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KURZFASSUNG

I

Kurzfassung

Unter anaerober Vergärung versteht man die Umsetzung von organischem Material zu 

anorganischem Material und methanhältigem Gas unter Ausschluss von Sauerstoff. 

Diese Technik ist eine der ältesten in der Abwasserreinigung eingesetzten Methoden 

(Feng et al., 2006). Zwar wird die Anaerobtechnik auch heute zumeist in diesem Bereich 

eingesetzt, doch gewinnen Biogasanlagen zur Energiegewinnung immer mehr an 

Bedeutung. Die meisten der neuren Biogasanlagen sind sogenannte landwirtschaftliche 

Biogasanlagen in denen neben Gülle, auch Energiepflanzen vergärt werden, 

insbesondere Mais (-silage). 

Verschiedenste Probleme verringern jedoch die Effizienz dieser Anlagen, wie niedrige 

Methankonzentration im Biogas, Selbsterwärmung der Anlagen oder Geruchsprobleme.

Daher ist eine Optimierung des Prozesses notwendig. Diese Optimierung kann viele 

verschiedene Gesichtspunkte umfassen: neue Reaktorformen, gezielte Auswahl von 

Substraten oder verbesserte Steuerung des Prozesses. Ziel dieser Arbeit nun ist die 

Optimierung des Prozesses durch Modellierung und Steuerung der anaeroben 

Vergärung von Energiepflanzen.

Basis jeder guten Steuerung ist nicht nur ein ausgereiftes Messsystem, sondern auch ein 

umfangreiches Wissen über den Prozess selbst. Um einen guten Einblick in den 

Biogasprozess zu bekommen, sind Modelle ein gutes Hilfsmittel. In dieser Arbeit wurde 

das Anaerobic Digestion Model No.1 (ADM1) (Batstone et al., 2002) herangezogen.

Das ADM1 ist ein mathematisches Model das den Biogasprozess beschreibt und von der 

IWA Task group for Mathematical Modeling of Anaerobic Digestion Processes entwickelt 

wurde. 

Da das Modell sehr allgemein ist, wurde es für die Modellierung der anaeroben 

Vergärung von Energiepflanzen leicht adaptiert. Aufgrund der Komplexität des Modells 

befasst sich ein großer Teil der Arbeit mit der Kalibrierung des Models. Dabei wurde 

unter anderen eine Methode entwickelt mit denen die Anfangsbedingungen abgeschätzt 

werden können ohne aufwendige Messungen.

Das modifizierte Model wurde schließlich in das sogenannte Virtual Laboratory (VL) 

implementiert – ein Softwaretrainingstool, dass den Benutzer Einblick in den 

Biogasprozess geben soll. 

Weiters wurde ein Steuerelement – ein Decision Support Tool (DSS) - auf Fuzzy Logik 

basierend weiterentwickelt. Um verschiedene Tools miteinander vergleichen zu können, 

wurde eine auf Composite Programming und dem ADM1 basierend Methode verwendet.
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ABSTRACT

II

Abstract

Anaerobic digestion (AD) of wastewater, organic wastes and biomass results in the 

formation of a useful end-product (biogas). Biogas is primarily composed of methane and 

carbon dioxide and can be processed to electrical energy and heat. Thanks to special 

government subsidies, there has been a veritable boom in biogas-plant technology in 

Austria, in recent times. Most of these biogas plants are agricultural biogas plants and use 

energy crops, especially maize (silage), as a renewable and sustainable substrate. 

In order to integrate the production of energy from biogas into the existing energy 

infrastructure, the AD of biomass has to optimised, not only to make the process 

economically attractive, but also to solve certain problems e.g. low methane values in the 

biogas (approximately 50%), self-heating in the plants and the odours from fermentation. 

This optimization of the biogas process can be achieved by technical improvements (e.g. 

by identifying new process designs, that overcome process instabilities when dealing 

with high-cellulose substrate), by testing reactor designs and operating modes and by 

classifying and ranking crops regarding their energy production. Objective of this study is 

the optimization of the process by enhanced process control.

There are different possibilities of controlling the anaerobic digestion process, for 

example PID control, Fuzzy logic based control, neural network based control or control 

based on linear and non-linear models. In this case, the advanced control is achieved 

using a Decision Support System (DSS) based on Fuzzy Logic. 

Yet the implementation of an effective control tool, apart from the advanced monitoring of 

the plant, requires a good knowledge of the AD process itself. This knowledge of the 

biogas process can be obtained using process models. In this study the Anaerobic 

Digestion Model No.1 (Batstone et al, 2002) was used.

The ADM1 is mathematical model describing the biogas process and was developed by 

the IWA Task group for Mathematical Modeling of Anaerobic Digestion Processes 

(Batstone et al, 2002) and first presented at the 9th IWA Anaerobic Digestion Conference 

in Belgium in 2001.

As the ADM1 is not fully suitable for modelling the anaerobic digestion of energy crops 

the model had to be slightly adapted. A large part of the study deals with the calibration 

of the model, due to its complexity. 

The adapted version of the model was then used as the basis for the so-called “Virtual 

Laboratory” (VL) – a software training tool, which provides users with the possibility of 

gaining more insight into the biogas process.
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ABBREVATIONS

III

Abbrevations

AD Anaerobic Digestion

ADM1 Anaerobic Digestion Model No.1

ADMML Anaerobic Digestion Model based on Marsili-Libelli

ASM1 Activated Sludge Model No.1

ATP Adenosintriphosphate

ATV Abwassertechnische Vereinigung

BMP Biochemical Methane Potential

BSA Bovine Serum Albumin

CA Crude Ash

CF Crude Fibre

Ci Carbon Content of Component i

CL Crude Lipid

COD Chemical Oxygen Demand

CP Crude Protein

CSTR Continuous Stirred Tank Reactor

DSS Decision Support System

dx index of agreement

FID Flame Ionisation Detection

FL Fuzzy Logic

FTIR - ATR Fourier Transform Infrared – Attenuated Total Reflection

GA Genetic Algorithm

GC Gas Chromatograph

GP Gas Production

GPS Whole Plant Maize Silage

HMI Human Machine Interface

HRT Hydraulic Retention Time

IAE Integral Absolute Error

IInhibitor,Process Inhibition Function

IWA International Water Association

Ka,Acid Acid-Base Equilibrium

kdec First Order Decay Rate

KH Henry's Law Coefficient

kLa Gas-Liquid Transfer Coefficient

km,i Monod Maximum Specific Uptake Rate

kProcess First Order Rate

KS,i Half Saturation Value

LCFA Long Chain Fatty Acids

LJ Luus-Jaakola

Maize Maize Silage



ABBREVATIONS

IV

MAX Maximum

MC Methane Content

MIN Minimum

MRE Maximum Relative Errors

NfE Nitrogen free Extract

Ni Nitrogen Content of Component i

NN Neural Networks

ODE Ordinary Differential Equation

OF Objective Function

OLR Organic Loading Rate

ORP Oxidation Reduction Potential

PF Plug Flow Reactor

PID Partial Integral Derivate Control

R Gas Law Constant

RMean Ratio of Means

RMSE Root Mean Square Errors

RO Reverse Osmose

SA Simulated Annealing

SAE Sum of Absolute Errors

SESP Search Space

Si Soluble Component i

SR Sulphate Reduction

SRB Sulphate Reduction Bacteria

SRT Sludge Retention Time

SS Suspended Solids/Dry Matter

SSE Sum of Squared Errors

STD Standard Deviation

Sunflower Sunflower Press Residues

TAN Total Ammonia Nitrogen

TC Total Carbon

TCD Thermal Conductivity Detection

TKN Total Kjieldahl Nitrogen

TN Total Nitrogen

TOC Total Organic Carbon

UASB Upflow anaerobic Sludge Reactor

UV Ultraviolet

VAR Variance

VFA Volatile Fatty Acids

VL Virtual Laboratory

VSS Volatile Suspended Solids

WWTP Waste Water Treatment Plant



ABBREVATIONS

V

Xi Particulate Component i

Yi Yield of Biomass on i
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1 Introduction

1.1 Principles of Anaerobic Digestion

Anaerobic digestion (AD) is one of the longest used processes for wastewater treatment 

and sludge stabilization (Feng et al. 2006). AD uses biological processes in the absence 

of oxygen with methane and carbon dioxide as end-products and is characterised by the 

harmonized work of different micro-organisms (Bischofsberger et al. 2005). The natural 

habitats of such a mixed bacteria consortium are swamps, bogs, the sludge layer of seas 

and rivers and the rumen of ruminants (Braun 1982). 

The attractive features of the anaerobic digestion process are its ability to degrade 

recalcitrant (persistent) and xenobiotic compounds, the reduction of chlorinated organic 

toxicity levels, the biodegradation of aerobic non-bio-degradables, the reduction of 

malodours and numbers of pathogens, the elimination of off-gas air pollution, the lower 

sludge handling and disposal costs compared to aerobic processes and the lower volatile 

content of sludge. Further attractive features are the production of methane, the 

improved dewaterability of the sludge and its suitability for high concentrated industrial 

wastewater (Speece 1996; Gerardi 2003). Residues from the biogas process can be 

used as fertilizer or soil conditioner (Gallert and Winter 2002; Amon et al. 2007). 

The conversion of organic substances by micro-organisms is normally from high-

molecular to low-molecular substances whereby energy is released (Gerardi 2003; 

Bischofsberger et al. 2005). During this degradation two types of nourishment are 

gained: carbon and energy (Gerardi 2003). The carbon is used for the synthesis of 

cellular material (Gerardi 2003). The energy obtained is used for the formation of 

Adenosintriphosphate (ATP) and heat (Braun 1982; Bischofsberger et al. 2005). A big 

difference between aerobic conversion and anaerobic digestion is the energy output 

(Bischofsberger et al. 2005). Only 2 molecules ATP can be gained through the anaerobic 

conversion of glucose, whereas during the aerobic process 38 molecules ATP are 

formed (Bischofsberger et al. 2005). This also results in low growth rates of anaerobic 

bacteria and thus generally in a lower production of biomass compared to aerobic 

processes (Bischofsberger et al. 2005). The biomass formed is about 3 to 6 % of the 

degraded carbon (Kämpfer and Weißenfels 2001), which means that > 90 % of the 

degradable Chemical Oxygen Demand (COD) is converted to biogas (Speece 1996).

In the AD process a wide range of substrates, for example energy crops, animal 

manures and organic wastes can be used (Amon et al. 2007). The composition of the 

substrate and the environmental conditions cause the development of a specific mixed 

bacteria population (Braun 1982; Bischofsberger et al. 2005).
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The production of energy from biomass is a pertinent topic in Austria at the moment. Due 

to the need to reach ambitious political aims, for example the Kyoto Protocol or the green 

electricity law (Ökostromgesetz 2002 (BGBI.I Nr. 149/2002)), renewable energy 

technologies were effectively promoted in Austria. This resulted in a boom in the 

construction of new plants (Lindorfer 2007). By 2005 231 plants were already in 

operation (Laaber 2007). Most of the plants are now using energy crops especially maize 

for the production of biogas. 

Nevertheless, these plants often face severe problems, such as a low methane values in 

the biogas (approximately 50 %). Yet, a high biogas yield is required for the process to 

be financially viable (Amon et al. 2007). Other problems are the self-heating of the plants 

(Lindorfer 2007), unstable processes, long start-up times, slow kinetics at low 

temperatures and the odours from fermentation (Speece 1996). These problems mean 

that plants operate most of time very ineffectively. To make the biogas process more 

economically attractive, the process has to be optimized. There is a potential for 

optimisation in almost every process step – beginning with the cultivation of the crops, 

the digestion itself and finally the utilisation of the resulting gas and digestate (Lindorfer 

2007). 

One possibility to overcome the problems in the bioconversion process is an advanced 

control of the process. There are different possibilities for controlling the anaerobic 

digestion (AD) process, for example PID control, Fuzzy logic based control, neural 

network based control or control based on linear and non-linear models (Steyer et al. 

2005). However, the implementation of an effective control tool requires a good 

knowledge of the AD process. Process models are a good possibility to gain more insight 

into the biogas process. Yet, a model is always a simplification and an abstraction of the 

reality (Strik 2004).

Models can be classified in different ways: based on the structural form (mechanistic, 

empirical, grey-box), on the nature of the process inputs and outputs (deterministic, 

uncertainty, stochiastic), on the temporal dependency (static and dynamic) and on the 

form of mathematical functions (functional, neuronal network and qualitative models) 

used (Olsson and Newell 1999).

Due to the complexity of the AD process, the construction of a descriptive model is 

difficult (Wilcox et al., 1995) and not normally possible without any assumptions and 

simplifications.

Generally the structure and complexity of a model depends on the purpose of the model 

(Strik 2004) - depending on the specific case intermediates can be included or excluded 

in the model (Feng et al. 2006).

All functional (here mostly referred to as mathematical) AD models are based on the 

Monod definition of the relationship between the growth rate and the limiting substrate 
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concentration (Equation (1)). This term is then extended for different influencing variables 

such as the pH, inhibitions, etc. (Braun 1982).

SK

S

S +
= *maxµµ

(1)

where:
µ growth rate [d-1]
µmax maximum growth rate [d-1]
S concentration of the used Substrate [g.l-1]
Ks half-saturation constant [g.l-1]

The first mathematical models of the AD process emerged in the 1960s (Angelidaki et al. 

1998). In the meantime a lot of different anaerobic digestion models have been 

developed, such as the model from Jain et al. (1991), Angelidaki and co-workers (1993), 

Vavilin (2000) or Siegrist (2002).

In 2002 a new model was developed by the IWA Task group for Mathematical Modelling 

of Anaerobic Digestion Processes – the Anaerobic Digestion Model No.1. It purports to 

be the first really general model of anaerobic digestion, combining the knowledge of 

different experts in this field (Batstone et al. 2002). As set of ordinary differential 

equations (ODE) the ADM1 consists of 32 dynamic state concentrations and 19 

biochemical process rates, 6 acid-base rates and 3 gas liquid transfers (Blumensaat and 

Keller 2005).

The model describes the AD process in several subsequent steps, according to the 

common understanding of the process (Figure 1.1.1), such as: the disintegration of 

complex particulates to carbohydrates, proteins and lipids, followed by the hydrolysis to 

monosaccharides, amino acids and long chain fatty acids (LCFA). Furthermore the 

degradation of sugars and amino acids to volatile fatty acids (VFAs), hydrogen and 

carbon dioxide by acidogens; the acetogenesis from LCFAs and VFAs to acetate and the 

methanogenesis from acetate and hydrogen to methane (Speece 1996; Batstone et al. 

2002). Further specified physico-chemical processes which are included are acid-base 

reactions and liquid gas transfer processes (Batstone et al. 2002). The ADM1 works on a 

COD basis (Blumensaat and Keller 2005) and is one of the most complex AD Models 

(Feng et al. 2006).

The primary aim of the publication on the ADM1 is the augmented model application for 

full-scale plants, further developments on process optimization and control and a 

common basis for further model development (Batstone et al. 2005).

The advantages of the model compared to other mechanistic AD models is that it uses a 

unified nomenclature and kinetics (Batstone et al. 2002). 

The disadvantages of the ADM1 are, like using, calibrating or constructing any other 

model, that there is a need to understand the process. Moreover there is a lack of 

information in some areas: the analysis and validation of biological parameters (different 

feeds and reactor designs), the effects of inhibitory compounds and changes in the 
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kinetics for different temperature ranges (psychrophilic, mesophilic, thermophilic) 

(Batstone et al. 2002). Furthermore a detailed substrate definition and analysis is 

necessary (Kleerebezem and Van Loosdrecht 2004).

Figure 1.1.1: Processes of the anaerobic model, according to (Batstone et al. 2002)

1.1.1 Hydrolysis

Hydrolysis is the first step in the AD process and means the degradation of particulates 

(compounds) and the addition of water (Gerardi 2003); it is brought by extra-cellular 

enzymes and is rather a slow process (Henze and Harremoes 1983). According to 

different authors (Pavlostathis and Gossett 1985; Kämpfer and Weißenfels 2001; Gerardi 

2003; Bischofsberger et al. 2005) the limiting steps in AD are those related to the 

conversion of substrate into a soluble form and the formation of methane from acetate 

and propionate. The IWA task-group came to a similar conclusion in their description of 

the Anaerobic Digestion Model No.1 (Batstone et al. 2002). 

The conceptual model used in the ADM1 for the hydrolysis process is that the micro-

organisms attach themselves to the particulates, produce extra-cellular enzymes and 

benefit then from the soluble products formed (Batstone et al. 2002).

Hydrolysis now can be described as a surface-related hydrolysis kinetics (Vavilin et al. 

1996; Batstone et al. 2000; Sanders et al. 2000) or Contois kinetic (Vavilin et al. 1996; 

Batstone et al. 2002). Contois models use one single parameter to delineate the 

saturation of the biomass and the substrate (Vavilin et al. 2004). The IWA Task group 

(Batstone et al. 2002) suggest that Contois kinetic be used if the biomass to substrate 

ratio is low enough to be rate limiting. 
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Substrate Disintegration rate Reference

[d-1]

Grass 3.5*10-2 – 2.66*10-1 Veeken and Hamelers 1999

Leaves 6.8*10-2 – 3.86*10-1 Veeken and Hamelers 1999

Nettle 3*10-2 – 7.6*10-2 Lehtomäki et al. 2005

Newsprints 5.6*10-2 / 5.68*10-2 Jokela et al. 2005/Vavilin et al. 2004 

Orange peelings 1.45*10-1 – 4.74*10-1 Veeken and Hamelers 1999

Red clover 2.8*10-2 – 3.9*10-2 Lehtomäki et al. 2005

Normally however, the hydrolysis of complex substrates is described based on first order 

reactions (Equation (2) to (5)) (Batstone et al. 2002; Rosen and Jeppsson 2002), for 

reasons of simplification and the reduction of constant assumptions (Elmitwalli et al. 

2006). 

cdis Xk *1 =ρ (2)

chchhyd Xk *,2 =ρ (3)

prprhyd Xk *,3 =ρ (4)

lilihyd Xk *,4 =ρ (5)

where:
ρi process rate of the specific substrate (c – complex particulates, ch – carbohydrates, pr –

proteins, li - lipids) [kgCOD.m-3d-1]
kdis disintegration rate [d-1]
khyd,i hydrolysis rate [d-1]
Xi concentration of the substrate [kgCOD.m-3]

The new aspect of the ADM1 is the inclusion of the disintegration step in the model 

(Blumensaat and Keller 2005). The disintegration step was included in order to consider 

the degradation of material with “lumped” characteristics, while the hydrolysis step 

describes the degradation of “well defined” substrates (Batstone et al. 2002). The 

disintegration step and the hydrolysis of carbohydrates, proteins and lipids together 

describe the extra-cellular solubilisation step (Batstone et al. 2002). Whereby the 

disintegration is mainly a non-biological process, including the lysis, non-enzymatic 

decay, phase separation and physical breakdown (Batstone et al. 2002). This first step 

produces carbohydrates, proteins, lipids, and soluble and particulate inerts (Batstone et 

al. 2002). The hydrolysis step produces monosaccharides, amino acids and long chain 

fatty acids (Batstone et al. 2002).

Table 1.1.1: Examples for the disintegration rates of different substrates 

The hydrolysis rate is influenced by pH, type of substrate, temperature and age of the 

sludge - where the speed of the hydrolysis depends on the concentration and availability 
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Substrate Hydrolysis rate Reference

[d-1]

Carbohydrates 2.5*10-2 – 1.06*102
Angelidaki et al. 1998; Christ et al. 2000; Miron et al. 2000;
Batstone et al. 2002; Rosen and Jeppsson 2002; Feng et al.
2006

Proteins 9.6*10-3 – 1*101
Angelidaki et al. 1998; Christ et al. 2000; Miron et al. 2000;
Tzouvaras 2001; Batstone et al. 2002; Rosen and Jeppsson
2002; Feng et al. 2006

Lipids 5*10-3 – 1*101 Miron et al. 2000; Tzouvaras 2001; Batstone et al. 2002; Rosen
and Jeppsson 2002; Feng et al. 2006

of the substrate, the biomass concentration and the mixing of the reactor (Gerardi 2003; 

Bischofsberger et al. 2005). 

The substrate is clearly one of the most influential factors. For example sugars and 

Hemicellulose can be easily hydrolysed, whereas cellulose or starch is much slower to 

hydrolyse (Bischofsberger et al. 2005). The hydrolysis of proteins is very complex and 

hydrolysis rates are normally slower than for carbohydrates or fats (Bischofsberger et al. 

2005)

Because the hydrolysis rate is influenced by a multiplicity of factors, values found in the 

literature are divers (Table 1.1.1 and Table 1.1.2).

Table 1.1.2: Range of the hydrolysis rates for carbohydrates, proteins and lipids 

In their Scientific and Technical Report No. 13 (Batstone et al. 2002) the IWA Task 

Group for Mathematical Modelling of AD Processes suggests for the disintegration rate 

values of 0.4 d-1, 0.5 d-1 and 1 d-1 for the mesophilic high rate digestion, the mesophilic 

digestion of solids and the thermophilic digestion of solids, respectively. For the 

hydrolysis rate of carbohydrates, proteins and lipids values of 0.25 d-1, 0.2 d-1 and 0.1 d-1

for the high-rate mesophilic digestion is given (Batstone et al. 2002). For the mesophilic 

and thermophilic digestion of solids a uniform hydrolysis rate of 10 d-1 is suggested 

(Batstone et al. 2002). 

A further process which, in the ADM1, is strongly linked to the disintegration and 

hydrolysis step is the decay of biomass, as this process produces particulate organic 

matter (Blumensaat and Keller 2005). The decay process for all groups of bacteria is 

described as a first order process, as well (Equation ((6) to (12)) (Batstone et al. 2002; 

Rosen and Jeppsson 2002):

suXsudec Xk *,13 =ρ (6)

aaXaadec Xk *,14 =ρ (7)

faXfadec Xk *,15 =ρ (8)

44,16 * cXcdec Xk=ρ (9)
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Bacteria group Decay rate (Range) Reference

[d-1]

Sugar Fermenter 1.00*10-2 – 3.20 see Reference[1]

Amino Acids Fermenter 1.00*10-1 – 6.10 see Reference[2]

Fatty acid using bacteria 1.00*10-2 – 2.00*10-1 see Reference[3]

Valerate using bacteria 1.00*10-2 – 3.00*10-2 see Reference[4]

Butyrate using bacteria 9.60*10-3 – 3.00*10-1 see Reference[5]

Propionate using bacteria 9.60*10-3 – 2.00*10-3 see Reference[6] 

Aceticlastic Methanogens 3.12*10-3 – 4.32*10-1 see Reference[7]

Hydrogen degrader 9.00*10-3 – 1.20 see Reference[8]

proXprodec Xk *,17 =ρ (10)

acXacdec Xk *,18 =ρ (11)

22,19 * hXhdec Xk=ρ (12)

where:
ρi  process rate of the specific substrate (su – sugar, aa – amino acids, fa –long chain fatty acids, 

c4 – butyric + valeric acid, pro – propionic acid, ac – acetic acid, h2 – hydrogen) [kgCOD.m-3d-1]
kdec,i decay rate [d-1]
Xi concentration of the substrate [kgCOD.m-3]

Similarly to the hydrolysis rates, the values for decay rates found in the literature are 

rather divers (Table 1.1.3).

