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1 INTRODUCTION  

 

Tropical forests are well-known carbon reservoirs and also contribute a considerable 

portion of biodiversity in the world. Costa Rica is considered as one of the regions 

with highest biological diversity. This small country covers only 0.01% of the earth 

landmass but approximately 500,000 species, roughly 5% of the living species in the 

world, found in Costa Rica (Casaretto, 2004). This country indeed plays an important 

role for carbon sequestration, forest preservation and biodiversity conservation like 

other countries with tropical forests.  

 

Since several decades ago, these tropical countries, of course including Costa Rica, 

have rapidly had demographic increase and economic development. Although the 

development has resulted in economic prosperity, it has broken the balance between 

local society and the natural ecosystem which has existed for several centuries. The 

economic growth sacrificed the natural forest resources. 

 

Tropical forests were destroyed during the 1980s with a high deforestation rate of 

estimated 8% (Holl et al., 2000). Costa Rica has also been involved in this 

deforestation trend. In 1940, more than 75% of Costa Rica was covered by forest 

(UNFCCC, 2006). Since the beginning of the 1960s, Costa Ricans cleared thousands 

of hectares of forest per year which led to the problems of serious deforestation and 

habitat fragmentation (Pfaff and Sanchez-Azofeifa, 2004). Until 1987 and 1997, only 

21% and 42% forest cover, respectively, remained in Costa Rica (UNFCCC, 2006). 

Forests were converted to pasture or farmland in order to obtain higher economic 

values. In many upland regions, such as the Costa Rican Cordillera de Talamanca, 

past deforestation trends have given rise to landscape mosaics that were made up of 

patches of primary and secondary forest, shrub-land, pastureland, tree plantations, 

and cropland (Oosterhoorn & Kappelle, 2000). It resulted in fragmented forests and 

in segmentation of wildlife habitat. The deforestation obviously influenced the 

biodiversity and the carbon conservation not only in this area, but for the global 

ecosystem. There is a broad agreement that tropical deforestation is a massive source 
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of carbon emissions and contributes significantly to global warming and atmospheric 

change (Laurance, 2006). Therefore, deforestation of tropical forests is not only one 

single topic of those countries where the tropical forests were located, but it should 

also be a significant theme for the whole world. 

 

A considerable number of studies indicate that anthropogenic land cover conversions 

and modifications have significant influence for the functioning of ecological 

systems.  Especially the tropical forests, which were partly remote and inaccessible, 

were due to the pressure of increasing population rapidly converted into economical 

production, mainly agriculture, timber plantation, pasture land and for tourism 

(Veldkamp und Fresco,1997; Rosero-Bixby and Alberto,1996;UNFCCC,2006; Hayes 

and Sader, 2001). Not only croplands may accelerate deforestation trends, but also 

infrastructure lines and settlements have interrupted the continuity of forest 

distribution. The development of roads in national parks fragmented the wildlife 

habitats, resulting in difficulties maintaining their population.  

 

It is important and urgent to commence related research in tropical forests. However, 

most of those tropical primary forests are inaccessible. This increases the temporal 

and economic burden of inventory works in those areas. Aerial photographs and 

satellite images have been broadly used due to their potential to cover large areas at 

low cost (Holmström et al., 2003). Using those images is a time- and cost-effective 

option as a convenient tool for investigating the landscape and the vegetation cover. It 

is recommendable not only for investigating short periods, but also for long-term 

change. Many research projects have used Landsat Thematic Mapper (TM) imagery 

for monitoring remote and inaccessible tropical forest regions with large areas, in 

which ground based inventory and monitoring methods are of limited use (Hayes and 

Sader, 2001). Satellite imagery was also described as a most powerful monitoring 

tool of forest-change-detection mapping for international agencies, local government 

agencies, and even NGOs working in the region for conservation purposes. 
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It is important to monitor the tropical forest in order to reduce the deforestation rate, 

administrate the global biodiversity resources and observe terrestrial carbon dynamics 

(Rahman, 2004). Therefore, using Landsat Thematic Mapper imagery is 

recommendable for achieving this ecological purpose in an economic way. This may 

achieve, better than traditional inventory, the goal of the low-cost and temporally 

efficient monitoring of natural resources in remote inaccessible areas. 
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2 STUDY AREA 

 

The study area includes the Piedras Blancas National Park and, in addition 

(“extensive study area”), the adjacent northern areas of high elevation. It mainly 

covers the ACOSA and ACLA-P conservation areas (see Fig. 2) with roughly 

1,075,500 hectare (sea area excluded).  It is considered to be an important link 

between the OSA peninsula in the south and the wildlife corridor running through 

Central America in the north (personal communication by Anton Weissenhofer). 

More background information is given in the following. 

 

 

2.1 Costa Rica 
 

Costa Rica is located between the North American and the South American 

subcontinent. Due to its specific geographic position, forming the “bridge” between 

the two subcontinents and resulting in great ecological richness, it is considered to be 

one of the 20 countries with the greatest biodiversity in the world (Sanchez-Azofeifa 

et al., 2001; Sanchez-Azofeifa et al., 2002). More than 500,000 species, 

approximately 4 to 7% of the total species estimated worldwide, of which 84% are 

unknown to science, are found in this small country of 5,110,000 hectare (UNFCCC, 

2006; Sanchez-Azofeifa et al., 2001; Weissenhofer et al., 2008). Especially the 

southern zone around the Golfo Dulce is an area of very rich biodiversity. It 

represents one of the species-richest areas in the neotropics (Weissenhofer et al., 

2008). 

 

However, Costa Rica in the 1960s was also one of the countries with the highest 

deforestation rates. The transformation and degradation of tropical forests represent 

the primary driving force in the loss of biological diversity worldwide (Sanchez-

Azofeifa, 2001). Many sources in the literature mention and suggest that deforestation 

may be the first link in a chain of environment degradation that includes not only loss 
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of species diversity and loss of genetic diversity but also erosion, climatic change and 

so forth (Rosero-Bixby & Palloni, 1996). Deforestation in a country influences not 

only the country itself but also the whole earth’s ecological system. Costa Rica was 

once one of the countries with high forest cover. In the 1940s, more than 75% of 

Costa Rica’s territories were covered by forest. Unfortunately, this situation has 

altered and the deforestation has proceeded rapidly in the following decades resulting 

in forest reduction and fragmented forest landscapes. Costa Rica experienced in the 

1960s and 1970s one of the highest deforestation rate, in the range of 3.2 to 3.7 % 

(Sanchez-Azofeifa, 2001). In 1987, the forest cover in Costa Rica was only 21 % 

(UNFCCC, 2006). Fortunately, since 1980s some reforestation strategies were 

gradually developed. Although these strategies are not evenly distributed over the 

whole of Costa Rica, they reverse the deforestation trend. The area of forest cover 

increased to 42 % in 1997 and to 47 % in 2000 (UNFCCC, 2006). 

 

Demographic and non-demographic issues may be determining factors for this forest 

transformation. There are several research projects indicating that the high 

deforestation rate was significantly related to population growth (Oosterhoorn & 

Kappelle, 2000; Veldkamp and Fresco, 1997), although some research showed that 

the direct links between population growth and deforestation are weak. Rather, 

demographic pressure resulting in economic growth brought the massive 

deforestation. Expansion of agriculture and cattle ranching proceeded rapidly with 

more agro-export production in order to meet the economic demand brought by the 

increasing population. Non-demographic mechanisms resulted from credit and capital 

market failures, lack of suitable mediating institutions securing property right, uneven 

land distribution, consumption patterns in developed countries, greedy multinational 

companies and ignorance and bad management by colonists of frontier land (Rosero-

Bixby & Palloni, 1996). The wrong policy direction brought the failure to the market 

and also put natural environment into high risk. 
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Fig.1. Deforestation in Costa Rica (UNFCCC, 2006) 

 

As aforementioned, several tropical Latin American countries had this deforestation 

trend converting more land into pasture land in order to create more exportation 

values. Holl et al. (2000) mentioned that the primary cause of deforestation in Latin 

America over the past few decades has been creation of pastures for cattle grazing. 

Farmers cleared their land to cash in on logging or to use the land for cattle pasture or 

in agriculture for food production, or more importantly, for cash crops such as 

bananas (Rosero-Bixby & Palloni, 1996). Costa Rica was one of these countries. 

