (Illumina. Inc. 2010) and 50K 

(Illumina. Inc. 2011) BeadChips. Even though the advancement in molecular technology 

makes it possible to use these high-density SNP markers in genomic selection, there will be a 

higher cost for genotyping all valuable animals in the population. Therefore, using low 

density markers for the prediction of DGV becomes an alternative strategy to lower the cost 

of genotyping a large population.  

Different subsets of SNP have been used for estimation of DGV. Depending on the methods 

used for estimation of DGV, it is possible to achieve a reliable accuracy with small subsets of 

SNP. Accuracy above 60% was obtained for fat % when using 2000 of SNP with highest 

effect (Hayes et al., 2010). Moser et al., (2010) used subsets of higher ranking SNP within the 

range of 100 to 20,000 SNP and lower accuracy was found with small set of SNP. But when 

increasing the size of SNP from 1000 – 40000, the increase in the accuracy of DGV was 

insignificant. 

This suggests that, selection of the most important markers from the high-density SNP 

markers is required in order to obtain a reliable accuracy as compared to high-density SNP 

markers.  



The objective of this study was to investigate the accuracy of DGV prediction with subsets of 

SNP selected based on random selection, their absolute effect size and choice in preliminary 

runs of LASSO (least absolute shrinkage and selection operator) variable selection for their 

prediction ability of DGV using BayesB and SNP-BLUP in Fleckvieh (dual purpose 

Simmental) cattle. 

Material and methods 

Material 

Phenotypic and genotypic data was available for 5556 Fleckvieh (dual purpose Simmental) 

bulls. Phenotypic and genotypic information were provided by Zuchtdata EDV-

Dienstleistungen GmbH, being responsible for the genetic evaluation in Austrian cattle. The 

bulls were genotyped for the Illumina Bovine 50K Beadchip. After passing quality check 

procedures such as Minor Allele Frequency (MAF) > 0.5 %, SNP call rate also should be > 

75%, GC-score > 0.2, pedigree checking and replacing missing genotypes by average allele 

frequencies and only  41008 SNP were included for the estimation of direct DGV. De-

regressed breeding values for fat percentage, protein yield and male calving ease were used as 

response variables for estimation of DGV in this study. De-regression of estimated breeding 

values was carried out according to Garrick et al. (2009) in order to account for the difference 

in the number of progeny record that exists between bulls. Bulls were split into reference and 

validation population according to birth year. Bulls born before 2003 were assigned to form 

the reference population whereas bulls born between 2003 and 2005 were in the validation 

population. The distribution of bulls across birth year is show in Figure 1. The number of 

bulls in the reference and validation population, respectively, is given in Table 4.  

 

Method  



SNP selection 

Subsets of SNP were selected from the full set of SNP applying different SNP selections 

strategies. SNP were selected randomly and based on the absolute BayesB effect size. In 

addition 100 SNP were selected using the LASSO variable selection procedure implemented 

in the SAS 9.2 procedure GLMSELECT (SAS 2009) Institute Inc. (2009) SAS/STAT® 

User’s Guide Version 9.2). The number of SNP selected within each selection strategy is 

given in Table 2. All subsets selected randomly included the SNP included on the Illumina 

Bovine 3K Bead Chip. For selecting SNP based on their absolute BayesB effect size, SNP 

effects of the full set of SNP were first estimated using BayesB. The SNP were ranked based 

on their effect size for each trait trait. Subsets included 100, 300, 500, 1000, and 3000 SNP 

with highest BayesB SNP effects (Table 2)  

Only 100 of SNPs were selected based on the LASSO variable selection procedure 

(Tibshirani, 1996). This method of model selection adds and deletes parameters based on a 

version of ordinary least square where the sum of the absolute regression coefficient is 

constrained.  

 

 

Prediction of DGV 

SNP-BLUP (Meuwissen et al. 2001) and BayesB (Meuwissen 2009) were applied for the 

estimation of SNP effects and the prediction of DGV. In both approaches, the effect of SNP 

were estimated with the following model: 

Y = µ1n + ∑ Xi ĝ i + e 



Where y is the data vector for the traits being analyzed; µ is the overall mean; 1n is a vector of 

n ones (n = number of records); gi is the effect of the ith SNP and Xi is the design matrix that 

relates the genotype of SNP to all individuals.  

BayesB assumes the variance of SNP effect δ2
gi, to be variable across the genome and comes 

from a prior distribution (Meuwissen et al. 2001). Prior distribution for the variance of SNP 

effects has an inverted chi-square distribution with a scaled parameter S and number of 

degrees of freedom v. In accordance to many studies (e.g. Hayes el al. 2010), the scaled 

parameter S = 4.012 was assumed. For the variance associated with the effect of chromosome 

segment different prior probabilities of 0.5, 0.3, 0.1, 0.01 and 0.001 were considered. A Gibbs 

chain length of 30,000 cycles was run where the first 10,000 cycles were discarded as burn in. 