Table 1.1.3: Examples for the decay rates of acidogenic, acetogenic and methanogenic bacteria 
from literature1

1 [1] Angelidaki et al., 1998; Batstone et al., 2000; Tzouvaras, 2001; Batstone et al., 2002

[2] Angelidaki et al., 1998; Batstone et al., 2000; Tzouvaras, 2001; Batstone et al., 2002

[3] Angelidaki et al., 1998; Batstone et al., 2000; Tzouvaras, 2001; Batstone et al., 2002

[4] Angelidaki et al., 1998; Batstone et al., 2000; Batstone et al., 2002; Jeong et al., 2005

[5] Costello et al., 1991; Ryhiner et al., 1993; Kalyuzhni, 1996; Angelidaki et al., 1998; Batstone et al., 

2000; Batstone et al., 2002; Fedorovich et al., 2003; Jeong et al., 2005; Feng et al., 2006; Kalfas et al., 

2006

[6] Costello et al., 1991; Ryhiner et al., 1993; Kus and Wiesmann, 1994; Maillacheruvu et al., 1996; 

Angelidaki et al., 1998; Batstone et al., 2000; Batstone et al., 2002; Seok and Komisar, 2002; 

Fedorovich et al., 2003; Blumensaat and Keller, 2004; Kalfas et al., 2006; Aceves-Lara et.al, 2005; 

Jeong et al., 2005; Feng et al., 2006

[7] Costello et al., 1991; Ryhiner et al., 1993; Kiely et al., 1996; Kalyuzhni, 1996; Marsili-Libelli and 

Beni, 1994; Angelidaki et al., 1998; Kaspar and Wuhrmann, 1978; Kus and Wiesmann, 1994; 

Maillacheruvu et al., 1996; Batstone et al., 2000; Bernard et al., 2001; Tzouvaras, 2001; Batstone et 

al., 2002; Seok and Komisar, 2002; Fedorovich et al., 2003; Blumensaat and Keller, 2004; Aceves-

Lara et.al, 2005; Jeong et al., 2005; Feng et al., 2006; Kalfas et al., 2006

[8] Costello et al., 1991; Ryhiner et al., 1993; Kalyuzhni, 1996; Maillacheruvu et al., 1996; Batstone et 

al., 2000; Batstone et al., 2002; Fedorovich et al., 2003; Blumensaat and Keller, 2004; Jeong et al., 

2005; Rosen and Jeppsson, 2006

http://et.al
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In the ADM1 report (Batstone et al. 2002) decay rates of 0.02 d-1 in the mesophilic range 

and 0.04 d-1 in the thermophilic temperature range are suggested for all bacteria groups. 

1.1.2 Acidogenesis

Acidogenesis is defined as a microbial process producing anaerobic acids without any 

additional electron acceptor or –donator (Bischofsberger et al. 2005). Characteristic for 

the acidogenesis is that COD reduction is very low (Bischofsberger et al. 2005). 

The products of this step are organic acids, H2 and CO2, other short chain acids or 

alcohols (Bischofsberger et al. 2005). The products depend on the substrate, the 

environmental conditions in the reactor and the organic loading rate and hence resulting 

partial pressure of the hydrogen and pH (Bischofsberger et al. 2005).

Glucose is used as model monomer in the ADM1 for the acidogenesis from 

monosaccharides to acetate, propionate and butyrate (Batstone et al. 2002) (Equation 

(13) to (15)):

22326126 4222 HCOCOOHCHOHOHC ++→+ (13)

OHCOCOOHCHCOOHCHCHOHC 223236126 22243 +++→ (14)

222236126 22 HCOCOOHCHCHCHOHC ++→ (15)

There are two main pathways for the amino acid fermentation: the Stickland oxidation-

reduction paired fermentation and the oxidation of a single amino acid (Batstone et al. 

2002). The Stickland reaction has different characteristics: such as that different amino 

acids can act as electron donor and as electron acceptor. The electron donor loses one 

carbon atom to CO2 and forms a carboxylic acid with one carbon atom shorter than the 

original amino acid and the electron acceptor forms a carboxylic acid with the same 

amount of carbon atoms as the original amino acid (Batstone et al. 2002). The oxidation 

reaction above all occurs with low hydrogen and formate concentrations under 

thermophilic conditions (Batstone et al. 2002).

Further intermediate products which are formed during acidogenesis are, for example, 

lactate and ethanol. These processes are not described more exactly here as these 

processes are not included in the ADM1 (Batstone et al. 2002).

Ethanol is preferentially produced to acetate at low pH (Batstone et al. 2002), which 

leads to an under-prediction of organic acids and pH at low pH values (Batstone et al. 

2002). Lactate is a key intermediate, but is under normal conditions relatively fast 

degraded (Batstone et al. 2002).

Batstone and co-workers (2002) consider valerate, butyrate, propionate and acetate as 

products in their model.
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Substrate Substrate uptake rate Half Saturation constant Yield Reference

[kgCOD.kgCOD.d
-1] [kgCOD.m

-3] [kgCODX.kgCODS
-1]

Amino Acids 6.47*101 ± 3.95*101 5.57 ± 1.29*102 1.09*10-1 ± 5.00*10-2 see Reference[1]

Sugar 5.00*102 ± 1.43*103 8.55 ± 3.07*101 1.25*10-1 ± 6.69*10-2 see Reference[2] 

In the model the acidogenesis is described in the form of the Monod equation (Batstone 

et al. 2002; Rosen and Jeppsson 2002): (Equation (16) to (17)) describe the process 

rates for the acidogenesis from monosaccharides and amino acids:

5
,

,5 *** IX
SK

S
k su

suszS

su
sum +

=ρ (16)

6
,

,6 *** IX
SK

S
k aa

aaaaS

aa
aam +

=ρ (17)

where:
ρi process rate of the specific substrate [kgCOD.m-3d-1]
km,i maximum specific uptake rate [kgCOD.kgCOD

-1d-1]
Si concentration of the substrate [kgCOD.m-3]
KS,i half saturation constant [kgCOD.m-3]
Xi concentration of the sugar degraders [kgCOD.m-3]
Ii Inhibition factor

Table 1.1.4 shows different values for the substrate uptake rate, the maximum half-

saturation rate and the yield of acidogenic bacteria found in literature.

Table 1.1.4: Examples for the substrate uptake rate, maximum half-saturation rate and yield of 
acidogenic bacteria (mean values)2

Batstone and co-workers (2002) proposed a km, KS and Y for sugar degraders of 30 

kgCOD.kgCOD
-1.d-1, 0.5 kgCOD.m-3, 0.1 kgCOD.kgCOD

-1.d-1 and for amino acid using bacteria of 

50 kgCOD.kgCOD
-1.d-1, 0.3 kgCOD.m-3. 0.08 kgCOD.kgCOD

-1.d-1 for the digestion of solids in the 

mesophilic temperature range and 70 kgCOD.kgCOD
-1.d-1, 1 kgCOD.m-3, 

0.10 kgCOD.kgCOD
-1.d-1 and 70 kgCOD.kgCOD

-1.d-1, 0.3 kgCOD.m-3, 0.08 kgCOD.kgCOD
-1.d-1

respectively in the thermophilic temperature range.

The half-saturation constant Ks normally depends on the specific micro-organisms and 

on the substrate used (Braun 1982).

1.1.3 Acetogenesis

Acetogenesis, also referred to as anaerobic oxidation, is the conversion of carboxylic 

acids or organic acids into acetate, CO2 and H2O (Bischofsberger et al. 2005) using an 

external electron acceptor (Batstone et al. 2002). The conversion of all fatty acids occurs 

by β-oxidation (Bischofsberger et al. 2005).

2 [1] Angelidaki et al., 1998; Batstone et al., 2000; Tzouvaras, 2001; Batstone et al., 2002

[2] Costello et al., 1991;Kalyuzhni, 1996; Angelidaki et al., 1998; Batstone et al., 2000; Tzouvaras,

2001; Batstone et al., 2002; Jeong et al., 2005

http://.kg
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The most important acetogenic reactions can only proceed if the partial pressure of 

hydrogen is less than 10-4 atm (Speece 1996; Kämpfer and Weißenfels 2001; 

Bischofsberger et al. 2005). The acetogenic bacteria live in a symbiosis with the 

methanogenic bacteria, which use the hydrogen in their metabolism and thus the partial 

pressure of hydrogen in the system is kept low. (Braun 1982; Gerardi 2003; 

Bischofsberger et al. 2005). If hydrogen accumulates and the hydrogen pressure 

increases the activity of acetate-forming bacteria decreases and finally stops completely 

(Braun 1982; Gerardi 2003), which leads to an accumulation of acids in the reactor, 

which in turn results in an inhibition of the methanogenic bacteria (Braun 1982; Speece 

1996). The regulative effect of the methane-forming bacteria on the electron flux creates 

the thermodynamic prerequisites for the oxidation of alcohols and fatty acids (Braun 

1982).

For the hydrogen regulation a non-competitive inhibition function was used in the ADM1 

(Batstone et al. 2002) (Equation (18)):

ii KS
I

+
=

1

1
(18)

where:
I Inhibition factor
Si concentration of inhibitor i [kgCOD.m-3]
Ki inhibtion parameter [kgCOD.m-3]

Reactions for fatty acid oxidising micro-organism are for example (Braun 1982; Batstone 

et al. 2002) (Equation ((19) to (21))3 the oxidation of valerate, butyrate and propionate: 

232322223 22 HCOOHCHCOOHCHCHOHCOOHCHCHCHCH ++→+ (19)

kJGHCOOHCHOHCOOHCHCHCH 66.41222 0
232223 =∆+→+ K (20)

kJGHCOCOOHCHOHCOOHCHCH 85.8132 0
223223 =∆++→+ K (21)

Since the degradation of the long chain fatty acids (LCFA) is also an oxidation reaction 

with an external acceptor, it is as well included in this section (Batstone et al. 2002). 

Altogether three acetogenic bacteria groups are included in the ADM1, considering 

LCFA, valerate and butyrate and propionate as substrates (Batstone et al. 2002).

The following process rates are found for the acetogenesis in the ADM1 (Batstone et al. 

2002; Rosen and Jeppsson 2002) (Equation ((22) to (25))):

7
,

,7 *** IX
SK

S
k fa

fafaS

fa
fam +

=ρ (22)

3 ∆G0 free energy release for standard conditions
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Substrate Substrate uptake rate Half Saturation constant Yield Reference

[kgCOD.kgCOD.d
-1] [kgCOD.m

-3] [kgCODX.kgCODS
-1]

LCFA 5.19*101 ± 1.08*10*2 1.90 ± 2.65 5.33*10-2 ± 3.81*10-2 see Reference[1] 

Valerate 2.30*101 ± 9.60 1.06 ± 1.93 4.87*10-2 ± 2.15*10-2 see Reference[2] 

Butyrate 2.71*101 ± 2.72*101 5.64 ± 2.25*101 5.67*10-2 ± 2.39*10-2 see Reference[3]

Propionate 2.39*101 ± 3.13*101 5.22 ± 2.23*101 6.05*10-2 ± 3.95*10-2 see Reference[4]

864
4,

4,8 *
1

*** I
SS

S
X

SK

S
k

vabu

va
c

vacS

va
cm −+++

=ρ (23)

964
4,

4,9 *
1

*** I
SS

S
X

SK

S
k

vabu

bu
c

bucS

bu
cm −+++

=ρ (24)

10
,

,10 *** IX
SK

S
k pro

proproS

pro
prm +

=ρ (25)

where:
ρi = process rate of the specific substrate (va – valeric acid, bu – butyric acid) [kgCOD.m-3d-1]
km,i = maximum specific uptake rate [kgCOD.kgCOD

-1d-1]
Si = concentration of the substrate [kgCOD.m-3]
KS,i = half saturation constant [kgCOD.m-3]
Xi = concentration of the sugar degraders [kgCOD.m-3]
Ii = Inhibition factor

Table 1.1.5 shows different values for the substrate uptake rate, the maximum half-

saturation rate and the yield of acetogenic bacteria taken from literature.

Table 1.1.5: Examples for the substrate uptake rate, maximum half-saturation rate and yield of 
acetogenic bacteria4

For the acetogenic bacteria in the ADM1 (Batstone et al. 2002) values of 

6 kgCOD.kgCOD
-1.d-1,0.4 kgCOD.m-3, 0.06 kgCOD.kgCOD

-1.d-1 for the oxidation of LCFA, 

20 kgCOD.kgCOD
-1.d-1, 0.2 kgCOD.m-3, 0.06 kgCOD.kgCOD

-1.d-1 for valerate and butyrate using 

bacteria. 13 kgCOD.kgCOD
-1.d-1, 0.1 kgCOD.m-3, 0.04 kgCOD.kgCOD

-1.d-1 for propionate using 

bacteria for the km, KS and Y, for the fermentation of solids in the mesophilic temperature 

range are suggested and values of 10 kgCOD.kgCOD
-1.d-1, 0.4 kgCOD.m-3, 

4 [1] Angelidaki et al., 1998; Batstone et al., 2000; Tzouvaras, 2001; Batstone et al., 2002

[2] Angelidaki et al., 1998; Batstone et al., 2000; Batstone et al., 2002; Jeong et al., 2005

[3] Costello et al., 1991; Ryhiner et al., 1993; Kalyuzhni, 1996; Angelidaki et al., 1998; Batstone et al., 

2000; Batstone et al., 2002; Fedorovich et al., 2003; Jeong et al., 2005; Feng et al., 2006; Kalfas et al., 

2006

[4] Costello et al., 1991; Ryhiner et al., 1993; Kus and Wiesmann, 1994; Maillacheruvu et al., 1996; 

Angelidaki et al., 1998; Batstone et al., 2000; Batstone et al., 2002; Seok and Komisar, 2002; 

Fedorovich et al., 2003; Blumensaat and Keller, 2004; Aceves-Lara et.al, 2005; Jeong et al., 2005; 

Feng et al., 2006; Kalfas et al., 2006
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0.06 kgCOD.kgCOD
-1.d-1; 30 kgCOD.kgCOD

-1.d-1, 0.4 kgCOD.m-3, 0.06 kgCOD.kgCOD
-1.d-1 and 

20 kgCOD.kgCOD
-1.d-1, 0.3 kgCOD.m-3, 0.05 kgCOD.kgCOD

-1.d-1 respectively for the thermophilic 

range.

1.1.4 Methanogenesis

Methanogenic bacteria are archea-bacteria and one of the oldest life-forms on earth and 

they are strictly anaerobic (Braun 1982; Gerardi 2003; Bischofsberger et al. 2005). These 

bacteria are a morphologically divers group (Gerardi 2003). About 50 species of 

methanogenic bacteria are known (Gerardi 2003), which can be distinguished in three 

groups: Methanobacteriales, Methanococcales and Methanomicrobiales (Braun 1982; 

Gerardi 2003; Bischofsberger et al. 2005). Due to the unique chemical structure of their 

cell wall (the polar lipid-layer consists of Phytanyl- and Biphytanyl-Glycerine instead of 

saponifable ester (Braun 1982)) these bacteria are very sensitive to the toxicity of fatty 

acids (Gerardi 2003). In general methanogenic bacteria are very sensitive to changes in 

pH, temperature and alkalinity (Gerardi 2003). Yet, they contribute to the stabilisation of 

pH in the reactor, as they remove acetate from the system (Braun 1982).

Methane can be formed from H2 and CO2, formic acid, acetic acid, methanol and 

methylene during following reactions (Braun 1982; Speece 1996; Le Mer and Roger 

2001; Bischofsberger et al. 2005) (Equation ((26) to (29))): 

kJGOHCHHHCOH 13634 0
2432 −=∆+→++ +− K (26)

kJGHCOCHHOHHCOO 13034 0
342 −=∆+→++ −+− K (27)

kJGHCOCHOHCOOCH 300
3423 −=∆+→+ −− K (28)

kJGOHHHCOCHOHCH 31434 0
2343 −=∆+++→ +− K (29)

Thus the methane-forming bacteria can be classified according to the substrate used: 

hydrogenotrophic methanogens, aceticlastic methanogens and methylotrophic 

methanogens (Gerardi 2003).

Nearly all methanogenic bacteria can convert H2 and CO2, whereas just few can convert 

methanol or acetate – for example Methanosarcina barkeri, Methanosarcina mazei or 

Methanosaeta (Bischofsberger et al. 2005). Hydrogen can be seen as the universal 

substrate for all methanogenic bacteria (Gerardi 2003; Bischofsberger et al. 2005). 

Methanosarcina and Methanosaeta are normally found together in anaerobic systems, 

whereby Methanosaeta is predominate at low acetate levels and Methanosarcina at high 

acetate levels (Speece 1996). In order to simplify the model only one aceticlastic 

methanogenic bacteria group is included (Batstone et al. 2002).

Acetate using bacteria have 2 to 4 times lower growth rates than bacteria, which convert 

hydrogen (Bischofsberger et al. 2005), as the conversion of acetate to methane 

produces little energy (Le Mer and Roger 2001). Generally the reproductive time for 

http://.kg
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Substrate Substrate uptake rate
Half Saturation 

constant Yield Reference

[kgCOD.kgCOD.d
-1] [kgCOD.m

-3] [kgCODX.kgCODS
-1]

Acetate 1.19*101 ± 1.19*101 3.90 ± 2.38*101 1.73*10-1 ± 5.60*10-1 see Reference[1]

Hydrogen 4.13*101 ± 4.88*101 3.49*10-3 ± 1.33*10-2 4.12*100 ± 7.60 see Reference[2]

methanogenic bacteria lies between 3 to 50 days, which leads to the long retention 

times, required in anaerobic reactors (Gerardi 2003).

Even though the hydrolytic methanogenesis is more advantageous than acetogenic 

methanogenesis, 70 % of the methane is formed from acetate (Braun 1982; Speece 

1996; Le Mer and Roger 2001; Gerardi 2003; Bischofsberger et al. 2005). This has its 

origin in the limitation of substrates in the natural surroundings (Bischofsberger et al. 

2005).

The process rates for the hydrogen-utilising and acetate-utilising methanogens are given 

by (Batstone et al. 2002; Rosen and Jeppsson 2002) (Equation ((30) to (31))):

11
,

,11 *** IX
SK

S
k ac

acacS

ac
acm +

=ρ (30)

122
22,

2
2,12 *** IX

SK

S
k h

hhS

h
hm +

=ρ (31)

where:
ρi = process rate of the specific substrate [kgCOD.m-3d-1]
km,i = maximum specific uptake rate [kgCOD.kgCOD

-1d-1]
Si = concentration of the substrate [kgCOD.m-3]
KS,i = half saturation constant [kgCOD.m-3]
Xi = concentration of the sugar degraders [kgCOD.m-3]
Ii = Inhibition factor

Values for the substrate uptake rate, the maximum half-saturation rate and the yield of 

methanogenic bacteria are found in Table 1.1.6.

Table 1.1.6: Examples for the substrate uptake rate, maximum half-saturation rate and yield of 
methanogenic bacteria5

Batstone et al. (2002) proposed a substrate uptake rate of 8 kgCOD.kgCOD
-1.d-1, a 

maximum half-saturation rate of 0.15 kgCOD.m-3 and a yield of 0.05 kgCOD.kgCOD
-1.d-1 in 

the mesophilic range and an uptake rate of 16 kgCOD.kgCOD
-1.d-1, a half saturation rate of 

5 [1] Kaspar and Wuhrmann, 1978; Costello et al., 1991; Ryhiner et al., 1993; Kus and Wiesmann, 

1994; Marsili-Libelli and Beni, 1994; Kalyuzhni, 1996; Kiely et al., 1996; Maillacheruvu et al., 1996; 

Angelidaki et al., 1998; Batstone et al., 2000; Bernard et al., 2001; Tzouvaras, 2001; Batstone et al., 

2002; Seok and Komisar, 2002; Blumensaat and Keller, 2004; Fedorovich et al., 2003; Aceves-Lara 

et.al, 2005; Jeong et al., 2005; Feng et al., 2006; Kalfas et al., 2006

[2] Costello et al., 1991; Ryhiner et al., 1993; Kalyuzhni, 1996; Maillacheruvu et al., 1996; Batstone et 

al., 2000; Batstone et al., 2002; Fedorovich et al., 2003; Blumensaat and Keller, 2004; Jeong et al., 

2005
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Substance Range
[%]

Methane CH4 60 - 70

Carbon Dioxide CO2 30 – 40

Hydrogen Sulphate H2S 0 – 0.7

Nitrogen N2 0 – 0.2

Hydrogen H2 0 – 0.2

Oxygen O2 traces

Substance Biogas production Methane content Methane production

[m3.kg-1] [%] [m3.kg-1]

Carbohydrates 0.79 50 0.4

Lipids 1.27 68 0.86

Proteins 0.7 71 0.5

0.3 kgCOD.m-3 and a yield of 0.05 kgCOD.kgCOD
-1.d-1 in the thermophilic range for 

aceticlastic methanogens and values of 35 kgCOD.kgCOD
-1.d-1, 7*10-6 kgCOD.m-3 and 

0.06 kgCOD.kgCOD
-1.d-1 for km, KS and Y respectively and values for hydrogen using 

bacteria for the mesophilic digestion of solids and of 35 kgCOD.kgCOD
-1.d-1, 5*10-5 kgCOD.m-

3 and 0.06 kgCOD.kgCOD
-1.d-1 for the thermophilic digestion of solids respectively.

1.1.5 Biogas

Biogas is one of the products formed during the AD process, and consists of CO2 and 

CH4, H2S, H2O and some traces of other substances depending on the composition of 

the substrate (Kämpfer and Weißenfels 2001; Bischofsberger et al. 2005), whereby CH4 

and CO2 are the main components (Gerardi 2003) (Table 1.1.7). 

The amount and composition of the biogas formed depends on the amount and 

composition and the degradability of the substrate, the influence of toxic substances, the 

process technique and the operation of the plant (Gallert and Winter 2002; Gerardi 2003; 

Bischofsberger et al. 2005).

The CO2 formed is balanced with the liquid, thus a higher CO2 content in the biogas 

leads also to a higher concentration of carbonic acid (Bischofsberger et al. 2005). 

Therefore the CO2 content in the gas is a good indicator for the performance of the plant 

(Bischofsberger et al. 2005).

Table 1.1.7: Composition of Biogas (Bischofsberger et al. 2005)

The theoretical amount of biogas can be calculated from the composition of the substrate 

- of carbohydrates, lipids and proteins in the substrate (Table 1.1.8) (Bischofsberger et 

al. 2005).

Table 1.1.8: Substance specific gas production (Bischofsberger et al. 2005)

http://.kg
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Substrate BMP Reference

[m³CH4.kg-1
VSS]

Barley 0.46 ± 0.11 Heiermann, M et al., 2002

Fruit and vegetable wastes mixture 0.23 ± 0.15 Gunaseelan, V.N., 1997

Grass Hay 0.21 ± 0.05 Lehtomaki, A et al., 2004

Jerusalem artichoke 0.31 ± 0.01 Zubr, J., 1986

Maize 0.41 ± 0.06 Neureiter,M. et al., 2005

Rye 0.41 ± 0.08 Heiermann, M et al., 2002

Triticale 0.48 ± 0.09 Heiermann, M et al., 2002

Wheat 0.23 ± 0.04 Sharma, S. et al., 1988

For complex substrates the Buswell equation can be used (Equation (32)) (Braun 1982; 

Speece 1996).
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Table 1.1.9: BMP values for different substrates (composed by C. Pabon, University 
Wageningen)6

In order to achieve a more realistic estimation of the gas yield the biochemical methane 

potential (BMP) is determined in batch tests. The practical gas yield is always lower than 

the theoretical one calculated (Braun 1982). This batch test determines the suitability of 

the substrate for AD as well as the non-biodegradable fraction (Braun 1982; Speece 

1996) (Table 1.1.9). The advantages of the BMP is that the test realistically measures 

the anaerobic biodegradability and requires a minimal laboratory set-up (Speece 1996).

In the ADM1 only CH4, CO2 and H2 are considered as components (Batstone et al. 

2002). Whereby the liquid-gas transfer is expressed using Henry’s law. The gas transfer 

6 Gunaseelan, V.N., 1997, Anaerobic digestion of biomass for methane production: a review, Biomass 

and Bioenergy, 13 (1/2):83-114

Heiermann, M. Plöchl, M. Linke, B. Schelle, H., 2002, Preliminary evaluation of some cereals as 

energy crops for biogas production, World Renewable Energy Congress VII

Lehtomaki, A. Viinikainen, T.A. Ronkainen, O.M. Alen, R. Rintala, J.A., 2004, Effect of pretreatments 

on methane production potential of energy crops and crop residues, Proceedings Anaerobic Digestion 

Conference

Neureiter,M. Teixeira Pereira dos Santos, J. Perez Lopez, C. Pichler, H. Kirchmayr, R and  Braun, R., 

2005, Effect of silage preparation on methane yields of whole crop maize silages, ADSW 2005 

Conference Proceedings Vol 1.