Ronnie de Camino(2000) also mentioned that since 1950 the main change in Costa 

Rican land use has been the transformation of forests into pastures and farmland, 

which was strongly supported and promoted by national and international loans 

(Sanchez-Azofeifa, 2001). Large areas of Costa Rica’s land were covered by 

farmland, although only roughly 40% of Costa Rica’s land is suitable for agriculture, 

and 35% of the land, even 46% in the end of the 1990s, where covered by pasture, 

although merely 8% are appropriate for this land use (UNFCCC, 2006; Holl et al., 

2000).  

 

However, in the 1980s the deforestation rates were significantly reduced and even 

reversed due to the creation of special conservation areas, reforestation promotion 

and forest management according to Costa Rican policies (Ronnie de Camino, 2000). 

The deforestation rate was dropping to less than 1.5% at the end of the twentieth 

century (Sanchez-Azofeifa, 2002). According to data from FAO and UNFCCC, in 
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2000 natural forests, plantations and special ecosystems have already covered 43-47 

percent of the country’s total land territory, with natural forests accounting for 38.6 

percent of this. Nowadays, Costa Rica is one of the pioneer countries in reforestation, 

forest management, and forest protection policies. It is remarkable that Costa Rica is 

one of the few countries in Latin America to promote reforestation through incentives 

such as tax credits, direct payments, and subsidized loans that have benefited 

landowners, large and small(The World Bank OED, 2000). 

 

 

 
Fig.2: 11 conservation areas in Costa Rica and study area 

 

Nowadays, more land of Costa Rica is developed and designated as protected area. 

The World Resource Institute indicates that in 2003 roughly 23.4% of the total land 

area was protected area.  Some other documents also recorded approximately 25.5 % 

of the Costa Rica’s national territory, which contains 1,304,306 hectares, dedicated to 
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conservation, which involves the prohibition of productive activities that could 

damage renewable or non-renewable resources, and to protected areas for biodiversity 

conservation, ecotourism, carbon sequestration and bio-prospecting for medicines 

(Sánchez-Azofeifa et al., 2001; Sánchez-Azofeifa et al., 2003; FAO; Costa Rica 

National Parks). 25 national parks, 8 biological reserves, 32 protected zones, 11 forest 

reserves, 58 wildlife refuges, 15 wetland/mangrove areas and 12 other categories 

were included in 11 conservation areas, which are spread over the whole of Costa 

Rica. 

 

These 11 conservation areas were established by the Ministerio de Ambiental y 

Energia (MINAE) in 1998 in different regions in Costa Rica in order to undertake a 

decentralized management of biodiversity (Sanchez-Azofeifa, 2002; Casaretto, 2004). 

The conservation areas are ACG (Guanacaste Conservation Area), ACA-HN (Arenal 

Huetar Norte Conservation Area), ACA-T (Arenal Tilaran Conservation Area), ACT 

(Tempisque Conservation Area), ACOPAC (Central Pacific Conservation Area), 

ACMIC (Cocos Island Marine Conservation Area), ACCVC (Central Volcanic 

Conservation Area), ACTO (Tortuguero Conservation Area), ACLA-C (Caribbean 

La Amistad Conservation Area), ACLA-P (Pacific La Amistad Conservation Area), 

and ACOSA (Osa Peninsula Conservation Area). The area of this study mainly lies in 

ACLA-P and ACOSA. 
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2.2 Piedras Blancas National Park 
 

There are two national parks, (Piedras Blancas national park and Corcovado National 

park) and the Golfo Dulce Forest Reserve located between the two national parks, in 

the southern part of the Puntarenas province, which has a total area of 429,518 ha and 

is situated on the Pacific slopes of Mesoamerica (Casaretto, 2004) and located in the 

southmost conservation area ACOSA. Corcovado National Park was developed in 

1975 protecting 42,468 hectares. Piedras Blancas National park was developed in 

1994 protecting 14,025 hectares of land. Golfo Dulce Forest Reserve was created in 

1979 to protect 14,025 hectares of land. 

 

Forest fragmentation and deforestation are the two main factors which have high 

impacts on the local biodiversity preservation. Several sources of deforestation in 

these three areas are mentioned by Casaretto (2004). The author indicates that in 

Corcovado National Park the main threats are related to human pressure, mainly the 

increase of socio-economic activities, from the eastern side of the Osa Peninsula. In 

Piedras Blancas National Park, the main source of deforestation is the river located in 

the Northwest section, which apparently is being used as an entrance to the park and 

for transportation purposes. Again, a deforestation factor in Piedras Blancas National 

Park is the pressure from human activities, including oil palm plantations and 

agriculture. In Golfo Dulce Forest Reserve, a major source of deforestation is the 

impact of roads. The road construction seriously interrupts the forest continuity and 

results in forest fragmentation. 

 

Although the deforestation rate becomes negligible inside of national parks and 

biological reserve since the related forest legislation was developed in the 1980s, the 

areas outside of national parks and biological reserve were proven having significant 

forest loss (Sánchez-Azofeifa et al., 2003).  
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3 DATA 
 

The data used in this study include two Landsat 5 TM satellite images, a digital 

elevation model from the Shuttle Radar Topography Mission (SRTM), a vegetation 

map, and images from Google Earth. 

 

 

3.1 Landsat TM Images 
 

According to the long period to be explored in this study, it is recommendable to use 

Landsat images in order to cover several decades. Landsat 5 TM satellite images were 

used for this analysis. The study area lies within one Landsat images in Path 15 and 

Row 54. The geodetic reference system WGS 84 and the projection system UTM 

(Zone17N) were used. Images from two dates were acquired for the study: from 

1987.01.17 and from 1998.02.16. The pixel size of the images was 28.5 x 28.5m and 

30 x 30m respectively.  

 

Sanchez-Azofeifa (2001) mentioned that the highest cloud cover usually is 

concentrated in northern Costa Rica and the Osa Peninsula. We could observe this 

cloud problem when we searched through the images of several years. Most images 

are covered by large area of clouds. The two chosen dates had the smallest cloud 

cover during that period of time. The date 1987.01.17 had roughly 2.8% clouds cover, 

and the date 1998.02.16 had, approximately 4.2%. 

 

Date 17.01.1987  16.02.1998  

Satellite Landsat Landsat 

Type TM TM 

Path/Row 15/54 15/54 

Spatial Resolution 28.5x28.5m 30x30m 

Cloud cover 2.8% 4.2% 
Table 1: Image data 
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The satellite image 1987.01.17 was obtained through Internet from Global Land 

Cover Facility center (GLCF) in March 2010. It was already georeferenced by GLCF. 

The 1998.02.16 TM image was obtained from U.S. Geological Survey (USGS). It 

was not georeferenced. This image was pre-processed and georeferenced relative to 

the 1987.01.17 image.  

 

 

3.2 DEM from Shuttle Radar Topography Mission (SRTM) 
 

The elevation data from the Shuttle Radar Topography Mission (SRTM) was 

downloaded through Internet from Global Land Cover Facility website. The SRTM 

data was acquired during an 11-day mission in February of 2000. The pixel size with 

90m x 90m is available for the research area. The processing edition Filled Finished-

A of SRTM from GLCF was used. 

 

 

3.3 Piedras Blancas National Park Vegetation Map 
 

A detailed vegetation map of Piedras Blancas National Park was employed as a 

reference. This vegetation map is the first detailed vegetation map in this area and 

was compiled in 2003 by Weissenhofer et al. based on inventory field work and aerial 

photographs. The map presents the state of 2003 and in some areas the state of 1998 

due to clouds in the imagery of 2003 (Weissenhofer et al., 2008).  
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There are 23 distinct ecosystems shown in the vegetation map, considering ecotype, 

geographic location and land use type. They are as follows: 

․Forest on plains 
․Forest on hill top or ridges 
․Forest on inland slopes 
․Forest on coastal slopes 
․Forest in ravines 
․Lowland riverine forest 
․Vegetation on sandy soil and gravel banks with Gynerium sagittatum 
․Mangroves and swamp forest 
․Herbaceous swamp vegetation 
․Young secondary forest 
․Old secondary forest 
․Fern-dominated vegetation 
․Regular pasture 
․Swampy pasture 
․Abandoned pasture (tacotal) 
․Timber plantation 
․Oil palm plantation 
․Short-lived crops 
․Preparation of land for cultivation 
․Settlements and gardens 
․Gravel bank 
․Rivers 
 ․Sea, lagunes 

 

 

3.4 Google Earth 
 

Google Earth was also employed in this study. Although there is no image with high 

spatial resolution covering the whole study area, images with high spatial resolution 

which covered part of the study area were used as ancillary information for the 

description of vegetation composition. 
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4 METHODS 

 

 

4.1 Processing Sequence 
 

 

 

Fig. 3: Flow diagram of processing 

 

The processing sequence is shown in figure 3. The first step was to obtain qualified 

satellite images for this study area. The description is given in the section 3 (data). 

