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Abstract 

The availability of high spatial and temporal resolution optical remote sensing data allows the 
estimation of biophysical parameters for a wide territorial coverage. This is of essential 
importance for ecological, hydrological, climatic and other applications, giving the basis for a 
sustainable management of agricultural and forestry resources.  

The present studies analysed the use of physically based approaches for the quantification 
of the Leaf Area Index (LAI) and other important vegetation characteristics. Comparisons 
with traditional empirical models, using vegetation indices, are performed.   

Furthermore, the relevance of canopy reflectance models for precision farming applications, 
such as the detection of drought stress zones, monitoring of vegetation growth and dynamic 
and energy balance modelling, is highlighted. The models were validated and moreover, the 
physiological reaction of plants to drought stress and recovery was analysed by means of 
optical leaf reflectance field and laboratory measurements. Additionally, the configuration of 
the forthcoming ESA Sentinel-2 mission was tested in an operative perspective. 

The remotely sensed and ground based data used in the studies were acquired, amongst 
others, in the framework of the “Crop Drought Stress Monitoring by Remote Sensing“ 
(DROSMON) project of the University of Natural Resources and Applied Life Sciences, 
Vienna.  

Summarizing the results of all studies, it could be shown that optical remote sensing is a 
valuable tool rather for estimating structural changes of the canopy (such as LAI) than for an 
early drought stress detection. The physically based estimation of surface parameters could 
be performed for a wide range of conditions, i. e. for different geographical locations, sensors 
and vegetation types, and in a satisfyingly accurate way using turbid medium modelling 
schemes. 

The method is therefore recommended for an operational quantification of biophysical 
products or for the determination of medium or longer term drought stress in agricultural and 
forestry applications. 

 

Keywords: vegetation parameters, LAI, model inversion, drought stress, optical remote 
sensing 
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Kurzfassung 

Der Einsatz fernerkundlicher Methoden ermöglicht die flächenhafte Bestimmung 
biophysikalischer Vegetationsparameter in hoher räumlicher und zeitlicher Auflösung. Diese 
stellen bedeutende Informationen u. a. für die Bereiche der Ökologie, Hydrologie und 
Klimatologie dar und schaffen somit die Basis für ein nachhaltiges Management in Land- und 
Forstwirtschaft.  

Die vorliegenden Studien analysierten die Verwendung physikalisch basierter Modelle für die 
Quantifizierung von Blattflächenindex (LAI) und anderer Vegetationsparameter im Vergleich 
zu empirischen Ansätzen. Insbesondere wurde die Bedeutung von 
Bestandesreflexionsmodellen für wichtige Precision Farming-Anwendungen wie 
Trockenstresszonierung, Beobachtung des Wachstums und der Dynamik der Vegetation und 
Energiebilanzmodellierung aufgezeigt. Im Weiteren wurde die Konfiguration zukünftiger 
Satelliten (Sentinel-2) hinsichtlich ihrer Eignung für operative Anwendungen getestet. Die 
Modelle wurden evaluiert und außerdem die physiologische Reaktion der Pflanzen auf 
Trockenstress und Erholung anhand spektraler Signale auf Blattebene untersucht.  

Die in den Studien verwendeten hyper- und multispektralen Sensordaten und 
Bodenmessungen wurden im Rahmen des „Crop Drought Stress Monitoring by Remote 
Sensing“ (DROSMON) Projekts der Universität für Bodenkultur, Wien und verschiedener 
anderer Feldkampagnen erhoben. 

Zusammenfassend konnte gezeigt werden, dass die Fernerkundung vom sichtbaren bis zum 
mittleren Infrarotbereich eine Eignung eher für die Erkennung struktureller Veränderungen 
des Bestands, z. B. LAI, als für die Trockenstressfrüherkennung aufweist. Die physikalisch 
basierte Schätzung von Vegetationsparametern kann mit zufriedenstellender Genauigkeit 
und auch unter diversen Bedingungen, d. h. in unterschiedlicher geographischer Lage, für 
eine Reihe von Sensortypen und verschiedene Vegetationsarten, durch Inversion von 
homogenen Turbid Medium-Modellen durchgeführt werden.  

Die verwendeten Methoden werden daher für eine operative Quantifizierung von 
biophysikalischen Vegetationsparametern bzw. für die Bestimmung von mittel- und 
langfristigem sowie potentiellem Trockenstress in Land- und Forstwirtschaft sehr empfohlen.  

 

Schlüsselwörter: Vegetationsparameter, Blattflächenindex, Modellinversion, Trockenstress, 
optische Fernerkundung 
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1 Einleitung  

Zur Einführung wird ein Überblick zum großen Themenfeld der fernerkundlichen 
Untersuchungen in Land- und Forstwirtschaft gegeben, in das die vorliegende Dissertation 
einzuordnen ist. Die in den Studien bearbeitete Thematik analysiert die Fernerkundung als 
Mittel für Untersuchungen von Trockenstress und insbesondere zur Schätzung von 
Vegetationsparametern für land- und forstwirtschaftliche Anwendungsbereiche. 

1.1 Bedeutung der Fernerkundung für Land- und Forstwirtschaft 

Vegetation hat die Eigenschaft, elektromagnetische Strahlung in bestimmten 
Wellenlängenbereichen zu reflektieren, zu absorbieren, zu transmittieren und auch zu 
emittieren. Dies wird von der Fernerkundung, die als berührungsfreie Erfassung und 
Messung von Objekten der Erdoberfläche definiert ist (Barrett and Curtis, 1976), ausgenutzt. 
Für fernerkundliche Beobachtungen werden einerseits passive Sensoren eingesetzt, die 
entweder die von der Erdoberfläche oder Atmosphäre reflektierte Solarstrahlung (z. B. 
anhand Multispektralscanner) messen oder die Wärmestrahlung von Objekten (z. B. anhand 
Thermalkameras) untersuchen. Die zweite Möglichkeit sind aktive Aufnahmesysteme, wobei 
die Rückstreuung von Objekten, z. B. anhand Radar- oder Lasersystemen, gemessen wird. 

Fernerkundliche Aufnahmen von flugzeug- oder satellitenbasierten Plattformen eröffnen den 
besonderen Vorteil der wiederholten großflächigen Erfassung von Gebieten. Dies bringt eine 
hohe Kosteneffizienz gegenüber arbeits- und zeitintensiven bodengebundenen Messungen. 

Die hier vorliegende Arbeit konzentriert sich auf die multi- und hyperspektrale optische 
Fernerkundung, wobei die Wellenlängenbereiche des sichtbaren Lichts, des nahen Infrarots 
(IR) und teilweise des mittleren IR genutzt werden, um die räumliche und die zeitliche 
Dynamik der terrestrischen Biosphäre zu erfassen.  

In land- und forstwirtschaftlichen Forschungs- und Anwendungsbereichen wird die 
Fernerkundung eingesetzt, um anhand des spektralen Reflektionsverhaltens verschiedene 
Pflanzenspezies zu unterscheiden und biophysikalische Vegetationsparameter zu 
bestimmen. In der praktischen Anwendung kann die fernerkundliche Bestimmung von 
biophysikalischen Parametern ein nachhaltiges landwirtschaftliches Management 
unterstützen und somit das Ertragspotential von Anbauflächen deutlich erhöhen. Eine große 
Bedeutung hat in dieser Hinsicht bereits das sogenannte „Precision Farming“ 
(Präzisionslandwirtschaft) erlangt, wobei z. B. Dünge- und Pflanzenschutzmittel nicht mehr 
einheitlich, sondern räumlich differenziert, je nach Bedarf auf einer Anbaufläche eingesetzt 
werden (SCHUELLER 1992). Ein weiteres Anwendungsbeispiel sind Programme zur 
Bewässerungsberatung (DE MICHELE et al. 2009), für die Informationen über die 
kleinräumliche Verteilung und die zeitliche Veränderung bestimmter Vegetationsparameter 
Voraussetzung sind.  

Auch im Forstbereich wird anhand fernerkundlicher Kartierung von Baumarten und 
Waldstruktur, Baumvitalität bzw. Baumschäden zu einer nachhaltigeren Bewirtschaftung 
beigetragen (FRANKLIN 2001, ATZBERGER 2003). 

In den letzten Jahrzehnten wurde eine große Anzahl neuer Satelliten gestartet (ESA 2008). 
Dennoch war es bis heute trotz großer technischer Fortschritte nicht möglich, hohe räumliche 
mit hoher zeitlicher Auflösung zu verbinden. Somit sind Daten von räumlich hochauflösenden 
Sensoren (d. h. 10-30 m, z. B. Landsat TM, SPOT) nur in mäßiger zeitlicher Auflösung 
verfügbar (d. h. 15-30 Tage), während Daten mit niedriger räumlicher Auflösung (250-
1000 m, z. B. Aqua/Terra MODIS, SPOT/VGT) viel häufiger zugänglich sind (ein bis drei 
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Tage) (BSAIBES et al. 2009). Eine Lösung ist die Kombination verschiedener Sensoren, was 
aber oft zu Schwierigkeiten in der Vergleichbarkeit der abgeleiteten Produkte durch 
sensorspezifische Charakteristiken (z. B. räumliche und spektrale Auflösung, spektrale 
Responsfunktionen, u. a.) führt (SOUDANI et al. 2006). Eine weitere Möglichkeit bietet die 
Datenfusion von Sensoren verschiedener räumlicher und zeitlicher Auflösung, z. B. von 
MERIS und Landsat. Hierbei werden anhand Spectral Unmixing Techniken die häufig 
verfügbaren Daten von MERIS auf die höhere geometrische Genauigkeit von Landsat 
gerechnet (ZURITA-MILLA et al. 2007). 

Um diese Schwierigkeiten zu erleichtern und insbesondere um den ständig steigenden 
Anforderungen der Nutzer entgegenzukommen, wurden bereits neue Missionen gestartet 
oder sind für die nahe Zukunft geplant. Eine wichtige Rolle spielen dabei die Sentinel-
Satelliten des Global Monitoring for Environment and Security (GMES) Programms der 
European Space Agency (ESA). Für die operative Beobachtung der Landbedeckung und 
Landnutzung ist der multispektrale Sentinel-2 Sensor vorgesehen, der ab dem Jahr 2012 
Daten in mittlerer räumlicher Auflösung (10–60 m) in 13 Spektralkanälen (im 
Wellenlängenbereich des sichtbaren Lichts bis zum mittleren IR) liefern soll (MARTIMORT 
2007). 

Mit der durch die neuen Satelliten erwarteten Verbesserung der Datenlage eröffnen sich 
vielfältige Möglichkeiten im Bereich der Landkartierung, im Umweltmonitoring sowie für die 
ökologische Prozessskalierung von lokaler zu globaler Ebene (SOUDANI et al. 2006). 
Einerseits können bereits existierende Modelle für die Quantifizierung von biophysikalischen 
Vegetationsparametern evaluiert und andererseits neue Algorithmen entwickelt werden. 

 

1.2 Schätzung von Vegetationsparametern 

Charakteristika und raumzeitliche Verteilungsmuster von biophysikalischen 
Vegetationsparametern helfen wichtige Prozesse und Wechselwirkungen des Systems 
Boden – Pflanze - Atmosphäre zu beschreiben und sind daher bedeutende Eingangsgrößen 
für ökologische, hydrologische, klimatische und andere Modellansätze (RUNNING et al. 
1989, ATZBERGER 2000).  

Der wohl am intensivsten in ökologischen Feld- und Modellierungsstudien untersuchte 
biophysikalische Vegetationsparameter ist der Blattflächenindex („leaf area index“, LAI), der 
als die (einseitige) Oberfläche sämtlicher grüner Blätter bzw. Nadeln über einer bestimmten 
Bodenfläche definiert ist (BSAIBES et al. 2009). Der Blattflächenindex kann in verschiedenen 
räumlichen Skalen gemessen, analysiert und modelliert werden. Eine besondere 
Schlüsselrolle spielt der LAI für die Beschreibung des Vegetationszustands. Er ist somit ein 
wichtiger Indikator für Prozesse des Bodenwasserhaushalts, z. B. der Verdunstungsleistung 
des Bestands, der Interzeption oder der aerodynamischen Verhältnisse (ASNER et al. 2003). 
Der Parameter wird in einer Vielzahl von physiologischen, klimatologischen und 
biochemischen Studien benötigt. Zum Beispiel ermöglicht die Bestimmung von LAI mittels 
fernerkundlichen Methoden die Einführung der räumlichen Dimension in die 
Wachstumsmodellierung (GUERIF and DUKE 1998). Des Weiteren ist LAI einer der 
wichtigsten Eingangsparameter für Energiebilanzmodelle (KUSTAS and NORMAN 1996). 
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Die Bestimmung des LAI oder anderer Parameter, wie z. B. Blattchlorophyllgehalt (Cab), 
mittlerer Blattwinkel (ALA), Bedeckungsgrad (fCover) oder ein Bodenfaktor (αsoil) aus 
spektralen Signaturen ist jedoch kein einfaches Verfahren, da ebenso eine Vielzahl von 
anderen Parametern (V) sowie einige Randbedingungen (θ) das Spektrum der Vegetation 
(ρλ) beeinflussen (ATZBERGER 2003): 

 

ρλ = f (V1,…, Vn, θ) 

 

Prinzipiell gibt es zwei Gruppen von Optionen für die Bestimmung der Vegetationsparameter 
aus spektralen Signalen (ATZBERGER 2003):  

 

1 Empirisch-statistische Verfahren.  

2 Inversion physikalisch basierter Modelle. 

 

Zu (1) gehören Korrelationen zwischen Bandkombinationen verschiedener Spektralanteile 
(Vegetationsindizes, VIs) und den zu schätzenden Parametern (BARET and GUYOT 1991; 
JI and PETERS 2007), die anhand Feldkampagnen kalibriert werden müssen (DORIGO et 
al. 2007).  

Die Anwendung von physikalisch basierten Reflexionsmodellen (2) eröffnet neue potentielle 
Möglichkeiten, da die Genauigkeit der Parameterschätzung durch das Einbeziehen von a-
priori-Wissen sowie der gesamten spektralen Information erhöht werden kann. Es kommt 
einerseits zu keinem Informationsverlust durch Verhältnisbildung (wie bei VIs), und 
andererseits werden Randbedingungen (θ), wie z. B. Beleuchtungs- und Sichtgeometrie, 
berücksichtigt. Die Modelle können, basierend auf physikalischen Prinzipien, die spektrale 
bidirektionale Reflexion von Vegetationsbeständen berechnen. Die Modellierungsstrategien 
reichen von Turbid Medium-Ansätzen, über geometrisch–optische, hybride bis zu Monte 
Carlo Ray-Tracing, das auf der dreidimensionalen (3-D) Beschreibung des Bestands basiert 
(ATZBERGER 2003). Ein Überblick zu diesem Thema findet sich in der Arbeit von GOEL 
(1988) oder in PINTY et al. (2004). Generell gilt, je komplexer die Modellierungsstrategie, 
desto genauer kann die spektrale Reflexion auch modelliert werden und z. B. auch die 
ungleichmäßige Verteilung der Blätter / des Pflanzenbestands („clumping“) berücksichtigen. 
Allerdings erfordert ein sehr genaues Modell auch eine große Menge an 
Eingangsparametern sowie eine hohe Rechenzeit.  

Für die anwendungsorientierte Forschung stellen Turbid Medium-Ansätze einen guten 
Kompromiss zwischen Parametrisierungsaufwand und Simulationsgenauigkeit dar. Ein 
Beispiel ist das bereits vielfach getestete Blatt- und Bestandesreflexionsmodell 
PROSPECT+SAILH (PROSAILH) (JACQUEMOUD and BARET 1990, VERHOEF 1984, 
VERHOEF 1985) für die Landwirtschaft oder das Zwei-Schichten Modell ACRM (KUUSK 
2001) für Simulationen im Forstbereich. Das PROSAILH Modell wird bereits operativ für die 
Schätzung von Vegetationsprodukten eingesetzt (BARET et al. 2007). 
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Um aus den fernerkundlich erfassten spektralen Signalen die jeweiligen Parameter zu 
schätzen, ist die Inversion der Modelle notwendig. Es gibt verschiedene Arten von 
Inversionsstrategien, u. a.: 

– „Look-up table“ (LUT) Verfahren (z. B. DARVISHZADEH et al. 2008, KOETZ et al. 2005, 
WEISS et al. 2000). 

– Iterative numerische Minimierungen (z. B. JACQUEMOUD et al. 1995, MERONI et al. 
2004). 

– Künstliche Neuronale Netze (NN) (z. B. ATZBERGER 2004, SCHLERF and 
ATZBERGER 2006). 

– Support-Vektor-Maschinen (z. B. CAMPS-VALLS et al. 2009, DURBHA et al. 2007). 

– Bayes’sche Verfahren (z. B. YAO et al. 2008). 

Die Methoden sollen hier nicht im Detail erklärt und diskutiert werden. Es ist aber 
anzumerken, dass die LUT-Strategie die wohl einfachste aber auch robusteste und 
gemeinsam mit den NN die effektivste Methode für operative Anwendungen darstellt 
(BARET and BUIS 2008). Für eine ausführliche Diskussion der wichtigsten 
Inversionsstrategien wird auf KIMES et al. (2000) oder BARET and BUIS (2008) verwiesen. 

Eine grundlegende Schwierigkeit bei der Inversion von Reflexionsmodellen besteht darin, 
dass sehr unterschiedliche Parameterkombinationen zu (fast) identischen spektralen 
Signaturen führen können. Für das sogenannte „ill-posed“ Problem (COMBAL et al. 2002) 
werden in der Literatur verschiedene Lösungsansätze aufgezeigt, z.B. der Einsatz von 
a priori Informationen (COMBAL et al. 2002) oder die Verwendung sogenannter 
Objektsignaturen (ATZBERGER 2004).  

1.3 Fernerkundliche Bestimmung von Trockenstress 

Wassermangel, durch Klima- oder Bodeneigenschaften hervorgerufen, führt zu pflanzlichem 
Trockenstress und ist eines der Hauptprobleme für die weltweite landwirtschaftliche 
Produktion. Pflanzen reagieren entsprechend der Dauer der Trockenphase mit reversiblen 
(bei kurzfristigem Stress) oder irreversiblen (bei längerfristigem Stress) Veränderungen. Eine 
der ersten Reaktionen auf Wassermangel ist das Absinken des Turgordrucks in den 
Blattzellen und die Schließung der Spaltöffnungen, was zu einer Erhöhung der 
Blattoberflächentemperatur führt (CASA 2003). Solche Variationen der Bestandstemperatur 
können sehr gut mit Sensoren, die im thermalen infraroten (TIR) Bereich des 
elektromagnetischen Spektrums empfindlich sind, erfasst werden (z. B. GONZALEZ-DUGO 
et al. 2005). Mithilfe von Energiebilanzmodellen kann dann die Partitionierung der 
eingestrahlten Sonnenenergie in Energieflüsse fühlbarer und latenter sowie in Boden- bzw. 
Bestandswärmeströme simuliert werden (z. B. KUSTAS and NORMAN 1996).   

Eine Schwierigkeit für die Trockenstressfrüherkennung auf operationeller Basis bzw. im 
Kontext von Precision Farming ist die unzureichende Verfügbarkeit von TIR Daten in hoher 
räumlicher Auflösung (d. h. mindestens 10–20 m). Insbesondere für sehr heterogene 
landwirtschaftliche Gebiete bzw. für Analysen der Inner-Feldvariabilität ist eine solche 
Mindestauflösung aber erforderlich.  

Mittel- oder längerfristiger Trockenstress dagegen führt zu strukturellen Veränderungen der 
Bestandsarchitektur, z. B. Verringerung des LAI, die mithilfe Methoden der optischen 
Fernerkundung erfasst werden können (CASA 2003). Optische Sensoren – empfindlich im 
Spektralbereich des sichtbaren Lichts bis zum mittleren IR - haben gegenüber den thermalen 
außerdem den Vorteil der häufigen Verfügbarkeit in hoher räumlicher Auflösung.  
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2.1 Thematischer Zusammenhang zwischen den Publikationen 

 

Im Folgenden werden die Ziele, Methoden und Ergebnisse der fünf Studien jeweils kurz 
vorgestellt und danach in ihrem Zusammenhang erläutert. 

 

Publikation I 

In Publikation I wurde das Potential des zukünftigen ESA Satelliten Sentinel-2 für die 
Schätzung des LAI von Zuckerrüben und Mais getestet. Dabei wurde untersucht, ob die 
Bestimmung von LAI anhand einer LUT-basierten Inversion des PROSAILH Models mit einer 
Genauigkeit von < 10 %  (definiert vom GMES-Komitee) durchführbar ist. Die Studie basiert 
(u. a.) auf Daten der ESA AgriSAR 2006 Kampagne in Mecklenburg-Vorpommern 
(Deutschland), wobei hyperspektrale CASI Daten aufgenommen und entsprechend der 
spektralen Responsefunktion von Sentinel-2 aufbereitet wurden. Zu Validierungszwecken 
wurden bodengebundene LAI Messungen anhand des LAI-2000 Plant Canopy Analyzer 
Instruments durchgeführt. Der LUT-Ansatz wurde mit zwei weiteren Inversionsmethoden 
(iterative Minimierung und NN) verglichen und außerdem in einer alternativen 
Bandkonfiguration angewendet.  

Für Zuckerrüben konnte die erforderliche Schätzungsgenauigkeit getroffen werden (8-9 %), 
während sie für Mais verfehlt wurde (16-22 %). Auch die alternativen Inversionsstrategien 
konnten keine Verbesserung der Ergebnisse erzielen. Der LUT-Ansatz erwies sich als die 
stabilste und robusteste Inversionsmethode. Des Weiteren wurde die günstige Position der 
Spektralkanäle des Sentinel-2 Sensors bestätigt. 

In der Schlussfolgerung wird die verwendete Schätzungsmethode für eine operative 
Auswertung der Sentinel-2 Daten dennoch empfohlen, da sie einen guten Kompromiss 
zwischen Genauigkeit und Modellkomplexität bietet. Um den Genauigkeitsansprüchen der 
potentiellen Nutzer zu genügen, sollte allerdings für Feldfrüchte mit der Neigung zum 
„clumping“ - wie Mais im frühen Wachstumsstadium - ein komplexerer Modellansatz gewählt 
werden. 

 

Publikation II 

In Publikation II wird die gleiche LUT–basierte Schätzungsmethode wie in Publikation I für 
LAI und fCover angewendet. Zusätzlich werden die Parameter mit einem empirischen 
Modell, d. h.  mit der Beziehung zwischen den Parametern und dem skalierten „Normalized 
Difference Vegetation Index“ (NDVI), bestimmt. Beide Arten von Schätzungen wurden in 
Kartenform als Eingangsgrößen für ein Energiebilanzmodell (TSEB) verwendet, und die 
simulierten Energieflüsse wurden auf Basis von Landnutzungsklassen analysiert. Die Studie 
stützte sich auf Daten der Messkampagne SPARC 2004 in Barrax, Spanien, wobei thermale 
und optische hyperspektrale Daten erhoben sowie Bodenmessungen der Parameter und 
Energieflüsse durchgeführt wurden.  

Im direkten Vergleich mit den Bodenmessungen übertraf die physikalische die empirische 
Schätzungsmethode in der Genauigkeit. Für den LAI erzielte die physikalische Schätzung 
einen mittleren quadratischen Fehler (RMSE) von 0.79, und für fCover einen RMSE von 
0.12, während das empirische Modell für LAI nur einen RMSE von 1.44 und für fCover von 
0.15 erreichte. Des Weiteren konnten insbesondere für die Landnutzungsklassen mit einer 
hohen Vegetationsbedeckung fühlbare und latente Energieflüsse sowie der 
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Bodenwärmestrom realistischer mit den Eingangsparametern des physikalischen Modells   
simuliert werden.  

Als Schlussfolgerung wird für die Energiebilanzmodellierung von Vegetationsflächen die 
Inversion eines physikalischen Modells für die Quantifizierung von LAI und fCover gegenüber 
einem empirischen Modell empfohlen. Die höhere Genauigkeit des physikalischen Modells 
erhöht ebenso die Präzision der Simulation von Energieflüssen und erfordert außerdem 
keine Kalibrierung in Abhängigkeit der Vegetationstypen.  

 

Publikation III 

In Publikation III wurde ebenso die LUT-basierte Inversionsmethode am PROSAILH Modell 
durchgeführt, um die räumliche Variation von Vegetations- und Bodenparametern innerhalb 
eines Weizenfeldes (Triticum Durum) aus hyperspektralen Hymap Daten zu schätzen. Die 
Studie wurde im Marchfeld, Österreich, im Rahmen des „Crop Drought Stress Monitoring by 
Remote Sensing“ (DROSMON) Projekts der Universität für Bodenkultur, Wien, durchgeführt.  
Im Marchfeld herrscht die Besonderheit von Sandsträngen ehemaliger Donaumäander, die 
die Felder durchziehen und dadurch die Wasserverfügbarkeit für die Feldfrüchte verringern. 

Bodenbedingter Trockenstress innerhalb des Feldes wurde anhand von 
Bodenprofilmessungen nachgewiesen. Außerdem wurde die spektrale Abhängigkeit bzw. die 
Veränderung des Bodenspektrums bei verschiedenen Wassergehalten in einem 
Laborversuch untersucht. Die geschätzten biophysikalischen Parameter (LAI, ALA und Cab) 
sowie ein Bodenfaktor (αsoil) wurden mittels einer Clusteranalyse gruppiert und das 
Weizenfeld wurde in vier verschiedene Zonen mit unterschiedlichem Trockenstressniveau 
unterteilt.  

Im Vergleich mit der empirischen NDVI-Methode konnten keine signifikanten Unterschiede in 
der Zonierung erzielt werden. Dennoch brachte die physikalische Modellierung den Vorteil, 
dass insbesondere unter Verwendung hyperspektraler Daten bestimmte Pflanzenparameter 
und Bodeneigenschaften geschätzt werden konnten, die wiederum einen höheren 
Erklärungswert als ein einfacher Index haben. In der Schlussfolgerung wird empfohlen, 
mithilfe der getesteten Methodik gefährdete Trockenstresszonen innerhalb von Feldern zu 
orten und mithilfe eines entsprechenden Managements zu bearbeiten (bewässern).  Auf 
diese Weise können mögliche Ernteverluste vermieden werden. 

 

Publikation IV 

Publikation IV untersuchte, ob hyperspektrale Signaturen (Hymap Sensor) von Buchenwald 
mit einem Bestandesreflexionsmodell für Wald (ACRM) simuliert werden können. Im 
Weiteren wurde mit einer iterativen Inversionsmethode der LAI bestimmt. Die Studie basiert 
auf Daten des Lehrforsts „Rosalia“ der Universität für Bodenkultur und wurde ebenfalls im 
Rahmen des DROSMON-Projekts durchgeführt. Die Blattreflexion konnte mit einem 
spezifischen Eingangsdatensatz sehr gut anhand des Blattreflexionsmodells PROSPECT im 
Vergleich zu spektralen Blattmessungen modelliert werden. Die anhand des ACRM Modells 
simulierten Spektren des Bestands zeigten allerdings eine erhöhte Reflexion im Vergleich zu 
den Hymap-Signaturen (Offset 4-77 %, entsprechend dem spektralen Bereich). Dies könnte 
auf fehlende Informationen über die räumliche Variation der Eingangsdaten (z. B. 
Blattchlorophyll- oder Blattwassergehalt) zurückzuführen sein. Der Vergleich von LAI-
Felddaten und durch Modellinversion geschätzte Werte erzielte dennoch sehr gute 
Ergebnisse mit RMSE von 0.3 bis 0.5. Die Ergebnisse der physikalischen 
Schätzungsmethode wurde mit einer Auswahl empirischer Indizes verglichen, die jedoch 
keine höhere Genauigkeit in der Bestimmung des LAI erzielten.  
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Als Schlussfolgerung wird darauf hingewiesen, dass für die Modellierung der spektralen 
Signatur von Waldbeständen mit dem ACRM Modell ein Offset notwendig ist. Wie schon in 
Publikation II wird die verwendete physikalisch basierte Schätzungsmethode gegenüber 
empirischen Modellen für die Bestimmung von LAI sehr empfohlen. 

 

Publikation V 

In der in Publikation V vorgestellten Studie, die ebenfalls im Rahmen des DROSMON–
Projekts erarbeitet worden ist, wurden zwei verschiedene Weizensorten (Triticum Aestivum 
und Triticum Durum) in der Klimakammer in Blüte und Reifephase unter Trockenstress 
gesetzt. Des Weiteren wurden Erholungsphasen (d. h. ausreichende Bewässerung) nach 
dem Trockenstress in der Blüte eingebaut. Physiologische Messungen (z. B. 
Photosyntheseraten, Blattleitfähigkeit, relativer und absoluter Blattwassergehalt) und 
optische Blattreflexionsmessungen wurden regelmäßig an den Testpflanzen durchgeführt, 
um mögliche Signale von Trockenstress bzw. der erfolgten Erholung nachzuweisen. 
Trockenstress führte zu einer signifikanten Reduktion der physiologischen Parameter, 
unabhängig von der Wachstumsphase seines Einsetzens. Ausreichende Bewässerung nach 
der Trockenheit in der Blüte führte wieder zu einer Normalisierung der Werte. Das war nicht 
für die spektrale Blattreflexion der Fall. Diese erhöhte sich nach dem Trockenstress 
irreversibel und signifikant über das gesamte Spektrum (400–2500 nm), allerdings mit 
Unterschieden zwischen den Weizensorten.  

Die Anwendung spektraler Indizes führte zwar zu ausreichenden Relationen mit den 
physiologischen Parametern. Dennoch weisen die Indizes keine Eignung für die 
Trockenstressfrüherkennung bzw. den Nachweis von Trockenstress nach Erholungsphasen 
auf.  

 

 

Im thematischen Zusammenhang beschäftigen sich die Publikationen I bis III mit der 
Schätzung von biophysikalischen Vegetationsparametern aus optischen multi– bzw. 
hyperspektralen Fernerkundungsdaten für (hauptsächlich) landwirtschaftliche Anwendungen.  

Dabei steht in Publikation I die Eignung der Inversionsmethode für die LAI-Schätzung an sich 
bzw. auf Basis des zukünftigen Sensors Sentinel-2 im Vordergrund.  

Publikationen II und III konzentrieren sich dagegen eher auf die Verwendung der 
geschätzten Parameter (LAI, fCover, ALA, Cab und αsoil) als Eingangsgrößen für spezielle 
Anwendungsbereiche, d. h. Energiebilanzmodellierung bzw. Zonierung von 
Trockenstressgefährdung.  

