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Abstract  

The present dissertation deals with a multi-step process for the synthesis of carbohydrates 

from CO2 and H2O. As a preliminary step water electrolysis is applied in order to generate 

oxygen and hydrogen. Subsequently hydrogenation of CO2 to methanol is carried out. Once 

having methanol, conversion to formaldehyde, the key component, is conducted using 

conventional catalysis systems. By carrying out a controlled aldol-condensation using 

formaldehyde, metabolizable carbohydrates can be generated. Isolating the later one and 

providing oxygen from the preliminary electrolysis, the metabolizable hexoses can be 

consumed in cell respiration. Recycling and reusing of the remaining reaction components 

(e.g. toxic formaldehyde) plays a decisive role in such a closed cycle. Thus, the entire 

system could be considered e.g. as an artificial photosynthesis process.  

 

With regard to the controlled aldol-condensation C3-carbohydrates e.g. could be suggested 

as intermediate products for the manufacture of synthetic hexoses. Based on this, in a simple 

bottom-up approach, formaldehyde can be converted with glycolaldehyde in a controlled 

one-step aldol-condensation to produce C3-carbohydrates (DL-glyceraldehyde and 

dihydroxyacetone). This reaction represents a so-called formose reaction, the aldol-

condensation of formaldehyde and carbohydrate-fragments, in its initial phase yielding 

racemic carbohydrates. Subsequently, in an anion-exchange resin catalyzed aldol-

condensation, C3-carbohydrates are condensed to e.g. DL-fructose and DL-sorbose with a 

considerable yield enabling partial diastereoselective control. This cascade provides a 

system which can be used for the synthesis of racemic hexoses from CO2 and H2O. 

 

On the basis of this process chain many extensive research and problem areas can be 

identified. Some of them were investigated in the present work: a) examining the formose 

reaction with regard to delivering appreciable product distributions; this includes the 

development of a simple and versatile method for the analysis of complex carbohydrate 

mixtures, b)  examining separation technologies for the isolation of desired carbohydrates, c) 

deducing a possible pathway for the entire process and d) discussing the individual research 

areas with regard to the identification of principal problems.   

 

The analysis of complex carbohydrate mixtures represents a major challenge, which needs 

the combination of LC, CE and GC. For LC-UV analysis per-O-benzoylation of alditols 

(PBAs) and reversed phase chromatography was introduced. Validation was carried out 

based on LC-ESI-MS (liquid chromatography-electrospray ionization-mass spectrometry)-

data.  
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It is recommended to operate the formose reaction e.g. at moderate temperatures (room 

temperature) using homogeneous catalysis, which delivers appreciable product distributions.  

 

The separation of C3-carbohydrates after aldol-condensation of formaldehyde and 

glycolaldehyde was examined using the membrane processes nanofiltration (NF) and 

reverse osmosis (RO). Two fractions were obtained, namely a C3-enriched and a fraction 

containing mainly formaldehyde, glycolaldehyde, methanol and formic acid. The later fraction 

has to be used for a subsequently repeated aldol-condensation. In a first test series of 

experiments, approximately 80% of formaldehyde, methanol and formic acid were removed 

in case of a RO-process. About 40% of C3-carbohydrates were found in the permeate. Also 

NF may fulfill this separation task. 

 

The assessment of different problem areas did not uncover principal problems with regard to 

deducing an artificial photosynthesis process, at least theoretically. 

 

Keywords: artificial photosynthesis, CO2-reduction, DL-glyceraldehyde and 

dihydroxyacetone, synthetic hexoses, nanofiltration, reverse osmosis, aldol-condensation; 

per-O-benzoylation of alditols  
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Abstract 

Die vorliegende Dissertation beschäftigt sich mit einem Mehrschritt-Prozess zur Synthese 

von Kohlenhydraten aus CO2 und H2O. In einem vorgelagerten Schritt wird die Elektrolyse 

von  Wasser eingesetzt, wobei Sauerstoff und Wasserstoff gewonnen werden. Anschließend 

wird CO2 zu Methanol hydriert und weiter zu Formaldehyd umgesetzt, wobei konventionelle 

Katalysesysteme verwendet werden. Auf der Basis von Formaldehyd wird nunmehr eine 

kontrollierte Aldolkondensation vorgeschlagen um metabolisierbare Kohlenhydrate zu 

generieren. Isoliert man letztere und stellt Sauerstoff durch die vorgelagerte Elektrolyse zur 

Verfügung, so können die metabolisierbaren Kohlenhydrate durch Zellatmung verbraucht 

werden. Dem Recycling und der Wiederverwendung von den verbleibenden 

Reaktionskomponenten (z.B. giftiges Formaldehyd) kommt in solch einem geschlossenen 

Kreislauf eine entscheidende Rolle zu. Dadurch kann das Gesamtsystem beispielsweise als 

ein künstlicher Photosyntheseprozess betrachtet werden.  

 

In Bezug auf die kontrollierte Aldolkondensation werden beispielsweise C3-Kohlenhydrate 

(DL-Glyceraldehyd und Dihydroxyaceton) als Zwischenprodukte zur Darstellung von 

synthetischen Hexosen vorgeschlagen. Diese können in einem einfachen Bottom-Up-Ansatz 

durch die Umsetzung von Formaldehyd mit Glycolaldehyd in einer kontrollierten 

Aldolkondensation erzeugt werden. Diese Reaktion stellt eine sogenannte Formosereaktion 

in der Anfangsphase dar, welche racemische Kohlenhydrate liefert. Im Anschluss können  

C3-Kohlenhydrate miteinander kondensiert werden um beispielsweise DL-Fruktose und  

DL-Sorbose mit einer signifikanten Ausbeute zu erhalten. Dabei ist eine teilweise Kontrolle 

der entstehenden Diastereomere möglich. Diese Prozesskette stellt ein System dar, welches 

zur Produktion von racemischen Hexosen aus CO2 und H2O verwendet werden könnte. 

 

Im Zusammenhang mit dieser Kaskade können viele umfassende Forschungs- und 

Problemfelder identifiziert werden. Ein Teil dieses Mehrschritt-Prozesses wurde in der 

vorliegenden Arbeit erforscht: a) Untersuchung der Formosereaktion in Bezug auf 

Generierung einer erwünschten Produktverteilung. Das beinhaltet die vordergründige 

Entwicklung einer einfachen und vielseitigen Methode zur Analyse von komplexen 

Kohlenhydratmischungen, b) Erforschung von Trenntechnologien zur Isolierung von 

gewünschten Kohlenhydraten, c) Ableiten eines möglichen Pfades, welcher die Realisierung 

des vorgeschlagenen Prozesses unter spezifischen Bedingungen zulässt und d) Diskussion 

der einzelnen Forschungsfelder in Bezug auf die Identifizierung prinzipieller Probleme. 
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Die Analytik von komplexen Kohlenhydratmischungen stellt eine große Herausforderung dar, 

welche die Kombination von LC, CE und GC benötigt. Zur LC-UV-Analyse wurden die  

per-O-Benzoylierung von Alditolen (PBAs) und die Umkehrphasenchromatographie 

eingeführt. Die Validierung wurde anhand von LC-ESI-MS (liquid chromatography-

electrospray ionization-mass spectrometry)-Daten durchgeführt. 

 

Es wird empfohlen, die Formosereaktion beispielsweise bei moderaten Temperaturen 

(Raumtemperatur) unter homogener Katalyse ablaufen zu lassen um wünschenswerte 

Produktverteilungen zu erzielen.  

 

Zur Untersuchung der Fraktionierung von C3-Kohlenhydraten, nach erfolgter 

Aldolkondensation von Formaldehyd und Glycolaldehyd, wurden die Membranprozesse 

Nanofiltration (NF) und Reverse Osmose (RO) eingesetzt. Dabei ergaben sich zwei 

Fraktionen: die eine enthält angereicherte C3-Kohlenhydrate, die andere hauptsächlich 

Formaldehyd, Glycolaldehyd, Methanol und Ameisensäure. Letztere muss notwendigerweise 

zur wiederholten Aldolkondensation von Formaldehyd und Glycolaldehyd rezykliert werden. 

Im Falle eines RO-Prozesses wurden in einer ersten Versuchsreihe ungefähr 80% an 

Formaldehyd, Methanol und Ameisensäure abgetrennt. Zirka 40% an  

C3-Kohlenhydraten wurden im Permeat detektiert. Auch die NF scheint für diese 

Trennaufgabe geeignet zu sein.  

 

Die Bewertung unterschiedlicher Problemfelder ergab zumindest theoretisch keine 

prinzipiellen Ausschlussgründe um einen künstlichen Photosynthese-Prozess darstellen zu 

können.  

 

Schlagwörter: künstliche Photosynthese, CO2-Reduktion, DL-Glyceraldehyd und 

Dihydroxyaceton, synthetische Hexosen, Nanofiltration, Reverse Osmose, 

Aldolkondensation, per-O-Benzoylierung von  Alditolen  
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1 Introduction   

1.1 Initial situation - CO2 as a C1-source  

Considering the system “earth” as a thermodynamically closed system and neglecting e.g. 

meteorites and nuclear chemical processes, the carbon-content of the system can be 

supposed to be constant. Within the carbon cycle, CO2 is appearing as the highest oxidized 

C1-source [1].  

 

CO2 is thermodynamically stable and kinetically inert [2]. Enabling selective reactions for 

converting CO2 at moderate conditions represents a challenge for a scientist. Numerous 

pathways for CO2 activation have been investigated [2-4]. These include bioconversion [5-9], 

photochemical reduction [10-21], electrochemical reduction [3, 22-38], thermal heterogeneous and 

homogeneous reductions [3, 39-48] as well as coordination to transition metals [2, 3, 39, 49].  In 

Table 1 the individual standard potentials for the reduction of CO2 are listed.  

 

 

 

 

Reaction E° [V]a 

a 2 CO2 + 2 H+ + 2e-   
H2C2O4

b 
-0.475 

b CO2 + 2 H+ + 2e-   HCOOH -0.199 

c CO2 + 2 H+ + 2e-   CO + 
H2O 

-0.109 

d CO2 + 4 H+ + 4e-   HCHO + 
H2O 

-0.071 

e CO2 + 6 H+ + 6e-   CH3OH 
+ H2O 

0.030 

f CO2 + 8 H+ + 8e-   CH4 + 
2 H2O 

0.169 

 

a: E° versus normal hydrogen electrode at 298 K. 
b: oxalic acid. 

 

 

 

There are many catalysis-systems which convert carbon dioxide to a mixture of the products 

as shown in Table 1, and surprisingly ethylene or ethane [12, 50, 51]. It should be mentioned, 

Table 1: Half-cell reactions for the 

electroreduction of CO2 [23]. 
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that CO2 can be converted to formic acid catalyzed by transition-metal complexes in 

homogeneous phase or in polymer matrix [3, 37, 39], by a FeS2 electrode [25] or by a Pb-granule-

electrode [26, 52] to name just a few.  
 

1.1.1 Products obtained by industrial processing of CO2 

Synthesis strategies using CO2 as a building block mainly rely on the formation of C-O 

bonds. The formation of C-C bonds is much more difficult and only a few realized examples 

are known [53]. Interesting target compounds using CO2 as raw material are carbon acids, 

esters, lactones, polyesters, polylactones, polycarbonates, cyclic carbonates, urea derivates 

and ketals under maintenance of the C=O or the COO-functional groups (see Table 2). 

 

 

Product Usage 
Worldwide production 

[t * a-1] 

Urea fertilizer, urea-melamine-

resin, feed additive 
100 * 106 [54] 

Alkylen carbonates solvent  a 

β-oxynaphtoic acid  raw material for dyes a 

Salicylic acid  pharmaceuticals 40 * 103 [55] 

Methanol fuel component, solvent, raw 

material for formaldehyde 

and acetic acid synthesis, 

energy storage 

52.7 * 106 [56];  

2 * 106 via the syngas 

route [55] 

Cyclic carbonates dimethylcarbonate used as 

reagents for methylation and 

for manufacturing of 

polycarbonates 

40 * 103 [55] 

Formic acid feed additive, raw material for 

the synthesis of formamids 

and formic acid esters 

3 * 105 [57] 

 a: only produced in small amounts [39]. 

 

Table 2: Products manufactured by the conversion of CO2. 



 - 13 - 

Further pathways in which CO2 is taking part, would be e.g. the direct hydrogenation in order 

to yield higher alcohols or oxalic acid, the copolymerization with olefins, the 

hydrocarbonylation of alkenes, ketons and imins, the conversion to isocyanats, carbamins or 

the carboxylation of C-H-bonds [55].  

 

1.2 CO2 and photosynthesis  

 
Photosynthesis is a well known and highly complex biological process. Although not every 

detail is understood so far, some of the key elements of natural photosynthesis should be 

summarized at this point: a) light absorption, b) water oxidation, c) products of light-induced 

reactions (e.g. ATP and NADPH) enable the formation of C-C covalent bonds utilizing CO2 in 

order to obtain carbohydrates [58]. As shown in literature, only some key steps of biological 

photosynthesis have already been mimicked artificially [59-68]. Only some attempts were 

undertaken to produce metabolizable carbohydrates from CO2 and H2O, but no one shows a 

technically acceptable solution [69-73]. Currently, there is no artificial solution available, which 

addresses the comprehensive conversion of CO2 and H2O to metabolizable carbohydrates 

taking the recycling of the byproducts accumulated into account.  

 

1.3 Objective and definition of the topic 

The aim of this dissertation is to investigate a process for the synthesis of carbohydrates 

from CO2 and H2O, which could be considered as a possible artificial photosynthesis. To the 

best knowledge of the author there is only a very limited number of approaches, which 

probably could reach this goal as shown in this work. Two novel pathways are proposed:  

 

a) conversion of CO2 to formaldehyde and performing a controlled aldol-condensation to 

synthetic hexoses using C3-carbohydrates as intermediate products; separation and entirely 

recycling of every reaction compound. 

b) conversion of CO2 to formaldehyde; suggesting hydroformylation of formaldehyde to 

desired carbohydrates using synthesis gas [74-76] and again separation and recycling of every 

reaction compound.  

 

Pathway a) is studied in the present work to a certain extend. The later one represents an 

alternative route which remains to be investigated.   
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1.3.1 Artificial production of carbohydrates from CO2 and H2O - proposed conversion 
pathway in detail  

 
Despite the toxicity of formaldehyde, its production from CO2 is selected to act as the 

preliminary process step. Doing so, in a first step, CO2 is reduced to methanol by 

hydrogenation (see Table 3). The hydrogen necessary is produced by electrolysis of water 

generating oxygen at the same time. In a second step, methanol is partly 

oxidized/dehydrogenized to yield formaldehyde (see Table 4). Simultaneously in 

hydroformylation, formaldehyde can react to yield glycolaldehyde [77, 78] (without 

assessment). These preliminary steps represent the basis for the following cascade: 

 

In a simple bottom-up synthesis approach, formaldehyde and glycolaldehyde are condensed 

in a controlled one-step aldol-condensation to produce C3-carbohydrates (DL-glyceraldehyde 

and dihydroxyacetone). Subsequently, in an anion-exchange resin catalyzed aldol-

condensation, C3-carbohydrates are converted e.g. to DL-fructose and DL-sorbose with a 

considerable yield [79, 80] enabling partial diastereoselective control [81, 82]. This cascade 

provides a system, which can be used for the production of racemic hexoses from CO2 and 

H2O. By isolating metabolizable hexoses, simultaneously recycling of the byproducts and 

providing oxygen from the preliminary electrolysis, metabolizable hexoses can be consumed 

in cell respiration. Thus, a closed cycle is achieved. 