In SNP-BLUP the variance associated with SNP effects is assumed to be the same across the 

chromosom segement. 

Inorder to cross check the prediction ability of SNP-BLUP and BayesB, 100 SNP with 

highest effect on fat percentage resulted from SNP-BLUP was analyzed with BayesB for 

estimation of DGV. Vice versa, 100 SNP with highest effect on fat percentage resulted from 

BayesB approach were analyzed with SNP-BLUP approach for estimation of DGV. 

Given the estimates for SNP effect and variance, DGV were calculated as 

DGV = X ĝ 

Where X is the design matrix that relates the genotype of SNP to all individuals, and ĝ is the 

estimated SNP effect. 

The correlation between the estimated DGV and de-regressed breeding value is calculated as 

a measure of accuracy of genomic selection with SAS9.2 software package (SAS 2009) 

Institute Inc. (2009) SAS/STAT® User’s Guide Version 9.2). 



 

 

 

 

 

 

 

 



Results 

SNP selection and estimation of SNP effects 

Different sizes of SNP subsets were selected based on their absolute effect, importance 

(LASSO) and randomly from the full set of SNP (Table 2). Within the randomly selected 

subsets of SNP a large overlap was observed due to the fact that 3K Chip SNP are included in 

all of the subsets (Table 3). SNP selected based on their absolute effect size were located on 

different chromosomes. Higher ranking SNP for fat percentage were located on chromosome 

14. The top five SNP with highest effect on protein yield and calving ease were located on 

chromosomes 29, 15, 19, 18, and 16 and on chromosomes 8, 2, 22, 13, and 4, respectively 

(result not shown). 

Accuracy of DGV using randomly selected SNP  

The accuracy of genomic selection using different subsets of randomly selected SNP applying 

BayesB and SNP-BLUP was estimated for fat percentage, protein yield and calving ease for 

bulls in the validation set. A BayesB result using different subsets of SNP and at prior 

probabilities of 0.01 and 0.3 for all traits is shown in Table 5.  

The accuracy of DGV when using subsets of randomly selected SNP was compared to the 

accuracy achieved using the full set of SNP markers. Regardless of the methods used for the 

estimation of SNP effects, the full set of markers including 41008 SNP gave a slightly higher 

accuracy compared to all other subsets. With the SNP-BLUP approach, using the full set of 

markers, an accuracy of 0.63 was found for fat percentage, 0.52 protein yield 0.56 and calving 

ease.  

 



With BayesB approach, an accuracy of 0.70, 0.52, and 0.55 was obtained for fat percentage, 

protein yield and calving ease respectively at a prior probability of 0.3. 

When applying the BayesB approach, we separately observed the change in the accuracy of 

DGV at a prior probability of 0.01 for all of the traits analyzed. A negligible increase in the 

accuracy of DGV was obtained with increasing the SNP size from 3000 to 41008. For fat 

percentage, an accuracy of 0.58 was found when using 3000 SNP and a value of 0.75 with the 

full set of SNP at the prior probability of 0.01. For protein yield and calving ease, the 

accuracy of DGV ranged  from 0.35 to 0.52 and 0.42 to 0.60, respectively, at the above 

mentioned prior probability.  

Within the different prior probabilities, the accuracy of genomic selection tends to show a 

slight decrease when increasing the probabilites from 0.001 to 0.5 the accuracy was decreased 

from 0.58 to 0.55 for fat percentage with 3K Chip. With the full set of SNP, the accuracy of 

genomic selection decreased from 0.75 to 0.71 for the same triat. Whereas for protein yield 

and calving ease, no siginificant decrease was observed across the different prior 

probabilities. And accuracy of DGV at a prior probability of 0.01 is given in Figure 2 

separately for all the traits under study. 

In gengeral, Protein yield was found to have the lowest accuracy across the different selected 

subsets selected randomly (Figure 2)  and based on their absolute effect size (Table 5) as 

compared to fat percentage and calving ease .  

 

 

 

 



Accuracy of DGV using SNP selected based on absolute effect size  

The number of SNP selected according to absolute effect size within each subset is given in 

Table 2. The accuracy of DGV showed slightly wider range for subsets of SNP selected based 

on their absolute values compared to those randomly selected. Using SNP-BLUP for fat 

percentage the accuracy was 0.57 when using 100 SNP with the highest absolute effect. 

Accuracies of 0.20 and 0.41 were found for calving ease and protein yield using SNP-BLUP 

with 100 of most effective SNP (Figure 4).  

Using BayesB, the accuracy of DGV showed no difference for different prior probabilities 

cosidered at lower densities of SNP. For the full set of SNP for fat percentage, the accuracy of 

DGV decreases from 0.75 to 0.71 with the increase in the prior probability from 0.001 to 0.5. 