Afterwards, the images were pre-processed. Geometric correction was performed in 

order to eliminate the geometric distortions of the satellite images. Another pre-

processing step, radiometric normalization, was undertaken after georeferencing. 

Radiometric normalization compensates varying solar illumination due to the 

irregular shape of the terrain. Vegetation was classified employing the k-nearest-

neighbour (kNN) method. This method is widely used nowadays for the estimation of 

forest attributes and mapping. Post-processing serves to correct the errors of 

classification and to improve the final results thematic map. It includes filtering for 

eliminating single pixels with classes differing from the surrounding area and manual 

editing for modifying classifications which obviously are incorrect.  
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Some classes may be obtained with second-choice classification. Finally, vegetation 

classification maps are produced and these maps were analyzed with regard to land 

use changes. 

 

 

4.2 Pre-processing 
 

 

4.2.1 Geometric Correction 

 

Raw digital images usually contain geometric distortions so they cannot be used 

directly as a map base without pre-processing. The sources of these distortions range 

from variations in altitude, attitude, and velocity of the sensor platform to factors 

such as panoramic distortion, earth curvature, atmospheric refraction, relief 

displacement, and nonlinearities in the sweep of a sensor’s IFOV (Lillesand et al., 

2007). Geometric correction refers to the removal and compensation of geometric 

distortions introduced by these factors in an image.  

 

Geometric correction uses well-distributed ground control points, which could be 

obtained from GPS information of on-site measurements or from corrected maps. 

Using these control points the distortions occurring in an image may be eliminated.  

 

As the image of 1987.01.17 was already geo-referenced by GLCF, this image was 

used as the reference image to correct the image 1998.02.16. The image geometric 

correction function of ERDAS was employed in this study and the DEM from SRTM 

was used as elevation file. The resampling method was nearest neighbor using a 30-

by-30 m pixel size for image 1998.16.02 and a 28.5-by-28.5 m pixel size for image 

1987.01.17. There were 15 control points used which were evenly distributed over 

the whole image. The total control point error (RMS Error) in 1998 is 10.9897 

meters. 
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4.2.2 Radiometric-Topographic Normalization 

 

The pixel values in remote sensing images may be strongly affected by the influence 

of terrain slope and aspect. Differences in terrain slope and aspect often create 

variations in signal values between pixels with even similar properties of land cover 

and of vegetation as a result of differences in irradiance owing to the incidence angle 

of illumination (Riaňo et al., 2003; Soenen et al., 2005). Especially in the rugged 

mountainous areas, the received effective illumination may be very different due to 

topography. The shadowing caused by topography has strong effect on the overall 

canopy brightness at the pixel scale.  

 

In addition to the rugged terrain effect, the effect of canopy self-shadowing of 

forested land can also be remarkable when forest related topics are studied. The 

canopy self-shadowing, at sub-pixel scale, results from the complexity of forest 

composition and the tree shade from the neighbour trees nearby. It is the unresolved 

shadowing due to objects within a pixel as opposed to shadowing from resolved up-

sun objects in other pixels (Kane et al., 2008).  

 

Radiometric normalization or correction is the compensation of the different solar 

illuminations due to the irregular shape and slope-aspect effect of the terrain. It 

modifies and eliminates the radiance values changes caused by terrain effect.  

 

The radiometric correction methods may be grouped into two categories. The first 

group is based on band rations. These are simpler and require no additional input 

data. The second group is based on modeling illumination conditions and requires a 

DEM of the same resolution as the image to be corrected. This group may again be 

divided into two categories, Lambertian, and non-Lambertian, depending on whether 

they assume that reflectance is independent of observation and incident angles or not 

(Riaňo et al., 2003). 
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Before the Gu and Gillespie study (Gu and Gillespie, 1998), it was commonly 

assumed that radiance is controlled by the traditional Sun-Terrain-Sensor geometry 

(STS), which is based on the relationship between these three elements only, without 

considering the relevance of the vertical direction. Nevertheless, forest and non-forest 

have different radiometric characteristics. Several normalization models based on the 

Sun-Terrain-Sensor (STS) geometry were developed, including the cosine correction, 

c-correction, statistical-empirical correction and Minnaert method, in order to 

remove or compensate for topographic effects on forested images.  

 

In 1998 Gu and Gillespie showed that the Sun-Canopy-Sensor (SCS) radiometric 

correction model, 

 

S
OLL

θα
θ

coscos
cos
⋅

⋅=                                                               (1) 

 

 

Symbol Explanation 
  

L  Radiance from pixels on the sloped terrain 
OL  Radiance from pixels on the horizontal terrain 
θ  Angle between terrain normal and direction to sun (degree) 
α  Terrain slope angle (degree) 

Sθ  Sun zenith angle (degree) 
  

 
Table 2: Symbols used in SCS correction models 

 

based on the mutual shadowing at subpixel scale, and on the sunlit area within a pixel, 

may have better compensation results and be more appropriate than terrain-based 

corrections in forested areas (Gu and Gillespie, 1998). SCS, which is a physical-

structural basis to radiometric correction, preserves the geotropic nature of trees 

(vertical growth) regardless of terrain, view and illumination angles (Soenen et al., 

2005). It was shown that SCS was more accurate for the forest canopies of 50% or 

higher closure comparing with cosine correction, c-correction and Minnaert 
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correction models, with either slightly or significantly better results. The study by 

Soenen et al. in 2008 also showed that the physically based approaches, SCS or the 

modified SCS+C method, are more appropriate for forested terrain, as they account 

for vegetation structure and geotropic tree structure. The other correction techniques, 

Minnaert, C, cosine and statistical-empirical, have effective slope-aspect correction 

for smooth surfaces but fail beyond this.  

 

However, the SCS correction was found with two main problems. First the SCS 

correction fails to give accurate corrections for any of the real canopies due to 

providing a fixed value for each slope-aspect-SZA (Sun Zenith Angle) combination 

(Kane et al., 2008). Another problem of SCS correction is an over- or under 

correction on steep pro-and anti-sun slopes similar to other simple photometric 

functions (Soenen et al., 2005; Kane et al., 2008). One modified model (SCS+C), 

which was proposed in the study of Soenen et al, could mitigate the problems of SCS 

overcorrection for steep slopes. Another modified SCS method as described in 

Koukal et al. (2005) was applied for this work:  

 

( )
S

SSS
O

cc
LL

θα
θαθ

coscos
coscos1cos

⋅
⋅⋅−+⋅

⋅=                                              (2) 

 

SC  is the ratio of direction sun irradiances to the total (global) irradiance.  

 

Our study area has high elevation difference from 0 to over 3500 meters above sea 

level and has abundant tropical rain forest resources. Therefore, it is recommended to 

employ SCS model. The modified SCS model by Koukal et al. was applied in this 

study. 
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4.3 k-Nearest Neighbour (kNN) Program 
 

 

4.3.1 Methodical Background 
 

The k-nearest-neighbour (kNN) algorithm is a non-parametric estimation approach 

and one of the widely applied classification methods. The satellite imagery data and 

reference data, which may come from an inventory in the field, have to be employed 

in the kNN method.  

 

 

 

Fig. 4: Diagram of kNN Algorithm in Feature Space 

 

The basic idea of the kNN-method is to compare an element, for which attributes 

have to be estimated, with elements of known attributes on the basis of other features 

of the elements. It is a method for classifying the objects of interest based on closest 

training examples and evaluating the Euclidean distance in the feature space. An 

object is classified in the feature space by a majority vote of its neighbours, and is 

assigned to the class appearing most frequently amongst its k nearest neighbors. 

These training objects have to be located on the same image as the unknown pixel to 

ensure that external factors such as sun elevation and atmospheric conditions at the 

time of image acquisition influence training and reference objects in the same way. 