 

1.3.1.1 Conversion step one – CO2 → methanol → formaldehyde  

With regard to the preliminary processing steps first of all the conversion of CO2 to methanol 

should be considered closer. In general, methanol can be produced from CO2 by e.g. 

photochemical, electrochemical and thermal conversion processes [14, 41, 83]. With regard to 

photochemical reduction of CO2 to methanol, a conceptual approach was proposed using a 

multifunctional photocatalyst based on semiconductor material [84]. Although the model 

system is kept simple, there are significant scientific difficulties to overcome for making the 

system work. First reported in 1979, the photocatalytic reduction of CO2 in aqueous solution 

to produce formaldehyde, formic acid, methanol and trace amounts of methane has been 

carried out using various semiconductors, such as tungsten trioxide (WO3), titanium dioxide 

(TiO2) or zinc oxide (ZnO) to name just a few [14]. In the following years, many research 

groups have studied the photocatalytic reduction of CO2 using a variety of semiconductors.  

 

There are severe limitations to improve the productivity of photocatalytic reduction. E.g. it 

was shown, that the net yield of fuel product in photochemical energy storage reaction is 
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unlikely to be greater than 12 to 13 percent [85]. The physical separation of the water 

photodissociation from the CO2 reduction stage could overcome some of the limitations [68, 86]. 

  

Concerning the electrochemical reduction of CO2 to methanol the reader is referred to 

appropriate literature e.g. [83]. With regard to thermal conversion of CO2 to methanol, e.g. the 

following catalysis systems can be listed (see Table 3).  

 

 

Catalysis Reductant Comments Ref. 

Cu/SiO2 and 

Cu/ZrO2/SiO2 

H2 stepwise hydrogenation of CO2 to 

methanol takes place on Cu-

surface; a bi-functional 

mechanism for methanol 

synthesis from CO2/H2 is proposed 

[41] 

p-type semiconductor 

electrode, 

photochemical cell 

pyridine 

- [42] 

optical fiber 

photoreactor, Ag/TiO2-

catalyst 

H2O 

- [13] 

Ru-Ti-oxide-electrodes - - 

 
[43] 

Cu/Zn/Al/Zr-fibrous 

catalyst 

H2 it is suggested that the high 

dispersion and stability of the 

Cu/Zn crystallites due to the 

fibrous structure enhanced CO2 

hydrogenation and the added Zr 

component further improved the 

catalyst 

[44] 

Cu/ZnO-catalyst H2 the role of ZnO in Cu/ZnO 

catalysts can be ascribed to both 

increases in the Cu dispersion and 

the specific activity 

[45-47] 

Cu/TiO2  NaOH, H2O photocatalytically catalyzed 

reduction of CO2 
[21] 

Table 3: Conversion of CO2 to methanol (selection of examples). 
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Catalysis Reductant Comments Ref. 

Cu, Ni/Cu-catalyst H2 submolar quantities of Ni lead to a 

strong increase in the rate of 

methanol formation from CO, CO2 

and H2-mixtures 

[87] 

Ga2O3-Pd/SiO2-catalyst H2 the closeness between the Pd 

crystallites and the Ga2O3 surface 

patches enhance the activity 

[88] 

ZrO2 doped CuZnO-

catalyst 

H2 the presence of ZrO2 leads to a 

high copper dispersion 
[89] 

Cu/ZnO-catalyst  H2 ZnO has no promotional effect on 

the methanol synthesis activity 

except for the role of ZnO to 

create the active site 

[90-93] 

Cu/ZnO-catalyst on a 

Al2O3-support 

H2 
- [94, 95] 

Ru-catalysts supported 

by micro- and 

mesoporous oxides 

H2 addition of Co promotes methanol 

formation [48] 

transparent Ti-

containing mesoporous 

silica thin film materials 

H2O films having hexagonal pore 

structure exhibited higher 

photocatalytic activity than the 

powdered catalyst even with the 

same pore structure 

[20] 

 

After having methanol, the subsequent conversion to formaldehyde should be highlighted as 

depicted in Table 4.  

 

 

 

 

Catalyst Comment  Ref. 

Ag-catalyst conversion of methanol and the 

selectivity to formaldehyde appeared to 

increase with respect to the methanol 

ballast process with no added water 

[96, 97] 

Table 4: Conversion of methanol to formaldehyde (selection of examples). 
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Catalyst Comment  Ref. 

Ag-catalyst using CH3I as additive while the conversion of methanol and 

oxygen decreased, the selectivity to 

formaldehyde increased after treating 

the Ag catalyst with CH3I 

[98] 

Na2CO3 in a circulating fluidized 

bed 

compared to the fixed bed reactor 

higher productivities could be obtained 
[99] 

Nanostructured vanadium 

containing composite membranes 

oxidative dehydrogenation; catalytic 

structures showed different behavior 

depending on the mode of supply of 

methanol and oxygen to the catalytic 

layer 

[100] 

Cu/Nb-silicate, niobosilicate and 

alumnosilicate mesoporous 

sieves  

depending on the chemical composition 

of the support, various copper species 

were found to be formed and a range of 

catalytic activities could be achieved; 

the highest catalytic activity towards 

methanol could be obtained by 

applying Si/Nb = 57 in bulk and 43 on 

the surface, Nb/Cu = 0.8 on the surface 

[101] 

MoO3 and Fe2(MoO4)3 the addition of excess crystalline MoO3 

to the crystalline Fe2(MoO4)3 phase 

significantly increases the overall 

steady-state catalytic performance 

towards formaldehyde 

[102] 

Vanadium, molybdenum and 

chromium oxide clusters 

supported on rutile TiO2 

- [103, 104] 

 

Based on the catalysis systems shown in Table 3 and 4, the subsequent process can be 

proposed as shown in section 1.3.1.2.  
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b) examination of separation technologies with regard to isolating desired 

carbohydrates. Some investigations about membrane fractionation, which depicts 

a part of this research area, has been summarized in section 3.3. 

c) deduction of a possible pathway which could enable the realization of the process 

proposed under specific conditions. The investigations are summarized in section 

4. 

d) discussion the individual problem areas with regard to uncovering principal 

problems to be solved. 

 

At this point, the formose reaction, which mainly includes the aldol-condensation of 

formaldehyde and carbohydrate fragments, should be considered closer.  

 

2 The formose reaction system – data basis 

2.1 Introduction 

In 1861 Butlerow [105] discovered the formose reaction, the alkaline polymerization of 

formaldehyde using e.g. calcium hydroxide, which represents a system for the non-

enzymatic total synthesis of carbohydrates. It plays an important role in relation to the 

prebiotic and interstellar synthesis of carbohydrates [106, 107].  

 

The majority of microorganisms cannot metabolize formose carbohydrates [108]. Among the 

carbohydrates produced, branched-chain carbohydrates are formed, which are considered to 

be toxic due to potentially blocking glucose-oxidase [109]. Residual formaldehyde and L-

carbohydrate enantiomers are expected to account for the toxicity of formose carbohydrates. 

In addition, rare hexoses such as D-tagatose only adsorbed to a small degree probably could 

only be less tolerated by the by the digestive tract [110].   

 

In classical polymer-synthesis formose carbohydrates can be used e.g. for the production of 

polyurethane-resins or of reactive isocyanate mixtures [111, 112]. Beside the production of 

carbohydrates, the formose reaction can be applied to eliminate formaldehyde in industrial 

effluents [113] and plays an inferior role in technical invert-sugar degradation taking place in 

saccharose production from sugar-beet [114].  

 

In order to better understand the nature of formaldehyde, a primary educt used in the 

formose reaction, some properties should be considered. 
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2.1.1.1 Aqueous methanolic formaldehyde solution 

Formaldehyde and water react to form (oxymethylene)glycol (Eq. (1)) and 

poly(oxymethylene)glycol (Eq. (2)).  

 
(1) 

 

(2) 

 

With methanol, formaldehyde polymerizes to (oxymethylene)hemiformal (Eq. (3)) and 

poly(oxymethylene)hemiformal (Eq. (4)) [118]. 

 

(3) 

 

(4) 

 

Methanol is used as a stabilizing agent for formaldehyde in aqueous solution. Formaldehyde, 

initially bound in long-chain, poorly soluble poly(oxymethylene)glycols, subsequently is 

transferred to short-chain and therefore better soluble poly(oxymethylene)-hemiformals [119]. 

The fact that methanol might be a more favorable solvent for the formaldehyde oligomers 

than water should also be considered [119].  

 

Formaldehyde oligomers containing up to five carbon units have been detected by 

quantitative NMR spectroscopy [120]. Hydrated formaldehyde can be deprotonated to form an 

anionic formaldehyde species featuring a small Ks-value of approximately 1 x 10-14 [121]. 

Despite this physical constant and the fact that a rather small amount of hydrated 

formaldehyde (< 1%) is present in aqueous formaldehyde solution [122], a pH-value of 

approximately 3 is measured.  
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2.1.1.2 Paraformaldehyde powder  

As Figure 2 shows, paraformaldehyde is easily produced in neutral environment by means of 

polymerization of formaldehyde monomers [116, 117]. In addition, paraformaldehyde can be 

generated by evaporation of aqueous methanolic formaldehyde solution [117]. Acid-treatment 

or exposure to elevated temperatures (180 - 200 °C) releases formaldehyde-monomers from 

paraformaldehyde [116].  

 

2.1.1.3 1-,3-,5-trioxane 

1-,3-,5-trioxane (trioxane), the industrial source of formaldehyde, is produced by means of 

acid-catalyzed conversion of hydrated formaldehyde [117, 123]. Trioxane is a stable crystalline 

solid compound at ambient conditions. Applying elevated temperature (272 – 347 °C) or 

treating with a strong acid releases formaldehyde-monomers. Besides the formation of 

trioxane, higher cyclic oligomers such as tetrosane and pentoxane are known to occur [124].  

 

2.1.1.4 Polyoxymethylene- and further plastics manufactured from formaldehyde 

Poly(oxymethylene)-polymer (POM-plastic) can be produced from formaldehyde-monomer or 

trioxane by anionic or cationic polymerization [123, 125]. Treatment of paraformaldehyde by heat 

also yields poly(oxymethylene)-polymer as shown in Figure 2. In addition to the industrial 

production of polyoxymethylene-plastics, formaldehyde is used for the production of a 

number of further polymers e.g. urea- and melamine formaldehyde resins or for Resol- and 

Novolak-plastics [123, 125].  

 

2.2 The formose reaction  

The formose reaction addresses a catalytic system consisting of a series of interfering 

reactions, which have not been entirely discovered up to the present. A major reaction type 

has been identified as the aldol-condensation between formaldehyde and carbohydrate 

fragments (e.g. glycolaldehyde to mention the simplest, Eq. (5)).  
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(5)

 

The initial step of the formose reaction is closely accompanied by subsequent addition-steps 

of carbohydrate fragments and retro-aldol-splitting of polymerization products (Eq. (6)).  

 

 

(6) 

 

2.2.1 Side reactions  

The cannizzaro-reaction, a disproportionation-reaction of formaldehyde yielding methanol 

and formic acid, competes with the formose reaction [126]. In addition to the formation of 

straight chain also branched chain carbohydrates can be formed. In a so-called cross-

cannizzaro-reaction, a disproportionation-reaction, branched chain carbohydrates not any 

more carrying α-hydrogen, can only react with formaldehyde to produce a branched chain 

sugar alcohol and formic acid [127]. 

 

Apart from cannizzaro and cross-cannizzaro reaction the formation of volatile compounds 

(see Table 5) as well as of saccharinic acids (see Eq. (7)) could take place in the formose 

reaction-system.  
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Table 5: Formation of volatile compounds by 

means of alkaline degradation (pH 8-10) of 

fructose [128]. 

Acetic acid 

Hydroxyacetone 

1-Hydroxy-2-butanone 

3-Hydroxy-2-butanone 

4-Hydroxy-2-butanone 

Furfuryl alcohol 

5-Methyl-2-furfuryl alcohol 

2,5-Dimethyl-4-hydroxy-3-(2H)-furanone 

2-Hydroxy-3-methyl-2-cyclopenten-1-one 

3,4-Dimethyl-2-hydroxy-2-cyclopenten-1-one 

3,5-Dimethyl-2-hydroxy-2-cyclopenten-1-one 

3-Ethyl-2-hydroxy-2-cyclopenten-1-one 

γ-Butyrolactone 

 

Saccharinic acid formation is explained in terms of a two-step reaction: in a first step,  

α-dicarbonyl-formation from ene-diol-anions and subsequent β-elimination [114, 129] takes 

place. In a second step, α-dicarbonyls undergo a benzilic-acid-rearrangement yielding 

saccharinic, meta-saccharinic and iso-saccharinic acids (see Eq. (7)). Saccharinic acid 

formation preferably takes place at high carbohydrate and low formaldehyde concentrations 

in the formose reaction-system [127, 130]. 
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(7) 

 

2,4-dihydroxybutyric and other acids are major products of the alkaline degradation of 

glucose [131]. In addition, partially unknown reactions seem to be involved in the formose 

reaction-system if almost quantitative conversion of formaldehyde is considered. Up to the 

present only 30 different carbohydrate species have been identified by gas chromatography-

mass spectrometry as their trifluoroacetylated-O-butyloxime derivates [132].  

 

2.3 Formose reaction catalysis 

Considering the time dependent progress of the batch-formose reaction a typical 

development is observed as shown in Figure 3. 
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formation is comparable to that in the previous step indicating that cannizzaro reaction is 

taking place simultaneously independent from the condensation of formaldehyde to 

carbohydrates.  

 

Section (C): The ORP curve turns upwards from the minimum point and reaches a small 

maximum, where a little decrease in ORP is observed. Simultaneously the color of the 

solution turns to pale yellow; the so-called yellowing point is reached. The formation of  

α-dicarbonyl-compounds is considered to be responsible for the appearance of colored 

compounds [138]. As the ORP of the solution increases the reaction proceeds rapidly (see 

consumption of formaldehyde at the end of section (C)). During this phase a significant rise 

in temperature is known to occur [133]. At the end of section (C) the formaldehyde 

consumption accounts for 95% and the yield of the carbohydrates amounts to 50-70%. An 

increase in reaction volume is observed until reaching the yellowing point at the end of 

section (C). Afterwards the reaction volume starts to decrease again [139, 140]. Based on the 

ORP-curve observed, section (C) could be termed as the period of carbohydrate formation 
[133, 134].  

 

Section (D): Concerning ORP a steady state appears repeatedly, where the carbohydrates 

begin to degrade. The total amount of carbohydrates decreases whereas the residual 

amount of formaldehyde remains constant as time passes [133, 134]. The temperature of the 

reaction mixture is lowered slowly while at the same time the color changes from light yellow 

to  brown [116].  

 

Oxygen has been identified to have a quenching effect on the formose reaction [140]. 

Following sugar decomposition a final product distribution is obtained similar to the products 

obtained from alkaline degradation of monosaccharides [138]. This hint partially answers the 

question where the “equilibrium” of a formose reaction could lie.  

 

2.3.1 Attempts to increase the selectivity of the formose reaction 

Up to the present the following products could be preferably produced from the formose 

reaction as summarized in Table 6.  
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Table 6: Preferred production of carbohydrates using the 

formose reaction-system. 

 Product ref. 