Fat percentage is found to have the highest accuracy of DGV compared to protein yield and 

calving ease for all subsets. Generally, the change in the accuracy of DGV with the increase 

in SNP size ranges from 0.61 to 0.75 for fat percentage , from  0.20 to 0.53  for protein yield 

and from 0.37 to 0.60 for calving ease, respectively, across the different prior probabilities 

considered. Since no significant difference was found in the accuracy of DGV across the 

different prior probabilities considered, accuracy only at a prior probability of 0.001 is given 

in Table 5. 

 

When selecting 100 SNP based on highest effect for fat percentage from the SNP-BLUP, gave 

accuracy of 0.61 with BayesB approach and 0.55 with SNP-BLUP approach. Whereas with 

100 SNP that have highest effect on fat percentage resulting from BayesB approach, the same 

accuracy of genomic selection was obtained irrespective of the methods used for prediction of 

DGV (result not shown). 



Finally, with LASSO procedure was applied to select 100 of the most important SNP for the 

trait fat percentage only. A maximum value of 0.28 was obtained for the accuracy of genomic 

selection across the different prior probabilities considered with the BayesB approach. With 

the SNP-BLUP approach, an accuracy of 0.29 was found with 100 of most important SNP 

(result not shown). It  was found that only 16 SNP were found in common between those 

selected based on BayesB approach and LASSO. Whereas between SNP-BLUP and LASSO, 

there were only 21 SNP overlap. Between BayesB and SNP-BLUP selected SNP subsets, 30 

SNP were found in common. 

Discussion  

According to Hayes et al. (2010), the density of markers, the number of loci affecting the trait 

and the distribution of their effect are some of the factors that affect the accuracy of DGV. 

Though the main objective of our study was to investigate the prediction ability of different 

subsets of SNP, the effect of all the above mentioned factors was also reflected. 

Even though the traits analyzed and the methods used differed between studies, the results 

obtained in the current study are in agreement with previous reports regarding SNP size 

reduction and its consequence on the accuracy of genomic selection (Weigel et al. 2009, 

Moser et al.2010, Vazqez et al.2010).  

Accuracy of DGV between subsets of SNP 

The difference in the accuracy of DGV between subsets of SNP varies between randomly 

selected subsets and SNP that were selected based on their absolute effect size. This might be 

due to the fact that different sizes of SNP were selected based on different methods. Higher 

accuracy of genomic prediction was obtained with larger sets of SNP. For fat percentage, 100 

of higher ranking SNP were sufficient enough to achieve an accuracy of 0.61. Fewer loci 

affect the trait fat percentage and thus fewer markers are required to explain much of the total 



genetic variance that is required to achieve the maximum accuracy. With protein yield and 

calving ease, slightly lower values were obtained at lower densities (Table 5). The accuracy 

obtained with 1000 informative SNP for fat percentage was in correspondence with 20,000 

SNP for fat percentage. This indicates that few informative SNP that are closer to the gene 

DGAT1 gene are responsible for such a variation in the accuracy of DGV. 10000-20000 SNP 

for protein yield and 5000-10000 SNP for calving ease that are selected randomly.  

As presented in Table 3, an overlap of SNP between randomly selected SNP subsets increases 

with the increasing of SNP size. This might be one of the reasons for the accuracy of genomic 

selection to be much more consistent with the increasing size of randomly selected SNP 

subsets. Overlapping of SNP causes most of SNP to be commonly shared between different 

subsets that are used for prediction of DGV across the different subsets. But it can also be due 

to the increase in information as a result of increased size of SNP set.  

Difference between SNP-BLUP and BayesB approach in their prediction of DGV 

Between the two approaches used for prediction of DGV, the accuracy only slightly differed. 

In general, the BayesB approach slightly outperformed the SNP-BLUP approach. This result 

is in agreement to what is found by many studies (Meuwissen et al. 2001, Verbyla et al. 2010, 

Hayes et al. 2010). With different subsets of SNP and SNP selection procedures, different 

results were obtained using the two approaches. Regarding SNP-BLUP, lower values for the 

accuracy of DGV might have resulted from the assumption of normal distribution for the 

variance associated with the SNP effect and not including prior knowledge about the effect of 

markers.  

Using BayesB, higher accuracies were obtained for all different subsets compared to the SNP-

BLUP approach. For fat percentage, the difference between the two approaches across the 

different subsets selected randomly and based on their absolute effect size is very negligible. 



But this difference between the two approaches becomes very insignificant and both methods 

achieve similar accuracies at higher densities for all traits. Daetwyler et al. (2010) also 

showed that at higher density of SNP markers, the difference between the two methods 

become smaller and eventually the same accuray will be obtained.  