Publikation IV beschäftigt sich ebenso mit der physikalisch basierten Schätzung von LAI 
anhand eines Reflexionsmodells aber hierbei für Waldbestände. Im Rahmen der Studie wird 
zusätzlich ein weiterer essentieller Aspekt in der Arbeit mit Reflexionsmodellen untersucht: 
die Evaluierung des Modells,  d. h. der Vergleich von simulierten mit denen eines Sensors 
gemessenen spektralen Signaturen. Diese Untersuchung stellt im Grunde die Voraussetzung 
für weitere Arbeitsschritte, wie der Modellinversion, dar. Fehler in der Parameterschätzung 
können bereits durch Fehler des Modells entstehen und müssen nicht erst aufgrund der 
Inversionsalgorithmen zustande kommen. Ein weiterer kritischer Punkt und unverzichtbare 
Voraussetzung für die Arbeit mit Fernerkundungsdaten wird ebenso diskutiert: die Korrektur 
der gemessenen Spektren auf atmosphärische Effekte. 

Publikation V unterscheidet sich auf den ersten Blick thematisch etwas von den 
Publikationen I bis IV und wurde daher an das Ende gereiht. Dennoch liefert die Studie 
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wichtige grundsätzliche Erkenntnisse für die anderen Arbeiten, da darin der direkte 
Zusammenhang zwischen den ersten physiologischen Reaktionen der Pflanzen auf 
Trockenstress und den spektralen Signaturen im optischen Wellenlängenbereich auf der 
Blattebene untersucht wird. Es wird auf die Schwierigkeit in der Erfassung von 
(vergangenem) Trockenstress in diesem Spektralbereich (400-2500 nm) hingewiesen, da 
selbst innerhalb von Pflanzenarten Unterschiede in der Reaktion auf Wassermangel 
auftreten können.   
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2.2 Schlussfolgerung und Ausblick 

Die Schätzung biophysikalischer Vegetationsparameter ist von grundlegender Bedeutung für 
die Erkennung von Trockenstress sowie für zahlreiche ähnliche Anwendungen, um eine 
nachhaltige Land- und Forstwirtschaft zu garantieren. Die Fernerkundung ist dabei das 
wichtigste Mittel, denn ohne Datenverfügbarkeit in guter räumlicher, spektraler und zeitlicher 
Auflösung wäre ein flächenhaftes Monitoring der Vegetation viel zu kosten- , zeit- und 
arbeitsintensiv.  

Die vorliegenden Studien konzentrierten sich vor allem auf die Quantifizierung der Parameter 
anhand physikalisch–basierten Schätzungsmethoden. Der Informationswert spektraler 
Signaturen wurde dabei auf fünf verschiedenen räumlichen Skalen untersucht, von hoher zu 
niedriger räumlicher Auflösung:  

– auf Blattebene (Publikation V). 

– auf Bestandsebene (Publikation IV). 

– auf Feld-Skala (Publikation III).  

– für wenige Felder mit zwei verschiedenen Feldkulturen (Publikation I).  

– für größere landwirtschaftliche Gebiete mit vielen verschiedenen Feldkulturen 
(Publikation II).  

Im Vergleich zu empirischen Beziehungen (d. h. VIs) erzielte die Schätzung der 
biophysikalischen Parameter mittels Inversion von Bestandesreflexionsmodellen in allen 
Studien (I-IV) bessere bzw. zumindest gleichwertige Ergebnisse.  

Die Hauptgrund für diese höhere Genauigkeit der physikalisch-basierten Algorithmen liegt in 
ihrer Fähigkeit Ursache–Wirkungsbeziehungen realistischer zu beschreiben. Das bedeutet, 
dass bei der Berechnung der spektralen Signale die Beobachtungs- und 
Beleuchtungsgeometrie, der Bodeneinfluss (v. a. Bodenfeuchte) und Bestandseigenschaften 
zum Beobachtungszeitpunkt berücksichtigt werden (DORIGO et al. 2007). Das macht diese 
Art von Modellen robuster als empirische Ansätze, die bei Veränderungen dieser Faktoren 
oftmals erneut kalibriert werden müssen (DORIGO et al. 2007). 

Dennoch ist eine weitere Verbesserung der physikalischen Algorithmen notwendig, z. B. um 
die „ill–posed“ Problematik der Modellinversion zu lösen, auch wenn keine 
Zusatzinformationen durch Feldmessungen vorhanden sind. Weitere Probleme bestehen in 
der ungenügenden Beschreibung komplexerer Bestandsarchitekturen anhand des Turbid 
Medium-Konzepts bzw. in der naturgegebenen Variabilität der Vegetationsparameter, die oft 
zu Unsicherheiten in der Modellparametrisierung führt (BARET and BUIS 2008). Allerdings 
würde die Verwendung komplexerer dreidimensionaler Modelle wiederum Aufwand und 
Rechenzeit stark erhöhen. Diese erscheinen daher oftmals für operative Anwendungen nicht 
geeignet. 

Häufig werden die Schätzungsfehler allein in der Modellierung gesucht, während die 
Genauigkeit der Feldmessungen als selbstverständlich betrachtet wird. Es gibt aber eine 
Vielzahl von Faktoren, die die Genauigkeit solcher bodengebundenen Messungen 
bestimmen. Dazu gehören Unterschiede in den Instrumenten und in Mess- und 
Auswertemethodiken sowie subjektive Einflüsse durch die Beobachter. Deshalb sollten 
Messwerte immer mit großer Sorgfalt betrachtet, hinterfragt und analysiert werden.  

Für die zukünftige Arbeit wird daher die Durchführung korrekt geplanter Messkampagnen für 
die Evaluierung und mögliche Verbesserung der Schätzungsalgorithmen sehr empfohlen. 
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Zusammenfassend konnte im Rahmen der vorliegenden Studien gezeigt werden, dass eine 
physikalisch basierte Schätzung von wichtigen biophysikalischen Vegetationsparametern 
anhand von homogenen Turbid Medium-Modellen sehr gut und auch unter diversen 
Bedingungen, d. h. in unterschiedlicher geographischer Lage, für eine Reihe von 
Sensortypen und verschiedene Vegetationsarten, möglich ist.  

 

Auf dieser Grundlage wurden in den vorliegenden Studien folgende neue Erkenntnisse 
gewonnen:  

Insbesondere wurde die Eignung des zukünftigen ESA Satelliten Sentinel-2 für die LAI–
Bestimmung verschiedener Feldfrüchte hinsichtlich der Anforderungen des GMES Komitees 
teilweise erfolgreich getestet. Es wurden Unsicherheiten in der Modellierung im Vergleich zu 
gemessenen hyperspektralen Fernerkundungsdaten aufgezeigt. Im Weiteren wurde der 
Einsatz von physikalisch geschätzten Vegetations- und Bodenparametern für die 
Bestimmung von längerfristigem bzw. potentiellem Trockenstress anhand einer Zonierung 
der Felder analysiert. Es wurde nachgewiesen, dass kurzfristiger oder vergangener 
Trockenstress nur eingeschränkt anhand der optischen Fernerkundung, d. h. Blattreflexion, 
nachweisbar ist. Im Weiteren eigneten sich physikalisch basierte Schätzungen von LAI und 
fCover besser für die Bestimmung von Energieflüssen im Rahmen der 
Energiebilanzmodellierung als die herkömmlichen empirischen Methoden.  

 

Die in den Studien bearbeiteten Techniken bieten einerseits die Basis für weitere 
wissenschaftliche Untersuchungen und können andererseits integrierte Lösungen für ein 
effektives und operatives Management und somit eine nachhaltige Entwicklung in Land- und 
Forstwirtschaft unterstützen.  
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Experimental assessment of the Sentinel-2 
band setting for RTM-based LAI retrieval 

of sugar beet and maize 
 

Katja Richter, Clement Atzberger, Francesco Vuolo, Philipp Weihs, Guido D’Urso 

 
Abstract. The present work aimed at testing the potential of the upcoming E.O. satellite Sentinel-2 (European 
GMES/Kopernikus programme) for the operational estimation of the Leaf Area Index (LAI) of two contrasting agricultural 
crops (sugar beet and maize). Mapping of LAI was achieved by using a Look-up table (LUT) based inversion of a physically 
based radiative transfer model (SAILH+PROSPECT). Besides the Sentinel-2 spectral sampling, another band set described as 
‘ideal’ for vegetation studies, has been evaluated in a comparative way. Analyses were mainly carried out using hyperspectral 
data acquired by the optical airborne instrument CASI during the ESA AgriSAR 2006 campaign. Additionally, data from two 
other experiments were tested to extend the validation database. Alternative inversion methods, i.e. an iterative optimization 
technique (SQP) and a neural network (NN) have been evaluated for comparison purposes. The GMES/Kopernikus defined 
precision of 10 % for LAI estimation, evaluated with in situ LAI measurements, was met for sugar beet (8-9 %), but not for 
maize (16-22%). The inversion approach and band setting had only a minor influence on the retrieval accuracy, with the only 
exception of the iterative optimization technique which failed to give reliable results. The results demonstrate the importance 
of using an appropriate radiative transfer model for each crop. For row crops with strong leaf clumping and not covering 
completely the soil surface, such as maize at early stage, the standard SAILH+PROSPECT does not appear suitable.  

 

Résumé. Dans le cadre de la présente étude nous examinons le potentiel du futur satellite Sentinel-2 (programme européen 
GMES/Kopernikus) pour l'estimation opérationnelle de l’indice de surface foliaire (LAI) de deux cultures différentes (maïs et 
betterave à sucre). L’inversion du LAI a été effectuée en utilisant des tables pré-calculées par un modèle de transfer radiatif 
(SAILH + PROSPECT). Les mesures hyper spectrales de l'instrument aéroporté CASI faites dans le cadre de la campagne 
ESA AgriSAR 2006 ont été utilisées pour cette analyse. Deux configurations de bandes spectrales ont été utilisées l'une 

 correspondante à l'instrument Sentinel-2 et une autre correspondante à une configuration idéale pour l'étude des couverts 
végétaux. Plusieurs techniques d'inversion ont également été considérées, une technique d'optimisation itérative (SQP) et une 
autre utilisant les réseaux de neurones. En utilisant des mesures in situ du LAI ainsi que celle de deux expériences 
supplémentaires nous montrons que il est possible d’obtenir une précision de 10 %, similaire aux objectifs définis par le 
programme GMES/Kopernikus, pour la betterave rouge (8-9 %). Pour le maïs la précision est dégradée notablement (16-
22%). La technique d´inversion ainsi que le choix des bandes spectrales n´ont qu'une influence moindre sur la précision dans 
la plupart des cas à l´exception des inversions utilisant la technique d´optimisation itérative. Ces résultats démontrent 
clairement la nécessité d’utiliser un modèle de transfer radiatif approprié pour chaque culture. Pour des cultures en rangées 
avec couverture incomplète du sol comme le maïs au premier stade du développement, l´utilisation du modèle 
SAILH+PROSPECT n’est pas appropriée. 
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Introduction 
 
In the last years a new generation of sensors was 
launched for various environmental applications (ESA, 
2008). The additional sensors increase significantly the 
availability of high spectral, spatial and temporal 
resolution data. This new Earth Observation (E.O.) 
database offers on the one hand the opportunity to 
exploit the potential of remote sensing in an operational 
context, and on the other hand it provides the 
possibility to test the performance of existing and new 
methodologies for land surface characterization. This is 
of particular interest in the context of precision 
farming, where information of crop and soil 
characteristics must be obtained on a large scale, in a 
rapid and cost-effective way, with a stable and high 
accuracy.  
 

Sentinel-2:  future operational E.O. satellite 
 
In the framework of Kopernikus (former GMES: 
Global Monitoring for Environment and Security), the 
European Space Agency (ESA) initiated the Sentinel-2 
multi-spectral mission, aiming at replacing and 
improving the current generation of satellite sensors. 
GMES/Kopernikus is a joint initiative of the European 
Commission (EC) and ESA, designed to establish a 
European capacity for the provision and use of 
operational monitoring information for environment 
and security applications (ESA, 2007). Thus, GMES/ 
Kopernikus Sentinel-2 mission intends to provide 
continuity to services relying on multi-spectral high-
resolution optical observations over global terrestrial 
surfaces, such as the adequate quantification of geo-
biophysical variables. Additionally, the mission aims at 
enhancing the quality of the current service, as required 
by the growing user demand. This implies 
advancements in E.O. products, such as improved land 
cover/change classification, atmospheric correction, 
cloud/snow separation and the quantitative assessment 
of the structural and biochemical vegetation status. 
Spectral sampling of Sentinel-2 satellite is based on 
sensors used for vegetation monitoring in the last 
decades, such as SPOT and Landsat, but also includes 
channels originating from MODIS, MERIS, ALI and 
LDCM, to fulfill the new requirements. The future 
satellite Sentinel-2 is scheduled to be launched in the 
year 2012. With a spatial resolution of 10-60 m, 
Sentinel-2 is designed to address medium resolution 
applications. As outcome the mission will provide 
service data, comprising Level 1a, 1b, 1c, 2a and a 
catalogue of Level 2b/3 products. More information 
about the mission, services and the technical details of 
the sensor can be found in the GMES mission 
requirement document (ESA, 2007) or in the indicated 
web-pages (see reference section).  

The Level 2b/3 product Leaf Area Index (LAI) will be 
included in the final catalogue together with a number 
of other products, such as land cover maps, fractional 
vegetation cover, fraction of absorbed 
photosynthetically active radiation, leaf water and leaf 
chlorophyll content. To ensure that the final product 
can meet the user requirements, the committee defined 
a goal accuracy of 10 % for the “maps with the green 
leaf area per unit soil area”, i.e. LAI (ESA, 2007). Until 
now, only few studies addressed this precision 
requirement over contrasting crops. 
 
 
Leaf Area Index – a key variable in land biophysical 

processes 

 
The biophysical surface parameter attracting most 
interest in studies dealing with E.O. data is the Leaf 
Area Index. LAI is defined as the total one-sided area 
of photosynthetic tissue per unit of ground area (Breda, 
2003). Due to the role of green leaves in a wide range 
of biological and physical processes, LAI represents a 
key parameter, characterizing the structure and 
functioning of vegetation cover (Scurlock et al., 2001): 
LAI describes the surface for mass and energy 
exchanges between the Earth's surface and the 
atmosphere; it influences the within- as well as the 
below-canopy microclimate, determines and controls 
canopy water interception, radiation extinction, water 
and carbon gas exchange. Moreover, any change in 
LAI, for instance caused by weather extremes (such as 
drought, frost and storms) or management practices, 
may modify the productivity of the crops (Breda, 
2003). Due to its role as interface between ecosystem 
and atmosphere and involvement in many processes, 
information about LAI is requested in various fields of 
application and research, such as hydrology, 
ecophysiology, farm and forest management, ecology 
and meteorology (Breda, 2003; Gower et al., 1999; 
Liang, 2004a; Myneni et al., 2002).  

 

LAI estimation from E.O. data: empirical and 

physical based approaches 
 

Since ground based LAI measurements are time-
consuming, cost-intensive and spatially as well as 
temporally constricted, E.O. data have been recognized 
as an important resource for LAI retrieval. Several 
studies have been carried out on estimating surface 
parameters by using newly developed hyperspectral 
vegetation indices (VI) (Darvishzadeh et al., 2008b; 
Haboudane et al., 2004; Schlerf et al., 2005), the 
analysis of the red edge (Cho et al., 2008; Filella and 
Penuelas, 1994; Liu et al., 2004), or spectral unmixing 
approaches (e.g., Haboudane et al., 2004; Hu et al., 
2004) as an alternative to the traditional empirical 
approaches (Myneni et al., 1995; Thenkabail et al., 
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2002). However, despite the intense work, there is still 
a need for collecting in situ calibration data sets, 
implying high costs and a labor intensive measurement 
program to cover a wide range of species, canopy 
conditions and view/sun constellations.  

For these reasons, many studies focused on the more 
complex approach of physically based parameter 
estimation by means of radiative transfer model 
inversion (e.g. Jacquemoud et al., 2000; Koetz et al., 
2005; Schlerf and Atzberger, 2006; Weiss et al., 2000; 
Baret and Buis, 2008). These radiative transfer models 
(RTM) permit to use the full spectrum acquired by 
hyperspectral sensors (400-2500 nm), as contrasted to 
VIs that generally use only two / three spectral bands. 
In addition, RTMs can also consider the directional 
signature of multi-angle sensors. Nevertheless, some 
shortcomings of these models, such as the need of an 
extensive parameterization, as well as the high 
computational demand, have to be considered. 
Moreover, some RTMs may be too simplistic to cope 
with complex canopies such as row crops, which are 
often affected by foliage clumping (Dorigo et al., 2008; 
Yao et al., 2008). Furthermore, the ill-posed problem 
has to be taken into account when performing model 
inversion: different parameter combinations may 
produce almost identical spectra, resulting in 
significant uncertainties in the estimated vegetation 
characteristics (Atzberger, 2004; Combal et al., 2002). 

 
Model inversion methods: advantages and 

constraints 

 
To retrieve canopy biophysical variables from radiative 
transfer models three inversion methods are commonly 
used (Atzberger, 2004; Kimes et al., 2000): iterative 
optimization techniques (Atzberger, 1997; Goel, 1988; 
Jacquemoud et al., 1995), look-up tables (LUT) 
(Combal et al., 2002, 2003; Darvishzadeh et al., 2008a; 
Pragnère et al., 1999; Weiss et al., 2000) and neural 
networks (NN) (Atkinson and Tatnall, 1997; Bacour et 
al., 2006; Schlerf and Atzberger, 2006, Walthall et al., 
2004). Recently, the new approach of Support Vector 
Machines regression (SVR) has been applied to 
estimate biophysical variables from E.O. imagery (e.g. 
Camps-Valls et al., 2006; Durbha et al., 2007). Iterative 
optimization techniques and LUT based RTM 
inversions are based on the minimization of a distance 
between simulated and measured reflectance. The NN 
and SVR, on the contrary, directly map the reflectance 
into parameter space (Baret & Buis, 2008). 

As proved and outlined by several studies, LUT and 
NN were performing best in the inversion of the RTMs 
in terms of accuracy and speed (e.g. Baret and Buis, 
2008; Pragnère et al., 1999; Weiss et al., 2000). The 
constraints of the iterative optimization algorithms are 
a relatively high computational load, the requirement of 

an initial guess and the risk of converging to a local 
minimum, which may not be necessarily close to the 
actual solution (Kimes et al., 2000; Liang, 2004b; Qiu 
et al., 1998). As for the LUTs, neural nets rely on a 
large database of pre-calculated (synthetic) canopy 
reflectance spectra first simulated using the RTM in 
direct mode. Alternatively, actual data (ground or 
remotely sensed) or a mix of actual and synthetic data 
can be used to feed the NN learning database or the 
LUT. The NN are then trained to learn the relation 
between canopy reflectance spectra (inputs) and 
canopy biophysical variables (outputs). To represent 
the relation between input and output variables, NN use 
connected layers composed of neurons. Weights and 
biases have to be learned (using the outputs of the 
forward RTM simulations) to transform spectral 
signatures into biophysical variables. Provided that 
there are enough neurons in the hidden layer, NN can 
represent any non-linear relationship between in- and 
outputs (Demuth and Beale, 2003). The major 
advantage of NN is their speed during application. 
Also, storage requirements are very low. Major 
drawbacks relate to the often time-consuming training 
phase and the unpredictable behavior of NNs when 
measured and/or RTM signatures are biased. As the 
NNs are extremely powerful in learning even complex 
relationships, care must also be taken to prevent 
overfitting and overspecialization. 
The conceptually simple LUT procedure may partly 
overcome the limitations of the iterative optimization 
algorithms and the neural nets. Since the full parameter 
space is searched for the optimum solution, problems 
related to the initial guesses of iterative approaches are 
avoided. Further, by optimizing (minimizing) the 
number of cases, calculation time can be diminished. 
Moreover, in case that the spectral characteristics of the 
targets are not well represented by the modeled spectra, 
the LUT method shows less unexpected behavior than 
the NN (Darvishzadeh et al., 2008a; Schlerf and 
Atzberger, 2006). With LUT it is also relatively easy to 
associate different weights to the various spectral 
channels and to include prior knowledge about the 
retrieved canopy characteristics in the inversion 
process (Baret and Buis, 2008). Care has to be taken in 
the sampling of parameter spaces and the decision of 
the LUT size to avoid sub-optimal solutions. 
Concerning the LUT dimension, Weiss et al. (2000) 
investigated the effect of the size of the LUT for the 
accuracy of canopy variable estimation. The realization 
of a RTM inversion with tables ranging from 25 000 to 
280 000 cases resulted in an ‘optimal’ size of 100 000 
cases, regarded by the authors as a good compromise 
between computer resources requirements and the 
accuracy of the estimates. Only few studies addressed 
the issue of inversion approach over several crop types 
at the same time. 
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Objective of the study 
The main objective of the present work is the 
experimental assessment of the future Sentinel-2 band 
setting for RTM-based LAI retrieval for early/mid 
season sugar beet and maize with a maximum value of 
LAI up to 4 - 5 for maize and up to 5 - 6 for sugar beet. 
We evaluated if the retrieval accuracy of 10 %, 
specified by the GMES user committee, can be reached 
for these two particular crops, using the widely used 
SAILH+PROSPECT canopy reflectance model,  
originally developed for homogeneous canopies, and 
employing LUT for RTM inversion. To verify that the 
retrieval errors are neither due to inappropriately 
selected spectral inputs nor to the chosen inversion 
approach, the RTM was alternatively inverted with a 
different spectral sampling and two other inversion 
algorithms: neural networks and iterative optimization. 
This allows refining the application range of the RTM 
used in this study. 

 

Material and methods 
 

Campaign and study area 

 
The present research was mainly done in the context of 
the ESA AgriSAR 2006 campaign (Hajnsek et al., 
2007), designed and performed on the consolidated 
long-term test site DEMMIN (Durable Environmental 
Multidisciplinary Monitoring Information Network: 
http://www.caf.dlr.de/caf/anwendungen/umwelt/dauert
estfeld_demmin). The DEMMIN test site is an 
agricultural flat area, located approx. 150 km north of 
Berlin in Mecklenburg-Western Pomerania, Germany 
(Figure 1). The DEMMIN site comprises four large-
area farms with a size of 25 000 ha, managed by a 
farming association (“IG-Demmin”). The main crops 
of the region are winter wheat, sugar beet, winter 
barley, winter rape and maize, grown on very large 
parcels (in average 80 ha). The AgriSAR study was 
focused on the Goermin farm, situated in the north-
eastern part of the test site, with the main geographical 
coordinates N ~ 54°00’ and E ~ 13°16’. 

The principal work, carried out by the AgriSAR teams, 
included intense airborne and ground data acquisitions 
on various crop types in the period between April 18th 
and August 2nd in 2006. A considerable amount of 
imagery was generated from different radar frequencies 
and polarizations (X-, C- and L-Band), as well as from 
thermal and hyperspectral optical sensors. Together 
with the simultaneously collected ground data, this 
database provides a valuable resource for the 
examination and validation of bio-/geo-physical 
parameter retrievals (Hajnsek et al., 2007).  

 

  
 

Figure 1. Study test site: DEMMIN area, Goermin 
farm with the two fields mainly used for this study: one 
sugar beet field (ID 102) with a size of 17.5 ha and a 
maize field (ID 222) of 101.8 ha. Further details of the 
two test fields can be found in Table 2. 

 

Hyperspectral image acquisition 
 
Hyperspectral images were acquired with the Compact 
Airborne Spectrographic Imager (CASI 1500, ITRES 
Research Ltd., Calgary, Canada) on July 5th 2006. The 
area of interest was scanned around 10:00 UTC, 
corresponding to a solar zenith angle of ~ 35°. The 
sensor (fly altitude 3100 meters above sea level 
(m.s.l.)) acquired hyperspectral data at 1.5 m spatial 
resolution in 288 bands located in the visible (VIS) to 
near infrared (NIR) range, i.e. from 370 to 1050 nm, 
with a bandwidth (FWHMs) of 2.2 nm and a field of 
view (FOV) equal to 23.6°. Spectral calibration and 
atmospheric correction of the imagery were carried out 
by the Laboratory for Earth Observation, Department 
of Earth Physics and Thermodynamics of the 
University of Valencia, by using an optimized version 
of the MODTRAN4 code. The procedure, described in 
Guanter et al. (2007) for two other field experiments, 
was also applied in the context of the AgriSAR field 
campaign. 

CASI provides a nearly-continuum spectrum over the 
entire spectral range, with very fine observation 
channels, reproducing any small absorption feature due 
to surface or atmospheric components (Guanter et al., 
2007). For these reasons CASI offers a good 
opportunity to test the potential of the future multi-
spectral satellite Sentinel-2. Special features of the 
Sentinel-2 sensor include a 290 km wide coverage, 10-
60 m spatial resolution and 13 spectral channels 
ranging from visible to shortwave infrared, as listed in 
Table 1. Quality enhancement is foreseen in 
comparison to current E.O. missions, such as a shorter 
revisit time, larger coverage area, improved image 
quality and spectral information.  

The specific sensitivity function of Sentinel-2 
wavebands (provided by ESA, personal 
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communication) was applied to configure the CASI 
measurements according to the future Sentinel-2 
satellite. To mimic the planned spatial resolution of 
Sentinel-2 (4 channels with 10 m and 4 with 20 m, see 
Table 1), the high spatial resolution CASI data (1.5 m) 
were degraded to a coarser resolution of 20 m for the 
whole imagery. 
 
Table 1. Spectral sampling of the proposed Sentinel-2 
sensor: central wavebands, spectral widths, spatial 
resolution and purpose (from ESA GMES mission 
document, 2007). In grey the 8 bands used for the 
simulations. 

Central 
waveb. 

λ (nm) 

Spectral 
width 

∆λ (nm) 

Spatial 
res. (m) 

Purpose 

    

443 20 60 Atmospheric correction (aerosol 
scattering) 

490 65 10 Sensitive to vegetation 
senescing, carotenoid, browning 
and soil background; 
atmospheric correction (aerosol 
scattering) 

560 35 10 Green peak, sensitive to total 
chlorophyll in vegetation. 

665 30 10 Max. chlorophyll absorption. 

705 15 20 Position of red edge; 
consolidation of atmospheric 
corrections / fluorescence 
baseline. 

740 15 20 Position of red edge, atmospheric 
correction, retrieval of aerosol 
load. 

775 20 20 LAI, edge of the NIR plateau 

842 115 10 LAI 

865 20 20 NIR plateau, sensitive to total 
Chlorophyll, biomass, LAI and 
protein; water vapor absorption 
reference; retrieval of aerosol 
load and type.  

940 20 60 Water vapor absorption, 
atmospheric correction. 

1375 20 60 Detection of thin cirrus for 
atmospheric correction. 

1610 90 20 Sensitive to lignin, starch and 
forest above ground biomass. 
Snow/ice/cloud separation. 

2190 180 20 Assessment of Mediterranean 
vegetation conditions. 
Distinction of clay soils for the 
monitoring of soil erosion. 
Distinction between live 
biomass, dead biomass and soil, 
e.g. for burn scars mapping. 

 

 

 

In situ LAI measurements 

 
Leaf area index measurements were carried out on two 
fields: one sugar beet field (ID 102: 8 samples) and one 
maize field (ID 222: 16 samples) (Figure 1). In situ 
LAI measurements were taken at the day of the sensor 
overpass or the evening of the preceding day. The 
measurements were performed with the Plant Canopy 
Analyzer LAI-2000 instrument (LICOR Inc., Lincoln, 
NE, USA). 

Information about the monitored crop fields, 
phenological stages and some biophysical 
characteristics of the plants monitored during AgriSAR 
campaign are summarized in Table 2 together with two 
additional data sets used for validation purposes. 
Detailed information about these supplementary data 
can be found in Richter et al. (2008a) and Richter and 
Timmermans (2009).  

 

The measurement principle of the LAI-2000 instrument 
is based on non-destructive indirect gap fraction 
measurements. The gap fractions are assessed by 
measuring the light transmission through the canopy. 
This is done by comparing differential light 
measurements above and below the canopy at five 
zenith angles (with central angles of 7, 23, 38, 53 and 
68°) (Jonckheere et al, 2004). A detailed description of 
the instrument can be found in Cutini et al. (1998) or in 
the instruments manual (LI-COR, 1992). One 
shortcoming of the widely used instrument is that it 
does not distinguish photosynthetically active leaf 
tissue from other plant elements such as stems, 
branches, flowers or senescent leaves. The 
measurement should therefore be considered as “Plant 
Area Index” (PAI) (Jonckheere et al., 2004).  
Moreover, the possible non-random positioning of 
canopy elements is neglected. Hence, without carrying 
out a correction of the clumping, the term “effective 
LAI“ (Le) is more adequate (Chen and Black, 1992). In 
fact, the instrument tends to underestimate LAI, 
especially in case of discontinuous and heterogeneous 
canopies with clumped foliage (Jonckeere et al., 2004). 
On the contrary, vertical elements in canopies (such as 
stems) increase/overestimate LAI. Hence, the 
measurement accuracy does not only depend on 
phenological stage, but also on crop type and structure. 

Since no corrections were applied to account for these 
two aspects, the term ‘LAI’ should, in the context of 
this study, be understood as ‘effective plant area index’ 
(PAIeff) (Chen et al., 1997, Darvishzadeh et al., 2008a; 
Soudani et al., 2006). On the other hand, the LAI 
measured by LAI-2000 (or other optical methods) is 
quite close to the leaf surface visible by a remote  
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Crop AgriSAR 

Sugar beet 

AgriSAR 

Maize 

PLEIADeS 

Maize 

SPARC 

Sugar beet 

SPARC 

Maize 

ID 102 222 - - - 

Field size (ha) 17.5  101.8  - - - 

Cultivar  Ricarda(a) Salagor(a) no information no information no information 

Sowing date  end of March 
2006(b) 

beginning of May 
2006(b) 

end of May 2007 end of March 2004 
beginning of June 

2004 

Developmental stage 

(Eucarpia Scale, EC)  
EC stage 33(a) EC stage 39(a) no information no information no information 

Plant height (m)   ~0.25(b) ~ 1(b) 0.35 – 3.2 (d) 0.45-0.6 (d) 1.6 – 2.5 (d) 

Plants per m²   10 (b) 15 (b) no information no information no information 

Crop coverage (%)  50 (b) 40 (b) 10-95 (d) 60-80 (d) 40-80 (d) 

Mean LAI (mean, 
SD)  

1.5 (0.5) (b) 1.7 (0.5) (b) 2.0 (1.2) (d) 4.9 (0.4) (d) 2.4 (0.6) (d) 

Chlorophyll (mean, 
SD) (µg/cm²)  

40 (10) (b,c)  45 (10) (b,c) not measured 49 (1) (d) 52 (1) (d) 

 

Table 2. Description of the test fields of the AgriSAR campaign (corresponding to time of sensor overpass), mainly 
analyzed in the study, and from the other two campaigns, when data were available.  

a Personal communication (Agrisar Team); b Gerighausen et al., 2007 (3 measurement points); c Minolta SPAD 
measurements, d campaigns measurements, more information in: Richter et al., 2008a; Richter and Timmermans, 2009. 
 

sensor which is not necessarily the case for the real leaf 
area index (Stenberg et al., 2004). According to 
Soudani et al. (2006), a correction for the clumping 
effect is therefore not absolutely necessary. 