Using the simple diagram of Fig. 4, the kNN algorithm may be explained. For 

instance, if the object to be classified is the red point and k= 5, the 5 nearest 
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neighbours to this object have to searched for. The object is assigned to the class 

which appears most frequently among these 5 neighbors. In this case, the object is 

assigned to class 2 due to the highest appearing frequency.  

 

Two factors may significantly influence kNN and may let it fail to work well. One is 

an inappropriate choice of distance metric, and another one is the presence of 

numerous class-irrelevant features. The most important algorithm parameters are the 

distance metric, which is defined in the feature space of the satellite image data, the 

number k of nearest neighbors, and the extent of geographic search radius (Haapanen, 

2004; Tomppo et al., 2004). The Euclidian distance function which was employed in 

this study is as follows (Koukal, 2009): 

 

∑
=

−=
F

f
fjfifji xxcXXED

1

2
,, )(),(                                                    (4) 

 

iX  and  are vectors in F-dimensional feature space, and  are the 

corresponding vector elements (pixel values in spectral bands f). The coefficients  

are the weights of the spectral bands in the Euclidian space. The optimal number of 

nearest reference observations k is evaluated in the kNN process, which was 

aforementioned. Haapanen et al. (2004) described in their study that the overall 

accuracy is only marginally influenced by the number of neighbors considered, k, 

weighting of bands, band combinations etc. When k is larger than 3, a variation of k 

shows only approximately 2 to 3 % variations of overall accuracy.  

jX fix , fjx ,

fc

 

In the kNN method, the geographic search radius can be applied, including horizontal 

and vertical search radius. The geographic search radius may help classify features 

with certain location of geographic characteristics. 
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The kNN method is widely applied also in natural sciences. It is proven that kNN 

classification can possibly be used for stratification purposes in large-scale forest 

inventories (Haapanen, 2004) and it was employed for the estimation of forest 

attributes and mapping using remote sensing data (Koukal, 2007; Haapanen et al., 

2004; Gjertsen, 2007; Finley et al., 2006; Finley and McRoberts, 2008). Many 

countries, including Finland (Katila and Tomppo, 2001; Tomppo, 2004), Sweden 

(Reese et al., 2005), Norway (Gjertsen, 2007), United States (Franco-Lopez et al., 

2001; Haapanen et al., 2004), and so forth, employ this method for their national 

forest resource inventory and related research.  

 

In order to utilize the kNN algorithm in forestry, we have to combine the field data, 

which are obtained at the sample plots as reference, and, of course, remote sensing 

data (Koukal, 2007). Haapanen (2004) also indicated that this method may couple 

satellite imagery data with field-based inventory information. The inventory 

information may at one hand assist in determining areal extent of the real ground 

vegetation composition. Erroneous classification could be avoided. At the other hand, 

this ancillary data may assist in producing continuous digital layers of measured 

forest or land use attributes. In this study the vegetation map in the Piedras Blancas 

National Park was employed as reference data. 

 

It was tried to apply the search radius function to correct and modify the classification. 

Unfortunately, it was not appropriate, neither the horizontal nor the vertical one, 

because most of the reference points were located in the national park and only some 

extra reference points were distributed in certain areas. Consequently, only the areas 

which are located in the search radius near the reference points could be processed. If 

no reference points are located in remote areas, then no results or an incorrect 

classification are produced. The search radius function could therefore only be 

applied under the situation that reference points were distributed all over the study 

area.  

 

 

  20



4.3.2 Comparison of Advantages and Shortcomings 
 

Advantages 

There are several important advantages of the kNN method which make this method 

as an attractive tool for forest attribute estimation and mapping.  

․ One advantage is that kNN is easy to implement. The kNN method makes no 

distributional assumptions, or relaxed assumptions, such as normality or 

homoscedasticity, in feature space about the forest variables used (Thessler et 

al., 2008; Koukal, 2007). It is non-parametric and thus avoids the need for 

explicit models (Tomppo and Halme, 2004). 

․ The kNN method has the potential for combining different sources of 

information, not only from outside of a region of interest, but from different 

forest inventory designs (Franco-Lopez et al, 2001).  

․The kNN method produces both statistics for arbitrary area units and for wall-

to-wall maps, which can be used in addition to forestry studies (Tomppo and 

Halme, 2004). 

․Furthermore, multiple dependent forest variables (parameters) of inventory for 

each pixel or for area units of interest can be simultaneously computed, 

estimated and predicted with the kNN method (Finley et al., 2006; Franco-

Lopez et al, 2001; Tomppo and Halme, 2004).  

․The kNN method better preserves the covariance structure among dependent 

and in dependent variables (Tomppo and Halme, 2004; Finley et al., 2006).  

․In addition, the kNN method is a very “transparent” technique, since it is based 

solely on the search for similar units (Franco-Lopez et al, 2001).  

 

Disadvantages 

However, there are also several limitations of the kNN method. Tomppo and Halme 

(2004) indicated several shortcomings of this method.  

․The kNN method presumes that the total variation of all forest variables is well 

represented by the field sample plots.  
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․The predictions, particularly the predictions of volumes by tree species, may be 

biased if the area of interest is large and covers several different vegetation 

zones with different tree species compositions. The biases can be reduced if 

the set of potential nearest neighbours is somehow restricted (Tomppo and 

Halme, 2004).  

․Varying imaging conditions within the area of a satellite image may also 

change the covariance structure between field data and image data  

․In practice, the kNN algorithm is computationally intensive. For a small study 

area, this is negligible. Problems may be encountered for large study area, 

where the mapping efficiency may be significantly reduced. However, Finley 

and McRoberts (2008) described that the operation efficiency may be 

increased by using the kd-tree, or similar data structures, and efficient exact 

or approximate search algorithms. 

 

 

4.3.3 Components 
 

In this study, the kNN software developed at the Institut für Vermessung, 

Fernerkundung und Landinformation (IVFL) ( Koukal, 2009) was used. This program 

consists of 3 modules: READIMAGE, CROSS-VALIDATION, and MAPPING (see 

Fig. 5).  

 

The READIMAGE module is in charge of combining the input images and ancillary 

data and reading out the pixel values, including the TM band values, elevation values, 

slope values and so forth. The information is output as a “kNN-reference-file”, which 

is used in the next two modules.  

 

Second module is CROSS-VALIDATION, which is a standard tool of estimating 

error statistics of prediction. It is easy to implement and provides nearly unbiased 

estimates of prediction error (Koukal, 2009).  
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Fig. 5: kNN-program flow chart (Koukal, 2009) 

 
Error statistics is produced, including the producer’s accuracy, user’s accuracy, 

overall accuracy and estimated Kappa value, which may be used for parameter 

optimization and accuracy assessment.  

 

In addition, this tool may be used to detect doubtful sample points, namely outliers. 

The outliers can be eliminated for the sake of increasing overall accuracy and Kappa 

values. The basic idea of the outlier elimination method is the following: In the cross-

validation procedure with k=1, it is determined, how often every reference point is 

used as a nearest neighbour, and how often this leads to a correct result. Reference 

points leading to incorrect results in more than 50% of the cases can be considered as 

outliers. 

 

The CROSS-VALIDATION procedure has several forms. The multi-fold CROSS-

VALIDATION, also named two-groups-method, and the leave-one-out method, 

which is a special kind of the two-groups-method, are two most common procedures. 

  23



Multi-fold CROSS-VALIDATION randomly splits the reference data into one 

training data group and one testing data group (Koukal et al., 2007; Koukal, 2009). In 

the leave-one out-method, the reference data is also split into two groups, training and 

testing. The only difference of the leave-one-out method is that the testing set consists 

of one single pixel and all other reference data are grouped into the training set. This 

form omits training sample units one by one and mimics the use of independent data 

(Haapanen, 2004). The leave-one-out method is especially suited for rather small 

reference data sets, because the maximum amount of training data is available for the 

classification of every pixel and the sample may be too small to get reliable estimates 

when splitting the sample into two exclusive data sets (Koukal et al., 2007).  

 

Gjertsen (2007) mentioned that the accuracy assessment in CROSS-VALIDATION 

may be enhanced in two ways. In addition to the original bands of the images, it is 

helpful to use derived measures such as band ratios to improve the level of 

association. These band ratios may improve the separability of the forest variables. 

This may result in enhanced overall accuracy. Another possibility is to use auxiliary 

information such as site index maps (e.g. soil maps) to reduce the set of reference 

plots for each pixel to be classified, and to use only plots with the same site index 

class as the pixel to be classified. In this study, the slope information which was 

extracted from SRTM was inserted in the kNN-reference-file as an extra band 8 

together with the image data in order to improve the overall accuracy. 

