The Endosymbiont Wolbachia in Rhagoletis pomonella and R. cingulata (Diptera, Tephritidae)

zur Erlangung des Akademischen Grades
Diplomingenieur der Landwirtschaft und Diplomingenieur der Phytomedizin

vorgelegt von
Hannes Schuler
betreut von
Ao. Univ. Prof. Dipl-Ing. Dr. Christian Stauffer
durchgeführt am Institut für Forstentomologie, Forstpathologie und Forstschutz, Department für Wald- und Bodenwissenschaften Universität für Bodenkultur Wien

Juni 2009

Alles Gescheite ist schon gedacht worden, man muss nur versuchen, es noch einmal zu denken.

Johann Wolfgang v. Goethe

Danksagung

In erster Linie möchte ich meinem Betreuer Prof. Christian Stauffer besonderen Dank aussprechen. Er hat mich sehr unterstützt und immer wieder neu motiviert, außerdem ist er mir zu jeder Zeit mit Rat und Tat zur Seite gestanden. Den Spaß an meiner Arbeit und das Interesse, an der Molekularen Ökologie weiterzuarbeiten, habe ich sicher ihm zu verdanken. Danke, Christian!

Weiters möchte ich mich beim gesamten Team des Instituts für Forstentomologie, Forstpathologie und Forstschutz bedanken, das es mir ermöglicht hat, in einem freundlichen Umfeld meine Diplomarbeit durchzuführen. Nicht nur das Arbeiten im Labor, auch die Kaffeepausen in der Küche und die Ausflüge zu den Heurigen haben mir sehr viel Spaß gemacht.

Besonders bedanken möchte ich mich bei Susanne Krumböck und Dr. Wolfgang Arthofer, die mich mit sehr viel Geduld in die Laborarbeiten eingeschult und für meine Fragen immer ein offenes Ohr haben. Frau Dr. Kirsten Köppler und Herrn Mag. Manfred Wolf möchte ich für die Fliegen danken, die sie mir für meine Untersuchungen zur Verfügung gestellt haben.

Ich möchte mich bei allen Studienkollegen bedanken, die wesentlich dazu beigetragen haben, mein Studium bis zum Schluss durchzuziehen. Nicht nur das gemeinsame Lernen, auch das Feiern bestandener Prüfungen haben die Jahre in Wien zu den schönsten Jahren meines Lebens gemacht.

Zum Schluss möchte ich mich noch ganz besonders bei meinen Eltern bedanken, die mich in diesem Lebensabschnitt sehr unterstützt haben. Es war und ist für mich nicht selbstverständlich, so offene Eltern zu haben und ich bin froh, dass sie es mir immer ermöglichten, meinen Weg zu gehen. Auch bei meinen Schwestern Stephanie und Claudia möchte ich mich für die Unterstützung bei meinem Studium bedanken!

Abstract

Wolbachia is a common intracellular endosymbiontic bacteria found in up to 65% of insects. Wolbachia infections have been detected in all major insect orders. Wolbachia manipulate the reproduction by inducing male killing, parthenogeneis, feminization and the most frequently effect is cytoplasmic incompatibility (CI). CI is an incompatibility between sperm and egg and occurs when infected males mate with uninfected females or females infected with a different Wolbachia strain. The genus Rhagoletis belongs to the dipteran family Tephritidae and contains several economically important pest species worldwide. Recently, it was shown that the European Cherry Fruit Fly, R. cerasi, harbours five different Wolbachia strains containing at least two strains which have the potential to be used in biological control of insect pests.

In this thesis two Rhagoletis species were screened by conventional PCR with wsp primer for Wolbachia. These amplicons were directly sequenced. Further the PCR products have been cloned and about 20 plasmids per species were sequenced. After that the detected strains were characterized by the multilocus strain markers MLST: hcpA, coxA, gatB, ftsZ and fbpA.

The two species screened were the Eastern Cherry Fruit Fly, Rhagoletis cingulata, and the Apple Maggot, Rhagoletis pomonella. R. cingulata is a pest in sweet and sour cherries in North America which was recently introduced in Europe. It has a similar biology as R. cerasi. R. pomonella, is a serious pest in apple orchards in North America and a model species for sympatric speciation. R. pomonella on hawthorn and apple are genetically and ecologically different.

The PCR data revealed that R. cingulata and R. pomonella are infected with Wolbachia. Sequence data proved that R. cingulata contains two different Wolbachia strains, $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$. They are ident to the Wolbachia strains w Cer1 and w Cer2 of R. cerasi comparing the five different nuclear MLST markers.
R. pomonella collected from apple are infected with one Wolbachia strain wPom which was ident to the wCer2 strain based on the wsp gene. Analysis with MLST primers showed one single mutation on the hcpA locus not being detected before.

Zusammenfassung

Wolbachia ist ein intrazellulär lebendes Bakterium, das in bis zu 65\% der Insekten symbiontisch lebt. Wolbachia Infektionen wurden in allen größeren Insektenordnungen nachgewiesen. Wolbachia manipuliert die Vermehrung der Insekten durch male-killing, Parthenogenese, Feminisierung und zytoplasmatische Inkompatibilität (CI). CI bezeichnet eine Inkompatibilität zwischen Spermium und Ei und wird verursacht, wenn sich infizierte Männchen mit nicht infizierten Weibchen kreuzen.

Die Gattung Rhagoletis gehört zu der Zweiflügler-Familie der Fruchtfliegen Tephritidae, Arten dieser Gattung gehören weltweit zu den wichtigsten ökonomischen Pflanzenschädlingen.

In dieser Diplomarbeit wurden zwei Rhagoletis Arten mit einer konventionellen PCR mit wsp Primern auf Wolbachia untersucht. Die untersuchten PCR-Produkte wurden direkt sequenziert. Weiters wurden die PCR Produkte kloniert und ca. 20 Plasmide pro Art sequenziert. Die entdeckten Stämme wurden mit den MLST-Markern - hcpA, coxA, gatB, ftsZ und fbpA -charakterisiert.

Es wurden zwei Arten der Gattung Rhagoletis untersucht. Einerseits die Amerikanische Kirschfruchtfliege Rhagoletis cingulata, einem Schädling bei Süß- und Sauerkirschen in Nordamerika, der kürzlich nach Europa eingeschleppt wurde. Zum anderen handelt es sich um die Apfelfruchtfliege R. pomonella, einem Schädling bei Weißdorn und Apfel in Nordamerika. Bei R. pomonella wurde zum ersten Mal sympatrische Artbildung beschrieben: Arten an Weißdorn und Apfel unterscheiden sich ökologisch und genetisch.

PCR-Daten bestätigten eine Wolbachia-Infektion bei R. cingulata und R. pomonella. Die Sequenzierung der PCR-Produkte ergab, dass R. cingulata mit zwei unterschiedlichen Wolbachia Stämmen wCin1 und wCin2 infiziert ist. Eine genaue Analyse mit fünf verschiedenen MLST-Markern bestätigte, dass Wolbachia in R. cingulata genetisch ident der Wolbachia in der europäischen Kirschfruchtfliege R. cerasi ist.

Von Apfelbäumen gesammelte R. pomonella Individuen sind mit einem WolbachiaStamm, wPom, genetisch ident dem wCer2 Stamm in R. cerasi, infiziert. Genauere Analysen mit den MLST Primern zeigten eine Mutation am hcpA locus.

Index of Abbreviations

A
BLAST
bp
C
${ }^{\circ} \mathrm{C}$

CI

cm
coxA
DNA
dNTP
fbpA
ftsZ
G
g
gatB
hсрA
IIE
IPTG
lacZ
LB
Leu
M
m
MgCl_{2}
min
MLST
n
NJ
$\mathrm{NaOH} \quad$ Sodium hydroxide
PEG
PCR

Adenosine
Basic Local Alignment Search Tool
Base pairs
Cytosine
Degree Celsius
Cytoplasmic incompatibility
Centimetre
Cytochrome c oxidase, subunit I
Deoxyribonucleic acid
2'-deoxyribonucleoside-5'-triphosphate
Outer surface protein
Cell division protein
Guanosine
Gram
Glutamyl-tRNA-(Gln)-amidotransferase
Conserved hypothetical protein
Incompatible Insect Technique
Isopropyl- β-D-1-thiogalactopyranoside
Gene encoding for the enzyme β-galactosidase
Lysogeny broth
Leucine
Molar
Milli
Magnesium chloride
Minute(s)
Multilocus sequence typing
Nano
Neighbor Joining Method

Polyethylenglycole
Polymerase chain reaction

RLOs	Rickettsia-like organisms
RNase	Ribonuclease
rpm	Rounds per minute
sec	Second(s)
SOC	"Salt optimized + carbon"
spp.	Subspecies
T	Thymidine
TAE	Tris[aminomethyl]aminoethane
Taq	Thermus aquaticus
TE-Buffer	Tris-EDTA-Buffer
U	Unit
UV	Ultraviolet (light)
$w \mathrm{Au}$	Wolbachia variant from Drosophila simulans (Australia)
w Aso	Wolbachia variant from Asobara tabida
w Bo	Wolbachia variant from Drosophila borealis
$w \mathrm{Cal}$	Wolbachia variant from Calyptratae sp.
w Cer	Wolbachia variant from Rhagoletis cerasi
$w \mathrm{Chl}$	Wolbachia variant from Chloropidae sp.
$w \mathrm{Cin}$	Wolbachia variant from Rhagoletis cingulata
w Dana	Wolbachia variant from Drosophila anassae
w Dia	Wolbachia variant from Diabrotica barberi
w Dmun	Wolbachia variant from Drosophila munda
$w \mathrm{Mel}$	Wolbachia variant from Drosophila melanogaster
w Mono	Wolbachia variant from Monomorum chinense
w Muni	Wolbachia variant from Muscidifurax uniraptor
$w \mathrm{Na}$	Wolbachia variant from Nasonia vitripennens
$w \mathrm{Ngi}$	Wolbachia variant from Nasonia giraulti
w Pom	Wolbachia variant from Rhagoletis pomonella
w Sol	Wolbachia variant from Solenopsis spp.
wsp	Wolbachia surface protein
wsp81F	Primer for amplifying wsp
wsp691R	Primer for amplifying wsp
X-Gal	5-bromo-4-chloro-3-indolyl- β-D-Galactopyranoside

Table of contents

1. Introduction 1
1.1 The genus Wolbachia 1
1.2 Wolbachia in the dipteran family Tephritidae 4
1.2.1 Wolbachia in the tephritid genus Rhagoletis 5
1.3 Biology of Rhagoletis spp. 7
1.3.1 The Eastern Cherry fruit fly R. cingulata 9
1.3.2 The Apple Maggot R. pomonella 10
2. Aims 12
3. Methods 13
3.1 Samples 13
3.2 Extraction of DNA 13
3.3 PCR with general wsp primer 14
3.4 PCR with MLST 14
3.5 Purification of DNA 15
3.6 Cloning 15
3.7 Phylogenetic analyses of the sequence data 17
4. Results \& Discussion 18
4.1 Detection of Wolbachia by PCR using wsp primers 18
4.2 Wolbachia in Rhagoletis cingulata 19
4.2.1 Phylogenetic characterisation of the w Cin strain by $w s p$ 19
4.2.2 Characterisation of the w Cin strains by MLST 21
4.2.3 Wolbachia in R. cingulata and consequences 27
4.3 Wolbachia in Rhagoletis pomonella 28
4.3.1 Phylogenetic characterisation of the w Pom strain by wsp 28
4.3.2 Characterisation of the w Pom strain by MLST 28
4.3.3 Wolbachia in R. pomonella and consequences 29
5. References 30
6. Appendix 37
Appendix I working protocols 37
Appendix II Cloning 39
Appendix III Alignment of the wsp sequences 41
Appendix IV Alignment of the $f t s \mathrm{Z}$ sequences 42
Appendix V Alignment of the coxA sequences 46
Appendix VI Alignment of the hcpA sequences 48
Appendix VII Alignment of the gatB sequences 50
Appendix VIII Alignment of the $f b p A$ sequences 52
Appendix IX Kimura-2-parameter distances calculated with MEGA4 54
Appendix X Sources of Figures and Tables 57
7. Curriculum vitae 58
Publications and Poster 60

1. Introduction

1.1 The genus Wolbachia

Wolbachia is a gramnegativ endosymbiontic bacterium. Hertig and Wolbach described this endosymbiont in the year 1924 (Hertig \& Wolbach 1924). They were the first to find this Ricketsia Like Organism (RLOs) in Culex pipiens (Diptera). Hertig (1936) named it endosymbiont, Wolbachia pipiens.

Results from different studies show an infection rate from 15 to 75% of all insect species (Jeyaprakash \& Hoy 2000, West et al. 1998, Werren et al. 1995, Werren \& Windsor 2000). Recently, Hilgerboecker et al. (2008) concluded from a metapopulation study that 65% of all insects are infected with this endosymbiont. Low titre infections and low frequency infections mostly lead to

Figure 1.1 Transmission electron micrograph of Wolbachia in a developing spermatid of the moth Ephesia cautella (taken from O’Neill \& RIEGLER 2006)
an underestimation, e.g. ARTHOFER ET AL. (2009A) characterized two Wolbachia strains in Pityogenes chalcographus (Col., Curculionidae) and described that Wolbachia can persist in host species at low densities and low frequencies. Based on a study with wild populations of Drosophila innubila, UnCKLESS ET AL. (2009) showed that there is substantial (20.000-fold) variation in Wolbachia density and that within host Wolbachia, density is positively correlated with both the efficacy of male killing and maternal transmission fidelity.

Infections have been detected in all major orders of insects and some other arthropod classes like the arachnids or the isopods. Further Wolbachia was detected in nematodes (Sironi et al. 1995, Bandi et al. 1998). Wolbachia is supposed to switch frequently between different species (Braig et al. 1994). In
most cases Wolbachia changes the reproduction abilities of the hosts to enhance its vertical transmission (Werren 1997). In some cases Wolbachia can have positive effects on fertility, sperm competition and can be essential for oogenesis (Dedeine et al. 2001). The transmission occurs transovarial through the cytoplasm of host eggs like the mitochondrial DNA and that is the reason why Wolbachia always infects female germlines (Serbus \& SulLivan 2007).

On the basis of nuclear 16S ribosomal sequences, Wolbachia has been grouped into 7 supergroups. In the supergroup A and B are the major Wolbachia strains of the arthropods and supergroup C and D include the most Wolbachia strains of filarial nematodes. Supergroup E includes Wolbachia that infects wing-less insects like the Collembola and Wolbachia strains of the supergroup F are mostly detected in termites. Supergroup G includes Wolbachia strains from Australian spiders (for review see Werren et al. 2008).

Figure 1.2 Map of the w Mel genome (Wolbachia in Drosophila melanogaster) with the location of the five MLST loci and the wsp locus (taken from Baldo et al. 2006); see also Table 3.1.

Three Wolbachia surface proteins wsp have commonly for screening: wsp, wspA and wspB (Braig et al. 1998, Zhou et al. 1998). wsp is divided into four hypervariable regions (HVRs) (Werren et al. 2008) and is quite polymorphic (BALDO ET AL. 2006) and prone to recombination (Werren \& Bartos 2001). Thus this locus is not ideal for the phylogenetic characterization of Wolbachia (Baldo et al. 2006). Still, it is a good marker to be used for detection (ARTHOFER ET AL. 2009b).