Each of the 24 AgriSAR in situ measurements (8 in ID 
102 and 16 in ID 222) was based on three consecutive 
series of 8 readings below the canopy (plus one 
reference reading above the canopy) covering an 
Elementary Surface Unit (ESU) of approximately 20 x 
20 m geolocated by means of a GPS (accuracy roughly 
5 m). The average value of LAI, resulting from the set 
of 24 readings (576 measurements in total), has been 
considered as representative for the respective ESU. 
The standard deviation around the mean has been kept 
as a measure of uncertainty. Field measured LAI values 
ranged between 1.0 and 2.0 for the sugar beet field (ID 
102) and 0.9 and 2.3 for the maize field (ID 222). 
Measurements were always taken under uniform clear 
diffuse skies at low solar elevation (i.e., ~ 1 h before 
sunset). Samples of below and above -canopy radiation 
were performed by experienced operators in the 
opposite direction to the sun to prevent direct sunlight 
on the sensor. A view restrictor of 180° was mounted 
on the sensor and care was taken that the instrument 
remained horizontal. 

To avoid biases in the measurements due to particular 
crop architectures (such as sugar beet or maize in early  

 

 

growth stages), the measurements were carried out in a 
systematic and standardized way; that is the sensor was 
placed alternately in the middle of the row and between 
two rows. Moreover, below canopy readings have been 
taken close to the soil with appropriate distances to the 
leaves.  

To consider a wider range of LAI values than available 
from the AgriSAR campaign, data from two other 
experiments were consulted (see also Table 2): the LAI 
data set of 21 measurements of maize from the 
PLEIADeS 2007 field campaign, Sardinia, Italy 
(Richter et al., 2008a) and the LAI data set of 8 
measurements of maize and 6 of sugar beet from the 
SPARC 2004 campaign, Barrax, Spain (Richter and 
Timmermans, 2009). In both experiments, 
measurements of LAI were performed by using the 
same protocol as described above for the AgriSAR 
campaign. During PLEIADeS, hyperspectral field 
measurements with the ASD FieldSpec UV-VNIR field 
spectrometer (operating in the spectral range from 350 
to 1050 nm) were acquired in correspondence of LAI 
measurements and the spectral signatures configured 
according to the Sentinel-2 spectral bands. During 
SPARC experiment, imagery of CHRIS/Proba satellite 
was acquired and as well configured using the specific 
sensitivity function of Sentinel-2 wavebands (using 
near zenith view angle). The experiments are described 
in detail in the mentioned references. 
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Model and inversion techniques 
 

Radiative transfer model: PROSAILH  

 

A physical based method of canopy reflectance 
modelling was selected for the study: the widespread 
SAILH model (Scattering from Arbitrarily Inclined 
Leaves, Verhoef, 1984, 1985). It has been later 
extended by Kuusk (1991) to take into account the hot 
spot effect. The SAILH model is based on the turbid 
medium assumption, and describes the canopy 
structure in a fairly simple way. Despite its simplicity, 
it produces realistic results of bidirectional reflectance 
spectra as reported by several studies for different 
crops including maize and sugar beet (e.g. Andrieu et 
al., 1997; Goel and Thompson, 1984; Jacquemoud et 
al., 1995, 2000; Koetz et al., 2005; Major et al., 1992). 
For the purpose of our study, the SAILH model has 
been combined with the PROSPECT leaf optical 
properties model (Jacquemoud and Baret, 1990) to 
‘PROSAILH’ (e.g., Atzberger, 1997; Baret et al., 2007; 
Verhoef and Bach, 2003; Weiss et al., 2000) to account 
for variations in leaf structure and composition.  

The SAILH model simulates canopy bi-directional 
reflectance as a function of three structural parameters 
(i.e., LAI, average leaf inclination angle (ALA) and hot 
spot parameter (HotS) - roughly defined as the ratio of 
the leaf size to canopy height; Verhoef and Bach, 
2003), soil spectral reflectance, leaf reflectance and 
transmittance, fraction of diffuse irradiance (skyl) and 
the view and illumination geometry. Leaf reflectance 
and transmittance were simulated by the PROSPECT 
model as a function of four structural and biochemical 
leaf parameters: leaf chlorophyll content (Cab), dry 
matter content (Cm), leaf water thickness (Cw) and a 
leaf mesophyll structural parameter (N).  

The PROSAILH model has been preferred to other 
radiative transfer models, describing the canopy in a 
more complex way (for a review on these models see 
Dorigo et al., 2007), such as 3D hybrid radiative 
transfer models (e.g. Goel and Grier, 1988), Monte 
Carlo ray tracing models (Goel and Thompson, 2000) 
and others (Peddle et al., 2003, 2004). This decision is 
justified with the focus of potential usage of the 
method for operational applications. For operational 
applications, the execution speed of complex models is 
a limiting factor, especially when large quantities of 
data have to be processed on a regular (daily) basis. 
Moreover, the higher the complexity of the model the 
larger the requirement of knowledge concerning 
parameterization, construction of the merit function or 
use of prior information (Dorigo et al., 2007). On the 
other hand, the generality and robustness of the 
physical model approach favored the choice over VIs, 
which may also achieve accurate results and are easy to 
apply with low computer requirements. 

 
Look-up table approach (LUT) 

 

In the standard setting, the PROSAILH radiative 
transfer model was inverted by using a look-up table 
(LUT). Three principal steps have to be performed to 
realize this approach: 
 
(1) Generation of an appropriate number of 
canopy parameter combinations: 
A LUT size of 100 000 (‘LUT1’) cases of canopy 
parameter combinations was chosen according to the 
results of Weiss et al. (2000). Canopy parameter 
realizations, i.e. bounds and distributions, are depicted 
in Table 3. Parameter bounds were taken from 
measurement campaigns and/or other studies working 
with the same crops. They were chosen in order to 
describe the characteristics of both crop types used in 
the study, maize and sugar beet. Gaussian distributions 
have been generated for LAI and Cab in order to put 
more emphasis on the parameter values being present 
in the actual growth stages of the crops (Gerighausen et 
al., 2007). On the contrary, HotS, αsoil, Cm, and N were 
sampled from a uniform distribution (Koetz et al., 
2005) since no information from the campaign 
measurements was available.  
The range of Cab was set to 10 – 70 µm, as in D’Urso et 
al. (2004) for a range of crops including sugar beet and 
maize. Similar ranges were used in other studies, e.g. in 
Weiss et al. (2000) and Koetz et al. (2005) for maize.  
LAI was allowed to vary between 0 and 6 with a mean 
of 2 close to the observed average LAI value of the two 
fields. The range of ALA was set quite large: 40°-70°, 
allowing the simulation of planophile (40°) to 
erectophile (70°) canopies. Similar large ranges have 
been used by Bacour et al. (2002), Combal et al. (2003) 
and Weiss et al. (2000), whereas other studies used 
either very small ranges (Koetz et al., 2005) or even 
fixed ALA to a single value (Espana et al., 1999).  
The bounds of the HotS parameter have been set to a 
large range (0.05-1). This range has also been used by 
Combal et al. (2003) for maize and Combal et al. 
(2002) for sugar beet.  
As the absorption of leaf water is not influencing the 
spectral range used in this study (< 1000 nm), Cw was 
fixed to an arbitrary value (Cw= 0.02 cm). Dry matter 
content Cm has been measured during a field campaign 
for maize (Huber et al., 2006). The parameter limits 
were set accordingly (Cm = 0.004-0.007 mg/cm²). The 
N-parameter was set to a range corresponding to values 
often used in the literature for maize and sugar beet (N 
= 1.3 - 1.7). Similar values have been found by 
PROSPECT inversion (González-Sanpedro et al., 
2007; Haboudane et al., 2004; Jacquemoud et al., 
1995). 
The soil reflectance spectrum for running the 
PROSAILH model was extracted from the CASI 
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imagery (mean of several bare soil pixel). A simple 
multiplicative soil brightness factor (αsoil) was 
introduced, representing the overall soil brightness, 
which was assumed to vary with soil water content and 
surface roughness (Atzberger et al., 2003). The range 
(0.7 - 1.3) was defined according to Koetz et al. (2005) 
and other studies. Within the distributions defined in 
Table 3, a random sampling scheme was applied to all 
parameters.  
For PLEIADeS and SPARC data, the canopy parameter 
realizations were set in the same way (Richter et al., 
2008a; Richter and Timmermans, 2009). 
 
 
(2) Simulation of  Sentinel-2 spectral sampling 
The model was applied in direct mode to simulate 
reflectance signatures corresponding to the proposed 
spectral sampling for the Sentinel-2 sensor. Table 1 
gives some specifications of the sensor, with central 
wavebands, spectral width, spatial resolution and field 
of application for each channel. All wavebands 
interesting for LAI or vegetation studies were included 
in the simulation. Hence, the calculations comprised 
the VIS (490, 560, 665 nm), the red edge (705 and 740 
nm) and the NIR (775, 842 and 865 nm) parts of the 
spectrum. The channels located at 443, 940 and 1375 
nm, sensitive to aerosol scattering and water vapor 
absorption, were not considered, since their scope is to 
support the atmospheric correction of the imagery. The 
two wavebands located in the short wave infrared 
(1610 and 2190 nm) were as well out of interest for the 
study, because they will be used for cloud/ice 
separation and burn scars mapping, respectively.  
The measurement configuration used for the model 
simulations presented the actual condition during the 
sensor overpass with a solar zenith angle of 35° and a 
view zenith angle of 0° according to the almost-nadir 
position of the acquisitions. The fraction of diffuse 
irradiance, skyl, was fixed to 0.1 across all wavebands, 
according to many similar studies (Bacour et al., 2002; 
Schlerf and Atzberger, 2006; Weiss et al., 2002). 
Hence, we neglected both the wavelength dependence 
of skyl, as well as the fact that the amount of diffuse 
sky light depends on atmospheric conditions and solar 
zenith angle. This simplification seems justified by the 
fact that skyl has only a very small influence on canopy 
reflectance (Clevers and Verhoef, 1993). 
To take into account sensor and model uncertainties, a 
Gaussian (white) noise was added to the simulated 
canopy reflectance spectra before going to step (3). The 
noise was assumed to be proportional to the reflectance 
(mean of zero and standard deviation of 0.04) (Bacour 
et al., 2006, Baret et al., 2007). The simulated 
reflectance spectra were resampled according to the 
Sentinel-2 sensitivity. 
 

(3) Sorting of the LUT along with a simple cost 
function: 
The cost function used in this study calculates the root 
mean square error (RMSE) between measured and 
simulated spectra found in the LUT. The solution is the 
average of the parameter combinations found within 
less than 10 % of the lowest RMSE value. 

 
                                                                                       
(1) 
 

 

where λn is the number of wavelengths used in the 

calculation, 
s

i

meaR the measured image reflectance, and 
i

LUTR  the simulated reflectance of the spectrum in the 

LUT at wavelength i. 
Usually, only little information is available about the 
crop status in an agricultural area. Thus, from an 
operational point of view, algorithms used for 
parameter (LAI) estimation from E.O. data have to 
fulfill the requirement to be universally valid. 
Consequently, a simple cost function, instead of a 
modified one, including a-priori information (e.g., 
Combal et al., 2003; Huber et al., 2006; Weiss et al., 
2000) was applied to the algorithm. Note however, that 
in the construction of the LUT we applied a denser 
sampling around the most probable Cab and LAI values 
(see Table 3), which can also be seen as a kind of prior 
information. 
 

Alternative retrieval algorithms 
   
To test the potential of the LUT approach and the 
suitability of the Sentinel-2 band configuration, two 
other retrieval algorithms (iterative optimization and 
neural nets) have been applied to the AgriSAR data set. 
In this way we verified that the findings of the standard 
approach (as described in 2.4.2) are not biased by the 
selected inversion approach. Furthermore, an 
alternative band composition has been tested (B2), 
regarded as ‘ideal’ for vegetation studies (Thenkabail 
et al., 2004). By comparing the Sentinel-2 band setting 
(B1) with B2 we confirm/reject the band setting of the 
future sensor. To make the different approaches as 
comparable as possible, the same Gaussian (white) 
noise was used for all algorithms.  
 

Neural Networking (NN) 

To invert PROSAILH using a neural network (NN), the 
synthetic database (LUT) of simulated canopy spectra 
and corresponding parameter sets was used (section 
2.4.2.). The simulated database allows training the non-
linear relationship between the spectral variables (as 
“measured” inputs) and the desired canopy biophysical  
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Table 3. Range of input variables (lower (LB) and upper (UB) bounds) for PROSAILH model inversion using SQP 
algorithm, as well as number of classes and distribution of input variables used to establish the synthetic canopy 
reflectance data base for use in the LUT and for the training of the NN. 

 
Similar variable ranges/values were used by the following studies : 1 González-Sanpedro et al., 2007 ; 2 Haboudane et al., 2004 ; 3 
D’Urso et al, 2004 ; 4 Huber et al., 2006; 5Geringhausen et al., 2007; 6 Atzberger 2004; 7,8 Combal et al., 2002, 2003; 9 Koetz et al., 
2005 
 
 
variables (as “estimated” outputs). Once trained, the 
NN is applied to the CASI/Sentinel-2 spectra to map 
the canopy biophysical variables.  
To prevent network overfitting and overspecialization 
(and hence lack of generalization) several measures 
were taken. First of all, a simple three layer feed-
forward backpropagation network with a tan-sigmoidal 
transfer function in the hidden layer and a linear 
transfer function in the output layer was selected. After 
several trial and errors, the following (compact) 
network structure was chosen: 5 neurons in the hidden 
layer, 7 input neurons (8 for the B2 band setting) and 3 
output neurons (to predict simultaneously LAI, the leaf 
chlorophyll content, Cab, and the soil brightness factor, 
αsoil) were used. Both, the low number of hidden 
neurons and the simultaneous estimation of several 
biophysical variables prevent overfitting and 
overspecialization (Atzberger, 2004; Udelhoven et al., 
2000). 
To further improve network generalization, the early 
stopping technique (Demuth and Beale, 2003) was 
applied. For this purpose, the patterns generated with 
PROSAILH were divided into three subsets (60, 20 and 
20 %). The first subset (60 % of the pattern) was used  

for updating the weight and biases of the network 
(training data set). The error on the test data set (20 % 
of the pattern) was monitored during the training 
process. The training was stopped automatically when 
the error in the test data set started to rise while the 
error on the training data set continued decreasing; 
such a situation is an indication of network overfitting. 
The third subset (remaining 20 % of the synthetic 
spectra) was used after completion of the training to 
assess the accuracy of the RTM inversion on synthetic 
spectra. 
To avoid sub-optimal network results, 51 networks 
were trained with randomly initialized weights/biases 
and with different synthetic training, test and validation 
data sets. As the networks gave very similar results on 
the synthetic validation data sets, it was decided to 
keep them all and to invert the image spectra with all 
networks. The final output was then simply the average 
of the 51 results. The standard deviation around the 
estimated average was kept as a measure of 
uncertainty. 
 
 
 
 

Model Variables  Units Min (LB) Max (UB) Distribution of variables 

Leaf parameters: 

(PROSPECT) 

     

N(1,2,10)   Leaf structure index unitless 1.3 1.7 Uniform 

Cab 
(3)    Leaf chlorophyll content [µg/cm²]  10 70 Gaussian (mean 40, SD 

10) 
Cm 

(4)
      Leaf dry matter content [g/cm²] 0.004 0.007 Uniform 

 
Canopy variables: 

(SAILH) 

     

LAI(5)  Leaf area index [m²/ m2] 0 6.0 Gaussian (Mean 2, SD 1) 

ALA (6) Average leaf angle [°]  40 70 Uniform 

HotS (7,8) Hot spot parameter [m /m] 0.05 1 Uniform 

αso il
 (9) Soil brightness factor unitless 0.7 1.3 Uniform 

θs sun zenith angle [degree]  35 / 

θv view zenith angle [degree]  0 / 

ø azimuth anlge between 
sun and sensor 

[degree]  0 / 
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Iterative optimization approach (SQN) 

 
Traditionally, radiative transfer models have often been 
inverted using iterative optimization techniques. Thus, 
we included this inversion strategy as another 
benchmark for comparison with the results achieved by 
means of the standard LUT approach. For the iterative 
optimization, the Sequential Quadratic Programming 
(SQP) has been implemented by using the MATLAB 
function fmincon. This function solves a quadratic 
programming (QP) sub-problem iteratively. The 
method allows to mimic closely Newton's method for 
constrained optimization. An approximation is 
performed for each major iteration of the Hessian 
Lagrangian function using a quasi-Newton updating 
method. An overview of SQP can be found in the 
Matlab documentation (MathWorks, Inc., 1984-2007). 
The SQP requires an initial set of parameters to start 
off the optimization process. However, these initial 
parameter values may affect strongly the solution 
achieved by the algorithm (Jacquemoud et al., 1995). 
In order to mitigate this effect, five different initial sets 
for the parameters were randomly selected in the 
ranges shown in Table 3.  

Table 4. Spectral sampling (named B2) used as 
alternative band set to the Sentinel-2 band 
configuration. Wavebands and their sensitivity to plant 
components are extracted from the work of Thenkabail 
et al. (2004). Note: Thenkabail et al. (2004) proposed 
22 bands, but here only those matching the CASI 
spectral configuration (≤ 885 nm) could be used. 

Central 
waveband 
Λ (nm) 

Sensitivity to plant  
components  

  

495 Sensitive to senescing, carotenoid, 
browning, and soil background 

555  Green peak, sensitive to total 
chlorophyll 

655 Absorption pre-maxima, sensitive to 
biomass and soil background 

675  Absorption maxima, greatest soil –crop 
contrast in 350–2500 nm 

705  Start of rapid change of slope, sensitive 
to vegetation stress and dynamics 

735 End of rapid change of slope, sensitive to 
vegetation stress and dynamics 

885 NIR pre-peak; sensitive to biomass, LAI, 
and protein 

  

 
In contrast to the LUT and NN based inversion, no 
prior information concerning the parameter distribution 
(such as LAI and Cab) was implemented in the 
algorithm. The optimization algorithm was only forced 
to remain within the parameter bounds. This hinders a 
detailed comparison of the three approaches which was 
nevertheless out of the scope of this study. 

Larger Look-up Table and alternative ‘ideal’ spectral 

sampling 

 

To verify that the standard LUT size of 100 000 
parameters is appropriate, a LUT with a size of 200 
000 cases of canopy parameter combinations (‘LUT2’) 
was constructed for comparison. Parameter bounds, 
distribution and sampling scheme applied were the 
same as for the LUT described in section 2.4.2. 

Furthermore, another band set (‘B2’) was chosen 
according to the results of a work from Thenkabail et 
al. (2004). These wavebands were found to 
characterize and classify best vegetation and crops due 
to their sensitivity to chlorophyll, biomass, LAI, plant 
moisture and vegetation stress. The seven bands (out of 
22 proposed by Thenkabail et al., 2004) located in the 
CASI spectra were averaged in a bandwidth of 10 nm. 
Table 4 gives an overview of the B2 band set and the 
sensitivities of the various bands in vegetation related 
studies. 

 

Results  
 
In this chapter we first present the quality of LAI 
estimation from all campaigns using the standard LUT 
approach (3.1.). RTM simulation accuracy is then 
presented in the following sub-section (3.2.). Next, the 
standard LUT results are compared to other model 
inversion approaches and to results obtained by the B2 
band combination (3.3.) using the data set of the 
AgriSAR campaign. A general discussion on the 
applied method(s), their problems and applicability in 
an operational context of Sentinel-2 is given in the 
discussion (4.).  

 

Performance of the LUT with the Sentinel –2 
spectral sampling 

 
Scatterplots between measured and estimated LAI 
values are shown in Figure 2a-e, including error bars of 
±1 standard deviation of measurements and retrievals. 
The performance of the LUT approach using the 
spectral bands of the future Sentinel-2 sensor can be 
regarded as satisfying in the case of sugar beet (Figure 
2a: AgriSAR; Figure 2d: SPARC) but indicates some 
problems for maize (Figure 2b: AgriSAR; Figure 2c: 
PLEIADeS; Figure 2e: SPARC). For sugar beet, a root 
mean square error (RMSE) of 0.18 was achieved for 
AgriSAR and a RMSE of 0.6 for SPARC. (rel. RMSE: 
8 % and 9.2 % respectively). However, for maize the 
estimation performance was significantly lower with 
RMSE of 0.43 for AgriSAR and RMSE of 0.4 for 
PLEIADeS and SPARC (rel. RMSE: 22 %, 16.7 and 
16.3 %, respectively). Thus, the estimation quality for  
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Figure 2. Measured and estimated LAI values for all campaigns (2a: AgiSAR sugar beet field (ID 102); 2b: AgriSAR 
maize field (ID 222); 2c: PLEIADeS maize; 2d: SPARC sugar beet; 2e: SPARC maize). The LAI estimates were 
obtained from LUT inversion approach and using the Sentinel-2 band configuration (B1). The standard deviations of 
measurements and simulations are indicated by error bars. 
 

sugar beet is well within the 10 % requirements of the 
GMES mission. On the contrary, in the case of maize, 
the inversion falls short of expectations. Especially for 
the AgriSAR fields, a trend toward underestimation 
could be observed. The underestimation of LAI is 
small for sugar beet but pronounced for the maize field. 

 
Spatial LAI of the two AgriSAR fields, obtained with 
the LUT inversion method, are illustrated in Figure 
3ab. One easily recognizes distinct spatial structures, 
revealing the knowledge of the fields: The maps 
confirm a mean value of LAI around 1.5-2 for both 
crops, as monitored by the AgriSAR teams during this 
period (Gerighausen et al., 2007). Maize exhibited a 
slightly higher range (LAI: 0.5 - 3.0) than the sugar 
beet (LAI: 0.5 - 2.5). This within field growth 
variability reflects a typical pattern for crops in rainfed 
agriculture, being more sensitive to soil heterogeneity 
than irrigated crops (Richter et al., 2008b).  
 

 
 

Match between measured spectra and RTM 

simulations 

 
When inverting radiative transfer models an important 
aspect is to control its ability to recreate the measured 
spectra using the retrieved model parameters. After the 
LUT inversion process, the estimated parameters were 
used as input to run the model in the forward way. 
Then the RMSE between measured and re-simulated 
reflectance for all 8 wavebands was calculated 
pixelwise for the whole fields. The resulting maps of 
RMSE are depicted in Figure 3c for sugar beet and 3d 
for maize of the AgriSAR campaign. The results 
suggest a good overall performance of the model for 
sugar beet with generally acceptable matches between 
measured and simulated spectra (0.008-0.017). The 
higher RMSE values of maize (0.007-0.088) 
correspond to the lower LAI retrieval performance for 
this crop. It indicates a general mismatch between input 
spectra and PROSAILH simulated reflectances. 
Probably, the pronounced row structure (clumping) and 
the early growth stage of maize (with low coverage) 
requires a specific canopy reflectance model that takes 
this effects into account (e.g., Yao et al., 2008). As 
both fields were geographically close to each other and  

 

 

31



 

 
 

 

 

  

Table 5. Root mean square error (RMSE), relative percentage error (%) and coefficient of determination (R2) between 
measured and simulated LAI for two agricultural fields of the AgriSAR campaign: ID 102 (sugar beet) and ID 222 
(maize). The results obtained with the standard LUT are shown in bold. Four alternative solutions are also presented: a 
larger LUT with 200 000 entries, SQP and NN with the Sentinel-2 band configuration and a LUT run with an 
alternative band setting B2 (Thenkabail et al., 2004). 
 

 

 

 

LUT1 

100 000 

Sentinel-2 

LUT2 

200 000 

Sentinel-2 

SQP 

 

Sentinel-2 

NN 

 

Sentinel-2 

LUT1 

100 000 

B2 

RMSE 0.18 0.19 0.58 0.16 0.29 

% 
error 8.0 9.8 26.8 7.9 18.5 

ID102 

sugar 
beet 

R2 0.92 0.90 0.19 0.88 0.70 

 
    

 

RMSE 0.43 0.40 0.62 0.94 0.34 

% 
error 22.8 21.4 30.5 52.8 18.7 

ID222 

maize 

R2 0.35 0.36 0.13 0.35 0.36 

  
 
sampled within the same image, artifacts related to the 
atmospheric and radiometric pre-processing can be 
excluded. 
 

Comparison with alternative methods 

 
The standard LUT approach (size 100 000) has been 
compared with two alternative inversion approaches 
and a different band setting for the AgriSAR data set. 
Results are summarized in Table 5 giving RMSE, R² 
and % error for all inversion methods and the 
alternative (B2) band set. From Table 5 it can be seen 
that an increased LUT size (200 000) did not change 
the estimation accuracies compared to the standard 
approach. This confirms the findings of Weiss et al. 
(2000) who pointed out that 100 000 LUT entries are 
appropriate. 
 
Larger differences were observed if SQP or NN were 
used for RTM inversion. SQP gave significantly lower 
accuracies for both fields with increased RMSE and 
lower R2. The neural nets performed well for sugar beet 
but resulted in strongly biased LAI values in the case of 
maize. Compared to the standard LUT approach, the R2 
remained more or less unchanged indicating that the 
spatial structure of the estimates was preserved. In 
summary, the results clearly show that the observed 
errors of the standard LUT are not the results of an 
inappropriately chosen inversion approach. Likewise, 
the alternative band setting (B2) had also only 
insignificant effects when compared to the standard 
LUT approach; for one field (sugar beet) the accuracies 

decreased slightly, whereas for the other field (maize) 
somewhat better results have been obtained. From this 
finding it can be concluded that the Sentinel-2 band 
setting is well suited for vegetation related studies. 
 
Retrieval accuracy of the neural net 

 

The neural nets learned easily the relation between 
spectral inputs and the (three) output variables. For the 
synthetic validation data set, the RMSE for the three 
outputs and the 51 duplicate nets were 0.4 m2/m2 (LAI), 
5.5 µg/cm2 (Cab) and 0.12 (αsoil) with a slope close to 
one and intercept of zero (not shown). As the validation 
data set did not enter in the network calibration, the 
low RMSE indicate very good network learning.  
Generally, the error of the synthetic training, test and 
validation data sets decreased very fast. The error curve 
was steep during the first 20 iterations before reaching 
a more or less horizontal level (not shown). On 
average, the early stopping criteria automatically 
stopped training after less than 50 iterations.  
For the two AgriSAR fields, the NN explained between 
35 % (maize) and 89 % (sugar beet) of the total 
variance in the field measured LAI. However, a strong 
offset in the retrieved LAI of maize (ID 222) can be 
noted, resulting in high RMSE for this field compared 
to the standard LUT approach. We suppose that the 
offset results from a combination of RTM 
shortcomings (i.e., the row structure of the maize is not 
taken into account) and biased in situ measurements 
(i.e., the stems reduce the measured gap fractions). 
 

32



 

 
 

 

 

  

 

Figure 3. Sentinel-2 derived LAI maps (a-b) from the AgriSAR campaign and maps of the RMSE between measured 
and simulated spectra (c-d). The results were obtained using the standard LUT approach (100 000 cases of parameter 
combinations) with the proposed band configuration of the upcoming Senintel-2 satellite. The RMSE (c-d) have been 
calculated across the 8 Sentinel bands with canopy parameters found by the LUT approach. 

Retrieval accuracy using the iterative optimization 

approach  

Despite the use of the same radiative transfer model, an 
identical cost function and range of input variables, the 
differences in accuracy between the SQP inversion, 
compared to the LUT and NN approaches, are 
pronounced (Table 5). The failure of the SQP inversion 
may be explained by the drawback of iterative 
optimization methods to converge into local minima 
(Qiu et al., 1998). To partially overcome this problem, 
five different initial parameter sets were considered to 
start off the optimization. According to the criterion 
applied for the LUT, 10% was added to the smallest 
RMSE (between simulated and measured reflectance) 
in order to average all solutions being in this range. 
However, the difference between the smallest RMSE 
and the other four cases resulted mostly in errors 
greater than 10 %, indicating the importance of the 
initial parameter set. Thus, only the result with the 
smallest RMSE was selected as single solution. No 
attempts were made to run further initializations as the 
iterative optimization is computationally intensive in 
particular if large data sets have to be inverted. 

 

Discussion 

 
The estimation accuracies achieved with the LUT 
algorithm can be seen as fair. For sugar beet, the 
GMES/ Kopernikus requirements were barely met 
(precision: 8 - 9 %). On the other hand, with only 16 - 
22 % accuracy, the LAI estimated for maize was 
beyond the GMES/ Kopernikus goal. The results 
confirm the findings of several studies for similar 
crops, using the same and also other retrieval methods, 
for example:   
(1) Sugar beet: Combal et al. (2002): RMSE = 0.5-1.4; 
D’Urso et al. (2004): RMSE = 0.49; Jacquemoud et al. 
(1995): RMSE = 0.79;  
(2) Maize: Haboudane et al. (2004): RMSE = 0.46-
1.21; Koetz et al. (2005): RMSE = 0.69-0.79; Koetz et 
al. (2007): RMSE = 0.73; Vuolo et al. (2006): RMSE = 
0.41 – 0.76; Walthall et al. (2004): RMSE = 0.41-1.27; 
Wu et al. (2007): RMSE = 0.63.  
In particular for small LAI values of maize, our results 
reveal a significant underestimation of the estimated 
LAI. The canopy characteristics of both crops deviate 
strongly from the turbid medium assumption of the 
PROSAILH model (Andrieu et al., 1997): maize and 
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sugar beet are typically row-planted and affected by 
leaf clumping (i.e. leaves are grouped together rather 
than distributed uniformly). The chosen PROSAILH 
model, however, does not account for the leaf clumping 
induced by the row structure of maize. Lopez-Lozano 
et al. (2007) compared canopy gap fractions of 
heterogeneous maize canopies with turbid, 
homogeneous canopies using simulations from a 3-
dimensional RTM. The results showed that gap 
fractions of a heterogeneous canopy observed from 
nadir were generally higher than those of a 
homogeneous canopy. Consequently, inversion of the 
nadir measured remote sensing signal of row planted 
maize canopies leads to an underestimation of LAI 
values using turbid medium RTM. Similar findings 
were also described by Koetz et al. (2007). For maize it 
has also to be considered that the in situ measurements 
using the LAI-2000 instrument are probably too high as 
vertical elements like stems significantly reduce the 
measured gap fractions of the LAI-2000 instrument, 
albeit without influencing to the same extent the 
measured canopy reflectance. 