 

MAPPING module is applied as the last step in this program. Pixel by pixel is 

estimated and the result is written to raster files (maps). Besides the maps, regional 

statistics are also generated in this module. 
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4.3.4 Process Sequence 
 

The detailed vegetation map of the Piedras Blancas National Park, which was 

generated by Weissenhofer et al. in 2003, was employed as ancillary information for 

reference point selection. Although this vegetation map represents the state of 2003 

and in some areas the state of 1998 due to clouds in the imagery of 2003, it was the 

only land use type information which could be acquired as reference data base. This 

vegetation map and the images of two acquisition dates (chapter 3.1) were combined 

for generating the kNN-reference-file. 

 

ArcGIS was employed to produce pointsets as reference points in the area within the 

vegetation map. Extracting enough ground sample points was essential for successful 

application of the kNN method. The accuracy of the generated land-cover 

information is highly dependent on the measurable quality of the reference 

information. Haapanen (2004) mentions that it is important for the reference data to 

capture the range of spectral variability, which reflects the terrestrial characteristics, 

within a class in order to obtain good class estimates with the kNN method. It was 

assumed that the spectral characteristics of most of the land use types are represented 

best in the homogeneous areas of these land use types. However, pixel values within 

one land use type may also vary, due to various species composition, regional soil 

humidity or stand microclimate condition. It is essential to attain continuous variable 

estimates covering the range of the spectral variability of every land use type. The 

reference points should be well distributed. The images which were employed in the 

kNN-method should be covered by the terrestrial inventory area to an extent as large 

as possible (Koukal et al., 2007).  

 

First of all, two kinds of reference points were generated, one with interval 500 

meters and the other one with interval 250 meters. In the regions with mono-

vegetation types and large areas, the reference points with interval 500 meters were 

used. For instance, within the primary forest which occupied large areas, reference 

points were used with interval 500 meters. In the areas where the vegetation types are 
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more discontinuous and fragmented, the reference points with 250 meters were used 

in order to obtain more reference information. These pointsets were also visually 

modified by moving points from doubtful areas, which had uncertain land use type, 

and from land use type edges, where the points may lie on mixed pixels of different 

land use type. The points in cloud and shadow areas also had to be moved to non-

cloud or non-shadow areas. Those points were moved to areas of uniform land use. 

Some additional reference points outside the vegetation map area, which could be 

visually classified with certainty, e.g. oil palm plantations, mangroves, fallow land, or 

primary forest in the remote high elevation area, were also generated.  

 

As aforementioned in chapter 3.3, there were 23 distinct ecosystems shown in the 

Piedras Blancas National Park vegetation map. First, these 23 classes were 

preliminarily classified into 12 classes (see table 3). The total numbers of reference 

points were 2496 and 1994 for image 1987.01.17 and 1998.02.17, respectively. There 

were at least 30 reference points per vegetation class, except for class 7, timber 

plantation. This class had only 20 and 15 reference points for image 1987.01.17 and 

image 1998.02.16, respectively. 

 

In the crossvalidation, the results of pre-classification showed that the accuracy of 

class 7 timber plantation wasn’t trustable. It seems that timber plantation has similar 

spectral characteristics like secondary forest, producing indistinct results of 

crossvalidation.  

 

In order to have more reliable results, the classes were further combined into 7 new 

classes (see table 3). Primary forest and secondary forest were of high interest in this 

study, hence they were kept invariant in the second classification system. Mangrove 

is one class with specific spectral characteristics and easily detected and classified. It 

was proven having qualified classification results, and therefore class mangrove was 

kept in the new classification system. 
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Pre-classification 
  

classification 
  

1 Primary Forest  1 Primary Forest  
2 Secondary Forest  2 Secondary Forest  
3 Mangrove 3 Mangrove 
4 Regular Pasture 4 Grassland 
5 Marsh Grassland      

6 Fallow Land       

7 Timber Plantations 5 Arable Land  
8 Oil Palm Plantations      

9 Arable Land       

10 Settlement 6 Non-vegetation 
12 Gravel Bank     
11 Waters 7 Waters 

0 
Clouds, Shadow, Out of 

Research Area 0 
Clouds, Shadow, Out of 

Research Area 
 

Table 3: Categories of the classification 
 

Regular pasture and marsh grassland were combined to grassland. Grasses and shrubs 

may colonize the pasture soon after abandonment (Holl et al., 2000).  Abandoned 

pasture or marsh grassland may be reasonably classified to grassland. Fallow land 

could be considered as abandoned land, which was recovered by grasses and shrubs 

very soon. Therefore, fallow land was also classified to the new class grassland. The 

preliminary class 7 timber plantation, 8 oil palm plantation and 9 arable land were 

considered as anthropogenic arable land. Accordingly, they were reclassified as new 

class arable land.  The preliminary class 10 settlement and class 12 gravel banks were 

the land use types without vegetation. They were combined as the new class non-

vegetation. 

 

The coefficients  in equation (4) are significant factors influencing the overall 

accuracy and the Kappa values in the kNN-method. The coefficients enhance or 

reduce the influence of bands. As aforementioned, there are 7 bands in Landsat TM 

images. All the bands, except band 6, were employed in the kNN-method. Band 3, 

fc
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which is the visible red band with wave length 0.63-0.69 µm, helps to discriminate 

vegetation and soil. Band 4, which is near infrared with wave length 0.76-0.90 µm, 

also discriminates vegetation and soil and has the ability to distinguish vegetation 

varieties and conditions. Arable land can be separated from the land use types without 

vegetation. Besides, arable land and grassland may show higher reflectance than the 

forest vegetation types. Band 5, which is mid-infrared with wave length 1.55-1.75 µm, 

detects the water content. It is distinctly separating water bodies from other land use 

types. This band is sensitive of the amount of water in vegetation and also can assist 

separating arable land and forest. Several research studies have proven that the wave 

band combination of the visible red, near infrared and mid-infrared spectral regions 

(band 3, 4, 5), has great potential for vegetation discrimination (Hayes and Sader, 

2001). Accordingly, the coefficients of band 3, 4 and 5 were given enhanced weight 

and set to 1, and bands 1, 2, and 7 were given lower weight and set to 0.4. The weight 

of bands 1, 2, and 7 was determined by trial-and-error optimizations of the overall 

accuracy.  

 

Band 6 was not available for the image 1987.01.17. Consequently, it was not 

considered to use this band for classification.  

 

Some land use types are restricted to flat areas, others to sloped areas. For instance, 

mangrove forest appears only in the flat area near the river mouth or coast below 20 

meters above sea level, and also oil palms and arable land only occur on flat terrain. 

To use this information, the slope information was also extracted and inserted to the 

kNN-reference-file as band 8 in order to assist the classification. The coefficient of 

band 8 was set to 1. 

 

Mask files were separately used for each image in this study in order to eliminate 

clouds, cloud shadows and the regions outside of the study area. Two benefits of the 

use of mask files can be mentioned. First, the pixel values from clouds or shadows 

which would affect the kNN classification are avoided. Second, the computing time 

could be reduced.  
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4.4 Classification Enhancements 

 

The classification results obtained with the kNN program were checked first by 

comparison with the detailed vegetation map in the Piedras Blancas National Park. 

This was done in order to ensure that the classification results are reliable. 

Furthermore, the whole study area had to be verified. The doubtful areas with 

uncertain vegetation type or incorrect vegetation classification results were checked 

with ancillary images from Google Earth or through the interview with a botanic 

expert who is familiar with the local vegetation. Additional reference points were set 

in those doubtful areas, e.g. in swampy areas which were classified as oil palms, or in 

high elevation areas which were classified as mangrove forests. The correct classes 

were assigned to these reference points. Reference points were also set in remote 

areas, for instance mountainous areas above 2500m sea level. These mountain areas 

were covering largely distinct ecological life zones. These additional reference points 

were necessary due to the gradual change of vegetation properties along the latitude 

and elevation.  