Sharma, S. Mishra, I.M, Sharma, M.P, Saini, J.S, 1988, Effect of particle size on biogas generation 

from biomass residues, Biomass, 17 (251-263)

Zubr, J., 1986, Methanogenic fermentation of fresh and ensiled plant materials, Biomass, 11 (159-171)

http://.kg
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rates is therefore described in the model as (Batstone et al. 2002; Rosen and Jeppsson 

2002) (Equation (33) to (35)):

( )
228, ,,2 *16 HgasHHhL pKSak

T
−=ρ (33)

( )
449, ,,4 *64 CHgasCHHchL pKSak

T
−=ρ (34)

( )
2210, ,,2 *16 COgasCOHcoL pKSak

T
−=ρ (35)

where:
ρi gas transfer rate [kgCOD.m-3d-1]
kLa overall mass transfer coefficient multiplied by the specific area [d-1]
Si concentration of i [kgCOD.m-3]
KH,i Henry coefficient [M.bar-1]
pgas,i partial pressure of component i [bar]

The kLa value is a parameter that concentrates multiple phenomena – where the kL

corresponds with an absorption coefficient and the a can be seen as an area/volume 

ratio (Olsson and Newell 1999). KLa values depend on the temperature, mixing and liquid 

properties and are normally rather divers, in order to simplify the ADM1 to simplify the 

model one value (kLa = 200 d-1 (Rosen and Jeppsson 2002)) is given for all three gas 

components (CH4, CO2 and H2) (Batstone et al. 2002). 

For the Henry constant Rosen and Jeppson (2002) proposed a value of 0.0271 M.bar-1

for CO2, 0.00116 M.bar-1 for CH4 and 7.38*10-4 M.bar-1 for H2 at 35 °C for the ADM1. 

In industrial plants the biogas has to be dried and the sulphur needs to be removed, due 

to the vapour and the H2S. The biogas is dried by cooling the gas to ambient temperature 

and collecting the condensate (Bischofsberger et al. 2005). This condensate is normally 

very corrosive, due to its low pH and the hydrogen sulphate also leads to odour 

emissions (Bischofsberger et al. 2005). The sulphur can be removed through bacterial 

oxidation by Thiobacillus bacteria, by iron ore, by a scrubber with sodium hydroxide or by 

air injection (3 – 5 Vol.-% of the produced biogas) (Bischofsberger et al. 2005). The gas 

contains a lot of sludge particles, which can be removed using gravel filters together with 

the condensate (Bischofsberger et al. 2005).

A further problem is the appearance of siloxanes in the gas – as they oxidise and 

accumulate in crystal form in the gas engines and result in an augmented abrasion 

(Bischofsberger et al. 2005).

Attention also has to be given to the CO2 content in the gas. Normally the biogas is 

lighter than air, but if the CO2 content increases then the gas can became heavier than 

air and can accumulate on the soil (Bischofsberger et al. 2005).

It has further to be considered that due to the ability of methane to absorb infrared 

radiation, it is 20 to 30 times more effective greenhouse gas than carbon dioxide ((Blake 
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and Rowland, 1988)7 cited in (Le Mer and Roger 2001)). Moreover methane is very 

reactive ((Cicerone and Oremland, 1988)8 cited in (Le Mer and Roger 2001)). 70 % of the 

methane emissions are from anthropic sources e.g. rice fields, domesticated livestock 

and the other 30 % are from natural resources for example from wetland soils (Le Mer 

and Roger 2001). 

In order to effectively control of the emission an improved recovery of methane from 

anaerobic treatment systems is absolutely necessary (Mulder 2001). Additionally CH4

and N2O emissions are reduced if the storage tank is covered (Edelmann et al. 2005)

1.1.6 Environmental Condition and Inhibitors

The environmental conditions have a influence on the process stability, biogas yield and 

bacteria consortium.

Temperature

All biochemical reactions depend on the temperature – an increase in temperature 

normally leads to an increase in the metabolic activity (Braun 1982; Gerardi 2003; 

Bischofsberger et al. 2005). However, the temperature can influence the biochemical 

reaction in other ways, as well: An increase in the temperature can lead to a decrease in 

the reaction rate, too, if the temperature is above the optimum; it can cause a decrease 

or shift in yields and an increase in Ks (Speece 1996), as well as an increase in the death 

rate (Batstone et al. 2002). The temperature dependence of different groups of bacteria 

and the effect on the disintegration and hydrolysis can be described with the Arrhenius 

equation ((Equation (36)) (Braun 1982; Speece 1996)) (Batstone et al. 2002). The effect 

of temperature on the thermodynamic of reactions can be delineated with the Van’t Hoff 

equation (Equation (37) (Speece 1996; Vavilin et al. 1997)) (Batstone et al. 2002). 

The higher the temperature the lower the change in the speed of the reaction is, whereas 

in low temperature ranges small changes in temperature can already double the speed 

of reaction (Braun 1982).









−
−

= 12

12

*12
TT

TT

R
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ekk
(36)

where:
ki velocity constants [d-1]
R gas law constant [J.mol-1.K-1]
EA activation energy [J.mol-1]
Ti temperature [K]

7 Blake D.R., Rowland F.S., 1988, Continuing worldwide increase in tropospheric methane, 1978 to 

1987, Science, 239
8 Cicerone, R.J., Oremland, R.S., 1988, Biochemical aspects of atmospheric methane, Global 

Biochem. Cycles 2, 299-327
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( )12

0

*12

TT
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eKK
−
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= (37)

where:
Ki equilibrium coefficient [M]
Ti temperature [K]
R gas law constant [J.mol-1.K-1]
∆H0 heat of reaction at standard temperature and pressure [J.mol-1]

It is common approach, that micro-organisms have an optimum temperature range, 

whereby one can distinguish between psychrophilic (< 20 °C), mesophilic (20 - 40 °C) 

and thermophilic (> 40 °C) (Bischofsberger et al. 2005).

However, Lindorfer (2007) showed that there is no general temperature optima for 

anaerobic digestion – the specific optima depend on different parameters specific to the 

particular plant, such as reactor design, composition of substrate, hygiene aspects, and 

viscosity of the sludge. In Austria the plants are normally operated between 

35 – 55 °C, whereby it is not possible to make a definite classification depending on the 

different temperature ranges (Laaber 2007). Digestion in the psychrophilic temperature 

range is not often used in Europe due to slow degradation and the high amount of space 

required (Bischofsberger et al. 2005).

Normally the temperature chosen is a compromise between the optima of the bacteria 

consortium, as high growth rates and the energy balances of the reactor system (Braun 

1982).

In the thermophilic temperature range, higher degradation grades and a better 

hygenisation can be reached  (Bischofsberger et al. 2005), and the viscosity of the 

sludge is lower (Laaber 2007). The disadvantage of the thermophilic operation is the 

increased instability due to the fact that the system responds faster to perturbations as a 

result of the higher reaction rates, the increase of free ammonia and the decrease in 

solubility of carbon dioxide, which leads to worse carbonate-buffer systems (Laaber 

2007) and energy balance.

pH

The stable operation of a biogas plant is strongly related to the optimal pH range, as the 

enzyme activity of the bacteria very much depends on the pH (Braun 1982; 

Bischofsberger et al. 2005). 

Normally the optimum for the overall AD process is a pH of 6.8 to 7.2 (Gerardi 2003). 

The methanogenic bacteria have stricter pH requirements than acidogenic bacteria 

(Frostell 1985). Methane production normally stops if the pH is lower than 6 (Gerardi 

2003). Speece (Speece 1996), however, states a broader pH range, from 6.5 to 8.2. 

While, with industrial plants using energy crops as substrate, generally a pH in the range 

of 7.5 – 8 can be observed, plants using refuses as input substrate normally operate at a 

higher pH range (Laaber 2007).
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A pH value outside the optimum value results in a normally reversible inhibition, which 

affects the overall cell kinetics and functions (especially growth) (Batstone et al. 2002). In 

the ADM1 two empirical pH inhibition functions are used (not both in one model): one if 

both high and low pH inhibition occurs (Equation (38)) and another one if only low pH 

inhibition occurs (Equation (39)) (Batstone et al. 2002):

( )

( ) ( )pHpHpHpH
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(39)

where:
I Inhibition factor
pHLL lower limit of pH Inhibition
pHUL upper limit of pH Inhibition

Inhibition by pH is always a combination of different effects: at low pH values the 

inhibition occurs due to the disruption of the homeostasis and increased acid 

concentration. At high pH values transport limitations result in an inhibition of the process 

(Batstone et al. 2002). In the ADM1 pH inhibition is included for all intracellular processes 

(acetogenesis, acidogenesis and methanogenesis) (Batstone et al. 2002). Inhibition of 

hydrolysis by pH was not included in the model (Batstone et al. 2002).

Alkalinity

Alkalinity prevents rapid changes in the pH, as it serves as buffer (Braun 1982; Gerardi 

2003). In other words the alkalinity is the capacity to neutralise acids without a significant 

pH change (Olsson and Newell 1999). In a systems with a low buffer capacity the 

organic acids formed have a bigger impact on the pH (Bischofsberger et al. 2005). In 

order to maintain a stable pH, high alkalinity levels are necessary (Gerardi 2003). The 

composition of the influent substrate directly influences the alkalinity in the reactor, e.g. 

proteinaceous rich feed increases the alkalinity due to release of ammonia (Gerardi 

2003).

An alkalinity below the normal operating level is an indicator for operational failure 

(Gerardi 2003)

In first place, alkalinity is present in form of bicarbonates, which are in equilibrium with 

carbon dioxide (Braun 1982; Gerardi 2003) (Equation (40)):

−+−+ +↔+↔↔+ 2
333222 2 COHHCOHCOHOHCO (40)
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If the buffer capacity is too low, then “neutralisation” substances have to be added, such 

as potash, sodium hydroxide or lime (Bischofsberger et al. 2005). 

Oxidation-reduction Potential (ORP)

The ORP is a measurement of the relative amount of oxidised oxygen (NO3
-, SO4

2-, 

NH4
+,…) (Gerardi 2003). 

At an ORP of between +50 and –50 mV denitrification occurs (anoxic conditions) 

(Gerardi 2003). If the ORP decreases to lower than –50 mV sulphate reduction begins 

and for ORP values of lower than –100 mV mixed-acid fermentation occurs (Gerardi 

2003). If the ORP drops to values of lower than –300 mV anaerobic degradation and 

methane production takes place (Braun 1982; Gerardi 2003).

Due to the absorption of oxygen, the formation of metabolites (Acetate, Hydrogen,…) 

and the activity of co-factors (NADH, FADH2,…) a change in the ORP occurs (Braun 

1982). 

The ORP in the reactor can be reduced by adding reduced substances such as cysteine, 

thioglkolate dithionate or ascorbate (Braun 1982).

Substrate

The composition of the substrate has a big influence on the environmental conditions in 

the reactor (Bischofsberger et al. 2005).

The growth rate and metabolism of all bacteria depend on the available nutrients, trace 

elements and vitamins (Kim et al. 2002; Bischofsberger et al. 2005).

Due to the low growth rates of the bacteria the nutrient requirement is low (Gerardi 2003; 

Bischofsberger et al. 2005) especially compared to aerobic bacteria (Gerardi 2003). 

Essential nutrients are nitrogen, phosphorus and sulphur (Gerardi 2003; Bischofsberger 

et al. 2005). A limitation of essential nutrients leads to a decrease or complete stop of 

metabolic activities (Bischofsberger et al. 2005). Therefore the composition of the 

substrate is essential to attain high degradation rates (Bischofsberger et al. 2005). 

The dry matter of bacteria consists on average of 50 % carbon, 11 % nitrogen, 

2 % phosphorus and 1 % sulphur (Bischofsberger et al. 2005). Thus the COD:N:P:S –

ratio should be 800:5:1:1 (Bischofsberger et al. 2005). Other sources (Speece 1996; 

Gerardi 2003) give a COD:N:P ratio of 1000:7:1 for high-strength loads and 350:7:1 for 

low loadings. This ratio also indicates that in anaerobic digestion only a small amount of 

nitrogen and phosphorus can be eliminated (Bischofsberger et al. 2005). 

Essential trace elements (Table 1.1.10) are nickel, cobalt, molybdenum, iron, selenium, 

wolfram, zinc, copper and manganese (Braun 1982; Gerardi 2003; Bischofsberger et al. 

2005). An absence of trace elements leads to a limitation of growth, but too high 

concentration, for example of heavy metals, can also result in an inhibition 

(Bischofsberger et al. 2005). 
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Trace element Demand

[mg.kgCOD-Degradated
-1]

Fe 100 – 2000

Ni 5 – 300

Co 5 – 200

Mo 1 – 4

Se 2 – 4

Wo 2 – 8

Table 1.1.10: Requirements of trace elements based on the COD degradation (Bischofsberger 
et al. 2005)

In the ADM1 a secondary substrate inhibition function is included in all cases of substrate 

uptake (Batstone et al. 2002) (Equation (41)):

ii SK
I

+
=

1

1
(41)

where:
I Inhibition factor
Si concentration of inhibitor i [kgCOD.m-3]
Ki inhibtion parameter [kgCOD.m-3]

In the model a competitive substrate uptake function is included for butyrate and valerate 

using bacteria. As in the model these substrates are used by the same bacteria group 

(Batstone et al. 2002) (Equation (42)):

SS
I

i+
=

1

1
(42)

where:
I Inhibition factor
Si concentration of inhibitor i [kgCOD.m-3]
S substrate for process [kgCOD.m-3]

The organic loading rate (OLR) is used as a parameter for the amount of feed. This is 

defined as the amount of organic dry matter or chemical oxygen demand per day and 

reactor volume. The disadvantage is that the OLR gives no information about the 

biodegradability of the substrate used (Laaber 2007).

During start up of the reactor the organic load has to be increased by increments, 

starting with about one tenth of the normal loading rate (Braun 1982; Bischofsberger et 

al. 2005). 

An increase of the OLR to increase the productivity is always limited on the one hand by 

mechanical problems (pumpability of the substrate, mixing of the reactors) and on the 

other hand by biological problems such as high levels of fatty acids, ammonia and H2S 

(Braun 1982).

http://[mg.kg


INTRODUCTION

- 22 -

Toxicity

Inhibition means a reversible change in the kinetic parameters of the bacteria and toxicity 

results in an increased decay of the bacteria (Bischofsberger et al. 2005).

Inhibition can be competitive or non-competitive. In the case of a non-competitive 

inhibition of the bacteria the maximal possible growth rate decreases and therefore also 

the capacity for the substrate uptake (Bischofsberger et al. 2005). An important fact, 

however, is that micro-organisms can adapt to toxic substances (Henze and Harremoes 

1983; Speece 1996).

Indicators for toxicity (disappearance of hydrogen and methane, decrease in alkalinity 

and pH, and increase in VFAs) can occur either suddenly or gradually depending on the 

type of toxicity and concentration (Gerardi 2003).

Competitive inhibition is mostly caused by substances that are mistaken as a substrate 

by the bacteria, but which cannot be degraded (Bischofsberger et al. 2005).

Characteristic for all types of inhibition is that the decay rate does not decrease 

(Bischofsberger et al. 2005), which can lead, if the inhibition is not stopped, to an 

extinction of the bacteria population and to a complete break down of the process. 

The most frequent cause for operational problems is the substrate inhibition of 

aceticlastic methanogenic bacteria (Bischofsberger et al. 2005).

To reduce the complexity of the model only a few inhibition mechanisms are 

implemented in the model (Blumensaat and Keller 2005), apart from the above described 

inhibition function for hydrogen inhibition, pH inhibition, substrate competition for C4 and 

the secondary substrate inhibition function, only one non-competitive inhibition function 

for free ammonia is included in the ADM1.

A m m o n i u m a nd  Am m o n i a

High protein concentrations can lead to high ammonia concentrations and therefore 

cause process inhibition and failure (Flotats et al. 2006), as ammonia is released during 

the degradation of amino acids (Gerardi 2003).

The free non-dissociated ammonia is the most toxic compound, and inhibits from 

100 – 200 gN.l-1 (Henze and Harremoes 1983). Total ammonia and ammonium 

concentrations can be tolerated up to 5000 to 8000 mgN.l-1 if the reactor pH is low 

enough (Henze and Harremoes 1983). The toxicity not only depends on the total 

concentration, but also on the rate of formation and thus on the adaptation time (Braun 

1982).

Ammonia and ammonium are in equilibrium and therefore their relative concentrations 

depends on the pH and temperature (Braun 1982; Gerardi 2003). The main part however 

is found as ammonium in the reactor (Braun 1982). An increase in the ammonium also 

leads to an increase in the pH (Gerardi 2003). The augmented pH results in heightened 
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ammonia concentration, which results in an inhibition of the methanogenic bacteria and 

results in a rise in the concentration of organic acids in the reactor, which in turn drops 

the pH and thus decreases the ammonium concentration (Angelidaki et al. 1993; Gerardi 

2003; Bischofsberger et al. 2005). In this manner the ammonium can stabilise the pH in 

the reactor (Angelidaki et al. 1993; Bischofsberger et al. 2005). So inhibition due to 

ammonia does not initiate a self-increasing process, but results in a lower COD reduction 

and smell nuisances (Bischofsberger et al. 2005). A further problem caused by ammonia 

is the production of foam and scum (Gerardi 2003).

In the ADM1 the inhibition by free ammonia is modelled with a non-competive inhibition 

function similarly to the hydrogen inhibition (see Equation (18)) (Batstone et al. 2002). 

The relationship between the ammonium, ammonia and pH is included in the acid-base 

rates (Batstone et al. 2002; Rosen and Jeppsson 2002) (Equation (43)):

( )( )ININaHINanhBAA SKSKSk
vIN ,,3,11, −+= +ρ (43)

where:
ρA,i acid-base rate [kgCOD.m-3.d-1]
kA,Bi acid base kinetic parameter [M-1.d-1]
Ka,Ii acid-base equilibrium constant [M]
Si concentration of soluble i [kgCOD.m-3]

Biochemically bound oxygen such as in nitrate or nitrite can cause inhibitions in the AD 

process (Bischofsberger et al. 2005). The denitrification process ((Equation (44)) (Braun 

1982)) can have a significant impact on the whole AD process: it can channel electron 

equivalents away from methanogenesis and results in the decrease of methane 

production and an increased CO2 content in the biogas (Braun 1982), competition with 

other microbial bacteria and an inhibition of methanogenesis by nitrogen oxides 

(Batstone et al. 2002), due to an increased redox potential and therefore the inhibition of 

the methanogens (Bischofsberger et al. 2005). This process was not included in the 

ADM1, as it is too complex (Batstone et al. 2002).

OHOHNHHHNO 2423 24 ++→++ −++− (44)

S u l ph a t e

Sulphate reducing bacteria (SRB) compete with the methanogenic bacteria for the same 

substrate, as the SRB need the hydrogen for the conversion of sulphate (Braun 1982; 

Gerardi 2003; Bischofsberger et al. 2005) (Equation (45) to (46)):

−− ++↔+ OHOHSHHSO 224 222
2
4 (45)

−− +↔+ 323
2
4 2HCOSHCOOHCHSO (46)

Whereby the SRB are energetically advantageous compared to the methanogens 

(Bischofsberger et al. 2005). 
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Moreover the H2S in the sludge causes an inhibition of the metabolic activity of the 

bacteria (Gerardi 2003). Inhibition caused by H2S increases at low pH (<6.5) (Henze and 

Harremoes 1983). This is a very dangerous factor: As an inhibition caused by sulphide 

can result in a self-augmenting process which finally ends in the total breakdown of the 

biogas production (Bischofsberger et al. 2005). An inhibition of the methanogenic 

bacteria leads to a rise of organic acids, subsequently a drop in the pH and therefore a 

further increase in the H2S in the reactor (Bischofsberger et al. 2005).

One has to count with the first inhibition effects at a H2S concentration of 

30 mg.l-1. A H2S content of more than 10 % in the biogas the acetate production is 

disrupted (Bischofsberger et al. 2005).

An elimination of the H2S is not only important for successful operation of the AD 

process, but also necessary to prevent corrosion problems in the plant and minimize SO2

emissions during combustion of the biogas (Bischofsberger et al. 2005).

Inhibition by H2S can be solved by adding iron salts or iron dusts to initiate precipitation 

of the sulphide or an increase of the pH (Henze and Harremoes 1983; Gerardi 2003; 

Bischofsberger et al. 2005). Oxygen is also used in industrial plants to remove H2S from 

the biogas, where the sulphur precipitates as elemental sulphur according to the 

reactions (Bischofsberger et al. 2005) (Equation (47)):

2222 22 SOHOSH +↔+ (47)

Additionally an increase in the temperature (thermophilic temperature range) leads to a 

reduction of the H2S inhibition as the solubility of H2S decreases with higher 

temperatures (Bischofsberger et al. 2005). A further possibility is an external H2S 

scrubber and circulation of the biogas (Bischofsberger et al. 2005).

But the sulphate reduction has positive effects, such as an increase of the pH in the 

reactor, due to formation of OH- ions and as well as the decrease in the hydrogen partial 

pressure (Bischofsberger et al. 2005). Moreover the sulphide ions serve as an important 

precipitant for heavy metals (Braun 1982; Bischofsberger et al. 2005) and as nutrient 

supplement for the bacteria.

Due to its complexity the sulphate reduction process is excluded from the ADM1, but this 

makes the model incapable of modelling systems with a certain amount of sulphide 

(Batstone et al. 2002).

O r g a ni c  a c i d s

The concentration of organic acids in the reactor should be rather low (< 200 mg.l-1) for a 

stable process (Henze and Harremoes 1983; Bischofsberger et al. 2005). If the 

production of acids is higher than the degradation performance the methanogens are 

inhibited (Bischofsberger et al. 2005). In general acetic acid is less toxic than propionic 

acid (Henze and Harremoes 1983). During an inhibition of aceticlastic methanogens an 
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increase of the propionic acid can always be observed (Angelidaki et al. 1993; Gerardi 

2003; Bischofsberger et al. 2005). Increased values of propionic acid may therefore 

indicate difficulties in any of the metabolic steps of anaerobic treatment (Speece 1996). 

High levels of organic acids have less effects if the reactor is adapted to them (Braun 

1982).

Elevated volatile fatty acids (VFA) concentrations in the reactor can, for example, be 

caused by trace metal limitation, toxicity, kinetic overload, mass transfer limitation, 

hydraulic short circuiting, nitrogen and phosphorus limitation and thermodynamic 

impairment of propionate conversion due to evaluated H2 concentrations (Speece 1996).

A high amount of organic acids also cause a decrease in the pH, which leads to an 

augmented inhibition of the methanogenic bacteria (Rosen and Jeppsson 2002; Gerardi 

2003; Bischofsberger et al. 2005). At lower pH values the acids can more easily diffuse 

into the bacteria cell and lead to shift in the pH in the cell (Braun 1982). An increase of 

the VFA and decrease of the pH is a major limiting factor (Vavilin et al. 2004).

As inhibition by weak acids and bases is strongly pH dependant, the following acid-base 

rates are included in the ADM1 (Batstone et al. 2002; Rosen and Jeppsson 2002)

(Equation ((48) to (52))):

( )( )vavaaHvaavaBAA SKSKSk
va ,,,4, −+= +−ρ (48)

( )( )bubuaHbuabuBAA SKSKSk
bu ,,,5, −+= +−ρ (49)

( )( )proproaHproaproBAA SKSKSk
pro ,,,6, −+= +−ρ (50)

( )( )acacaHacaacBAA SKSKSk
ac ,,,7, −+= +−ρ (51)

( )( )ICcoaHcoahcoBcoAA SKSKSk 2,2,32,10, −+= +−ρ (52)

where:
ρA,i acid-base rate [kgCOD.m-3.d-1]
kA,Bi acid base kinetic parameter [M-1.d-1]
Ka,Ii acid-base equilibrium constant [M]
Si concentration of soluble i [kgCOD.m-3]

Long chain fatty acids (LCFA) are a product of the lipids in the substrate and can already 

be inhibitory at low concentrations (Angelidaki and Ahring 1992; Batstone et al. 2002). 