In consequence, a supplemental typing system to the wsp genes was developed by Baldo et al. (2006): The Multilocus Sequence Typing System MLST. MLST uses five housekeeping genes gatB, coxA, hcpA ftsZ and fbpA (for details see table 3.1) that are broadly distributed across the w Mel genome of Drosophila melanogaster (Figure 1.2). Strains with similar wsp sequences often have different MLST allelic profiles (Baldo et al. 2006). The MLST alleles can be submitted to the Wolbachia MLST database (http://pubmlst.org/wolbachia/) a site hosted at "The Peter Medawar Building for Pathogen Research" at the University of Oxford, UK.

Wolbachia can precipitate parthenogenetic induction, feminization of males, male killing or cytoplasmic incompatibility (CI). Multipotent Wolbachia strains can induce different effects on different hosts (for review see Werren et al. 2008). In the following I will concentrate on CI as it the most frequent effect detected in insects and plays a major role in that thesis.

CI can be detected when a cross between Wolbachia infected males and uninfected females results in none or in limited offspring (Fig 1.3). This incompatibility is unidirectional as the reciprocal cross i.e. between an uninfected male crossed with a Wolbachia infected female results in normal Wolbachia infected offspring. O’Neill \& KARR (1990) differentiate unidirectional mechanism by a bifactorial mechanism for the first time in Drosophila simulants: Wolbachia modifies the sperm and the sperm can only be rescued if the female has the rescue mechanism. If the female is not infected by the same Wolbachia strain the eggs will remain unfertilized.

Wolbachia can be involved in speciation (Bordenstein et al. 2001). The authors reported about reproductive isolation between the sibling species Nasonia vitripennis and Nasonia girauli. A single Wolbachia infection of N. vitripennis is bidirectional incompatible with a single Wolbachia infection of N. girauli. These different strains have independent origins. They are required as example for horizontal Wolbachia transfer between different species.

Figure 1.3 The phenotype of Wolbachia inducing cytoplasmic incompatibility CI. Wolbachia infected males (red) crossed with not infected females result in no offspring (indicated by black cross) in contrast to the reciprocal crossing which results in a vital Wolbachia infected offspring.

Wolbachia has been suggested as a potential tool for environment-friendly strategies for the control of arthropod species, the major agricultural pests or disease vectors (BEard Et al. 1993, Bourtzis \& O’Neill 1998, Bourtzis \& Braig 1999). A similar way is using Wolbachia-induced CI for pest control. Crosses between uninfected females and infected males result in an egg
mortality for nearly 100\%. Incompatible Insect Technique (IIT) (Boller \& Bush 1974, Boller et al. 1976) is the use of the mechanism of Wolbachiainduced CI for the control of populations of pest insects. Wolbachia transinfection experiments from infected R. cerasi to uninfected medflies Ceratitis capitata (Zabalou et al. 2004) showed the potential of Wolbachia as a means for insect pest population control. The problem for the practical approach is besides others the difficulty of mass rearing Wolbachia infected males only (Bourtzis 2008).

1.2 Wolbachia in the dipteran family Tephritidae

Tephritidae is one of two fly families referred to as "fruit flies". There are almost 5,000 species of tephritids, categorized into almost 500 genera. Tephritid fruit
flies are of major importance in agriculture. Various species of fruit fly cause damage to fruit and other plant crops (WiKIPEDIA 2009).

Wolbachia is described in several tephritid species including the Caribbean fruit fly Anastrepha suspensa (Werren et al. 1995), the South American fruit fly Anastrepha fraterculus (Selivon et al. 2002), six species of the genus Anastrepha: A. grandis, A. striata, A. pickeli, A. oliqua, A. serpentina, A. amita (Coscrato et al. Gene bank), Rhagoletis cerasi (Blümel \& Russ 1989, Riegler \& Stauffer 2002, Arthofer et al. 2009b), Ceratitis capitata (Lincoln et al. 2005), the oriental fruit fly Bactrocera dorsalis (Sun et al. 2007) and in 12 other species of Bactocera in Thailand (Sun et al. 2007, JAMNONGLUK ET AL. 2002).

1.2.1 Wolbachia in the tephritid genus Rhagoletis

The extensive historic data set on distribution of the geographic complexes (Boller et al 1976) coupled with field collections over the entire distribution range of the host species for the last decade (Riegler \& Stauffer 2002, Arthofer et al. 2009b) make R. cerasi to one of the most attractive field models of Wolbachia dynamics. Unidirectional incompatibilities occurred when males from southern and central European populations mated with females from northern European populations (Boller et al. 1976). Blümel \& Russ (1989) detected Rickettsia Like Organisms (RLOs) in the ovaries of individuals in all populations. Riegler \& Stauffer (2002) found an infection with two different Wolbachia strains namely w Cer1 and w Cer2 in the European R. cerasi populations. Infections with the Wolbachia strain wCer1 were found throughout Europe whereas the southern and central Europe was found to be superinfected with wCer2. A comparison of the two different Wolbachia strains with the mating incompatibilities found by Boller et al. (1976) suggested that most likely w Cer2 induces CI. The fact that w Cer1 was present in each individual caused the guess, that w Cer2 is the cause of CI. A follow up project funded by the Austrian Science Foundation (FWF) revealed that European R. cerasi populations are infested by at least five Wolbachia strains (w Cer1-5) (ARTHOFER et al. 2009b) (Fig. 1.5). Recently, K. Köppler (JKI, Dossenheim, personal
communication) confirmed that w Cer2 most likely is the CI inducing strain by performing further crossing studies with w Cer defined populations.

Figure 1.4 Distribution of the unidirectional incompatibility trait between populations of Rhagoletis cerasi. Populations from the south (\bullet) and the north and east ($\mathbf{(})$ exhibited strong cytoplasmic incompatibility CI of 98% in single pair crossings (Boller et al. 1976). Distribution of w Cer1 and w Cer2 of R. cerasi in Europe according to Riegler \& Stauffer (2002). Transition zone is indicated by blue line.

Figure 1.5 The distribution of wCer1-5 of Rhagoletis cerasi in eight European populations, 2007. Only wCer1 was detected in all individuals analysed. Figure taken from Arthofer et. AL (2009B).

1.3 Biology of Rhagoletis spp.

The genus Rhagoletis belongs to the family tephritids and contains important pest species like R. cerasi, the Apple Maggot, R. pomonella, and the Eastern Cherry Fruit Fly, R. cingulata. The biology of these different Rhagoletis species is quite similar (Fig. 1.6).

Figure 1.6 Biology of Rhagoletis species: Adult females lay eggs singly in host fruit and after hatching the larva feeds on the pulp. Mature larvae drop to the ground where they pupate and hibernate in the soil (Boller \& Prokopy 1976)

Adult females move to larval host plants for mating and oviposition. Various reasons for host detection play the foliage colour, tree shape and tree size. Further, the odour of the host fruits act as kairomone attracting flies (Moericke et al. 1975). Males are waiting on the host plants for females and defend the territories for concurrent males (AliNiAzee 1974, Boyce 1934). In order to attract virgin females they emit a highly concentrated pheromone (PROKOPy \& Bush 1972). In order to copulate, males jump or fly on the female’s abdomen and prepare for the fertilization (Brooks 1921, Bush 1969). After fertilization females fly to the maturing fruits to deposit mostly one egg per fruit e.g. R. cerasi or more eggs per fruit e.g. R. completa who is laying 15 or more eggs at each fruit (Boyce 1934, Dean 1969). Under ideal conditions Rhagoletis spp. lay up to 300-400 eggs per female.

A few days after the oviposition the larvae hatch and start feeding in the pulp of the fruits. The larval development is completed in about two to three weeks. Sugar contents and acidity play an important role for the development (BoLLER 1966, Dean \& Chapman 1973). At last larval instars bore through the fruit skin and drop to the ground. They burrow into the soil and pupate (Frick et al. 1954, Lathrop et al. 1932). Most Rhagoletis species undergo an obligate diapause in the pupal stage and remain in the soil till the next spring (Neilson 1962). Under unfavourable conditions they can stay in the litter of the soil for several years (Balduf 1959).

In R. pomonella diapause is regulated mainly by photoperiod (PROKOPY 1968). R. pomonella has a flexible diapause strategy. After a few weeks pupae can develop to adults. The second generation is often unable to perform a complete development and will be wiped out by low temperatures during winter (CHAPMAN 1941).

1.3.1 The Eastern Cherry Fruit Fly R. cingulata

The Eastern Cherry Fruit Fly R. cingulata infests cherry orchards, particularly sour cherries, Prunus cerasus, but also wild cherrys P. avium in North America. R. cingulata is a close relative to the Western Cherry Fruit Fly R. indifferens, which infests also P. avium and Chinese plum, P. salicina (EPPO, CABI 1996). Morphologically these two species are hardly distinguishable (BUSH 1966). Genetically, however, they could be clearly distinguished (McPheron \& Han 1997, Smith \& Bush 1997).
R. cingulata has a similar biology as R. cerasi. R. cingulata pupae requires a higher temperature to reach maturity and emergence of adults from the soil starts later than the one of R. cerasi. Adults are quite sessile as they fly only short distances (Lampe et al. 2005).

Figure 1.7 Adult fly of R. cingulata.
R. cingulata is a serious pest on cherries, plums and even olives mainly in North American regions (Weems Jr., 2001). In 1983, R. cingulata was discovered on cherry trees in Europe, namely in Switzerland for the first time (MERz 1994). Between 1991 and 1993 R. cingulata was found many times in the south of Switzerland. Adults were collected by yellow sticky traps. Attacked cherries were collected and hatched in the laboratory (Boller \& Mani 1994). Later, R. cingulata was detected in Germany (Lampe et. al 2005), in northern Italy (EPPO 1996) and in the Netherlands (EPPO 2004). In Germany, R. cingulata was detected in Rhineland in the area of Kassel (Hessen) (Lampe et. al 2005). In the latter case, it is reported that 18% of collected maggots were R. cingulata. Recently individuals of R. cingulata were detected in Slovenia (EPPO 2007) and two individuals in Austria (EgArtner et al. 2008).
R. cingulata infests cherries later than R. cerasi (Boller 1966, JubB \& Cox 1974), which indicates, that R. cingulata has the potential to fill an ecological niece namely infesting later ripening cherries (LAMPE ET. AL 2005).

1.3.2 The Apple Maggot R. pomonella

The Apple Maggot, R. pomonella, is an important pest species on several orchard species in North America (EPPO 1996). Adults lay their eggs on the fruits and larvae begin to feed on the pulp of ripening fruits. The natural host plant of this species is hawthorn, Crataegus spp. In 1860, Walsh described a shift from hawthorn to apple, Malus domestica. Since then, R. pomonella was recorded on several Prunus species like apricot, Prunus armeniaca, peach, P. persica, and cherry, P. avium and P. cerasus (Alldred \& Jorgensen 1993). Larvae (but no adults) have been found in pears (P. communis), medlars (Amelanchier), chokeberries (Aronia), cranberry (Vaccinium macrocarpum) cotoneasters (Cotoneaster atropurpureus) and roses (Rosa) (EPPO

Figure 1.8 Adult fly of R. pomonella 1996). Apple orchards appear to have the highest density rate of R. pomonella in the geographically range of North America. So far this pest is absent in the EU. Due to it is potential aggressivity on apple species, R. pomonella has been classified as quarantine pest in the EU (EPPO 1996).

Besides it's economically importance, R. pomonella is a model organism for sympatric speciation. Sympatric speciation is the genetic
differentiation of populations without geographic isolation. In contrast, allopatric speciation is the genetic differentiation caused by geographic isolation (MAYR 1963 or for recent review see Berlocher \& Feder 2002). Bush (1969) described sympatric speciation for the first time in R. pomonella as genetically differentiated host races exist on apples and hawthorns. The author hypothesized that this differentiation was caused by the shift from hawthorn to apple (Bush 1969). Host fidelity prevents gene flow between populations from apple and hawthorn. Host associated fitness trade offs cause post zygotic barriers to gene flow (Feder 1998) (Figure 1.9). Species collected of hawthorn and samples from apples show genetic differences on three different regions of the genome (Berlocher \& Smith 1983, Feder et al. 1989). Studies on the oviposition of the different races reveal that there are differences on the host preference. Females of both host races prefer to oviposit on hawthorns. Females originating from hawthorn are indisposed to lay eggs on apples in contrast to apple originating females, which can lay eggs on both hosts (PROKOPY ET AL., 1972, 1988).

Figure 1.9 The life cycle of R. pomonella emphasing the roles of host fidelity and fitness trade-offs play in isolating apple- and hawthorn-infesting races of the fly (taken from from FEDER 1998)

2. Aims

In this thesis the aim was to search for the presence of Wolbachia in R. pomonella and R. cingulata. R. cingulata was analysed as this species was introduced in Europe recently and co-infests cherries together with the European Cherry Fruit Fly, R. cerasi. R. cerasi is known to host up to five Wolbachia strains (ARTHOFER ET AL. 2009B) and the question was if these strains were transferred to the introduced species.
R. pomonella was taken, as this prominent species for sympatric speciation was never analysed for the existence of Wolbachia to my knowledge. As Bordenstein et al. (2001) showed, Wolbachia can cause speciation and thus the presence of Wolbachia raises a new aspect in this story (for review see Howard \& Berlocher 1998).

Figure 2.1 Adult fly of R. completa

Initially also Rhagoletis mendax, Rhagoletis completa and two different psyllid species, Cacopsylla picta and Cacopsylla melanoneura were analyzed. Latter two psyllid species are important orchard pests as they are vectors for phytoplasmas. R. mendax proved to be infected with Wolbachia but will be elaborated in a later stage.
R. completa and the two Cacopsylla species revealed no amplicon by conventional wsp PCR. Thus they were neglected for further studies.

The Wolbachia detection was done with general wsp primers described by Braig et al. (1998). These amplicons from R. cingulata and R. pomonella were sequenced directly. Further, wsp amplicons were cloned in order to detect if more than one Wolbachia strain was present.

All Wolbachia strains detected were characterized by five additional MLST markers (BaLdo ET AL. 2006). For all loci a phylogenetic analysis was done.

Figure 2.2 Adult fly of R. mendax

3. Methods

3.1 Samples

Rhagoletis pomonella adults were collected by Prof. Dr. Luís AF Teixeira (Michigan State University, Department of Entomology, East Lansing, USA) on apple trees (Malus domestica) from a population collected in Michigan in 2006. Rhagoletis cingulata pupae were collected by Dr. Kirsten Köppler and Dr. Heidrun Vogt (Julius Kühn Institute JKI, Dossenheim, Germany) in Heidesheim in Germany in 2008. All samples were stored in absolute ethanol, sent to the Institute of Forest Entomology, Forest Pathology \& Forest Protection, Vienna, Austria and stored at $-20^{\circ} \mathrm{C}$.

Further blueberry pupae of R. mendax collected by Prof. Dr. Luís AF Teixeira (Michigan State University, Department of Entomology, East Lansing, USA) were sent from populations collected in Michigan in 2006. Further walnut husk pupae, Rhagoletis completa, collected from immature walnuts were collected at the garden of the Institute of Forest Entomology, Forest Pathology \& Forest Protection, Boku Vienna in autumn 2008. Two psyllid species, Cacopsylla picta and Cacopsylla melanoneura were collected by Mag. Manfred Wolf from the Land- und Forstwirtschaftliches Versuchszentrum Laimburg in Italy, stored in absolute ethanol and brought to Vienna and stored there at $-20^{\circ} \mathrm{C}$.