2,4-di-C-(hydroxymethyl)-3-pentulose [141] 

2-hydroxymethylglycerol [142] 

3,3-di-C-hydroxymethyl-3-deoxyfuranorono-
1,4-lactone 

[143] 

3-C-hydroxymethyl-pentofuranose [144] 

trioses, especially dihydroxyacetone [145-147] 

DL-2-C-hydroxymethyl-3-pentulose [148, 149] 

DL-dendroketose [150] 

ethyleneglycol [151] 

glycolaldehyde [152] 

L-dendroketose [153] 

pentaerythritol [142, 152, 154] 

threo-3-pentulose [155] 

 

2.3.1.1 Formose reaction-catalysts 

A broad spectrum of catalysts presented in Table 20 and 21 (see appendices) can be used 

to successfully catalyze the formose reaction if a certain concentration of catalyst is 

exceeded [156]. Among inorganic catalysts alkaline earth hydroxides and oxides, thallium 

hydroxide and lead oxide show the highest catalytic activity [157]. In addition, tertiary amines, 

lanthanide hydroxides and aluminosilicates have already been applied in formose reaction-

catalysis [157]. The type of catalyst influences the ratio of formose/cannizzaro reaction. E.g. 

thallium hydroxide is known to be an exclusive catalyst for the formose reaction whereas 

calcium or sodium hydroxide is not [116]. Tertiary amines only seem to catalyze the formose 

reaction without catalyzing the cannizzaro reaction at all [158]. As shown in Table 22 and 23 

(see appendices) a number of heterogeneous catalysts as well as physical influences have 

been applied in the formose reaction-catalysis.   

 

2.4 General aspects of the formose reaction  

2.4.1 Reaction mechanism  

The reaction-mechanism explaining the (retro)-aldolization of carbohydrates in aqueous 

alkaline solution can be attributed to an anionic chain-growing reaction, a reaction type well 
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known in polymer-synthesis [125]. The addition of formaldehyde to e.g. glycolaldehyde, the 

simplest initial step of the formose reaction, can be classified as an aldol-reaction: in alkaline 

environment aldehydes and ketones react to β-hydroxycarbonyl-compounds (aldols, ketols) if 

the α-carbon atom is essentially linked to hydrogen (Eq. (8); adapted from ref. [159]).  

 

(8)

 

At first a Lewis-base (here OH-) abstracts a proton at the α-carbon atom. This equilibrium 

reaction produces a small amount of a mesomerie-stabilized carbanion. The nucleophilic 

attack of this carbanion at the electrophilic neighbour carbonyl-c-atom leads to an alkoxid-

anion; the acid-base reaction thereof with water yields an aldol or ketol [159]. The role of the 

cation introduced by applying a certain amount of catalyst (e.g. calcium hydroxide) is not 

completely clarified. Nevertheless, a certain influence of divalent cations onto the 

diastereomeric selectivity of the aldol-condensation between e.g. C3-carbohydrate fragments 

could be observed [81]. Based on UV-spectroscopic data there is evidence for the formation of 

an ene-diol-complex from calcium and carbohydrates [116]. As soon as α-hydrogen is present 

in the formose reaction system, the subsequent unidirectional addition of formaldehyde takes 

place in alkaline media and competes with the cannizzaro reaction [126].  

 

For the sake of completeness it must be mentioned that aldoses can be reacted e.g. in a so- 

called Kiliani-Fischer-Synthesis in order to extend the carbohydrate backbone by one carbon 

unit [160]. For a controlled degradation of the carbohydrate chain organic synthesis methods 

according to e.g. Wohl and Ruff are well known [160]. Despite these examples a number of 

further ascending and descending synthesis methods for monosaccharides are available [161].  

 

 

2.4.2 Influence of reaction parameters  

2.4.2.1 pH-value 

A pH-value >10 seems to be required to start the formose reaction [126]. In case of a calcium 

hydroxide-catalyzed formose reaction, the pH-value over reaction time shows a typically 
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shaped curve as indicated in Figure 4. This behavior might be explained in terms of calcium 

hydroxide interacting with formaldehyde in the initial reaction phase, the subsequent 

autocatalytic condensation-phase and finally in terms of significant amounts of formic acid 

being present [126].   

 

Figure 4: pH-value vs. time typically acquired during formose reaction-catalysis; batch-setup, 50°C, 

starting conditions: 1.67 M formaldehyde, 0.135 M calcium hydroxide; no initiator; modified from ref. 
[126]. 

 

2.4.2.2 Temperature 

The extent of the formose reaction is strongly dependent on the temperature applied. In case 

of using sodium hydroxide, a particularly high temperature leads to a significant amount of 

formose carbohydrates. E.g. conducting the reaction using 1.6 M formaldehyde, 2.5 M 

sodium hydroxide at 100°C using no initiator yields 20% formose carbohydrates within 5 min 

reaction time [156]. Significantly lower reaction temperature only yields cannizzaro products 
[156]. In case of using e.g. calcium hydroxide, moderate reaction temperatures e.g. 50°C are 

sufficient for successfully catalyzing the formose reaction. Working at ambient conditions in 

case of calcium hydroxide catalysis yields less complicated carbohydrate mixtures compared 

to elevated temperatures [162]. 
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2.4.2.4 Concentration of formaldehyde 

The higher the concentration of formaldehyde the smaller the relative extent of formose 

reaction with respect to total converted formaldehyde. In general, every base, which is 

applied in a certain concentration, has a typical upper limit of formaldehyde-concentration 

where conversion within formose reaction takes place. Above this limit only the cannizzaro 

reaction is proceeding [156].  

 

In order to successfully catalyze the formose reaction with a particular chosen catalyst one 

can decrease the concentration of formaldehyde or increase the concentration of base. In 

case of only low soluble bases, the base/aldehyde-ratio, which is necessary for the 

successful formose catalysis, can be used for calculating the highest formaldehyde 

concentration, which can barely be converted to carbohydrates using the formose reaction 
[156].   

 

2.4.2.5 Methanol 

A rather low concentration (< 25% (v/v)) of methanol represses the final formaldehyde-

conversion without affecting the initial rate. Despite this fact, a rather high concentration  

(> 75% (v/v)) of methanol significantly decreases the initial rate without affecting the final 

formaldehyde-conversion [166]. At high methanol concentrations the retarded delivery of 

formaldehyde affecting the initial rate might at least be explained by significant 

poly(oxymethylene)hemiformal-formation (Eq. (2) - Eq. (4)).  

 

2.4.2.6 Initiator 

Several initiators have been found to start the formose reaction and in general show first-

order dependency with regard to formaldehyde conversion. The usage of a high excess of 

initiator eliminates the autocatalytic character of the formose reaction and decreases the 

induction period to a great extend. The capability of reducing the duration of the induction 

period is increasing e.g. in the following order: glucose < ribose < fructose < sorbose < 

dihydroxyacetone < glycolaldehyde [135].  

 

Table 24 (see appendices) summarizes different initiator/catalyst-combinations, which have 

already been applied according to data reported in literature. As indicated in Eq. (6), during 

the progress of the reaction the initiator is consumed. By means of dealdolization species 

capable of continuously initiating the formose reaction are regenerated, which explains the 
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autocatalytic nature of the formose reaction (Eq. (6)). Glycolaldehyde can be regenerated 

easily by retro-aldol splitting of e.g. tetroses [167]. If partial formaldehyde conversion is 

considered, a transient influence on the product distribution is evident [136]. Based on the 

autocatalytic nature of the formose reaction specific phenomena e.g. hysteresis and 

bistablility are known to occur [168, 169]. 

 

In addition, selected reactions between e.g. glyceraldehyde and dihydroxyacetone [80], 

glycolaldehyde and dihydroxyacetone [170], glycero-tetrulose and glycolaldehyde [171],  

2-pentulose and formaldehyde [171] as they appear in the formose reaction have been 

investigated in detail. The formation of e.g. dendroketose [80] or 3-hexuloses [171] has been 

shown. Considering reactions between lower carbohydrates, special interest has focused on 

the diastereoselectivity of their calcium hydroxide catalyzed aldol-reaction [162]. In case of 

using only a low base concentration and moderate temperatures the reverse-aldol-reaction 

might be quenched [162].  

 

2.5 Conclusion 

Full conversion of formaldehyde within the formose reaction leads to a very complex mixture 

of carbohydrates. Defining a formose reaction system working with aqueous formaldehyde 

solution, calcium hydroxide catalyst and glycolaldehyde acting as the initiator, it is concluded 

that the controllability of the formose reaction requires moderate reaction conditions.  

 

Considering the stereoselective production of hexoses e.g. in a first aldol-reaction, 

enantioselective dimerization of α-oxyaldehydes carrying different protecting groups 

catalyzed by L-proline is carried out [172]. In a second, a so-called Lewis acid-mediated 

Mukaiyama aldol-carbohydrate cyclization, diastereoisomeric control is accomplished by the 

choice of the Lewis acid and by the reaction solvent [173]. The synthesis methodology does 

need solvent exchange as well as the introduction of protecting groups. Using e.g. this 

synthesis approach, such manipulations represent severe or even unsolvable difficulties with 

regard to recycling of byproducts, which would accumulate in a technical scale.  

 

C3-carbohydrates, intermediate products which could be suggested for the manufacture of 

synthetic hexoses for instance, can be produced by various synthesis-routes [174]. In a top-

down approach D-glyceraldehyde can be obtained from D-fructose while L-glyceraldehyde is 

derived from L-sorbose [175]. Glyceraldehyde derivates e.g. their O-isopropylidene-,  

2-O-methyl- or 2-O-benzyl-derivates are simply generated from D-mannitol or ascorbic acid 
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[176, 177]. In a simple bottom-up approach for the synthesis of C3-carbohydrates  

(DL-glyceraldehyde and dihydroxyacetone) not enabling stereoselective control e.g. a 

controlled one-step aldol-condensation could be applied, in which formaldehyde is added 

onto glycolaldehyde acceptor. At the same time ending up in an uncontrollable autocatalytic 

formose-cycle must be avoided by critically controlling the one step aldol-condensation of 

formaldehyde and glycolaldehyde. Doing so, the formose reaction could be limited to its 

initial phase. Glycolaldehyde, which is necessary for the one step aldol-condensation, can be 

generated by the hydroformylation of formaldehyde [77, 78] (without assessment).  

 

 

3 Results and Discussion 
 
In order to provide valid analytical results from the one-step aldol-condensation of 

formaldehyde and glycolaldehyde, an analytical method has been developed and a great 

number of standard analytical methods has been validated.  

 

3.1 Analysis of complex monosaccharide mixtures by LC-UV and LC-ESI-MS  

3.1.1 Introduction 

It is the aim of this chapter to present a simple and versatile method for LC-UV analysis of 

complex carbohydrate mixtures using inexpensive standard analytical equipment. Especially 

higher molecular weight as well as temperature sensitive compounds should be made easily 

amenable to analysis. Thus, the limitations of conventional gas chromatographic analysis of 

carbohydrates could be overcome. The resolution of enantiomers is beyond the scope of this 

work. 

 

The formose reaction, the autocatalytic anionic polymerization of formaldehyde to 

carbohydrates initiated by the presence of a carbohydrate containing α-hydrogen in alkaline 

media, is used as a model reaction delivering representative carbohydrate mixtures. This 

reaction is of great importance to the question of the origin of life because it is considered as 

a potential synthesis route for the generation of complex monosaccharides, a non-enzymatic 

source of sugars [131, 178-181]. Due to its autocatalytic kinetics a formose reaction could develop 

into a self-organizing non-enzymatic system continuously producing sugars including 

branched-chain sugars as precursors of amino acids, of the isoprene moiety and of the 

branched chains of valine, leucine and isoleucine in a prebiotic scenario [132]. The formose 

reaction, as well as transition-metal-catalyzed reactions of carbohydrates [182, 183] provide 
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tremendously complex carbohydrate mixtures. Besides these examples of chemical origin 

carbohydrate degradation products formed during saccharose production [114] and in pulp 

production processes [184], as well as carbohydrates in biological fluids [185, 186] deliver similar 

complex carbohydrate spectra. Developing analytical methods for such complex 

monosaccharide mixtures represents a major challenge, which needs the combination of LC, 

CE and GC. 

 

Direct analysis of formose carbohydrates using weak anion-exchange Carbopak- or cation-

conditioned polymer based-columns is not practicable since a considerable amount of 

residual formaldehyde as well as salts are anticipating the analysis. LC-UV analysis of 

formose carbohydrates has been conducted by 2,4-dinitrophenylhydrazine (DNPH) labeling 
[187], but shows only limited applicability due to peak multiplicity (syn- and anti-isomer 

formation) complicating the analysis. In addition, a huge number of carbohydrate species 

remains to be separated independent form the analytical system chosen. 

 

In light of this difficulty, reduction of monosaccharides to their corresponding alditols was 

conducted to eliminate peak multiplicity since the resulting alditols cannot anomerize. Hence,  

much simpler chromatograms could be obtained [188-190]. In addition, formaldehyde is 

converted to methanol by reduction, which is considered as less bothering the analysis. The 

introduction of a reduction step is accompanied by a loss of information since different 

monosaccharides yield the same alditol [191] as well as elaborate removal of residual borate 

species before analysis has to be taken into account. Contrary to aldoses and ketoses, which 

are converted to their corresponding alditols, carboxylic acids such as formic acid are not 

affected by NaBH4-reduction due to its limited reduction strength [192]. Since the borate 

species present do not affect DNPH-labeling, formic acid is easily quantified in LC-UV (see 

supplementary material). Nevertheless, the elimination of borate species as trimethylborate 

is simply carried out by applying appropriate aliquots of methanol followed by treating under 

a stream of nitrogen. During the progress of the formose reaction branched-chain alditols are 

formed by cross-cannizzaro reaction. In order to estimate the extent of cross-cannizzaro 

reaction representative branched-chain alditols, namely  

2-hydroxymethylglycerol (2-HMG; IUPAC: 2-(hydroxymethyl)propane-1,2,3-triol) and  

2-hydroxymethyltetritol (2-HMT) were synthesized (see supplementary material).   

 

After an appropriate ion-exchange sample preparation procedure direct analysis of alditols 

using weak anion-exchange Carbopak- or e.g. Pb-conditioned polymer based-columns could 

be carried out. However, this approach is not practicable since the majority of carbohydrates 

are adsorbed onto the resin in a non-reproducible manner.  
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Introducing per-O-benzoylation of alditols enables UV-detection as well as provides favorable 

capacity factors on reversed-phase columns, which has already been described by several 

authors in literature [189, 193-197]. Since derivatization not only yields per-O- but also partially-O-

benzoylated alditols, particular attention is focusing on this issue. Linking the method to  

ESI-MS technique necessarily using internal standard calibration yields valuable information 

about a) the validity of UV-data analyzed, b) the identification of probably co-eluting 

compounds and c) the probable improvement of limit-of-detection.  

 

In addition, benzoylation provides a significant increase in ESI-response as a key advance, 

which facilitates the detection of otherwise hardly amenable compounds. Coupling the 

analysis of benzoylated compounds to an ESI-MS has been investigated focusing on the 

analysis of some sugars, polyols and amino acids in biological fluids [194] as well as on the 

analysis of low molecular weight organic acids derived from root exudation [198]. For the sake 

of completeness it should be mentioned that benzoylation is used for the LC-MS analysis of 

bases, ribosides, intact nucleotides, diethylene glycol in sea water as well as of  

1-monomycoloyl glycerol [199-202]. For the analysis of sialooligosaccharides, benzoylation 

provides a valuable tool for generating intensive signals during matrix-assisted laser 

desorption-ionization (MALDI) mass spectrometric analysis. In addition, some terminal units 

of oligosaccharides undergo characteristic structural changes during benzoylation providing 

easily recognizable mass spectral patterns [203].  