A possible explanation of the better results achieved for 
sugar beet may also be related to the different crop 
growth stages during the image acquisition. In the 
AgriSAR campaign, the maize plants reached only a 
height of ca. 1 m (maximum usually up to 4 m) and a 
coverage of ~ 40 %; whereas the sugar beet showed in 
this later growth stage already a more homogeneous 
coverage (~ 50 %). During the SPARC campaign, 
sugar beet plants covered almost completely the ground 
(i.e. ~ 80 %). Consequently, the influence of the soil 
background (which is further enhanced by the row 
structure of these crops) is probably stronger for maize 
fields compared to the sugar beet. The RTM falsely 
interprets the strong soil signal as a low(er) coverage 
leading to a too low LAI. Also for PLEIADeS maize, 
the lower LAI values (LAI < 4) were slightly 
underestimated. This cannot be confirmed for SPARC 
data, but here all LAI values were higher than 2.  

In a future study it has to be tested if a simple mixture 
model, such as the one proposed by Baret et al. (2007) 
at landscape level or GEOSAIL proposed by 
Huemmrich (2001), is capable of reducing this effect. 
These considerations are also supported by Yao et al. 
(2008), who proposed the use of a row structure model 
for the early growth stage (before elongation) of maize 
canopies, and a homogeneous one for later growth 
stages (after elongation).   

In the present study we used a unique parameter set for 
both crop types as the objective was to select for every 
parameter the most realistic bounds and distributions 
without introducing too detailed prior information that 
usually is not available without a simultaneous field 
campaign. However, the differences in the resulting 
retrieval accuracy suggest that the use of a well adapted 

parameter input set for every single crop species may 
be necessary to increase the estimation quality. That 
means, a priori information, such as from on-site 
measurements, knowledge of the type of canopy 
architecture and of the distribution of canopy 
biophysical variables (Combal et al., 2003) should be 
specified according to the crop type monitored. 
However, the establishment of crop and phenology 
specific LUTs can be a time-consuming task, which is 
sub-optimum in view of an operational monitoring 
process, where fast and universally valid (and accurate) 
algorithms are required. Our results also highlight the 
limitations of too simplistic RTMs which fail if the 
basic assumptions are not met by the crop under 
investigation. In an operational context, this also 
implies that a detailed crop map is available in order to 
choose the most appropriate RTM. 

By comparing the standard LUT approach with two 
contrasting inversion approaches it was possible to 
verify that the sometimes inaccurate estimations are not 
due to an inappropriate inversion algorithm. The 
chosen LUT approach resulted more accurate and more 
robust than the iterative optimization approach and the 
neural net. The latter was accurate for the sugar beet 
field but gave strongly biased results in the case of 
maize. The insufficient accuracy of the NN to estimate 
the LAI of maize correctly highlights one of the major 
disadvantages of neural nets. In fact, NN often show 
relatively unpredictable behavior when fed with input 
spectra that are (too) different from what has been 
presented during the learning stage (e.g., Baret & Buis, 
2008; Kimes et al., 1998; Schlerf and Atzberger, 2006). 
If the targets are not well represented by the modeled 
spectra, LUTs are indeed more robust compared to NN.  
Walthall et al. (2004) pointed out that the performance 
of the NN process may be improved if model input 
parameters were estimated from direct field 
measurements. This, however, would run counter to the 
stated objective of this analysis, which was to retrieve 
regional LAI estimates from satellite data without 
relying heavily on site-specific, ground calibration 
measurements. Another way to increase the robustness 
of the nets is to train them with higher noise levels as 
the one used in this research (e.g., Udelhoven et al., 
2000). In the present study, however, such possible 
improvements have not been evaluated.  
Unreliable results have been obtained for both crops 
with the SQP inversion. This finding, however, 
probably only holds for this study, as the SQP 
inversion was seriously penalized with respect to the 
LUT approach (and to some extent also the NN 
inversion) as it did not take advantage of the available 
prior information regarding LAI and Cab (Table 3). This 
prior information has been taken into account for the 
LUT construction. The same LUT has also been used 
to train the NN. It would have been possible to include 
the prior information also in the SQP inversion (using a 
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modified cost function), but this was out of the scope 
of the present study. 

The efficiency of LUT inversion approaches in 
operational contexts for LAI estimation was confirmed 
by other studies, even for more complex models (e.g. 
Myneni et al., 2002; Peddle et al, 2003, 2004). In the 
work from Peddle et al. (2003), a 5-scale geometric-
optical reflectance model was applied for different 
forest classes, based on the Li and Strahler Geometric 
Optical Mutual Shadowing (GOMS) model in 'multiple 
forward mode' (MFM-5-Scale). Such modeling can 
provide a higher quality of canopy simulation, since 
radiative transfer properties are described more realistic 
than one-dimensional models such as SAILH, for 
heterogeneous canopies. Ground-measured LAI data 
were successfully retrieved with LUT based MFM-5-
Scale inversion. However, for the reflectance and 
transmittance the model incorporates either spectral 
measurements or the leaf model LIBERTY. In a study 
of Moorthy et al (2003), LIBERTY was found to be 
more critical for the use in inversion procedures than 
PROSPECT, amongst others due to the need of 
detailed a priori knowledge. The PROSPECT model 
instead showed satisfying agreement with measured 
spectra, even for needles when implementing an 
empirically determined geometric form factor. 

 

Conclusions  
 
Leaf Area Index over the German DEMMIN test site 
was estimated for maize (16 ESU, corresponding to 
348 individual observations) and sugar beet (8 ESU, 
corresponding to 192 observations) based on the 
proposed bands of the future earth observation satellite 
Sentinel-2 configuration from CASI imagery and by 
using a LUT inversion approach. The approach was 
additionally tested with two data sets of maize and 
sugar beet from two other campaigns leading to a range 
of LAI from 0.4 to 5.6. The LUT was constructed using 
the well established SAILH+PROSPECT radiative 
transfer model for homogeneous canopies. The 
physically-based approach was chosen since it does not 
require detailed in situ calibration data sets, 
constituting a major advantage of physical over 
empirical models. 
In view of applications for vegetation monitoring, the 
findings of the study should be considered as 
preliminary as only two different crops were analyzed 
for the estimation of only one canopy variable (LAI). 
Moreover, additional measurements of other canopy 
characteristics (such as chlorophyll concentration, leaf 
dry matter content etc.) were missing and hence we 
cannot validate whether or not the PROSAILH - 
modeled reflectance agreed with CASI measured 

reflectance for the choice of the right input parameter 
setting. 
The expected GMES/ Kopernikus goal accuracy of ≤ 
10 % could be achieved for sugar beet (~ 8 - 9 %), but 
not for maize (~ 16 - 22%). Neither the implementation 
of alternative estimation approaches (including two 
model inversion techniques: neural nets and iterative 
optimization), nor the implementation of another 
waveband combination, an ‘optimal sampling’ (from 
Thenkabail et al., 2004), could achieve significant 
improvements, highlighting limitations of the selected 
radiative transfer model.  

Our results confirm that the 1-dimensional 
SAILH+PROSPECT model is sufficient for 
homogeneous structured canopies, whereas for 
heterogeneous row crops, such as maize, a higher 
complexity of modeling is required. Such kind of 3-
dimensional radiative transfer modeling is for instance 
implemented in the MODIS-15 operative algorithm for 
broadleaf crops (Myneni et al., 2002). However, the 
MODIS-15 approach requires information of canopy 
architectural types, derived from classification of 
vegetation in different biomes and multi-angular 
observations, which are not always available from high 
spatial resolution sensors needed for smaller field-scale 
management purposes. Moreover, classification of 
biomes can fail and a backup algorithm is applied using 
a simple empirical relationship between LAI and the 
normalized difference vegetation index (NDVI). 

The PROSAILH model can be a reasonable 
compromise between such simple empirical VI-based 
methods and very complex RTMs for the retrieval of 
LAI in most crop systems when using spectral 
observations of limited spectral dimension and with 
one viewing angle only. The model is for instance 
applied in the CYCLOPES algorithm for globe wide 
biophysical products from VEGETATION (Baret et al., 
2007).  
The possibility of coupling canopy reflectance models, 
such as SAILH, with the leaf model PROSPECT, 
successfully validated e.g. by Newnham and Burt 
(2001) or Moorthy et al. (2003), can be seen as a 
promising instrument for a range of applications 
regarding crop status information. Hence, empirical 
based inclusion of leaf reflectance and transmittance, 
creating uncertainties and requiring calibration for each 
vegetation type, can be avoided.  
Concerning the inversion approach, the simple and 
widely used LUT technique confirmed to be the most 
stable, accurate and fast approach for the estimation of 
LAI in this study.  
Conclusively, the coupled PROSPECT+SAILH model 
with an implemented LUT algorithm can be a suitable 
tool to support the elaboration of Sentinel-2 satellite 
data to ensure the delivering of quality products. 
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However, when accuracies of 10 % are required even 
for row crops, more complex RTMs should be applied.  
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Abstract. The increasing scarcity of water from local to
global scales requires the efficient monitoring of this valu-
able resource, especially in the context of a sustainable man-
agement in irrigated agriculture. In this study, a two-source
energy balance model (TSEB) was applied to the Barrax
test site. The inputs of leaf area index (LAI) and fractional
vegetation cover (fCover) were estimated from CHRIS im-
agery by using the traditional scaled NDVI and a look-up
table (LUT) inversion approach. The LUT was constructed
by using the well established SAILH + PROSPECT radiative
transfer model. Simulated fluxes were compared with tower
measurements and vegetation characteristics were evaluated
with in situ LAI and fCover measurements of a range of crops
from the SPARC campaign 2004. Results showed a better
retrieval performance for the LUT approach for canopy pa-
rameters, affecting flux predictions that were related to land
use.

1 Introduction

Given the increasing scarcity of water at local, regional and
global scales, an efficient monitoring of this valuable re-
source becomes more and more essential, especially in the
context of a sustainable management in irrigated agricul-
ture and other water-related disciplines, such as hydrological
modelling, numerical weather forecasting or climate change
prediction (Anderson et al., 2007). Partitioning of avail-
able energy between sensible and latent heat is hereby of
prime interest and various models have been developed in the

Correspondence to:K. Richter
(katja.rich@gmail.com)

last years that describe this interaction between land surface
and atmosphere. Those models, known as soil-vegetation-
atmosphere transfer schemes (SVAT), vary widely in their
complexity and dimensionality (Timmermans et al., 2007).

The conjunction of currently optical, thermal and mi-
crowave Earth Observation (E. O.) data with SVAT schemes
allows the spatial estimation of surface flux partitioning from
land-surface temperature and dynamic vegetation variables
(Anderson et al., 2007; Bindlish et al., 2001; Schmugge et
al., 1998). For homogeneous canopies and land surfaces, a
single-source modelling approach can be sufficient. How-
ever, vegetated surfaces are usually under heterogeneous
conditions, which are better described by two-source models,
treating the land surface as a composite of soil and vegeta-
tion components with separate fluxes and temperatures (An-
derson et al., 2007; Timmermans et al., 2007). The Two-
Source Energy Balance model (TSEB) for instance, first de-
scribed in Norman et al. (1995) and updated by Kustas and
Norman (1999) and Kustas et al. (2004), uses directional ra-
diometric surface temperature for estimating component heat
fluxes from soil and vegetation, i.e. instantaneous fluxes of
net radiation (RN ), soil (G), sensible (H) and latent heat
(LE). Several studies validated TSEB successfully against
flux tower measurements or other modelling schemes (e.g.
Anderson et al., 2007; Schmugge et al., 1998; Timmermans
et al., 2007) and research is ongoing to improve model per-
formance (Kustas and Norman, 1999; Li et al., 2005). Innu-
merable publications focused on improving accuracy of tem-
perature and roughness characteristics, but despite the impor-
tance of vegetation characteristics, still either rather simple
empirical models are used, or vegetation parameters are de-
rived from visual observations, some samples or indirectly
from measurements of biomass or plant species type (Zhan
et al., 1996). However, analyses by Zhan et al. (1996) and
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more recently by Timmermans et al. (2007) revealed that
TSEB, as well as other existing models, shows a considerable
sensitivity to small variations of fractional vegetation cover
(fCover) and/or leaf area index (LAI) on soil and canopy tem-
perature estimation, in particular for high cover conditions.
These findings emphasize the importance of accurate values
of these parameters, usually determined from optical E. O.
data. Although not model specific, the common approach
applied within the TSEB model to estimate LAI and fCover
is by means of rather simple empirical formulations utilizing
either the Normalized Difference Vegetation Index (NDVI)
(Schmugge et al., 1998) or a scaled NDVI (Choudhury et
al., 1994; French et al., 2003; Kustas and Norman, 1999).
Such empirical approaches are based on relationships be-
tween the parameter (e.g. LAI) and Vegetation Indices (VIs).
Many studies showed that the application of VIs can give
appropriate results, especially when using newly developed
hyperspectral VIs (e.g. Haboudane et al., 2004). However,
a spectral signature is the integration of several factors and
can not be explained by just one parameter. Moreover, these
empirical models are often crop-, site- and sensor-specific
(Atzberger, 2004; Vuolo et al., 2008). Therefore, many ef-
forts have been undertaken in the last decades to develop
and improve canopy reflectance models based on radiative
transfer equations. In these radiative transfer models (RTM),
the complexity of the spectral signal is taken into account
by a function of canopy geometry (e.g. LAI, leaf angle dis-
tribution), optical leaf and soil properties, illumination and
viewing geometry. Inversion of such models then offers the
possibility of extracting these biophysical parameters.

The objective of the present study is to test whether a phys-
ically based retrieval of LAI and fCover can support more
accurate estimations of fluxes in two-source energy balance
modelling.

2 Material and methods

In this section first a description of the models used for the
estimation of vegetation characteristics and energy fluxes is
given. Then the campaign with ground and E. O. data acqui-
sitions is described.

2.1 Estimation of vegetation characteristics

2.1.1 Empirical model

Traditionally, the estimation of surface parameters for en-
ergy balance modelling is based on empirical methods. Sev-
eral empirical models have been developed to estimate the
biophysical parameters. Though not characteristic for the
TSEB model, recent versions (French et al., 2003; Li et al.,
2005) employ the approach as proposed by Choudhury et
al. (1994). This so-called scaled NDVI – approach deter-

mines fCover for nadir viewing angles (fCover (θo), θo=0)
as follows:

fCover(0)= 1 −

(
NDVImax − NDVI

NDVImax − NDVImin

)p

(1)

Hereby, the end-member NDVI values, NDVImax and
NDVImin, characterize a surface fully covered and com-
pletely uncovered by vegetation, respectively. The parameter
p is defined asp=3/κ, describing the ratio of a leaf angle
distribution term,3 (set to 0.5 for randomly oriented leaves,
Campbell and Norman, 1998), to canopy extinction,κ (set to
0.55, approximating typical extinction for many canopies at
a solar zenith angle of 25 degrees, following Campbell and
Norman, 1998), leading to ap value of 0.9.

The NDVI end-members were obtained by combining
an NDVI histogram analysis (Timmermans et al., 2007)
with local field observations resulting in NDVImax=0.85 and
NDVImin=0.10.

Leaf area index (LAI), is then calculated from fCover
(Choudhury, 1987):

LAI =
ln (1 − fCover(0))

3
(2)

2.1.2 Radiative transfer model

As an alternative to the empirical approach, a physically
based model of canopy reflectance was applied: the com-
bined SAILH (Kuusk, 1991; Verhoef, 1984, 1985) and
PROSPECT (Jacquemoud and Baret, 1990) models (called
“PROSAILH”), widely used for canopy reflectance mod-
elling and applications, amongst others by Atzberger (2004),
Baret et al. (2007), Darvishzadeh et al. (2008), Richter et
al. (2009) or Weiss et al. (2000).

SAILH is a one-dimensional turbid medium radiative
transfer model, later modified to take into account the hot
spot effect (Kuusk, 1991). It simulates the bidirectional top-
of-canopy (TOC) reflectance as a function of three structure
parameters, defined by LAI (m2/m2); average leaf inclina-
tion angle, ALA (deg), assuming an ellipsoidal distribution,
and hot spot size parameter,Hot (m/m). Further it requires
the soil spectral reflectance, fraction of diffuse incoming so-
lar radiation (skyl), and the view and illumination geome-
try (i.e. sun zenith angle,θ s (deg); sensor viewing angle,θo

(deg) and azimuth angle between sun and sensor,φ (deg)).
Leaf hemispherical reflectance and transmittance are simu-
lated by the PROSPECT model as a function of four struc-
tural and biochemical parameters: leaf chlorophyll a+b con-
centration,Cab (µg/cm2); dry matter content,Cm (mg/cm2);
leaf water thickness,Cw (cm) and a leaf mesophyll structural
parameter,N (unitless). To account for the changes in soil
reflectance (induced by soil water content and roughness), a
wavelength independent scaling factor “αsoil” is introduced,
i.e. multiplied with the soil spectrum.
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Table 1. Ranges of the input variables for PROSAILH to generate the LUT database.

Model Variables Units Min (LB) Max (UB)

Leaf parameters:
(PROSPECT)
Na Leaf structure index unitless 1.3 1.7
Cb

ab
Leaf chlorophyll content [µg/cm2] 20 70

Cb
m Leaf dry matter content [g/cm2] 0.004 0.01

Canopy variables:
(SAILH)
LAI Leaf area index [m2/m2] 0 6.0
ALA c Average leaf angle [◦] 40 60
HotSd Hot spot parameter [m/m] 0.01 1
αe

soil Soil reflectance factor unitless 0.6 1.4

a not measurable, therefore range set in order to comprise values often used in literature (e.g. by Weiss et al., 2000);
b (somewhat extended) range of measurements (SPARC report 2004);
c ALA – mean of MTA (measured with LAI-2000 instrument)± standard deviation, sd (mean: 50, sd: 11) (SPARC report 2004);
d similar to range often used in literature (e.g. Baret et al., 2007; Vuolo et al., 2008);
e distribution of the factor observed over a number of bare soil pixels from the CHRIS imagery.

When calculating reflectance, the SAILH model estimates
the gap fraction, which is a key variable driving light inter-
ception by the canopy. Gap fraction is defined as the prob-
ability of a ray of light passing through the canopy without
encountering foliage or other plant elements, and is conse-
quently the complement of fCover. The gap fraction, calcu-
lated by SAILH corresponds therefore to 1-fCover.

In order to estimate LAI and/or the other parameters, the
PROSAILH model must be inverted. In this study a fast look-
up table (LUT) approach (e.g. Darvishzadeh et al., 2008;
Richter et al., 2009; Weiss et al., 2000) has been chosen, of-
fering a good alternative to other inversion procedures such
as artificial neural networks (NN) (Atzberger, 2004) or nu-
merical optimization methods (Vuolo et al., 2008), amongst
others for the following reasons: first, the LUT technique
permits a global search and avoids therefore the trapping
into local minima as occurs with the optimisation methods
(Darvishzadeh et al., 2008). Second, it shows less unex-
pected behaviour than NN when the spectral signal of the
surface is not well simulated by the model (for a discus-
sion of different inversion methods see Atzberger, 2004;
Darvishzadeh et al., 2008; or Richter et al., 2009).

PROSAILH was selected since it presents a good com-
promise between physical complexity and computation time
requirements and has been therefore preferred over (per-
haps more accurate) models with complex parameterization
schemes.

2.1.3 RTM models setup

The LUT is established in advance of the model inversion
process. For this purpose PROSAILH is run to simulate
bidirectional canopy reflectance and fCover for a number of

100 000 parameter combinations. This size was regarded by
Weiss et al. (2000) as a good compromise between computer
resources requirements and the accuracy of the estimates.
The LUT was established by randomly sampling all param-
eters within their bounds. In this way, all combinations of
parameters were covered, but no adaptations to possible sen-
sitivities of the parameters were implemented.

The range of canopy characteristics was described by tak-
ing partly into account a priori information from the cam-
paigns measurements. The usage of on-site measurement
information is one possibility to regulate the ill-posed in-
verse problem, which is pronounced between LAI and ALA,
and therefore to improve the parameter (LAI) retrievals
(Atzberger, 2004; Combal et al., 2003) (Sect. 2.3.3, SPARC
report, 2004). The information about all parameter ranges
can be found in Table 1.

Distributions of all parameters were uniform, so that no
emphasis was placed on higher or larger values. Illumina-
tion and view conditions were set according to the conditions
during the overpass:θ s=21◦, θo=8.4◦ andφ=138◦. The pa-
rameterskyl was set to 0.1 across all wavebands, according
to similar studies (e.g. Richter et al., 2009).

As the absorption of leaf water is not influencing the spec-
tral range used in this study (<0.9µm), Cw was fixed to an
arbitrary value (Cw=0.02 cm).

Only a limited number of bands is necessary to describe
and differentiate the influence of canopy and soil parame-
ters on the spectrum (Weiss et al., 2000). Consequently,
in order to minimize redundancy of spectral data and to
speed up the calculation process of the LUT, a spectral
sampling of only 8 bands has been selected. It is based
on the future ESA satellite Sentinel-2, developed in the
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framework of Global Monitoring for Environment and Se-
curity (GMES/Kopernikus, ESA, 2007) to replace and im-
prove the old generation of satellite sensors. Sentinel-2 is
scheduled to be launched in the year 2012 and as outcome
the mission will provide service data, comprising products
such as LAI and fCover. The multi spectral data, used for
the simulations in the study, involve the following CHRIS
wavebands: 492, 563, 664, 706, 738, 773, 844 and 862 nm
(corresponding to Sentinel-2: 490, 560, 665, 705, 740, 775,
842 and 865 nm, ESA 2007). In this way all spectral bands
of Sentinel-2 with the purpose to retrieve LAI and other veg-
etation characteristics (i.e. 8 out of 13 bands) are included.
This spectral sampling has been tested for its suitability for
LAI estimation by Richter et al. (2009).

In the final step the solution within the LUT is selected
by applying a simple cost function calculating the root mean
square error (RMSE) between simulated and measured spec-
tra (e.g. Darvishzadeh et al., 2008), as follows:

RMSE=

√∑n
i=1 Rmeas(λ)− Rlut(λ))2

n
(3)

where Rmeas corresponds to the measured reflectance at
wavelengthλ, andRlut stands for the simulated reflectance
calculated with the PROSAILH model. The number of bands
is indicated withn.

The resulting parameter combination was built as the av-
erage of all parameter combinations found within less than
20% of the lowest RMSE value (e.g. Richter et al., 2009).

2.2 TSEB model

The land surface model used here to derive latent and sensi-
ble heat fluxes is originally designed to use input data primar-
ily from remote sensing platforms. Its main characteristic is
that it discriminates between a soil and vegetation compo-
nent, aiming at a more physical description of heterogeneous
surfaces when dealing with radiative and aerodynamic prop-
erties. Required remote sensing input consists of spatial in-
formation on surface temperature as well as vegetation den-
sity, being fCover and LAI. The version implemented here
basically follows what is described as the “series resistance
network” in Appendix A of Norman et al. (1995). In the cur-
rent version a physically based algorithm is implemented for
estimating the net radiation, which is described in detail in
Kustas and Norman (1999). As such, the model implemented
is described in detail in Norman et al. (1995) and Kustas and
Norman (1999); reason to only sketch its main characteris-
tics and highlight those parts that are affected by fCover and
LAI.

First of all, fCover is used to estimate canopy and soil tem-
peratures (TC andTS , respectively) from observed radiomet-
ric surface temperature,TR, with a simple non-linear mixing
model, described by:

T n
R = fCoverT n

C
+ (1 − fCover)Tn

S . (4)

where n is the power in the Stefan-Boltzmann equation
that reasonably approximates the appropriate integral of the
Planck blackbody emission function for the wavelength of
the sensor.

A first estimate of the latent heat flux from the canopy,
LEC , is obtained by applying the Priestley and Taylor ap-
proach on the canopy component of the net radiation,RN,C ,
which works reasonably well under unstressed vegetation
conditions. The canopy sensible heat flux,HC , is then de-
termined by evaluating the canopy energy budget. By using
a linearized form of Eq. (4), following the procedure out-
lined in the Appendix A of Norman et al. (1995), the within-
canopy air temperature,TAC , is derived, which also yields
the canopy temperature,TC . Substitution in Eq. (4) yields
TS , providing the possibility of obtaining the soil sensible
heat flux,HS . The soil heat flux,G, is determined as a time-
dependant ratio of the soil net radiation,RN,S , after which
the soil latent heat flux,LES , is determined by evaluating the
soil energy budget. In caseLES is negative, then the soil is
likely to be dry andLES is set to zero. Under these circum-
stances,HS is derived from the soil energy budget, and an
adjustedTS is obtained. Equation (4) provides a new esti-
mate forTC which is then used to calculate an updatedHC .

The algorithm used for estimating the net radiation diver-
gence requires incident solar radiation observations and for-
mulations for the transmission of direct and diffuse short-
wave radiation and for the transmission of longwave radia-
tion through the canopy (Campbell and Norman, 1998). The
canopy component of net radiation,RN,C , is given by:

RN,C = (1 − τLW ) × (RLW,sky + RLW,S − 2RLW,C) (5)

+(1 − τSW ) × (1 − ρC) × RSW

and the soil net radiation component,RN,S , by:

RN,S = τLW × RLW,sky + (1 − τLW ) × RLW,C (6)

−RLW,S + τSW × (1 − ρS) × RSW

where τ represents transmissivity through the canopy and
subscriptsSWandLW stand for shortwave and longwave, re-
spectively. Subscripts sky,S andC represent the sky, soil and
canopy components, whereasρ is the reflectance, or short-
wave albedo. Since the reflection and absorption of radiation
in the visible and near-infrared wavelengths are rather dif-
ferent for vegetation and soils, the visible and near-infrared
albedos of the soil and canopy were evaluated differently be-
fore combining to give an overall shortwave albedo. The
equations for estimating the transmission and reflection of
direct and diffuse shortwave radiation are provided in Camp-
bell and Norman (1998). We suffice here with the observa-
tion that their spatial variation is solely determined by LAI.
The longwave transmissivity finally is approximated by a sin-
gle exponential function depending on an extinction coeffi-
cient and LAI.
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The parameterization of the resistances used in the series
resistance network was taken from Norman et al. (1995).
Aerodynamic properties such as canopy height, displacement
height, aerodynamic roughness, leaf width, as well as lim-
ited micrometeorological observations are required as input
parameters and are assigned a priori. They are described in
the following section.

2.3 Experimental setup and observations

2.3.1 Site description

The analyses are based on data of the interdisciplinary ESA
SPARC 2004 Campaign. (Moreno et al., 2004; SPARC re-
port 2004). The objective of the campaign was to advance the
understanding of land – atmosphere exchanges of water and
energy in space and time over heterogeneous land surfaces.

In this context, satellite and ground data were collected in
Barrax (30◦3′ N, 2◦6′ W), an agricultural test area situated in
the Castilla-La Mancha region in southern Spain. Figure 1
shows an overview of the location and the area of interest.

The Barrax site, a flat area at 700 m above sea level, is
characterized by a large variety of uniform land use units of
different crops and dry bare soils, leading to a wide range of
LAI from 0 up to 6.5.

The Castilla-La Mancha region receives an annual precip-
itation of only 400 mm and is therefore one of the driest re-
gions in Europe. One third of the land is irrigated (35%),
comprising amongst others alfalfa, maize, potatoes, sun-
flower, onion, garlic, sugar beet and vineyard. The other two
thirds (65%) are rainfed cultivations, such as winter/spring
cereals and bare soils/fallow land.

2.3.2 E. O. data acquisition

Optical data

Hyperspectral and multiangular E. O. data from Compact
High Resolution Imaging Spectrometer (CHRIS) instrument,
located on the Project for On-Board Autonomy (PROBA)
platform, were acquired on 16 July 2004 around 11:25 UTC.
Since the system PROBA/CHRIS has multiangular capabili-
ties, five consecutive images from five different view angles
have been obtained during the overpass, with a minimum
satellite zenith angle of 8.4◦. Since it was not the scope of
the current study to analyze the contribution of directional
information to the parameter estimates (Vuolo et al., 2008),
only the imagery with the viewing angle closest to nadir has
been considered.

The sensor covers the visible/near-infrared region (from
400 nm to 1050 nm) with a spectral sampling interval rang-
ing between 1.25 nm (at 400 nm) and 11 nm (at 1000 nm).
CHRIS data were acquired in Mode-1, having a spatial reso-
lution of 34 m and 62 spectral bands.

Fig. 1. Location of the study area: Barrax Site, La-Mancha, Spain.

Radiometric calibration and atmospheric and geometric
correction of CHRIS imagery were carried out by the De-
partment of Thermodynamics of the University of Valencia.

Thermal imagery

The thermal remote sensing data from SPARC 2004 used in
this study consisted of ASTER imagery, acquired on 18 July
2004 to obtain surface temperature. ASTER has 5 thermal
infrared bands with a 90 m spatial resolution.

After atmospheric correction, the land surface tempera-
ture was extracted using a split-window technique (Jimenez-
Munoz and Sobrino, 2007) on channels 13 and 14 of the
ASTER data. This method was preferred over the standard
TES algorithm due to insufficient accuracy in land surface
temperature retrieval that was noted over certain land cover
types (Sobrino et al., 2007).

Despite ASTER’s excellent capabilities for surface energy
flux mapping here CHRIS/PROBA data were used due to
their more advantageous spectral characteristics for mapping
the vegetation characteristics, assuming these do not change
significantly within 2 days time.

2.3.3 Ground observations

The ground-based data used here consisted of vegetation
characteristics, meteorological observations as well as radia-
tion and turbulent flux exchanges (Su et al., 2008), collected
during the time of the satellite acquisitions.

Observations of vegetation surface parameters, such as
vegetation height, LAI, mean tilt angle (MTA), fCover, leaf
chlorophyll, water and dry matter content, were conducted
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(Fernandez et al., 2005) at several locations for calibration
and validation of remote sensing derived vegetation input to
the flux model.

Non-destructive field measurements of LAI were per-
formed with the Plant Canopy Analyzer LAI-2000 instru-
ment (LICOR Inc., Lincoln, NE, USA), measuring simul-
taneously the MTA that corresponds to the ALA parameter
in the PROSAILH model (Sect. 2.1.2).

To reduce the effect of multiple scattering on LAI-2000
measurements, the instrument was operated maximal two
hours after sunrise or before sunset, under diffuse radiation
conditions. In order to prevent interference caused by the op-
erator’s presence and the illumination condition, the sensor
field of view was limited with a 180◦ view-cap. Measure-
ments were azimuthally oriented opposite to the sun azimuth
angle. Each single LAI value was the result of an average
of 24 measurements taken randomly within an Elementary
Sampling Unit (ESU) of approximately 15×15 m2.

Since no corrections were applied to account for clump-
ing or the influence of non-photosynthetic plant components
(such as stems), the term “LAI” should here be understood
as “effective plant area index” (PAIeff) (Chen et al., 1997;
Darvishzadeh et al., 2008). However, LAI measured by LAI-
2000 (or other optical methods) is quite close to the leaf sur-
face visible by a remote sensor which is not necessarily the
case for the real LAI. Therefore, a correction for the clump-
ing effect is not absolutely necessary (Stenberg et al., 2004).