3.2 Extraction of the DNA

From each of the species the DNA of two individuals was extracted using the DNA Mini-Prep SIGMA Kit (Appendix I). The insects were put in an Eppendorf tube and overlayed with $180 \mu \mathrm{l}$ lysis solution, homogenized thoroughly, $20 \mu \mathrm{l}$ SIGMA proteinase K were added and put in the heating block at $55^{\circ} \mathrm{C}$. After adding $20 \mu \mathrm{l}$ of RNAse, the tubes were incubated for 2 min and $200 \mu \mathrm{l}$ of lysis solution were added. The solution was incubated for 10 min at $70^{\circ} \mathrm{C} .200 \mu \mathrm{l}$ absolute ethanol were added to the samples with and transferred to the prepared binding columns. After a few washing steps with a washing solution, the DNA was eluted in 50μ l elution buffer and stored at $4^{\circ} \mathrm{C}$.

3.3 PCR with general wsp primer

To analyse the samples for a Wolbachia infection, the wsp primers 81F and 691R described by Braig et al. (1998) were used. The reactions were set up in $20 \mu \mathrm{l}$ volumes containing, $1 \times \mathrm{NH}_{4}$ buffer (Fermentas), $4 \mathrm{mM} \mathrm{MgCl}_{2}, 200 \mu \mathrm{M}$ dNTPs, $0,4 \mu \mathrm{M}$ of each primer, $0,5 \mathrm{U}$ Taq polymerase (Fermentas) and $2 \mu \mathrm{l}$ of the template DNA. PCR was started for 2 min at $95^{\circ} \mathrm{C}$ and followed by 32 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for $45 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $68^{\circ} \mathrm{C}$ for 15 min .

For detection $10 \mu \mathrm{l}$ of DNA fragments were used a submarine horizontal gel system using a 1 x TAE running buffer. Gels with a 1 to 2% agarose concentration supplemented with $0,5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide were used. DNA was visualized on a UV transilluminator

3.4 PCR with MLST

For a supplemental analysis the five housekeeping genes gatB, coxA, hcpA ftsZ and $f b p$ A from the MLST described by Baldo et al. 2006 were used.

Clestr valcegory"	laus cade (wiMc)	Gans	Prochast	Primer		Genc langet (pg$)^{4}$	$\begin{aligned} & \text { Anrplifivil } \\ & \text { cosiavtide } \\ & \text { neage } \\ & \left(b_{p}\right)^{6} \end{aligned}$	MLST fingoment sixe (bp)
				Dasiznation	Serpasace ($\left.5^{\prime}-3\right)$			
a-Phatabesctariz	WD_0146	$z^{\text {ret }}$	Cotamil-RNA\{Clis) autritotratesferase sabonit B	satir F1 grati R1	GAETTAAAYCGYGCAGGBGIT TGGYYAYTCRGTIYAAACATGA	1,425	421-481	369
Eschurichis coli	WD_0sel	cas	Cytochronece 6 caidaxe, silvanil 1	$\operatorname{axA} \cos _{1}$	TIGGRGCRATYAACITTATAG CTAAAGACTTTKACRCCAACT	1,551	491-977	402
Eschurichie cow	WD_0494	han	Cunscredi liypothetimal protcis	$\begin{aligned} & \text { krpA F1 } \\ & \text { lepA_R1 } \end{aligned}$	GAAATARCAGTTOCTGCAAA GAAAGTYRACRCAAGYTCTG	741	91-626	444
Eschorinke cow	WD_072	A.2.	Cell diricims protmin	flsz. F1 fix_ R1	ATYATGGARCATATAAARCIATAG TCRAGYAATGEATTRGATAT	1,197	274-798	435
	WD_123	AmA	Frustase-triphusplate abliolan	fleph_F1 flpa_Ri	CCTGCTCERCTTGOYWTGAT CCRCCAGARAAAAYYACLATTC	980	241-749	429
Weatadis	WD_10.3	**	Ontar ratiase proterin	$\begin{aligned} & \text { wap_P1 } \\ & \text { wap_R1 }^{2} \end{aligned}$	TIEXAATARSTOATGARCAAAC CYGCACCAAYAGYRCTRTAAA	714	85-63	546

Table 3.1 MLST primer names and length described by Baldo et Al. (2006). Table taken from Baldo ET AL. (2006).

The reactions were set up in $10 \mu \mathrm{l}$ volume containing, $1 \mathrm{x} \mathrm{NH}_{4}$ buffer (Fermentas), $2 \mathrm{mM} \mathrm{Mg}{ }_{2} \mathrm{Cl}, 100 \mu \mathrm{M}$ dNTPs, $0,2 \mu \mathrm{M}$ of each primer. $0,25 \mathrm{U}$ Taq polymerase (Fermentas) and $1 \mu \mathrm{l}$ of the template DNA. PCR was started for 2 \min at $95^{\circ} \mathrm{C}$ and followed by 32 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for $45 \mathrm{sec}, 72^{\circ} \mathrm{C}$
for 1 min and a final extension at $68^{\circ} \mathrm{C}$ for 15 min. With the primer $f t s Z$ who did not work at a Tm of $60^{\circ} \mathrm{C}$ PCR was successful only with a TM of $50^{\circ} \mathrm{C}$.

3.5 Purification of DNA

Plasmid purification was achieved by an alkaline lysis procedure (SAMBROOK ET AL. 1989), with a peqGOLD Cycle-Pure Kit. DNA Product were mixed with the same volume XP1 buffer, vortexed and pipetted in columns and centrifuge for 1 \min at 10.000 rpm . Afterwards columns were washed two times with $650 \mu \mathrm{l}$ SPW-washing buffer and centrifuged for one min on 10.000 rpm. For drying the empty column were centrifuged for 1 min on 10.000 rpm . Purified DNA was resolved in $20 \mu \mathrm{l}$ elution buffer and centrifuged for 1 min at 10.000 rpm .

3.6 Cloning

The working protocol of this procedure is also listed in appendix I. For cloning an $0,8 \mu \mathrm{l}$ aliquot of the PCR product was mixed with $0,2 \mu \mathrm{l}$ of the vector p TZ57R (InstarClone PCR, Fermentas), 0,3 $\mu \mathrm{l}$ polyethylenglycol (PEG3350), 0,2 $\mu \mathrm{l}$ T4 buffer and $0,2 \mathrm{U}$ T4 ligase and constantly held at $15^{\circ} \mathrm{C}$ over night.

For the transformation competent JM109 E. coli cells were used. Preserved in a freezer at $-80^{\circ} \mathrm{C}$ these cells were placed on ice. On each sample $50 \mu \mathrm{l}$ of E. coli, were pipetted, vortexed carefully and placed on ice for 20 min . The samples were heated for 50 sec at $42^{\circ} \mathrm{C}$. $950 \mu \mathrm{l}$ of a SOC-media were added placed at $37^{\circ} \mathrm{C}$ in the oven for 60 min . The samples were centrifuged for 5 min at $4^{\circ} \mathrm{C}$ at 2.500 rpm. Most of the supernatant was taken off and the bacteria were discarded in a Petri dish. To select the positive bacteria, the agar contained $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicilin, $160 \mu \mathrm{~g} / \mathrm{ml} \mathrm{xGal}$ and $48 \mu \mathrm{~g} / \mathrm{ml}$ IPTG. Plates were stored on 37 degrees over night. The next day plates were controlled for white bacteria colonies. They were marked and transformed with a toothpick on another Petri dish containing agar. After another day, these bacteria were inoculated in LB broth (SAmbroor et al. 1989) (Appendix II) A PCR was done with M13 primers. An agarose gel electrophoresis showed which bacteria contained plasmids with PCR products and which ones without. The plasmid purification was undertaken by an alkaline lysis mini prep procedure (Appendix I). For sequencing the purified DNA was
sent to the Cancer Research Centre DNA Sequencing \& Genotyping Facility in Chicago (IL, USA).

Figure 3.1 Agarose gel showing the MLST products of R. cingulata and R. pomonella. Samples of the positive amplicons were purified and sequenced.

3.7 Phylogenetic analyses of the sequence data

 Retrieved sequences were edited and aligned with Codon Code Aligner (CodonCode Corporation, USA). Further ClustalX (Thompson et AL. 1997) was used for tree construction using the neighbor-joining (NJ) algorithm with Kimura-2-parameter distances as implemented in MEGA4 (Tamura et al. 2007).
4. Results \& Discussion

The aim of my master thesis was the detection of Wolbachia strains in species of the genus Rhagoletis and in the two psyllid species Cacopsylla picta and Cacopsylla melanoneura. Rhagoletis cerasi proved to carry several high and low titre wCer strains (Arthofer et al. 2009b). Some of these strains expressed high CI after transinfection into the economically important medfly species, Ceratitis capitata, making Wolbachia a potential means in biological insect control (Zabalou et al. 2004). Other Rhagoletis species have been not analysed for Wolbachia and thus I aimed to detect Wolbachia by applying general wsp primers (BRAIG ET AL. 1998) and to characterize these strains with five nuclear loci described by Baldo (2006).

4.1 Detection of Wolbachia by PCR using wsp primers

The PCR analyses with the wsp81F and wsp691R primers developed by BRaig Et AL. (1998) showed positive amplicons with Rhagoletis mendax (1, 2), Rhagoletis cingulata $(3,4)$ and Rhagoletis pomonella. $(5,6)$ The amplicon + was the positive sample Rhagoletis cerasi and is about 500bp long. Rhagoletis completa (7, 8, 9, 10), Cacopsylla picta (11, 12, 13, 14) and Cacopsylla melanoneura $(15,16)$ did not result in visible amplicons (Figure 4.1).

Figure 4.1 Agarose gel showing the wsp products of R. mendax $(1,2) R$. cingulata $(3,4)$ and R. pomonella $(5,6)$. The amplicons were at the same size as the positive control, R. cerasi. The negative probe was a Mastermix sample. R. completa (7, 8, 9, 10), Cacopsylla picta (11, 12, 13, 14) and C. melanoneura (15, 16) did not result in an amplicon.

Arthofer et al. (2009b) report low densities of the w Cer3 and wCer4 strains in R. cerasi populations. In that species, hybridisation of the amplicon with a wsp probe was used as this method is more sensitive than conventional PCR. The bark beetle Pityogenes chalcographus was analysed with nested PCR lowering the detection limit also some potencies and also here two low density strains were detected - wCha1, wCha2 (Arthofer et Al. 2009A). Thus negative results by conventional PCR like here in R. completa and the two psyllids C. picta and C. melanoneura do only show that there are not high titre Wolbachia strains. Sensitive detection methods like Southern blot or nested PCR should be applied and also more individuals should be analysed as the density might also vary widely between individuals as suggested by Hilgerboecker et al. (2008) or Unckless et al. (2009).

4.2. Wolbachia in Rhagoletis cingulata

4.2.1 Phylogenetic characterization of w Cin strain by wsp

Purifying and sequencing the wsp products of the two individuals of R. cingulata, the sequences were edited and aligned. Further, the wsp products were cloned with a TA vector and about 20 plasmids were sequenced. These sequences were 100% ident to the ones from direct sequencing (Appendix III). The alignment of the sequences revealed two types of sequences - w Cin1 and w Cin2 differing by 0,25\% (for distances see Appendix IX).

The most similar sequences were retrieved from the Genbank by the BLAST search option. These were included in the alignment and a phylogenetic tree was constructed with both distance and parsimony method. Here the NeighbourJoining NJ tree applying Kimura-2-parameter distances and bootstrapping is shown (Fig. 4.2). The phylogenetic analyses revealed that $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ were ident to w Cer1 (AF418556) and w Cer2 (AF418557) of R. cerasi, respectively (Appendix IX).

Figure 4.2 Phylogenetic analysis of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ of R. cingulata, w Pom of R. pomonella and other Wolbachia strains retrieved from the Genbank. Analysis was done with Neighbour Joining method using the wsp sequences. Bootstrap analysis was done with 100 replicates and are the numbers above the node. $w \mathrm{Cer}=$ R. cerasi, $w \mathrm{Dwi}=$ Drosophila willistoni (AY620229), wSpt= D. septentrionalis (AY620214), w Aso $=$ Asobara tabida (AY581186), $w \mathrm{Dbo}=$ D. borealis (FJ415468), $w \mathrm{Mel}=$ D. innubila (AY552553)
$w \operatorname{Cin} 2$ is ident to the w Cer2 strain and the wAu strain of Drosophila simulans (DQ235407) (Fig 4.2). wCin1 is ident to wCer1, a Wolbachia strain detected in all European R. cerasi populations analysed (Arthofer et al. 2009b, Riegler \& Stauffer 2002). Until now, eight supergroups A to H have been designated based on clustering patterns of 16S-DNA and the genes ftsZ and wsp (Werren et al. 1995, Bandi et al. 1998, Zhou et al. 1998, Lo et al. 2002, Werren et al. 2008). wCin1 and w Cin2 belong to the supergroup A according.

4.2.2 Characterization of the wCin strains by MLST

In the following, the $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ were characterized by the five MLST loci (Baldo et al. 2006). These five loci are listed in Table 1.1. Figure 4.3
shows the agarose gel electrophoresis and reveals the successful amplification of all 5 loci: gatB, coxA, hcpA, and fbpA. ftsZ did not amplify with a T_{M} temperature of $60^{\circ} \mathrm{C}$ but with $50^{\circ} \mathrm{C}$ (data not shown).

Figure 4.3: Agarose gel showing the products amplified with the primers of the five MLST loci (Table 1.1). Four loci's worked well whereas the locus ftsZ did not result in an amplicon. This locus was successfully amplified with a Tm of $50^{\circ} \mathrm{C}$.

The amplicons of the five gene products from two individuals of R. cingulata were directly sequenced after purification. Further, they were cloned with a TA vector and after transformation into bacterial cells about 8 positive plasmids from each of the loci were picked and sequenced. These sequences revealed 100% identity to the sequences from the direct product (Appendix III). The MLST loci revealed also two different sequences confirming the existence of $w \mathrm{Cin} 1$ and $w \mathrm{Cin} 2$. Only coxA and gatB revealed the $w \operatorname{Cin} 1$. In these loci $w \operatorname{Cin} 2$ might be ident with $w \operatorname{Cin} 1$ or have mismatches in primer sites or might be present in too low titre for detection. In latter case more plasmids should be taken in order to characterize that strain by all MLST loci.

Most similar sequences were retrieved from the Genbank by the BLAST search option. These were included in that alignment and phylogenetic trees from each loci were constructed with distance method using Neighbor-Joining NJ tree applying Kimura-2-parameter distances and bootstrap analysis (Fig. 4.4-4.8).

Figure 4.4 Phylogenetic analysis of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ of R. cingulata, w Pom of R. pomonella and other Wolbachia strains. Analysis was done with Neighbour Joining method using the ftsZ sequences. Bootstrap analyses were done with 100 replicates and are the numbers above the node. w Cer $=R$. cerasi, $w \mathrm{Dsi}=$ Drosophila simulants (EF423735), wDia= Diabrotica barberi (AY136554), wAso= Asobara tabida (AY567704), wAu= D. simulants (AY227739), wMel= Drosophila melanogaster (AE017196)

The alignment and distance matrix of the $f t s Z$ gene is shown in appendix IV and IX, respectively. The NJ tree based on the ftsZ gene showed that $w \operatorname{Cin} 1$ is genetically ident to the $w \operatorname{Cer} 1$ (AY227737) strain and $w \operatorname{Cin} 2$ (AY227738) to wCer2 of R. cerasi and to Wolbachia detected in D. simulans (EF423735) and Asobara tabida (AY567704) (Fig. 4.4).