 

A maximum distance can be set in both horizontal and vertical directions (search 

radius function) in order to avoid selecting the nearest neighbours (spectrally similar 

plots) from a region in which the response of image variables to field variables is 

assumed to be not similar to that of the pixel under consideration (Tomppo et al, 

2004). The search radius function may modify and improve classifications. For 

instance, mangroves appear only at roughly 0 meter sea elevation and near river 

mouths. Another example is that arable land and oil palm plantation may only be 

developed on flat terrain at lower elevation. These land use types occur rarely at 

higher elevations and in remote mountainous areas, therefore pixels which are 

classified as these classes should be modified. However, it is not recommendable to 

use the search radii in this study. The elevation ranges from 0 to 3802 m and, as 

aforementioned, the reference points are mostly located in the Piedras Blancas 

national park, where the highest elevation is roughly 200 m above sea level. 

Therefore, no reference points exist for higher elevations. The pixels which were 
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located at higher elevation are not classified when a vertical search radius is applied. 

The search radius function could only be applied if the reference points were evenly 

distributed in the whole study area, at all elevations. 

 

The second-choice selection was also considered for classification enhancement. It 

means that not the class with the highest number of neighbours is chosen, but the 

class with the second-highest number of neighbours. The second-choice class is 

obtained from the “fuzzy file” produced by the kNN mapping process. The fuzzy file 

lists, for every pixel to be classified, all classes represented by the nearest neighbours, 

together with the “membership degree” of the pixel to each class. A weight function 

for the neighbours can be chosen in fuzzy kNN classification. It was chosen 

proportional to the inverse of the Euclidean distance so as to avoid the situation that 

two or three of the classes had the same membership degree. Under the situation that 

several classes had the same membership degree, the selection of the class to be 

assigned was difficult. Although the problems of the doubted areas could be partly 

solved by the second-choice selection, the pixels which have only one choice (100%) 

still created problems and made this process meaningless.  Therefore, increasing the 

number of reference points was more recommendable than other methods for 

classification enhancement in this study.  
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4.5 Post-processing 

 

After the vegetation classifications were performed, a majority filter was employed. 

This filter is implemented in ERDAS under Interpreter, GIS analysis. Filter size 7 x 7 

was applied in this study. It means that the target pixel is located in the center of a 7 x 

7 window, and it is assigned to the class which appears most frequently among these 

7 x 7 pixels. This function can filter out isolated pixels with a class different from the 

surrounding area. For instance, some pixels belonging to mangrove appeared in the 

large primary forest area. Those pixels were certainly assigned to the incorrect class. 

The neighborhood filtering function can assist to eliminate these incorrectly classified 

pixels.  

 

 

4.6 Pixel Change Detection 

 

Before applying the pixel change detection function, one preparation had to be done. 

Image 1987.01.17 had spatial resolution 28.5m x 28.5m and image 1998.02.16 has 

30m x 30m. In order to compare the class change pixel by pixel, the image 

1987.01.17 was transformed to the 30m x 30m pixel size and pixel alignment of 

image 1998.02.16, using the project raster function in Arc GIS. 

 

The combine function in Arc Toolbox was applied to detect the pixel value change of 

land use types. This function can combine multiple raster files, assigning a unique 

output value to each unique combination of input values. 

 

According to the main aim of this study, the 3 “change paths” “primary forest 

preserved”, “primary forest to secondary forest or grassland” and “primary forest to 

other types” were extracted from this change matrix of 64 possibilities of change. 
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5 RESULTS 
 

 

5.1 Crossvalidation 
 

 

5.1.1 Pre-classification with 12 Classes 

 

The results of crossvalidation are shown in the appendices. The error matrices for the 

classification from the images of the two dates (1987.01.17, 1998.02.16) for k = 6 

may be seen in tables 4 and 5. This value of k was found to give the highest overall 

accuracy and the highest Kappa value. The overall accuracies of image 1987.01.17 

and 1998.02.16 were roughly 77% and 82%. The Kappa values are 72% and 77%, 

respectively.  

 

In both pre-classifications, class 7 timber plantation showed the most problematic 

results. In image 1998.02.16, the producer’s accuracy of this class was only 0.1. The 

image 1987.01.17 showed even worse results. There was not one single pixel of this 

class classified correctly. Except the influence of time difference between vegetation 

map and images, there are two possibilities to explain this. One possibility is that 

there are too few reliable reference points for classification. According to the 

vegetation map, the areas of timber plantation are rare, and they are scattered in small 

patches. The reference points could be erroneously assigned to other classes of 

neighbouring areas. The second possibility could be that timber plantation is 

spectrally very similar to secondary forest. Besides, depending on the species which 

are cultivated, it may be misclassified to other class too.  

When the timber is quite young with tree height not much above the height of grass, 

it may also be mistakes for grassland or farmland.  
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5.1.2 Classification with 7 Classes 
 

As aforementioned, a new classification with seven classes was performed (see table 

3). Several pre-classification classes were combined together to get higher overall 

accuracy and more reliable results. The new classes are primary forest, secondary 

forest, mangrove, grassland, arable land, non-vegetation and waters.  

 

Tables 6 and table 7 in the appendix show the crossvalidation results of the 

classification with 7 classes of both years. Apparently, the overall accuracies for both 

images were increased, from 77% to 81% for image 1987.01.17 and from 82% to 

86% for image 1998.02.16. The Kappa values were also raised, from 72% to 81% for 

the former image and from 77% to 86% for the later image. These new classes show 

more general instead of more detailed information, and accordingly the classification 

results are more reliable. Except class secondary forest, which shows 49% and 54% 

producer’s accuracy for the two years, the other classes have moderate to high 

producer’s accuracies. The low accuracy for secondary forest is not surprising, 

because secondary forest is showing vegetation characteristic between primary forest 

and grassland. Secondary forest was relatively poorly distinguished from primary 

forest and grassland. It acts as a residual group between these two groups. Grassland 

may be rapidly occupied by bushes or the invading pioneer tree species. The 

secondary forest may grow very fast and become primary forest. Tropical ecosystem 

succession is relatively dynamic and quick. Besides, the definition of secondary 

forest also has an impact on the classification result.  
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5.2 Classified Vegetation Map 
 

 

5.2.1 Piedras Blancas National Park 

 

The results of vegetation classification in the Piedras Blancas National Park are 

shown in Fig.6. 7 classes are distinguished (see table 3). This classification is solely 

based on the Piedras Blancas National Park vegetation map of 2003 as a reference. 

The classification results therefore are doubtful, especially for the image 1987.01.17, 

despite the use of the outlier classification method. Comparing the classification 

results of imagery 1987.01.17 and 1998.02.16, the former image obviously has more 

classification errors. The result of image 1987.01.17 has more pixels classified to 

arable land which does not exist in the reference vegetation map. This error may 

come from the time difference between the reference vegetation map which 

represents the situation in 2003 and the image acquisition date. Land use types may 

have significantly changed during this period of time. Especially in tropical 

ecosystem, the vegetation may change rapidly. The abandoned pasture or arable land 

may be invaded by shrubs within a few years.  

 

In the classification of the image of 1987.01.17, there are more primary forests and 

fewer secondary forests. It is quite plausible that more undisturbed forests existed in 

1987. The locations of the patches of secondary forest and grassland appear relatively 

correct for both dates. Mangroves, near the river mouth, were precisely classified. 

Except the north-south belt in the western part of the national park and some 

fragmented patches which were incorrectly classified, the arable land in the north and 

east of the national park is relatively correctly classified. 
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Reference Vegetation Map (compiled 2003) 

 

 

                                                                                                                    

Classified Vegetation  Map 
             1987.01.17 

Classified Vegetation  Map  
             1998.02.16 

Fig. 6: Results of vegetation classification in the Piedras Blancas National Park 

 

It can be assumed that the classification of image 1998.02.16 is more reliable 

compared with image 1987.01.17. There are fewer erroneous pixels assigned to 

arable land in the west part, and the pattern of land use types fits better to the 

vegetation map. In general, this image shows more primary forests than the 

vegetation map, similar to image 1987.01.17, and it shows fewer patches of 

secondary forest and less arable land. More pixels which belong to secondary forest 

in the vegetation map were classified as primary forest in this image. The 

classification of mangrove was also reliable in this image. As aforementioned, the 

classifications of these two classes seem quite correct, although more grassland and 

less arable land are shown compared with the vegetation map. This may again result 
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from the time difference between the image acquisition and the compilation of the 

vegetation map. A conclusion can be made so far that the results of classification in 

the national park area are moderately reliable for image 1987.01.17 and reliable for 

image 1998.02.16. 