 

Among formose reaction products more than thirty carbohydrates have been identified as 

their trifluoroacetylated-O-butyloximes [132] in gas chromatography-mass spectrometry. To the 

best knowledge of the author, no work about CE-analysis of formose carbohydrates is 

evident in literature. Apart from LC, GC and CE the application of 2-hydroxymethylboronate 

reagent in cost-intensive Fourier transform ion cyclotron resonance mass spectrometry (FT-

ICR-MS) allows a deep insight in the autocatalytic formose reaction [204].  

 

Several coupled analytical techniques based on LC and GC deliver detailed analytical 

information about complex formose carbohydrates formed as shown in this chapter.  
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3.1.2 Materials and methods 

3.1.2.1 Formose reaction setups 

Experiments were conducted using a batch reactor-system. 6.75 mL of aqueous 

formaldehyde solution was diluted to a final volume of 25 mL containing 5 mg initiator 

(glycolaldehyde, D-glyceraldehyde, D-erythrose (Ery), D-xylose (Xyl) or D-glucose (Glc)).  

 

After suspending 0.56 g calcium oxide in 25 mL of water in another vessel, the reactants 

were pre-heated to the reaction temperature 60 ± 2°C using an oil-bath. The formose 

reaction was started by transferring the formaldehyde solution containing the dissolved 

initiator into the vessel containing base. This reaction setup provides 1.66 M formaldehyde, 

0.2 M calcium hydroxide and 100 ppm initiator as starting conditions. 

 

The formose reaction was stopped after 20 min by adding 5.6 mL of 10% (w/v) hydrochloric 

acid to the batch reactor. After cooling down to room temperature pH=7 was adjusted by 

adding 5% (w/v) sodium hydroxide.  

 

3.1.2.2 Analytical equipment  

LC-UV of per-O-benzoylated alditols (PBA) was performed on a Dionex Ultimate 3000 HPLC 

(Dionex, Vienna, Austria) equipped with a diode-array-detector operated by Chromeleon 

software version 6.80 SR9 applying the following chromatographic conditions: Zorbax 

Eclipse XDB C18-column 5.0 µm material (Agilent Technologies, Waldbronn, Germany),  

150 x 4.6 mm, precolumn Zorbax Eclipse XDB-C18 (Agilent) 12.5 x 4.6 mm operated at 

25°C; gradient: 0-40 min: 20-95% CH3CN applying 1 mL*min-1 flow rate, 41-50 min: 100% 

CH3CN applying 1.1 mL*min-1 flow rate, 51-55 min: 20% CH3CN applying 1 mL*min-1 flow 

rate; the eluents used contain 0.01% (v/v) formic acid maintaining pH~4; detection 

wavelength: 240 nm; injection volume 10 µL. The resulting dwell volume was determined to 

be 400 µL. 

 

LC-ESI-MS-analysis was performed using the same HPLC which was used for LC-UV of 

PBAs. An Agilent MSD 6320 IonTrap MS (Agilent Technologies, Palo Alto, CA, United 

States) controlled by Bruker LC/MSD Trap software version 5.3 together with an ESI source 

from Agilent Technologies was used as a mass-selective detector in positive ion mode. 

Source parameters were set as follows: drying gas temperature 350°C, drying gas flow  

8 L*min-1, nebulizer pressure 20 psi and capillary voltage 2000 V. The Agilent MSD 6320 
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IonTrap MS was connected to the LC with a fixed flow splitter (split ratio 1:4). In addition, 20 

µL*min-1 ionization buffer consisting of 0.1 mM formic acid, 0.1 mM sodium formate and 10% 

(v/v) methanol were supplied postcolumn to the flow splitter. Scanning was carried out from 

50 to 2200 m/z in Ultra Scan mode at 26.000 m * z-1 * sec-1 using 500 m/z as target mass. 

Data interpretation and peak integration was based on extracted ion chromatograms ± 0.5 

m/z peak width. 

 

For investigations on analyte recovery a Thermo Savant SPD SpeedVac SPD131DDA 

operated at 65°C and maximum vacuum combined with a Thermo Savant Refrigerated 

Vapor Trap RVT405DDA and a Thermo Savant OFP-400 pump were used. 

 

3.1.2.3 Reduction as a pretreatment step  

A 500 µL formose sample aliquot was diluted with 2.5 mL of HQ-water. After adding 30 mg of 

NaBH4 reduction was carried out for two hours at room temperature. 400 µL of 10% (w/v) 

hydrochloric acid was added in order to stop the reaction. The completeness of reduction 

was confirmed by reducing carbohydrate model solutions and checking subsequently for the 

absence of the characteristic UV-signal after DNPH-derivatization [187]. 

 

In order to remove borates as their volatile trimethylborate-esters the following optimized 

evaporation procedure (see supplementary material) was carried out: 80 µL of a reduced 

formose sample, which did not contain more than 600 µg of carbohydrates, were transferred 

to a 1.5 mL glass-vial. After adding 0.5 mL of methanol, evaporation was carried out in a 

stream of N2 at 45°C. After carrying out the addition of methanol and subsequent evaporation 

fifteen times for up to 40 samples in parallel the samples were allowed to dry. The entire 

evaporation procedure did not take more than two hours.  

3.1.2.4 Benzoylation   

For the analysis of formose reaction-samples the following optimized reaction conditions 

were applied (optimization see supplementary material): the reduced dry samples were 

dissolved in 600 µL of pyridine/dimethylformamid 2:1 at 62°C for 20 min. After cooling to 

room temperature 50 µL of benzoylchloride was added and subsequent derivatization was 

carried out at 80°C for 90 min. After quenching the excess of reagent by adding 300 µL of 

methanol the samples were ready for analysis.  
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3.1.3 Results and discussion  

3.1.3.1 Qualitative characterization of PBAs by means of LC-UV and LC-ESI-MS 

As summarized in Table 7, the qualitative characterization of PBAs has been carried out on 

the basis of extracted ion chromatograms of the mother ions, which are explained in terms of 

stoichiometric calculations [194, 205]. As an example the structure of D-Glc as well as  

2-hydroxymethylglyceraldehyde converted to their corresponding PBAs amenable to analysis 

is shown in Figure 6. 
 

 retention 

time [min] 

M [Da] 

of PBA 

mother ion 

(MI) [Da] 

explanation 

Glycolaldehyde 24.4 270 293 [M+Na]+ 

2-HMG 26.3 418 457 [M+K]+ 

D-Glyceraldehyde  30.9 404 427 [M+Na]+ 

2-HMT 31.0 552 591 [M+K]+ 

D-Threose 34.8 538 561 [M+Na]+ 

D-Ery 35.2 538 561 [M+Na]+ 

D-Xyl/D-Ara/D-Lyx 37.6 672 695 [M+Na]+ 

D-Rib 38.2 672 695 [M+Na]+ 

L-iditol/D-Gal/D-

Glc/D-Man 

39.3 806 829 [M+Na]+ 

D-Alt 39.8 806 829 [M+Na]+ 

D-All 40.3 806 829 [M+Na]+ 

Heptoses 40.3 - 41.5 941 964 [M+Na]+ 

Octoses 41.5 - 42.7 1075 1098 [M+Na]+ 

 

Table 7: Retention time, nominal masses of PBAs and characteristic ions observed in LC-ESI-MS 
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sodium adducts at the expected retention time (~ 40 min).  Due to the limited availability of 

heptose as well as octose carbohydrate standards these analytes have only been determined 

qualitatively.  

 

As the groups of D-Xyl, D-Ara, D-Lyx and D-iditol, D-Gal, D-Man, D-Glc are coeluting it 

appeared to be necessary to enhance separation efficiency. However, separation of all the 

pentoses and hexoses present as their PBA seems to be very difficult even when 3.0 µm 

particles are used [193]. Apart from reversed phase (RP)-C18, RP-C8 (data not shown), and a 

phenyl-phase operated in normal phase elution mode were used for separating PBAs but no 

significant improvement in separation is evident [197]. As the group of D-Xyl/D-Ara/D-Lyx and 

L-iditol/D-Gal/D-Glc/D-Man show comparable slopes in UV-calibration (data not shown) 

quantification was carried out on the basis of D-Xyl and D-Man calibration data in UV- as well 

as in MS-quantification.  

 

3.1.3.2 Evaluation of partial benzoylation of alditols 

Apart from the PBAs identified (see Table 7 and Figure 7) a number of unknown peaks 

appear in LC-UV, which could correspond to partially benzoylated as well as unknown 

compounds. In order to estimate the presence of partially-O-benzoylated alditols interfering 

in LC-UV, the following nominal masses of characteristic ions were calculated originating 

from partial benzoylation as shown in Table 8.   
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  fully 

benzoy-

lated 

 Number of benzoyl-units missing  explana-

tion 
1 2 3 4 5 6 7 8 

Glycolaldehyde 293 190 86  -  - -   - -  -  [M+Na]+ 

Trioses 427 324 220 117  -  -  -  -  - [M+Na]+ 

2-HMG 457 354 250 147  -  - -   -  - [M+K]+ 

Tetroses 561 458 354 251 147  -  -  -  - [M+Na]+ 

2-HMT 591 488 384 281 177  -  -  -  - [M+K]+ 

Pentoses 695 592 488 385 281 178  -  -  - [M+Na]+ 

Hexoses 829 726 622 519 415 312 208  -  - [M+Na]+ 

Heptoses 964 861 757 654 550 447 343 240  - [M+Na]+ 

Octoses 1098 995 891 788 684 581 477 374 271 [M+Na]+ 

 

By scanning for the masses of partially O-benzoylated alditols calculated in Table 8 the 

presence of the ions probably corresponding to alditols mainly missing one but rarely two 

benzoyl-units could be confirmed (see Figure 13, supplementary material; probably 

interfering partially O-benzoylated alditols were only assigned to the peaks doubtlessly 

identified, small peaks detected around 35-40 min retention time are considered as 

unspecific). The interference of partially-O-benzoylated compounds with the targets 

amenable to UV-quantification was found to be probable in several cases as indicated in 

Figure 8. Potential interference occurs in case of 2-HMG by tetrose (-1; indicates the number 

of benzoyl-units missing) and octose (-2); 2-HMT by pentoses (-1); D-Ery by hexoses (-1) as 

well as D-Xyl/D-Ara/D-Lyx by heptoses (-1). In addition, the potential presence of 2-HMT (-1), 

hexoses (-2) as well as heptoses (-2) not coeluting with the target compounds amenable to 

UV-quantification has been confirmed since their corresponding mother-ions could be 

detected (see Figure 8 and Figure 13). 

 

 

 

 

 

Table 8: Nominal masses of partially benzoylated alditols probably amenable to detection in LC-ESI-

MS; the formation of the corresponding cation-adduct is assumed. 
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Although the reaction conditions applied in benzoylation have been carefully selected (see 

supplementary material) considerable amounts of probably partially-O-benzoylated alditols 

could be detected (extracted ion chromatograms see Figure 13 in supplementary material, 

note the y-axis scaling). As the yield of fully benzoylated alditols is depending on several 

parameters, calibration was carried out on the basis of aldoses, which were converted to 

their corresponding PBAs by applying the whole derivatization procedure. Thus, the need to 

determine the derivatization yield, as well as the analyte recovery for calibration, has been 

eliminated. Only in case of 2-HMG the alditol was used for calibration since the 

corresponding aldose could not be easily provided by synthesis (see supplementary 

material). Hence, the content of 2-HMG and 2-hydroxymethylglyceraldehyde, quantified as 2-

HMG in the real formose sample, can only be estimated by the calibration procedure applied 

since 2-HMG detected in its per-O-benzoylated form is not exposed to the whole sample 

preparation procedure.  

 

Figure 8:  LC-UV chromatogram obtained from a real formose sample using glycolaldehyde initiator; 

carbohydrates were analyzed as their per-O-benzoylated alditols; potentially partially-O-benzoylated 

alditols are marked in red; negative value indicates the number of benzoyl-units missing. 
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Moreover, moderate concentrations of K2HPO4 are known to favor the formation of partially 

benzoylated derivates whereas particularly high concentrations of sodium hydroxide enhance 

the formation of fully benzoylated derivates [194].  

 

3.1.3.3 Quantification of carbohydrates as their PBAs  

3.1.3.3.1 UV-validation data  

 
Linear regression modeling using five-point external standard calibration demonstrated a 

good linearity over 3 orders of magnitude for every aldose as well as for 2-HMG (see Table 

9). The resulting regression coefficients varied from 0.951 to 0.996. The LOD and LOQ were 

calculated according to the 3σ- and 10σ-criterion, i.e. the three- and tenfold standard 

deviation of the noise quantified via single point calibration (after DIN 32465:2008-11) [206].  

 regression 

coefficient 

(R2) 

LOD on 

column 

[nmol] 

LOQ on 

column 

[nmol] 

method 

working rangeb 

[ng*µL-1] 

RSD  

[%; n=3] 

Glycolaldehyde - - - - - 

2-HMG 0.98 5.5 18.3 0.2 – 27.0 6.0 

D-Glyceraldehyde 0.98 115.5 385.1 3.5 – 90.6 5.3 

2-HMT 0.98 7.7 35.7 0.3 – 69.1 2.1 

D-Threose 0.987 6.9 22.9 0.3 – 117.2 3.5 

D-Ery 0.989 12.6 42.1 0.5 – 105.0 3.6 

D-Xyl/D-Ara/D-Lyx     4.8 

  D-Xyl 0.989 7.2 23.9 0.4 – 120.0  

  D-Araa 0.996 7.5 25.0 0.4 – 117.6  

  D-Lyxa 0.986 6.9 22.9 0.4 – 97.6  

Rib 0.993 7.5 24.9 0.4 – 122.3 4.2 

L-iditol/D-Gal/D-Glc/D-Man     2.6 

Table 9: Linearity, detection limits, working range and repeatability precision (n … number of 

replicates) of carbohydrates quantified as their PBAs in LC-UV; chromatographic conditions see 

section 3.1.2.2. 
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 regression 

coefficient 

(R2) 

LOD on 

column 

[nmol] 

LOQ on 

column 

[nmol] 

method 

working rangeb 

[ng*µL-1] 

RSD  

[%; n=3] 

  L-iditol - - - - - 

  D-Gal 0.951 339.2 1130.5 20.4 – 110.6  

  D-Glc 0.975 75.1 250.4 4.5 – 108.2  

  D-Man 0.976 239.9 799.6 14.4 – 120.0  

D-Alt 0.973 5.8 19.3 0.3 – 98.8 5.7 

D-All 0.995 5.7 19.2 0.3 – 104.7 6.3 

 a: yield identical alditols; b: LOQ and highest standard for calibration considered. 

 

The lowest absolute LOD and LOQ (on column) were achieved for 2-HMG (5.5 and 18.3 

nmol), while D-Gal featured the highest LOD and LOQ (0.3 µmol and 1.1 µmol). Satisfying 

repeatability precision ranging from 2.1 (2-HMT) to 6.3 (D-All) %RSD was determined by 

injection of independent standards in triplets (see Table 9).  

 
Accuracy was determined by performing standard addition to a real formose reaction sample. 