Figure
4.5 Phylogenetic analysis of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ of R. cingulata, w Pom of R. pomonella and other Wolbachia strains. Analysis was done with Neighbour Joining method using the coxA sequences. Bootstrap analyses were done with 100 replicates and are the numbers above the node. w Cer $=$ R. cerasi, $w \mathrm{Mel}=$ Drosophila melanogaster, $w \mathrm{Bo}=$ Drosophila borealis (FJ415470), wNa= Nasonia longicornis (FJ390239), wAna= Drosophila ananassae (EF611963), wNvi= Nasonia vitripennens FJ390240), wSol= Solenopsis spp.(EU127565), wMono= Monomorium chinense (EU127553), wCal= Calyptratae sp. (EU126210)

The alignment and distance matrix of the coxA gene is shown in appendix IV, and IX, respectively. Here only wCin1 was detected and the NJ analysis showed that $w \operatorname{Cin} 1$ is ident to $w \operatorname{Cer} 1$. With a genetic distance of $0,05 \% w \operatorname{Cin} 1$ is related to a Wolbachia strain detected in the fire ant, Solenopsis spp. (EU127565) (Fig. 4.5).

Figure 4.6 Phylogenetic analysis of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ of R. cingulata, w Pom of R. pomonella and other Wolbachia strains. Analysis was done with Neighbour Joining method using the hcpA sequences. Bootstrap analyses were done with 100 replicates and are the numbers above the node. wCin= Wolbachia in Rhagoletis cingulata, wPom= R. pomonella. wCer= R. cerasi, wMel= Drosophila melanogaster (AE017196), wCap= Camponontus leonardi (EU127639), wNvi= Nasonia vitripennis (DQ842407), w Muni $=$ Muscidifurax uniraptor (DQ842404), wCal= Calyptrata muscoid fly (EU126321), wDbo= Drosophila borealis (FJ415472),

The alignment and distance matrix of the hcpA gene is shown in appendix XI and IX, respectively. The NJ tree based on the hcpA gene confirmed that wCin1 and $w \operatorname{Cin} 2$ is ident with w Cer1 and w Cer2. The $w \operatorname{Cin} 1$ strain differs by $0,17 \%$ compared to the Wolbachia detected in the ant Camponontus leonardi (EU127639). The wCin2 strain is genetically ident to Wolbachia in Drosophila melanogaster (AE017196) and D. borealis (FJ415472).

Figure 4.7 Phylogenetic analysis of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ of R. cingulata, $w \operatorname{Pom}$ of R. pomonella and other Wolbachia strains. Analysis was done with Neighbour Joining method using the gatB sequences. Bootstrap analyses were done with 100 replicates and are the numbers above the node. w Cer $=$ R. cerasi, $w \mathrm{Mel}=$ Drosophila melanogaster (DQ842452), $w \mathrm{Dmun}=\mathrm{D}$. munda (EU126167), $w \mathrm{Dbo}=\mathrm{D}$. borealis (FJ415471), wDana= D. anassae (EF611906), wDsim= D. simulans (DQ842433), wNgi= Nasonia giraulti (DQ842442)

The alignment and distance matrix of the gatB gene is shown in appendix VII and IX, respectively. The sequences analysis revealed only $w C i n 1$. The phylogenetic analysis by NJ showed $w \operatorname{Cin} 1$ ident $w \operatorname{Cer} 1$ of R. cerasi. With a genetic difference of $0,14 \% w \operatorname{Cin} 1$ is related to $w \operatorname{Cer} 4$ of R. cerasi on that locus.

Figure 4.8 Phylogenetic analysis of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ of R. cingulata, w Pom of R. pomonella and other Wolbachia strains. Analysis was done with Neighbour Joining method using the $f b p$ A sequences. Bootstrap analyses were done with 100 replicates and are the numbers above the node. w Cer $=R$. cerasi, $w \mathrm{Mel}=$ Drosophila melanogaster (AE017196), wDSim= D. simulans (AE017196) wNas= Nasonia vitripennis (DQ842370), wChl= Chloropidae sp. (EU126395), wAna= Drosophila anassae (EF611894)

The alignment and distance matrix of the fbpA gene is shown in appendix VIII and IX, respectively. The NJ tree based on the $f b p$ A gene revealed $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ ident to $w C e r 1$ and $w C e r 2$ of R. cerasi, respectively. As shown before w Cin2 is closely related to the Wolbachia detected in D. melanogaster.

4.2.3 Wolbachia in Rhagoletis cingulata and consequences

R. cingulata harbours at least two Wolbachia strains named $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$. They seem to be ident to the w Cer1 and w Cer2 detected in the European Cherry Fruit Fly, R. cerasi (Riegler \& Stauffer 2002). In latter species Arthofer et AL. (2009b) detected five strains, recently. wCer3 and wCer4 could be only detected with blotting methods, a method which is more sensitive compared to conventional PCR - detection limit for single copy wsp genes of $10^{-2} \mathrm{ng}$ plasmid DNA could be lowered to $10^{-7} \mathrm{ng}$. However, in this thesis only conventional PCR was applied and thus it cannot be excluded that other Wolbachia strains are in R. cingulata. Low titre strains are frequently detected in insects (Hilgerboecker et Al. 2008, UnCKLESS ET AL. 2009).

In this thesis two individuals were analysed and one of those was infected only with w Cin2, the other one with both strains. More individuals and more geographic different populations have to be analyzed to detect the distribution pattern of infection in Europe. The R. cingulata individuals analyzed were collected in Germany. We did not have access to an American population. The question arises if also the American species contain $w \operatorname{Cin} 1$ or $w \operatorname{Cin} 2$. The infection would be originating from Europe if the American populations do not harbour these two strains and the infection would be quite young as R. cingulata was introduced to Europe quite recently. The possibility of a horizontal transfer was shown by Zabalou et al. (2004) by infecting artificially uninfected med flies with w Cer2 and w Cer 4 and by Riegler et al. (2004) by transferring w Cer2 into D. simulans and establishing 5 Drosophila lines expressing different CI. As Raychoudhury et al. (2009) OR RIEGLER (2002) proposed the most likely transfer in field might be done by parasitism. Another possibility might be that during competition in the cherry R. cingulata larvae feed and kill the competing R. cerasi larvae. Migration of Wolbachia from sexual to autosomal cells has been reported by Frydman et Al. (2006).

If American populations of R. cingulata are infected with $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ this would support the hypotheses that $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ are common strains being quite omnipresent in dipteran species. wCin2 belongs to the w Mel group, who is present in different Diptera, Homoptera and Lepidoptera species (Jeyaprakash \& Hoy 2000).

4.3. Wolbachia in Rhagoletis pomonella

4.3.1 Phylogenetic characterization of the wPom strain by wsp

The amplicons of R. pomonella were sequenced after purification of the PCR products. The sequences were edited and aligned with Codon Code Aligner. For that purpose also the most similar sequences obtained after a BLAST search in the Genbank were compared.
R. pomonella was infected with one Wolbachia strain in the following named w Pom. The wsp sequence was 100% ident to w Cer2 of R. cerasi. The wPom strain belongs to the supergroup A and with a genetic divergence of $0,08 \%$ (see Appendix IX) is closely related to the w Mel-group (Fig. 4.2).
The following trees were constructed using the Neighbour Joining (NJ) algorithm applying Kimura-2-parameter distances and bootstrapping as implemented in MEGA4 (Tamura et al. 2007) Further the wsp PCR products were cloned with a TA vector and after transformation into bacterial cells 20 plasmids were picked and sent for sequencing. These sequences revealed 100% homologous sequences as shown in the alignment (Appendix IX).

Two individuals from R. pomonella were sequenced plus 20 plasmids from one individual. Alignment of the sequences revealed one Wolbachia strain ident to the w Cer2 (AF418557) strain of R. cerasi. (Appendix III).

4.3.2 Characterization of the wPom strains by MLST

wPom was also characterized by the five MLST loci (Baldo et al. 2006). The amplicons of the five gene products from two individuals of R. pomonella were directly sequenced after purification. Further, they were cloned with a TA vector and after transformation into bacterial cells about eight positive plasmids from each of the loci were taken and sequenced.

The analyses of R. pomonella with the five MLST loci confirmed the results on the wsp gene. Each locus detected the w Pom strain, ident to the w Cer2 of R. cerasi (Fig 4.4, 4.5, 4.7, 4.8). Only the hcpA locus revealed one single mutation on the codon position 2 indicating that the amino acid is changed. All eight sequences of two different individuals had the same mutation compared to wCer2 (Fig. 4.6 and Fig 4.9).

Figure 4.9 Alignment of the hcpA sequences from two individuals of R. pomonella (02H_H2 to 05E_E5) with four wCer strains of R. cerasi and the Wolbachia strain of D. melanogaster.

4.3.3 Wolbachia in R. pomonella and consequences

Here I analyzed only one single population collected from apple trees. R. pomonella harbours at least one Wolbachia strains named w Pom which seem to be closely related to the w Cer2 detected in the European Cherry Fruit Fly, R. cerasi (Riegler \& Stauffer 2002). However, in this thesis only conventional PCR was applied and thus it cannot be excluded that other Wolbachia strains might be harboured by R. pomonella. Low titre strains are frequently detected in insects. Arthofer et al (2009b) reported a detection limit for single copy wsp genes of 10^{-2} ng plasmid DNA and the same author reported in Arthofer et al (2009A) that by nested PCR the detection can be lowered from 10^{-4} to $10^{-5} \mathrm{ng}$. So it might be that R. pomonella is infected with other Wolbachia strains.
The individuals of R. pomonella analyzed were collected in apple trees, only. A population from hawthorn should be analyzed in a follow up work in order to detect if also in that population w Pom can be detected. Unless, w Pom will add a new aspect on the process involved in sympatric speciation. Wolbachia can be involved in processes of speciation (LAVEN 1959, 1967). Bordenstein et al. (2001) described that microbes act in producing reproductive isolation between Nasonia wasps. In that case, different Wolbachia strains in a defined population or species can cause CI. As a consequence the gene flow of the two species was reduced. Sympatric speciation is described as splitting one evolutionary lineage into two without the occurrence of geographic isolation (BERLOCHER \& FEDER 2002). Wolbachia is described to be restrictive for sympatric speciation (Werren 2002).

5. References:

AliNiazee MT (1974) The Western cherry fruit fly, Rhagoletis indifferens. 2. Aggressive behaviour. Canadian Entomology 106, 1021-1024.
Alldred DB, Jorgensen CD (1993) Hosts, adult emergence, and distribution of the apple maggot (Diptera: Tephritidae) in Utah. Pan-Pacific-Entomologist 69, 236-246.
Arthofer W, Riegler M, Avtzis DN, Stauffer C (2009a) Evidence for low titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae). Environmental Microbiology, Published Online: Apr 62009 2:32AM, DOI: 10.1111/j.1462-2920.2009.01914.x
Arthofer W, Schneider D, Krammer M, Riegler M, Miller WJ, Stauffer C (2009B) Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Molecular Ecology, in submission.
Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. Journal of Bacteriology 187, 5406-5418.
Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SA, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus Sequence Typing System for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology 72, 7098-7110.
Balduf WV (1959) Obligatory and facultative insects in rose-hips, their recognition and bionomics. 3. Biological Monographs 26, 194.
Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proceedings of Biological Sciences 265, 2407-13.
Beard CB, O’Neill SL, Tesh RB, Richards FF, Aksoy S (1993) Modification of Arthropod vector competence via symbiotic bacteria. Parasitology Today 9, 179183.

Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy. Annual Review of Entomology 47, 773-815.
Berlocher SH, Smith DC (1983) Segregation and mapping of allozymes of the apple maggot fly Journal of Heredity 74, 337-340.
Blümel S, Russ K (1989) Manipulation of races. In: Robinson AS, Hooper G (eds.) Fruit Flies: Their Biology, Natural Enemies and Control, Vol. 3B. 387-389 Elsevier, Amsterdam.
Boller EF (1974) Progress Report of the IOBC Working Group on Genetic conrtrol of Rhagoletis cerasi. presented at General Assembly of IOBC/WPRS Madrid.
Boller EF (1966) Beitrag zur Kenntnis der Eiablage und Fertilität der Kirschenfliege Rhagoletis cerasi L. Vorläufige Mitteilung. Bulletin de la Societe Entomologique Suisse 38, 193-202.
Boller E, Mani E, (1994) Two North American Rhagoletis spp. in Europe. IOBC/WPRS Bulletin 17, 83-83.
Boller EF, Prokopy RJ (1976) Bionomics and management of Rhagoletis. Annual Review of Entomology 21, 223-246.
Boller EF, Russ K, Vallo V, Bush GL (1976) Incompatible races of European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), their origin and potential use in biological control. Entomologia Experimetalis \& Applicata 20, 237-247.
Bordenstein R, O'Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707-710.
Bourtzis K, O'Neill SL (1998) Wolbachia infections and arthropod reproduction. Bioscience 48, 287-293.

Bourtzis K, Braig HR (1999) The many faces of Wolbachia. In: Raoult D, Brouqui P (eds.) Rickettsiae and Rickettsial Diseases at the Turn of the Third Millelium. Elsevier, Amsterdam, 199-219.
Bourtzis K (2008) Wolbachia-Induced Cytoplasmic Incompatibility to Control Insect Pests. In: Vreysen MJB, Robinsopn AS, Hendrichs J (eds.), Area Wide Control of Insect Pests. Springer Netherland, 125-135
Boyce AM (1934) Bionomics of the walnut husk fly, Rhagoletis completa. Hilgardia 8, 363-579.
Braig HR, Guzman H, Tesh RB, O’Neill SL (1994) Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367, 354-355.
Braig HR, Zhou W, Dobson SL, O'Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. The Journal of Bacteriology 180, 2373-2378.
Brooks FE (1921) Walnut husk maggot. US Departement of Agricultural Bulletin 992, 1-8.
BUSH GL (1969) Mating behavior, host specificity, and the ecological significance of sibling species in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). American Naturalist 103, 669-672.
Chapman PJ, Hess AD (1941) Mortality of the apple maggot in fruit held in cold storage. Circular US Departement of Agriculture 600, 1-9.
Dean RW (1969) Infestation of peaches by Rhagoletis suavis. Journal of Economical Entomology 31, 940-941.
Dean RW, Chapman PJ (1973) Bionomics of the Apple Maggot in Eastern New York. Search Agricultural Entomology, Geneva 3, 62.
Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the Natural Academy of Sciences 98, 6247-6252.
Egartner A, Zeisner N, Hausdorf H, Lethmayer C \& Blümel S (2008) Investigations on the occurrence of the quarantine fruit fly species Rhagoletis cingulata and Rhagoletis indifferens on Prunus avium and Prunus cerasus in Austria. In: International Conference on Integrated Fruit Production, IOBC/WPRS Avignon, France, Abstracts, 82.
EPPO (2004) Rhagoletis cingulata occurs in the Netherlands, but not R. indifferens EPPO Reporting Service 06, 87.
EPPO (2007) First outbreak of Rhagoletis cingulata in Slovenia EPPO Reporting Service 08, 148.
EPPO/CABI (1996): Rhagoletis cingulata and Rhagoletis indifferens In: Smith IM, Mcnamara DG, Scott PR, Holderness M: Quarantine Pests for Europe. Second Edition. Data sheets on quarantine pests for the European Union and for the European and Mediterranean Plant Protection Organization. CAB International, Wallingford, 470-474.
Feder JL (1998) The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom about speciation. in: Howard D, Berlocher SH (eds) Endless Forms: Species and Speciation, 130-144 Oxford University Press.
Feder JL, Bush GL (1989) Gene frequency clines in host races of Rhagoletis pomonella (Diptera: Tephritidae) in the midwestern United States. Heredity, 63, 245-266.
Frick KE, Simkover HG und Telford HS (1954) Bionomics of the Cherry Fruit Flies in Eastern Washington. Washington Agricultural Experiment Station Bulletin 13, 166.

Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441, 509-12.
Hertig M (1936) The Rickettsia, Wolbachia pipientis and associated inclusions of the mosquito, Culex pipiens. Parasitology 28, 453-490.
Hertig M, Wolbach SB (1924) Studies on Rickettsia-like microorganisms in insects. Journal of Medical Research 44, 329-74.
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiology Letters 281, 215-220.
Hoffmann AA, Clancy D, Duncan J (1996) Naturally occurring Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148, 221231.

Jamnongluk W, Kittayapong P, Visut B, O’Neill SL (2002) Wolbachia infections of Tephritid Fruit Flies: molecular evidence for five distinct strains in a single host species. Current Microbiology 45, 255-260.
Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Molecular Biology 9, 393-405.
Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-116.
Lampe I, Burghause F, Krauthausen HJ (2005) Introduction and Distribution of the American Eastern Cherry Fruit Fly, Rhagoletis cingulata, in the Rhine Valley, Germany. In: Proceedings of Plant Protection and Plant Health in Europe: 1st Symposium 2005: Introduction and Spread of Invasive Species, 09.06.-11.06.2005, Berlin.
Lampe I, Dahlbender W, Harzer U, Hensel G, Krauthausen HJ (2006) Die Amerikanische Kirschfruchtfliege (Rhagoletis cingulata) - Untersuchungen zum Auftreten in Rheinland-Pfalz. Obstbau 414-416.
Lathrop FH, Nickels CB (1932) The biology and control of the blueberry maggot in Washington County Maine. Technical Bulletin 275 United States Dept. of Agriculture 77.
Laven H (1959) Speciation by cytoplasmic isolation in the Culex pipiens complex. Cold Spring Harbor Symposia on Quantitative Biology 24, 166-173.
Laven H (1967) Speciation and evolution in Culex pipiens. In Wright JW, Pal R (eds.) Gentics of insect vectors of disease. Amsterdam: Elsevier.
Lincoln SR, Rodrigo OM, Andrè LP, Perondini I, Denise S (2005) Occurrence of Wolbachia in Brazilian samples of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Neotropical Entomology 34, 1013-1015.
Jubb GL, Cox JA (1974) Seasonal emergence of two cherry fruit fly species in Erie County, Pennsylvania: 25-year summary. Journal of Economic Entomology 67, 613615.

Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist. Molecular Biology and Evolution 19, 341-346.
Matolin S (1976) Mechansim causing incompatibility between different strains of Rhagoletis cerasi (Diptera, Tephritidae). Acta Entomologia Bohemoslovakia 73, 289-292.
Mayr E (1963) Animal Species and Evolution. Harvard University Press.

McPheron BA, Han HY (1997) Phylogenetic analysis of North American Rhagoletis (Diptera: Tephritidae) and related genera using mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 7, 1-16.
Merz B (1994) Diptera, Tephritidae. Insecta Helvetica, Fauna. 10. Schweizerische Entomologische Gesellschaft, Genève.
Moericke V, Prokopy RJ, Berlocher S, Bush GL (1975) Visual stimuli eliciting attraction of Rhagoletis pomonella flies to trees. Entomologia Experimentalis et Applicata 18, 497-507.
McGraw, O’Neill (2004) Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. Current opinion in Microbiology 7, 67-70.
McPheron BA, Han HY (1997) Phylogenetic analysis of North American Rhagoletis and related genera using mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 7, 1-16.
NEILSON TWA (1962) Effects of temperature on development of overwintering pupae of the apple maggot, Rhagoletis pomonella (Walsh). Canadian Entomology 94, 924928.

O'NeIlL SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348, 178-180.
Prokopy RJ (1968) Influence of photoperiod, temperature, and foot on initiation of diapause in the apple maggot. Canadian Entomology 100, 403-422.
Prokopy RJ, Bush GL (1972) Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae). 3. Male aggregation in response to an arrestant. Canadian Entomology 104, 275-283.
Prokopy RJ \& Bush GL (1973) Ovipositional responses to different sizes of artificial fruit by flies of Rhagoletis pomonella species group. Annals of the Entomological Society of America 66, 927-929.
Prokopy RJ, Diehl SR, Cooley SS (1988) Behavioral evidence for host races in Rhagoletis pomonella flies. Oecologia 76, 138-147.
Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH (2009) Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63, 165-183.
Riegler M, Stauffer C (2002) Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Molecular Ecology 11, 2425-2434.
Riegler M, Charlat S, Stauffer C, Merçot H (2004) Wolbachia transfer from a true fly into the real fruit fly: Investigating the outcomes of host/symbiont co-evolution Applied and Environmental Microbiology 70, 273-279.
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning a Laboratory Manual 2nd edn. Cold Spring Harbour Laboratory Press,New York.
Serbus LR, Sullivan W (2007) A cellular basis for Wolbachia recruitment to the host germline. Plos Pathogens 3, 1930-1937.
Selivon D, Perondini ALP, Ribeiro AF, Marino CL, Lima MMA, Coscrato VE (2002) Wolbachia endosymbiont in a species of the Anastrepha fraterculus complex (Diptera, Tephritidae). Invertebrate Reproduction and Development 42, 121-127.
Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani B, Genchi C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Molecular and Biochemical Parasitology 74, 223-227.
Smith JJ, Bush GL (1997) Phylogeny of the genus Rhagoletis (Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase II. Molecular Phylogenetic Evolution 7, 33-43.

Sun X, Cui L, Li Z (2007) Diversity and Phylogeny of Wolbachia Infecting Bactrocera dorsalis (Diptera: Tephritidae) Populations from China. Environmental Entomology 36, 1283-1289.
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596-1599.
Thompson JD, GibsonTJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 4876-4882.
Unckless RL, Boelio LM, Herren JK, Jaenike J (2009) Wolbachia as populations within individual insects: causes and consequences of density variation in natural populations. Proceedings of the royal Society B Series (online publication).
Wade MJ (2001) Infectious Speciation. Nature 409, 675-677.
Walsh BD (1867) The apple-worm and the apple maggot. Journal of Horticulture 2, 338-343.
Weems Jr HV (2001) Eastern Cherry Fruit Fly, Rhagoletis cingulata (Loew) (Insecta: Diptera: Tephritidae). DPI Entomology Circular 116 in Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
Werren JH, Zhang W, Guo LR (1995) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London B Series 261, 55-63.
Werren JH (1997) Biology of Wolbachia. Annual Review of Entomology 42, 587-609.
Werren JH (2002) Wolbachia and Speciation. In: Howard D, Berlocher SH (eds) Endless Forms: Species and Speciation, 130-144. Oxford University Press, Oxford.
Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium. Proceedings of the Royal Society of London B Series 267, 1277-1285.
Werren JH, Bartos JD (2001) Recombination in Wolbachia. Current Biology 11, 431435.

Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertrebrate biology. Nature Reviews Microbiology 6, 741-751.
West SA, Cook JM, Werren JH, Godfray HCJ (1998) Wolbachia in two insect hostparasitoid communities. Molecular Ecology 11, 1457-1465.
WIKIPEDIA.ORG (2009) retrieved on 15.05.2009.
Zabalou S, Riegler M, Thedorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proceedings of the Natural Academy of Sciences USA 101, 15042-15045.
Zabalou S, Livadaras I, Franz G, Robinson A, Savakis C, Bourtzis K (2009) Incompatible Insect Technique: Incompatible Males from a Ceratitis capitata (Order: Tephritidae) Genetic Sexing Strain. Annual Review of Entomology (in submission).
Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London B Series 265, 509-515.

6. Appendix

Appendix I Working Protocols

- Extraction after SIGMA kit

- pipette $180 \mu \mathrm{l}$ of lysis solution T (B-6678) in a $1,5 \mathrm{ml}$ Eppendorf tube
- add the insect specimen and mince with the drill - put the samples on ice
- add $20 \mu \mathrm{l}$ of proteinase K
- vortex (ca. 15 sec .) and put on the heating block at $55^{\circ} \mathrm{C} / 450 \mathrm{rpm}$ for 2 hrs
- add $20 \mu \mathrm{l}$ RNAse and let tubes stand for 2 min at room temperature
- add $200 \mu \mathrm{l}$ of lysis solution C (B-8803)
- vortex carefully and incubate at 70° for 10 min
- during incubation prepare the tubes and columns - add $500 \mu \mathrm{l}$ column preperation Solution to the column and spin at 13.000 rpm for 1 minute
- discard flow- through and put column back into the same tube
- add $200 \mu \mathrm{l}$ absolute ethanol to the sample
- vortex for 15 sec
- transfer the samples to the binding columns (approx. $650 \mu \mathrm{l}$)
- spin at 8.000 rpm for 1 min
- discard tube with flow-trough and put column in a fresh tube
- add 500μ l of wash solution
- spin at 8.000 rpm for one minute
- discard flow-trough and put column back into the same tube
- add $500 \mu \mathrm{l}$ wash solution
- spin at 13.000 rpm for 3 minutes
- discard flow-through and put column back into the same tube
- spin again for 1 min at 13.000 rpm to get rid of any remaining alcohol
- put column in a fresh tube
- add $50 \mu \mathrm{l}$ of elution solution and let column stand for 5 minutes
- spin at 8.000 rpm for 1 min
- store DNA in the fridge

- DNA Purification

- mix DNA product with the same volume XP1 buffer
- vortex carefully
- pipette the mixture in the columns
- centrifuge for 1 min at 10.000 rpm
- wash columns with $650 \mu \mathrm{l}$ SPW-Wash buffer
- centrifuge for 1 min 10.000 rpm
- wash columns with $650 \mu \mathrm{l}$ SPW-Wash buffer
- centrifuge for 1 min 10.000 rpm
- centrifuge the empty column for 1 min at 10.000 rpm
- add 20μ l elution buffer
- incubate for 2 min
- centrifuge 1 min at 10.000 rpm

Appendix II Cloning

Day 1

- mix PCR product with $1,4 \mu_{\mathrm{l}}^{\mathrm{H}} \mathrm{O}, 0,1 \mu \mathrm{l}$ ptZ57R, $0,3 \mu \mathrm{l}$ PEG3350, 0,3 $\mu \mathrm{l}$ T4 Buffer, $0,1 \mu \mathrm{l}$ T4 ligase
- add $0,8 \mu \mathrm{l}$ DNA
- incubate over night

Day 2

- thaw $35 \mu \mathrm{l}$ competent cells per reaction on ice
- pre-cool ligation reaction mixtures on ice in 0.5 ml reaction tubes
- add competent cells to the ligations
- incubate on ice for 20 min
- heat shock bacterial suspensions in a $42^{\circ} \mathrm{C}$ hot water bath for 50 sec
- put reactions back on ice for 1-2 min immediately
- add $300 \mu \mathrm{l}$ of SOC medium were added to each tube
- incubate at $37^{\circ} \mathrm{C}$ for $1-2 \mathrm{hrs}$
- prepare LB-Amp plates in the meantime: plate $40 \mu \mathrm{l}$ X-Gal ($20 \mathrm{mg} / \mathrm{ml}$) and $40 \mu \mathrm{l}$ IPTG ($24 \mathrm{mg} / \mathrm{ml}$) on each plate with a a Drigalski spatula
- plate transformation reactions on the plates
- incubate upside down over night at $37^{\circ} \mathrm{C}$

Day 3

- transfer 0.5 ml up to 2 ml of overnight E. coli cultures into 1.5 ml reaction tubes.
- tip with a sterile toothpick
- transfer into Eppendorf tubes (containing Mastermix for PCR) and a cap-o-test vial containing 3 ml LB broth containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin.
- vials were incubated at $37^{\circ} \mathrm{C}$ overnight under vigorous shaking (180-200 rpm).

Day 4

- transfer 0.5 ml up to 2 ml of overnight E. coli cultures into 1.5 ml reaction tubes.
- pellet cells by centrifugation: 10.000 rpm, 4 min
- discard supernatant and re-suspend pellets in $100 \mu \mathrm{l}$ resuspension solution
- add $1 \mu \mathrm{l}$ RNAse
- incubate for 2-5 min
- add $200 \mu \mathrm{l}$ NaOH-SDS
- vortex at 1.400 rpm
- add 150μ lice cold Kac-solution, vortex 10 sec
- put samples 5 min on ice
- centrifuge 5 min on $4^{\circ} \mathrm{C}$ at 15.000 rpm
- pipette supernatant in a new tube
- add $900 \mu \mathrm{l}$ EtOH and vortex carefully
- incubate for 2 min and centrifuge for 5 min at $4^{\circ} \mathrm{C}$ on 15.000 rpm
- discard flow-through and dry the tube
- add cold $70 \% \mathrm{EtOH}$ vortex carefully and centrifuge for 5 min at $4^{\circ} \mathrm{C}$ on 15.000 rpm
- discard ethanol and air-dry pellets for approximately 2 hours
- re-suspend pellet in 10 mM Tris

LB broth (SAMBROOK ET AL. 1989)

Per Liter

Bacto-tryptone	10.0 g
Bacto-yeast Extract	5.0 g
NaCl	10.0 g
Agar	15.0 g

Adjust the pH to 7,0 with 5 N NaOH , adjust the volume of the solution to 1 liter with deionized H 2 O and sterile by autoclaving

Appendix III Alignment of the wsp sequences of R. cingulata (H5, H6) and R. pomonella (H3, H4)

```
H3-1
ACAAAAGTTGATGGTATTACCTATAAGAAAGACAAGAGTGATTACAGTCCATTAAAACCA
H4-1
ACAAAAGTTGATGGTATTACCTATAAGAAAGACAAGAGTGATTACAGTCCATTAAAACCA
H5-1
ACAAAAGTTGATGGTATTACCTATAAGAAAGACAAGAGTGATTACAGTCCATTAAAACCA
H6-1
ACAAAAGTTGATGGTATTACCTATAAGAAAGACAAGAGTGATTACAGTCCATTAAAACCA
```

H3-1
TCTTTTATAGCTGGTGGTGGTGCATTTGGTTACAAAATGGACGACATCAGGGTTGATGTT
H4-1
TCTTTTATAGCTGGTGGTGGTGCATTTGGTTACAAAATGGACGACATCAGGGTTGATGTT
H5-1
TCTTTTATAGCTGGTGGTGGTGCATTTGGTTACAAAATGGACGACATCAGGGTTGATGTT
H6-1
TCTTTTATAGCTGGTGGTGGTGCATTTGGTTACAAAATGGACGACATCAGGGTTGATGTT
H3-1
GAAGGAGTTTATTCATACCTAAACAAAAATGATGTTAAAGATGTAACATTTGACCCAGCA
H4-1
GAAGGAGTTTATTCATACCTAAACAAAAATGATGTTAAAGATGTAACATTTGACCCAGCA
H5-1
GAAGGAGTTTATTCATACCTAAACAAAAATGATGTTAAAGATGTAACATTTGACCCAGCA
H6-1
GAAGGAGTTTATTCATACCTAAACAAAAATGATGTTAAAGATGTAACATTTGACCCAGCA
H3-1
AATACTATTGCAGACAGTGTAACAGCAATTTCAGGATTAGTGAACGTGTATTACGATATA
H4-1
AATACTATTGCAGACAGTGTAACAGCAATTTCAGGATTAGTGAACGTGTATTACGATATA
H5-1
AATACTATTGCAGACAGTGTAACAGCAATTTCAGGATTAGTGAACGTGTATTACGATATA
H6-1
AATACTATTGCAGACAGTGTAACAGCAATTTCAGGATTAGTGAACGTGTATTACGATATA
H3-1
GCAATTGAAGATATGCCTATCACTCCATACATTGGTGTTGGTGTTGGTGCAGCGTATATT
H4-1
GCAATTGAAGATATGCCTATCACTCCATACATTGGTGTTGGTGTTGGTGCAGCGTATATT
H5-1
GCAATTGAAGATATGCCTATCACTCCATACATTGGTGTTGGTGTTGGTGCAGCGTATATT
H6-1
GCAATTGAAGATATGCCTATCACTCCATACATTGGTGTTGGTGTTGGTGCAGCGTATATT