 

 

5.2.2 Extensive Study Area 

 

The results of the classification with 12 classes are shown in the appendix, figures 12 

and 13. Only the classifications with 7 classes which are reproduced in figures 7 and 

8 are discussed here. Nevertheless, one interesting point found in the pre-

classification result with 12 classes may be mentioned here. The pre-classification 

map of image 1987.01.17 (Fig. 12) shows much more fallow land than the 

classification map of image 1998.02.16. Both images were taken in January and 

February, within the dry season, which lasts from December through April in Costa 

Rica. Therefore, the weather factor might not be responsible for this substantial 

difference. There is one possibility to cause this phenomenon. In the 1980s, Structural 

Adjustment Programs (SAPs) introduced by the World Bank reduced the profitability 

of agriculture and cattle ranching in marginal forest lands. It was also mentioned by 

Weissenhofer et al. (2008) that many banana plantations were closed or abandoned 

when the United Fruit Company withdrew its farmland and left Costa Rica in 1986. 

The image 1987.1.17 was taken right after the withdrawing year. Grass and shrubs 

may have not invaded these farmlands a year after abandonment. Therefore large 

areas of fallow land may appear in this image. 

 

Although the classification with 7 classes shows reliable results in the Piedras 

Blancas National Park, it shows more problems in the whole study area. For the 

image 1987.01.17, the problems of class 5, arable land, are extending from the 

national park to the whole area. There are many misclassifications of arable land. The 

image 1998.02.16 shows more accurate classification results. Although this later 

image yield better results, there are also some areas with doubtful classification.  
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Fig. 7: Classification map of image 1987.01.17
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Fig. 8: Classification map of image 1998.02.16 
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For instance, the south-west of the peninsula with the lagoon should be pre-classified 

with 12 classes as wet-land, which is included into the grassland class afterwards. But 

it is pre-classified as oil palm. Image 1987.01.17 also has this problem. Some 

residuals from this class can still be seen, although roughly 20 extra reference points 

were generated in this swampy area. 

 

Deforested areas were identified by comparing the primary forest, secondary forest 

and grassland in both images. In general, comparing the two classification results, 

more primary forests certainly existed especially in the northern high elevation areas 

in the former image. Premontane and montane cloud forests were usually less 

accessible and less desirable for agriculture because of rainfall, rugged terrain and 

soil fertility limitations (Rosero-Bixby et al., 1996). This could explain that most of 

the primary forests were located in the northern part of the study area. In this area, the 

elevation is higher, more than 2000 meters, and it is relatively remote. It is also near 

other forest reserves, Talamanca range and La Amistad National Park. Drier life 

zones are relatively accessible and have more favorable climate and soil conditions 

for agriculture and pasture use, which, consequently, put them at higher risk of 

deforestation (Rosero-Bixby et al., 1996).  

 

It can be recognized that grassland and secondary forest stretching from the north-

west to the south-east expand to the perpendicular direction. More secondary forest 

developed probably due to the reforestation and forest law in the 1990s and appears 

in the later image. Obviously, a considerable amount of the primary forest was felled 

before acquisition of the second image. This phenomenon may be especially seen in 

the more remote areas north of the Piedras Blancas National Park. It could be 

explained by the population migration from North America to the south and the 

resulting population pressure in this area. It may not easily be seen directly from these 

two classified maps how much area changed from primary forest to other land use 

types. These changes are shown in figure 9. This map shows 3 classes of transition. 

Dark green indicates the areas where primary forests existed in 1987 and still 

remained as primary forests in 1998. Light green represents the primary forest 
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changed to grassland and secondary forest in the later image, which might result from 

pasture land extension. Orange signifies primary forest altered to other land use types, 

including arable land, settlements and so forth.  The total area altered to grassland and 

secondary forest, light green, is 86,733 hectare, and the orange area, primary forest 

converted to other land use types, occupied 19,877 hectare. This was calculated from 

the number of pixels which have changed the class from primary to other land use 

types.  

 

From this map, some information may be extracted. The light green and orange parts 

represent the total deforestation areas of primary forest. The areas with orange color, 

where the forests were converted due to anthropogenic activities, are smaller than the 

areas with light green color which signifies the pixels from primary forest in the 

image 1987.01.17 to grassland or secondary forest in the later image. Most of the 

converted areas belong to grassland or secondary forest.  These areas extend along 

the developed areas from north-west to south-east. It might result from the population 

migration pressure and trend from North America to the South and the economic 

incentives converting forest to pasture land.  

 

The primary forest still remains in the northern remote areas and in two national 

parks and the forest reserve in ACOSA. The inaccessibility of these remote areas due 

to high elevation and the legislation of forest law conserved the precious natural 

resources. Corcovado National Park, Golfo Dulce forest reserve, and Piedras Blancas 

National Park form a belt-like continuous primary forest from the peninsula aroung 

Golfo Dulce bay. It would be desirable if this belt-like primary forest would be 

connected to the primary forest area in the north. Unfortunately, the middle area, 

where the primary forests were mostly converted to grassland, has only residual 

fragmented primary forest existing between the northern more remote undisturbed 

part and the southern national parks. 
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Fig. 9: Conversion of primary forest between 1987.01.17 and 1998.02.16 
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6 DISCUSSION 

 

 

6.1 Sources of Errors 

 

Several errors of these classified maps due to the complexity of the problem and due 

to the limited information content of the available reference data and of the remote 

sensing images can be mentioned. 

 

There are several limitations of any classification of a tropical ecosystem due to the 

abundant biodiversity. The mixture of tropical tree species leads to inaccurate results. 

Tree age and stress can also cause variations of crown characteristics and lead to 

misclassification (Rahman, 2004). Even a pastureland site with intensive land use 

shows significant plant diversity (Oosterhoorn & Kappelle, 2000). Gjertsen (2007) 

mentioned that the kNN-method was strongly sensitive to changes of the proportions 

within the different classes in the reference dataset. With different forest stand 

compositions, e.g. 70 % for spruce or 50 % of deciduous trees, the pixels are not 

always assigned to the correct class. Our study area includes large areas and covers 

two conservation areas, ACLA-P and ACOSA. Even in the ACOSA conservation 

area, two national parks, Piedras Blancas and Corcovado National Parks, and one 

forest reserve, Golfo Dulce, also comprise many significant vegetation zones. The 

vegetation composition is complex even within the same class, which may show 

spatially continuous change, and may influence the accuracy of classification leading 

to misclassification. 

 

The detailed vegetation map, which is employed as reference dataset presents the 

vegetation condition in 2003 and partially in 1998 in areas, which were covered by 

clouds in 2003 imagery. This means that there is a time difference between the 

vegetation map and both images, especially the image 1987.01.17. The land cover 

types change rapidly in tropical ecosystem, due to the natural dynamic succession. 
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Also, the forest law was changed in the 1990s. This can be considered as one factor 

impacting the vegetation composition. Unfortunately, this vegetation map was the 

only source for local land use reference information.  

 

The SRTM elevation model, which was downloaded from GLCF, had spatial 

resolution 90m x 90m. Although the pixels of this model were resampled to the 

Landsat pixel size, the information content remains moderate. This problem was 

especially noticed in radiometric-topographic normalization using SCS correction, 

due to SRTM as reference data. Normalized images didn’t reveal the perfect 

calibrated effect. Some small areas along ridges or valleys had erroneous elevation 

information and showed unsatisfactorily radiometric correction. The pixel values of 

these areas were not perfectly calibrated, which resulted in incorrect classification. 

Particularly in steep terrain, this problem was accentuated. 

 

 

6.2 Possibilities of Improvement  

 

Several possibilities may be suggested in order to enhance the classification results. 

SRTM with higher resolution may be first considered which may result in better 

radiometric-topographic correction. This may influence the following classification 

and increase the overall accuracy and Kappa.  

 

In the kNN program, it is most important to have trustable reference points, which 

have to be representative for the spectroradiometric characteristics of each class and 

also for their variations within each class. The reference points in this study were 

generated according to the detailed vegetation map in the Piedras Blancas National 

Park. There were mainly two restrictions. First, as aforementioned, the map was 

compiled in 2003 and the existing time difference did disturb the correct land use 

information. Unfortunately, this map was the only information for the vegetation type 

in this study.  
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The second obstacle was that this vegetation map only covered the area of the Piedras 

Blancas National Park. This problem may be alleviated by visual selection and 

interpretation of more reference points in other areas. 