 

With regard to SNP selection method, instead of selecting SNP based on their absolute effect 

size, selecting based on the genetic variance the markers explain would have increased the 

accuracy of DGV. Increasing the number of genotyped individuals would also be another 

option to increase the accuracy of DGV (Moser et al. 2010). 

 



Conclusion  

 

In genomic selection the use of small density SNP panels becomes an alternative strategy 

to reduce the cost of genotyping. I this study, smaller sets of SNP that are selected either 

randomly or based on their absolute effect size give a lower accuracy compared to the full 

SNP panel of the 50K Bovine BeadChip but differences are becoming marginal for 

relatively large subsets. The commercially available chip with ~3000 markers is not a 

viable option per se but imputation of 50K chip from genotypes on the 3K chip could be 

an alternative strategy for wider application of genomic selection in all commercial farms 

(Weigel et al.2010). SNP subsets between 20,000 and 30,000 provide an accuracy with is 

very close to that achieved with full set of 41,008 SNP. This indicates that increasing the 

SNP subsets from 50K to 777K might not substantially increase the accuracy of genomic 

selection if not coupled with advanced statistical methods that are not available yet. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Number of bulls (N), means and standard deviation (std.dev) for fat %, protein 

yield and calving ease.  

  Validation data set  Reference  data set 

Traits  N  mean  Std.dev  N  mean  Std.dev 

Fat %  1549  ‐0.03  0.22  3731  0.20  0.24 

Protein yield  1549  9.73  13.87  3731  ‐5.05  16.47 

Calving ease  1800  101.17  12.40  3756  99.56  11.58 

Table 2. Number of SNPs selected randomly, based on their absolute effect and 

importance (GLMSELECT) 

Method of selection   No. of SNPs 

Random selection  3000, 5000, 10,000, 20,000 and 30,000 

Based on their absolute effect size  100, 300, 500, 1000, and 3000 

GLMSELECT  100 (for fat % only) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Number of SNPs that overlap between different subsets of randomly 

selected SNPs 

SNP subsets  size of overlapping SNPs  

10,000  3305 

20,000  3816 

 

5000 

30,000  4404 

    

20,000  6115  

10,000  30,000  7931 

     

20,000  30,000  15,106 

Table 4. Mean, standard deviation(std. dev), minimum(min) and maximum(max) of reliabilities of 

Estimated breeding values (EBVs) 

  Reference data set  Validation data set 

Trait  N  mean  Std.dev  Min  max  N  mean  Std.dev  Min  max 

Fat percent  3731  93.69  0.52  74.00  99.00  1549  87.97  5.12  70.00  96.00 

Protein yield  3731  93.69  3.52  74.00  99.00  1549  87.97  5.12  70.00  96.00 

Calving ease  3756  92.02  4.69  34.00  99.00  1800  89.21  3.17  70.00  99.00 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Correlation between de‐regressed EBV and DGVs for the validation populations based on 

Bayesian approaches derived  from different SNP subsets selected  randomly  from  the  full set of 

SNPs for fat percentage at a prior probability of 0.001. 0.01, 0.1, 0.3, and 0.5 

  Fat percentage  Protein yield  Calving ease 

SNP size  0.01  0.3 0.01 0.3 0.01  0.3

3000  0.58  0.56 0.35 0.35 0.42  0.41

5000  0.60  0.58 0.40 0.40 0.50  0.47

10000  0.65  0.64 0.45 0.44 0.54  0.51

20000  0.72  0.70 0.50 0.50 0.57  0.54

30000  0.74  0.70 0.51 0.51 0.60  0.60

41008  0.75  0.70 0.52 0.52 0.59  0.56

Table 5. Correlation between de‐regressed EBV and DGVs for the 

validation  populations  according  to  BayesB  approaches  derived 

from different SNP subsets selected based on their absolute effect 

size for fat %, protein yield and calving ease at a prior probability 

of 0.001. 

SNP size  Fat %  Protien yield  Calving ease 

100 0.61 0.32 0.40

300 0.68 0.37 0.43

500 0.68 0.43 0.45

1000 0.71 0.48 0.50

3000 0.72 0.53 0.60

41008 0.75 0.20 0.37
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Figure 1. Distribution of all 5556 bulls across the birth year in the reference and 

validation data set. 

 

Figure 2. Accuracy of genomic breeding value for fat percentage, protein yield 

and calving ease derived from BayesB approach at a prior probability of 0.01 for 

fat percentage, protein yield and calving ease. 
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Figure  3.  Accuracy  of  genomic  breeding  value  for  fat  percentage,  protein  yield  and 

calving  ease  derived  from  the  SNP‐BLUP  approach when  SNPs  are  selected  randomly 

from the full set. 

 

Figure  4.  Accuracy  of  genomic  breeding  value  for  fat  percentage,  protein  yield  and 

calving ease derived  from  the SNP‐BLUP approach when SNPs selected based on  their 

absolute effect size. 
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