H3-1
AGCACTCCTTTGGAACCCGCTGTGAATGATCAAAAAAGTAAATTTGGTTTTGCTGGTCAA H4-1
AGCACTCCTTTGGAACCCGCTGTGAATGATCAAAAAAGTAAATTTGGTTTTGCTGGTCAA H5-1
AGCACTCCTTTGGAACCCGCTGTGAATGATCAAAAAAGTAAATTTGGTTTTGCTGGTCAA H6-1
AGCACTCCTTTGGAACCCGCTGTGAATGATCAAAAAAGTAAATTTGGTTTTGCTGGTCAA

H3-1
GTAAAAGCTGGTGTTAGTTATGATGTAACTCCAGAAGTCAAACTTTATGCTGGAGCTCGT H4-1
GTAAAAGCTGGTGTTAGTTATGATGTAACTCCAGAAGTCAAACTTTATGCTGGAGCTCGT H5-1
GTAAAAGCTGGTGTTAGTTATGATGTAACTCCAGAAGTCAAACTTTATGCTGGAGCTCGT
H6-1
GTAAAAGCTGGTGTTAGTTATGATGTAACTCCAGAAGTCAAACTTTATGCTGGAGCTCGT

H3-1
TATTTCGGTTCTTATGGTGCTAATTTTGATGGAAAAAAAACAGATCCTAAAGATTCAACC H4-1
TATTTCGGTTCTTATGGTGCTAATTTTGATGGAAAAAAAACAGATCCTAAAGATTCAACC H5-1
TATTTCGGTTCTTATGGTGCTAATTTTGATGGAAAAAAAACAGATCCTAAAGATTCAACC H6-1
TATTTCGGTTCTTATGGTGCTCATTTTGATGGAGAAAAAGTAGATCCTAGAGATGCAAAC
*** *

H3-1 AGACAGGTTACTGATGCAGGCGCATACAAAGTT
H4-1 AGACAGGTTACTGATGCAGGCGCATACAAAGTT
H5-1 AGACAGGTTACTGATGCAGGCGCATACAAAGTG
H6-1 AAAAAGGTTGCTGATAAAGGCGCATATAAAGTC

Appendix IV Alignment of the ftsZ sequences of R. cingulata (Rcf) and R. pomonella (Rpf)

```
Rcf3-3
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf5-1
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf5-3
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf3-4
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf4-1
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf4-4
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf5-2
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf6-7
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf5-5
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf5-8
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf3-2
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf4-3
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf5-6
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf4-2
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rcf3-1
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf6-1
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf6-2
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf6-3
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf6-4
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
Rpf6-5
GGTGGTACTGGAACCGGTGCAGCACCGGTAATTGCAAAAGCAGCCAGAGAAGCAAGAGCC
```

Rcf3-3
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA
Rpf5-1
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA
Rpf5-3
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA
Rcf3-4
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA
Rcf4-1
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA
Rcf4-4
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA

Rpf5-2
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf6-7
GTAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf5-5
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf5-8
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rcf3-2
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rcf4-3
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf5-6
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rcf4-2
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rcf3-1
GCAGTTAAGGATAGAGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf6-1
GCAGTTAAGGATAGGGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf6-2
GCAGTTAAGGATAGGGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf6-3
GCAGTTAAGGATAGGGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf6-4
GCAGTTAAGGATAGGGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA Rpf6-5
GCAGTTAAGGATAGGGCGCCAAAAGAAAAAAAGATATTGACTGTTGGAGTTGTAACTAAA

* ************

Rcf3-3
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rpf5-1
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rpf5-3
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rcf3-4
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCTCATTGCAGAGCTTGGACTTGAAGAATTG
Rcf4-1
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rcf4-4
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG
Rpf5-2
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rpf6-7
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rpf5-5
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rpf5-8
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rcf3-2
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rcf4-3
CCGTTCGGTTTTGAAGGTGTGCGTCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rpf5-6
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG
Rcf4-2
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG Rcf3-1
CCGTTCGGTTTTGAAGGTGTGCGCCGTATGCGCATTGCAGAGCTTGGACTTGAAGAACTG
Rpf6-1
CCGTTCGGCTTTGAAGGTGTGCGCCGTATGCGTATTGCAGAGCTTGGACTTGAAGAACTG Rpf6-2
CCGTTCGGCTTTGAAGGTGTGCGCCGTATGCGTATTGCAGAGCTTGGACTTGAAGAACTG Rpf6-3
CCGTTCGGCTTTGAAGGTGTGCGCCGTATGCGTATTGCAGAGCTTGGACTTGAAGAACTG
Rpf6-4
CCGTTCGGCTTTGAAGGTGTGCGCCGTATGCGTATTGCAGAGCTTGGACTTGAAGAACTG Rpf6-5
CCGTTCGGCTTTGAAGGTGTGCGCCGTATGCGTATTGCAGAGCTTGGACTTGAAGAACTG
$\star *$
$\star *$

Rcf3-3
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf5-1
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf5-3
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rcf3-4
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT
Rcf4-1
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT
Rcf4-4
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT
Rpf5-2
CAAAAATACGTGGATACACTTATTGTCATCCCAAATCAGAATTTATTTAGAATTGCAAAT
Rpf6-7
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT
Rpf5-5
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT

Rpf5-8
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rcf3-2
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rcf4-3 CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf5-6
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rcf4-2
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rcf3-1
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf6-1
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf6-2
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf6-3
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf6-4
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT Rpf6-5
CAAAAATACGTGGATACACTTATTGTCATTCCAAATCAGAATTTATTTAGAATTGCAAAT
$* *$

Rcf3-3
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf5-1
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATCGGCATC
Rpf5-3
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf3-4
GAAAAAACTACNTTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf4-1
GAAAAAACTACGTTCTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf4-4
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf5-2
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf6-7
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf5-5
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf5-8
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf3-2
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf4-3
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf5-6
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf4-2
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rcf3-1
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf6-1
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf6-2
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf6-3
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC Rpf6-4
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATN Rpf6-5
GAAAAAACTACATTTTCTGATGCATTTAAACTTGCTGATAATGTTCTGCACATTGGCATC

Rcf3-3
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rpf5-1
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rpf5-3
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf3-4
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf4-1
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf4-4
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA
Rpf5-2
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rpf6-7
AGAGGAGTACCTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA
Rpf5-5
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA

Rpf5-8
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf3-2
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf4-3
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rpf5-6
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf4-2
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rcf3-1
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATCAATCTTGACTTCGCTGATATA Rpf6-1
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATTAATCTTGACTTCGCTGATATA Rpf6-2
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATTAATCTTGACTTCGCTGATATA Rpf6-3
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATTAATCTTGACTTCGCTGATATA Rpf6-4
NGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATTAATCTTGACTTCGCTGATATA Rpf6-5
AGAGGAGTAACTGACTTGATGGTCATGCCAGGGCTTATTAATCTTGACTTCGCTGATATA
$\star *$

Rcf3-3
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rpf5-1
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA
Rpf5-3
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rcf3-4
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA
Rcf4-1
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rcf4-4
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA
Rpf5-2
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA
Rpf6-7
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rpf5-5
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rpf5-8
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rcf3-2
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rcf4-3
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rpf5-6
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA
Rcf4-2
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA Rcf3-1
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACCGGAGAGGCAGAAGGAGAA
Rpf6-1
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACTGGAGAGGCAGAAGGAGAA
Rpf6-2
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACTGGAGAGGCAGAAGGAGAA Rpf6-3
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACTGGAGAGGCAGAAGGAGAA Rpf6-4
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACTGGAGAGGCAGAAGGAGAA Rpf6-5
GAAACAGTAATGAGCGAGATGGGCAAAGCGATGATCGGCACTGGAGAGGCAGAAGGAGAA

Rcf3-3 GATAGAGCAATTAGT
Rpf5-1 GATAGAGCAATTAGT
Rpf5-3 GATAGAGCAATTAGT
Rcf3-4 GATAGAGCAATTAGT
Rcf4-1 GATAGAGCAATTAGT
Rcf4-4 GATAGAGCAATTAGT
Rpf5-2 GATAGAGCAATTAGT
Rpf6-7 GATAGAGCAATTAGT
Rpf5-5 GATAGAGCAATTAGT
Rpf5-8 GATAGAGCAATTAGT
Rcf3-2 GATAGAGCAATTAGT
Rcf4-3 GATAGAGCAATTAGT
Rpf5-6 GATAGAGCAATTAGT
Rcf4-2 GATAGAGCAATTAGT
Rcf3-1 GATAGAGCAATTAGT
Rpf6-1 GATAGAGCAATTAGT
Rpf6-2 GATAGAGCAATTAGT
Rpf6-3 GATAGAGCAATTAGT

Appendix V Alignment of the coxA sequences of R. cingulata (Rcx) and R. pomonella (Rpx)

Rpx3-2
ATGCGCACAAAAGGAATGTCATTAACTAAGATGCCACTGTTTGTTTGGTCTGTCTTGCTA Rpx3-3
ATGCGCACAAAAGGAATGTCATTAACTAAGATGCCACTGTTTGTTTGGTCTGTCTTGCTA Rpx4-1
ATGCGCACAAAAGGAATGTCATTAACTAAGATGCCACTGTTTGTTTGGTCTGTCTTGCTA Rpx4-3
ATGCGCACAAAAGGAATGTCATTAACTAAGATGCCACTGTTTGTTTGGTCTGTCTTGCTA
Rpx4-2
ATGCGCACAAAAGGAATGTCATTAACTAAGATGCCACTGTTTGTTTGGTCTGTCTTGCTA Rpx3-1
ATGCGCACAAAAGGAATGTCATTAACTAAGATGCCACTGTTTGTTTGGTCTGTCTTGCTA
Rcx6-1
ATGCGTGCGAAAGGCATGTCGTTGACTAAGATGCCACTATTTGTTTGGTCTGTCTTGCTA Rcx6-2
ATGCGTGCGAAAGGCATGTCGTTGACTAAGATGCCACTATTTGTTTGGTCTGTCTTGCTA
$\star *$

Rpx3-2
ACAGCATTTATGTTGATTGTTGCCTTACCAGTGCTTGCCGGTGCTATAACTATGCTTCTT
Rpx3-3
ACAGCATTTATGTTGATTGTTGCCTTACCAGTGCTTGCCGGTGCTATAACTATGCTTCTT Rpx4-1
ACAGCATTTATGTTGATTGTTGCCTTACCAGTGCTTGCCGGTGCTATAACTATGCTTCTT Rpx4-3
ACAGCATTTATGTTGATTGTTGCCTTATCAGTGCTTGCCGGTGCTATAACTATGCTTCTT Rpx4-2
ACAGCATTTATGTTGATTGTTGCCTTACCAGTGCTTGCCGGTGCTATAACTATGCTTCTT Rpx3-1
ACAGCATTTATGTTGATTGTTGCCTTACCAGTGCTTGCCGGTGCTATAACTATGCTTCTT Rcx6-1
ACAGCATTTATGTTGATTGTTGCCTTACCGGTGCTTGCCGGTGCTATAACTATGCTTCTT Rcx6-2
ACAGCATTTATGTTGATTGTTGCCTTACCGGTGCTTGCCGGTGCTATAACTATGCTTCTT
$\star *$

Rpx3-2
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCCGGTGGCGGCGATCCTGTGTTA Rpx3-3
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCCGGTGGCGGCGATCCTGTGTTA
Rpx4-1
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCCGGTGGCGGCGATCCTGTGTTA Rpx4-3
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCCGGTGGCGGCGATCCTGTGTTA
Rpx4-2
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCCGGTGGCGGCGATCCTGTGTTA Rpx3-1
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCCGGTGGCGGCGATCCTGTGTTA
Rcx6-1
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCAGGTGGTGGTGACCCTGTGTTA Rcx6-2
ACTGATCGCAATATTGGTACTTCCTTTTTTGATCCTGCAGGTGGTGGTGACCCTGTGTTA

Rpx3-2
TTTCAACATCTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rpx3-3
TTTCAACATCTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rpx4-1
TTTCAACATCTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rpx4-3
TTTCAACATCTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rpx4-2
TTTCAACATCTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rpx3-1
TTTCAACATCTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rcx6-1
TTTCAACATTTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA Rcx6-2
TTTCAACATTTATTTTGGTTTTTTGGTCATCCAGAAGTTTACGTAATTATTTTTCCTGCA $\star * * * * * * * *$

Rpx3-2
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rpx3-3
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rpx4-1
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rpx4-3
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rpx4-2
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rpx3-1
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rcx6-1
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA Rcx6-2
TTTGGCATCATAAGTCAGGTTGTATCAACTTTTTCTCACAGACCTGTATTTGGTTACATA

Rpx3-2
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCACCAT Rpx3-3
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCACCAT Rpx4-1
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCACCAT Rpx4-3
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCACCAT
Rpx4-2
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCACCAT Rpx3-1
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCACCAT
Rcx6-1
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCATCAT
Rcx6-2
GGGATGGTTTATGCAATGATAGGTATAGCAGTATTTGGCTTTATGGTTTGGGCTCATCAT

Rpx3-2 ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT
Rpx3-3 ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT
Rpx4-1
Rpx4-3
Rpx4-2
Rpx3-1
Rcx6-1 ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT

Rcx6-2 ATGTTCACTGTTGGGCTTAGTGCTGACGCTGCTGCATTTTTT

* $* *$

Appendix VI Alignment of the hcpA sequences of R. cingulata (Rch) and R. pomonella (Rph)

```
Rph3-1
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph4-1
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph3-2
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph3-3
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph3-4
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph4-2
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph4-3
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rph4-4
GATCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rch6-5
CTGCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rch6-1
CTGCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rch6-3
CTGCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
Rch6-2
CTGCCCGAACTCAACCCGCGCCTTCGCTCTGCTATATTTGCTGCACGCAAGGAAAATCTA
```

Rph3-1
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph4-1
CCAAAAGCTAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph3-2
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph3-3
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph3-4
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph4-2
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph4-3
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rph4-4
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rch6-5
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACGTTGCTGGAGAAAAT
Rch6-1
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACATTGCTGGAGAAAAT
Rch6-3
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACATTGCTGGAGAAAAT
Rch6-2
CCAAAAGATAAAATAGAAACAGCAATAAAAAATGCAACTGGTAACATTGCTGGAGAAAAT
Rph3-1
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT

Rph4-1
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT Rph3-2
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT Rph3-3
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT Rph3-4
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT
Rph4-2
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT Rph4-3
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT
Rph4-4
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT Rch6-5
TACGAGGAAATCCAATATGAAGGTCATGGGCCTTCTGGCACTGCACTCATTGTCCATGTT
Rch6-1
TACGAGGAAATACAATATGAAGGTCATGGGCCTTCTGGTACTGCACTCATTGTCCATGCC Rch6-3
TACGAGGAAATACAATATGAAGGTCATGGGCCTTCTGGTACTGCACTCATTGTCCATGCC Rch6-2
TACGAGGAAATACAATATGAAGGTCATGGGCCTTCTGGTACTGCACTCATTGTCCATGCC
$\star *$
$\star \star \star * * * * * * * * * * * * * * * *$

Rph3-1
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT Rph4-1
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT Rph3-2
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT Rph3-3
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT
Rph3-4
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT Rph4-2
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT
Rph4-3
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT
Rph4-4
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT
Rch6-5
TTGACTAATAATCGCAACCGAACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT Rch6-1
TTGACTAATAACCGCAACCGTACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT
Rch6-3
TTGACTAATAACCGCAACCGTACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT Rch6-2
TTGACTAATAACCGCAACCGTACTGCTTCTGAGGTACGTTATATATTTTCTCGCAAGGGT
*********** ********

Rph3-1
GAAAACTTGGGAGAAGCAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rph4-1
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rph3-2
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rph3-3
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC
Rph3-4
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rph4-2
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC
Rph4-3
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rph4-4
GAAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rch6-5
GGAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTCGATCATGTAGGCTTAATCGTC Rch6-1
GGAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTTGATCATGTAGGTTTAATTGTC Rch6-3
GGAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTTGATCATGTAGGTTTAATTGTC Rch6-2
GGAAACTTGGGAGAAACAGGAAGTGTTAGTTACCTTTTTGATCATGTAGGTTTAATTGTC
***** ***

Rph3-1
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rph4-1
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rph3-2
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rph3-3
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rph3-4
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rph4-2
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rph4-3
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA
Rph4-4
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rch6-5
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rch6-1
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rch6-3
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA Rch6-2
TATAAAGCAGAGGGTGTGAATTTTGATGATTTATTCAGTCATGGAATCGAATTAGAAGTA

Rph3-1
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT Rph4-1
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT
Rph3-2
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT

Rph3-3
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT Rph3-4
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT
Rph4-2
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT Rph4-3
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT
Rph4-4
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT Rch6-5
TTGAATGTTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT Rch6-1
TTGAATATTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT Rch6-3
TTGAATATTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAGGAT Rch6-2
TTGAATATTGAGGAAAATGACAAAGAAGGATTACACGTTATAACTTGTGAAATAAAAGAT ******

Rph3-1 TTTGGTAAAGTACGCGATGCCTTT
Rph4-1 TTTGGTAAAGTACGCGATGCCTTT
Rph3-2 TTTGGTAAAGTACGCGATGCCTTT
Rph3-3 TTTGGTAAAGTACGCGATGCCTTT
Rph3-4 TTTGGTAAAGTACGCGATGCCTTT
Rph4-2 TTTGGTAAAGTACGCGATGCCTTT
Rph4-3 TTTGGTAAAGTACGCGATGCCTTT
Rph4-4 TTTGGTAAAGTACGCGATGCCTTT
Rch6-5 TTTGGTAAAGTACGCGATGCCTTT
Rch6-1 TTTGGTAAAGTACGCGATGCCTTT
Rch6-3 TTTGGTAAAGTACACGATGCCG--
Rch6-2 TTTGGTAAAGTACGCGATGCCTTT

Appendix VII Alignment of the gatB sequences of R. cingulata (Rcg) and R. pomonella (Rpg)

Rpg3-1
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT
Rpg3-3
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT Rpg4-1
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT
Rpg3-2
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT Rpg3-4
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT
Rpg4-3
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT Rpg4-2
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT Rcg5-1
GAAGCTGCAGAATGCATGAAAAAATTGAGGCAGATTTTGCGTTACATTGGTTCGTGTGAT

Rpg3-1
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rpg3-3
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rpg4-1
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rpg3-2
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rpg3-4
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rpg4-3
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rpg4-2
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC Rcg5-1
GGTGATATGGAAAAGGGATCACTTCGTTGTGATGCAAATGTTTCTGTCCGCCTAAAAGGC

Rpg3-1
AGTAGTACATTTGGCACTCGTTGTGAAATAAAAAATCTGAACTCGATACGTTATATTGTG
Rpg3-3
AGTAGTACATTTGGCACTCGTTGTGAAATAAAAAATCTGAACTCGATACGTTATATTGTG Rpg4-1
AGTAGTACATTTGGCACTCGTTGTGAAATAAAAAATCTGAACTCGATACGTTATATTGTG
Rpg3-2
AGTAGTACATTTGGCACTCGTTGTGAAATAAAAAATCTGAACTCGATACGTTATATTGTG Rpg3-4
AGTAGTACATTTGGCACTCGTTGCGAAATAAAAAATCTGAACTCGATACGTTATATTGTG
Rpg4-3
AGTAGTACATTTGGCACTCGTTGTGAAATAAAAAATCTGAACTCGATACGTTATATTGTG Rpg4-2
AGTAGTACATTTGGCACTCGTTGTGAAATAAAAAATCTGAACTCGATACGTTATATTGTG
Rcg5-1
AGTAGCGCACTTGGCACTCGTTGTGAGATAAAAAATCTGAACTCGATACGTTATATTGTG
***** $\quad * * \quad * * * * * * * * * * * * * * *$
$\star * ~$

Rpg3-1
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA
Rpg3-3
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA Rpg4-1
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA
Rpg3-2
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA
Rpg3-4
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA
Rpg4-3
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA
Rpg4-2
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGAGAAGAAATA
Rcg5-1
CAAGCTATAGACTATGAAATACAAAGACAAATTGAAATTTTAGAAAGTGGGGAAGAAATA

Rpg3-1
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA

Rpg3-3
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA Rpg4-1
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA Rpg3-2
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA Rpg3-4
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA Rpg4-3
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA Rpg4-2
AGTCAAGATACCTTATTGTTTGACGTTGCTTCGGGAAAAACAAAAGTGATGAGAAGCAAA Rcg5-1 AGTCAAGATACCTTATTGTTTGATGTTGCTTCGGGAAAAACAAAAGTGATGCGAAACAAA
*********************** *****************************

Rpg3-1
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rpg3-3
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rpg4-1
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rpg3-2
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rpg3-4
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rpg4-3
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rpg4-2
GAGGATGCAAGCGATTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC Rcg5-1
GAAGATGCAAGCGACTATAGATACTTCCCTGAGCCTGATTTATTACCTGTTGAGGTAAGC ** $\quad * * * * * * * * * * *$

Rpg3-1
CAGGATAAA
Rpg3-3 CAGGATAAA
Rpg4-1 CAGGATAAA
Rpg3-2
CAGGATAGA
Rpg3-4
CAGGATAAA
Rpg4-3
CAGGATAAA
Rpg4-2
CAGGATAAA
Rcg5-1
CAGGATAAA
******* *

Appendix VIII Alignment of the $f b p A$ sequences of R. cingulata (Rcp) and R. pomonella (Rpp)

Rcp6-6
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rcp6-7
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rpp4-2
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC
Rpp3-4
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rpp3-3
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rpp3-2
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rcp6-1
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rcp6-8
TGAAGCTGGCGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rpp4-3
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rpp4-1
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rpp3-1
TGAAGCTGGTGCTGCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC Rcp6-2
TGAAGCTGGTGCTTCAACTTATGCTGGAATGCTCCCACTTATTTTGAAACTTAATAGTTC ********* ***

Rcp6-6
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA Rcp6-7
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rpp4-2
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rpp3-4
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rpp3-3
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rpp3-2
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rcp6-1
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rcp6-8
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rpp4-3
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rpp4-1
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTTTTCTGTGAAAGA
Rpp3-1
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA
Rcp6-2
CAACTCTTTACATTCAAAGGATCTAACCTCTGATCAGGCAATAACCTCTTCTGTGAAAGA

Rcp6-6
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG

Rcp6-7
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rpp4-2
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rpp3-4
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rpp3-3
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rpp3-2
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rcp6-1
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG
Rcp6-8
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rpp4-3
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG
Rpp4-1
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rpp3-1
TGCGCTGCGTTTGGGATGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG Rcp6-2
TGCGCTGCGTTTGGGCTGCTTAGCTGTCGGATTTACTATATATCCTGGTTCTGCTAAGTG

Rcp6-6
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rcp6-7
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC
Rpp4-2
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rpp3-4
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rpp3-3
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rpp3-2
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rcp6-1
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rcp6-8
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rpp4-3
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rpp4-1
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rpp3-1
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTATGGACTTGC Rcp6-2
TTTCGATATGATGGAGGAAGCCCGTGGAATCATAGCTGAAGCCAAATCTTACGGGCTTGC

Rcp6-6
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT Rcp6-7
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT Rpp4-2
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT
Rpp3-4
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT

Rpp3-3
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT Rpp3-2
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT
Rcp6-1
AGTAGTGCTATGATCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT Rcp6-8
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT
Rpp4-3
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT Rpp4-1
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT
Rpp3-1
AGTAGTGCTACGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT Rcp6-2
AGTAGTGCTATGGTCTTATCCACGCGGTGAAGGGATTTCCAAAGAAGGTGAAACAGCAGT ********** *

Rcp6-6
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rcp6-7
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rpp4-2
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rpp3-4
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rpp3-3
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rpp3-2
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rcp6-1
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rcp6-8
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rpp4-3
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT
Rpp4-1
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rpp3-1
TGATGTTATTGCCTATGCTGCGCACATGGCAGCTTTGCTTGGCGCTAATATAATAAAAGT Rcp6-2
TGATGTTATTGCCTATGCTGCACACATGGCAGCTTTGCTTGGCGCTAATATAATCAAAGT

Rcp6-6
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rcp6-7
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp4-2
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp3-4
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp3-3
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp3-2
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT
Rcp6-1
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT

Rcp6-8
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp4-3
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp4-1
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT Rpp3-1
AAAACTTCCAACTAAATATTTGGAAAGGGAGAAAATAGAAACAGAAAATATTGAATCATT
Rcp6-2
AAAACTTCCAACTAGATATTTGGAAAAAGAAAAAATAGAAACAGAAAATATTGAATCATT
$* * * * * * * * * * * * * * \quad * * * * * * * * * * * \quad * *$

Rcp6-6
Rcp6-7
Rpp4-2
Rpp3-4
Rpp3-3
Rpp3-2
Rcp6-1
Rcp6-8
Rpp4-3
Rpp4-1
Rpp3-1
ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATACGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA

Rcp6-2 ATCTAAAAGAATTGAATATGTTAAAAGGTCTTGTTTTGCAGGGAAAA ATCTAAAAGAATTGAATATGTTAAAAAATCTTGTTTTGCAGGAAAAA $\star * * * * * * * * * * * * * * * * * \quad * * * * * * * \quad * * * * * * * * * * * * * * * * * *$

Appendix IX Kimura-2-parameter distances calculated with MEGA4 (Tamura et al. 2007)

- Wsp

[1] \#wCin1	[2] \#wCer1	[3] \#wPom
[4] \#wCer2	[5] \#wCin2	[6] \#wSpt
[7] \#wDwi	[8] \#wMel	[9] \#wBo
$[10] \# w D i n$	$[11] \# w A s o$	$[12] \# w C e r 4$

```
[1]
[ 2] }0.00
[3] 0.025 0.025
[4] 0.0250.0250.000
[ 5] 0.0250.0250.000 0.000
[ 6] 0.0340.0340.008 0.008 0.008
[ 7] 0.027 0.0270.0020.0020.0020.010
[ 8] 0.029 0.029 0.008 0.008 0.008 0.0170.010
[ 9] 0.029 0.029 0.017 0.0170.017 0.025 0.019 0.025
[10] 0.027 0.027 0.015 0.015 0.015 0.023 0.017 0.023 0.002
[11] 0.027 0.027 0.015 0.015 0.015 0.023 0.017 0.023 0.002 0.000
[12] 0.115 0.115 0.120 0.120 0.120 0.130 0.122 0.120 0.122 0.125 0.125
```

- gatB

[1] \#wCin1	[2] \#wCer1+4	[3] \#wSol
[4] \#wMono	[5] \#wCal	[6] \#wNa
[7] \#wDbor	[8] \#wBo	[9] \#wPom
[10] \#wMel	[11]\#wCer2	[12] \#wAna
[13] \#wNvi	[14] \#wCer5	

[1]
[2] 0.000
[3] 0.0050 .005
[4] 0.0050 .0050 .000
[5] 0.0050 .0050 .0000 .000
[6] 0.0360 .0360 .0360 .0360 .036
[7] 0.0360 .0360 .0360 .0360 .0360 .000
[8] 0.0360 .0360 .0360 .0360 .0360 .0000 .000
[9] 0.0360 .0360 .0360 .0360 .0360 .0000 .0000 .000
[10] 0.0360 .0360 .0360 .0360 .0360 .0000 .0000 .0000 .000
[11] 0.0360 .0360 .0360 .0360 .0360 .0000 .0000 .0000 .0000 .000
[12] 0.0280 .0280 .0280 .0280 .0280 .0080 .0080 .0080 .0080 .0080 .008
[13] 0.0230 .0230 .0280 .0280 .0280 .0130 .0130 .0130 .0130 .0130 .0130 .015
[14] 0.1390 .1390 .1430 .1430 .1430 .1390 .1390 .1390 .1390 .1390 .1390 .1330 .139

- fbpA

[1] \#wCin1	[2] \#wCer1	[3] \#wChl
[4] \#Nas	[5] \#wDSim	[6] \#wMel
[7] \#wCin2	[8] \#wPom	[9] \#wCer2
[10] \#wAna	[11] \#wCer4	[12] \#wCer5

[1]
[2] 0.000
[3] 0.0270 .027
[4] 0.0270 .0270 .000
[5] 0.0270 .0270 .0000 .000
[6] 0.0270 .0270 .0000 .0000 .000
[7] 0.0270 .0270 .0000 .0000 .0000 .000
[8] 0.0270 .0270 .0000 .0000 .0000 .0000 .000
[9] 0.0270 .0270 .0000 .0000 .0000 .0000 .0000 .000
[10] 0.0340 .0340 .0220 .0220 .0220 .0220 .0220 .0220 .022
[11] 0.0600 .0600 .0520 .0520 .0520 .0520 .0520 .0520 .0520 .034
[12] 0.1530 .1530 .1470 .1470 .1470 .1470 .1470 .1470 .1470 .1470 .160

- ftsZ

[1] \#wCin1	[2]\#wCer1	$[3] \# w \operatorname{Cin} 2$
$[4] \# w \operatorname{Pom}$	[5] \#wAso	$[6] \# w A u$
[7] \#wCer2	[8] \#wDsi	[9] \#wDia
[10] \#wDmel	[11] \#wCer4	$[12] \# w C e r 5$

[1]
[2] 0.000
[3] 0.0130 .013
[4] 0.0130 .0130 .000
[5] 0.0130 .0130 .0000 .000
[6] 0.0130 .0130 .0000 .0000 .000
[7] 0.0130 .0130 .0000 .0000 .0000 .000
[8] 0.0130 .0130 .0000 .0000 .0000 .0000 .000
[9] 0.0130 .0130 .0040 .0040 .0040 .0040 .0040 .004
[10] 0.0100 .0100 .0020 .0020 .0020 .0020 .0020 .0020 .002
[11] 0.0210 .0210 .0130 .0130 .0130 .0130 .0130 .0130 .0130 .010
[12] 0.1110 .1110 .1110 .1110 .1110 .1110 .1110 .1110 .1110 .1080 .106