A data set of 48 LAI measurements, located in/near the
area of interest (maize: 8, garlic: 13, potatoes: 15, sugar
beet: 6, sunflower: 6) have been selected for the validation.

Measurements of fCover, being of essential interest for
this study, have been performed using hemispherical pho-
tography. According to the crop structure, different sam-
pling strategies were applied. The photographs were pro-
cessed using a specialized software package (CAN-EYE),
developed at INRA-CSE Avignon. The procedure of the
software is based on gap fraction estimation using classifi-
cation techniques (detailed information about the measure-
ments and data elaboration can be found in the SPARC 2004
report). The final fCover estimate for each ESU (20×20 m)
was calculated as the average of twelve measurements. For
the present study, a total number of 21 measurements have
been used for validation (garlic: 4, potatoes: 4, sunflower: 4,
onion: 4, sugar beet: 3, maize: 2).

Meteorological and radiation observations (incoming
shortwave radiation, air temperature, relative humidity, air
pressure and wind speed) that were needed as input to the
TSEB model, were taken from a tower in the centre of the
area.

Validation data concerning turbulent fluxes exchanges and
radiation for the time of the ASTER overpass were made
at several locations that were chosen such that typical land
cover units were covered (described in detail in Su et al.,
2008). They comprised a forest nursery, a wheat stubble
field, vineyard (2 sites), a sunflower field and a corn field. At

all sites measurements of sensible heat flux,H , were made
either by 1-D or 3-D sonic anemometers or by scintillometer
(vineyard) and in one position also latent heat flux,LE, was
measured (vineyard). However, due to the pivot irrigation
system at the corn field, the sensor had to be located at the
edge of the corn field adjacent to the vineyard, meaning that
the measurement either represented the vineyard or the corn,
depending on wind direction. Net radiation and soil heat flux
were measured only at four sites; the vineyard, forest nurs-
ery, corn and a wheat stubble field. For a location map one is
referred to Fig. 1 in Van der Kwast et al. (2009) where also
a land cover map is provided, showing the main land cover
units.

Aerodynamic properties were assigned to the different
land cover units using averaged field observations of canopy
height,hc (Fernandez et al., 2005) in combination with the
classical relations (Brutsaert, 1982) where surface rough-
ness length for momentum transport,z0M, is taken equal to
1/8*hC and the displacement height,d0, equal to 2/3*hC .
An exception was made for the roughness length of the corn
fields, which were extremely dense, resulting in a much
smoother surface. Therefore a roughness length value equal
to that of the sunflower was assigned, which closely resem-
bled estimates from turbulence measurements done over the
maize (Timmermans et al., 2009). Moreover, the displace-
ment heights of the wheat stubble and forest nursery land
cover were chosen equal to zero, since these units were char-
acterized by a very open and heterogeneous character.

3 Results and discussion

In this section we first present the quality and the differences
in LAI and fCover estimations using the LUT inversion and
the scaled NDVI approaches. Validation of the energy bal-
ance model output is then performed by means of the flux
towers measurements. Differences in the flux components
simulated with both canopy parameter retrieval methods are
analyzed additionally in a spatial context. A general discus-
sion on the applied method(s), their problems and applicabil-
ity (in an operational context) concludes this section.

3.1 Vegetation characteristics versus observations

Retrieval performances of the LUT inversion and NDVI ap-
proaches were evaluated using LAI and fCover data from
campaigns measurements (see Sect. 2.3.3). Crops not cov-
ered by the flux stations, such as sugar beet, garlic, potatoes
and onion, were included in the analyses as well to test the
general applicability of the models.

The comparison with the ground measured fCover data
with both approaches (LUT inversion: “fCoverlut”; NDVI
approach: “fCoverndvi”) resulted in a slightly higher ac-
curacy of fCoverlut, with Root Mean Squared Differences
(RMSD) for fCoverlut of 0.12 and for fCoverndvi of 0.15. The
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plots in Fig. 2a, b give a graphical impression of the estima-
tion quality, indicating a tendency of overestimation of the
NDVI approach, especially at the higher values. Since TSEB
has a greater sensitivity to fCover, in determining the tur-
bulent fluxes, especially at high vegetation cover conditions
(Timmermans et al., 2007) this is considered an important
drawback of the NDVI approach.

In case of LAI (LUT inversion: “LAIlut”; NDVI approach:
“LAI ndvi”) the LUT inversion approach provided clearly a
higher retrieval accuracy in comparison with the ground data
(Fig. 2c, d), with RMSD of 0.79 (LAIlut) versus RMSD of
1.44 (LAIndvi). Also here the empirical model has a trend
to overestimate the parameter. Clearly noticeable is also
the well-known problem of saturation at higher LAI values
(“plateau-effect”), illustrated by the scatter plot in Fig. 2c.

The overestimation of fCover using the scaled NDVI ap-
proach can be caused by an inaccurate NDVImin value, i.e.
the value for bare soil reflectance, which in reality varies
and is probably different (higher) when calculating the mean
over all bare soil pixels in the scene (Montandon and Small,
2008). Soils have a variable NDVI due to the fact that the rel-
ative variation of the spectral signal in the visible red wave-
band region is larger than in the near infrared. Increasing soil
water leads consequently to an augmentation of NDVI, gen-
erating for example a difference of NDVI of 10% between a
wet and a dry soil background for a LAI of 1 (Bach and Ver-
hoef, 2003). Differences of land cover and irrigation practise
which influence the soil background will therefore also have
an effect on fCover estimation accuracy.

The PROSAILH model overcomes this problem by taking
into account the soil reflectance variation by means of the
αsoil-factor.

However, the model tends to slightly underestimate high
LAI values for crops with strong leaf clumping, as it was
the case for potatoes in the present growth stage. This be-
haviour results from the nonlinearity of the LAI-reflectance
relationship, leading to saturation effects (Baret et al., 2007).
On the other hand, even the measurements could cause an
overestimation of LAI, since the LAI-2000 can not separate
between photosynthetic and non-photosynthetic plant com-
ponents. This may occur whenever the built-in assumption of
randomly distributed plant elements holds true. Thus, non-
green elements (such as stems or senescent leaves) reduce
the measured gap fractions.

A detailed interpretation of the retrieval performances for
the specific crop types is not given, since the objective is
to evaluate the overall applicability of the RTM model for
canopy parameter estimations. Considering that the PRO-
SAILH model simplifies the canopy as a turbid medium, of
which none of the crops really corresponds to, the retrieval
performance can be regarded as satisfying. The implemen-
tation of some a priori information from the field measure-
ments can support accurate retrievals.

Fig. 2. Estimated versus measured fCover(a, b) and LAI values
(c, d) using the scaled NDVI approach (a, c) and a LUT inversion
approach based on PROSAILH model (b, d), for different crops
monitored during the SPARC 2004 campaign.

3.2 Water and heat fluxes

Validation of the TSEB model output was performed in com-
parison with tower-based flux observations for the day of
ASTER overpass. Model flux components were extracted
from the image pixels in the vicinity of the flux towers, fol-
lowing a simple analytical footprint model, which is a re-
formulated version of Gash (1986). Details of the footprint
model can be found in Timmermans et al. (2009).

The models are run on an area of almost 6×6 km compris-
ing 64×64 pixels around the Barrax vineyard which was the
centre point of attention during the SPARC 2004 campaign
(see also Fig. 1).

For all components, both TSEB runs (RTM inversion:
“TSEBlut” and scaled NDVI: “TSEBndvi”) yielded compara-
ble results versus observations and RMSD were in all cases
lower than 50 W/m2, which is considered acceptable. Net
radiation yielded a RMSD of 46 W/m2 versus observations
for both approaches and gave almost identical results in all
4 sites (Fig. 3a). Also for the soil heat flux (Fig. 3b) and
the sensible heat flux (Fig. 3c) output negligible differences
between the NDVI and LUT approaches were seen. RMSD
with observations forG were 36 and 38 W/m2 for the NDVI
and LUT approaches, whereas forH these were 43 and
42 W/m2, respectively.

Although RMSD forG andH were almost equal for both
TSEBndvi and TSEBlut, TSEBlut appears to perform better
at the lower values ofG andH . With the exception of the
G observation at the cut wheat site, all other sites showed
similar performances for bothG andH . TSEBlut perform-
ing better at low values ofG andH may indicate that the
model performs better at sites that are characterized by high
fCover, such as it is the case for the sunflower and maize
fields. Therefore the model performance is discussed in a
spatial context in the next section.
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Fig. 3. Modelled versus observed fluxes ofRN (a),G (b) andH (c),
using the two approaches of canopy parameter estimations. Cross
symbols represent the output from the scaled NDVI approach and
the circles from LUT inversion.

3.3 Spatial differences of flux modelling

Differences between the two modelling approaches are
shown in Fig. 4. Spatially distributed output forRN , G, H

andLE from TSEBndvi are subtracted from output of TSEBlut
(TSEBlut – TSEBndvi).

The maps reflect what was noticed from observations at
the flux tower sites;RN differences are negligible whereasG

estimates for TSEBlut are higher than for TSEBndvi at high
fCover, while H (and to a lesser extentLE) shows lower
fluxes for TSEBlut in these areas, especially in the maize
fields. The net radiation estimation seems rather insensitive
to variations in LAI and fCover. This is understandable since
LAI and fCover are only indirect inputs to the net radiation
estimation, which is mainly driven by incoming solar radi-
ation, and their effects basically act on the soil and canopy
components. For example an increase in LAI will decrease
the shortwave transmission which will increase the canopy
net radiation but at the same time decrease the soil net radi-
ation, see also Eqs. (4) and (5). As a result the net effect on
the total net radiation is negligible. In order to consider the
variations in the other energy balance components, that seem
to originate from crop characteristics, the flux estimates will
be analyzed in terms of land cover classes.

On the basis of a land cover map (Van der Kwast et al.,
2009), simulated fluxes were extracted for all land uses.
However, here we will focus on the five different land use
classes covered by the stations (forest nursery, vineyard, sun-
flower, corn and wheat stubble), which enables us to assess
the model accuracy to a certain extent. SinceRN estimates
are rather similar for both approaches we will focus on the
remaining flux components from now on.

Figure 5 shows the spatial differences between TSEBlut
and TSEBndvi calculated flux components, for every of the
five land use classes and Fig. 6 the estimated fCover and LAI
values for the respective classes.

Even though the estimation ofH andG was almost identi-
cal for both model versions at the flux site at the forest nurs-
ery, the physical approach shows a trend of higherH and
lower G fluxes when examining the entire class. HigherH

values theoretically might indicate more realistic results from

Fig. 4. Differences between TSEB outputRN , G, H and LE
(W/m2), subtracting empirical approach of surface parameter es-
timations from the physical (TSEBlut – TSEBndvi), Barrax test site,
18 July 2004.

TSEBlut, although uncertain as to how high, since this land
use class is characterized by rather small green vegetation
cover, low LAI values, but at the same time has rather large
amounts of senescent grass cover. This would imply rela-
tively highH and relatively lowG. To a certain extent this is
also reflected in the higher estimates of fCover by the LUT
approach. However, unfortunately there are no observations
of fCover and LAI made over the forest nursery.

The vineyard case shows almost no differences between
the two approaches, but the small number of pixels (n=5)
does not allow to draw significant conclusions.

Due to their planophile leaf orientation, sunflowers in
early growth stages exhibit – with still relatively low LAI
values (≤2.7) – already high fCover (here up to 0.76). For
this crop class the physical approach yielded also more re-
alistic estimates of fCover (RMSD=0.07 for fCoverlut and
RMSD=0.11 for fCoverndvi). Since TSEB is sensitive to
fCover with respect toH , the fluxes were probably modelled
more accurate by TSEBlut (as is shown forH). No measure-
ments ofG andRN were available from this station, but the
trend of higherG from TSEBlut confirms the conclusion of
lower fCover and LAI (visible in Fig. 6) being more realistic.

The land use class maize must be regarded as a special
case. During the time of ASTER overpass, the dominating
wind direction was west, causing the flux observation in this
site to reflect the vineyard instead of the maize. This is con-
firmed by a high value forH , equal to 233 W/m2, which ap-
pears far too high for an irrigated maize field with an fCover
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Fig. 5. Simulated fluxes ofRN , G, H andLE and by TSEBndvi versus TSEBlut for different land use classes.

Fig. 6. Estimated values of fCover and LAI from scaled NDVI versus estimated by LUT inversion for the land use classes.

of 0.9 and LAI up to 6. The estimation of LAI for maize
was performed more accurate by the physical model (RMSD
of 0.4 from LAIlut against RMSD of 2.1 from LAIndvi), as
well as for fCover, even though only two measurements were
available (RMSD=0.24 for fCoverlut and RMSD=0.34 for
fCoverndvi).

The overestimation of LAI, and to a lesser extent fCover,
by the TSEBndvi approach results in an underestimation of
G for this land use, also illustrated by the observation at this
site, Fig. 3b. This effect is clearly visible for all maize-fields
in Fig. 4b.

TSEBlut estimates ofH for this land cover generally were
lower than those from TSEBndvi, where differences over
the maize field next to the vineyard reached values up to
50 W/m2, with TSEBlut values around 75 W/m2. These val-
ues resemble observations made over the maize during days
preceding the ASTER overpass, when wind direction was
coming from the maize (Timmermans et al., 2009). There-
fore we feel that theH fluxes are simulated more realisti-
cally by using the RTM based values of LAI and fCover as
input. Differences forLE estimates were variable within this
land cover class, with a tendency of TSEBlut yielding lower

www.hydrol-earth-syst-sci.net/13/663/2009/ Hydrol. Earth Syst. Sci., 13, 663–674, 2009
48



672 K. Richter and W. J. Timmermans: Physically based retrieval of crop characteristics

estimates. The differences seem to vary from field to field,
which may originate from the irrigation scheme. The differ-
ent estimation results of the two approaches may be caused
by variations in soil reflectance due to (superficial) soil mois-
ture differences, which are taken into account only by the
physical model. This may also be an explanation for the fact
that regarding the comparison of fluxes between TSEBlut and
TSEBndvi, maize exhibits the most pronounced differences of
all land use classes, since some fields were fully irrigated and
some neglected. The tendency of overestimating fCover with
the NDVI approach seems to influence especially theLE for
a certain group of pixels, mainly over irrigated maize, result-
ing in differences ranging from 30 to 35 W/m2.

In the last land use class, a wheat field shortly harvested,
TSEBlut resulted in a slightly better estimate ofH , whereas
G was better estimated by TSEBndvi at the flux observation
site. When looking at the entire land cover class however, no
distinct differences are seen for either one of the fluxes. Both
GandH exhibit some scatter around the 1:1 line, which is
also seen in theLE flux but at a lesser extent. Although no
measurements of LAI and fCover were made over this land
use, it is characterized by rather low fCover (<0.1) and LAI
(≤2). When looking at the scatter plots of Fig. 6 it is noticed
that in the lower regions of LAI and fCover no clear dis-
tinction can be made between the NDVI and LUT approach,
which is reflected in the scatter of the fluxes around the 1:1
line in Fig. 5 for this class.

Summarizing,RN shows for all land use classes the small-
est variations between the two approaches.G andH , and to
a somewhat lesser extentLE, exhibit more pronounced dif-
ferences, mainly over areas with high vegetation cover and
high LAI. The LAI mainly influences the estimation ofG,
since an increase in LAI invokes a decrease in radiation re-
ceived at the soil, whereas fCover mainly influences the tur-
bulent fluxes through its effect on the component tempera-
tures. This is of importance since the TSEB model is sen-
sitive to fCover, when estimating turbulent fluxes, in partic-
ular at the high end as stated by Timmermans et al. (2007).
This could be of interest for a wider range of crops or veg-
etation, because even for other crops with high fCover – not
included in the measurements of flux towers – the physical
approach yielded a slightly higher retrieval accuracy (see also
Fig. 2) with sugar beet: RMSD (fCoverlut)=0.14 vs. RMSD
(fCoverndvi)=0.16 and potatoes: RMSD (fCoverlut)=0.10 vs.
RMSD (fCoverndvi)=0.11. Even though flux observations
were only available for a limited number of land covers, it is
argued that the improved estimation of both LAI and fCover
in general leads to slightly better flux estimates. However,
further research is needed to demonstrate this effect also un-
der a wider range of canopy characteristics.

Spatial differences between the TSEBlut and the TSEBndvi
model results were clearly related to land cover, with notice-
able differences up to 50 W/m2 for H and 35 W/m2 for LE
over irrigated crops and up to 20 W/m2 for both the turbu-
lent fluxes over dry areas. Although this may seem rather

small, an instantaneous error of 35 W/m2 could translate into
1.2 mm error in water use, which has considerable conse-
quences for irrigation management.

4 Conclusions

In this study, the TSEB model was applied to the Barrax
test site and evaluated with ground measurements from the
SPARC campaign 2004. The inputs of leaf area index and
fractional vegetation cover were estimated from CHRIS im-
agery by using the traditional scaled NDVI and a LUT inver-
sion approach, based on the proposed bands of future ESA
Sentinel-2 satellite. The LUT was constructed using the well
established SAILH + PROSPECT radiative transfer model.
The validation by means of a range of crops over the SPARC
Barrax test site resulted in a better retrieval performance for
the LUT approach. Differences in flux predictions in com-
parison with a limited number of station measurements were
rather small. However, a differentiation between land use
classes indicated a higher estimation quality of the physical
approach, especially over areas that were characterized by
higher LAI and higher fCover.

In view of operational applications, a physically based ap-
proach has several advantages over empirical methods. Dif-
ferences in soil background due to soil moisture variations
are taken into account by the RTM model and thus canopy
parameters, such as LAI and fCover can be estimated more
accurately. Moreover, the RTM based inversion does not
(necessarily) require detailed in situ calibration data sets.
This constitutes a major general advantage of physical over
empirical models, rendering them more robust and generally
applicable. The application of physically based models for
estimating vegetation parameter as input for energy balance
models is therefore recommended.
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The potential of hyperspectral imagery for the determination of drought risk

zones, responsible for heterogeneous plant growth due to different soil

compositions, was assessed at the field scale. The research was carried out in

the Marchfeld region, an agricultural, flat area east of Vienna, Austria, during

June 2005 by means of an airborne imaging spectrometer (HyMap). The

inversion of a radiative transfer model by using a look-up-table (LUT) approach

was performed to retrieve canopy parameters, indicators of plant growth, such as

leaf area index (LAI), chlorophyll content and a soil reflectance factor (ALFA).

To quantify ALFA with respect to its relationship to soil surface water content,

the soil reflectance was measured at different levels of known soil water

conditions. Finally, a cluster analysis was performed using the parameters

estimated from the model inversion to explain plant growth variability,

quantified by means of measured yield. The results were compared with a

simple Normalized Differenced Vegetation Index (NDVI) approach to evaluate

the contribution of hyperspectral data to vegetation monitoring. Areas

characterizing different levels of drought risk could be determined by both

methods with a similar performance.

1. Introduction

The early detection of potential drought stress areas within crop fields is a vital issue

because of the substantial importance of an efficient crop production and thus

prevention of food shortages. Drought stress, which occurs when plant water

demand exceeds the water supply, can be traced back to two main factors: (1) low
availability of soil water, limiting the water supply to the roots, and (2) specific dry

weather conditions, such as high temperature, high irradiance, low precipitation and

low relative air humidity. This can take place on a seasonal or diurnal time-scale,

depending on the geographical situation of the agricultural area and its specific

climate and soil characteristics.

Water deficiency leads to changes in plant energy balance. As one of the first

reactions, plants reduce stomatal conductance, which causes a decrease in

assimilation rate. The reduction of transpiration through stomatal closure results

in higher leaf temperatures. Furthermore, depending on the type of vegetation,
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changes in leaf form and inclination might occur. Most of these short-term reactions

are reversible when the stress is alleviated, whereas longer-lasting water deficiencies

lead to a change in the canopy structure (Casa 2003). The consequence is a reduction

in leaf area development, expressed by the leaf area index (LAI), when plants are

still in the vegetative phase. The LAI was first defined as the total one-sided area of

photosynthetic tissue per unit of ground area (Watson 1947). Thus, the LAI is one

of the quantities characterizing the status of crops and may be seen as one of the

most important parameters indicating drought stress on a medium-term time-scale

(Casa 2003, Casa and Jones 2005).

Several studies have reported an effect of drought stress on plant pigments

(Ashraf et al. 1994, Ashraf and Iram 2005). In most crop species water deficiency

leads to a reduction of chlorophyll content. Sarker et al. (1999), for instance, studied

the effect of water stress on the biochemical constituents of wheat crops and found a

higher chlorophyll a and b content and a higher a : b ratio of the fourth and flag

leaves of irrigated compared with non-irrigated plants.

These biophysical parameters can be determined from in situ measurements (Ross

1981, Weiss et al. 2004) for many localized studies (i.e. at the scale of 1–10 ha).

However, when repetitive measurements are needed over larger heterogeneous

areas, in most cases field campaigns do not provide a feasible solution because

ground-based measurements of the vegetative surface are time-consuming and cost-

intensive as well as spatially and temporally constricted.

Remote sensing from space has shown its potentiality in the retrieval of

biophysical parameters of vegetation, in particular LAI, because of its relevance in

many land surface processes.

Besides the LAI, chlorophyll and the other canopy parameters, the soil system

must be regarded as an important factor in the context of crop growth. Soil moisture

availability plays an essential role in the process of mass and energy exchange

between surface and atmosphere (Weidong et al. 2002), resulting in a need for data

availability in application systems. Thus, as for vegetation parameters, the benefits

of Earth observation (EO) data have also been exploited to study the soil system.

Different wavelength regions have been investigated in terms of soil moisture

sensitivity, particularly by using remote sensing in the microwave region of the

spectrum. The potential of active microwave sensors (ERS/SAR) has been studied,

for instance, by Quesney et al. (2000). The authors indicated the difficulty in

retrieving soil moisture by means of active sensors because of the effects of spatial

and temporal fluctuations of soil roughness and the presence of dense vegetation

cover, leading to attenuation and scattering.

However, passive remote sensing in the microwave region reveals a high potential

to retrieve soil moisture information with high temporal sampling and on a

regional scale (Wigneron et al. 2002). Observations at frequencies between 1 and

3 GHz (L-band) are useful for the detection of soil moisture because the energy

emitted from deeper soil layers is less affected by absorption and reflection from

vegetation. In this context SMOSREX (Surface Monitoring Of the Soil Reservoir

EXperiment), the first long-term field experiment for the L-band, and also

multispectral remote sensing of the surface, was initiated in January 2001

(Rosnay et al. 2006).

Finally, even the solar domain (400–2500 nm) has been exploited regarding its

potential for soil moisture assessment (e.g. Dalal 1986, Leone and Sommer 2000, for

review see Weidong et al. 2002). Several studies have analysed the change in spectral
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reflectance in this wavelength region with varying soil surface moisture content (e.g.

Bowers and Hanks 1965, Stoner and Baumgardner 1980, Neema et al. 1987,

Weidong et al. 2002). All of these studies confirmed an overall decrease in

reflectance with increasing soil moisture. However, when carrying out the

experiment up to very high soil moisture content, the authors noted a reversal of

this trend: the reflectance increased again. This phenomenon was called ‘cut-off

thickness’, defined by the thickness of sand that transmits only 5% of incident light.

However, under typical agriculture conditions the soil moisture is normally too low

to reach this critical point.

Soil reflectance is mainly controlled by three components that determine

brightness and colour:

(1) the absorption and scattering properties of its constituents (water, air,

minerals and organic matter);

(2) physical structure (aggregation, surface roughness, soil texture); and

(3) observation configuration (zenith and azimuth angles of the sun and the

observer).

For a given location, such as a field, soil mineral components and organic matter as

well as soil structure should reveal only small modifications within the course of a

vegetation period. However, surface water content can change depending on the

weather conditions and soil water storage capacity.

Weidong et al. (2002) proposed that a simple linear relationship could be used for

a rough estimation of soil moisture from bare soil reflectance. The complexity of soil

moisture estimation from spectral signals increases in the presence of vegetation

cover. Depending on canopy type and site conditions, there is a development from a

high soil influence on the spectra at the beginning of the season until the soil ceases

to affect the signal when it is completely overshadowed by the vegetation (see

Weidong et al. 2002). For a low LAI (up to 2–3) the soil still influences the

reflectance spectra acquired by a sensor. In particular, the red and near-infrared

wavelength regions exhibit a pronounced difference between vegetation and soil

components (Atzberger et al. 2003). The challenge is to distinguish between these

components and extract the respective information needed. Consequently the

monitoring of vegetation by airborne or satellite remote sensing provides the only

way to retrieve the LAI, chlorophyll, soil characteristics and other canopy properties

on a large scale and in a rapid, accurate and cost-effective way. In particular, the

recent availability of hyperspectral data, ranging from the visible to the mid-

infrared, provides a promising source for applications in agriculture, for example in

precision farming. Compared to broadband data, the higher spectral information

content of these data may allow more accurate analyses of the canopy spectral

response within a high spatial resolution.

The estimation of canopy structure (such as the LAI or leaf angle distribution)

and biochemical parameters (such as chlorophyll or leaf water content) from remote

sensing data is generally performed by two different approaches:

(1) The classical and most simple methods are based on statistical–empirical

relationships between the parameter and ‘vegetation indices’ (VIs) (Myneni

et al. 1995, Thenkabail et al. 2002, Casa and Jones 2005). These regression

models consist of different mathematical forms with empirical coefficients

that vary depending on canopy structure (leaf angle distribution, leaf spatial

distribution, raw orientation and spacing), leaf and soil optical properties

Recent Advances in Quantitative Remote Sensing II 4945
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and sun–target–sensor geometry (Huete 1987, Bacour et al. 2002). VIs may

provide a satisfactory level of accuracy in the estimation of important

vegetation biophysical parameters such as LAI. A limiting factor of this

method is the need for reference measurements to calibrate the models

for specific vegetation type, site and sensor characteristics (Curran and

Williamson 1986).

(2) The alternative to VIs is the estimation of biophysical parameters by means

of physically based models of canopy reflectance. This may allow more

accurate parameter retrieval than with VI for the following reasons. The

physical approach allows a higher validity as there is no restriction by

empirical relationships. The particular advantage of the physical approach is

its ability to exploit the full spectrum obtained by hyperspectral sensors.

However, there are also restrictions, such as the need for an extensive

parameterization, which causes high computational demand. Furthermore,

the ill-posed inverse problem has to be taken into account, as it may lead to

significant uncertainties in parameter estimation because different parameter

combinations may produce almost identical spectra (Baret and Guyot 1991,

Myneni et al. 1995, Casa and Jones 2005).

Different methodologies have been proposed to alleviate the inverse problem, for

example by constraining some of the parameters to fixed values or by the use of a

priori knowledge, taking into account the temporal evolution of the crop cycle.

Another possibility is the object-based retrieval of canopy parameters, considering

the radiometric information of neighbouring pixels during model inversion (reviews

in Kimes et al. 2000, Combal et al. 2002, Atzberger 2004).

The present work is part of a study in the framework of the project ‘crop drought

stress monitoring by remote sensing’ (DROSMON) (Schneider et al. 2005).

DROSMON aims to adapt and develop existing and new EO techniques for the

detection of drought stress of crops. The objective of this study was to exploit the

potential of hyperspectral imagery for analysing the degree of within-field variability

of plant growth due to heterogeneous soil conditions. This should provide valuable

information for mapping potential risks of crop drought stress. Physical methods of

canopy reflectance modelling were used to estimate biophysical parameters (i.e.

LAI, average leaf angle, leaf chlorophyll content and soil brightness). The

estimation of these parameters, all sensitive to drought stress, was then used to

classify a single field in terms of potential drought risk. A statistical cluster analysis

was applied to group estimated parameters into similar zones. These clusters can

provide a starting point for examining the reasons for yield variability (Reyniers

2003, Vrindts et al. 2005) due to soil conditions causing drought stress.

2. Experiment and methods

2.1 Study area and experimental data sampling

2.1.1 Experimental field area. In the Marchfeld, an agricultural area situated in

the east of Vienna, Austria, wheat is grown as one of the principal crops. Under the

regional climate conditions, which are considered as semi-arid, cereals are generally

not irrigated. The dominant soil types of this area are chernozem and fluvisol, the

latter being present at the test site of this study. The general soil conditions are

characterized by a humus-rich A horizon and a sandy C horizon, followed by fluvial

gravel from the former river bed of the Danube. The groundwater table is situated in

4946 K. Richter et al.
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this gravel body at a depth of more than 6 m. Gravel inhibits capillary rise and

thus no groundwater impact is present in the rooting zone of the crops. A particular

attribute of these soils is the local presence of sand streams caused by former river

meanders. Sand, characterized by lower water storage capacity, interferes with the

plant growth. In dry periods, as was the case in the weeks before the data

acquisition, this negative effect can be increased. For this study a Triticum durum

wheat field was selected (location shown in figure 1), representing this situation.

2.1.2 Field data acquisition. At the beginning of the campaign 20 soil profiles were

dug, spread equally over the field. They revealed the presence of sandy streams at

different depths within the field. A spatial map of sand depth distribution was

attained by means of the Kriging interpolation technique, demonstrated in figure 2.

The minimal depth of sand appearance under the surface is 30 cm due to the even

ploughing of the field at a depth of about 30 cm before seeding. Therefore, sandy

bands were not visible on the surface.

Agriculture practices, such as fertilization treatments and seedbed preparation,

were carried out uniformly within the field. Weather and environmental conditions

can be considered as unchanged within the extension of the field (,13 ha).

Consequently, for this case study, the soil can be regarded as the only factor that

could significantly lead to differences in plant growth.

The yield (in dt ha21) was measured destructively at the end of the growing season

(end of July 2005) accompanied by differential Global Positioning System (GPS)

techniques to locate harvest samplings in a 2-m resolution. For one HyMap pixel

four measured yield points were averaged and thus made directly comparable to

the results of image processing. Due to missing simultaneous and area-wide

in situ measurements of biophysical parameters, these data were used for indirect

validation.

Figure 1. Location of the study area, Marchfeld, Austria.
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2.1.3 Hyperspectral airborne and ground data. The test site was monitored on 21

June 2005 by means of the airborne imaging spectrometer HyMap. HyMap data

have a high spatial and spectral resolution (3.9 m, 126 bands, ranging from ,400 to

2500 nm). The availability of ground-based spectra, carried out with an Analytical

Spectral Devices (ASD) field spectroradiometer, enabled atmospheric correction of

the HyMap image to be performed by means of the empirical line (EL) approach

(see Roberts et al. 1985, Conel et al. 1987). This method is based on a linear

correlation between the radiance measured by the sensor and the reflectance

simultaneously measured in the field (Smith and Milton 1999). Nine targets of the

scene were linearly correlated against the corresponding field spectra. In the visible

(434–722 nm) and mid-infrared (1313–2485 nm) parts of the spectrum, radiance

from the HyMap sensor and reflectance from FieldSpec were well correlated

(R250.96 and 0.98, respectively). However, in the near-infrared part of the spectrum

(737–1299 nm), the correlation performed less well (R250.5).