Heavy inhibitions by LCFAs are mostly irreversible, but the system can adapt to high 

LCFA concentrations (Batstone et al. 2002). The inhibition effect of the LCFAs is their 

adsorption on the cell wall (Batstone et al. 2002). Whereby it is mostly aceticlastic 

methanogens that are affected (Batstone et al. 2002).

The effect of organic acid inhibition is largely included in the empirical pH function 

(Batstone et al. 2002). Due to its potential complexity the inhibition of LCFAs is not 

included in the ADM1 (Rosen and Jeppsson 2002).
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Hevy metal Inhibtion Toxicity Inhibtion Toxicity Inhibtion Toxicity

[mg.l-1] [mg.l-1] [mg.l-1] [mg.l-1] [mg.l-1] [mg.l-1]

Cu 150-250 300 40-250 170-300 40-250 170-300

Cd - - 150-600 - - 20-600

Zn 150 250 250-400 250-600 150-400 250-600

Ni 100-300 500 10-300 130-500 10-300 30-1000

Pb - - 340 340 300-340 340

Cr III 100-300 500 120-300 260-500 120-300 200-500

Cr VI 100 200 100-110 200-220 100-110 200-420

Reference Köhler, 1996 Scherber u. Steiner, 1982
Konzeli-Katsiri u. Kartsona, 

1986

Other inhibitory substances were not included in the ADM1, either:

O x y g e n

Anaerobes can be divided into two groups: facultative (oxygen-tolerant) and strictly 

anaerobic (oxygen-intolerant) species (Braun 1982; Gerardi 2003). Facultative anaerobic 

bacteria, for example most of the acidogenic bacteria, grow in presence of oxygen 

(Gerardi 2003; Bischofsberger et al. 2005). Whereas for strictly anaerobic bacteria a 

small amount of oxygen already means an inhibition of the metabolism (Braun 1982; 

Bischofsberger et al. 2005). 

Depending on the ORP buffer capacity of the mixed population the bacteria consortium 

tolerates variable amounts of oxygen (Braun 1982). 

H e a v y  me t a l s

Heavy metals are not strictly toxic. On the contrary, a lot of heavy metals are essential 

for the bacteria in low concentrations, such as copper, nickel, chrome, cadmium or zinc. 

It is only at higher concentrations (Table 1.1.11) that all heavy metals lead to an inhibition 

and toxicity (Bischofsberger et al. 2005). 

Only soluble heavy metals can inhibit the process (Braun 1982). Using customary 

substrates no inhibition by heavy metals can be expected, as the sulphate content of the 

substrate itself is high enough to remove all heavy metals (Braun 1982).

Table 1.1.11: Inhibitory concentration of different harmful substances (Bischofsberger et al. 
2005)9

9 Köhler, H., 1996, Schadenswirkungen auf den Schlammfaulprozess durch stagnierend und toxisch 

wirkende Stoffe, Wasser-Luft und Betrieb, 6, 388-395

Konzeli-Katsiri, A., Kartsonas, N., 1986, Inhibtion of Anaerobic Digestion by Heavy Metals, Anaerobic 

Digestion of Sewage Sludge and Organic Agriculture Wastes, Edited by: Bruce, A.M., Konzeli-Katsiri, 

A., Newman, P.J., Elsivier Applied Science Publishers, London, New York, 104-119

Scherber, K., Steiner, A., 1982, Zur Toxizität von Schwermetallen bei der biologischen 

Abwasserreinigung, Münchner Beiträge zur Abwasser-, Fischerei- und Flussbiologie, Bd 34, 191-207
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O t he r  Su b s t a nc e s

Other substances, for example halogenated hydrocarbons, cyanide, antibiotics, 

disinfectant or biocides, can cause inhibition or toxic effects (Braun 1982; Bischofsberger 

et al. 2005).
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1.2 Types of Digesters and Operation

A lot of different process types are used for agricultures biogas plants – one can 

distinguish between dry and wet processes (Laaber 2007) and further between 

discontinuous and continuous processes (Bischofsberger et al. 2005). There are no 

typical plant types for a specific range of applications, each plant is planned individually 

(Laaber 2007).

1.2.1 Continuous Stirred Tank Reactor (CSTR)

Most plants are continuous stirred tank reactors (Bischofsberger et al. 2005; Laaber 

2007). These cylindrical reactors have lower acquisition costs than other reactor forms 

(Bischofsberger et al. 2005).

CSTRs can be operated both in single phase or two phase operation. In single phase 

operation the acid formation and methane production takes place in the same reactor 

(Speece 1996). However, one possibility to increase the efficiency of the process is to 

separate the AD process into two phases, one acid forming phase and one methane 

forming phase (Speece 1996), where optimal conditions for the bacteria groups are 

provided (Blumensaat and Keller 2005). Optimal pH range are from  4 – 6.5 for the acid 

formation step and 6.5 to 8.2 for the methane formation (Speece 1996). The 

disadvantages of such a separation are higher investment costs (Blumensaat and Keller 

2005).

The implementation of the ADM1 in the CSTR is shown in the Scientific and Technical 

report No. 13 (Batstone et al. 2002). For each state component the following mass 

balance is stated (Batstone et al. 2002) (Equation (53)). The derivation of the dynamic 

process model is based on the conservation of mass and energy (Olsson and Newell 

1999).
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where:
Sliq,i concentration of soluble i [kCOD.m-3]
Sin,i input concentration of soluble i [kCOD.m-3]
νI,j rate coefficients for component i on process j [kgCOD.m-3]
ρj process rate j [kgCOD.m-3.d-1]
t time [d]
Vliq liquid Volume [m³]

For the solids in the reactor the subsequent mass balance is given by (Batstone et al. 

2002) (Equation (54)):
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where:
Xliq,i concentration particulate i in the reactor [kCOD.m-3] 
Xin,I input concentration of the particulate i [kCOD.m-3]
νI,j rate coefficients for component i on process j [kgCOD.m-3]
ρj process rate j [kgCOD.m-3.d-1]
t time [d]
Vliq liquid Volume [m³]

For the gas phase the mass balance can be written similarly to the liquid phase 

(Batstone et al. 2002) (Equation (55)):
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,, ρ+−= (55)

where:
Sgas,i gaseous concentration of i [kCOD.m-3]
qgas flow rate gas [m³.d-1]
Vgas gaseous Volume [m³]
Vliq Volume of liquid phase [m³]
ρT,I gas transfer rate [kgCOD.m-3.d-1]
t time [d]

1.2.2 Plug Flow Reactor (PF)

These are horizontal reactors where substrate flows through (Braun 1982); the 

diameter/length ratio is 1:5 to 1:10. They are mostly equipped with a lengthwise paddle 

agitator (Bischofsberger et al. 2005). The substrate flows through the reactor as a plug, 

which is ideally not mixed (Braun 1982).

The advantages of this reactor type are that normally high degradation rates and a better 

hygenisation can be attained (Bischofsberger et al. 2005). Furthermore these reactor can 

accommodate toxic sludges more efficiently than CSTRs (Speece 1996).

The disadvantages are the limited reactor size (max 500 m3), otherwise complex and 

expensive agitators are needed, the high amount of space required and the awkward 

surface to volume ratio (Bischofsberger et al. 2005). Less than 20 % of new plants are 

erected in this form (Bischofsberger et al. 2005)

1.2.3 Other reactor types

Special reactor types are employed in the anaerobic treatment of waste water treatment, 

as here the retention of the biomass has a big influence on the efficiency (Bischofsberger 

et al. 2005). Different retention techniques exist, such as external retention by gravity 

(settling tanks or flotation), integrated retention (UASB), biofilm reactors (packed bed, 

fluidised bed) or retention by membranes (micro filtration, ultra filtration) (Bischofsberger 

et al. 2005).
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1.3 Monitoring and Control

Monitoring and control can prevent a minor operational problem becoming a major 

catastrophy and leading to a complete breakdown of the AD process (Speece 1996).

Process control of AD is mostly difficult due to the relationship between different 

parameters which influence the process (Gerardi 2003). This is true for most biochemical 

processes and is a result of the sensitivity of the bacteria and the impossibility of 

influencing the internal environment of the cells (Yamuna Rani and Ramachandra Rao 

1999). The main difficulty controlling fermenters are their non-linear behaviour, the 

scarcity of accurate process models, unpredictable process parameters, as well as 

hardly available reliable biosensors (Yamuna Rani and Ramachandra Rao 1999).

Optimising control deals with the problem of changing the operating conditions in such a 

manner that the AD process is brought to its optimum (Yamuna Rani and Ramachandra 

Rao 1999). Advanced monitoring and control system can lead to an increased methane 

content (MC), augmented biogas yields, higher loading rates, smaller reactor volumes 

and prevent reactor overload.

Any control system of any process consists of four components – the process, the 

measurement, the decision-making and the implementation, whereby the key component 

is the process itself (Olsson and Newell 1999). 

1.3.1 Monitoring Parameters

Typical parameters for monitoring full scale plants are alkalinity, gas production (GP), 

biogas composition, dissolved hydrogen, VFAs, pH and volatile suspended solids (VSS). 

Furthermore the Chemical Oxygen Demand (COD) and especially the COD reduction, 

the alkalinity or buffering capacity, ORP, CO and the hydrogen content.

Biogas and methane production are not really accurate indicators as changes in the 

methane content can not only be connected to reactor failure but also be due to feed 

changes (Gerardi 2003). However a combination of methane production and alkalinity as 

indicators has much more significance (Gerardi 2003).

A further parameter, which can be used for monitoring, is the volatile acid-to-alkalinity 

ratio; here a value of 0.1 to 0.2 is acceptable, whereas a ratio >0.5 indicates a reactor 

failure (Gerardi 2003). Another possible control parameter is the ratio of propionate to 

acetate – this parameter indicates a failure caused by organic overload (Speece 1996).

While the pH can only serve as an indicator for what already has happened in the 

reactor, like methane content in the biogas, augmented VFA concentrations or the ratio 

of VFA to alkalinity (Speece 1996); alkalinity indicates what is happening at the moment 

(Gerardi 2003). The potential for using hydrogen as an indicator of digester viability has 

been shown for example by Hager (Hager 2001), but the feasibility of H2 as control 

parameter for complex substrates is unclear (Sterling Jr. et al. 2001). However, using H2
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as control parameter has some limitations. H2 levels in steady-state operation depend on 

the type of reactor and the energetic content of the substrate (Speece 1996).

Due to metabolic activity the ORP alters all the time, but only in a specific area and can 

therefore be used for monitoring the process (Braun 1982). Coupled with other 

parameters ORP is a useful parameter (Speece 1996).

1.3.2 Control strategies

A controller has to be designed in such a manner that the complete system (controller 

itself and the system controlled) is stable (Kremling and Saez-Rodriguez 2007). Features 

that lead to industrial acceptance of a controller are primarily the simplicity of its design 

and the corresponding robustness of control ((Benson and Perkins, 1997)10 cited in 

(Mwembeshi et al. 2004)). One control philosophy is, that if a system can modelled, then 

it can also be controlled (Mwembeshi et al. 2004).

PID

The Partial-Integral-Derivate (PID) is the most common algorithm in use (Olsson and 

Newell 1999). In over 90 % of industrial process control systems a PID-type controller is 

used ((Benson and Perkins, 1997)10 cited in (Mwembeshi et al. 2004))

A PID controller is a three part control mechanism, which combines proportional, integral, 

and derivative control actions (Olsson and Newell 1999). 

This kind of control should be used if a low amount of data is available, no model is valid 

and little knowledge exists about the plant (Steyer et al. 2005). Applications of a PID 

controller are normally limited to single input, single output strategies and to linear cases 

(Steyer et al. 2005). 

Thus, this kind of controllers is not adequate for AD control – as the process itself is too 

complex. Moreover PID controllers show a bad performance for the AD process, but this 

control strategy has the advantage that it is not very complex (Liu 2005). 

Mechanistic Models

Improved control is mostly based on modelling and simulation (Olsson and Newell 1999). 

A model based predictive control uses different kinds of models to forecast the future 

development of the process (Pannocchia 2003), considering threshold values and 

stability of the process. A key feature of the model used is its ability to predict the 

behaviour of the plant (Olsson and Newell 1999). Therefore a model based control 

consists of two parts: prediction and control (Olsson and Newell 1999).

10 Benson, R.Perkins, J., 1997, The Future of Process Control – A UK perpective. In Proceedings of 

the 5th international conference on chemical process control (vol. 93, p. 192). AIChE symposium 

series.
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The complexity of a model used for control purposes is determined by two factors – the 

impact of control actions and its verifiability (Olsson and Newell 1999). A further factor is 

the number of parameters needed for the model. 

The advantage of model based controller is that compared to a model free controller 

simpler sensors can be used, but the disadvantage is that knowledge of the input 

concentrations and advanced mathematical calculations are required (Steyer et al. 

2005).

For use in a control system the ADM1 is far too complex, as it is rarely fully calibrated 

and validated (Steyer et al. 2005). Furthermore the mathematical behaviour can be very 

complex (Steyer et al. 2005). Thus for control purposes a more simplified model should 

be used (Steyer et al. 2005). 

Neuronal Networks

An alternative to deterministic models are black box models, for example neuronal 

networks (NN) or expert systems, such as fuzzy logic and hybrid systems - Neuro-fuzzy 

combinations.

NNs consist of an assembly of simple processing elements (neurones) combined in a 

network by a set of weights (Nauck et al. 1994). NNs are inspired by biological nervous 

systems (Zani 2001) and can be seen as a simplified view of the structure of the brain 

(Olsson and Newell 1999). NNs are especially applicable for modelling non-linear 

systems (Strik 2004). This kind of control strategy is defined by the structure of the 

network, the value of the weights and the mode of operation (Strik et al. 2004). 

In the most common networks the neurones are arranged in layers, with an input layer, 

several hidden layers and an output layer (Zani 2001; Strik 2004). The input layer 

consists of one neuron for each model input and distributes the input value to all neurons 

in the next layer (Olsson and Newell 1999). In at least one hidden layer, the neurone 

takes input values, weights them, sums them up and adds a bias which finally results in 

the argument of an output function, the so-called transfer function (Olsson and Newell 

1999; Zani 2001). The output layer also gives a weighted sum, but the transformation is 

normally much simpler than in the hidden layers (Olsson and Newell 1999). The input 

and output of the NN can be a vector or a scalar (Zani 2001).

If the number of layers is too low the ability for modelling the process is limited, 

conversely, too many layers would result in too much freedom for the weights to adjust 

(Linko et al. 1997). Training of the NN changes the weights of the network.

The advantages provided by the NNs are that is a self-learning system (through 

mathematical functions). They learn from examples and exhibit some capability for 

generalisation beyond the training data (Zani 2001). Further less know-how and expert 

knowledge are necessary compared to Fuzzy Logic based control tools (see beneath). 

However, a big disadvantage is that a lot of data is needed for training the models, 
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moreover complete data sets are required and for an adequate training the data should 

have an high range of margin.

Fuzzy Logic

A further possibility is a Fuzzy Logic (FL) based control. The use of this type of controller 

makes sense if there is no analytical model of the plant or process available, the model is 

too complicated to be used in a controller or the control goals are not precisely defined 

(Olsson and Newell 1999). 

FL was originally developed by Lofti Zadeh (Sproule et al. 2002). FL uses “Fuzzy” 

numbers, not crisp numbers, in the form of membership functions, representing degrees 

of truthfulness at the interval of [0 1], whereby a membership value is not a probability, 

but rather a possibility (Olsson and Newell 1999). Fuzzy numbers are uncertain 

numbers, where some values can be defined as more possible then others (Bogardi 

2004). 

A fuzzy set is a class having members with a degree of membership – the distinction 

between membership or non-membership is gradual and not abrupt (Olsson and Newell 

1999).

The control strategy itself is based on control rules, mostly in form of descriptive terms. 

Such rules have the form: “IF <conditional clause> THEN <action clause>” (Olsson and 

Newell 1999). 

Normally, a FL based control consists of the fuzzyfication of an input, the application of 

the interference rules and the subsequent defuzzyfication of the output (Figure 1.3.1). 

Defuzzification is the translation of the membership function into a crisp control signal 

(Olsson and Newell 1999). There are different techniques for defuzzfification, one 

possibility is to use the “centre of area” (Olsson and Newell 1999).

This kind of control is also called an expert system (

needs process-specific experience and knowledge. The characteristics of an expert 

system are that it works only in a specified area, it is transparent and also diffuse, as 

normally knowledge is only available in fragments ((Görz, 1993)11 cited in (Nauck et al. 

1994))

Compared to the model based control tools, however, for a reduced amount of data 

measured, only a short observation period (2-3 month) is necessary. Moreover, it is 

possible to minimise the parameters required and no information about substrate is 

necessary. Further there is no need for a model, no knowledge of the input calculation 

and only simple calculations are required (Steyer et al. 2005). A disadvantage is that this 

kind of control is difficult to evaluate as it uses descriptive terms (Zani 2001).

11 Görz, G., Hrsg., 1993, Einführung in die künstliche Intelligenz, Addison-Wesley, Bonn
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Figure 1.3.1: Principles of Fuzzy Logic

It has been reported that control tools without an implemented model, such as FL based 

tools, show very good results (Domnanovich et al. 2004). 

“The difference between a fuzzy controller and classical controller is not the resulting 

behaviour is achieved, but the way this behaviour us achieved” (Olsson and Newell 

1999).
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2 Objectives

The biological conversion of crops and agro-wastes without oxygen (anaerobic digestion) 

can be used to produce a sustainable fuel, by converting the formed biogas via gas 

engines yields electrical energy and heat. However industrial biogas plants often have to 

face severe problems: Low methane values in the biogas (approximately 50%) and low 

overall biogas production, instable process conditions, reactor overload and process 

failure, low efficiency and high operational costs, self-heating in the plants and odour 

problems, which often results in a low economical viability. To make the biogas process 

more economically attractive the process has to be optimised.

The main goal of the so-called CROPGEN project (Renewable energy from crops and 

agro-wastes) is the integration of energy crops as an economically attractive energy 

source into the existing energy infrastructure. The integration as sustainable fuel source 

will be achieved by the optimisation of the biogas process. This optimisation achieved by

new reactor designs, the determination of methane yields, the optimisation of storage 

and pre-treatment and identification of optimal processes using a Decision Support 

Systems (DSS).

The project started in March 2004 and ran until June 2007. Several project partners both 

from industry and universities worked on the project from all over Europe.

The study was accomplished within the framework of the CROPGEN project and 

encompasses the modelling of the AD process using energy crops as substrate and the 

development of a DSS for optimisation. The main task to prove was that the AD model 

used can predict the digestion of energy crops accurately enough.

The majority of the AD models was developed for AD processes using wastewater, 

sewage sludge or manure as substrate, but hardly any model developments or 

applications for AD processes using energy crops as substrate exist in literature. 

Thus one objective of this study is the extension and adaptation of an existing AD model 

for the use of energy crops as substrate, here the ADM1 (Batstone et al. 2002) was used 

as a basis for further development. 

A further goal was the development of a “Virtual Laboratory” (VL) for data processing and 

the simulation of the AD process. The adjusted model is foreseen to be implemented in 

this VL. The VL should primarily help to provide a better understanding of the AD 

process.

Moreover an existing Decision Support System based on Fuzzy Logic was further 

developed to assist in operational control for optimisation. The DSS is used to identify 

process-control strategies in order to yield an optimised biogas production and high 

methane content. 



MATERIALS AND METHODS

- 36 -

3 Material and Methods

3.1 Reactor Set-up

To gain data for model calibration and validation four 25 l (total volume) lab-scale 

anaerobic completely stirred tank reactors (CSTR) are operated. Figure 3.1.1 shows the 

schema of the CSTRs used in the laboratory experiments.

The reactors are constructed according ATV (Abwassertechnische Vereinigung, 1996)12

and are completely made of glass (supplier: Prohaska) with a removable head and 

several connections for measurement devices, feed inlet, gas outlet and sludge outlet.

The digesters are equipped with online measurement devices for temperature, methane 

content and biogas production rate. The reactors are stirred with both a magnetic stirrer 

(IKA; Model Maxi MR digital) with a stirring speed of about 100 rpm and a peristaltic 

pump (Verder; Model CR-240; Pump head H5; Pumping tube Verderprene 6.4x2.4 mm, 

respectively Verder; Model CR70; Pump Head H5; Pumping tube Verderprene 6.4x2.4) 

to pump the sludge trough an external circulation loop. In this external loop a sampling 

point is suited. A height-adjustable U-tube is used to keep the liquid level constant and 

served as safety outlet in case of excess pressure as well. 

Figure 3.1.1: Schematic of the CSTRs used in the laboratory experiments (Hager 2001)

The operating temperature for two reactors is set at 35 °C (mesophilic) and for the other 

12 Abwassertechnische Vereinigung (ATV), 1996, Handbuch Klärschlamm, 4. Aufl., Ernst & Söhne 

Verlag



MATERIALS AND METHODS

- 37 -

two reactors at 60°C (thermophilic). The temperature is maintained using a heating band, 

with a fluctuation of ±1 °C around the set-point and is controlled by the reactor control 

system.

The feed is stored at 4 °C in a refrigerator and is pumped 5 to 10 times a day in the 

reactor by a peristaltic pump (Verder; Model CR-240; Pump head H5; Pumping tube 

Verderprene 6.4x2.4 mm, respectively Verder; Model CR70; Pump Head H5; Pumping 

tube Verderprene 6.4x2.4) as well controlled by the reactor control system.

The biogas vented from an outlet in the bottom of the reactor and first reached a 

dehumidifier, a gravel-packed filter (particle size 10-15 mm), to remove water from 

condensation from the gas. Afterwards the hydrogen sulphide is scrubbed from the 

biogas by passing through a saturated CuSO4 solution, where an heavy-soluble 

precipitate is formed, to prevent corrosion problems in the down-stream measuring 

devices. Subsequently the methane content of the biogas is determined by an infrared 

gas sensor. Finally the gas production rate is measured by a gas meter using a liquid 

displacement technique. 

To prevent uncontrollable increase of the pressure in the reactor, due to clogging in the 

gas tube a U-tube filled with water is placed on the top of the reactor.

3.2 Control Program

To operate and control the lab-scale reactor system automatically and for on-line data 

acquisition a process software written in LABVIEW® 6.5 (National Instruments, Austria) 

in combination with so called “Field Points” was used. The Field Points allow an I/O 

system for monitoring and control to interface with the measurement probes, as well as 

operate the pumps and the heating band.

The reactor control program is designed to control the reactor temperature, the feed and 

mixing of the reactor. The temperature is controlled by a Pt-100 measurement signal, a 

temperature set-point and an on/off operation of the heating band. The feed control 

determines the feeding times a day, the volume of each charge and the feed rate. The 

mixing control allows either interval or continuous mixing of the reactor.

Values from the on-line measurements (methane content, gas production and 

temperature) as well as values calculated by the control program (loading rate, retention 

time and gas yield) are written and stored automatically every 24 h in Excel (Microsoft) 

files.
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3.3 Measurements

3.3.1 On-line measurements

Gas sensors

The methane content is measured with an MonoGas-Sensor GS 10 ZP/HC, range 

0 - 100 Vol% methane (Sensor Devices Company), which is positioned in-line. The 

sensor provides a linear analogue direct current output signal within a range of 4-20 mA 

according to the Vol% of methane measured. The signals are connected to an AI Field 

Point module. The biogas consists nearly up to 100 % of CO2 and CH4. Thus the CO2

content is calculated as the difference between 100 % and the methane content. 

The infrared sensors work according to a 2-array-process (measurement and reference 

channel), which helps to compensate for different influencing factors. 