- hсрA

[1] \#wCin1	$[2] \# w \operatorname{Cer} 1$	$[3] \# w \operatorname{Cin} 2$
[4] \#wPom	$[5] \# w A s o$	$[6] \# w A u$
[7] \#wCer2	$[8] \# w D s i$	$[9] \# w D i a$
$[10] \# w D m e l$	$[11] \# w C e r 4$	$[12] \# w C e r 5$

[1]
[2] 0.000
[3] 0.0130 .013
[4] 0.0130 .0130 .000
[5] 0.0130 .0130 .0000 .000
[6] 0.0130 .0130 .0000 .0000 .000
[7] 0.0130 .0130 .0000 .0000 .0000 .000
[8] 0.0130 .0130 .0000 .0000 .0000 .0000 .000
[9] 0.0130 .0130 .0040 .0040 .0040 .0040 .0040 .004
[10] 0.0100 .0100 .0020 .0020 .0020 .0020 .0020 .0020 .002
[11] 0.0210 .0210 .0130 .0130 .0130 .0130 .0130 .0130 .0130 .010
[12] 0.1110 .1110 .1110 .1110 .1110 .1110 .1110 .1110 .1110 .1080 .106

Appendix X Sources of Figures and tables

Fig 1.1: http://scilogs.be/starttoknow/gallery/5/Wolbachia.jpg
Fig 1.2: Baldo et Al. 2006
Fig 1.3: Fly from www.bugguide.net
Fig 1.4: Riegler \& Stauffer 2002
Fig 1.5: Arthofer et al. 2009b
Fig 1.6: (from up to right) www.biohelp.at, www.inra.fr, www.lfl.bayern.de, www.nd.edu
Fig 1.7: www.bugguide.net
Fig 1.8: www.bugguide.net
Fig 1.9: Feder 1998
Fig 2.1: Forestryimages.org
Fig 2.2: www.virgignafruit.ento.vt.edu
Table 3.1: Baldo et al. 2006

7. Curriculum vitae

Hannes Schuler
Julius Tandlerplatz 8/8
1090 Vienna, Austria
telephone: 0650/6660038
email: hannes.schuler@boku.ac.at

Education

2008-2009: Diploma thesis "The Endosymbiont Wolbachia in Rhagoletis pomonella and R. cingulata (Diptera, Tephritidae)" Institute of Forest Entomology, Forest Pathology \& Forest Protection, Department of Forest \& Soil Sciences Boku, Vienna

2003-2009 student of agriculture and phytomedicine at the University of Natural Resources \& Applied Life Sciences Boku in Vienna

1998-2003 agricultural high school in Auer, Bozen, Italy
1990-1998 primary school

Experiences
practical work at the parental apple orchards
tutor for the course Plant Protection at the Institute of Plant Protection, Boku
tutor for the course Agricultural Diagnostics of Damages at the Institute of Plant Protection, Boku

Erasmus Semester in Bologna, Italy
English language course in Portsmouth, UK

Schuler H, Arthofer W, Krumböck S, Köppler K, Vogt H, Teixeira laf, Riegler M, Stauffer C (2009) The bacterial endosymbiont Wolbachia in the invasive cherry pest Rhagoletis cingulata (Diptera, Tephritidae). Proceedings of the German Society for General and Applied Entomolgy, submitted.

Schuler H, Arthofer W, Köppler K, Vogt H, Teixeira LAF, Riegler M, Stauffer C (2009) Wolbachia in Rhagoletis spp. Entomologentagung DGaaE, Göttingen Posterpräsentation

Arthofer W, Krumboeck S, Schuler H, Rasool B, Riegler M, Koeppler K, StaUffer C (2009) Thirteen new microsatellite loci in Rhagoletis cerasi (Diptera: Tephritidae), a model host species for Wolbachia symbiosis in field populations. Molecular Ecology Resources, submitted

Publications and Poster

The bacterial endosymbiont Wolbachia in the invasive cherry pest Rhagoletis cingulata (Diptera, Tephritidae)

Hannes Schuler ${ }^{1}$, Wolfgang Arthofer ${ }^{1 *}$, Susanne KrumböcK ${ }^{1}$, Kirsten Köppler ${ }^{2}$, Heidrun V^{2} OGT 2, Luis A.F. Teixeira ${ }^{3}$, Markus Riegler ${ }^{4}$ \& Christian Stauffer ${ }^{1}$
${ }^{1}$ Institute of Forest Entomology, Forest Pathology \& Forest Protection, Boku, University of Applied Life Sciences and Natural Sciences, Vienna, Austria
${ }^{2}$ Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Dossenheim, Germany
${ }^{3}$ Department of Entomology, Michigan State University, East Lansing, USA
${ }^{4}$ Centre for Plant and Food Science, School of Natural Sciences, University of Western Sydney, Australia
* Current address: Institute of Ecology, University Innsbruck, Austria

Zusammenfassung Wir berichten über zwei Wolbachia Isolate in einer europäischen Population der amerikanischen Kirschfruchtfliege Rhagoletis cingulata,. Die Isolate $w \operatorname{Cin} 1$ und wCin2 wurden durch Amplifikation, Klonierung und Sequenzierung des Wolbachia surface protein (wsp) Gens identifiziert. Eine phlyogenetische Analyse der wsp Region ergab, dass w Cin1 und w Cin2 ident mit w Cer1 und w Cer2 sind, welche in der Europäischen Kirschfruchtfliege, R. cerasi, gefunden wurden. Potentieller horizontaler Wolbachia Transfer und mögliche Folgearbeiten werden diskutiert.

Key Words: Rhagoletis, Wolbachia, invasive species
Christian Stauffer E-Mail: christian.stauffer@boku.ac.at

Introduction

Wolbachia is a gram negative endosymbiotic bacterium found in up to 65% of insect species (Hilgerboecker \& al. 2008). Infections have been detected in all major orders of insects and some other arthropod taxa (Werren \& al. 2008). Although it’s main path
of transmission is transovarial through the cytoplasm of host eggs Wolbachia is supposed to occasionally jump horizontally among species (BALDO \& al. 2008). Wolbachia can change the reproductive traits of its hosts to enhance colonization of the germline and vertical transmission (Werren \& al. 2008). Cytoplasmic incompatibility (CI) is the most common phenotype in insects. It leads to embryonic death of fertilized eggs when infected males mate with uninfected females, while matings between infected males and females are compatible. This results in a reproductive advantage of infected over uninfected females and leads to increased infection rates in host populations over generational cycles (Hoffmann \& Turelli, 1997).

Based on extensive single pair crossing experiments, BoLLER \& al. (1976) concluded that populations of the European cherry fruit fly, Rhagoletis cerasi, are divided into two geographic complexes which exhibit unidirectional incompatibility. BLÜmel \& Russ (1989) detected Rickettsia Like Organisms (RLOs) in the ovaries of individuals in all populations. By applying PCR techniques with Wolbachia specific primers, RIEGLER \& StaUfFer (2002) detected two different Wolbachia strains, wCer1 and wCer2 in cherry fruit fly populations. Transinfection experiments with w Cer2 revealed complete CI in the Mediterranean fruit fly, Ceratitis capitata and cage experiments demonstrated that Wolbachia-induced CI could be used as a tool for population control (Zabalou \& al. 2004).

It has recently been reported that the American cherry fruit fly, R. cingulata, is present in Europe. So far, the species has been found in Austria, Germany, Hungary, Slovenia and Switzerland (BoLLer 2000, Daniel \& Wyss 2007, Egartner \& al. 2008, EPPO 2006, EPPO 2007a, EPPO 2007b, VogT \& al. 2009). R. cingulata has a similar biology as R. cerasi with the exception of required higher temperatures for R. cingulata pupae to reach maturity and delayed emergence of adults from the soil (VoGT \& al. 2009). R. cingulata is a serious pest in cherries in Northeast American regions (Bush 1966, Rothwell \& al. 2006).

Here we investigated Wolbachia infections in R. cingulata from a German population. We discuss potential horizontal Wolbachia transmission between R. cingulata and R. cerasi, as both species might co-occur in the same cherries. The Wolbachia detection was carried out by PCR using wsp primers and subsequent cloning and sequencing of the
amplicons.

Materials \& Methods

R. cingulata flies were collected from yellow sticky traps in Heidesheim, Germany, in 2008 and stored in absolute ethanol at $-20^{\circ} \mathrm{C}$. DNA of two individual flies was extracted using the Sigma GenElute Mammalian DNA extraction Kit (Sigma) following the protocol of the manufacturer. DNA was eluted in $50 \mu \mathrm{lE}(10 \mathrm{mM}$ Tris, 1 mM EDTA, $\mathrm{pH}=8.0$) and stored at $-20^{\circ} \mathrm{C}$. All PCR reactions were performed on a 2720 thermal cycler (Applied Biosystems) in a total volume of $10 \mu \mathrm{l}$ containing: 1x Mg-free buffer (Fermentas), $2 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 100 \mu \mathrm{M}$ dNTPs, $0.2 \mu \mathrm{M}$ of each primer, 0.25 U Taq polymerase (Fermentas) and $0.8 \mu \mathrm{l}$ template DNA. Cycling conditions for universal wsp amplification using the primers wsp81F and wsp691R (BRAIG \& al. 1998) were $95^{\circ} \mathrm{C}$ for 2 min followed by 32 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for $45 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $68^{\circ} \mathrm{C}$ for 15 min . For cloning, a $0.8 \mu \mathrm{l}$ aliquot of PCR product was ligated into the pTZ57R vector of the InstaClone PCR cloning kit (Fermentas) according to the instructions of the manufacturer. The ligated plasmids were used for transformation of competent JM109 E. coli cells and after overnight growth white colonies were picked and transferred to liquid LB medium. Insert size was determined by PCR with M13 vector primers and plasmid DNA was extracted by alkaline lysis. Sanger sequencing was performed by a commercial provider. Retrieved sequences were edited manually, aligned using ClustalX (Thompson \& al. 1997) and compared with Wolbachia sequences from GenBank by BLAST analysis.

Results

PCR with the Wolbachia specific primers resulted in positive amplicons in the two analysed German individuals. These two amplicons were cloned and from each 21 plasmids were sequenced. Sequence analysis revealed that both individuals are infested by two Wolbachia variants which were named $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$. A BLAST search and subsequent alignment revealed that $w s p$ sequnces of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ are identical to those from wCer1 and wCer2 detected in R. cerasi.

Discussion

We report about two Wolbachia sequence variants in the American cherry fruit fly R. cingulata. wsp of $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$ are identical to $w \operatorname{Cer} 1$ and $w \operatorname{Cer} 2$ detected in R.
cerasi. This suggests a horizontal strain transfer between the two cherry fruit fly species. To further test this hypothesis we will need to characterise more loci of the wCin isolates by Multi Locus Strain Typing (MLST) as described by BALDO \& al. (2006) and compare with the MLST loci of w Cer. This characterization will give deeper insight into the genomes of the strains and might reveal differences between the Cin and the Cer-strains. In order to interpret the direction of transfer it has to be tested whether American populations of R. cingulata are also infected by $w \operatorname{Cin} 1$ and $w \operatorname{Cin} 2$.

Acknowledgements

CS and WA thank the Austrian Science Foundation FWF for financial support.

References

Baldo, L., Ayoub, N.A., Hayashi, C.Y., Russell, J.A., Stahlhut, J.K. \& Werren, J.H. (2008): Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. -Molecular Ecology 17: 557-569.

Baldo, L., Dunning Hotopp, J.C., Jolley, K.A., Bordenstein, S.R., Biber, S.A., Choudhury, R.R., Hayashi, C., Maiden, M.C.J., Tettelin, H. \& Werren, J.H. (2006): Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. - Applied and Environmental Microbiology 72: 7098-7110.
Blümel, S. \& Russ, K. (1989): Manipulation of races. - In: Fruit flies: Their Biology, Natural Enemies and Control. Vol. 3B (eds. Robinson, A.S. \& Hooper, G.), pp. 387-389.

Boller, E.F., Russ, K., Vallo, V. \& Bush, G.L. (1976): Incompatible races of European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), their origin and potential use in biological control. - Entomologia Experimetalis \& Applicata 20: 237-247.

Boller, E., (2000): Situationsbericht über die nordamerikanische Fruchtfliegenarten in der Schweiz (Diptera: Tephritidae). - Eidgenössische Forschungsanstalt für Obst-, Wein- und Gartenbau, Wädenswil, 5pp.

Braig, H.R., Zhou, W., Dobson, S.L. \& O'Neill, S.L. (1998): Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. - Journal of Bacteriology 180: 2373-2378.

Bush, G.L. (1966): The taxonomy, cytology and evolution of the genus Rhagoletis in North America (Diptera: Tephritidae). - Bulletin of the Museum of Comparative Zoology, 134:431-526.

Daniel, C. \& Wyss, E. (2007): Zum Auftreten der Amerikanischen Kirschfruchtfliege in der Nordwestschweiz und im Tessin. http://orgprints.org/10679.

Egartner, A., Zeisner, N., Hausdorf, H., Lethmayer, C. \& Blümel, S. (2008): Investigations on the occurrence of the quarantine fruit fly species Rhagoletis cingulata and Rhagoletis indifferens on Prunus avium and Prunus cerasus in Austria. - In: International Conference on Integrated Fruit Production, IOBC wprs. Avignon, France, 2008, Abstracts, 82.

EPPO (2006): Current situation of Rhagoletis cingulata in Germany (2006/003). Reporting 2006, 1: pervice 3. http://www.eppo.org/PUBLICATIONS/reporting/reporting_service.htm

EPPO (2007a): Rhagoletis cingulata was reported for the first time in 2006 in Hungary. $\begin{array}{ccccc}\text { Reporting 2007, } & \text { 6: } & \text { p. }\end{array}$ http://www.eppo.org/PUBLICATIONS/reporting/reporting_service.htm

EPPO (2007b): First outbreak of Rhagoletis cingulata in Slovenia (2007/148). Reporting Service 2007, 8, p.3. http://www.eppo.org/PUBLICATIONS/reporting/reporting_service.htm

Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow \& A., Werren, J.H. (2008): How many species are infected with Wolbachia? - a statistical analysis of current data. - FEMS Microbiology Letters 281: 215-220.

Hoffmann, A.A., \& Turelli, M. (1997): Cytoplasmatic incompatibility in insects. In: Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford: Oxford University Press, (eds. O'Neill, S.L., Hoffmann, A.A., \& Werren, J.H.). pp. 42-80.

Riegler, M. \& Stauffer, C. (2002): Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). - Molecular Ecology 11: 2425-2434.

Rothwell, N., Gut, L \& Teixeira, L. (2006). Cherry fruit fly ecology and management. Michigan State University Fruit CAT Letter. 21 (9).

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. \& Higgins, D.G. (1997): The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. - Nucleic Acids Research 24: 4876-4882.

Vogt, H.,, Köppler, K., Dahlbender, W. \& Hensel, G. (2009): Observations of Rhagoletis cingulata, an invasive species from North America, on cherry in Germany 2009. In: Proceedings of the International Conference on Integrated Fruit Production, IOBC. woprs, Avignon, France, 2008. Bulletin IOBC wprs In Press

Werren, J.H., Baldo, L. \& Clark, M.E. (2008): Wolbachia: master manipulators of invertrebrate biology. - Nature Reviews Microbiology 6: 741-751.

Zabalou, S., Riegler, M., Theodorakopoulou, M., Stauffer, C., Savakis, C. \& Bourtzis, C. (2004): Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. - Proceedings of the National Academy of Sciences of the USA 101: 15042-15045.