 

 

1987.01.17 

                 
 

1998.02.16 

                    

                                      
            

Before creating extra 
reference points 

After creating extra 
reference points

 
Fig. 10: The misclassification of class arable land in south-west of Peninsula,  

and the results after increasing additional reference points. 
 

An example of the usefulness of additional reference points is shown in the figure 10. 

The problem is that large areas are erroneously classified as oil palm (in class “arable 

land”) in swampy areas. After hints from a botanic expert that Raphia palms are 

natively growing in these swampy areas (to be classified as “grassland”), the Raphia 

palms could be seen in high resolution images in Google Earth. Additional reference 

points were selected there. The classification results could be considerably improved 

as can be seen in the right side of figure 10. 
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The use of special additional reference points for verification may also help to obtain 

more realistic figures on the accuracy (overall accuracy, Kappa), as the sole use of 

training reference points for accuracy assessment produces overoptimistic accuracy 

figures. 

 

In addition to the proposals made above, some further improvements may be 

suggested in the kNN program. Haapanen et al. in their study (2004) showed that the 

distance constraints (restricting maximum horizontal and vertical search radii) can 

improve the classification to be more effective. However, the reference points of this 

study area are mainly located in the Piedras Blancas National Park. The horizontal 

and vertical search radius functions therefore are unsatisfactory in this study. If more 

reference points representative for all classes and well distributed over the whole area 

to be mapped are available, it may be possible to effectively use horizontal and 

vertical search radii (as discussed in chapter 4.4) in the classification – which was not 

possible in this study due to the lack of well distributed reference points. 

 

 

6.3 Suggestions of Wildlife Corridor 

 

From figure 9, it can be seen that primary forest still remains in the northern remote 

area and in two national parks and a forest reserve in ACOSA (southern half of figure 

9). Obviously, the Corcovado National Park, Golfo Dulce forest reserve, and the 

Piedras Blancas National Park form a belt-like continuous primary forest around 

Golfo Dulce bay. This belt-like primary forest without disturbance provides local 

wildlife natural habitats and food resources and is essential to maintain the local 

ecological environment and stabilize the biodiversity in this area. Unfortunately, this 

forest belt is not fully connected to the primary forest in the northern remote area. 

This route was disturbed and interrupted by the deforestation in between. It is to be 

considered to develop forest reserves or protection areas between the north high 

elevation area and the southern forest belt, to connect these two ecosystems, to 

provide more living space for wildlife and to thus preserve biodiversity.  
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7 ABSTRACT 
 

The aim of this thesis is to develop a method for producing a vegetation map using 

multispectral satellite images from Landsat. Two dates of Landsat images are applied, 

one from 1987 and another from 1998, in order to detect the change from primary 

forest to other land cover classes during this period. The images are preprocessed by 

georeferencing and SCS radiometric-topographic normalization. They are then 

processed by kNN classification including outlier elimination. The method is 

developed, demonstrated and verified by using a vegetation map of the Piedras 

Blancas National Park (Costa Rica) compiled in 2003 as reference information. 

Information on forest change between 1987 and 1998 is deduced from the individual 

classifications of the two images. A deforestation trend is shown. Suggestions for 

designating a wildlife corridor in Middle America are also discussed. 
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9 APPENDICES 
 

Table 4: Crossvalidation results of image1987.01.17 with 12 pre-classes, k=6 
 

CONFUSION MATRIX CATEGORICAL VARIABLE 1                 
               
 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 Cat9 Cat10 Cat11 Cat12 Sum user´s Acc.

Cat1 830 116 7 2 3 0 3 1 2 2 0 0 966 0.859 
Cat2 59 163 1 8 3 4 2 6 9 3 0 0 258 0.632 
Cat3 3 2 136 0 6 0 0 0 0 0 0 0 147 0.925 
Cat4 4 5 0 53 17 13 8 4 15 11 0 0 130 0.408 
Cat5 8 4 4 20 60 4 0 6 3 5 0 0 114 0.526 
Cat6 1 4 0 6 1 156 1 1 2 7 0 2 181 0.862 
Cat7 0 2 0 0 1 0 0 0 0 0 0 0 3 0 
Cat8 12 30 0 8 45 3 5 386 8 4 0 0 501 0.770 
Cat9 1 3 0 13 0 3 1 1 53 1 0 0 76 0.697 
Cat10 0 0 0 2 3 1 0 0 2 44 1 11 64 0.688 
Cat11 0 0 0 0 1 0 0 0 0 0 28 0 29 0.966 
Cat12 0 0 0 0 0 0 0 0 0 2 0 25 27 0.926 
Sum 918 329 148 112 140 184 20 405 94 79 29 38 2496  

producer´s.Acc. 0.9 0.5 0.9 0.5 0.4 0.8 0 1 0.6 0.56 1 0.66   
                              

Kappa = 
0.717 

Overall Accuracy = 
0.775                 
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CONFUSION MATRIX CATEGORICAL VARIABLE 1                 
               
 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 Cat9 Cat10 Cat11 Cat12 Sum user´s Acc.

Cat1 811 89 2 0 11 0 2 1 2 0 0 0 918 0.883 
Cat2 40 142 0 3 3 7 3 7 4 0 0 0 209 0.679 
Cat3 3 0 57 0 1 0 0 0 1 0 0 0 62 0.919 
Cat4 0 0 0 107 12 15 0 0 8 10 0 0 152 0.704 
Cat5 6 2 3 13 50 1 0 2 1 1 0 0 79 0.633 
Cat6 0 1 0 8 1 119 1 1 3 4 0 0 138 0.862 
Cat7 0 1 0 1 2 1 2 0 3 0 0 0 10 0.2 
Cat8 10 15 0 0 9 4 2 208 2 0 0 0 250 0.832 
Cat9 0 2 0 4 7 4 5 0 53 0 0 0 75 0.707 
Cat10 0 0 0 1 1 0 0 0 0 43 0 3 48 0.896 
Cat11 0 0 0 0 1 0 0 0 1 0 28 0 30 0.933 
Cat12 0 0 0 0 0 0 0 0 0 3 0 20 23 0.870 
Sum 870 252 62 137 98 151 15 219 78 61 28 23 1994  

producer´s.Acc. 0.9 0.6 0.9 0.8 0.5 0.79 0.1 0.9 0.7 0.7 1 0.87   
               

Kappa =  
0.765 

Overall Accuracy = 
0.822                 

Table 5: Crossvalidation results of image 1998.02.16 with 12 pre-classes, k=6 
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Table 6:  Crossvalidation results of image 1987.01.17 with 7 classes, k=6 

CONFUSION MATRIX CATEGORICAL VARIABLE 1     
          

 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Sum user´s 
Acc. 

Cat1 830 116 7 5 5 2 0 965 0.860 
Cat2 59 160 1 11 14 3 0 248 0.645 
Cat3 3 2 136 6 0 0 0 147 0.925 
Cat4 14 16 4 343 42 27 2 448 0.766 
Cat5 12 35 0 70 456 5 0 578 0.789 
Cat6 0 0 0 1 2 80 1 84 0.952 
Cat7 0 0 0 0 0 0 26 26 1 
Sum 918 329 148 436 519 117 29 2496  

producer´s 
Acc. 0.904 0.486 0.919 0.787 0.879 0.684 0.897   

          
Kappa = 

0.755 
Overall Accuracy = 

0.814             
 

 

Table 7:  Crossvalidation results of image 1998.02.16 with 7 classes, k=8 

CONFUSION MATRIX CATEGORICAL VARIABLE 1     
          

 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Sum user´s 
Acc. 

Cat1 818 96 2 10 4 0 0 930 0.880 
Cat2 31 135 0 11 9 0 0 186 0.726 
Cat3 2 0 57 1 1 0 0 61 0.934 
Cat4 6 4 3 332 21 15 0 381 0.871 
Cat5 13 17 0 31 277 0 0 338 0.820 
Cat6 0 0 0 0 0 69 0 69 1 
Cat7 0 0 0 1 0 0 28 29 0.966 
Sum 870 252 62 386 312 84 28 1994  

producer´s 
Acc. 0.940 0.536 0.919 0.860 0.888 0.821 1   

          
Kappa = 

0.806 
Overall Accuracy = 

0.861             
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Fig.11: Pre-classified vegetation map of image 1987.01.17 
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Fig.12: Pre-classified vegetation map of image 1998.02.16 
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