Gas counter

The biogas production is determined by an electrode gas meter that is build at the 

institute. 

The measurement principle of the gas counter is based on the water displacement until a 

set-point. The counter is made up of two bottles (1-Liter Schott bottle) filled with water. In 

the first bottle three high-grade steel-electrodes (Kobold, electrodes Teflon coated, yard 

goods), which are set at different depths in the bottle, where the deepest electrode is the 

reference electrode. An electrode relay monitors when the upper respectively the lower 

water levels in the bottle are reached, as defined by the upper and middle electrodes. 

Until the lower water level in the first bottle is not reached, the biogas flows via a magnet 

valve (Bürkert; 3/2 way valve Typ 330-T-03; material 0-FF-VA-GM82-024) into this bottle. 

If the lower level is reached the relay closes a circuit and the magnet valve switches and 

the entrance into the bottle is closed and the water level increases again and a new 

measurement cycle starts.

Each time a gas count occurs, a 10 mA signal is produced and sent to an AI Field Point 

module. By measuring the time between two counts the gas production can be 

calculated.

Temperature 

Temperature is measured by a Pt-100 element (Testo; PT100 Typ 04; 4-conductor; 

diameter 3 mm; NL 500 mm) connected to a RTD Field Point module, which is directly 

installed in the sludge. The RTD module is specified for measurement Pt-100 signals. 

3.3.2 Off-line measurements

Additionally to the on-line parameters measured, the following parameters are measured 

off-line for the characterisation of the reactor content and the substrates.
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pH

The pH should be measured from a freshly taken sample by avoiding long contact with 

air and without loss of CO2 (Bischofsberger et al. 2005). Therefore the pH had to be 

measured within a maximum of 15 min after sampling by a standard pH electrode (WTW 

electrode) after a calibration of the electrode with a pH 7 and pH 4 buffer solutions.

Volatile Fatty Acids (VFA)

VFAs are measured by FTIR/ATR (Spectrum One, Perkin Elmer) using a ZnSe crystal. 

Whereby acetic acid, propionic acid and a total VFA concentration are measured. 

The measurement by FTIR is rather simple, the samples are centrifuged (10 min at 

10000 rpm) and the supernatant is spread over the crystal. Each sample was measured 

twice. 

The Spectrum One had the following settings:
Spectral Range 4000 – 650 cm-1

Spectral Resolution 1.0 cm-1

Detector DTGS
IR-Source Mid-IR-ICE (Infrared ceramic emitter)
Sensor 45° ZnSe HATR
Software Spektrum 3.0.1, Perkin Elmer
Scans per minute 20
Scan-Speed 0.2 cm.s-1

Apodisation strong
Phase Correction Magnitude
Resolution 4 cm-1

As a reference measurement the organic acid concentration (as acetic acid) is also 

determined using a cuvette-test (LCK 365). For this measurement the sample (double-

test) is centrifuged twice, to ensure that no particles are in the supernatant, which could 

influence the measurement. 

Firstly the heating block (Dr. Lange; Model LT 1W) is preheated to 100 °C. 0.4 ml of 

solution A and 0.4 ml of the centrifuged sample are pipetted into the test cuvette and put 

into the heating block for 10 min. After the cuvette cooled down 0.4 ml of solution B, 0.4 

ml of solution C and finally 2 ml of solution D are added. After 3 min the sample is 

measured with the corresponding photometer (Dr. Lange; Photometer LKT) at 497 nm.

Suspended Solids (SS)/Volatile Suspended Solids (VSS)

The Volatile Suspended Solids are a measure for the amount of organic matter in the 

sample. Suspended Solids (SS) and Volatile Suspended solids (VSS) are measured 

according to DEV H1 (DEV 1997). 

About 10 g of a sludge sample is weighted in tarred pots (double determination) and 

dried at 105 °C until the weight stabilised (drying time about 24 h) for the determination 

of the dry matter (SS). After cooling and subsequent weighting of the sample, the sample 

is annealed at 550 °C (at least 2 h), again cooled and weighted. The SS and the VSS are 

then calculated as (Equation (56) and (57)):
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where:
md mass of the dried sample
mp mass of the pot
mo mass of the original sample
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where:
ma mass of the annealed sample
md mass of the dried sample
mp mass of the pot

Chemical  Oxygen Demand (COD)

The Chemical Oxygen Demand (COD) is a measure for the amount of the oxygen 

required for the chemical oxidation of organic matter to CO2 and water and is defined as 

the amount of oxygen, which is equivalent to the mass of potassium-dichromate that 

reacts with oxidisable substances in the sample.

The determination of the COD is in accordance with the DEV S9 (DEV 1997), by a quick 

test (Dr. Lange; cuvette-test LCK 114; effective range: 150-1000 mg.l-1). 

Here for about 1 – 3 g of homogenized sludge weighted in a 25 ml graduated flask and 

diluted with RO water. 2 ml of the solution are pipetted into the test cuvette (double 

determination) and heated at 148 °C in a heating block (Dr. Lange; Model LT 1W) for 2 h. 

After cooling the cuvette, the sample is measured with the corresponding photometer 

(Dr. Lange; Photometer LKT) at 605 nm.

Total Organic Content (TOC)

TOC is determined by a TOC analyser (Shimadzu, TOC-500 + ASI-502 (Automatic 

Sample Injector)), Mode: TC, Stroke: 10; Repeats: 3). 

For sample preparation the sludge sample is centrifuged and if necessary diluted. 0.5 ml 

phosphoric acid are added to about 4 ml of sample in a glass tube and subsequently put 

in an ultrasonic bath (Branson 2210) for 45 min to remove inorganic carbon, in order to 

shorten analysing time as then TC=TOC.

As standard the following solution was prepared: 2.125g potassium-hydrogen-phthalate 

(Merck, KHC8H4O4) per litre for 1000 ppm - diluted to concentrations of 200 ppm and 

400 ppm as standard solution and to 300 ppm as control solution with RO-water.

After sample preparation the samples are put together with the standard and the control 

solution in the TOC analyser and the measuring cycle is started.

Methane Content (CH4)/Carbon Dioxide Content (CO2)

As reference measurement the CH4 and CO2 content in the biogas are determined by GC 

(GC HP 5890 Series II) analysis, as well. The interpretation is done by the GC 

corresponding software HP GC ChemStation.
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Detectors: FID (Flame Ionization Detection)

TCD (Thermal Conductivity Detection)

Gases: air + hydrogen (fuel gases)

nitrogen (carrier gas)

Package: HP-Plot Q

Length 30 m

I.D. 0.53 mm

Film 40 µm

Temp -60 °C to 270 °C (290 °C)

Temperature: Gradient 30 °C per min

Start temperature 50° C

End temperature 230° C

For calibration a two-point calibration is used: (1) 50 % CH4 (Rest CO2) (Linde Gas) and 

(2) natural gas (97.38 % CH4).

The sample (about 20 ml) is taken directly from the reactor via a gas tight (Hamilton, 

50 ml) and injected into the reactor by an automatic valve. Immediately afterwards the 

analysis using the above described method is started. 

Carbohydrates (CH)

Carbohydrate concentration is identified using the anthrone method originally developed by 

Dreywood (Dreywood 1946) using “anthrone”-solution as a test reagent with glucose as 

standard and RO water as reference. 

For the “anthrone”-solution 0.2 g anthrone (C14H10O, VWR) are dissolved in 100 ml 

concentrated sulphuric acid (H2SO4).

First and foremost a calibration curve is generated, with a standard solution of 10 mg.l-1, 

40 mg.l-1, 80 mg.l-1, 120 mg.l-1, 150 mg.l-1 glucose using a photometer (NovaspecII 

Rapid, λ = 540 nm). Subsequently the sample is centrifuged and diluted about 10 fold. 

To 1 ml of diluted sample 2 ml of “anthrone”-solution is added (triple-testing + blanc (RO 

water)), vortexed, and put into a boiling water bath for 10 min. After cooling with cold 

water and a 30 min waiting period the sample is measured by the photometer at 

540 nm and analysed using the calibration curve.

Proteins (PR)

For the determination of proteins, two different methods are used for analysis: Protein 

determination via the Bradford method (Biorad Protein assay) and the Lowry method (Biorad 

DC Protein assay). Both methods were used together for comparison only at the beginning of 

the experiments. 

The Bradford method is a dye-binding method. Here, the proteins must have a 

macromolecular structure, which can lead to an underestimation. (Raunkjaer et al. 1994).

Lowry et al. (1951) described a method where the proteins are determined by the Folin-

Ciocalteau reagent. In this case the peptide bonds react with copper in an alkaline solution 

followed by the reduction of Folin-reagent by the copper-protein complex. 
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Raunkjaer et al. (1994) states that, for wastewater the Bradford method gives an 

underestimation of the total proteins, whereas the Lowry method gives an overestimation.

For both tests BSA (Bovine Serum Albumin, protease free, VWR) is used as standard 

and RO water as reference. A calibration curve with concentrations of 0.2 g.l-1, 0.5 g.l-1, 

0.7 g.l-1, 1 g.l-1, 1.5 g.l-1 is plotted at the beginning.

In preparation the sample is centrifuged (10000 rpm for 10 min) and if necessary diluted. 

The Bradford reagent (Dye Reagent Concentrate, BioRad Protein Assay, (containing 

Phosphoric acid and Methanol), BioRad) is diluted before the application: the reagent is 

mixed with RO-water with a volumetric ratio of 1:4 and the diluted solution is 

subsequently filtered through a Whatman filter No.1.

For the Bradford test 5 ml of Bradford reagent is added to 0.1 ml of 

sample/standard/reference and vortexed. After a waiting time of 5 min the sample is 

measured with a photometer at a wavelength of 595 nm.

Using the Lowry test method 0.1 ml sample/standard/reference 0.5 ml of reagent A 

(alkaline copper tartate solution + reagent S, Dc Protein Assay, BioRad) vortexed. 

Thereafter 4 ml of reagent B (dilute Folin reagent, Dc Protein Assay, BioRad) are added 

and spun in a vortex. After a waiting period of 15 min the sample is measured with a 

photometer at 165 nm.

Each sample is done in triplicate for each of both methods.

Total Nitrogen (TN)

The total nitrogen in feed samples is determined using Dr. Lange cuvette test 

LCK 338.

The feed sample (double determination) is homogenised by shaking thoroughly. An 

adequate amount of the feed sample is pipetted gravimetrically into a 100 ml volumetric 

flask and the volumetric flask is filled to the label with RO-water and shaked.

0.2 ml of the diluted feed sample is put into a reaction vessel and 2.3 ml of reagent A and 

one pill of B are added. The cuvette is shaken thoroughly and heated up in the heating 

block (Dr. Lange LT 1W) for 20 min at a temperature of 148 °C. 

After the cuvette has cooled down to room temperature 1 pill of C is added and the 

cuvette is vortexed again. Subsequently 0.5 ml of the sample and afterwards 0.2 ml of 

solution D is slowly added and the reaction vessel is vortexed again. After a waiting 

period of 15 min the sample is measured by the Dr. Lange photometer (Dr. Lange Lasa 

50) at a wavelength of 345 nm.

Phosphate

Phosphate (ortho) in feed samples is measured by Dr. Lange cuvette test LCK 348 in 

duplicate.

Before taking the sample the feed has to be homogenised by shaking thoroughly. An 

adequate amount of the feed sample is put gravimetrically into a 250 ml volumetric and 

the flask is filled up to the label with RO-water and shaken.
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For each sample, the test cuvette is shaken and vortexed. 0.5 ml of the diluted feed 

sample is added to each cuvette. The foil from the cap of the cuvette is removed and the 

cuvette is closed again by screwing down the cap with the corrugation on the upper side. 

The cuvette is shaken and put into the heating block (Dr. Lange LT 1W) for 20 min at a 

temperature of 148 °C.

After the cuvette has cooled to room temperature, 0.2 ml of reagent B is added and the 

cuvette is immediately closed using a grey cap (C) and shaken. Finally the sample 

cuvette is insert into the photometer (Dr. Lange Lasa 50, λ = 890 nm).

Ammonium

Ammonium and ammonia are measured using a gas sensitive single-rod measuring cell 

(WTW, NH 500/2) and a pH/mV-digital meter (WTW, 1 mV resolution).

The sludge is centrifuged at 10000 rpm for 10 min for sample preparation.

The single-rod measuring cell has to be calibrated at least daily. The lowest value that 

can be measured with the NH 500/2 is 1 mgNH4.l
-1.

First a calibration curve is plotted with concentrations of 125 mg.l-1, 1500 mg.l-1 and 

2670 mg.l-1.

16 ml of the standard solution is put into a beaker (first the lowest concentration) and 

stirred. About 5 drops of 10 N NaOH are added and the ammonium content of the 

solution measured. 

For the analysis of the sample (double determination) 15 ml RO water, 1 ml of the 

centrifuged sample and 5 drops of 10 N NaOH are put into a beaker and stirred. The 

ammonium concentration is then measured with the sensor.

The calculation of NH3 and NH4
+ is done following the specifications of Kayhanian 

(Kayhanian, 1999)13.

Sulphate

Sulphate is determined with the Dr. Lange cuvette test LCK 153. 

The sample is homogenised by Ultra-Turrax (20 seconds, stage 6-7) and stirred by 

vortex (15 seconds, stage maximum). An adequate amount of the homogenised and 

stirred anaerobic sludge is weighted into a 100 ml flask and 50 ml of 0.3 M HCl added. 

The flask is boiled in a water bath for 60 minutes. Subsequently 20 ml of cold RO-water 

is filled into 10 ml volumetric flask. This solution is then filtered through filter paper 

(“Weißband”) into another 100 ml flask. The second flask is filled up to the mark – this 

solution is used for the further determination of sulphate.

Two cuvettes (Dr. Lange LCK 153) are prepared for each sample (double determination) 

and an empty, dry cuvette for reference measurement (each sample needs its own 

reference!).

13 Kayhanian, M., 1999, Ammonia inhibition in high-solids biogasification: An overview and practical 

solutions, Environmental Technology 20 (4), 355-365
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5 ml of the sample solution is filled into each cuvette and for the reference 5 + 1.8 ml of 

RO-water are filled into the cuvette for the blank. 1 spoon (included in the test package) 

of BaCl is added to each cuvette, except the reference cuvette, and the cuvettes are 

shaken for 2 min. The sample is measured immediately afterwards by the photometer 

(Dr. Lange Lasa 50).

Alkalinity

Alkalinity is a measure for the buffer capacity of the sludge, as it is the ability to react in 

an aqueous solution with H+ ions. The alkalinity is obtained by measuring the amount of 

acid in mmol necessary to attain a pH of 4.5 (Total alkalinity) (DIN 1996) (Bischofsberger 

et al. 2005).

The total alkalinity is determined by titration with a 0.1 M HCl solution to an end-point at 

pH 4.5.

The actual HCl concentration is estimated by the titration of 25 ml 0.025 M Na2CO3 (V1) 

and 75 ml RO-H2O with 0.1 M HCl titrated to pH 4.5 (V2) as well as the titration of 100 ml 

RO-H2O again with 0.1 M HCl (V3) to pH 4.5 for reference. The actual HCl concentration 

is then given as (Equation (58)) (according to DEV C23 (DEV 1997)):
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The alkalinity of the sample is then determined by titrating 100 ml of sludge (V4) with the 

0.1 M HCl solution to an end-point at pH 4.5 (V6). The alkalinity of the sample is then 

calculated according to equation (59) (according DEV C23 (DEV 1997)):
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3.4 Substrate

3.4.1 Feed and Feed preparation

Three different substrates are used in single crop experiments: Maize silage (only corn, 

“Maize”), whole crop corn silage (“GPS”) and sunflower press residues (“Sunflower”).

The substrates are frozen at –20 °C for storage. For usage they are dried, milled with a 

food processor and finally sieved (<1 mm) (to prevent clogging).

The sieved substrates are mixed with RO water (in concentrations from 64.2 gSubstrate.l
-1 to 

288.4 gSubstrate.l
-1 (for all substrates)) and buffered with 10 M NaOH (pH 7.73 (on 

average)). The final feed mixture is then stored at 4 °C.
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Trace compounds [mg.l-1]/[ml.l-1] Trace compounds [mg.l-1]/[ml.l-1]

FeCl2
.4H2O 1000 Na2SeO3

.5H2O 82

ZnCl 25 EDTA 500

MnCl2
.4H2O 250 AlCl3

.6H2O 45

CuCl2
.2H2O 19 Resazurine 250

(NH4)6Mo7O24
.7H2O 25 HCl 37% 1

CoCl2
.6H2O 1000 H3BO3 25

NiCl2
.6H2O 71

Name CSubstrate pH COD SS VSS Total-N Total-P TOC SO4
2-

[g.l-1] [] [mg.l-1] [g.l-1] [g.l-1] [mg.l-1] [mg.l-1] [mg.l-1] [mg.l-1]

Maissilage "FM2-280705" 32.1 8.12 18508.47 18.11 17.29 222.86 85.75 - 34.36

Maissilage "FM1-280705" 64.2 7.61 40592.20 45.95 44.93 511.47 169.55 2117.50 39.30

Maissilage "FM3-280705" 128.4 7.69 86864.00 97.28 94.80 1870.85 320.41 6143.40 96.30

Maisesilage "721.5" 144.2 7.61 99867.25 99.45 95.52 994.65 378.78 - 129.55

Maissilage "1442" 288.4 7.65 223313.41 226.74 220.47 2478.85 697.93 15527.93 188.14

Maissilage "256.8" 256.8 8.10 139962.72 216.15 225.27 2908.73 321.55 11132.00 133.51

Sunflower 144.2 7.49 147978.92 120.72 113.16 3861.18 1422.59 16829.43 188.41

GP-FM2 64.2 7.55 34289.13 56.03 52.67 664.90 126.99 4390.14 42.44

Table 3.4.1: Trace compounds

At first no additional trace materials were used, but after problems with high fatty acid 

concentrations a mixture of different trace materials (Table 3.4.1) was added to the 

maize silage (8 ml mixture of trace compounds to 5 l of feed mixture). The same trace 

materials mixture is also added to the whole plant silage and the sunflower residues.

Feeding is done automatically and controlled by the reactor control system. The total 

amount of feed is split up into 5 to 10 smaller charges, which are distributed evenly 

throughout the day. The total amount of feed per day is limited by the hydraulic retention 

time, which should not be lower than 20 days. Whereby the organic loading rate is thus 

limited by the consistency of the feed, as the substrate concentration of the feed mixtures 

is limited due to pumping and clogging problems. Higher loading rate were gained by 

manually feeding directly into the reactor.

3.4.2 Characteristics of the feed

For the extensive characterisation of the feed, required for the ADM1, and in order to 

estimate the OLR, the pH, the COD, the SS and VSS, the total nitrogen content, the 

phosphate concentration, the TOC, the sulphate concentration, the ammonium and 

ammonia concentration, the protein, the carbohydrate and the VFA concentration (Table 

3.4.2) of the feed mixture are measured.

Table 3.4.2 Typical values for the feed mixtures used
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3.5 Experimental procedure

The main focus of the project was to gain data for model calibration and validation and to 

estimate kinetic parameters. Further experiments were made to run fuzzy-logic based 

control algorithms. The aim of this control is to reach maximum methane production rates 

and organic loading rates by keeping the system stable.

3.5.1 Inoculum

The reactors working in the mesophilic temperature range were inoculated with sludge 

from the Abwasserverband Klosterneuburg, a waste water treatment plant nearby 

Vienna. The reactors working in the thermophilic temperature range were inoculated with 

thermophilic sludge from the waste water treatment plant Altenburg (Germany), later on 

with a mixture of sludge from the waste water treatment plant Altenburg and 

Klosterneuburg.

The sludge is stored at 4 °C and to prevent clogging it id sieved to 1mm before used in 

the lab-scale CSTRs.

3.5.2 Sampling

Sampling was done every work day (partly also on the weekends) at a certain time, by 

taking about 100 ml sludge sample. The samples were either processed immediately or 

stored in the fridge at 4 °C for later processing.

3.5.3 Degradation experiments 

To gain kinetic data, batch experiments in 100 ml plastic syringes (VWR, BD Plastipak) were 

performed. This test arrangement has the advantage of being simple, fast and space-saving.

The test is carried in triplicate plus a reference (RO-water) in duplicate for each time step. 

Time steps of 6 h, 12 h, 24 h, 2 d and 3 d were used.

The opening of the syringe is sealed with an airtight plastic tube (VWR, ISO-Versinic (5 x 8)) 

and a small wedge.

About 30 g of sludge from one of the reactor systems (FM1 to FM4) is weighted into the 

syringe and 30 g of the test solution (here 10 gl-1 BSA solution) is as well added into the 

syringe. Then the air is removed from the syringe and the test vessel is closed with the 

wedge. The syringes are hung in a breeding room at 37 °C.

After each time step the gas production of the syringe is estimated by using the scale on 

the syringe and afterwards the syringe is weighted. Subsequently the syringe is opened 

and the sludge put in a beaker for further processing. Like all other sludge samples the 

pH, SS, VSS, TOC, VFA and COD are determined.
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3.6 Data processing

3.6.1 Statistical methods

Different supporting statistical parameters are used for data processing: the average 

(xMean) (Equation (60)), the standard deviation (σ) (Equation (61)) and the variance (σ2) 

(Equation (62)).

n

x

x

n

i
i

mean

∑
== 1 (60)

( )
( )1

22

−
Σ−Σ

=
nn

xxnσ (61)

( )
( )1

22
2

−
Σ−Σ

=
nn

xxnσ (62)

where: 
x measurement value
n number of measurements

Regression analysis and co-variance analysis are used for the comparison of the 

different reactor systems (FM1 – FM2). 

Regression analysis

A regression analysis exam if a linear correlation between two variables (dependent and 

independent) exists (Equation (63)). The intercept (a) and slope (b) are calculated 

according the principle of the least square (Equation (64) and (65)) (von d. Lippe 1993). 
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where:
x dependent variable
y independent variable
n number of measurements

The regression analysis is performed with SigmaStat 3.1 (Sysstat Software Inc.). The 

program not only gives the result of the regression analysis, but also a value for the 

correlation coefficient and the Root Square Error. The correlation coefficient is a 

measure of the strength and direction of a linear correlation and has a value between –1 

and 1. 



MATERIALS AND METHODS

- 48 -

Covariance analysis

Part of a covariance analysis is the adjustment of the variable observed for the effect of a 

covariate variable (Dubocowski et al. 2008). Thus covariance is a method that is 

adjustable for the effect of an uncontrollable nuisance variable (Dubocowski et al. 2008). 

This method is a combination of a regression analysis and a variance analysis 

(Dubocowski et al. 2008).

The variance is the measure of the difference (deviation) between the actual 

measurement and the expected value (Spafford 2003) and the variance analysis is the 

process to determine the variance.

The covariance analysis is determined with SAS Enterprise Guide 4.1 (SAS Institute 

Inc.).

3.6.2 Sensitivity analysis

The sensitivity analysis gives information on the sensitivity of model outputs to changes 

in a parameter’s initial conditions (De Pauw 2005). One can distinguish between local 

and global sensitivity, whereby local sensitivity refers to only small changes in the 

parameter values (De Pauw 2005).

There are various different methods for determining the local sensitivity analysis. In this 

work the centralised sensitivity function (Equation (66) and (67)) was used (De Pauw 

2005):
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where 
ξ perturbation factor 

( )iktx , value of state variable with parameter ki

( )ii kktx ξ±, value of state variable with the parameter ki changed for 
ikξ

The perturbation factor defines the quality of the sensitivity function (De Pauw 2005). The 

centralised sensitivity function is calculated as the average of both the negative and the 

positive sensitivity function (Equation (66) and (67)) (De Pauw 2005).

The quality of the sensitivity calculation can be estimated by several criteria, such as the 

sum of squared errors (SSE) (Equation (68)), the sum of absolute errors (SAE) (Equation 

(69)) and the maximum relative error (MRE) (Equation (70)) (De Pauw 2005).
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x
positive sensitivity function (state variable x to parameter ki)
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x
negative sensitivity function (state variable x to parameter ki)

n number of measurement points
Whereby the SRE was found to be the most useful parameter (De Pauw 2005).