Quantitative recovery (99.9 to 100.2%) of carbohydrates was observed except for 

glycolaldehyde. Thus, analysis of glycolaldehyde using NaBH4-reduction and benzoylation as 

done in this work only yielded qualitative data. The concentration of glycolaldehyde in 

formose reaction-samples was quantified by DNPH-derivatization of a 1:500 diluted raw 

formose reaction-sample (see supplementary material). However, due to a moderate LOD of 

46.3 ng*µL-1 an alternative way for the determination of glycolaldehyde in formose reaction-

samples remains to be developed. 

 

3.1.3.3.2 MS-validation data 

 
Except for early eluting peaks (2-HMG, D-glyceraldehyde and 2-HMT) internal standard 

calibration using 13C-glucose was carried out as indicated in Table 10. The regression 

models were chosen according to the best quality of fit using a five-point calibration. The 

resulting regression coefficients for the particular regression model selected varied from 

0.966 to 0.999. The LOD and LOQ were calculated according to the 3σ- and 10σ-criterion, 

i.e. the three- and tenfold standard deviation of the noise quantified via single point 

calibration (after DIN 32465:2008-11) [206].  
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 Calibration 

typea 

regression 

coefficient 

(R2) 

LOD 

on 

column 

[nmol]

LOQ 

on column 

[nmol]

method 

working 

rangec  

[ng*µL-1] 

RSD  

[%; n=3] 

Glycolaldehyde - - - - - - 

2-HMG Q, ES 0.999 10.3 34.2 0.6 – 54.0 12.1 

D-Glyceraldehyde Q, ES 0.977 190.8 636.0 4.6 – 90.6 20.3 

2-HMT Q, ES 0.999 6.3 21.2 0.2 – 46.1 5.9 

D-Threose Q, IS 0.961 2.4 8.2 0.1 – 117.2 7.9 

D-Ery L, IS 0.981 8.3 27.8 0.3 - 105  3.1 

D-Xyl/D-Ara/D-Lyx L, IS     17.8 

  D-Xyl  0.991 6.0 20.1 0.3 - 120  

  D-Arab  0.992 9.8 32.8 0.5 – 117.6  

  D-Lyxb  0.997 18.4 61.5 1.1 – 97.6  

Rib L, IS 0.994 16.6 55.5 0.8 – 122.3 8.6 

L-iditol/D-Gal/D-Glc/D-

Man 

L, IS     7.8 

  L-iditol  - - - - - 

  D-Gal  0.979 30.9 103.9 2.5 – 110.6  

  D-Glc  0.997 15.8 52.8 1.3 – 108.2  

  D-Man  0.999 57.0 190.2 4.6 – 118.8  

D-Alt Q, IS 0.966 22.0 73.5 1.2 – 65.9 8.3 

D-All Q, IS 0.984 16.1 53.8 0.9 – 69.8 6.3 

a:L ... linear, Q ... quadratic, IS ... internal standard calibration, ES ... external standard calibration;  
b: yield identical alditols; c: LOQ and highest standard for calibration considered. 

 

The lowest absolute LOD and LOQ (on column) were achieved for D-threose (2.4 and 8.2 

nmol) while D-glyceraldehyde featured the highest LOD and LOQ (190.8 and 636.0 nmol; 

detailed data see Table 10). This rather weak LOD could be explained in terms of obtaining a 

Table 10: Regression model, quality of fit, detection limits, working range and repeatability precision of 

carbohydrates (n … number of replicates) quantified as their PBAs in LC-ESI-MS; improved LOD 

compared to LC-UV written in bold style; chromatographic conditions see section 3.1.2.2. 



 - 48 - 

very small signal for D-glyceraldehyde in the blanks. Compared to LC-UV, a significant 

improvement in LOD (on column) could be obtained in case of 2-HMT: 6.3 nmol (7.7 nmol in 

UV), D-Gal 30.9 nmol (339.2 nmol in UV), D-Glc 15.8 nmol (75.1 in UV) and D-Man 57.0 

(239.9 nmol in UV). However, by using e.g. highly purified solvents further improvement in 

LOD seems to be realizable.  

 

As sodium formate was used in the ionization buffer inter-day repeatability precision has 

been evaluated. LC-ESI-MS was found to work stable without any indication of drift (data not 

shown). Satisfying intra-day repeatability precision ranging from 3.1 (D-Ery) to 20.3  

(D-glyceraldehyde) %RSD has been determined by injection of independent standards in 

triplets (detailed data see Table 10). Acceptable RSD-values were achieved in case of early 

eluting peaks (2-HMG, D-glyceraldehyde and 2-HMT), even though external standard 

calibration was used. As a matter of fact, for the precise quantification of formose 

carbohydrates using LC-ESI-MS the application of at least one multiple 13C-labeled internal 

standard turned out to be essential. The implementation of multiple 13C-labeled internal 

standards might be beneficial in terms of improving repeatability precision. However, for 

routine analysis the rise in costs caused by usage of multiple 13C-labeled internal standards 

is considerable. 

 

Accuracy has been determined by performing standard addition to a real formose reaction-

sample. Almost quantitative recovery (81.1 to 113.3%) of carbohydrates except for 

glycolaldehyde has been observed.  

 

3.1.3.3.3 Evaluation of UV-quantification using MS-data 

After quantifying real formose samples in LC-UV the samples were re-quantified using LC-

ESI-MS-calibration. As 13C-glucose was used as an internal standard in MS-quantification, 

the samples were analyzed twice, once in LC-UV and once in LC-ESI-MS, since the internal 

standard yields a UV-signal for per-O-benzoylated sorbitol. As the repeatability precision 

accounts for ≤ 6.3% RSD (n=3) in LC-UV as well as ≤ 20.3% RSD (n=3) in LC-ESI-MS, 

cross-validation of UV-quantification relative to MS-data has been carried out. The results  

are shown in Table 11.  
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 Initiator used for formose reaction Quality of 

match Glycolaldehyde D-

Glyceraldehyde 

D-Ery D-Xyl D-Glc 

D-Glyceraldehyde 99.1 121.1 104.3 124.7 119.7 good 

D-Threose 47.8 43.8 76.5 88.1 66.5 moderate

D-Eryd 44.6 26.7 48.4 68.0 70.5 moderate

D-Xyla,e 76.5 49.0 98.5 128.6 120.3 good 

D-Rib 43.5 29.2 101.3 143.9 139.1 moderate

D-Manb 31.3 27.8 35.8 50.1 42.8 bad 

D-Altf 79.8 78.1 104.4 133.9 110.0 good 

D-Allg 29.6 29.1 43.9 61.6 63.0 bad 

2-HMGh 124.0 130.2 94.2 120.3 120.8 good 

2-HMTc 19.3 36.0 20.7 29.6 32.5 bad 

a: representing D-Xyl/D-Ara/D-Lyx; b: representing L-iditol/D-Gal/D-Glc/D-Man; c: interference probably 

by pentoses (-1); d: interference probably by hexoses (-1); e: interference probably by heptoses (-1); f: 

interference probably by D-iditol/D-Gal/D-Glc/D-Man (see Table 7); g: interference probably by 

heptoses (see Table 7); h: quantification probably distorted by the calibration approach applied, 

interference probably by tetroses (-1) and octoses (-2). 

 

 

Independent from the initiator used for conducting the formose reaction, LC-UV-quantification 

was found to be in good agreement with LC-ESI-MS in case of D-glyceraldehyde, D-Xyl, D-

Alt as well as 2-HMG. This agreement could be achieved although D-Xyl is used for the 

quantification of the group of D-Xyl/D-Ara/D-Lyx and probable interference with partially-O- 

benzoylated compounds was found to take place in case of D-Xyl, D-Alt and 2-HMG. In case 

of 2-HMG the quantification in the real formose samples only represents an estimation since 

the alditol instead of the corresponding aldose has been applied in calibration.  

 

Considering D-threose, D-Ery as well as D-Rib, LC-UV-quantification was found to be in 

moderate agreement with LC-ESI-MS. Although no interference of partially benzoylated 

Table 11: Evaluation of the quantification in LC-UV on the basis of MS-data; figures in [%] relative to 

UV. 



 - 50 - 

alditols was found in case of D-threose and D-Rib only a moderate agreement could be 

achieved.  

 

Considering D-Man, D-All as well as 2-HMT to be analyzed in LC-UV, significant deviation 

based on the LC-ESI-MS quantification was found. As D-Man is used for the quantification of 

the group of L-iditol/D-Gal/D-Glc/D-Man and the quantification of D-All and 2-HMT is 

probably interfered by the presence of heptoses and partially-O-benzoylated alditols, the 

significant discrepancy could be explained. It is supposed that a significant amount of 

unknown UV-absorbing compounds is probably eluting at the retention times corresponding 

to D-threose, D-Rib, D-Man, D-All as well as 2-HMT. This reasonable suspicion could be 

confirmed by observing the MS-spectra obtained (data not shown).  

 

3.1.3.3.4 Quantification of formose carbohydrates as their PBAs 

Formose carbohydrates were analyzed as their PBAs in LC-ESI-MS and standard analytical 

tools were used for the analysis of key compounds (e.g. residual formaldehyde; see 

supplementary material). Quantitative conversion of formaldehyde (98.5 to 98.8%) was 

obtained independent from the type of initiator used. As a rather large amount of 

formaldehyde is converted within the formose reaction (89.3 to 94.2%) the extent of 

cannizzaro reaction accounts only for 3.4 to 10.3% (detailed data not shown). Based on 

stoichiometric calculations of the cross-cannizzaro reaction the total conversion of branched 

chain-sugars to branched-chain alditols is estimated to account for 0.8 to 2.4% of total 

converted formaldehyde.  

 

For the quantification of formose carbohydrates as their PBAs commercially available 

standards as well as 2-HMG and 2-HMT synthesized were used (see Table 7). The fraction 

of carbohydrates quantified as their PBAs in LC-ESI-MS has been calculated as a 

benchmark in order to assess the strength of the method presented. 19.3 to 37.3% (w/w) of 

formose carbohydrates detected as their PBAs (without consideration of glycolaldehyde) is 

acceptable with regard to the exclusive use of commercially available as well as two 

synthesized standards (detailed data not shown). 

 

As depicted in Figure 9, the ratio of the individual carbohydrate-classes with regard to chain-

length as well as 2-HMG and 2-HMT remains almost constant irrespectively of the type of 

initiator used.  
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amenable to analysis by the method applied, which overcomes the limitations of 

conventional gas chromatographic analysis of carbohydrates.  

 

2. Quantifying carbohydrates as their per-O-benzoylated alditols in LC-UV provides valid 

data in case of D-glyceraldehyde, 2-hydroxymethylglycerol, which depicts a 

branched-chain alditol occurring in the formose reaction, D-Xyl as well as D-Alt 

although a significant amount of carbohydrate degradation products is present. With 

regard to the determination of these analytes, this method delivers valid results at 

minimum effort. Considering samples with a similar complex carbohydrate spectrum, 

the methodology applied in this work can be extended just straight forward.  

 

3. As a key advance benzoylation provides a significant increase in ESI-response, 

which facilitates the detection of otherwise hardly amenable compounds. In case of 

formose reaction samples generated for providing representative carbohydrate 

mixtures, limit-of-detection could be improved in case of 2-hydroxymethyltetritol, 

which represents another branched-chain alditol, D-threose, D-Gal, D-Glc and D-

Man. The amount of formose carbohydrates quantified as their PBAs in LC-ESI-MS 

ranges from 19.3 to 37.3% demonstrating the strength of the method presented. 

 

Apart from the analytes quantified as their PBAs in this work the formose reaction delivers a 

broad spectrum of byproducts formed such as sugar acids as well as α-dicarbonyl-

compounds, as some preliminary investigations showed. Investigating different GC/MS-

methods for the analysis of formose reaction-samples for discovering the broad variety of 

carbohydrates is under way (manuscript in preparation). Due to an unsatisfactory LOD of 

46.3 ng*µL-1 for glycolaldehyde after DNPH-labeling and LC-UV-analysis an alternative way 

for the determination of glycolaldehyde in formose reaction-samples remains to be 

developed.  

 

3.1.5 Supplementary material 

3.1.5.1 Analysis of formose reaction key compounds and semi-preparative 
chromatography 

Analysis of formaldehyde, glycolaldehyde and formic acid as their corresponding DNPH-

derivate as well as semi-preparative chromatography for the production of  

2-hydroxymethylglycerol, a representative branched-chain alditol, was conducted on a VWR-

Hitachi EzChromElite HPLC (VWR, Vienna, Austria) consisting of a L 2130 pump, L 2200 
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autosampler, L 2350 column oven, L 2450 diode array detector- and a L 2490 RI-detector 

operated by EzChromElite Client/Server software version 3.1.7. The chromatographic 

conditions for the analysis of DNPH-derivatives were identical with those described in [187] 

except for applying a truncated gradient and injecting 10 µL: 0-33 min: 5-57.2% CH3CN 

applying 1 mL*min-1 flow rate, 33.1-43 min: 100% CH3CN applying 1.2 mL*min-1 flow rate, 

43.1-48 min: 5% CH3CN applying 1 mL*min-1 flow rate; the eluents used contain 0.025% (v/v) 

formic acid maintaining pH~3. Formaldehyde was determined by derivatization of a 1:500 

diluted raw formose sample with an acceptable precision (0.9% RSD (n=3); 6.2 ng*µL-1 LOD; 

20.8 ng*µL-1 LOQ). Glycolaldehyde was quantified by derivatization of a 1:500 diluted raw 

formose sample with an acceptable precision (1% RSD (n=3)) but shows only a moderate 

LOD of 46.3 ng*µL-1 and 154.5 ng*µL-1 LOQ. Formic acid was measured by performing 

DNPH-labeling of an undiluted NaBH4-reduced formose sample, reversed phase (RP)-

chromatography as described before and UV-detection at 360 nm providing 1% RSD (n=3), 

2.7 ng*µL-1 LOD, 9.1 ng*µL-1 LOQ, and accuracy of 95%.  

 

In case of semi-preparative chromatography a Biorad Aminex HPX 87C 7.8 x 300 mm HPLC 

column was operated at a flow rate of 0.7 mL*min-1 HQ-water, oven temperature 80°C and 

RI-detection. A Besta multipositon-valve was used for collecting fractions. 

 

Methanol was analyzed using a Shimadzu GC17A (Shimadzu, Korneuburg, Austria) 

equipped with a HP-PLOT U column, 320 µm x 30 m, 10 µm film thickness (Agilent 

Technologies) and a flame ionization detector (FID). The column was operated using He 

carrier gas at 120 kPa constant head-pressure, splitless injection, 3 min sampling time, and 

the following temperature program: 125°C, 0.2 min equilibration time; 10°C*min-1 gradient; 

180°C for 10 min finally. The temperature of the injector has been set to 150°C, whereas the 

temperature of the FID has been maintained at 280°C. GC-solution software version 2.30.00 

was used for controlling the gas-chromatograph and for data processing. Headspace 

samples were injected using a HP 7694E Headspace sampler (Agilent Technologies) 

equipped with a 3 mL sample loop.  

 

Residual formaldehyde is almost quantitatively converted to methanol by reduction, which 

was checked with model solutions. The concentration of methanol was determined by 

headspace GC-analysis. By subtracting the formaldehyde-value, which has been determined 

by DNPH-derivatization, expressed as methanol from the methanol-value determined after 

reduction, the content of methanol in the raw formose sample was calculated easily. 