2.2 Data processing

In this study the turbid medium SAILH (Scattering by Arbitrarily Inclined Leaves,

with Hotspot effect) model (Verhoef 1984, Kuusk 1985) was used in combination

with the leaf model PROSPECT (Jacquemoud and Baret 1990, Baret and Fourty

1997). This is a widely used approach and many authors (e.g. Jacquemoud et al.

2000) have reported its reliable performance for a variety of crops, in particular for

wheat.

2.2.1 Parameter estimation by model inversion. The SAILH model simulates

canopy reflectance as a function of structure parameters (defined by the LAI, the

average leaf inclination angle (ALA) and a hotspot parameter (HOT)), soil spectral

Figure 2. Sand depth distribution within the field, Kriging interpolation of soil profiles.
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reflectance, leaf reflectance and transmittance, fraction of diffuse irradiance and the

view and illumination geometry. Leaf reflectance and transmittance were simulated

by the PROSPECT model as a function of four structural and biochemical

parameters: leaf chlorophyll content (Cab), dry matter content (Cm), leaf water

thickness (Cw) and a leaf mesophyll structural parameter (N).

Parameter estimation was based on a look-up-table (LUT) inversion approach,

which is considered as one of the simplest methods to invert a model (Weiss et al.

2000). The working process is split into three parts:

(1) Generation of an appropriate number of canopy parameter combinations and

space. The LUT size could be reduced to a number of 12 960 combinations realized

in the following structure: parameters followed Gaussian distribution for LAI (ten

classes, ranging from 0.1 to 6.0), ALA (four classes, ranging from 40u to 70u) and

Cab (six classes, ranging from 35 to 70 mg/m2). Because of the availability of a priori

knowledge of the field properties and the presence of only one wheat cultivar,

Gaussian distribution laws were chosen for these parameters. For the leaf

parameters Cm and Cw, uniform distribution and only three classes were assumed

(Cm: 0.004–0.007 g/cm2 and Cw: 0.01–0.02 cm). The leaf structure parameter N was

fixed to an average value of 1.55, as has been applied to many crops (see Haboudane

et al. 2004). The HOT parameter is roughly defined as the ratio of the leaf size to

canopy height (Verhoef and Bach 2003). In this study HOT was set to 0.2 according

to the average of several measurements of canopy height (90 cm) and leaf size

(18 cm) during the field campaign.

The soil reflectance spectrum was measured in situ with a field spectroradiometer

and implemented in the model. A simple multiplicative soil brightness factor

‘ALFA’ was introduced (Atzberger et al. 2003), representing the overall brightness

of the soil, which was assumed to vary according to the surface water content.

Figure 3 demonstrates the measured soil spectrum with the ALFA factor ranging

from 0.7 to 1.3, representing the range from wettest to driest soil conditions.

A first approach to quantify this relationship by means of a field experiment is

described in section 2.2.2.

Figure 3. Average soil reflectance (21 selected bands) used as input for inversion of the
PROSPECT + SAILH model, and its variance according to the ALFA soil factor.
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(2) Running the radiative transfer model to simulate the corresponding reflectance

table. For the simulation in direct mode, 21 out of the 126 HyMap bands were

chosen according to the results of Thenkabail et al. (2004). A selection of ‘optimal’

spectral bands was considered because the number of spectral bands is not simply

equal to the dimensionality of the information content because of band correlation

and data redundancy (Vuolo et al. 2005).

The chosen wavebands were found to best characterize and classify vegetation

and crops due to their sensitivity to chlorophyll, soil background, biomass, LAI,

plant moisture and vegetation stress (Thenkabail et al. 2004). They cover the ultra-

violet (492.7 nm), the visible (554.3, 646.2 and 676.5 nm), the red edge (707.3, 722.4

and 737.5 nm), the near-infrared (874, 888.5, 911.1, 990.2, 1082.9, 1127.7, 1214.5,

1243.1 and 1285.4 nm), the early mid-infrared (1675.7 and 1725.4 nm) and the far

mid-infrared (2225.7, 2293.7 and 2343.1 nm) parts of the spectrum. The measure-

ment configuration used for the model simulations presented the actual conditions

during the sensor overpass with a solar zenith angle of 25u and a view zenith angle of

2u according to the almost-nadir position of the plane with respect to the field.

(3) Sorting of the LUT along with a simple cost function. This function calculates

the root mean square error (RMSE) between modelled spectra found in the LUT

and measured reflectance. The solution is the average of the parameters corre-

sponding to the 10% lowest RMSE values between measured and simulated spectra.

The procedure was applied to all 8599 pixels situated in the wheat field.

2.2.2 Quantification of the ALFA soil factor. The inhomogeneous plant growth in

the test field can be traced back mainly to sand streams causing dryer soil conditions

(see section 2.1.1 for more details). As stated in section 2.2.1., the ALFA factor,

introduced into the SAILH model, represents the overall brightness of the soil,

which is assumed to vary according to the surface water content.

The following approach was carried out to quantify the relationship between the

ALFA factor and the soil surface water content (h) by means of a spectral

measurement experiment. A soil sample with a size of approximately 14.5 dm3

(5463069 cm) was taken from the wheat field, keeping the original bulk density and

texture. The soil was dried in a laboratory until the water content was equal to zero.

Five spectral reflectance measurements were achieved in the course of one day with

the ASD Pro FR portable field spectroradiometer. The instrument acquires spectral

reflectance in the range of 350–2500 nm with a spectral resolution of 1.4 nm in the

shorter and 2.0 in the longer wavelength region. The sensor (with a 25u field of view)

was set up nadir looking to the soil probe at a distance of ,20 cm. This configuration

was chosen to minimize the influence of surface roughness leading to shadowing.

After each measurement a known quantity of water was added. Before

performing the next measurement a period of 2–3 h was required to ensure even

distribution of the water in the soil probe. Additionally, the soil was covered during

this time to avoid evaporation. Simultaneously with every spectral measurement,

the current soil water content was again determined by weighing the soil. The

experiment was carried out under clear sky conditions and the soil sample was

always adjusted perpendicularly to the sun.

2.3 Cluster analysis

As simultaneous and area-wide reference measurements of LAI, chlorophyll, leaf

angle and soil water content were missing, direct validation of the inversion results

4950 K. Richter et al.
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was not possible. Thus, the yield measurements, suggesting also the occurrence of

drought stress of the crops during the growing period, provided the only alternative
to validate the retrieved data set.

Cluster analysis is used in statistical studies to arrange a set of parameters into

relatively homogeneous subgroups or clusters (see Leilah and Al-Khateeb 2005). It
seeks to identify a set of groups that minimize within-group variation and maximize

between-group variation. The procedure starts with each case of a variable in a

separate cluster and then combines the clusters sequentially, reducing the number of

clusters at each step until a defined number remains.

In this context the technique was applied to determine whether it was possible to

sort the estimated parameters (LAI, ALA, ALFA and Cab) into a number of groups in

which the members had a strong degree of association to each other, but a weak

association to another group. The following assumption was established: high ALA,

LAI, Cab and low ALFA values should characterize higher yield zones, whereas lower

ALA, LAI, Cab, but higher ALFA, values should correspond to lower yield areas.

Hierarchical cluster analysis was carried out using Ward’s method and the squared

Euclidian distance as the interval measure. Several numbers of clusters (ranging from

two to seven) were built and analysed in terms of the above-mentioned assumption.

All statistical analyses were performed using the SPSS software package (SPSS

Inc., 2001).

3. Results

3.1 Parameter estimation from model inversion

Figure 4 depicts the resulting distribution of the estimated canopy parameters and

figure 5 shows the corresponding spatial maps of the wheat field.

Figure 4. Distribution of wheat canopy parameters (LAI, ALA, ALFA and Cab), estimated
by model inversion from HyMap acquisition data (Marchfeld, 21 June 2005).
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As simultaneous and area-wide reference measurements of LAI, chlorophyll

content and average leaf angle were missing, direct validation of the inversion results

was not possible. Instead, the coefficient of determination (R2) between the

measured yield and LAI was calculated and the performance compared with the

well-known Normalized Differenced Vegetation Index (NDVI) calculated from

the wheat reflectance by using the relationship between red and near-infrared

wavebands: NDVI5(NIR2RED)/(NIR + RED). Figure 6 shows the results. Both

coefficients reveal similar significant but moderate results (LAI and yield: R250.355;

Figure 5. Maps of canopy parameters (LAI, ALA, ALFA and Cab) of wheat, estimated by
model inversion from HyMap acquisition data (Marchfeld, 21 June 2005).

Figure 6. Correlation between measured yield and estimated LAI and NDVI.
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NDVI and yield: R250.373), whereas the coefficient of correlation between LAI and

NDVI reaches a high significant level (R250.916).

Concerning the performance of ALFA parameter estimation, only an approx-

imate comparison with the interpolated soil depth map (figure 2) could be used for

the validation. The comparison partly revealed a concordance between high ALFA

values and lower depth of sand streams, especially in the lower middle part of the

field, whereas lower ALFA values correspond to deeper sand occurrence in the

northern and western parts of the field. Nevertheless, spatial soil moisture

measurements and accurate texture analysis are necessary for a reliable validation

of this parameter.

3.2 Soil experiment

Figure 7 shows the resulting reflectance curves (using the 21 bands mentioned in

section 2.2.1) with the corresponding percentage volumetric water content. The

maximal amount of water content measurements did not reach the cut-off thickness

(see section 1.2).

Various empirical relationships were tested to estimate the soil surface water

content from the reflectance values. For low water content levels (up to about

h52.5) a linear relationship can be used to estimate the soil water content. However,

for higher water content levels the relationship shows a nonlinear behaviour.

Regarding soil reflectance for single wavebands plotted against soil water content,

the curve is comparable to an exponential function.

Thus, the reflectance data were transformed and the best fit was achieved by using

an exponential function of the form:

f xð Þ~a1 exp b1x{1
� �

ð1Þ

where x is the wavelength specific reflectance value.

Figure 7. Results of the soil experiment, reflectance curves (21 selected bands) with
corresponding soil water content.
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Five wavelength regions, representing the visible 646.2 nm (‘B3’), red edge

722.4 nm (‘B6’), near-infrared 990.2 nm (‘B11’), early mid-infrared 1725.4 nm (‘B18’)

and far mid-infrared 2293.7 nm (‘B20’) were selected and coefficients calculated (see

table 1). Figure 8 shows an example of the fitted functions for wavebands B6 and

B18. By means of this function, the soil surface water content could be calculated for

the measured soil spectra (figure 3), introduced in the model inversion procedure.

Calculating the mean of the five resulting water content values (presented in table 1),

resulted in 9.41 vol% (standard deviation 2.01).

3.3 Cluster analysis

Applying different numbers of clusters (two up to seven) to the parameters Cab,

LAI, ALA and ALFA should ideally resulted in the establishment of four clusters

(see figure 9(a)). This decision was taken by analysing the statistics of the parameters

and the yield in every cluster. Table 2 shows results for the ‘optimal’ cluster

composition. From cluster 1 to cluster 4 there is an increase of the mean value of Cab

(from 48.9 to 64.7 mg m22), LAI (from 0.6 to 4.1) and ALA (from 45.4u to 69.1u) but

a decrease of mean ALFA from 1.26 to 0.98. The application of the function for the

retrieval of soil water content from reflectance would result in h510.33 (SD52.17)

for ALFA 0.98 and h53.74 (SD51.17) for ALFA 1.26. Yield means are increasing

from cluster 1 (42.5 dt ha21) to cluster 4 (68.4 dt ha21), confirming the assumptions.

The establishment of four clusters leads to the greatest possible distinction of the

grouped parameters. By increasing the number of clusters (up to seven), this

tendency could no longer be observed, probably because of the increasing relative

errors from parameter estimation when aggregating the data into smaller clusters.

Table 1. Wavelength-specific coefficients for the exponential function (equation (1)) to
determine volumetric soil water content (h) from reflectance, and results for measured soil

spectrum.

a b R2 RMSE h (soil reflectance)

B3 0.03949 0.6051 0.99 0.4417 7.83
B6 0.04314 0.7173 0.99 0.3214 6.87
B11 0.07081 0.9662 0.99 0.3054 11.79
B18 0.1737 0.8973 0.99 0.5466 10.25
B20 0.3463 0.5704 0.99 0.9298 10.31

Figure 8. Exponential fit between measured reflectance data and volumetric water content
for two wavelengths: 722.4 nm (B6) and 1725.4 nm (B18).
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In addition, when comparing the resulting maps of estimated LAI, ALA, ALFA

and Cab (see figure 5), yield and cluster (see figure 9(c)), the general structure of the

field is clearly visible in all: first, the large stream of high ALFA, low LAI, ALA, Cab

and yield that is stretching from the southwest to the east of the field, and second,

the notable spot in the middle of the field. In these parts the humus-rich A horizon

of the soil reached a depth of only 30–40 cm and therefore the area is mostly

grouped to cluster 1, corresponding to the driest conditions. The underlying sand

band was identified by four of the 20 soil profiles (figure 2). Instead, a section of
high yield with high ALA, Cab and LAI, but lower ALFA, was found in the

northwest part of this sand band and in the north of the field. In this region the A

horizon reached a thickness up to 80 or 90 cm and was grouped to higher clusters

(3 to 4).

Table 2. Statistics of parameters and yield in the four clusters: number of cases (N), mean
values (Mean) and standard deviation (SD). Clusters were generated by means of a cluster

analysis, using estimated LAI, ALA, ALFA and Cab parameters from model inversion.

Parameter Cluster N Mean SD

Chlorophyll a + b (Cab) (mg cm22) 1 167 48.93 5.23
2 1135 58.49 2.25
3 4177 60.12 1.43
4 3120 64.69 1.42

Leaf area index (LAI) 1 167 0.64 0.23
2 1135 1.60 0.58
3 4177 3.65 0.98
4 3120 4.12 0.87

Average leaf angle (ALA) (u) 1 167 45.43 4.18
2 1135 60.69 4.30
3 4177 68.39 1.23
4 3120 69.15 0.53

Soil factor ALFA 1 167 1.26 0.02
2 1135 1.20 0.05
3 4177 1.00 0.13
4 3120 0.98 0.12

Measured yield (dt ha21) 1 167 42.54 9.69
2 1135 53.54 8.74
3 4177 65.33 9.83
4 3120 68.38 9.49

Figure 9. Resulting four clusters for the wheat field (a), established by means of cluster
analysis, four classes of NDVI map (b) and ground measured yield (dt h21) (c) by GPS in
July 2005.
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In the last step, the results were compared with the NDVI map to evaluate the

contribution of hyperspectral data for vegetation monitoring, in particular with

regard to the aim of the present study, the drought risk zones assessment within a

field. The classification of the NDVI into four parts (quartiles) revealed a similar

result to the cluster establishment. Table 3 presents the resulting statistics (means

and standard deviation) of yield and NDVI, indicating comparable behaviour of the

yield distribution as in the clusters: from the first to the fourth class, there is an

increasing trend of the values from both parameters (NDVI from 0.64 to 0.92 and

yield from 54.9 to 71.6 dt ha21). In addition, the structure of the NDVI map

(figure 9(b)) depicts a similar pattern to the cluster map.

4. Conclusions

Due to the typical soil conditions in the Marchfeld region (sandy streams from

former river meanders), the soil can be seen as one of the most important factors

inducing potential drought risk, with a decrease in plant growth and loss in crop

yield (especially for non-irrigated conditions). An understanding of the current

spatial distribution of the sandy streams can be useful for establishing differential

field management strategies (Taylor et al. 2003, Vrindts et al. 2005), enabling

farmers to effectively control each zone and adjust the application rate of irrigation

and fertilization input, and consequently improve crop production efficiency.

In this study the monitoring of plant growth at the field scale has been used as an

indicator of the sandy stream location. Thus, the heterogeneous plant growth due to

different soil compositions has been characterized by means of a physical-based

approach for canopy parameter estimation from EO data.

The experiment was carried out within a wheat crop field by using airborne data

acquired from the hyperspectral and high spatial resolution HyMap sensor. At the

time of airplane overpass, most of the soil was covered with plants (wheat crop in

the anthesis stage). The data acquisition within the vegetation period may

complicate the image analysis because of interference of soil and plant information

on the spectral signal. Nevertheless, in this time period the presence of the sandy soil

streams is assumed to be more visible than in winter, when crops are absent from the

fields, for the following reason: every year, before seeding, the fields are ploughed

evenly to a depth of approximately 30 cm, so that the influence of the sandy soil

vanishes, at least on the surface.

As an indication of plant state variability, the canopy parameters LAI, ALA,

ALFA and Cab were estimated by model inversion and analysed by means of

multiple cluster analysis. The study demonstrated that the estimated canopy

parameters correlated moderately with yield measurements. They can be used to

group the yields into zones ranging from lower to higher values within a field. Thus,

it was possible to cluster the parameters in zones with different ‘potential drought

Table 3. Statistics of NDVI and yield in four classes, based on NDVI quartiles: number of
cases (N), mean values (mean) and standard deviation (SD).

Class N Mean NDVI (SD) Mean yield (SD)

1 2195 0.64 (0.08) 54.92 (9.76)
2 2226 0.78 (0.03) 63.66 (9.27)
3 2229 0.86 (0.02) 68.34 (8.88)
4 1949 0.92 (0.02) 71.6 (8.56)
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levels’. The method could be applied to the prediction of potential drought risk

areas within fields on a medium-term time-scale. Considering the amount of error

and sources of uncertainty covering the measurements, radiometric calibration,

modelling, inversion technique and limitations of the statistic method, the results

can be considered as an acceptable compromise.

Nevertheless, this work also aimed at demonstrating processing and modelling

techniques, to assess the strengths and limitations of vegetation parameter

estimation from EO data, in particular from high spectral resolution sensors, such

as HyMap. However, nowadays only data from multispectral broadband and high

spatial resolution imagery from space (such as IKONOS, Quickbird or SPOT) are

available for studies on a small scale. They represent the only cost-effective way to

operatively gather information on the Earth’s surface status even within the small

scale of single fields. Therefore, the use of a simple empirical method, that is one

based on a vegetation index and on a few spectral bands, has been considered here

as an alternative approach to model inversion in an operational context for drought

risk zone assessment. To this end, the NDVI was calculated and grouped into the

same number of clusters. The results revealed no significant difference in the

performance of the two approaches.

However, high spectral resolution imagery, like that from a HyMap sensor, may

provide the potential to estimate biophysical parameters, such as chlorophyll or soil

water content, in a more accurate way as broadband imagery, either by means of

model inversion or by using the new generation of narrow band vegetation indices.

In conclusion, it should be emphasized that this study was based on only one

wheat field that served as calibration and validation data set. Although there were

other factors influencing yield performance, such as local weather conditions

(especially after the image acquisition), they could not be taken into consideration.

Thus, in further studies the method should be validated and tested with other fields

(e.g. in the Marchfeld region), taking into account all aspects influencing plant

growth. There might also be variability in yield patterns within several years, as it is

even higher in non-irrigated areas. Therefore, to classify the field into zones

reflecting stable behaviour, the method should be tested using image acquisition and

yield in consecutive years. Furthermore, direct validation data sets are required to

test the applied methods comprising in situ chlorophyll and LAI measurements as

well as a repetition of the soil experiment by collecting different soil probes.
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The homogeneous canopy reflectance model ACRM was used to simulate forest

reflectance and was compared with hyperspectral data of the topographically

complex experimental forest Rosalia of the University of Applied Life Sciences and

Natural Resources (BOKU) in Austria. Forward and inverse modes of the ACRM

model were validated. Ground truth data were taken (1) from experiments

performed at 17 pure beech plots and (2) from model simulations performed for 21

pure beech plots using an ecosystem model. The validations were performed

separately for these two types of reference data. The ground reflectance obtained

from the HyMap data was compared with simulations performed with ACRM. In

addition to the correction of the data to remove the atmospheric effects,

corrections had to be applied to remove the effects of the complex topography

of the area of Rosalia. The simulated reflectance showed an offset to the HyMap

retrieved reflectance between + 4% and + 6% in the visible (extending from 400 nm

to 700 nm), + 28% to + 30% in the near infrared (NIR) (extending from 700 nm to

1400 nm) + 53% to + 77% in the middle-infrared (MIR) (extending from 1400 nm

to 3000 nm) using the modelled and the experimental ground truth, respectively.

The correlation coefficient varied between 0.35 and 0.45 in the visible, 0.6 and 0.76

in the NIR and between 0.37 and 0.64 in the MIR. This correlation may be

improved, if within canopy fluctuations of chlorophyll and water content were

available. The leaf area index (LAI) was retrieved using the ACRM model. The

estimated LAI was in good agreement with the LAI ground measurements and

systematically higher by 0.1 compared to the simulated LAI. The correlation was

0.49 and 0.82, respectively. Altogether, the ACRM model showed a large offset to

the HyMap retrieved reflectance in the NIR and MIR wavelength ranges. A

precision around 33% to 74% may be expected after correction of the offset. The

LAI may be determined with a precision between 0.32 and 0.5. The ACRM model

is a useful tool to predict LAI. Care should be taken for the forward modelling of

forest canopy reflectance.
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1. Introduction

Interpretation of satellite remote sensing data requires appropriate reflectance models

to interpret observed features in terms of ground reflectance. Forest reflectance

models (FRMs) have been developed to improve the interpretation of airborne and

satellite measurements of wooded areas. The inversion of these models is used to

obtain—with reasonable accuracy—leaf area index (LAI) (e.g. Weiss and Baret 1999,

Chen et al. 2002, Myneni et al. 2002, Eklundh et al. 2003, Meroni et al. 2004,

Rautiainen 2005b, Soudani et al. 2006) and other structural canopy variables (Peddle

et al. 2004, Rautiainen et al. 2004, Schlerf and Atzberger 2006), soil reflectance (Kimes

et al. 2002) and other biochemical parameters (Demarez and Gastellu-Etchegorry

2000, Zarco Tejada et al. 2004). A good overview of investigations performed is given

by Schlerf et al. (2005). Most of the inversions were performed using vegetation

indices and bivariate regression analyses. The correlation coefficient between ground

truth and retrieved LAI lies between 0.3 and 0.94.

Forest reflectance models are usually subdivided into 3-dimensional Monte Carlo

ray tracing models (e.g. Govaerts and Verstraete 1998) and hybrid models (e.g. Li

et al. 1995) or in 1-dimensional (for most of the canopies applicable) turbid medium

reflectance models (Verhoef 1984) and radiosity reflectance models ( e.g. Qin and

Gerstl 2000). These models were intercompared within the radiation transfer model

intercomparison exercise (RAMI) intercomparison exercise (Pinty et al. 2001, 2004).

The model intercomparisons confirmed a good agreement between the models for

simple radiation transfer problems, but showed significant discrepancies for more

complex problems.

With regard to validation using ground truth data, more investigations have been

performed on the validation of inversion procedures than on the validation of

forward model calculations. The validation of forward calculations was addressed

by Kuusk and Nilson (2001) who not only found a systematic overestimation of the

NIR and MIR reflectance by the model in conifer stands but also a considerable

overestimation of the MIR reflectance for deciduous trees.

The new techniques of hyperspectral instruments have opened new possibilities,

such as the validation of forest reflectance models over the whole spectrum with

high spectral resolution. Investigations into the potential of hyperspectral data have

been performed (e.g. Schlerf et al. 2005, Schlerf and Atzberger 2006). Schlerf and

Atzberger (2006) used hyperspectral data to estimate LAI, crown coverage and stem

density of Norway spruce by model inversion and vegetation indices. The obtained

accuracy of the LAI map amounted to a root mean square error (rmse) of 0.59 with

an R2 equal to 0.73 using a forest reflectance model. A slightly better accuracy (rmse

equal to 0.52–0.54 and R2 equal to 0.77–0.79) was obtained using some vegetation

indices also for Norway spruce. In addition, model input parameters influence the

accuracy of calculations (Eriksson et al. 2006) and also of the inversion

performance. Eriksson et al. (2006) showed the importance of understory vegetation

on canopy reflectance. Variations in understory vegetation could lead to changes in

retrieved LAI of up to 1.6 units.

According to the statements made above, there is still a need for validation and

improvement of reflectance models using hyperspectral data, and still a need for

validation of forward and inverse modes of forest reflectance models.

The purpose of the study is to evaluate how well a homogeneous canopy

reflectance can model the reflectance of a forest area. This will be tested, first in

forward mode and secondly in inverse mode, by using hyperspectral data (HyMap).
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Three-dimensional models are physically more accurate, but they usually lack

information concerning the exact 3-dimensional structures within the forest canopy.

Homogeneous 1-dimensional models have an advantage, compared to 3-dimensional

models, in user friendliness and in ease of determination of the model input

parameters. Because of the shortage of ground truth data we chose the second type of

models and used the directional multispectral homogeneous (turbid medium) model

ACRM (Kuusk 2001).

2. Study area

The experimental forest of BOKU is situated 70 km south of Vienna in the Rosalia

Mountains. The forest covers 1000 ha and is situated at elevations between 400 m

and 900 m. The forest consists mainly of Norway spruce (Picea abies), common

beech (Fagus silvatica), but also includes silver fir (Abies alba) and some Scots pine

(Pinus silvestris). Forest inventory is routinely performed, based on systematic

sampling with permanent plots. In addition, more extensive measurements are

performed at several research plots. Since it is well known that modelling of

coniferous tree reflectance has not been solved in a satisfying way until now

(Rautiainen 2005a, Kuusk and Nilson 2001), we only concentrate on pure beech

stands, which are the most common deciduous tree type at the experimental forest

Rosalia. Figure 1 shows an example of the large difference between beech and spruce

reflectances derived from HyMap measurements. This difference is still not

explained by model simulations at the moment.

The limitation of our study to one tree type restricts the number of factors that

may influence the canopy reflectance and therefore simplifies our analysis. Two

types of ‘ground truth’ data were used within the scope of this investigation: (1) At

17 locations, LAI was determined by analysing hemispherical photographs. (2) At

21 other locations, LAI was obtained from an ecosystem model (see §3.2 and §3.3).

Figure 1. Comparison of HyMap measurements of pure beech stands and of pure spruce
stands with an ACRM reflectance simulation for spruce.
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The slope and aspect of the different plots were determined from a digital elevation

model. Within one stand, inclination and orientation may vary respectively up to

17u and 56u due to the very complex topography. The average slope of the different

plots ranges between 12u and 28u. More detailed information about the study site

and the overflight is given in table 1.

3. Methodology

Following our aim, the validation of the ACRM model consisted of two steps: in a

first step the forward mode of this model was compared to hyperspectral (HyMap)

reflectance data taken during an overflight of Rosalia experimental forest. In a

second step we tested the inversion procedure on LAI.

Before this comparison, HyMap data were first calibrated and then corrected for

the atmospheric influence (see §3.3.2). For the determination of model input

parameters, the observations in the field were used and some additional

measurements were performed (see §3.4.).

3.1 Description of reflectance model ACRM

The model ACRM is a directional multispectral homogeneous (turbid medium) two

layer canopy reflectance model. The input parameters include leaf area index (LAI),

leaf angle inclination, leaf size, biochemical parameters of the leaves, and soil

reflectance. The model performs the calculations in the wavelength range 400–

2400 nm with a 1 nm resolution. The view angle and directional reflectance effects

are taken into account. It works for any view and sun direction in forward and

inverse modes. The values retrieved in inverse mode are obtained using a merit

function, having its minimum value when the difference between measured and

simulated data is minimized. The minimum value of the merit function is obtained in

an optimization procedure (Kuusk 1991).

The canopy is divided into two horizontal layers. For each layer, the above

mentioned parameters (LAI, leaf inclination, leaf size, biochemical parameters of

the leaves) have to be defined. The lower layer is mainly used to define the

understory vegetation parameters. The model consists of several sub-models, which

can also be run independently. One sub-model includes parameters concerning the

chemical properties of the leaves. It provides input parameters to the sub model

PROSPECT (Jacquemoud and Baret 1990), which uses this information to simulate

the reflectance of a single leaf.

Table 1. Overview of the study site.

Elevation of Rosalia Mountains 400–900 m above sea level
Flight altitude 1910 m above ground
Start latitude and longitude of flight 47.675uN; 16.3uE
End latitude and longitude of flight 47.833uN; 16.23uE
FOV HyMap 61.3u
Range of view angles for the studied plots 0.36–0.59u (363 pixels to 565 pixels)
Size of a pixel Approx. 464 m
Forest stand types Pure beech
Crown closure 50–100%
Tree density 150–2000 trees ha21

Tree height 3–30 m
Stand age 10–155 years
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The spectral reflectance of the soil is described using the four soil parameters of

the Price function (Walthall et al. 1985, Price 1990). The Price function was,

however, only used for the validation of the inverse mode. For the forward

calculations (§4.1) the measured soil reflectance was used instead.

3.2 Description of the ecosystem model

The ecosystem model (EM) is based on the Biome-BGC 4.1.1 model (Thornton et al.

2002), which was originally developed by the Numerical Terradynamic Simulation

Group (NTSG) at the University of Montana. New developments at BOKU include

the consideration of ground water (Pietsch et al. 2003), the species-specific

parametrization of current tree types of Austria (Pietsch et al. 2005) as well as an

improvement in the self initialization of the model (Pietsch and Hasenauer 2006).

The EM uses a daily time step and performs a simulation of fluxes and storage of

energy, water, carbon and nitrogen for the vegetation and soil components of

terrestrial ecosystems. The primary model purpose is to study global and regional

interactions between climate, disturbance, and biogeochemical cycles. Input

parameters include latitude, elevation and albedo of the location, uptake of

nitrogen by the soil, soil structure, as well as daily climate data such as maximum

and minimum temperature, precipitation, solar irradiance and humidity. The

estimated carbon assimilation is distributed into the various compartments of the

ecosystem. The mass of leaves is converted into LAI by means of the specific leaf

area. LAI is then used for the determination of the photosynthesis, which in turn can

be used to determine the carbon uptake. For the present investigation, only the LAI

output from the ecosystem model was used.

3.3 Field measurements

3.3.1 Instrumentation. Fieldspec spectrometer. Spectro-radiometric measurements

in the field were carried out with the FieldSpec Pro FR spectro-radiometer

(Analytical Spectral Devices 2002, Boulder CO 80301, USA). This instrument

performs measurements from 350 to 2500 nm at wavelength intervals varying

between 1,4 nm (visible and near infrared) and 2 nm (mid infrared). The spectral

resolution (full width at half maximum) is 3 nm in the visible and near infrared and

up to 12 nm in the mid infrared. Reflectance measurements are performed at

constant irradiation by first measuring the radiance from a spectralon panel with

known reflectance (near 100%) and afterwards from the target. The reflectance

factor of the target is then obtained as the ratio of the two measurements at the

target and at the spectralon, multiplied by the spectralon reflectance (the reflectance

factor will be called ‘reflectance’ throughout the whole present manuscript). The

measurements were performed with a so-called contact probe device, which includes

an irradiating lamp. The contact probe is directly placed on the target (e.g. leaf,

bark, soil) and allows for reflectance measurements at low levels of natural

irradiation and without disturbances from changes in natural irradiation.