The sensitivity coefficient of parameter j for state variable i ( i

j

x
kS )can be calculated 

according (Equation (71)) (De Pauw 2005):
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where:
n number of measurement points
xi(l,k0)model output using the nominal parameter value
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Sensitivity function for the output x to the parameter k

kj,0 nominal parameter value

The average sensitivity coefficient (
jkS ) is then defined as (Equation (72)) by (De Pauw 

2005):
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where:
i

j

x
kS Sensitivity coefficient of parameter j for state variable i

n number of state variables

The sensitivity coefficients can now be ranked in order to determine the most sensitive 

parameters.



MATERIALS AND METHODS

- 50 -

3.6.3 Model Evaluation

The model performance is evaluated using different statistical indicators: First of all the “most 

widely used statistical indicators of the goodness of fit…” (Elias et al. 2006) is used: the 

square of the correlation coefficient (r2) (Equation (73)):
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where (for Equation (73) to (76)):
xpre,i predicted values
xmes,i measured values
xmean_pre average of predicted values
xmean_mes average of measured values
σpre standard deviation of the predicted values
σmes standard deviation of measured values
n number of values
Moreover several other statistical indicators suggested by Elias et al. (2006) are in use, 

like the:

Ratio of means (Rmean) (Papanastasiou et al. 2007) (Equation (74)):
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The total roots mean squared error (RMSE) (Equation (75)):
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And the index of agreement (d) (Papanastasiou et al. 2007) (Equation (76)):
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A correlation coefficient of 1 would describe an ideal model and a absolute value of < 0.3 for 

the ratio of means (Rmean) indicates that the model predicts the observation with acceptable 

accuracy (Elias et al. 2006). A negative sign of Rmean signifies that the values measured are 

underestimated in the model and a positive one that the values measured are overestimated 

(Elias et al. 2006). The index of agreement normally lies between 0 and 1, for good models 

the value for d is higher than 0.6 (Elias et al. 2006).
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4 Results and Discussion

4.1 Anaerobic digestion of energy crops

To obtain data for model validation and calibration and also to obtain kinetic data, four 

completely stirred tank reactors (CSTR), as described before, later noted as FM1 to FM4 

were operated at 35°C (mesophilic) (FM1, FM3) and at 60°C (thermophilic) (FM2, FM4). 

Whereat three different substrates were used in single crops experiments: Maize silage 

(only corn, “Maize”), whole crop corn silage (“GPS”) and sunflower press residues 

(“Sunflower”). 

The main focus was to reach an optimal methane production in a stable reactor. Thus it 

was necessary to push the envelope of stable conditions. Therefore the organic loading 

rate (OLR) was increased 20 % per day 5 days a week, then left equal for 2 days and 

then the procedures was repeated. In the case of process disturbances the OLR was 

reduced or no substrate at all was fed into the reactor. The pH was not regulated, except 

in the case of a drop in pH to 5. In this instance the pH was stabilized with 10 M NaOH. 

For short term experiments e.g. kinetic experiments, pulse experiments, automatic 

control with a Fuzzy Logic control software, this manual control was interrupted.

The influence of the HRT, the substrates and temperature of the anaerobic digestion of 

energy crops in CSTRs were examined in order to better understand the reactor 

behaviour and to find optimal conditions.

4.1.1 Influence of the hydraulic retention time (HRT) and OLR

Firstly the influence of the HRT was tested (Table 4.1.1, Table 4.1.2 and Table 4.1.3), as 

the hydraulic retention time is one of the most important factors for the control of the 

process (De la Rubia et al. 2006). It has to be mentioned that the HRT in this study is 

only a calculated statistical value, depending on the OLR and the reactor volume. 

For lower HRTs (< 20 days) the data had a high fluctuation range, which could be a 

result of the partial wash-out of the biomass at HRTs lower < 15 days and/or inhibitory 

effects. 

Mackie and Bryant (1995) found that the methane production (per reactor volume) rises 

with increasing OLR (= decreasing HRT). Furthermore, they detected a decrease in the 

biological conversion efficiency in the methane production with decreasing HRT, working 

with HRT of 3 to 12 days. The same effect was also found by Varel and co-workers 

(1980), working a HRT range of 3 to 18 days using cattle waste. Other authors (Kiyohara 

et al. 2000; De la Rubia et al. 2006) demonstrated the same negative correlation 

between the methane production and the HRT as well as the positive correlation with the 

OLR. Bolzonella and co-workers (2005) examined data from an Italian WWTP. They 

registered the highest gas production at the lowest SRT, for SRTs of between 10 to 45 

days, with a degree of the specific gas production (m³.kgvs_Feed) of 25 % (Bolzonella et al.

2005). De la Rubia et al. (2001) observed an increase in the biogas production with an 

http://(m�.kg
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increase in the OLR in the thermophilic temperature range when using sewage sludge as 

substrate in a pilot-scale CSTR. Bouallagui et al. (2004) found the best daily gas 

production at the lowest HRT, testing HRTs of 10, 15 and 20 days for thermophilic 

conditions.

For all temperature ranges observed (mesophilic and thermophilic) and all substrates 

(Maize, GPS and Sunflower) in this study the same effect was observed. For the gas and 

methane production per volume of reactor in the thermophilic reactor digesting GPS the 

gas production declines by -0.06 m³Biogas.m
-3

Reactor.d
-1 per 10 d HRT and by 

-0.04 m3
Methane

.m-3
Reactor.d

-1 per 10 d HRT.. The determination coefficient is generally low 

(R = 0.288 in average), due to the large amount of the data examined. Using Maize as 

substrate in the same temperature range the gas production sinks by 

-0.03 m3
Methane

.m-3
Reactor.d

-1 per 10 d HRT (Figure 4.1.1) and the methane production per 

volume of reactor by -0.02 m3
Methane

.m-3
Reactor.d

-1 per 10 d HRT. In the mesophilic 

temperature range using the same substrate the gas production drops by -0.02 

m3
Biogas.m

-3
Reactor.d

-1 per 10 d HRT and the methane production falls by –0.01 m3
Methane.m

-

3
Reactor.d

-1 per 10 d HRT. In the mesophilic reactor system using Sunflower as substrate 

the methane production decreases by -0.13 m3
Methane.m

-3
Reactor.d

-1 per 10 d HRT.

Figure 4.1.1: Gas production in the thermophilic reactors systems (FM2 and FM4) – Showing 
the influence of the HRT

However, for the gas production and the methane production per COD in most of the 

cases studied no significant correlation to the HRT was observed. Only for the methane 

production per COD in the thermophilic system using GPS as substrate and the 

mesophilic system digesting Maize was a significant influence of the HRT observed. Yet 

in these cases an increased correlation to the HRT was found (0.05 m3
Methane.kgCOD 
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(P = 0.003, n = 41) in the first case and 0.004 m3
Methane.kgCOD (P = 0.002, n = 647) in the 

second case). This behaviour seems to be a result of the inhibitory effects.

No significant correlation between the HRT and the methane content was found, either. 

Yet, Farhan (1997) discovered that low HRTs affect the composition of the biogas, due to 

the high level of solubility of the carbon dioxide compared to methane, as the effluent 

stream acts as removal mechanism for the CO2.

The pH significantly increases with higher HRTs. So the pH increases by 0.045 per 

10 d HRT using Maize as substrate in the thermophilic temperature range. In the 

mesophilic reactor using Maize (Figure 4.1.2) the pH only rises by 0.036 per 10 d. The 

steepest gradient was found in the reactor using GPS as substrate (thermophilic range), 

here the pH rises by 0.055 per 10 d HRT. If Sunflower is used as substrate at 

35 ± 1 °C no significant change in the pH is found, which seems to be a result of the high 

buffer capacity in this system due to the high TAN concentration.

It is interesting that with higher HRTs the acetic acid, the propionic acid and the VFA 

increases significantly, as well. In the thermophilic system the acetic acid rises by 

0.036 g.l-1 per 10 d HRT (Maize as substrate), the acetic acid increases a bit slower 

(0.033 g.l-1/10 d) in the mesophilic reactor system using Maize as substrate. Digesting 

GPS the acetic acid increases by 0.042 g.l-1 per 10 d HRT. Using Sunflower as substrate 

no significant influence of the HRT on the acetic acid, propionic acid and VFA 

concentration is found. The propionic acid increases faster in the mesophilic system 

(0.079 g.l-1/10 d HRT) than in the thermophilic (0.063 g.l-1/10 d HRT) reactor using 

Maize. However the average and maximum propionic acid concentration is higher in the 

thermophilic reactor system (see 4.1.3). For the systems using GPS and Sunflower no 

significant influence of the HRT on the propionic acid is detected. The VFA concentration 

rises by 0.084 g.l-1 (thermophilic) and 0.056 g.l-1 (mesophilic) using Maize as substrate 

and by 0.184 g.l-1 using GPS as substrate. 

In their study De la Rubia and co-workers (2006) found an increase of the acetic acid 

concentration with increasing HRT, however, the propionic acid and VFA concentrations 

decreased with increasing HRT. In anaerobic upflow filters Ahn and Forster (2002) have 

shown that the VFA increases as the HRT increased in the mesophilic temperature 

range. On the other hand Varel and co-workers (1980) detected a decrease in the 

acetate and propionate with increasing HRTs. 

The COD degradation is high (> 70 %) if the reactor has a long HRT (Elmitwalli et al.

2006). De la Rubia (2006) found that the COD removal efficiency in % is positively 

correlated to the HRT, as well. Thus the COD removal efficiency increases in the 

mesophilic reactors using Maize by 1.28 % per 10 d HRT and by 1.87 % per 10 d HRT in 

the thermophilic reactor. The COD removal efficiency is augments by 1.04 % per 10 d 

HRT using GPS as substrate in the thermophilic reactor. 
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∆x per 10 d HRT P Power n ∆x per 10 d HRT P Power n

pH [] 0.036 0.001 1.000 443 - 0.331 0.161 121

Gas Production/Volume m³Biogas.m
-3

Reactor.d
-1 

-0.020 0.001 1.000 683 - 0.006 0.792 99

Methane Production/Volume m3
Methane

.m-3
Reactor.d

-1 
-0.009 0.001 1.000 678 -0.134 0.002 0.865 93

Acetate [g.l-1] 0.033 0.001 0.999 408 - 0.821 0.041 120
Propionate [g.l-1] 0.079 0.001 1.000 449 - 0.997 0.025 117
VFA [g.l-1] 0.056 0.001 1.000 399 - 0.891 0.034 118
COD Reduction [%] 1.280 0.001 1.000 433 - 0.065 0.455 124
VSS [kg.kg-1] 0.720 0.001 1.000 449 - 0.027 0.600 123
TOC [mg.l-1] 161.620 0.001 0.999 443 - 0.953 0.029 125
TAN [mg.l-1] - 0.532 0.091 74 - 0.470 0.107 58
Sulphate [mg.l-1] - 0.898 0.033 69 - 0.786 0.045 55
H2S [mg.l-1] - 0.111 0.357 74 - 0.411 0.127 61

Substrate Maize Sunflower

∆x per 10 d HRT P Power n ∆x per 10 d HRT P Power n

pH [] 0.046 0.001 1.000 366 0.055 0.001 1.000 173

Gas Production/Volume [m³Biogas.m
-3

Reactor.d
-1] -0.033 0.001 1.000 656 -0.058 0.002 0.871 38

Methane Production/Volume [m³Biogas.m
-3

Reactor.d
-1] -0.017 0.001 1.000 656 -0.043 0.005 0.806 41

Acetate [g.l-1] 0.036 0.001 1.000 341 0.042 0.001 0.999 153
Propionate [g.l-1] 0.063 0.001 0.990 370 - 0.031 0.581 102

VFA [g.l-1] 0.084 0.001 1.000 346 0.184 0.001 1.000 173
COD Reduction [%] 1.870 0.001 1.000 370 1.040 0.001 1.000 150

VSS [kg.kg-1] - 0.310 0.172 320 0.246 0.002 0.863 143

TOC [mg.l-1] - 0.021 0.635 350 60.270 0.001 0.998 138
TAN [mg.l-1] - 0.154 0.297 82 - 0.114 0.352 158

Sulphate [mg.l-1] 33.410 0.001 0.985 284 - 0.300 0.174 15
H2S [mg.l-1] - 0.079 0.420 86 - 0.774 0.047 24

Maize GPSSubstrate

Table 4.1.1: Influence of the HRT on the gas production, methane production, acetate, propionate and VFA concentration, COD Reduction, VSS 
content, TOC, TAN, Sulphate and H2S concentration in the mesophilic reactor using Maize and Sunflower as substrate. Showing the change per 10 d 
HRT and the significance of the change. P < 0.05 and a Power > 0.8 means that the correlation is significant. “n” gives the number of measurements 
used in this analysis.

Table 4.1.2: Influence of the HRT on the gas production, methane production, acetate, propionate and VFA concentration, COD Reduction, VSS 
content, TOC, TAN, Sulphate and H2S concentration in the thermophilic reactor using Maize and GPS as substrate. Showing the change per 10 d HRT 
and the significance of the change. P < 0.05 and a Power > 0.8 means that the correlation is significant. “n” gives the number of measurements used 
in this analysis.
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Figure 4.1.2: pH in the mesophilic reactors systems (FM1 and FM3) – Showing the influence of 
the HRT

For the mesophilic reactor using Sunflower the COD removal rate also increases with the 

HRT, yet this correlation is not significant.

An interesting effect can be observed, as the influence of the HRT on the COD removal 

efficiency can be separated in two parts – for a HRT < 40 d the efficiency is lower and 

fluctuates a lot and for a HRT of 40 to 100 d the COD is higher and fluctuates less. This 

effect is found especially in the thermophilic system using Maize as substrate (FM2), 

here a COD removal efficiency of 52 % to 90 % is found for a HRT < 40 d and a COD 

removal of between 77 % and 92 % is estimated for a HRT of 40 to 100 d (Figure 4.1.3).

Kiyohara and co-worker (2000) detected an increase of ammonium with a increasing 

HRT. In this study only a significantly positive correlation between the HRT and the TAN 

(Total ammonium nitrogen) was observed for the thermophilic reactor digesting Maize, 

here the TAN increases by 33.41 mg.l-1 per 10 d HRT. For all other experiments no 

significant correlation between the HRT and the TAN concentration is found, yet in these 

cases the TAN concentration is also increasing with higher HRTs.

No significant influence of the HRT on the sulphate and the H2S in the biogas has been 

detected.

In the mesophilic system digesting Maize the TOC increases by 161.82 mg.l-1 per 10 d 

HRT and in the thermophilic reactor using GPS the TOC rises by 60.27 mg.l-1 per 10 d 

HRT. In the thermophilic system using Maize and in the mesophilic reactor using 

Sunflower the TOC is positively correlated with the HRT, as well, but not significantly.
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Table 4.1.3: Influence of the HRT on the gas production, methane production, acetate, propionate and VFA concentration and COD Reduction; 
Showing the change of the variables by increasing HRT for different reactor types, temperature ranges and substrates - comparison between 
literature data and this study
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Figure 4.1.3: Influence of the HRT on the COD removal efficiency in % in the thermophilic 
reactor FM2 using Maize as substrate – compared with data from literature: Kiyohara et al.
2000: thermophile CSTR using sewage sludge as substrate and De la Rubia et al., 2006: CSTR 
working in the thermophilic temperature range digesting primary and secondary waste sludge 

The same applies for the VSS – here the VSS rises in the mesophilic reactor system by 

0.72 kg.kg-1 per 10 d HRT and in the thermophilic reactor system using GPS as substrate 

the VSS increases by 0.25 kg.kg-1 per 10 d HRT.

Summarizing the above knowledge discussed about influence of the HRT in anaerobic 

systems it can be concluded that the optimal HRT lies around 30 d. The gas and 

methane production is highest at lower HRTs, however at a HRT < 15 d a wash out of 

the biomass is observed, moreover the COD removal is lower and fluctuates more at 

lower HRTs. 

4.1.2 Comparison of different substrates

Analysing the use of substrates in Austria, it can be found that ¾ of the energy plants 

used are maize (either as silage or as grains). Grass silage, whole plant silage, sun 

flower silage and many more are also used (Amon et al. 2007; Laaber 2007). Other 

substrates used in agricultural biogas plants are, for example, left-overs, debris, Lecithin 

and sugar beets refuses, and manures and dung (Laaber 2007).

In these experiments now, as mentioned before, three different substrates were 

compared in single crops experiments: Maize silage (only corn, “Maize”), whole crop 

corn silage (“GPS”) and sunflower press residues (“Sunflower”) (Table 4.1.4). 
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Table 4.1.4: Composition of different substrates from literature (arranged by Brändle, J.)14

14

Abreu et al., In press. Intake and Nutritive value of Mediterranean Forages and Diets. 20 years of experimental data

Bohle et al., 2003. Winter Cereal Forage Varieties for Central Oregon, 2002 Central Oregon Agricultural Research Center Annual Report

DLG, 1997. DLG Futterwerttabellen. Hrsg. Universität Hohenheim-Dokumentation

Jeroch et al., 1993. Futtermittelkunde, Urban & Fischer 

Juskiw et al., 2000. Forage Yield and Quality for Monocrops and Mixtures of Small Grain Cereals. Crop Sci. 40:138–147

McAllister et al., 2000. The Fundamentals of Making Good Quality Silage. Proceedings of the Western Canadian Dairy Seminar. 

McDonald et al., 1991. The biochemistry of Silage. Second Edition. Chalcombe Publications, Aberystwyth

Muck et al., 2003. Effects of  Breeding for Quality on Alfalfa Ensilability. Transactions of the ASAE. Vol 46 (5):pp 1305-1309

Richter, 2003. Triticale-Ganzpflanzensilage (GPST), Gärsäureentwicklung, aerobe Stabilität und Mykotoxinreduktion. Bayerische Landesanstalt für 

Landwirtschaft (LfL)/Institut für Tierernährung und Futterwirtschaft (ITE).
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Composition
Dry matter [%] 91.00
Crude protein [%] 34.10
Crude fibre [%] 13.20
Ash [%] 6.60
Calcium [%] 0.30
Phosphorus [%] 1.30

The substrates all came from the biogas plant Pfiehl, Sitzenberg-Reidling, Austria in 

different charges.

Sunflower oil cakes (= sunflower press residues, “Sunflower”) have about 27 % crude 

protein, whereby dehulled Sunflower consists of up to 40 % protein and 10 % fibre 

(Ramachandran et al. 2007). Sunflower can be divided into three main fractions a 

lignocellulosic (23.2 - 25.3 %), a proteinaceous (55.4 – 57.6 %) and a soluble 

(17.1 – 21.4 %) one (Ramachandran et al. 2007) (Table 4.1.5).
Table 4.1.5: Composition of sunflower oil cake from literature, cited by (Ramachandran et al.
2007)15

Looking at the feed mixtures used in this study, so following characteristics can be found 

(Table 4.1.6): The pHmean lies between 7.49 to 8.12 for all substrate mixtures, though the 

pH was slightly higher for the Maize mixtures. The CODmean for Sunflower (1.03e+06 

mg.kg-1) is definitely higher than for Maize (6.50e+05 mg.kg-1) and GPS (5.34e+05 

mg.kg-1).

The total nitrogen concentration is higher for the Sunflower feed mixture than for Maize

using the same substrate concentration (994.65 mg.l-1 for Maize and 3861.18 mg.l-1 for 

Sunflower at a concentration of 144.2 g.l-1 substrate (marked red in Table 4.1.6). 

Moreover, it was found that the proteins concentration of Sunflower is about 14 times 

higher than for Maize. Comparing the Total-N content of Maize and GPS it can be found 

that for the GPS feed mixture the N-content is slightly higher (664.90 mg.l-1) than for 

Maize (511.47 mg.l-1) (compared at a substrate concentration of 64.2 g.l-1 (marked blue 

in Table 4.1.6)). 

The SS and VSS content is slightly higher for the Sunflower substrate 

(SS = 120.72 kg.kg-1 and VSS = 113.16 kg.kg-1 (at 144.2 gSubstrate.l
-1)) compared to Maize

(SS = 99.45 kg.kg-1 and VSS = 95.52 kg.kg-1 (at 144.2 gSubstrate.l
-1)), also for the GPS

substrate (SS = 56.03 kg.kg-1 and VSS = 52.67 kg.kg-1 (at 64.2 gSubstrate.l
-1)) the SS and 

VSS is higher than for Maize (SS = 45.95 kg.kg-1 and VSS = 44.93 kg.kg-1 (at 64.2 

gSubstrate.l
-1)). The total organic carbon (TOC) content is much higher for GPS (TOC = 

4319.14 mg.l-1 (at 64.2 gSubstrate.l
-1)) than for Maize (TC = 2117.5 mg.l-1 (at 64.2 gSubstrate.l

-

1)). The TOC for Sunflower could not be compared, as there is no value available for 

Maize at the same substrate concentration.

15 Brendon, R.M., 1957, Uganda Protectorate. Department of Veterinary Services and Animal Industry. 

Occasional Bulletin No.1
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Substrate CSubstrate pH COD SS VSS Total-N Total-P TOC SO4
2-

[g.l-1] [] [mgl-1] [kg.kg-1] [kg.kg-1] [mgl-1] [mgl-1] [mgl-1] [mgl-1]

32.1 8.12 18508.47 18.11 17.29 222.86 85.75 34.36

64.2 7.61 40592.20 45.95 44.93 511.47 169.55 2117.50 39.30

128.4 7.69 86864.00 97.28 94.80 1870.85 320.41 6143.40 96.30

144.2 7.61 99867.25 99.45 95.52 994.65 378.78 129.55

288.4 7.65 223313.41 226.74 220.47 2478.85 697.93 15527.93 188.14

256.8 8.10 139962.72 216.15 225.27 2908.73 321.55 11132.00 133.51

Sunflower 144.2 7.49 147978.92 120.72 113.16 3861.18 1422.59 16829.43 188.41

GPS 64.2 7.55 34289.13 56.03 52.67 664.90 126.99 4390.14 42.44

Maize

Table 4.1.6: Composition of the feed mixtures used– Comparison of the total nitrogen 
concentration - the Total-N for Sunflower feed mixture is higher as for Maize using the same 
substrate concentration (994.65 mg.l-1 for Maize and 3861.18 mg.l-1 for sunflower at a 
concentration of 144.2 g.l-1 substrate (marked red)) - for the GPS feed mixture the N-content is 
slightly higher (664.90 mg.l-1) as for Maize (511.47 mg.l-1) (compared at a substrate 
concentration of 64.2 g.l-1 (marked blue)

Comparison between Maize  and GPS  in the thermophilic reactor system

In the thermophilic reactor FM2 Maize and GPS were compared. The pH, the biogas 

production, the methane production, the acetate concentration, the total volatile fatty acid 

concentration (VFA), the degraded COD, the volatile suspended solids, the total nitrogen 

concentration (TAN), sulphate concentration and the H2S concentration. 

To be comparable all variables were based on the degraded COD and statistical outliers 

were removed, to get typical reactor values. “Wrong” data from reactor failure, due to 

broken tubes, leaking reactor, … was removed manually. The first 50 days were also 

removed, as this data was designated as the “start-up” of the reactor. 

The results found, were further compared to literature data. Yet a comparison with 

literature data is always difficult, due to inconsistencies in study conditions (Farhan et al.

1997).

Table 4.1.7 shows the average values (Mean), the standard deviation (STD), the 

variance (VAR), the minimum and maximum (MIN and MAX) and the number of samples 

(n) for Maize and GPS. In order to include the influence of the HRT in the comparison of 

the different substrates a covariance analysis was carried out. To simplify the 

calculations a covariance analysis (Table 4.1.8) was done for all variables, ignoring the 

fact that it would not have been necessary, as the HRT has no influence on all variables. 