Methanol was determined using standard addition and isopropanol as an internal standard 

featuring 7.1% RSD (n=3), 0.5 ng*µL-1 LOD and 1.6 ng*µL-1 LOQ. 
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3.1.5.2 Synthesis of representative branched-chain alditols 

It should be taken into account that the amount of 2-HMG and 2-HMT quantified is 

corresponding to the sum of aldose or ketose, which did not yet react within a cross-

cannizzaro reaction and 2-HMG as well as 2-HMT, the final product of the cross-cannizzaro 

reaction, since reduction is carried out as a sample preparation step. Two representative 

branched-chain alditols namely 2-HMG (IUPAC: 2-(hydroxymethyl)propane-1,2,3-triol) and  

2-HMT were synthesized.  

 

NMR-spectroscopy was carried out by Deutero GmbH, Kastellaun, Germany by using a 

Varian VXR-300S instrument. NMR spectra were recorded at 398.908 MHz for 1H and 

100.567 MHz for 13C, respectively, using DMSO-d6-solvent.  

 

3.1.5.2.1 Synthesis of 2-hydroxymethylglycerol 

2-HMG was produced from tris by diazotation and subsequent decomposition of the 

corresponding alkyldiazonium-salt [208]. Conditions similar to those reported in literature were 

chosen [190]: 17.1 ml of concentrated acetic acid was added to 100 mL of water; 12.1 g of tris 

was dissolved and the solution was kept at 4°C. 6.9 g of sodium nitrite was dissolved in 25 

mL of water and also kept at 4°C. After adding the sodium nitrite solution to the dissolved tris, 

the solution was vigorously mixed for 12 hours at 4 °C. Finally the solution was warmed to 

room temperature. Dowex 50WX2-400 cation exchange resin was added to an aliquot of the 

reaction solution. After centrifugation at 3000 rpm for 5 min the supernatant was subjected to 

semipreparative-chromatography in order to isolate 2-HMG (see section 4.5.2). Sufficient 

substance was obtained to be useful as a standard for quantification and for NMR-

spectroscopy for structure confirmation of 2-hydroxymethylglycerol (2-HMG; IUPAC:  

2-(hydroxymethyl)propane-1,2,3-triol): 

 
1H-NMR (DMSO-d6): δ = 3.3 (d, J = 6.6, CH2-groups),  4.0 (s, tertiary OH-group), 4.3 (t, J = 

6.7, primary OH-group) ppm.   
13C-NMR (DMSO-d6): δ =  62.84 (CH2-groups), 74.29 (quaternary carbon) ppm.   

 

The NMR-data obtained (1H-peak area ratio of 6:1:3 and a matching coupling pattern) 

indicates the formation of 2-hydroxymethylglycerol (2-HMG; IUPAC: 2-(hydroxymethyl) 

propane-1,2,3-triol).  
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3.1.5.2.2 Synthesis of 2-hydroxymethyltetritol 

2-HMT was produced by NaBH4-reduction of apiose, a naturally occurring branched chain-

sugar. LC-ESI-IonTrap-MS only provides nominal mass resolution. Nevertheless, 

identification of 2-HMT has been carried out by comparison of the mass of the mother ion 

observed at the expected retention time based on LC-UV with the one calculated, which 

corresponds to the sodium-adduct of the PBA (see Table 7). 

 

3.1.5.3 Analyte recovery with respect to the removal of borate species  

Critical evaluation of the analyte recovery observed during removal of borate species as their 

methylborate ester has been carried out by exposing model solutions to the derivatization 

procedure. If methanol was evaporated in a stream of nitrogen at 45°C, glycolaldehyde could 

only be recovered to a very low extend (~2%). Carrying out the evaporation in a Speedvac at 

lowered pressure, only C5-C6 alditols could be recovered almost quantitatively. Apart from the 

loss of approximately 40% of C4- and 95% of C3-alditols ethyleneglycol was lost almost 

quantitatively.  

 

3.1.5.4 Evaluation of the benzoylation of alditols  

In order to ensure a quantitative labeling of hydroxyl containing compounds and due to little 

information available in literature [189, 193-197] a critical evaluation of the benzoylation of alditols 

was performed. For the optimization of derivatization quantification has been carried out at 

254 nm, which allows to quantify rather high alditol concentrations (c = 1 µg*µL-1) due to 

moderate detector response. 240 nm has been selected as the standard wavelength for 

analysis due to an appreciable signal-to-noise-ratio as well as acceptable sensitivity. 

 

To check the influence of the chain length of alditols on the success of labeling the following 

trials were carried out: 5 mg of D-sorbitol, D-xylitol and D-threitol were dissolved individually 

in 1 mL pyridine/dimethylformamid 2:1 at 62°C for 20 min, 600 µL of 1:5 diluted aliquots were 

transferred into other 1.5 mL glass-vials. After cooling to room temperature different amounts 

of benzoylchloride-reagent (5 to 120 µL; if less than 120 µL was used solvent was used in 

order to fill up to 120 µL) were added, which corresponds to a ratio from 2 to 45 of 

derivatization reagent with respect to OH-functions. Reacting 2.5 h at 80°C was considered 

sufficient for quantitative derivatization. After cooling down to room temperature the excess 

of reagent was quenched by adding 300 µL of methanol. As shown in Figure 10 almost 
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quantitative derivatization was obtained if at least a 10-fold excess of reagent with respect to 

OH-functions was applied.  

 

 

Figure 10: Relation between the relative peak area observed and the molar ratio of 

benzoylchloride/OH in case of D-sorbitol, D-xylitol and D-threitol; derivatization at 80°C for 2.5 hours. 

 

In order to ensure sufficient reagent to be present with respect to OH-functions a 20-fold 

excess of benzoylchloride was selected as the optimal ratio for derivatizing alditols. Based on 

this, further investigations were carried out:  

 

To determine the optimal reaction time, a 1 µg*µL-1 D-sorbitol-standard was selected for 

derivatization starting from 15 to 150 min. As shown in Figure 11, optimal reaction time was 

determined as 90 min to obtain maximum peak area.  

 



 - 57 - 

 

Figure 11: Relation between the relative peak areas of a 1 µg*µL-1 D-sorbitol standard according to 

reaction time using a 20-fold excess of benzoylchloride with respect to OH-functions and 80°C 

reaction temperature.  
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3.1.5.5 Detection of extracted ions in LC-ESI-MS for compound identification 

3.1.5.5.1 per-O-benzoylated alditols 

 

Figure 12: Detection of per-O-benzoylated alditols in LC-ESI-MS for assigning the retention time to 

the corresponding peaks in LC-UV. 
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3.1.5.5.2 partially-O-benzoylated alditols  

 

Figure 13: Detection of partially-O-benzoylated alditols in LC-ESI-MS for assigning the retention time 

to the corresponding peaks in LC-UV. 
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3.2 Investigation of the aldol-reaction of formaldehyde and glycolaldehyde  

 

In the present chapter the selection of appropriate reaction conditions, in order to realize the 

aldol-condensation step yielding C3-carbohydrates, was investigated systematically. 

Experiments were conducted using a batch reactor-system. Conducting the aldol-reaction at 

room temperature (25°C) yields viable product distributions as some preliminary trials 

showed (data not shown). The detailed parameters applied are listed in Table 12. 

Catalysis-system Heterogeneous Homogeneous 

Formaldehyde 50 50 

Methanol 13.5 13.5 

Calcium hydroxide 14.8 0.58 

Glycolaldehyde 1.25 1.25 

Temperature [°C] 25 25 

Reaction volume [mL] 50 50 

10% (w/v) Hydro-

chloric acid used as 

stopping solution [mL] 

6 2.5 

 

In case of heterogeneous catalysis the reactions were conducted using a Millipore stirred 

ultrafiltration cell (type XFUF07601) equipped with a 0.3 µm membrane (type JX MFPVDF 

Osmonics), which was used repeatedly without any indication of deterioration of the 

membrane. In case of homogeneous catalysis the reaction setups were carried out in a 

stirred 100 mL Schott DuranTM glass flask.  

 

108 mL of aqueous 37% (w/v) formaldehyde solution were diluted to a final volume of 0.5 L 

containing 1.25 g glycolaldehyde, which represents solution A. Calcium hydroxide was 

suspended in 25 mL of water in the filtration cell (heterogeneously catalyzed) or in another 

vessel (homogeneously catalyzed) representing solution B. The reactants (25 mL of solution 

A and solution B) were pre-heated to the reaction temperature ± 2°C using an oil-bath. The 

aldol-reaction was started by transferring the formaldehyde-solution containing dissolved 

Table 12: Standard aldol-condensation setup, data in g * L-1 unless  

otherwise stated. 
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glycolaldehyde into the vessel containing base. This reaction setup provides 1.33 M 

formaldehyde and 20.8 mM glycolaldehyde as starting conditions. 

 

After carrying out the reaction in case of heterogeneous catalysis filtration has been carried 

out by applying 5 bar nitrogen pressure. The reaction time is defined as the time between 

adding the formaldehyde solution containing dissolved glycolaldehyde and starting filtration. 

Dependent on the properties of the cleaned membrane filtration time accounted for 

approximately 2 min. The permeate obtained was collected by usage of a measuring flask 

containing the stopping solution being continuously stirred at ambient conditions. 

 

In case of homogeneous catalysis the reaction was quenched by adding stopping solution to 

the continuously stirred batch reactor. After cooling down to room temperature pH=7 was 

adjusted by adding 5% (w/v) sodium hydroxide independent from the catalysis system 

chosen.  

 

Quantification of the carbohydrates as their PBAs in LC-UV provides valid data for  

D-glyceraldehyde, 2-HMG, D-Xyl and D-Alt as shown in Table 7. Since partial formaldehyde 

conversion is considered, which is expected to yield just traces of carbohydrates degradation 

products, only minor interference of the remaining analytes is expected. However, in order to 

confirm the identity of the target-compounds such as C3-carbohydrates particular attracting 

attention in this work, e.g. mature GC/MS-technique including confirmation of the spectra 

observed with those available in libraries is considered to be essential.    

 

3.2.1 Heterogeneous catalysis 

With respect to the data reported in literature (see section 3.2) the formation of  

C3-carbohydrates has been investigated applying a rather big amount of glycolaldehyde 

acting as formaldehyde acceptor. As shown in Figure 14 the preferable formation of  

C3-carbohydrates was proven to be feasible.  
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Figure 14: Time dependency of the C3-carbohydrate formation using heterogeneous calcium 

hydroxide catalysis; total formaldehyde conversion ≤ 13.5% within 180 s; formic acid ≤ 0.45 g*L-1.  

 

Considering elevated reaction time (> 100 s) the formation of higher carbohydrates as well as 

cross-cannizzaro products e.g. 2-HMG and 2-HMT is evident. With regard to minimizing the 

formation of byproducts, 45 s reaction time was selected to be appropriate. As indicated in 

Figure 14 the amount of byproducts formed is decreasing from 120 to 180 sec. This 

phenomenon could be explained in terms of partially unknown side reactions taking place, 

e.g. the formation of saccharinic acid, which is not covered by the analytical methods 

applied. The permeate obtained in the heterogeneously catalyzed aldol-reaction was 

investigated with regard to time-dependent composition. As shown in Figure 15 the permeate 

collected was divided into five different fractions and analytical results are shown in Figure 

16.  
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Heterogeneous catalysis of the aldol-reaction is considered as disfavorable with regard 

recycling a rather high amount of salts in a process technological scale. Thus, trials were 

conducted applying homogeneous catalysis. 

 

3.2.2 Homogeneous catalysis  

3.2.2.1 Time dependency 

As shown in Figure 17 in a homogeneously catalyzed aldol-reaction the time scale is shifted 

towards longer intervals at a first glance (compared with Figure 14). Applying moderate 

reaction conditions the controllability of the reaction seems to be feasible.   

 

Figure 17: Time dependency of the carbohydrate-distribution obtained in the permeate using 

homogeneous calcium hydroxide catalysis; formaldehyde conversion ≤ 5% within 50 min; formic acid 

≤ 0.03 g*L-1.   

 

As indicated in Figure 17 the accumulation of significant amounts of byproducts can be 

prohibited to a certain extend by selecting an appropriate reaction time. In addition, taking 

the ratio of C1/C3 as well as C3/C4 into account, 30 min of reaction time was selected to be 

appropriate (see Table 13; line marked in bold style). 
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[min] C1/C3 C3/C4 

2.5 944.8 - 

5 789.1 - 

7.5 540.2 - 

10 399.8 - 

20 204.5 18.9 

30 193.3 34.6 

40 176.2 14.4 

50 167.1 15.7 

 

3.2.2.2 Concentration dependency  

3.2.2.2.1 Glycolaldehyde 

The dependency of the C3-carbohydrates formed with respect to the amount of 

glycolaldehyde applied is summarized in Table 14.  

C2 

applied 
2.5 3.75 

C3 1.2 1.7 

C4 0.1 0.1 

C5 0.1 ≤ LOD 

C6 ≤ LOD ≤ LOD 

2-HMG 0.1 0.1 

2-HMT ≤ LOD ≤ LOD 

C3/C4 15.5 15.8 

C1/C3 96.5 64.3 

 

As shown in Table 14 the yield of C3-carbohydrates obtained is directly proportional to the 

amount of glycolaldehyde applied. In order to obtain a significant amount of C3-

carbohydrates, 3.75 g*L-1 glycolaldehyde was selected for performing the aldol-condensation 

setups. As the aldol-reaction velocity is inverse proportional to the concentration of 

formaldehyde applied (see section 2.4.2.4) the influence on formaldehyde concentration was 

investigated.  

Table 13: Homogeneously catalyzed formation of C3-carbohydrates with respect to reaction time. 

Table 14: Dependency of the homogeneously catalyzed formation of C3-carbohydrates on the 

concentration of glycolaldehyde (C2) applied using 30 min reaction time; formaldehyde conversion ≤ 

9%; formic acid ≤ 0.03 g*L-1; data in g * L-1.  
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3.2.2.2.2 Formaldehyde 

As indicated in Table 14 and 15 decreasing formaldehyde concentration with respect to 

glycolaldehyde preferably yields higher condensation-products e.g. C4- and  

C5-carbohydrates.  

 

 

With regard to obtaining a significant amount of C3-carbohydrates 40 g*L-1 formaldehyde was 

selected based on the C1/C3- and C3/C4- ratios observed (grey column in Table 15).  

 

3.2.2.3 Dependency on the type of base 

Recycling of the byproducts accumulated during aldol-condensation of formaldehyde and 

glycolaldehyde also includes inorganic compounds. As hydrochloric acid is used as stopping 

solution for the calcium hydroxide catalyzed aldol-condensation, the calcium chloride formed 

has to be recycled. Converting calcium salts to their corresponding acids and bases is 

particularly difficult in electrodialysis using bipolar membranes due to the limited solubility of 

calcium hydroxide in aqueous solution [209]. Just the removal of calcium chloride can be 

realized by e.g. usage of a very cumbersome ion-exchange process. Thus, trials have been 

carried out in order to replace calcium with sodium. Based on the data reported in literature 

(see section 2.3.1.1) the following trials were carried out using the reaction conditions shown 

in Table 16. 