Hemispherical photographs. Several studies (Ross 1981, Jonckheere et al. 2004,

Weiss et al. 2004, Leblanc and Fournier 2005) were carried out comparing different

LAI measurement techniques. The most accurate method of LAI determination

would be the direct measurement on harvested plants. To overcome the limitations

of this technique (labour requirement, destructive character, etc.) numerous indirect

LAI measurement methods have been developed, based on the estimation of the

3D Remote Sensing in Forestry 1321
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contact frequency or the gap fraction (Ross 1981, Weiss et al. 2004). LAI

determination by hemispherical photographs (e.g. the CAN EYE method

(Jonckheere et al. 2004, Weiss et al. 2004)) seems to perform with a good

accuracy and may belong to the most precise methods (Weiss et al. 2004). According

to Baret and Weiss (http://www.avignon.inra.fr/can_eye/CAN_EYE4.pps),

discrepancies between the different LAI determination techniques of up to 1 may

occur. The method CAN EYE was used within the scope of the present

investigation.

3.3.2 Airborne data. On 21 June 2005, 10:53 UTC, HyMap hyperspectral data of

the Rosalia area were acquired. The HyMap sensor was operated aboard a Do 228

aircraft of DLR within the HyMap Europe 2005 campaign. The HyMap sensor

collects radiation in 128 spectral bands that cover the wavelength range from 400 nm

to 2500 nm. The bandwidth is approximately 15 nm. The mean flight altitude of the

aircraft was 1910 m above ground level, which results in a mean pixel size of 4 m.

The flight direction was 343u (almost northern direction). The azimuth angle of the

sun was 178u, the zenith angle of the sun was 24u. No hot spot effects may occur in

this configuration.

3.3.3 Measurements of spectral reflectance for calibration. Calibration of HyMap

data. Reflectance measurements at 7 reference points in the HyMap scene were

taken with the Fieldspec spectroradiometer and the contact probe device. The

reference points were selected observing two criteria: a wide range of reflectance

values, and isotropic reflectance characteristics. The software 6S (Vermote et al.

1997) was used to perform the atmospheric correction. Aerosol optical thickness and

water vapour concentration situated in the layer between the airborne platform and

the ground was obtained in an iterative way until the best fit between HyMap-

retrieved ground reflectance and measured ground reflectance was obtained at the

seven reference points. The values that were obtained for water vapour concentration

was 1.55 g cm22 and the value for the aerosol optical depth at 550 nm was 0.01. For

ozone, column ozone measurements of the next ground station Sonnblick (47.05uN,

12.95uE) were used. The measured ozone concentration was 300 Dobson units on this

day. For the remaining atmospheric parameters (vertical temperature and pressure

profile) the 6S software automatically selects the values from the US standard

atmosphere 1962. The reflectance obtained from the HyMap measurements and

shown in the following sections is the reflected radiance after atmospheric correction

multiplied by PI and divided by the global irradiance calculated by the 6S software.

Beside the determination of atmospheric turbidity and water vapour concentra-

tion, a recalibration function was applied to the data following the procedure of

Guanter et al. (2004) in order to remove spectral artefacts.

The calibration was cross-checked using the same seven reference points and a

second independent calibration method: the empirical line method (Roberts et al.

1985, Conel et al. 1987). An agreement within 5% of the resulting reflectance

obtained by both methods was achieved.

When comparing the atmospherically corrected Hymap data to the modelled

reflectance data, slope and aspect of the plots have to be taken into account. We

therefore either referred both to horizontal plots or to inclined plots. In order to

take into account the inclination of the plots and the fact that the trees are in upright

position, the Sun-canopy-sensor (SCS)-correction, suggested by Gu and Gillespie

(1998) was applied to the data:
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Ln~L0 cos að Þ cos usð Þð Þ=cos ið Þ ð1Þ

L0 is the radiance arriving at the sensor from pixels on the sloped terrain; Ln is the

radiance arriving at the sensor corrected so that it is comparable to radiance

reflected from horizontal pixels. a is the slope of the terrain surface, us is the sun

zenith angle, i is the sun incidence angle measured from the surface normal.

Some more sophisticated correction procedures based on the SCS method are

available (Koukal et al. 2005, Soenen and Peddle 2005), which take into account the

diffuse irradiance component. Since the slope of the plots is below 30u and the

wavelengths of interest are higher than 500 nm, we expect (according to our

simulations) the difference between the correction factors of the different procedures

to be lower than 1%.

3.4 Determination of model input parameters

Tables 2 and 3 show an overview of the measurements and of the assumptions

regarding the model input parameters for the 38 plots.

3.4.1 Determination of leaf model input parameters. The reflectance from 350 nm
to 2500 nm of the reflectance of several types of understory vegetation was measured

using the ASD FieldSpec spectrometer contact probe (figure 2(a) and (b)). Five

samples of each type of plant were measured. The reflectance of grass is with 60% in

the near infrared (NIR), around 20% higher than the reflectance of fern, moss,

clover and various other types of vegetation. These reflectance spectra were used in

the following simulations to determine an average ground reflectance. The

reflectance of beech leaves was measured on 11 samples with the spectrometer

contact probe. We then compared the measured reflectance values with PROSPECT

Table 2. Overview of parameters for which best fit with PROSPECT
is obtained. These parameters were also used for all the model

calculations.

SLW (specific leaf weight) 100 g m22

N effective number of cell layers 1.68
Water concentration 59 g m22

Chlorophyll 94 mg cm2^2
Dry matter 20 g m22

Brown pigment 0.2 g m22

Table 3. Model input parameters describing the canopy used for the
forward calculations. Average values of leaf inclination, relative leaf
size and Markov parameter were assumed according to the observa-
tions on-site. LAI was determined using hemispherical photography

(CAN-EYE method) and using ecological modelling (EM).

Thm Leaf inclination 0u
Sl, relative leaf size 0.02
Markov parameter 1
LAI determined for each stand separately

with CAN-EYE method 1.5–3.4
with EM 1.58–2.34
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Figure 2. Measured reflectance of different types of understory vegetation (moss, clover,
grass (a) and fern and various other types (b)) measured in the field with the contact probe
(artificial irradiation).
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model simulations (figure 3). The driving parameter, which mostly influences the

leaf reflectance, is the parameter N which is an indicator of the compactness of the

leaf. The best fit was obtained for N equal to 1.68. The values of all input parameters

for which the best fits were obtained are shown in table 2. For the simulations shown

in the next sections we used the measured leaf reflectance and we calculated the

transmittance using the parameter values resulting in the best fit. The same leaf

biochemical parameter values were used for all sites.

3.4.2 Determination of canopy model input parameters. The LAI was estimated

using two methods: with hemispherical photographs analysed by the CAN EYE

method, and with the ecosystem model (EM). In the following sections comparisons

between the two types of ground truth data will be made separately. No corrections

were made for clumping or stem influence for the deciduous stands, since these two

components show compensatory effects in forest stands (Eriksson et al. 2006). The

Markov parameter, which is an indicator for clumpiness, was therefore set to 1 for

all the stands.

According to the size of the leaves (5–10 cm) and the height of the trees (5–30 m)

we used for the relative leaf size the minimum value mentioned in the ACRM

program of 0.02. An overview of all the model input parameters is given in table 3.

3.4.3 Ground characteristics. At each stand, detailed photographs of the ground

and canopy conditions were taken. Based on the photographs and observations, the

average percentage of different ground type was determined for each plot. In most

stands, the ground was covered with senescent leaves or with ground vegetation.

Figure 4 shows different types of ground reflectance measured with the Fieldspec

spectrometer. Ground covered with senescent leaves has a NIR reflectance between

Figure 3. Typical modelled (thin line) and measured (bold line) reflectance of a beech leaf.
Error bars show the standard deviation of the measured leaf reflectance. Model simulations
were performed with the model PROSPECT.
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60% and 65%, which is twice as high as the reflectance of living ground vegetation,
with NIR reflectance of 45% to 50%. The ground reflectance used for modelling the

reflectance of each stand was determined by weighted summation of the measured

reflectance values. Weighting was performed according to the proportion of the

different types of components on the ground. For the forward calculations, the

ACRM model was changed so that model input parameters were directly taken

from the measured and weighted spectral ground reflectance. No specification of the

model ground reflectance using the method by Price (1990) was required.

4. Results and discussion

4.1 Comparison of HyMap data with modelling

For the direct mode, model simulations were performed for the 126 HyMap

wavelengths.

For the simulation in inverse mode, 21 ‘optimum’ bands of the 126 HyMap were

chosen, following findings of Thenkabail et al. (2004) who identified 22 ‘optimum’

hyperspectral narrow wavebands (in the 400–2500 nm range) by means of statistical
methods. One of these wavebands did not correspond to any of the HyMap

wavelengths. Therefore, in the present study only 21 bands were used for the

simulation in inverse mode. Due to their sensitivity to chlorophyll, soil background,

biomass, LAI, plant moisture and vegetation stress, these wavebands characterize

and classify best vegetation and crops.

The selected bands corresponding to HyMap are located in the visible part

(492.7 nm, 554.3 nm, 646.2 nm and 676.5 nm), the red edge region (707.3 nm,

722.4 nm and 737.5 nm), the near infrared (874 nm, 888.5 nm, 911.1 nm, 990.2 nm,
1082.9 nm, 1127.7 nm, 1214.5 nm, 1243.1 nm and 1285.4 nm), the early mid-infrared

(1675.7 nm and 1725.4 nm) and the far mid-infrared (2225.7 nm, 2293.7 nm and

Figure 4. Reflectance of bare ground and ground covered with senescent leaves measured in
the field with the contact probe compared to the average reflectance of ground vegetation
(average of results shown in figure 2).
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2343.1 nm) part of the spectrum. The measurement configuration used for the model

represented the actual condition during the sensor overpass with a solar zenith angle

of 24u and a view zenith angle to the different stands between 0 and 29u.
Figure 5 shows a comparison, over the whole spectrum, of the average of all 38

plots of HyMap-derived reflectance and modelled reflectance. This comparison is

representative for all the plots (see also figures 6, 7 and 8). The standard deviation

between the different plots of the HyMap-derived retrieved reflectance is also

shown. The uncertainty of the model calculations is shown at the wavelengths

554 nm, 888.5 nm, 1675 nm and 2207 nm. For the estimation of the model

uncertainty we took into account an uncertainty in LAI determination of ¡0.03,

a change in relative leaf size from 0.15 to 0.02 and a Markov parameter of 0.6

instead of 1. The error bars show the maximum and minimum values obtained for

one combination of the three above mentioned parameters. Besides the dependence

on LAI the ACRM model shows a high sensitivity to changes in the Markov

parameter. Decreasing the Markov parameter to 0.6 would lead to an increase in the

calculated reflectance by approximately 20% and in turn to an increase in the

discrepancy between model calculations and measurements. A change in LAI of 0.06

and an increase in relative leaf size of 0.13 (which is completely unrealistic) would

result in a change in the reflectance of approximately 0.025% or 6%.

There is agreement between modelled reflectance and HyMap-derived retrieved

reflectance only in the visible wavelength range. In the remaining wavelength ranges,

the model always overestimates the retrieved reflectance. Even if the model and the

measurement uncertainties are taken into account, the discrepancy between both

remains. This fact is also confirmed when the reflectance values for the individual

plots are compared (figures 6, 7, and 8). For each analysed spectral band we

calculated the following parameters shown in the figures: the correlation coefficient

Figure 5. Typical modelled reflectance (thin line) compared with the average reflectance
derived from HyMap (bold line) for the 38 beech plots. The error bars show the fluctuations
(maximum and minimum values) of the model calculations. The dotted lines indicate the
standard deviation of the derived HyMap reflectance of the 38 plots.
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R, the root mean square error (rmse) and the mean relative difference (mrd),

indicating the magnitude of the offset between model retrieved and HyMap

retrieved data:

mrd~
1

n

Xn

i~1

yi{xi

xizyið Þ=2

� �
100 %ð Þ ð2Þ

Figure 6. Modelled reflectance for each stand compared with HyMap derived reflectance at
554 nm. For the model simulations the measured leaf area index (LAI) (a) and the LAI from
ecosystem modelling (EM) (b) are used.
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where xi is the reflectance determined from HyMap and yi is the modelled
reflectance. The mrd indicates the magnitude of the offset between model and

HyMap retrieved data.

In order to determine the significance of the correlation between modelled

reflectance and HyMap-derived reflectance, a t-test was applied at the 95%

confidence level to the data.

In the visible wavelength range (554 nm), figures 6(a) and (b) show a mrd of 4% to

7%, which indicates a good agreement between model and retrieved reflectance. The

rmse is around 0.001, which represents in both cases a relative rmse around 13% to

14%. Altogether with an R-value between 0.35 and 0.45 and n equal to 17 and 21,
respectively, the t-test showed no significance at the 95% level between modelled and

HyMap retrieved reflectance.

Figure 7. Comparison of modelled reflectance and HyMap derived reflectance at 888.5 nm
for various conditions: (a) leaf area index (LAI) input from measured data, Gu and Gillespie
correction applied to HyMap derived reflectance; (b) LAI input from ecological modelling,
Gu and Gillespie correction applied to HyMap derived reflectance; (c) LAI input from
measured data, HyMap data without topographic normalization, reflectance modelling for
inclined terrain surface (cosine correction), (d) LAI input from measured data, HyMap data
without topographic normalization. Reflectance modelling performed for horizontal surface
similar to cases (a) and (b).
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Figure 8. Modelled reflectance for each stand compared with HyMap-derived reflectance at
1675 nm. For the model simulations the measured (a) and the modelled (b) leaf area index
(LAI) are used.
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The strong dependence of reflectance on chlorophyll in this wavelength range may

explain the lack of correlation. The fluctuations in the measured reflectance may

probably mainly be caused by inhomogeneities in stand structure (varying stem

density and volume, varying crown cover). Besides that, it may also be attributable

to varying chlorophyll content between the stands. Our leaf reflectance measure-

ments were not performed at all the sites. We therefore assumed the same

biochemical properties of the leaves at all the locations. A small uncertainty may

also be added by the relatively low signal-to-noise ratio in this wavelength range and

the strong influence of the atmosphere (more scattering and extinction) that may

add some noise and scattering to HyMap retrieved reflectance.

In the NIR (888.5 nm) (figure 7(a) and (b)), the correlation R between model

calculations and HyMap measurements ranges from 0.6 to 0.76. The t-test shows a

statistically significant correlation in both cases. The systematic overestimation of

the reflectance by the model is between 28% and 30%. The absolute deviation of the

reflectance is approximately 0.14 to 0.18. The rmse is between 37% and 38%.

In figure 7(a) and (b), the HyMap-derived reflectance is topographically corrected

with the SCS method, and the modelled reflectance applies to horizontal terrain. In

contrast to this, figure 7(c) and (d) show the topographically uncorrected HyMap-

derived reflectance. The modelled reflectance applies to inclined terrain (corre-

sponding to the actual plot inclination) in figure 7(c) and to horizontal terrain in

figure 7(d). The comparison of these figures illustrates the influence of topography.

The variation in the reflectance between the plots can be seen to be much larger in

the case of inclined plots, resulting in higher R values. An uncertainty in the

topographic correction results from the fact that orientation and inclination may

vary within a plot as mentioned in §2.

In the MIR (1675 nm) (figure 8(a) and (b)), the systematic deviation between

modelled and measured reflectance is even larger. The model overestimates the

reflectance by 74% (with measured LAI input) and 52% (with LAI input from

ecosystem modelling). The average absolute deviation is 0.20 and 0.18, respectively.

The correlation between model and measurement is, with R50.37 and R50.64,

slightly better than in the visible wavelength range. It is significant only for LAI

input from ecosystem modelling. A general explanation for the low correlation may

be the fact that certain parameters influencing the reflectance, such as LAI and

water concentration in the leaves, were kept constant in the model simulations. The

explanation for the correlation being lower in the MIR compared to the NIR may

lie in the larger dependence of the reflectance on LAI in the NIR as compared to the

MIR.

4.2 Estimation of the LAI

4.2.1 Estimation of the LAI using ACRM model. LAI was determined from the

HyMap reflectance values using the inversion mode of the ACRM model. Three

parameters were left free in this inversion: the LAI and the weighting factors s1 and s2

of the Price function. The Markov parameter was set to 1. The leaf parameters were

chosen as determined according to §3.4.1. The inversions were performed with

measurements at 21 wavelengths corresponding to the wavelength indicated by

Thenkabail et al. (2004), leaving out the one band not available in HyMap. The results

are shown in figure 9(a) and (b). The retrieved LAI shows considerable variation

around the values measured using hemispherical photographs. The correlation

coefficient is 0.49 for the comparison of the retrieved LAI with the measured LAI and
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much better with 0.82 for the comparison of the retrieved with the modelled LAI. In

both cases the correlation is significant at the 95% level. The average absolute

difference is equal to 0.039 for the comparison with the measured LAI and 0.1 for the

comparison with the modelled LAI. The absolute rmse is equal to 0.5 and 0.32,

respectively. These last values may be considered as the accuracy achievable when

retrieving LAI from the HyMap data. As already indicated in table 3, the LAI value

calculated by ecosystem modelling is on average lower than the measured one. The

modelled LAI seems to better characterize the investigated pixels, probably because it

is less affected by fine-scale inhomogeneities in the forest canopy.

Figure 9. Comparison of the retrieved leaf area index (LAI) with the measured (a) and the
modelled (b) LAI.

1332 P. Weihs et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
8
:
3
7
 
1
5
 
M
a
y
 
2
0
0
9

87



A prerequisite for accurate LAI retrieval is the appropriate choice of the leaf

biochemical parameters—dry matter, chlorophyll content, water content and leaf

structure N. Our simulations showed that the accuracy of the LAI retrieval may be

strongly affected by the wrong choice of these leaf parameters.

4.2.2 Estimation of the LAI using vegetation indices. In order to test the

performance of the ACRM model for LAI retrieval, the obtained correlations were

compared to the correlations with well known vegetation indices. The vegetation

indices that were used are shown in table 4. Indices identified by Schlerf et al. (2005)

as those showing the highest correlations with the LAI, such as the hyperspectral

perpendicular vegetation index (PVI_hyp), the perpendicular vegetation index

(PVI), the transformed soil-adjusted vegetation index (TSAVI), the hyperspectral

ratio vegetation index (RVI_hyp), or widely used indices such as the simple ratio

vegetation index (SR) and the normalized difference vegetation index (NDVI), were

chosen for the present study. The TSAVI and PVI indices require a parameter a,

which corresponds to the soil line slope, and a parameter b corresponding to the

point of intercept (Baret et al. 1989). Since, in the present study, the very non-

homogeneous soil conditions (senescent leaves, ground vegetation, bare ground,

etc.) did not allow the determination of a soil line slope, the soil line parameters were

fixed to arbitrary values (a51.17, b53.37 according to Leblon (http://www.r-s-c-

c.org/rscc/Volume4/Leblon/leblon.htm)). For the TM3 and TM4 channels the

average reflectance over the wavelength range of the channels was used for the index

calculations.

The correlation coefficients R of these indices with the measured and with the

modelled LAI values are shown in table 5. The lowest correlations were obtained

with SR, with RVI_hyp and with NDVI. The highest correlations were obtained

with PVI_hyp, with PVI and with TSAVI. However, all these correlation coefficients

range below the correlation coefficients obtained with the canopy reflectance model

(CRM). No significant correlations were obtained between measured LAI and the

Table 4. Overview of the indices used in this study.

Name Abbreviation Equation Reference

Hyperspectral
perpendicular
vegetation index

PVI_hyp ref 1148{a � ref 807{b
ffiffiffiffiffiffiffiffiffiffiffiffi
1za2
p Schlerf et al. 2005

Perpendicular
vegetation index

PVI refTM4{a � refTM3{b
ffiffiffiffiffiffiffiffiffiffiffiffi
1za2
p Richardson and

Wiegand 1977

a51.17, b53.37
Transformed

soil-adjusted
vegetation index

TSAVI a refTM4{a � refTM3{bð Þ
a � refTM4za � refTM3{ab

Baret et al. 1989

a51.17, b53.37
Hyperspectral ratio

vegetation index
RVI_hyp ref 1088

ref 1148

Schlerf et al. 2005

Simple ratio SR refTM4

refTM3

Pearson and
Miller 1972

Normalized difference
vegetation index

NDVI refTM4{refTM3

refTM4zrefTM3

Rouse et al. 1974

ref, reflectance; TM 3, Thematic Mapper channel 3 (630–690 nm); TM 4, Thematic Mapper
channel 4 (760–900 nm); ref1088, reflectance at 1088 nm; ref1148, reflectance at 1148 nm;
ref807, reflectance at 807 nm.

3D Remote Sensing in Forestry 1333

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
8
:
3
7
 
1
5
 
M
a
y
 
2
0
0
9

88



indices. Correlations between modelled LAI and the indices were significant for

TSAVI, PVI and PVI_hyp.

5. Conclusions

The PROSPECT leaf reflectance model accurately calculates the reflectance of a leaf

in the whole wavelength range, when the model input parameters are carefully

chosen. The ACRM did not perform well in the forward mode in the NIR and MIR

wavelength ranges, but seems to be a useful tool for LAI retrieval in the inversion

mode.

The ACRM strongly overestimates the reflectance in the NIR by approximately

28–30% and in the MIR by 50–74%. The correlation coefficients of 0.60 and 0.76 in

the NIR (888.5 nm) show that the model may, with reservations, be used in the

forward mode if the systematic offset is taken into account. If the offset is taken into

account, an absolute accuracy not better than 0.14 to 0.18 may be expected in the

NIR.

The lack of data on fluctuations in chlorophyll and water content between

individual trees did not allow the exact sensitivity of the ACRM model to

chlorophyll and to water content to be tested. This fact may explain the rather low

correlation coefficient in the visible (554 nm) and MIR (1675 nm) wavelength

ranges. A low mean relative deviation was, however, obtained between modelled

and HyMap retrieved reflectance in the visible wavelength range with an absolute

error of 0.006.

The largest mean relative difference as well as the largest relative rmse occur in the

MIR (1675 nm). The model strongly overestimates the HyMap-retrieved reflectance

by 50–74%.

Since a very good agreement between retrieved and experimentally determined

LAI was obtained, we can assume that the effect of LAI on canopy reflectance is

properly taken into account by the model. The most probable reason for the

overestimation of the canopy reflectance by the ACRM model may lie in an

overestimation of multiple scattering and multiple reflectance phenomena within the

canopy. ACRM takes into account leaves that have a high reflectance and

transmittance only. Stems and branches, which usually show a low reflectance and

which do not transmit any radiation are ignored in the ACRM code. Another

possible reason for the strong overestimation by the model may also lie in an

overestimation of the influence of the ground reflectance by the code. Kuusk and

Nilson (2001) compared Boreal Ecosystem Atmosphere Study (BOREAS) data with

simulations performed with the semi-homogeneous model MCRM, which includes

Table 5. Correlation coefficients R with measured and modelled leaf area index (LAI) of
various vegetation indices.

CRM PVI_hyp PVI TSAVI RVI_hyp SR NDVI

LAI measured 0.49 0.3827 0.4028 0.4625 0.3209 0.2238 0.2509
LAI modelled 0.82 0.7337 0.7329 0.555 0.0377 0.18 0.1758

CRM, canopy reflectance model (ACRM model); PVI_hyp, hyperspectral perpendicular
vegetation index; PVI, perpendicular vegetation index; TSAVI, transformed soil-adjusted
vegetation index; RVI_hyp, the hyperspectral ratio vegetation index; SR, simple ratio
vegetation index;
NDVI, normalized difference vegetation index.
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geometrical and structural parameters such as the crown radius and the tree height.

They also found an overestimation of the modelled signal in the MIR wavelength

range. They explained this discrepancy with an overestimation of multiple

reflectance phenomena within the canopy by the canopy reflectance model.

Referring to the inverse mode, we compared the retrieval accuracy for LAI

obtained with the ACRM to the retrieval accuracy possible with the well-known

indices TSAVI, SR, NDVI, PVI, PVI_hyp and RVI_hyp. The correlation

coefficients between ACRM-retrieved LAI and LAI measured or determined by

ecosystem modelling was higher than the correlation coefficients between any of the

indices and the measured or modelled LAI. The ACRM may therefore be used for

the determination of LAI with an expected accuracy of 0.32 to 0.5. A prerequisite is

the appropriate choice of the leaf biochemical parameters—dry matter, chlorophyll

content, water content and leaf structure N. The accuracy of the LAI retrieval may

strongly be affected by the wrong choice of these leaf parameters, which may be

determined as the set of parameters giving the best fit of measured leaf reflectance

and leaf reflectance modelled by PROSPECT.

We can summarize that for the forward modelling of forest canopy reflectance a

correction of the offset should be performed. In reverse mode, the ACRM model is

well suited for the retrieval of LAI even for complex terrain.
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Occurrence of repeated drought events: can repetitive

stress situations and recovery from drought be traced

with leaf reflectance?

Abstract

Within the last years a lot of effort has been made to improve irrigation
efficiency and early drought stress detection by using various remote sensing
techniques. In the present study two different species of wheat (Triticum
aestivum and Triticum durum), cultivated in a growth chamber, were
used to investigate the effects of drought occurring at different phenological
stages. Plant physiological traits and spectral leaf reflectance were used to
assess the potential of remote sensing techniques. Drought stress was applied
either at flowering and/or at grain filling. Subsequently, a treatment fol-
lowing recovery after drought stress at flowering was set up. The effects of
drought were traced by following the changes in plant physiological traits
(i.e. photosynthetic rate, leaf conductance, relative and actual leaf water
content) as well as in leaf reflectance. Drought resulted in a significant re-
duction of plant physiological traits and water relations, independently of
the time of its occurrence. Rewatering plants after the stress period at flow-
ering resulted in a recovery of plant physiological traits. Single leaf re-
flectance of plants subjected to drought increased over the entire range of the
spectrum. However, five spectral regions with relatively high differences
were observed: 520–530 nm, 570–590 nm, 690–710 nm, 1410–1470 nm
and 1880–1940 nm. Additionally, three spectral indices were tested towards
their applicability for tracing drought stress and subsequent recovery, yield-
ing a reasonable relationship with measured leaf water content, photosyn-
thetic rate and leaf nitrogen content.

INTRODUCTION

Water scarcity is increasingly important in many parts of the world.
Within the next centuries global climate change is expected to re-

sult in a long-term trend towards higher temperatures, greater evapo-
transpiration, and an increased incidence of drought in specific regions
(1, 2). Moreover, not only changes in the spatial but also in the temporal
distribution patterns of precipitation and radiation are to be expected
(3); e.g.: in Europe higher precipitation levels are predicted for the win-
ter half-year and drier periods for the summer half-year (2).

Under conditions of drought stress, absorption of radiation by the
leaf tends to decrease due to lower leaf water content. Although water
absorbs most strongly in the wavelengths of the infrared region of the
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spectrum from approximately 1300 nm to 2500 nm (4),
some absorption also occurs at lower wavelengths. As
water is lost from a leaf, reflectance increases and absorp-
tion decreases, primarily as a result of water’s radiative
properties (5, 6). Even after accounting for the radiative
characteristics of water, secondary effects occur. These
include the influence of water content on absorption by
other substances in the leaves, such as pigments. Also in-
cluded as secondary are the effects of water content on
wavelength-independent processes, particularly multi-
ple reflections inside the leaf (7).

Moreover, drought stress not only causes leaf water
content to decline but also affects physiological processes
(e.g. leaf conductance, photosynthetic rates, etc.). Fur-
thermore, changes in pigment and nitrogen concentra-
tion of plant tissue will occur. For example, chlorophyll
and RubisCO contents decline as the leaf remobilizes re-
sources under stress conditions (8). Chlorophyll and ac-
cessory pigments absorb strongly in the visible range (9,
10). Carter and Knapp (11) described a consistent stress
induced alteration of leaf reflectance at visible wave-
lengths (~400–720nm) since chlorophyll is the major ab-
sorber in the leaf and the metabolic disturbance brought
about by stress alters leaf chlorophyll concentrations (9).
Leaf reflectance in the visible range of plants experienc-
ing nutrient deficiency was also found to increase since
nitrogen (and magnesium) is essential in the formation
of chlorophyll. As leaves become more chlorotic, reflec-
tance increases and the reflectance peak, normally cen-
tred at about 550 nm, broadens towards the red as ab-
sorption of incident light by chlorophyll decreases (12).
Plant responses to water deficit therefore include both
biochemical and morphological changes that primarily
lead to acclimation and later to functional damage and
the loss of plant parts (13).

A lot of effort has been made towards the use of spec-
tral reflectance of leaves and canopies for stress detection
in agricultural environments. While leaf reflectance is
driven by the chemical composition of the leaves, the
reflectance of a canopy is influenced by its geometry – the
leaf area index, inclination and clumping of the leaves –
as well as the reflectance of single leaves. In this study we
only concentrate on the reflectance of leaves and not of
the whole canopy.

The aim of the present study was, on the one hand, to
evaluate the impact of drought stress on plant physiolog-
ical traits and leaf reflectance of wheat (Triticum aestivum
and Triticum durum) occurring at different phenological

stages (at flowering and/or grain filling). On the other
hand, the incidence of two consecutive drought events
and recovery of plants after drought was investigated.
The analysis of the effect of consecutive stress periods
and recovery on changes in leaf reflectance has rarely
been performed until now but might gain in importance
considering the predicted increased frequency of drought
events whereby plants could be exposed to drought re-
peatedly (2, 14, 15, 16).

MATERIAL AND METHODS

1. Experimental Setup

Plants (Triticum aestivum L. cv. Xenos and Triticum
durum L. cv. Floradur) were grown in 8 litre plastic pots
(7). Simulation of seasons in the growth chamber was
based upon long-time observation of temperature and
relative humidity (past 10 years; meteorological station:
16°29' eastern longitude and 48°15' northern latitude). Il-
lumination of the growth chamber was accomplished by
54 lamp units consisting of a lamp (Powerstar HQI TS
250/NDL UVS, 250W, Osram, Germany) and an appro-
priate reflector (Osram, Germany) yielding a PPFD of
~1200 mmol m–2 s–1 in 1.5m above the ground. Detailed
climatic conditions are summarized in Table 1.