The pH is significantly higher using GPS as substrate (Figure 4.1.4). This influences the 

enzymatic activity and as each enzyme has its maximum activity at a specific pH (El-

Mashad et al. 2004) the optimum pH for the AD process lies within a narrow range. The 

optimum pH for the methanogenesis lies within the range of 6.5 to 7.5, acidogenic 

bacteria are less sensitive to bothhigher and lower pH values (Leitao et al. 2006).
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Mean STD VAR MIN MAX n
pH [] 7.08E+00 3.40E-01 1.16E-01 6.20E+00 7.67E+00 176
Gas Production/COD [m3.kg-1

CODdeg.d
-1

.] 3.90E-01 2.68E-01 7.18E-02 1.81E-02 1.27E+00 172

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 1.98E-01 1.38E-01 1.92E-02 8.83E-03 6.63E-01 172

Acetate/COD [g.kg-1
Coddeg] 3.48E+00 2.73E+00 7.46E+00 1.45E-02 1.09E+01 169

Propionate/COD [g.kg-1
Coddeg] 4.13E+00 6.41E+00 4.11E+01 0.00E+00 3.45E+01 178

VFA/COD [g.kg-1
Coddeg] 1.07E+01 8.35E+00 6.96E+01 1.33E-03 3.96E+01 165

VSS/COD [kg.kg-1
Coddeg] 1.19E+02 3.70E+01 1.37E+03 0.00E+00 2.36E+02 139

TOC/COD [g.kg-1
Coddeg] 2.19E+01 1.03E+01 1.06E+02 5.14E+00 4.90E+01 171

TAN/COD [g.kg-1
Coddeg] 2.68E+00 1.90E+00 3.61E+00 1.97E-01 1.17E+01 118

Sulphate/COD [g.kg-1
Coddeg] 6.58E-01 1.61E-01 2.58E-02 3.95E-01 8.43E-01 24

H2S/COD [g.kg-1
Coddeg] 1.24E+00 1.03E+00 1.05E+00 1.91E-02 4.32E+00 25

Mean STD VAR MIN MAX n
pH [] 7.34E+00 1.25E-01 1.56E-02 7.01E+00 7.60E+00 35
Gas Production/COD [m3.kg-1

CODdeg.d
-1

.] 4.72E-01 2.47E-01 6.10E-02 5.09E-02 9.55E-01 40

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 2.24E-01 1.20E-01 1.43E-02 1.45E-02 4.74E-01 40

Acetate/COD [g.kg-1
Coddeg] 1.25E+01 1.03E+01 1.06E+02 6.82E-02 3.69E+01 37

Propionate/COD [g.kg-1
Coddeg] 8.04E+00 1.45E+01 2.11E+02 0.00E+00 7.00E+01 40

VFA/COD [g.kg-1
Coddeg] 1.62E+01 1.39E+01 1.92E+02 4.07E-02 5.74E+01 37

VSS/COD [kg.kg-1
Coddeg] 2.09E+02 6.31E+01 3.99E+03 1.03E+02 3.56E+02 37

TOC/COD [g.kg-1
Coddeg] 2.25E+01 3.54E+00 1.25E+01 1.23E+01 2.98E+01 28

TAN/COD [g.kg-1
Coddeg] 1.60E+01 8.53E+00 7.27E+01 2.46E+00 3.21E+01 40

Sulphate/COD [g.kg-1
Coddeg] 7.31E-01 2.91E-01 8.46E-02 2.38E-01 1.50E+00 30

H2S/COD [g.kg-1
Coddeg] 6.56E+00 4.77E+00 2.28E+01 3.24E-01 1.74E+01 39

MAIZE

GPS

P n

pH 0.003 211
Gas Production/COD 0.000 212
Methane Production/COD 0.001 212
Acetate/COD 0.031 206
Propionate/COD 0.000 218
VFA/COD 0.149 202
VSS/COD 0.821 176
TOC/COD 0.041 199
TAN/COD 0.002 158
Sulphate/COD 0.544 54
H2S/COD 0.330 64

Table 4.1.7: Comparison based on the different substrates (Maize and GPS; under 
consideration of the HRT) of the variables pH, Gas Production, Methane Production, Acetic and 
Propionic Acid and VFA Concentration, VSS, TOC, TAN concentration, Sulphate and H2S 
concentrations based on the degraded COD in the thermophilic reactor FM2. Showing the 
average values (Mean), the standard deviation (STD), the variance (VAR), the minimum and 
maximum (MIN and MAX) and the number of samples (n) for both substrates

Table 4.1.8: Comparison based on the different substrates (Maize and GPS; under 
consideration of the HRT) of the variables pH, Gas Production, Methane Production, Acetic and 
Propionic Acid and VFA Concentration, VSS, TOC, TAN concentration, Sulphate and H2S 
concentrations based on the degraded COD in the thermophilic reactor FM2. Showing the p-
value (P) of the Covariance-analysis and the number of samples used (n). A p-value < 0.05 
means that the analysed difference is significant
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M aize G PS

Ac e ta te  C o n c e n tra tio n

M a ize G P S

Figure 4.1.4: Results of the co-variance analysis - comparison of pH using Maize respectively 
GPS as substrate in the thermophilic reactor 

The gas production and methane production (per COD) is on average lower for Maize

compared to using GPS as feed. Amon and co-workers (2007) observed a specific 

methane yield of 0.398 m³N.kg-1
VSS (± 0.023 m³N.kg-1

VSS) for the digestion of maize in 

BMP tests, testing different maize varieties. 

Figure 4.1.5: Results of the co-variance analysis - comparison of acetate concentration using 
Maize and GPS as substrates in the thermophilic reactor 
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Gas Production Methane Production Substrate Temperature Range Reference

[m3.kg-1
VSS] [m3.kg-1

VSS]

0.375 - 0.421 maize

0.140 - 0.343 wheat

0.39 - 0.41 Kelp

0.26 - 0.39 Sorghum

0.19 - 0.34 Napiergrass

0.23 - 0.30 Sugarcane

0.13 - 0.30 Willow

0.37 Avicel Cellulose

0.39 Paddy Straw

1.24 Bagasse

0.46 cane trash

0.81 (0.63) 0.41 (0.32) maize silage thermophile

0.55 (0.28) 0.26 (0.14)
whole plant maize 
silage

thermophile

0.65 (0.40) 0.32 (0.21) maize silage mesophile

0.70 (0.49) 0.45 (0.34)
sunflower press 
residues

mesophile

This Study

Amon et al., 2007

Chynoweth et al., 2001

Chanakya et al., 1997mesophile

mesophile

Yet, for the methane yield per hectare differences for the different maize varieties were 

found, whereby the time of harvesting seems to be the key influencing factor (Amon et al.

2007). For wheat a specific methane yield of 0.140 – 0.343 m³N.kg-1
VSS using BMP test 

was detected (Amon et al. 2007). 

The gas production observed is in the same range as the results for other energy crops 

and substrates. Chynoweth et al. (2001)16 found for Kelp a specific methane production 

of 0.39 – 0.41 m³.kg-1
VSS, for Sorghum 0.26 – 0.39 m³.kg-1

VSS, 0.19 – 0.34 m³.kg-1
VSS for 

Napiergrass, 0.23 – 0.30 m³.kg-1
VSS for Sugarcane, 0.13 – 0.30 m³.kg-1

VSS for Willow and 

for Avicel Cellulose 0.37 m³.kg-1
VSS. Chanakya and co-workers (1997) examined different 

feed stocks in solid-phase stratified bed fermenter at an ambient temperature of 26 °C. 

They found for Paddy Straw a gas production of 0.39 m³.kg-1
vss, for Bagasse a gas 

production of 1.24 m³.kg-1
VSS and for cane trash a gas production of 0.46 m³.kg-1

VSS 

(Chanakya et al. 1997) (Table 4.1.9).

Table 4.1.9: Gas and methane production of different energy crops – comparison with data 
found in literature

The acetic acid, the propionic acid and the VFA are lower for Maize, hereby the 

difference is significant for acetic and propionic acid (Figure 4.1.5). The propionic acid 

concentration shows a very high standard deviation, which is a result of the fact that in 

most cases the propionic acid concentration is not traceable, especially for lower HRTs. 

The VSS and TOC concentrations are significantly lower in respect to for the TOC 

16 original paper: Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W., „Biochemical 

methane potential of biomass and waste feedstocks”, Biomass and Bioenergy, 1993;5:95-111
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concentration using Maize as substrate, as well. This can be a result of on the one side 

undegraded material from former experiments remaining in the reactor or higher biomass 

formed, as no new inoculum was used if a new substrate was tested.

The TAN concentration is significantly higher if Maize is used as feed, whereby the 

sulphate concentration in the reactor and the H2S concentration in the biogas are higher 

for the second case, where GPS is used as feed.

These results indicate that it is more efficient to use GPS as substrate and not Maize. 

First of all the gas production and methane production are higher and considering 

additionally the harvest per hectare it is much more economical to use the whole plant. 

However some disadvantages have to be considered, as well. Higher VFA 

concentrations are found for the GPS, which can easily lead to reactor failure if the 

process is not controlled properly. Efficient digestion with low volatile fatty acids leads to 

a higher methane content in the biogas (Farhan et al. 1997). 

Yet, the TAN concentration is higher for the Maize, due to the higher protein content, 

which can lead on the one hand to dangerous NH3 concentrations in the reactor and on 

the other hand stabilize the reactor pH. 

The Sulphate and H2S concentration is higher using GPS as feed. This can lead to toxic 

concentrations in the reactor and therefore to an inhibition of the process (toxic effects 

appear from 30 mg.l-1 (Bischofsberger et al. 2005)). Increasing the process temperature 

can decrease inhibitory effects (Bischofsberger et al. 2005), because higher temperature 

means higher solubility of the H2S in the sludge. Yet, a high H2S content in the biogas is 

a problem for CHP or gas turbines. A removal of the H2S from the gas is thus absolutely 

necessary.

Comparison between Maize  and Sunflower  in the mesophilic reactor system

In the mesophilic reactor FM3 Maize and Sunflower were compared. The procedure was 

the same as for the comparison between Maize and GPS.

First the mesophilic reactors FM1 and FM3 were compared, to demonstrate that there 

was no difference between the two mesophilic reactors using Maize as substrate, since 

in the mesophilic reactor FM3 TAN, NH3 and H2S concentrations were not measured and 

thus the data from the mesophilic reactor FM1 was used for the comparison.

Comparing the two mesophilic reactors the pH in FM1 is on average slightly higher 

compared to the pH in FM3. It is interesting that the acetic acid, propionic acid and the 

VFA concentrations were also higher in FM1. The gas and methane production is also

higher in FM1. The VSS and TOC concentrations were baser in FM1 compared to FM3 

(Table 4.1.10).

However no significant difference could be found (Table 4.1.11), except for the VSS 

concentration, which could be the result of residual biomass in the reactor which was not 

entirely degraded. Looking at these results the behaviour of the two mesophilic reactors 

can be seen as equal, thus also the behaviour regarding TAN and H2S can be taken as 

similar.
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Mean STD VAR MIN MAX n

pH [] 7.05E+00 1.93E-01 3.74E-02 6.43E+00 7.58E+00 309

Gas Production/COD [m3.kg-1
CODdeg.d

-1
.] 9.20E-01 6.54E-01 4.28E-01 1.93E-02 3.08E+00 300

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 4.60E-01 3.31E-01 1.09E-01 0.00E+00 1.56E+00 300

Acetate/COD [g.kg-1
Coddeg] 5.90E+00 3.81E+00 1.45E+01 0.00E+00 1.69E+01 284

Propionate/COD [g.kg-1
Coddeg] 3.09E+00 5.38E+00 2.90E+01 0.00E+00 3.42E+01 315

VFA/COD [g.kg-1
Coddeg] 8.31E+00 6.02E+00 3.63E+01 2.11E-02 2.43E+01 276

VSS/COD [kg.kg-1
Coddeg] 1.42E+02 5.74E+01 3.30E+03 4.51E+01 3.47E+02 277

TOC/COD [g.kg-1
Coddeg] 2.17E+01 9.86E+00 9.72E+01 5.83E+00 5.24E+01 255

Mean STD VAR MIN MAX n

pH [] 6.99E+00 2.70E-01 7.32E-02 6.39E+00 7.48E+00 124

Gas Production/COD [m3.kg-1
CODdeg.d

-1
.] 8.78E-01 5.39E-01 2.90E-01 4.94E-03 2.78E+00 137

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 4.39E-01 2.91E-01 8.48E-02 9.89E-04 1.58E+00 137

Acetate/COD [g.kg-1
Coddeg] 3.63E+00 1.91E+00 3.67E+00 2.16E-01 8.75E+00 113

Propionate/COD [g.kg-1
Coddeg] 2.31E+00 2.55E+01 6.51E+02 0.00E+00 2.85E+02 125

VFA/COD [g.kg-1
Coddeg] 6.73E+00 5.94E+00 3.52E+01 8.27E-03 2.55E+01 118

VSS/COD [kg.kg-1
Coddeg] 2.02E+02 6.24E+01 3.89E+03 3.16E+01 3.33E+02 124

TOC/COD [g.kg-1
Coddeg] 2.70E+01 1.57E+01 2.47E+02 3.15E+00 6.66E+01 117

MAIZE - FM3

MAIZE - FM1

P n

pH 0.897 433
Gas Production/COD 0.325 437
Methane Production/COD 0.659 437
Acetate/COD 0.163 397
Propionate/COD 0.782 440
VFA/COD 0.914 394
VSS/COD 0.000 401
TOC/COD 0.054 372

Table 4.1.10: Comparison based on different mesophilic reactors (FM1 and FM3) using Maize
as substrate (under consideration of the HRT) of the variables pH, Gas Production, Methane 
Production, Acetic and Propionic Acid and VFA Concentration, VSS and TOC concentration 
based on the degraded COD. Showing the average values (Mean), the standard deviation (STD), 
the variance (VAR), the minimum and maximum (MIN and MAX) and the number of samples (n) 
for both temperature ranges

Table 4.1.11: Comparison based on different mesophilic reactors (FM1 and FM3) using Maize 
as substrate (under consideration of the HRT) of the variables pH, Gas Production, Methane 
Production, Acetic and  Propionic Acid and VFA Concentration, VSS and TOC concentration 
based on the degraded COD. Showing the p-value (P) of the Covariance-analysis and the 
number of samples used (n). A p-value < 0.05 means that the analysed difference is significant
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T A N

M a ize S u n flo w e r

Maize Sunflow er

Figure 4.1.6: Results of the co-variance analysis - comparison of pH using Maize and Sunflower
as substrates in the mesophilic reactor 

Comparing now the different substrates, it can be observed that the gas production 

(Table 4.1.12) digesting Maize and Sunflower shows no significant difference, however 

the methane production is significantly higher when digesting Maize (Table 4.1.13). 

Figure 4.1.7: Results of the co-variance analysis - comparison of TAN concentration using 
Maize and Sunflower as substrates in the mesophilic reactor 
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Mean STD VAR MIN MAX n

pH [] 6.98E+00 2.74E-01 7.49E-02 6.39E+00 7.48E+00 125

Gas Production/COD [m3.kg-1
CODdeg.d

-1
.] 8.88E-01 5.45E-01 2.97E-01 4.94E-03 2.78E+00 126

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 4.25E-01 2.60E-01 6.78E-02 9.89E-04 1.21E+00 124

Acetate/COD [g.kg-1
Coddeg] 3.63E+00 1.91E+00 3.67E+00 2.16E-01 8.75E+00 113

Propionate/COD [g.kg-1
Coddeg] 2.29E+00 2.54E+01 6.45E+02 0.00E+00 2.85E+02 126

VFA/COD [g.kg-1
Coddeg] 6.73E+00 5.94E+00 3.52E+01 8.27E-03 2.55E+01 118

VSS/COD [kg.kg-1
Coddeg] 2.02E+02 6.24E+01 3.89E+03 3.16E+01 3.33E+02 124

TOC/COD [g.kg-1
Coddeg] 2.70E+01 1.57E+01 2.47E+02 3.15E+00 6.66E+01 117

TAN/COD* [g.kg-1
Coddeg] 1.09E+01 6.41E+00 4.11E+01 1.36E+00 2.12E+01 68

NH3/COD* [g.kg-1
Coddeg] 1.26E+00 1.25E+00 1.57E+00 2.69E-02 4.24E+00 65

H2S/COD* [g.kg-1
Coddeg] 4.39E-03 1.85E-03 3.42E-06 1.04E-03 9.04E-03 61

Mean STD VAR MIN MAX n

pH [] 7.60E+00 1.08E-01 1.17E-02 7.38E+00 7.97E+00 124

Gas Production/COD [m3.kg-1
CODdeg.d

-1
.] 9.77E-01 1.26E+00 1.60E+00 6.85E-05 5.20E+00 107

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 3.65E-01 3.05E-01 9.30E-02 4.58E-05 1.36E+00 95

Acetate/COD [g.kg-1
Coddeg] 9.89E+00 7.95E+00 6.32E+01 1.41E-01 3.28E+01 118

Propionate/COD [g.kg-1
Coddeg] 4.29E+00 5.25E+00 2.76E+01 0.00E+00 2.33E+01 125

VFA/COD [g.kg-1
Coddeg] 1.34E+01 1.21E+01 1.47E+02 1.62E-02 5.23E+01 115

VSS/COD [kg.kg-1
Coddeg] 3.00E+02 8.06E+01 6.50E+03 1.22E+02 4.41E+02 123

TOC/COD [g.kg-1
Coddeg] 1.84E+01 6.36E+00 4.04E+01 8.70E+00 3.78E+01 113

TAN/COD [g.kg-1
Coddeg] 3.26E+01 3.88E+00 1.51E+01 2.46E+01 4.19E+01 57

NH3/COD [g.kg-1
Coddeg] 1.52E+01 9.26E+00 8.57E+01 6.95E-01 3.23E+01 60

H2S/COD [g.kg-1
Coddeg] 2.54E-01 4.46E-02 1.99E-03 1.80E-01 3.76E-01 58

MAIZE

SUNFLOWER

P n

pH 0.000 249
Gas Production/COD 0.297 233
Methane Production/COD 0.010 219
Acetate/COD 0.063 231
Propionate/COD 0.261 251
VFA/COD 0.151 233
VSS/COD 0.003 247
TOC/COD 0.041 230
TAN/COD 0.000 125
NH3/COD 0.000 125
H2S/COD 0.000 119

Table 4.1.12: Comparison based on the different substrates (Maize and Sunflower; under 
consideration of the HRT) of the variables pH, Gas Production, Methane Production, Acetic 
and Propionic Acid and VFA Concentration, VSS, TOC, TAN concentrations based on the 
degraded COD in the mesophilic reactor FM3. Showing the average values (Mean), the 
standard deviation (STD), the variance (VAR), the minimum and maximum (MIN and 
MAX) and the number of samples (n) for both temperature ranges

Table 4.1.13: Comparison based on the different substrates (Maize and Sunflower; under 
consideration of the HRT) of the variables pH, Gas Production, Methane Production, Acetic and 
Propionic Acid and VFA concentration, VSS, TOC, TAN concentration, NH3 and H2S 
concentration based on the degraded COD in the mesophilic reactor FM3. Showing the p-value 
(P) of the Covariance-analysis and the number of samples used (n). A p-value < 0.05 means 
that the analysed difference is significant
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No significant difference could be found for the fatty acid concentration. The main 

difference was the higher pH (Figure 4.1.6), TAN (Figure 4.1.7), NH3 and H2S 

concentrations if Sunflower was used as feed, which is a result of the high protein 

content in the sunflower press residues. 

Large increases in the ammonia nitrogen can cause inhibition of hydrogen and gas 

production (Sterling Jr. et al. 2001). The very high ammonia values for Sunflower (up to 

4900 mgNH4l
-1 and 260 mgNH3l

-1) (NH3 is inhibiting from 100 – 200 gN.l-1 (Henze and 

Harremoes 1983), however, is only in part a problem as the reactor got used to it. As 

adaptation can increase the ammonia tolerance of the micro-organism (Sung and Liu 

2003). On the other hand increases in already high TAN concentration can stabilise the 

pH in the reactor. Nevertheless attention has to be paid to this high ammonia and 

ammonium concentrations during reactor operation. A further problem is the high H2S 

concentration when digesting Sunflower.

This comparison shows that Maize as a substrate has an advantage over Sunflower – for 

the gas production no difference was found, however the methane production is higher 

using Maize (no yields per hectare are considered in this comparison). Moreover high 

ammonia nitrogen values and the high H2S concentrations can lead to fatal reactor 

failure if the reactor is not adapted to the Sunflower substrate. Yet if sunflower press 

residues are digested it is advisable to mix them with substrates of low protein content, 

for example potatoes or Sudan grass. 

4.1.3 Mesophilic vs. thermophilic

Temperature is an important factor among the many factors affecting the anaerobic 

digestion process (El-Mashad et al. 2004). Traditionally one distinguishes between

psychrophile (< 20 °C), mesophile (20 – 40 °C) and thermophile (> 40 °C) temperature 

ranges (Bischofsberger et al. 2005).

As with all chemical reactions, bio-chemicals reactions are also strongly temperature 

dependant (Bischofsberger et al. 2005). Increasing the temperature from 15 °C to 35°C 

already results in an increase in the gas production of about 20 % to 60 % (Braun 1982). 

This can be observed in the hydrolysis efficiency, as well, which is much greater in the 

mesophilic and thermophilic temperature ranges than in the psychrophilic temperature 

range (Bolzonella et al. 2005). Nevertheless the same processes take place in the 

mesophilic as in the thermophilic plant operation (Ahring 1994).

Two temperature optima are given in mesophilic range at 35 °C and in thermophilic 

temperature range at 48 to 55 °C (Bischofsberger et al. 2005), whereby most technical 

plants work in the mesophile range (35 – 37 °C) (Ahn and Forster 2000; Gavala et al.

2003). This seemed to be the best compromise, as the kinetic of the biogas process in 

the psychrophile range is too slow to be economical and the thermophilic process has a 

lower stability compared to the mesophilic process (van Lier et al. 1996; Gavala et al.

2003). Equally the thermophilic anaerobic digestion process is more sensitive to toxicity 

and environmental changes (Ahn and Forster 2000; Gerardi 2003; Sung and Liu 2003), 

has a lack of diversity of anaerobes (Gerardi 2003), has relatively high residuals values 
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for VFAs (Gerardi 2003) and additionally needs longer start-up times (Henze and 

Harremoes 1983; Ahring 1994; El-Mashad et al. 2004). This is a result of the low net 

yield (Henze and Harremoes 1983; Speece 1996; Gerardi 2003). But this instability is 

often due too few safety factors and very poor process control (Henze and Harremoes 

1983).

But this start-up time can be minimized by using thermophilic sludge as an inoculum 

(Ahring 1994). Yet, reactors operating at lower temperatures are more sensitive to 

organic variations (Leitao et al. 2006)

However, in the last years a new phenomena in biogas plants using protein rich 

substrates (normally energy crops, mostly maize silage) was detected, the self heating of 

the plants (Lindorfer 2007). Here reactors operating in the mesophilic temperature range 

heated themselves up to about 40 °C (Lindorfer 2007), which lies already in the lower 

boundary of the thermophilic temperature range. This raises the question of whether it is 

more economical and efficient to cool down the reactor or to operate the plant in the 

thermophile temperature range.

To find the optimum temperature range, two mesophilic reactors (FM1 and FM3), 

operating at 35 °C (± 1 °C), were compared with the two thermophilic reactors (FM2 and 

FM4), operating at 60 °C (± 1 °C) (Table 4.1.4). The procedure was the same as before 

for the comparison of the different substrates.