Table 15: Dependency of the homogeneously catalyzed formation of C3-carbohydrates on the 

concentration of formaldehyde; 30 min reaction time; formaldehyde conversion ≤ 12%; data in g* L-1; 

formic acid ≤ LOD. 

formal-

dehyde 

applied 

40 30 20 10 

methanol 

applied 
10.8 8.1 5.4 2.7 

C3 1.8 1.8 1.8 1.5 

C4 0.2 0.2 0.3 0.4 

C5 0.1 0.1 0.1 0.2 

C6 ≤ LOD ≤ LOD ≤ LOD ≤ LOD 

2-HMG 0.1 0.1 0.1 0.1 

2-HMT ≤ LOD ≤ LOD ≤ LOD 0.1 

C3/C4 14.6 10.5 8.7 4.6 

C1/C3 53.5 38.5 26.3 15.7 
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Formaldehyde 50 75 150 50 

Methanol 1.4 2.0 4.0 1.4 

Sodium hydroxide 50 50 100 200 

Glycolaldehyde      

[mg * L-1] 

2.5 2.5 2.5 2.5 

Temperature [°C] 80 80 80 90 

 

However, as the results showed within a short reaction period (2 min) the majority of 

formaldehyde (approx. 80%) is being spent. Apart from detecting significant amounts of 

cannizzaro products e.g. methanol and formic acid negligible amounts of carbohydrates were 

quantified. Thus, sodium hydroxide has been excluded to be used for the aldol-condensation 

of formaldehyde and glycolaldehyde under the conditions specified in Table 16.  

 

3.2.3 Summary  

Based on the data obtained, the following reaction conditions can be summarized in order to 

obtain a significant amount of C3-carbohydrates: 

Catalysis-system Homogeneous 

Formaldehyde 40 

Methanol 10.8 

Calcium hydroxide 0.58 

Glycolaldehyde 3.75 

Temperature [°C] 25 

Reaction time [min] 30 

 

 

The reaction conditions summarized in Table 17 were applied for producing the starting 

material used in nanofiltration (NF) and reverse osmosis (RO) experiments as shown in the 

subsequent chapter.  

Table 16: Aldol-condensation setup using sodium hydroxide catalysis, data in g * L-1 unless otherwise 

stated. 

Table 17: Aldol-condensation setup for maximizing the yield of C3-carbohydrates, data in g * L-1 unless 

otherwise stated. 
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3.3 Fractionation of reaction components derived from aldol-condensation by 
reverse osmosis and nanofiltration 

 

The selection of an appropriate separation technology for the fractionation of the  

C3-carbohydrates after aldol-condensation of formaldehyde and glycolaldehyde seems to be 

difficult since e.g. in distillation the vapor pressures of the individual substances are of the 

same order of magnitude [210]. Considering chromatography as a further separation technique 

the isolation of C3-carbohydrates seems to be problematic as well since the significant 

amount of residual formaldehyde is disturbing during chromatographic separation (data not 

shown).  

 

It is the aim of this chapter to investigate the separation of C3-carbohydrates after an aldol-

condensation of formaldehyde and glycolaldehyde using the membrane processes NF and 

RO. In such a separation process formaldehyde and glycolaldehyde are being recycled for a 

repeated aldol-condensation. In addition, pervaporation and membrane distillation might be 

applicable for fulfilling this separation task but is beyond the scope of this investigation. NF 

and RO have been selected due to known selectivity properties with regard to the molecular 

mass of <C3- and ≥C3-carbohydrates (the fractions obtained are termed as fraction  

<C3-carbohydrates and fraction ≥C3-carbohydrates in the text).  

 

Only a few studies have investigated the retention of small uncharged or charged organic 

compounds by RO- and NF-membranes, which represents a crucial membrane feature  

especially in the light of water-purification [211, 212]. In the present case C3-carbohydrates are 

accompanied by considerable amounts of formaldehyde, methanol, formic acid, 

carbohydrates in small amounts facilitating different carbohydrate chain length and divalent 

cations.  

 

To the best of the authors’ knowledge it appears that only one work deals with the membrane 

separation of formaldehyde from aqueous solution [213]. In ref. [213] the nature of formaldehyde 

oligomerization in aqueous methanolic solution is not taken into account, which seems to 

play an important role (see section 2.1.1.1). For the sake of completeness it should be 

mentioned that the removal of formaldehyde from air was studied using zeolite-, dense 

polymeric and hydrophobic hollow fiber membranes [214-216].  
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In case of the membranes AK and UTC the investigations were carried out at 3 MPa 

whereas in case of MP34 2.5 MPa was applied. Only during fractionating the aqueous 

methanolic formaldehyde model-solution (see section 3.3.2.2.1) using a MP34-membrane 

2.0 MPa pressure was applied. By adjusting the valve displayed in Figure 18 the 

transmembrane pressure has been controlled. The pump was operated at a volumetric flow 

of 2.2 x 10-5 m3 s-1. The permeates of the two membrane cells were collected together. Two 

membrane cells were used in order to increase the ratio of membrane area with respect of 

the void volume of the system, which accounted for 150 mL in the present case. The feed 

temperature was continuously monitored and adjusted utilizing an ice bath as a cooling 

source.  

 

The permeate flux Jp was measured in volume per time and results were plotted as flux 

versus volumetric concentration factor (Vcf). Vcf is defined as:   

 

)(0

0

tVV
V

V
p

cf −
= (9) 

 

where V0 is the initial volume of the solution and Vp(t) is the volume of permeate at time t.  

Diafiltration ratio Df is defined as: 

 

C

DF
f V

VD = (10) 

 

where VDF is the total volume of permeate obtained after a batchwise addition of solvent with 

the same volume as the concentrate Vc for diafiltration. The permeate flux Jp was measured 

in volume per time and results were plotted as flux versus diafiltration ratio (Df). Samples 

were taken after reaching the desired Vcf or Df from the concentrate and permeate 

accumulated. For the compounds investigated the observed retentions R were calculated as:   

 

1001 ∗⎟
⎟
⎠

⎞
⎜
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f

p

C
C

R (11) 

 



 - 71 - 

where Cp is the end concentration, which was established in the permeate collected until a 

final Vcf of 4 was reached. Only in the case of UTC70B, a Vcf of 6 was realized. Cf is the initial 

concentration of the feed. 

 

3.3.2 Results and discussion 

3.3.2.1 Flux behavior 

Batch experiments with AK- and MP34-membranes fractionating the feed obtained after 

aldol-condensation of formaldehyde and glycolaldehyde showed that the mean permeate 

fluxes Jp were comparable with many other applications. Figure 19 shows that in case of AK 

and MP34 the flux decreased relatively slowly. In addition to those two membranes a further 

membrane, namely UTC70B, was tested. In this case a Vcf = 6 was realized.  

 

After the initial membrane separation two, and in the case of UTC70B four diafiltration steps 

were carried out and the results are shown in Figure 19. The behavior of Koch MP34-NF 

membrane in diafiltration is contrary to the RO-membranes. The difference in concentration 

polarization between NF- and RO-membranes might be responsible for this mannerism. The 

two RO-membranes showed a typical flux behavior during diafiltration, which primarily is 

attributed to a reduction in concentration polarization. At this point it has to be remarked that 

in case of Toray UTC70B membrane a significant difference between the first and the 

second two diafiltration steps is evident.   

 

Contrary to a conventional membrane separation step, in which a substance is retained to a 

high degree, the interesting behavior of Toray UTC70B membrane in diafiltration with respect 

to flux is explained by the significantly lower retention degrees of the compounds 

investigated. The concentrations of the substances considered are being continuously 

reduced during the diafiltration steps. Consequently, the number of diafiltration steps is 

limited. 
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14 [121, 209], the majority of the hydrated formaldehyde monomer is present in its protonated 

form whereas the majority of the formic acid is present in its anionic form. In this regard, the 

difference in retention of formaldehyde and formic acid might be attributed to their difference 

in charge. Retention of formic acid significantly depends on the concentration and can be 

negatively affected by the presence of salts [217]. In case of the AK-membrane, approximately 

80% retention of formic acid was observed, which can be explained by electrostatic 

interactions between the formate anion and the membrane surface.  

 

With regard to methanol in case of MP34-membrane surprisingly the retention is rather high. 

This phenomenon could be explained by the interaction with formaldehyde (Eq. (3)-(4)) 

forming oligomers being partially retained. In this regard the concentrations of formaldehyde 

and methanol have to be noticed. In general, methanol is expected to influence the retention 

of solutes due to solute-solvent affinity causing solvation (of the solute) and interaction 

between the membrane and the solvent, which may lead to solvation of the pore wall 

(swelling) [218]. 

 

To a certain extent all carbohydrates are retained for the membranes investigated. 

Glycolaldehyde, as shown in Figure 20 as C2, is surprisingly retained in the case of MP34, 

which might be explained in terms of dimerization [219]. As expected, divalent cations are 

significantly retained by all the membranes investigated. The AK-membrane shows the 

highest retention. 

 

3.3.2.2.1 Influence of methanol on the retention of formaldehyde in diafiltration  

As shown in Eq. (3)-(4), formaldehyde strongly interacts with methanol. According to this 

consideration an increase of methanol concentration during separation might result in an 

increased retention of formaldehyde. In order to get a first insight into the dependence of 

methanol on formaldehyde retention, trials were carried out using an aqueous methanolic 

formaldehyde model-solution containing 1.4% (w/v) methanol and 5% (w/v) formaldehyde. 

The influence of methanol on formaldehyde retention was considered only during the 

diafiltration steps. 

 

After a preliminary membrane separation of aqueous methanolic formaldehyde model 

solution until reaching a Vcf  of 4 (see Figure 22) two different diafiltration trials were realized 

using the following solvents: a) 1% (v/v) methanol and b) RO-water. 
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GE Osmonics 

AK desalogics
Koch SelRO 

MP34 
Toray UTC70B 
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Formaldehyde 32.6 35.7 16.9 40.6 20.7 54.9 10.2 

Methanol 23.9 37.6 2.2 22.5 3.3 129.1 24.4 

Formic acid 2.3 3.0 3.0 3.2 2.6 3.4 2.6 

        

C2 1.6 5.0 3.1 3.1 1.9 2.2 4.0 

C3 1.6 4.3 4.2 3.7 2.9 3.9 3.7 

C4 0.2 0.7 0.6 0.5 0.4 0.7 0.6 

2-HMG 0.1 0.4 0.4 0.4 0.3 0.3 0.3 

2-HMT 0.1 0.3 0.3 0.2 0.2 0.3 0.2 

Ca2+ 0.2 0.0 0.8 0.6 0.6 2.6 0.8 

 

As Table 19 shows membrane fractionation using NF or RO allows to separate  

C3-carbohydrates from a mixture having a particularly high formaldehyde concentration. After 

appropriate pretreatment of the permeate (e.g. adjusting concentrations) subsequent aldol-

condensation of formaldehyde and glycolaldehyde should be enabled. 

 

3.3.3 Conclusion 

C3-carbohydrates are obtained from a controlled one step aldol-condensation of 

formaldehyde and glycolaldehyde. In a single membrane separation step C3- and higher 

carbohydrates can be separated from the synthesis product as shown in this work. By 

utilizing two or three membrane separation steps in series the removal of formaldehyde, 

methanol and formic acid is possible to a high extend while concentrating a fraction  

≥C3-carbohydrates. 

Table 19: Concentration of the individual compounds obtained after membrane separation and 

subsequent diafiltration experiments; 2-HMG: 2-hydroxymethylglycerol; 2-HMT: 2-

hydroxymethyltetritol; data in [g*L-1]. 
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As the aldol-condensation is carried out using formaldehyde and glycolaldehyde both educts 

should be accumulated in the permeate in order to prepare for the subsequent aldol-

condensation. RO- and interestingly also NF-membranes may fulfill this task. Using a RO- 

process operated until a Vcf of 4 and two sequenced diafiltration steps approximately 80% of 

formaldehyde, methanol and formic acid were removed. Meanwhile, only 40% of  

C3-carbohydrates were found in the permeate. 1% (v/v) methanol does not seem to enhance 

the retention of formaldehyde in diafiltration.  

 

In order to isolate pure C3-carbohydrates after aldol-condensation of formaldehyde and 

glycolaldehyde, chromatography necessarily has to be applied but is beyond the scope of 

this work. However, the significant concentration of formaldehyde in the feed would prevent 

chromatographic selectivity from being maintained. As this chapter shows this problem can 

be solved by applying membrane processes NF or RO.  

 

Moreover it has to be pointed out, that a great number of different separation methods are 

necessary to realize the isolation of metabolizable carbohydrates based on the pathway 

investigated in this work. In particular, separation techniques enabling the recycling of 

reaction compounds in a closed system must be taken into account.  

 

 

4 Summary and conclusions  

In this work theoretical pathways for the conversion of CO2 and H2O to metabolizable 

carbohydrates were considered and discussed. A selected one, namely the conversion of 

CO2 to formaldehyde and conducting a controlled aldol-condensation was illuminated and 

some aspects were investigated. There is no doubt that many remaining research and 

problem areas still need to be investigated. Some of them should be mentioned in general: 

toxic substances, stereoselective catalysis, provision of glycolaldehyde, product degradation 

in alkaline media, energetic efficiency, etc. Nevertheless, the assessment of the entire 

system did not uncover principal problems within a synthesis pathway for the production of 

metabolizable carbohydrates form CO2 and H2O. Thus, this system could also be considered 

as an artificial photosynthesis process.  

 

Based on the results and particularly of ref. [220] including the conversion of CO2 to 

formaldehyde and the provision of glycolaldehyde the following process chain could be 

proposed: 



 

 

Figure 23: Process sscheme, whicch could repr

- 79 - 

resent a possible artificiaal photosynth

 

hesis [220].  
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As the investigation of every process step is necessary in detail, many issues remain to be 

illuminated.  

 

It should be pointed out, that C3-carbohydrates were synthesized in laboratory scale and 

subsequently used in anion-exchange resin catalyzed aldol-condensation in order to produce 

metabolizable carbohydrates. However, surprisingly the product distribution entering the 

enantiomer separation step was shown to be very narrow as indicated in Figure 23 [220]. The 

product distribution was just determined by matching the retention time of authentic 

standards in LC-RI-detection [220]. The results are consistent with the data reported in 

literature where mainly DL-fructose and DL-sorbose were detected after such a reaction step 

using C3-carbohydrate model solutions [79-81]. 