For germination, 25 seeds of T. aestivum / T. durum
were placed in each pot (7 replicates) and seedlings were
thinned to 20 plants per pot. Nitrogen fertilization (2.11g
N per pot; equivalent to 150kg N/ha) with Nitramoncal
(27% N) was evenly split in three bits (before sowing, at
stem elongation and at heading). P and K were supplied
with Hortipray (NPK 0:52:34; 2.05g/pot, equivalent to
180kg K/ha). Prior to sowing the agricultural soil was ad-
ditionally fertilized with »Flory Basisdünger 10®« (Euflor
GmbH, Germany; trace elements). As cultural substrate,
a 2:1 mixture of air-dried and sieved (<4mm) agricul-
tural top soil (6.33kg; A-Horizon; chernozem) and quartz
sand (3.17kg; 0.2-2.0 mm) was used.

Four different treatments were set up per species –
one control treatment and three treatments exposed to
drought at different times during ontogeny:

AC/DC: control plants of T. aestivum / T. durum;
AF/DF: T. aestivum / T. durum exposed to drought stress
at flowering; recovery after anthesis; AG/DG: T. aesti-
vum / T. durum exposed to drought stress at grain filling;
AFG/DFG: T. aestivum / T. durum exposed to drought
stress at flowering and grain filling.
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TABLE 1

Summary of climatic conditions in the growth chamber.

Spring Summer

Temperature 07–14°C day / 06–12°C night 17–26°C day / 14–20°C night

Relative humidity 60–80% day / 75–90% night 50–70% day / 60–90% night

Light (1m above ground) ~ 700 mmol m–2 s–1 ~ 700 mmol m–2 s–1

Day length 13.5 h 15.5 h
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Soil humidity of control plants was consistently held
at 20–23 vol% (AC/DC). Drought stress at flowering was
imposed by halving water supply 10 days before the be-
ginning of pollen shedding resulting in a soil humidity of
~10 vol% (TDR Trime, Imko Micromodultechnik GmbH,
Germany) at flowering (AF/DF). After flowering, plants
receiving a second stress at grain filling were allowed to
recover for 8 days (water supply similar to control plants)
before the second stress was imposed by halving water
supply again (soil humidity during measuring period
~10 vol%; AFG/DFG). Plants receiving drought stress
only at grain filling (AG/DG) were treated similar to
control plants until after flowering. Drought stress was
imposed at the same time as in plants of the treatment
stressed twice.

2. Measurements

2.1. Physiological Measurements

Physiological and spectral measurements were made
in the mid region of the youngest fully expanded leaves at
three developmental stages: vegetative growth, flowering
and grain filling.

Gas exchange measurements (A/Ci curves) were made
using a CIRAS-I system (PP-Systems, U.K.) with an ex-
ternal air conditioning system. Leaves were placed in a
cuvette of 2.5 cm², which was illuminated with a PPFD
of 1000 mmol m–2 s–1. Temperature of the leaf chamber
was maintained at 20 °C, air flow was set to 300 ml min–1

and relative humidity of the incoming air was held at
45–55%. Light saturated photosynthetic rates (Asat) refer
to measurements at growth conditions under saturating
light intensities (CO2: 350–370 mmol mol–1; light: 1000
mmol m–2 s–1).

Actual leaf conductance (gL) was measured with a
steady state porometer (PMR-4, PP-Systems; U.K.). Data
were collected separately for both upper (adaxial) and
lower (abaxial) leaf surface.

Chlorophyll content (Chltot) of leaves was determined
with a SPAD-502 hand held chlorophyll meter (Minolta,
Japan; (18)). For the measurement of absolute chloro-
phyll content per unit leaf area [mg cm–2] small leaf discs
of known area were cut and transferred to 5 ml of N,N-
Dimethylformamide. Samples were stored at –18°C until
spectrophotometer readings of the eluate were taken
(DU-7400, Beckman, USA; (19)). A calibration curve of
SPAD readings versus absolute chlorophyll content was
used to convert the SPAD readings into area based chlo-
rophyll contents.

For calculation of the relative water content (RWC),
leaf material was collected and fresh weight was immedi-
ately determined. Saturated weight was measured after
placing the leaf discs in Petri dishes between wet filter pa-
per for 24 hours (4 °C, dark). Dry weight was determined
after drying leaf material to constant weight at 70 °C.
Relative water content (20) was then calculated as:

RWC = ((fresh weight – dry weight) /
(saturated weight – dry weight)) * 100 [%]

and actual leaf water content was calculated as

AWC = ((fresh weight – dry weight) /
(fresh weight)) * 100 [%].

Plant material for measuring leaf nitrogen content
([N], expressed as percentage of dry matter) was dried to
constant weight (70°C) and milled (Cyclotec® Sample
Mill; Planetary Ball Mill, PM 4000, Retsch). An aliquot
of 1–2 mg of each sample (pooled samples) was weighed
into tin capsules and analysed by isotope ratio mass spec-
trometry (IRMS). A continuous-flow IRMS system, con-
sisting of an elemental analyser (EA 1110, CE Instru-
ments, Milan, Italy) which was interfaced to the IRMS
(DeltaPLUS, Finnigan MAT, Germany) was used.

2.2. Spectral measurements

Leaf spectral reflectance was measured with a Field-
Spec Pro FR in connection with a plant reflectance probe
from Analytical Spectral Devices Inc., Boulder, CO. The
radiometer operates in the spectral range from 350 to 2500
nm. In the 350 to 1000 nm range, the sampling interval is
approximately 1.4 nm and the spectral resolution (full
width at half maximum) is 3 nm. In the 1000 to 2500 nm
range, the sampling interval is 2 nm and the spectral reso-
lution is 10 to 12 nm. The reflectance probe is equipped
with an internal light source and works with a bi-conical
measurement geometry. The device was adapted for a
sample area of 19 mm by 7 mm to be able to measure the
reflectance of individual wheat leaves. The detector field
of view subtends an angle of up to 25°, and its axis is in-
clined by an angle of 25° to the sample normal. Radiance
measurements were performed on single leaves (youngest
fully expanded) and on a Spectralon panel serving as a
white reference. Reflectance values were obtained as ratios
of leaf radiances and Spectralon radiances.

Relative difference of reflectance spectra between
stress and control treatments (DR/R) was calculated as
[((Rstress–Rcontrol)/Rcontrol)*100; (%)].

In addition, three spectral indices were calculated:
photochemical reflectance index (PRI), an index for the
estimation of relative water content (RWCi) and an index
for the estimation of the actual water content (AWCi).
The PRI is widely used for the estimation of photo-
synthetic radiation use efficiency. It was proposed ac-
cording to the finding that the interconversion of xantho-
phyll cycle pigments in intact leaves can be detected as
subtle changes in absorbance at 505–510 nm (21) or the
reflectance at 531 nm (22). The photochemical reflectance
index (PRI), incorporating reflectance at 531 nm (xantho-
phyll cycle signal), was then defined as [(R570-R531) /
(R570+R531)] in the attempt to establish a reflectance-
based photosynthetic index (23). Concerning the attempt
to trace leaf water content (RWC and AWC) with spec-
tral indices, a lot of effort has been made and a number of
different indices have been developed for numerous crop
species: among them the water index (WI; R900 / R970;
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(24)), the water band index (WBI; R905 / R980; (25)) and
some other indices described by Yu et al. (26). In the present
study, for estimating RWC the ratio RWCi = R1483 / R1650

and for estimating AWC the ratio AWCi = R1121 / R1430

(26) were used.

2.3. Statistical Analysis

To test the level of significance between control plants
and those of the stress treatments, data were subjected to
a one-way analysis of variance (ANOVA; Systat 8, SPSS
Inc.). For spectral measurements the mean of the five re-
gions showing greatest differences between treatments
was calculated (520–530nm, 570–590 nm, 690–710 nm,

1410-1470nm and 1880-1940nm) and used for statistics
(ANOVA). All tests were made separately for the differ-
ent species and phenological stages. Correlation analysis,
testing the relationship between physiological parameters
and spectral indices, was performed with Statgraphics
Plus 5.0 software package (Statistical Graphics Inc.).

RESULTS

Physiological Measurements

Drought stress at flowering substantially reduced light
saturated photosynthetic rates (Asat) of both species (AF:
–36%, DF: –37%; Table 2). Rewatering caused Asat to re-
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TABLE 2

Summary of physiological traits of T. aestivum and T. durum. Significance levels refer to the differences between control and

stress treatments. n=5-30; n.s.: not significant, *: p £ 0.05; **: p £ 0.01; ***: p £ 0.001.

Triticum aestivum L. Triticum durum L.

AC AF AG AFG DC DF DG DFG

Asat vegetative 21.2 17.5

flowering 16.9 10.7*** 15.6 9.9***

grain filling 13.8 12.2 n.s. 4.4*** 6.9*** 11.5 14.5** 3.9*** 6.1***

gL US vegetative 185.0 224.3

flowering 453.9 81.2*** 342.9 113.3***

grain filling 508.2 387.2*** 56.9*** 93.0*** 382.5 370.7 n.s. 86.8*** 125.0***

gL LS vegetative 84.0 87.4

flowering 164.1 18.4*** 129.3 25.7***

grain filling 171.8 116.3** 15.3*** 20.3*** 142.5 101.1* 26.4*** 48.1***

RWC vegetative 86.7 91.3

flowering 83.8 74.0** 86.5 82.9 n.s.

grain filling 76.3 81.9* 57.1*** 64.0*** 81.8 82.0 n.s. 67.4*** 74.2*

AWC vegetative 81.2 83.1

flowering 72.2 68.8** 77.4 76.0 n.s.

grain filling 74.1 74.8 n.s. 68.3 n.s. 71.1** 77.8 78.0 n.s. 75.5** 76.0 n.s.

Chltot vegetative 46.8 53.5

flowering 55.0 59.2*** 55.7 53.4*

grain filling 48.3 50.3** 61.7*** 55.6*** 49.2 54.0*** 52.1** 53.4***

Leaf [N] vegetative 4.3 4.6

flowering 4.4 4.2** 4.2 3.8***

grain filling 2.4 2.3 n.s. 1.9** 2.0** 2.4 2.5 n.s. 2.1* 2.2 n.s.

Abbreviations: A: T. aestivum; D: T. durum; C: control; F: drought at flowering, plants were recovered at grain filling; G: drought
stress at grain filling; FG: drought stress at flowering and grain filling. Asat: [mmol m–2 s–1

], gL: [mmol m–2 s–1
], RWC: [%], AWC [%],

Chltot: [mg cm–2
]; Leaf [N]: leaf nitrogen content in % dry matter; US: upper leaf surface, LS: lower leaf surface
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Figure 1. Leaf reflectance of T. aestivum. Row 1a-d shows leaf reflectance of control plants (AC; ) and drought stressed (AF; – – –) plants at
flowering. Row 2a-d represents leaf spectra of control plants (AC; ) and plants rewatered for 15 days (AF; – – –; recovery) at grain filling. Row
3a-d shows leaf reflectance of control plants (AC; ) and plants stressed at grain filling either the first time (AG; . . . .) or the second time (AFG;
– ... –). 1-3a shows the original leaf spectrum and 1-3/b-d show the regions of greatest differences between stress and control treatments in detail.
Curves represent the mean of 20-30 leaf spectra ± standard error.

Figure 2. Leaf reflectance of T. durum. Row 1a-d shows leaf reflectance of control plants (DC; ) and drought stressed (DF; – – –) plants at flow-
ering. Row 2a-d represents leaf spectra of control plants (DC; ) and plants rewatered for 15 days (DF; – – –; recovery) at grain filling. Row 3a-d
shows leaf reflectance of control plants (DC; ) and plants stressed at grain filling either the first time (DG; . . . .) or the second time (DFG; – ... –).
1-3a shows the original leaf spectrum and 1-3/b-d show the regions of greatest differences between stress and control treatments in detail. Curves rep-
resent the mean of 20-30 leaf spectra ± standard error.
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cover to nearly control values until grain filling in T.
aestivum (–11%). In T. durum, values at grain filling even
exceeded those of control plants (+25%). At grain filling
however, in both species, reductions were more pro-
nounced in plants receiving drought stress only at grain
filling (AG: –68%, DG: –66%) than in those already
stressed at flowering (AFG: –50%, DFG: –47%).

Regarding leaf conductance (gL), T. aestivum was more
susceptible to drought than T. durum independently of
phenology (Table 2). Rewatering plants after drought
stress at flowering restored gL on the upper surface in T.
durum. In T. aestivum, however, values remained some-
what below values of control plants. Drought at grain
filling more strongly affected gL in AG/DG compared to
AFG/DFG.

Relative water content (RWC) of plants stressed at
flowering was reduced (AF: –12%, DF: –4%; Table 2). At
grain filling, RWC of formerly stressed plants was equal
to or even exceeded values of control plants (AF: +7%,
DF: +0.3%). Drought at grain filling resulted in an even

stronger reduction of RWC than at flowering (average:
A: –21%, D: –14%). In both species, RWC of plants
stressed only at grain filling was lower than that of plants
already stressed at flowering.

Actual leaf water content (AWC) was also reduced
significantly under drought (Table 2). In contrast to RWC
the changes of AWC in the course of phenology were
more pronounced which is due to the fact that the AWC
only represents the water content as percentage of fresh
weight whereas the RWC represents the actual water
content given with respect to a standard measure (leaves
under conditions of water saturation).

Drought at flowering caused an increase of total chlo-
rophyll content (Chltot; mg cm–2) in AF (+11%) and a de-
crease in DF (–4%; Table 2). Rewatering resulted in
higher Chltot contents at grain filling (AF: +4%, DF:
+10%). Those plants subjected to drought at grain filling,
either the first or the second time, also showed higher
Chltot values compared to control plants (AG: +28%, DG:
+6% and AFG: +15%, DFG: +8%, respectively).

Leaf nitrogen content (leaf [N], in % of dry matter)
was reduced in plants subjected to drought at flowering
(AF: –6%, DF: –11%; Table 2). At grain filling, leaf [N]
from formerly stressed plants was still lower in T. aesti-
vum (–5%) but higher in T. durum (+8%) when com-
pared to control plants of either species. Plants subjected
to drought stress during grain filling showed a reduction
in leaf [N]. However, the reductions were more pro-
nounced in plants stressed only at grain filling (AG:
–20%, DG: –11%; AFG: –16%, DFG: –7%).

Spectral Measurements

Subjecting plants to drought stress, either at flowering
or at grain filling, resulted in a general increase of single
leaf reflectance (R; Figure 1–3). In both species, five
spectral regions with relatively high differences were ob-
served: 520–530 nm, 570–590 nm, 690–710 nm, 1410–
1470 nm and 1880–1940 nm (Figure 3). Drought at flow-
ering increased R in these spectral regions by up to +12%,
+12%, +10%, +5% and +9% in T. aestivum and by up
to +11%, +12%, +9%, +5% and +15% in T. durum
(Table 3). Although rewatering plants after the stress pe-
riod at flowering resulted in a recovery of plant physio-
logical traits and water relations (see above) the effects
observed on leaf R were different. Changes in leaf re-
flectance (DR/R, %) between control plants and formerly
stressed plants of T. aestivum in the range of 520–530 nm,
570–590 nm and 690-710 nm were even greater after re-
covery than during the stress period (520–530 nm:
+15%, 570–590 nm: +17%, 690–710 nm: +15%; Table
3). However, the differences at 1410–1470 nm and
1880-1940 nm decreased during recovery. In contrast,
DR/R of T. durum decreased during recovery within the
entire range of the spectrum. The greatest decrease in
DR/R was observed in the 1880-1940 nm range.

At grain filling, T. aestivum stressed solely at grain fill-
ing (AG) showed the smallest increase of R in compari-
son to control plants which was surprising since the
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Figure 3. Relative difference (DR/R) between reflectance of stressed
and control plants of a) T. aestivum and b) T. durum. Differences

were calculated as [(Rstress – Rcontrol)/ Rcontrol]*100 (%). Legend: AF.
DF: differences between control and plants stressed at flowering.
measured at flowering; AF. DF (recov.): differences between control
and plants stressed at flowering. measured at grain filling after being
rewatered for 15 days; AG. DG: differences between control and
plants stressed at grain filling. measured at grain filling; AFG. DFG:
differences between control and plants stressed at flowering and
grain filling. measured at grain filling; n=20-30.
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changes in physiological traits were greatest (Table 2). In
T. durum, however, DR/R between stressed plants and
control was greater than that observed in plants stressed
at flowering. (The only exception gave the wavelength
range of 1880–1940 nm where the differences were smal-
ler at grain filling compared to flowering.)

Drought not only caused leaf R in the near infrared re-
gion (NIR) to increase but also in the visible range of the
spectrum. Here, the changes were even greater than in
the NIR independently of the occurrence of drought in
phenology. Of all stress treatments and stress periods in
phenology, the greatest DR/R in the visible range was ob-
served at grain filling in the treatment stressed twice (sec-
ond stress period; Table 3).

Spectral indices for estimating leaf RWC (RWCi) and
AWC (AWCi) as well as photochemical reflectance index
(PRI) were calculated to follow RWC and AWC as well
as Asat and leaf [N] in the course of phenology (Figure 4,
5; Table 4). In both species, RWCi was less correlated
with the measured values (T. aestivum: r²=0.079, T. du-

rum: r²=0.467) than AWCi was (T. aestivum: r²=0.715,
T. durum: r²=0.953). Tracing the measured values of
RWC using RWCi was neither possible in T. aestivum nor
in T. durum (Figure 4). Using AWCi it appeared possible
to follow the trend of measured AWC in both T. aestivum

and T. durum, during phenology but only for control
plants. At grain filling, the difference in the AWC esti-
mated from leaf R in T. aestivum between recovered and
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TABLE 3

Summary of relative difference (%) for physiological parameters and spectral regions of greatest difference. All data refer to

the differences between plants subjected to drought stress either at flowering and/or grain filling and control plants. Bold val-

ues highlight the differences between control plants and recovered plants (measured at grain filling). Relative difference (%)

was calculated as [(stress – control)/ (control)*100]. Significance levels refer to the differences between stress treatments or

recovered plants and control. n=5-30; n.s.: not significant, *: p £ 0.05; **: p £ 0.01; ***: p £ 0.001.

Triticum aestivum L. Triticum durum L.

AF/AC AG/AC AFG/AC DF/DC DG/DC DFG/DC

RWC flowering –12%** –4% n.s.

grain filling +7%* –25%*** –16%*** +0,3% n.s. –18%*** –16%*

AWC flowering –5%** –2% n.s.

grain filling +1% n.s. –8% n.s. –4%** +0,3% n.s. –3%** –2% n.s.

Chltot flowering +11%*** –4%*

grain filling +4%** +28%*** +15%*** +10%*** +6%** +15%***

Leaf [N] flowering –6%** –11%***

grain filling –5% n.s. –20%** –16%** +8% n.s. –11%* –16% n.s.

R520-530 flowering +12%*** +11%***

grain filling +15%*** +0,2% n.s. +13%*** +4% n.s. +17%*** +22%***

R560-590 flowering +12%*** +12%***

grain filling +17%*** +3% n.s. +14%*** +5% n.s. +18%*** +24%***

R690-710 flowering +10%*** +9%***

grain filling +15%*** +2% n.s. +14%*** +5% n.s. +4%*** +19%***

R1410-1470 flowering +5%*** +5%*

grain filling +4%*** +4%** +3%* +4%*** +9%*** +6%***

R1880-1940 flowering +9%*** +15%***

grain filling +7%*** +1% n.s. +4%* +3%* +12%*** +7%***

Abbreviations: see Table 2, R: leaf reflectance.
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control plants give the impression of an even greater re-
duction than during the stress period at flowering itself,
although the measurements of AWC reveal full recovery.
In T. durum the differences decreased during recovery.
However, values of AWCi remained below control plants
despite the complete recovery becoming obvious from
measured values (Figure 4; see also DR/R, Figure 3).

PRI correlated quite well with Asat but even better
with leaf [N] in both species (Table 4). Tracing pheno-
logical changes in Asat and leaf [N] using PRI did not give
good results for plants subjected to drought stress at any
time in ontogeny. Better results for this correlation were
only obtained for control plants. Therefore, neither re-
covery of plants after drought at flowering nor the extent
of change in Asat and leaf [N] due to drought could be es-
timated appropriately.

4. DISCUSSION

Drought stress significantly influenced plant physio-
logical traits independently of the time of its application
in phenology. The lowering of the actual leaf conduc-
tance (gL), as observed during all stress periods in the
present study, is one of the first processes occurring under
decreased soil water availability providing a higher water
use efficiency to the plant (27, 28, 29). Moreover, as re-
viewed by Cornic (30), stomatal closure is mainly re-
sponsible for the decline in net photosynthetic rate of C3

leaves subjected to moderate drought stress. However, at
a certain stage of stress, internal CO2 concentration (Ci)

226 Period biol, Vol 110, No 3, 2008.

Rita Linke et al. Can stress and recovery be traced by changes leaf reflectance?

Figure 4. Comparison of the phenological course of measured and es-
timated RWC and AWC. a-d) T. aestivum and e-h) T. durum. Leg-
end: A: T. aestivum; D: T. durum; C: control. F: drought at flower-
ing. recovered at grain filling. G: drought at grain filling. FG:
drought at flowering and grain filling. n=6 for measured RWC and
AWC. n=20-30 for estimated RWC (RWCi) and AWC (AWCi).
Errors represent standard error.

Figure 5. Comparison of the phenological course of light saturated

photosynthetic rates (Asat). leaf nitrogen content (leaf [N]) and pho-
tochemical reflectance index (PRI). a-c) T. aestivum and d-f) T.
durum. Legend: A: T. aestivum; D: T. durum; C: control. F:
drought at flowering. recovered at grain filling. G: drought at grain
filling. FG: drought at flowering and grain filling. n=3-12 for Asat

and leaf [N]. n=20-30 for PRI. Errors represent standard error.

TABLE 4

Correlation statistics for the relationship between physio-

logical parameters (RWC, AWC, Asat and leaf [N]) and

spectral indices (RWCi, AWCi and PRI). In addition to the

correlation coefficient (r²) and the significance level (p),

the slope and intercept of the linear equation are given.

r² p slope intercept

Triticum aestivum L.

RWC 0.079 0.542 -4.526 0.526

AWC 0.715 0.017 0.037 0.564

Asat 0.679 0.023 1.096 0.024

leaf [N] 0.774 0.009 5.774 0.019

Triticum durum L.

RWC 0.467 0.091 -1.611 0.613

AWC 0.953 0.000 0.094 -3.848

Asat 0.514 0.070 1.293 0.020

leaf [N] 0.986 0.000 8.499 8.551
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frequently increases, indicating the predominance of
non-stomatal limitations to photosynthesis (31, 32, 33).
Reductions of light saturated photosynthetic rates (Asat)
in the present experiment were mainly due to stomata
limitation since a significantly lower Ci was found (data
not shown).

In the present study, drought stress resulted in higher
leaf reflectance (R) over the entire spectrum both in T.
aestivum and in T. durum, a response also found else-
where (c.f. 34, 35, 26). However, five regions with rela-
tively high differences were observed: 520–530 nm, 570–
590 nm, 690–710 nm, 1410–1470 nm and 1880–1940 nm
(Figure 1–3).

Rewatering plants after the stress period at flowering
allowed them to restore their physiological traits until
grain filling (15 days rewatered). RWC of recovered plants
even exceeded that of control in T. aestivum (+7%) and
was restored to control level in T. durum (+0.3%). There-
with, Asat also recovered. Only gL of plants from both spe-
cies remained somewhat lower than that of control plants.
However, the results from leaf R did not follow this trend.
In T. aestivum, DR/R within the range of 1410–1470 nm
and 1880–1940 nm remained nearly as high as during the
stress period at flowering despite the 7% higher RWC of
recovered plants. Though in T. durum a reduction of DR/R
was found, leaf R still remained above that of control
plants. Within the visible range of leaf spectra DR/R in T.
aestivum even increased during recovery compared to the
actual stress period. In T. durum DR/R within the visible
range decreased during recovery but R still remained
above that of control plants as already observed for the
near infrared region. The results of the present study
therefore indicate that quantifying the extent of change for
either leaf water content or Chltot and leaf [N] from
changes in leaf R is problematic. Especially recovery from
drought could not be traced using leaf R since the differ-
ences between formerly stressed plants and control plants
remained high as observed in T. aestivum or decreased
only slightly as in T. durum but in neither of the species in-
vestigated leaf R returned to control level despite the com-
plete recovery of physiological traits.

The reason for the enduring differences in leaf R be-
tween fully recovered plants and control plants remains
rather unclear and information on leaf R during recovery
of plants after a stress period is rare in literature. How-
ever, it is assumed that secondary effects following
drought stress might be involved. Drought can affect the
cell structure and biochemistry (e.g.: 36, 37, 38, 39) and is
further known to influence the morphology of the leaf
surface by means of changes in the content and/or com-
position of epicuticular waxes (40, 41, 42, 43) or the oc-
currence of hairs (42). Moreover, drought has the poten-
tial to accelerate ontogenetic development (44, 45). Such
alterations of leaf morphology and/or biochemical com-
position could not only have influenced leaf R after re-
covery but also have attributed to (or might be the reason
for) the unexpectedly great differences in leaf R observed
in plants subjected to a second stress period at grain fill-
ing. This result contrasts again with the observations of

physiological traits since those were more affected by
drought in AG and DG compared to AFG and DFG at
grain filling. The less pronounced reaction of physiologi-
cal traits to a second drought period is attributed to some
preconditioning of plants already exposed to drought at
flowering and/or the higher amount of green biomass
(transpiring surface) of plants from the treatment stres-
sed solely at grain filling. Plants of the treatment stressed
twice (AFG and DFG) were watered optimally for eight
days after drought at flowering before water supply was
halved again. Leaf osmotic potential remained below
(more negative) that of control plants during these days
providing a better initial situation concerning osmotic
adjustment (data not shown) for plants already experi-
encing a first drought period at flowering.

The differences observed in DR/R during recovery be-
tween T. aestivum and T. durum show that no general
prediction can be made concerning the potential to trace
recovery from a stress situation with leaf reflectance. Ap-
parently, different species and even cultivars respond in-
consistently to drought stress with respect to their spec-
tral signature. Especially the cultivar of T. aestivum used
in this study (cv. Xenos) appears not promising for trac-
ing recovery with leaf reflectance. In T. durum (cv.
Floradur) DR/R decreased during recovery within the
entire range of the spectrum but the greatest decrease in
DR/R occurred in the 1880–1940 nm range. Since this
spectral range falls into the main atmospheric water bands
it is unsuitable for remote sensing by satellite or airplane.
However, to test an eventual potential for short distance
remote sensing/ precision farming, we performed simu-
lations of the transmittance in these wavelength ranges
using the code LOWTRAN 7 (46) assuming the worst
case scenario (99% air humidity). Results showed that at
distances below 100 m the transmittance was larger
than 50% in the wavelength range 1410–1470 nm. At
1880–1940 nm transmittance became larger than 50%
only at distances below 15 m. This shows a potential for a
short distance (below 100 m) remote sensing mainly in
the wavelength range 1410–1470 nm. This remote sens-
ing application would however at least require an accu-
rate determination of the distance between sensor and
canopy, an artificial radiation source (since the solar radi-
ation is already totally absorbed) and an accurate deter-
mination of air humidity (to apply a correction to the
measured transmittance). Other aspects like sensor sen-
sitivity, characteristics of the radiation source, require-
ments regarding the accuracy of the sensor to determine
plant optical path etc… would be needed to be investi-
gated within the scope of a future study.

In contrast to changes in leaf R within the range of
1410–1470 nm and 1880–1940 nm, which can be attrib-
uted mainly to differences in leaf water content, the
changes within the visible range are not well defined
with respect to a certain stressor. As already described by
Carter (47) an increased reflectance at visible wavelengths
(400–700 nm) is the most consistent response to stress
within the 400–2500 nm range. The often made assump-
tion that the chlorophyll content of leaves was propor-
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tional to moisture content (e.g. 48) may be correct for
some species but cannot be generalized to all ecosystems.
Variations in chlorophyll content can be caused by water
stress but also by phenological status of the plant, atmo-
spheric pollution, nutrient deficiency, toxicity, plant dis-
ease, and radiation stress (39, 49). These findings are
supported by the results from the present study where
different trends for RWC, Chltot and leaf [N] were found.
Due to these adverse effects of leaf [N] (decrease) and
Chltot (increase) an interpretation of the increased leaf R
is difficult. At least the specific cause of these differences
remains uncertain. However, the increased Chltot con-
tent found might result from leaf shrinkage leading to a
seemingly higher chlorophyll content per unit leaf area
(mg cm–2).

Finally, three spectral indices (RWCi, AWCi and PRI)
were tested towards their ability in estimating biophysi-
cal parameters (RWC, AWC, Asat and leaf [N]; Table 4).
Concerning the estimation of leaf water content a better
correlation was found for AWC. Unfortunately, the AWC
is the less meaningful parameter since it only gives the
water content as percentage of fresh weight which might
vary greatly between species, phenology and environ-
mental conditions (39). The RWC, however, represents
the actual leaf water content with respect to a standard
measure (leaves under conditions of water saturation;
(39) and is therefore the more appropriate indicator of
plant water status. Moreover, following changes in bio-
physical parameters using these indices was not possible
due to the different extent of changes in leaf R compared
to physiological traits under drought stress at different
phenological stages. From these results it is concluded
that a good relationship between spectral indices and
biophysical parameters does not necessarily lead to an
appropriate estimation of biophysical parameters at a
given phenological state and/or physiological status.

5. CONCLUSION

Drought stress occurring at different phenological
stages increased leaf R throughout the whole spectrum.
Unfortunately, the degree to which plant physiological
traits and water relations changed could not be quanti-
fied by the extent of change in leaf R, at least when
drought occurred at different phenological stages. The
main concern of the present study, however, was to test
the ability of leaf reflectance to follow recovery of physio-
logical traits after a stress period which may be of essential
importance when considering the occurrence of repeated
drought events. Distinguishing between a currently oc-
curring stress situation and an already passed one could
become crucial in context with the application of spectral
measurements in the field to trace stress situations and to
make recommendations on fertilization or irrigation.
Unfortunately, recovery from drought stress could not be
traced by leaf R since the differences between formerly
stressed plants and control plants remained either high
as observed in T. aestivum or decreased only slightly as in
T. durum. In neither species leaf R returned to control
level despite the complete recovery of physiological traits.

These results, however, also indicate that rather big dif-
ferences between different species might occur and
further investigations using different species with differ-
ent leaf morphology and anatomy would be needed.

Estimating leaf water content (RWC and AWC) as
well as Chltot and leaf [N] from reflectance measure-
ments gave good correlations. For tracing changes in
physiological parameters during phenology and stress
periods, however, the use of these indices was not prom-
ising due to false estimation of stress situations and re-
covery (Figure 4, 5). An appropriate estimation appear-
ed, if at all, only possible in unstressed control plants. A
good correlation between spectral indices and physiolog-
ical parameters alone is therefore not necessarily suffi-
cient for estimating physiological parameters from leaf
spectra appropriately.
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