 

4.1 Bottle necks of the process proposed 

The process shows serious limitations with regard to the following issues (this list doesn’t 

claim to be complete): 

 

a) The introduction of calcium-salts and the yield of only racemic glyceraldehyde 

represent major drawbacks of the first aldol-reaction. It remains to be shown whether 

an alternative pathway may lead to higher yields of C3-carbohydrates starting from 

CO2 and H2O. 

b) Only restricted diastereoselective control is enabled during conducting aldol-

condensation of C3-carbohydrates with each other using anion-exchange resins. 

c) The simultaneous presence of carbohydrates as well as base causes e.g. the 

transformation of carbohydrates (anomerization, aldose-ketose isomerization (Lobry 

de Bruyn-Alberda van Ekenstein reaction), reversible aldol reaction, and β-elimination 

or benzilic acid rearrangement after the aldol reaction [161]). Thus, product degradation 

is difficult or perhaps impossible to be avoided. 

d) With regard to recycling of cations in such a closed system, the introduction of 

electrodialysis using bipolar membranes seems to be essential.  

e) Carbohydrate byproducts accumulated by the process must be subject to degradation 

e.g. by the application of stoichiometric oxidation processes using ozone. 
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In the light of the bottle necks listed in a) and b) it must be mentioned, that induced 

stereoselectivity in aldol-reactions is easily generated by appropriate combinations of 

reactants [221]. However, the introduction of stereoselective aldol-reactions should not 

increase the complexity of the entire system in the end. 
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6 Appendices  

6.1 Chemicals and reagents 

Calcium oxide, calcium hydroxide, carbohydrate standards, abs. ethanol, benzoylchloride, 

pyridine, dimethylformamid, tris(hydroxymethyl)aminomethane (tris), acetic acid, sodium 

nitrite, Dowex 50WX2-400, 37%  formaldehyde aqueous solution (containing approximately 

10% methanol as stabilizer), methanesulfonic acid,  formic acid used for the preparation of 

ionization buffer and 2,4-dinitrophenylhydrazine (DNPH) were purchased from Sigma Aldrich, 

Vienna, Austria. D-glucose-13C6, 99 atom% 13C6 (termed 13C-glucose in the text) was supplied 

by Isotec, Miamisburg, OH, USA. Methanol, sulfuric acid and hydrochloric acid were obtained 

from Carl Roth, Graz, Austria. Sodium formate, formic acid used for the preparation of 

eluents, sodium borohydride, isopropanol, calcium nitrate standard for ion chromatography 

and sodium hydroxide were obtained from Merck, Vienna, Austria. Acetonitrile was 

purchased from YMC Europe, Dinslaken, Germany. High quality (HQ)-water was supplied by 

a SG-water Ultra Clear Basic UV water supply system (SG-water, Barsbüttel, Germany). All 

standards, chemicals and reagents meet the required purity for analysis and were used 

without further purification. 
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6.2 Formose reaction catalysis 

6.2.1 Inorganic catalysts 

Catalyst ref. 

adding oxalic acid or phosphoric acid at the begin of the carbohydrate 

formation period to initiate precipitation (or adding EDTA or nitrilotriacetic 

acid for chelating); subsequent using of KOH for adjusting pH and 

adding Mg(OH)2, Fe(OH)3, FeO or Al2O3, Ba(OH)2, Pb2O(OH)2 

[222] 

Al(OH)3 [156, 157] 

Al2O3 [106, 157] 

aluminosilicate [157] 

Ba(OH)2 [79, 136, 145, 156-158, 223]

 and KCl [141] 

 and vitamine B1 in dimethyl-formamide (DMF) [145] 

 in DMF [145] 

BaCl2   

 and KOH [141] 

 and NaOH [141] 

BaCO3 [156, 158] 

Bi2O3 [157] 

Ca(OH)2   a 

 and vitamine B1 in DMF [145] 

 in DMF [145] 

 in methanol [166] 

 in presence of borates [107] 

CaCl2, KOH and   

 Ba(OH)2, benzoin, Cu(OH)2, Fe(OH)3, L-ascorbic acid, LiOH, 

 Mg(OH)2, Pb2O(OH)2, phenacyl alcohol and Sr(OH)2 
[224] 

CaCO3 [156-158] 

 in neutral aqueous media [225] 

CaO [157] 

 in CH3OH [143, 166] 

Table 20:  Inorganic catalysts applied in the formose reaction; water is used as solvent unless 

otherwise noted. 
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Catalyst ref. 

CaO-Al2O3; PbO-Al2O3  [226] 

carbonate containing apatite [157] 

Cd(OCOCH3)2) [156] 

CdO [156, 157] 

Ce(OH)4 [164] 

CrO3 [116] 

Dy(OH)3 [164] 

Er(OH)3 [164] 

Eu(OH)3 [164] 

Fe(OH)3 [116, 157] 

Fe(OH)O [227] 

FeO [116] 

HgO [157] 

Hydroxides of  

 Dy, Gd, La, Tb, Tm, Yt 
[116] 

illit [106] 

K2CO3 [157] 

kaolinite [106] 

KOH [79, 145, 156, 158, 228, 229]

KOH and  

 Ca(C2H5COO)2, Ca(CH3COO)2, Ca(HCOO)2, CaBr2 [230] 

KOH in DMF [145] 

KOH and vitamine B1 in DMF [145] 

Lanthanide hydroxides of  

 La, Tb, Ho, Tm, Gd, Dy, Er, Sm and Yb [157] 

LiOH [79, 116, 145, 223]

 in DMF [145] 

 and vitamine B1 in DMF [145] 

Manganese oxide [157] 

Mg(OH)2  [116] 

 in DMF [145] 

 and vitamine B1 in DMF [145] 

MgCl2 [231] 

MgCO3 [116] 

MgO [116, 157, 231] 
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Catalyst ref. 

MgSO4 [116, 157] 

MnO [157] 

MoO3 [116] 

Na2CO3 [157] 

NaOH [79, 145, 156-158, 171, 223, 232]

 and Ca-acetate [169] 

 and CaCl2 [207] 

 and SrCl2 [171] 

 and zeoliths (NaX, 5A or Na mordenite) [151] 

 in DMF [145] 

 and vitamine B1 in DMF [145] 

Pb(CH3COO)2.Pb(OH)2   

 in DMF [145] 

 and vitamine B1 in DMF [145] 

Pb(OH)2 [156, 158] 

Pb2O(OH)2 and thiamine.HCl in dimethylsulfoxide (DMSO)  [155] 

PbCO3 [156] 

PbO [116, 156, 157, 233]

PbO(OH)2   

 in DMF [145] 

 and vitamine B1 in DMF [145] 

phosphate-buffer [79] 

phosphates (homogeneous and heterogeneous) in neutral aqueous 

media 
[225, 234] 

removing of Ca ions with the addition of oxalic acid at the end of the 

induction period, adding of Pb2O(OH)2 and adjusting the pH to 10.0 with 

aqueous KOH 

[144] 

Sb2O3 [157] 

Sm(OH)3 [164] 

Sn(OH)2 [156] 

SnO [157] 

Sr2CO3 [156] 

Sr(OH)2 [79, 136, 145, 156]

Sr(OH)2 in DMF [145] 

Sr(OH)2, vitamine B1 in DMF [145] 
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Catalyst ref. 

Th(OH)2 [164] 

ThO2 [116] 

TiO2 [116] 

TlOH [156-158, 223] 

 in dioxane [223] 

 in tetrahydrofuran [223] 

V2O5 [116] 

WO3 [116] 

Zn(OH)2 [156] 

ZnCl2 [231] 

ZnCO3  [229] 

ZnO [116, 156, 157, 231, 235]

a: no references listed since it is the standard catalyst. 

 

6.2.2 Organic catalysts 

Catalyst ref. 

1,4-diazabicyclo[2.2.2]octane [236] 

2-(dimethylamino)ethanol, vitamine B1 in DMF [145] 

2-methyl-piperidine [158] 

3-quinuclidinol [236] 

aminoethanol [236] 

collidine [156, 158] 

dimethylamine, vitamine B1 in DMF [145] 

dimethylaminoethanol 

 in water 
[154, 156, 158, 236] 

 and thiamine HCl in DMF [145, 148, 149] 

 and vitamine B1, Ca(OH)2 in DMF [237] 

ethylaminoethanol [236] 

glycine [79] 

imidazole [79, 236] 

Table 21: Organic catalysts applied in the formose reaction.  
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Catalyst ref. 

morpholine, vitamine B1 in DMF [145] 

N,N-dimethylaniline, vitamine B1 in DMF [145] 

N-methyl-imidazole [79] 

 N-methyl-morpholine  

 in water  
[79, 156, 158] 

 and vitamine B1 in DMF [145] 

N-methyl-piperidine  

 in water [156] 

 and vitamine B1 in DMF [145] 

potassium lactylhydroxamate [236] 

  

Pyridine-catalysts:  

 2-(β-methylamino-ethyl)pyridine,  

 2,3-dimethylpyridine,  

 2,4,6-trimethylpyridine,  

 2,4-dimethylpyridine,   

 2,5-dimethylpyridine,  

 2,6-dimethylpyridine,  

 2-aminopyridine,  

 2-ethylpyridine,  

 2-methylpyridine,  

 3,4-dimethylpyridine,  

 3,5-dimethylpyridine,  

 3-methylpyridine,  

 4-(β-methylamino-ethyl)pyridine,  

 4-methylpyridine 

[79] 

 pyridine [79, 156, 158, 236]

 technical pyridine base [158] 

  

pyrrolidine [79] 

quinuclidine  [236] 

tetramethylammonium hydroxide [158] 

thiamine HCl, triethylamine in DMF or ethanol [146] [147] 

  

Thiazolium-catalysts:  

3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride and triethylamine [238] 
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Catalyst ref. 

in DMF  

3-benzylthiazolium chloride, triethylamine  

 in dioxane; adding NaOH, Na2CO3, quinuclidine, anion-exchange 

 resin in a cascade 
[150] 

3-ethylbenzothiazolium bromide in dioxane or ethanol-solvent adding  

 imidazole, pyridine, quinuclidine, sodium ethoxide, NaOH, 

 tetraethylammonium hydroxide, triethylamine, trioctylamine 
[147] 

3-ethylbenzothiazolium bromide and triethylamine in   

 butanol, diglyme, DMSO, ethyl propionate, heptane, N,N-DMF, 

 water 
[147] 

3-ethylbenzothiazolium iodide, triethylamine in ethanol [147] 

3-ethylthiazolium bromide, triethylamine in ethanol [147] 

3-isopropylbenzothiazolium bromide, triethylamine in ethanol [147] 

3-methyl-4-phenylthiazolium iodide, triethylamine in DMF [146] 

3-methylbenzothiazolium iodide, triethylamine in   

 DMF [146] 

 ethanol [147] 

triethanolamine  

 in water [156, 158] 

 and vitamine B1 in DMF [145] 

triethylamine  

 in water [156, 158] 

 and thiamine.HCl in DMF [148, 149, 239] 

triethylammonium hydroxide [156] 

trimethylamine, vitamine B1 in DMF [145] 

Zn(Pro)2 [240] 

α-picolin [156, 158] 

β.γ-picolin mixture [156, 158] 

β-picolin, vitamine B1 in DMF [145] 
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6.2.3 Heterogeneous catalysts 

Table 22: Heterogeneous catalysts for the formose reaction. 

Catalyst ref. 

acylaminocompound produced from amberlite XE 64 and p-

aminobenzoylcarbinol-acetat in presence of CaO or PbO 
[233] 

Amberlite IRA-400 OH- resin [80, 171] 

anion exchange resin [79] 

Dowex-1 OH- resin [80, 171] 

polyethyleneimine (containing primary, secondary, and tertiary amino-

groups (mol ratio: 1 : 2 : 1)) 
[236] 

thiazolium catalyst immobilized on polymer using triethylamine in DMF; 

effect of different counter ions on formose reaction-catalysis using 

thiazolium groups immobilized on resin and dimethylaminoethanol in 1,4-

dioxane; effect of different solvents using thiazolium groups immobilized 

on resin and dimethylaminoethanol 

[146, 241] 

zeoliths coated with thiazolium catalyst using dimethylaminoethanol in 

different solvents; reused zeoliths 
[242, 243] 

 

6.2.4 Physical influences applied in formose reaction-catalysis 

Table 23: Physical influences applied in formose reaction-catalysis. 

Physical influence  ref. 

photochemical catalysis (mercury lamp) in presence of Na2CO3 [142] 

photochemical catalysis (xenon lamp) in presence of NaOH [152] 

tesla currents in presence of CaO and Ca(OH)2  [244] 

UV-irradiation in acidic media in the absence of catalyst and initiators [245] 

UV-irradiation in presence of potassium nitrate or nitrite [246] 

zeolith catalysis [247] 

γ-irradiation using Co60 γ-rays in presence of   

 Ca(OH)2, CaCO3, KOH, Mg(OH)2, Na2CO3, sodium phosphate 

 tribasic 
[248] 

 NaOH [152, 248] 

 molecular sieves [152] 
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6.2.5 Initiators  

Table 24: Combination initiator/catalyst applied in the formose reaction-catalysis. 

Catalyst ref. 

2-deoxy-D-ribose and dimethylaminoethanol (DMAE) [236] 

acetonaphtoylcarbinol and Ca(OH)2 [249] 

acetoin   

 and CaCl2, KOH  [224] 

 and DMAE [236] 

acetylacetone and DMAE [236] 

arabinose and DMAE [236] 

benzoylcarbinol  

 and BaCO3 [156, 158] 

 and Ca(OH)2 [249] 

 and CaO [233] 

 and DMAE [158] 

 and PbO [233] 

dihydroxyacetone   

 and CaCl2, NaOH [135] 

 and DMAE [236] 

dihydroxyacetone dimer, CaCl2 and KOH [224] 

dioxyacetone and Ca(OH)2 [249] 

dioxyacetone and TlOH [223] 

DL-glyceraldehyde, CaCl2 and KOH   [224] 

ethyleneglycol and DMAE [236] 

fructose  

 and 1,4-diazabicyclo-[2.2.2]octane  [236] 

 and 3-quinuclidinol [236] 

 and aminoethanol [236] 

 and Ca(OH)2 [137, 138, 156, 249]

 and CaCl2, KOH   [224] 

 and CaCl2, NaOH  [135] 

 and DMAE [154, 236] 

 and ethylaminoethanol [236] 

 and imidazole [236] 
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Table 24: Combination initiator/catalyst applied in the formose reaction-catalysis. 

Catalyst ref. 

 and NaOH in CH3OH [143] 

 and polyethyleneimine* [236] 

 and potassium lactylhydroxamate [236] 

 and pyridine [236] 

 and quinuclidine  [236] 

galactose   

  and CaCl2 and NaOH  [135] 

 and DMAE [236] 

glucose   

 and Ca(OH)2 [127, 137, 249, 250]

 and Ca(OH)2, NaOH [139, 140] 

 and CaCl2, KOH  [224] 

 and CaCl2, NaOH  [135] 

 and DMAE [154] 

 and TlOH [223] 

 and ZnO [235] 

glyceraldehyde   

 and Ca(OH)2 [137, 156] 

 and CaCl2 and NaOH  [135] 

glycerol and DMAE [236] 

glycolaldehyde  

 and Ba(OH)2 [136] 

 and BaCO3 [156] 

 and Ca(OH)2 [127, 136, 137, 249]

 and CaCl2, NaOH  [135] 

 and Sr(OH)2 [136] 

lactose and DMAE [236] 

L-rhamnose and DMAE [236] 

lyxose, CaCl2 and NaOH  [135] 

maltose and DMAE [236] 

mannose and DMAE [236] 

methyl α-D-glucoside and DMAE [236] 
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Table 24: Combination initiator/catalyst applied in the formose reaction-catalysis. 

Catalyst ref. 

monooxyaceton and Ca(OH)2 [249] 

naphtoylcarbinol and Ca(OH)2 [249] 

p-acetaminobenzoylcarbinol and Ca(OH)2 [249] 

p-acetamino-benzoylcarbinol and CaO or PbO [233] 

phenylacyl  

 -polyaminostryrol,  

 -wolfatit N, -wolfatit MD,  

 -acetamid, -anilin,  

 -benzamid, -morpholin, -p-phenetidin in presence of CaO or PbO 

[233] 

p-methoxy-benzoylcarbinol and Ca(OH)2 [249] 

ribose and  

 Ca(OH)2 [137] 

 CaCl2, NaOH  [135] 

 DMAE [154, 236] 

sorbose  

 and Ca(OH)2 [137] 

 and DMAE [236] 

 CaCl2 and NaOH  [135] 

sucrose and DMAE [236] 

triose reductone, CaCl2 and KOH  [224] 

xylose   

 and CaCl2, KOH  [224] 

 and DMAE [154, 236] 

α-cyclodextrin and DMAE [236] 
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