The gas production and the methane production are significantly higher in the 

thermophilic reactors (Figure 4.1.10). This is in accordance with the results of Mackie 

and Bryant (1995). They also found a higher gas methane production in the thermophilic 

reactor using cattle waste as substrate. Bouallagui et al. (2004) came to similar results 

for the digestion of fruit and vegetable wastes. Ahn and Forster (2000) showed in their 

comparative study in anaerobic upflow filters that at low loading rates no difference in the 

methane yield could be found, however, at higher OLR the mesophilic filter showed a 

significantly lower efficiency. The same effect was found for the SCOD removal rate (Ahn 

and Forster 2000). Gavala and co-workers (2003) observed no significant difference in 

their work between the mesophilic and the thermophilic when digesting primary and 

secondary sludge. This, however, seemed to be the result of operation at relatively high 

retention times in this study and they further concluded that a significant difference would 

be evident at lower retention times (Gavala et al. 2003). This is consistent with Varel et 

al. (1980), they concluded from their results that the effect of temperature is more 

apparent at short than at long retention times, for HRTs of longer than 6 days no 

difference between the methane production rate at 40 °C and 60 °C was registered. 

Gallert and Winter (2002) observed a specific biogas production of 0.6 – 1.1 m³.kg-1
COD

for different substrates (sewage sludge, biowaste, manure, food production residues,…), 

whereby they discovered no significance difference between the digestion in the 

mesophilic and thermophilic temperature ranges. De la Rubia and co-workers (2001)

determined a higher methane production in the mesophilic reactor for HRTs > 20 d, but 

better values for the thermophilic reactor at low HRTs (< 20 d) using sewage sludge as 

substrate in a pilot-scale CSTR. Depending on the substrate the methane production rate 

http://m�.kg


RESULTS AND DISCUSSION

- 70 -

M e s o p h ile T h e rm o p h ile

P ro p io n a te  C o n c e n tra tio n

is about 25 to 50 % higher in the thermophilic process compared to the mesophilic 

process (Henze and Harremoes 1983). 

The pH showed no significant difference. Nevertheless, on average the pH in the 

mesophilic reactors was lower than in the thermophilic reactors.

Figure 4.1.8: Results of the co-variance analysis - comparison of propionate concentration 
using Maize as substrate in the mesophilic and thermophilic reactors 

The higher pH in the thermophilic reactor seems to be a result of the higher TAN 

concentration in the thermophilic reactor. The higher ammonia concentration is a result 

of the more complete breaking down of protein (Speece 1996). The VFA concentration 

is, on average, in both cases nearly the same, but shows a small, but nevertheless a 

significant difference. While, the acetic concentration is higher in the mesophilic reactor 

than in the thermophilic reactor on the other hand the propionic acid concentration in the 

thermophilic reactor is significantly higher than in the mesophilic reactor. Mackie and 

Bryant (1995) also registered in their study a generally higher VFA content in the 

mesophilic reactor. However, in the thermophilic AD process a vastly higher VFA content 

often manifests itself (Speece 1996), in particular propionate, when compared to the 

mesophilic process, which has its origin amongst others in the non-ideal conditions for all 

members of the bacteria consortium (Kim et al. 2002). Kiyohara et al. (2000) found that, 

even though the activity of thermophilic bacteria was higher, the thermophilic bacteria 

tended to remove propionic acid more slowly than mesophilic bacteria. A decrease in the 

temperature normally correspond to a decrease in the VFA production (Bolzonella et al.

2005). De la Rubia (2001) registered that the VFA concentration in the effluent, under the 

same conditions, was higher in the thermophilic reactor than in the mesophilic reactor, 

where most of these VFA was propionate in the thermophilic process.
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M esoph ile Therm oph ile

The VSS and TOC concentration were higher in the mesophilic reactor compared to the 

reactors with higher temperatures. The H2S concentration in the gas phase is 

significantly higher in the thermophilic reactor than in the mesophilic, which can be 

explained by the lower solubility of H2S in sludge at higher temperatures.

The COD removal is higher in the thermophilic reactor compared to the mesophilic 

reactor (Kiyohara et al. 2000).

Figure 4.1.9: Results of the co-variance analysis - comparison of H2S concentration using 
Maize as substrate in the mesophilic and thermophilic reactors 

These results again confirm the higher gas yield when operating the plant in the 

thermophilic temperature range. Kim and co-workers (2006), for example, found the 

optimum temperature to be at 50 °C, whereas Ahring (1994) detected 60 °C as the 

optimum temperature to digest manure, but recommended that the reactor be operated 

at under 60 °C to ensure that fluctuations in temperature have no disastrous effect on the 

microbial activity. Varel et al. (1980) suggested that there is no advantage in increasing 

the fermenting temperature of waste from 50 to 60 °C.

Generally it can be said, AD in the thermophilic temperature range is more efficient in 

terms of COD removal and methane production than operation in the mesophilic 

temperature range (Gavala et al. 2003). Moreover the thermophilic process has the 

benefit, to a great extent, it destroys pathogens (El-Mashad et al. 2004). A further 

advantage is the less viscous sludge in the thermophilic reactor compared to the 

mesophilic reactor, therefore less energy is needed for stirring. 
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Mean STD VAR MIN MAX n

pH [] 7.03E+00 2.28E-01 5.18E-02 6.13E+00 7.63E+00 445

Gas Production/COD [m3.kg-1
CODdeg.d

-1
.] 8.63E-01 4.37E-01 1.91E-01 4.94E-03 2.15E+00 439

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 4.27E-01 2.19E-01 4.81E-02 0.00E+00 1.08E+00 437

Acetate/COD [g.kg-1
Coddeg] 5.25E+00 3.48E+00 1.21E+01 0.00E+00 1.58E+01 409

Propionate/COD [g.kg-1
Coddeg] 2.18E+00 4.72E+00 2.23E+01 0.00E+00 3.42E+01 449

VFA/COD [g.kg-1
Coddeg] 7.86E+00 6.11E+00 3.74E+01 8.27E-03 2.69E+01 405

VSS/COD [kg.kg-1
Coddeg] 1.66E+02 7.51E+01 5.64E+03 3.16E+01 4.39E+02 420

TOC/COD [g.kg-1
Coddeg] 2.00E+01 1.32E+01 1.75E+02 0.00E+00 6.25E+01 430

TAN/COD [g.kg-1
Coddeg] 1.09E+01 6.41E+00 4.11E+01 1.36E+00 2.12E+01 68

H2S/COD [g.kg-1
Coddeg] 1.26E+00 1.25E+00 1.57E+00 2.69E-02 4.24E+00 65

Mean STD VAR MIN MAX n

pH [] 7.13E+00 2.91E-01 8.49E-02 6.20E+00 7.72E+00 369

Gas Production/COD [m3.kg-1
CODdeg.d

-1
.] 1.12E+00 8.86E-01 7.84E-01 0.00E+00 4.09E+00 367

Methane Production/COD [m3.kg-1
CODdeg.d

-1
.] 5.70E-01 4.48E-01 2.01E-01 0.00E+00 1.97E+00 366

Acetate/COD [g.kg-1
Coddeg] 3.69E+00 3.05E+00 9.30E+00 0.00E+00 1.52E+01 332

Propionate/COD [g.kg-1
Coddeg] 5.93E+00 1.02E+01 1.05E+02 0.00E+00 4.51E+01 373

VFA/COD [g.kg-1
Coddeg] 7.73E+00 7.75E+00 6.01E+01 0.00E+00 3.41E+01 329

VSS/COD [kg.kg-1
Coddeg] 1.99E+02 9.90E+01 9.80E+03 0.00E+00 5.44E+02 371

TOC/COD [g.kg-1
Coddeg] 2.60E+01 1.53E+01 2.33E+02 0.00E+00 7.59E+01 360

TAN/COD [g.kg-1
Coddeg] 7.15E+00 7.14E+00 5.10E+01 0.00E+00 2.68E+01 322

H2S/COD [g.kg-1
Coddeg] 2.06E+00 1.17E+00 1.37E+00 1.91E-02 5.47E+00 86

THERMOPHILE

MESOPHILE

P n
pH 0.316 814
Gas Production/COD 0.000 806
Methane Production/COD 0.000 803
Acetate/COD 0.000 741
Propionate/COD 0.000 822
VFA/COD 0.007 734
VSS/COD 0.000 791
TOC/COD 0.000 790
TAN/COD 0.351 390
H2S/COD 0.000 151

Table 4.1.14: Comparison based on the different temperature ranges (mesophile and 
thermophile; under consideration of the HRT) of the variables pH, Gas Production, Methane 
Production, Acetic and Propionic Acid and VFA Concentration, VSS, TOC, TAN concentrations 
based on the degraded COD using Maize as substrate. Showing the average values (Mean), the 
standard deviation (STD), the variance (VAR), the minimum and maximum (MIN and MAX) and 
the number of samples (n) for both temperature ranges

Table 4.1.15: Comparison based on the different substrates (Maize and Sunflower; under 
consideration of the HRT) of the variables pH, Gas Production, Methane Production, Acetic and 
Propionic Acid and VFA concentration, VSS, TOC, TAN concentration, NH3 and H2S 
concentrations based on the degraded COD in the mesophilic reactor FM3. Showing the p-
value (P) of the Covariance-analysis and the number of samples used (n). A p-value < 0.05 
means that the analysed difference is significant

However, more problematic is the higher propionic acid concentration, which supports 

the argument of the instable process in the thermophilic temperature range. 

Nevertheless with adequate reactor control this is not a real problem. El-Mashard and 

co-workers (2004) also concluded, from their results that a stable digester operation 

under thermophilic conditions is very possible. 
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Figure 4.1.10: Comparison of the gas production and methane production in the mesophilic 
and thermophilic temperature range. Comparison of literature data (mean values): Bryant and 
Mackie (1995) digested cattle waste in 5 l bench-top fermenters. Bouallagui (2004) examined 
the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Ahn and 
Forster (2000) used an anaerobic upflow filter digesting a starch based feed. Gavala et al.
(2003) digested primary and secondary sludge in 1 l digesters; with data measured in this 
study (mean values, Maize, thermophile and mesophile). This data is compared to data 
measured in this study using Maize as substrate – as only the mean values over all HRTs is 
shown, the difference between the mesophilic and the thermophilic temperature ranges is 
rather small and the standard deviation high.

The TAN and H2S problematic was already mentioned previously. Free ammonia is the 

active component causing an inhibiting effect (Angelidaki and Ahring 1993). 

The ammonia inhibition is normally a type of self regulative process, as the inhibition of 

the process increases the fatty acid concentration and therefore decreases the pH in the 

reactor. This effect, in turn, shifts the equilibrium to the ammonium and thus reduces the 

inhibiting effect. Not only the pH influences the ammonia concentration, but also the 

temperature (Angelidaki and Ahring 1993)– which leads to higher ammonia levels in 

thermophilic reactors. But Angelidaki and Ahring (1993) detected that a stable reactor 

performance can be attained if the reactor is adapted to high ammonia concentrations.

In the thermophilic reactor, the solubility of the H2S is worse; this reduces the 

concentration of the toxic H2S in the sludge. Higher H2S concentrations in the biogas, 

however, can lead to problems of corrosion in the CHP or gas turbine. So, the H2S has to 

be removed from the gas. This is normally done by blowing air in the gas phase of the 

reactor. 

The main disadvantage of reactor operation in the thermophilic range is the high energy 

consumption required to heat up the reactor. But if self heating occurs there is no need to 

heat the reactor. On the other hand the reactor has to be cooled down to keep the 

process within the mesophilic temperature range. But taking into account the results 
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observed as well as the literature it can be concluded that it make no sense to waste 

energy in order to keep the process within the mesophilic temperature range. Yet, one 

should ensure that there are no abrupt changes in the temperature, as variations in the 

temperature can dramatically affect the performance of the AD process (Leitao et al.

2006).

No general temperature optimum can be found. In the thermophilic temperature range 

the gas and methane production is significantly higher then in the mesophilic 

temperature range, however the VFA concentration is also significantly higher in the 

thermophilic range. Yet the choice of temperature depends on several criteria: one 

important criteria is the bio-climatic conditions (Bouallagui et al. 2004) – which have an 

important influence on the energy balance of the reactor. The substrate used also has a 

great impact on the optimum temperature, especially its sulphate and ammonia content. 

4.1.4 Pulse experiments

In order to obtain, on the one hand, a data set with a wide range for the purpose of 

modelling and on the other hand to glean further information on the process kinetics, 

pulse experiments were performed.

Pulse experiment in the mesophilic reactor system FM1

One experiment was accomplished in the mesophilic reactor system FM1 (Figure 

4.1.11), where the reactor was fed at intervals of 2 to 4 days with a feed peak. Hereby an 

OLR of 4.6 to 9.4 kgCODm-3
Reactord

-1 with Maize and an OLR of 3.4 to 7 kgCODm-3
Reactord

-1

with Sunflower was attained.

During the pulse experiment the overall methane content in the biogas decreased from 

72.53 % to 31.42%, whereby the methane content always fell one day after a feed peak 

by about 5 to 25 percentage points and returned to a “normal” level afterwards. The 

overall biogas production also declined in the period observed, as an inverse effect to the 

methane content was noticed, one day after a feed peak the biogas production increased 

by about 0.2 m³Biogas.m
-3

Reactor.d
-1 to 2.3 m³Biogas.m

-3
Reactor.d-1, and subsequently returned 

to the overall average. 

The VFA concentration (Figure 4.1.12) increased during the whole experiment from 

5578 mg.l-1 to 12649 mg.l-1, while the acetic acid concentration went from 2341 mg.l-1 to 

4396 mg.l-1 and the propionic acid rose from 2451 mg.l-1 to 5578 mg.l-1, at the same time 

the pH decreased from 7.06 to 6.53. In the same manner, the COD degradation 

efficiency fell from 84 % to 62 %:
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Figure 4.1.11: Results of the pulse experiments with maize silage and sunflower residues in the 
mesophilic reactor system FM1

Figure 4.1.12: Results of the pulse experiments with maize silage and sunflower residues in the 
mesophilic reactor system FM1

The correlation between the decrease of the methane content, increase of the biogas 

production and the feed peak can be clearly seen, whereby the system reacts rather 

slowly. As a change in the biogas production and the methane content was only 

observed after one day. Borja and Banks (1995) tested shock loads in a fluidised bed 

reactor treating ice cream waste water.
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They observed a decrease in the pH, an increase in the effluent VFA and COD and an 

increase in the gas production, but a decrease in the methane production, as well (Borja 

and Banks 1995). This change in the methane-carbon dioxide ratio indicates a process 

overload and can be explained by an inhibition of the methanogenesis (Borja and Banks 

1995) and the decreased solubility of CO2 at low pH values.

Observing the VFA and the pH no direct response to the feed peaks was noticed, except 

the overall accumulation of the fatty acids and the decrease of the pH over time, which 

explains also the fall in the methane production.

It was further found that after the change of the substrate from Maize to Sunflower at day 

35 the H2S content in the gas increased up to 2,000 ppm and ammonium concentration 

rose from 825.66 ± 124.93 mg.l-1 on average to 2287.48 ± 1191.63 mg.l-1 on average, 

whereas the ammonia concentration remained nearly the same due to the change in pH. 

The increase of the H2S and the ammonium concentration at the end of the experiment is 

a result of the high protein content of Sunflower.

The amount of SS (33 ± 4.06 on average) and VSS (24.38 ± 4.32 on average) did not 

vary very much during the experiment time.

Pulse experiment in the thermophilic reactor system FM2

A second experiment was carried out in the thermophilic reactor system FM2 

(Figure 4.1.13), whereas the reactor was charged as before at intervals from 2 to 4 days 

with a feed peak, here an OLR of 4.6 to 6.2 kgCODm-3
Reactord

-1 with Maize was reached.

As in the mesophilic reactor the overall methane content in the biogas decreased during 

the pulse experiment - from 61.08 to 40.05. Here, contrary to the mesophilic reactor 

system no distinctive change in the methane content could be observed. This could have 

its origin in the lower solubility of gases at higher temperatures. 

All anaerobic reactors react in a similar way, if exposed to short changes in process 

conditions. These change of conditions results in an increase in the VFA concentration, a 

drop in the pH and a rush of the CO2 and H2 content in the biogas, due to incomplete 

methanogenesis (Leitao et al. 2006).

The overall biogas production increased over the period observed. Furthermore one day 

after a feed peak the biogas production increased like in the mesophilic reactor, here 

however for about 0.6 m³Biogas.m
-3

Reactor.d
-1 to 3.0 m³Biogas.m

-3
Reactor.d-1, and subsequently 

returned to the overall average.

Yet, the pulse experiments also lead in this case to a break-down of the process. The 

VFA concentration (Figure 4.1.12) increased during the whole experiment from 

567 mg.l-1 to 7172 mg.l-1, while the acetic acid concentration went from 456 mg.l-1 to 

3560 mg.l-1 and the propionic acid rose from 0 mg.l-1 to 4348 mg.l-1. The accumulation of

VFAs is a typical effect during reactor overload in the organic loading rates (Leitao et al.

2006). The pH decreased from 7.56 to 5.64, which resulted in an inhibition of the process 

and a drop in the COD degradation efficiency, which fell from 90 % to 76 %. 
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Figure 4.1.13: Results of the pulse experiments with maize silage in the thermophilic reactor 
system FM2

Figure 4.1.14: Results of the pulse experiments with maize silage in the thermophilic reactor 
system FM2

Normally the gas produced from a days feed emerges within one day (Gerardi 2003). 

This can also be seen in both experiments since most of the highest gas production 

levels are found within 24h of the prior feed peak. 
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4.2 Calibration of an AD model

Before a model can be used for any application it has to be calibrated, in the sense that 

the parameter values are chosen in such a way that the best possible conformity 

between the model predictions and the data measured can be obtained (Madsen 2000).

The easiest case for calibration is, if all parameters are known and no optimisation is 

necessary (De Pauw 2005) - however this is not normally the case. Model calibration can 

be done in different ways either manually (trial and error), following a calibration protocol 

or using automatic optimisation and calibration tools (Madsen 2000). No matter how the 

calibration is done, calibrating a model is always time consuming.

Most of the models which describe such complicated dynamic processes show a high 

degree of uncertainty, as the knowledge of the process is incomplete and the kinetic 

parameters are not normally known (Kremling and Saez-Rodriguez 2007). The prediction 

capability of a model like the ADM1 can be further lowered in the case that some 

parameters are unknown or inaccurate, as well as if the model structure itself is not 

accurate (Aceves-Lara et al. 2005).

This study endeavoured to address comprehensively all issues of the calibration 

problem; however the calibration of such a model entails a lot of different questions and 

problems, which makes it impossible to deal with all issues in detail within the framework 

of this study. 

One of the first problems is: which variables have to be measured, which variables can 

be measured directly or which variables can be determined within the framework of the 

project. Moreover what possibilities exist for estimating variables and parameters that 

cannot be measured directly? The data measured has to be further processed for use in 

the model due to measurement errors, missing data, experimental problems, and so on 

as there is no possibility for modelling unexpected disturbances (Olsson and Newell 

1999).

The original ADM1 entails around 100 different parameters that make it necessary to 

pre-select the parameters which are de facto calibrated in the model. This pre-selection 

can either be done manually or with the assistance of a sensitivity analysis.

The parameter estimation itself can be done by trial and error, using data from literature 

or by determining the parameter required through experimentation. Whereby one has to 

pay attention to the high range for some parameters in literature and on the other hand to 

the fact that standard experiments for estimating different parameters are in the most 

cases rather voluminous.

A further question is the best way to calibrate the model. Automatic calibration algorithms 

are a very “elegant” solution, however these algorithms have to be used with care. Due 

to the fact that such complex biological models as the ADM1 normally have too many 

state variables to be observable and too many parameters to be identifiable – as there 

are too many parameters as feasible measurements (Olsson and Newell 1999). 

Whereby one can distinguish between structural identifiability – if there is only one set of 
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parameter valid for the model and practical identifiability – if there are no local minimums 

(Bernard et al. 2001) and thus the parameters can be estimated from a given set of 

experimental data ((Gadkar, 2005) cited in (Kremling and Saez-Rodriguez 2007))17.

The problem of model identifiability could not be covered in more depth within the 

framework of this project. Yet differently to literature dealing with the similar complex 

models ((Petersen 2000), (Olsson and Newell 1999)) it can be concluded that the ADM1 

is non-identifiable. This fact greatly restricts the application of automatic calibration 

algorithms for the ADM1. In addition calibration algorithms often have convergence 

problems if a large number of parameters occurs (Olsson and Newell 1999).

Yet the problem of non-identifiability equally applies if calibration protocols are applied or 

parameters are calibrated by trial and error. Whereby it has to be mentioned that, to our 

knowledge, no complete calibration protocols exist until now for the ADM1. One 

approach to avoiding the problem of non-identifiability is to divide the problem in smaller 

fitting problems (Olsson and Newell 1999).

4.2.1 Suggested Measurements for the calibration of the ADM1

Generally it can be said that models of biotechnological processes are normally in need 

of a substrate characterization in a specific form (Kleerebezem and Van Loosdrecht 

2004). The ADM1 requires the identification of the concentrations of particulate 

carbohydrates, proteins, lipids, soluble, soluble sugars, amino acids and fats and VFAs 

(Kleerebezem and Van Loosdrecht 2004).

Erashin and co-workers (2005) found, moreover, that the influent characterization values 

had a great impact upon the model outputs and therefore more accurate results could be 

obtained by experimental studies of these variables. Kleerebezem and Van Loodsrecht 

(2004) came to the same conclusion, as well. Yet, due to the complexity of the model 

only a restricted number of variables can be determined via measurement (Wett et al.

2007).

For manure and agricultural wastes knowledge about substrate composition in terms of 

ADM1 components is missing (in literature), therefore characterisation of the input 

becomes very important (Wett et al. 2007). For energy crops however data is found in 

the table of the nutrient requirements (for example, for dairy cattle) see for example 

Harris (2003) or Wiedner et al. (2001).

A study of the influence of modification in the influent variables and the initial condition 

state variables (by sensitivity analysis, see chapter 4.2.4) was done to gain a better 

insight into the coherences in the model and to make it easier to estimate the impacts on 

the ADM1 of changing influent variables or the initial conditions. This is important, as it 

was not possible to measure all influent composites and therefore a part of the influent 

and initial condition variables had to be calculated or in the worst case guessed at.

17 Gadkar, K. G., J. varner, et al. (2005). "Model idenfication of signal transduction networks from data 

using a state regulator problem." Syst. Biol. 2(1): 17-30.
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It was found that the concentration of inorganic nitrogen (SIN,in) has the greatest impact 

on the model output, followed by the anion concentration (San,in) and cation concentration 

(Scat,in) as well as the hydrogen concentration (SH2,in). Hereby SIN,in has the greatest effect 

on the hydrogen concentration in both the liquid and the gaseous phase and the 

propionic acid concentration. The same applies to San,in and Scat,in. The hydrogen 

concentration in the gaseous phase is the state variable that is most influenced by a 

change in most of the influent variables (Xsu,in, Xaa,in, Xfa,in, Xc4,in, Xac,in and Xh2,in). 

Furthermore, the effect on the model output of a change of the initial conditions was 

investigated. Here the propionic acid and propionate concentration (Spro and Spro-) have 

the most influence, followed by SIN and SH+. The propionic acid and propionate 

concentration and the hydrogen anion have a strong ascendancy on SH2, SCH4 and 

Sgas,CH4. SIN, on the other hand, has the most sway over the acetate concentration, the 

hydrogen concentration in both liquid and gas phase and on the propionate 

concentration, as well. The methane concentration in the liquid phase is most of all 

effected by most of the state variables, as by Sbu, Spro, Sac, SH2, SCH4, Xli, Sva-, Sbu-, Spro-, 

SHCO3-, SH+, Sgas,H2 and Sgas,CO2. A change in the particulate inert concentration only has 

an effect on the particulate inert and the soluble inert concentrations in the output, as 

expected. 

In order to determine experimentally all state variables required for the model (input, 

initial) a lot of measurements are necessary. But to determine the waste (or crop) 

composition from standard measurements as needed for the ADM1 is not an easy task 

(Kleerebezem and Van Loosdrecht 2004). The same is true for the reactor conditions. In 

particular the intermediate products and the bacteria concentrations are difficult to 

estimate.

However the widespread utilization of the ADM1 stands or falls with an easy application 

of the model (Kleerebezem and Van Loosdrecht 2004).

Kleerebezem and Van Loodsrecht (2004) proposed a method to determine the full 

influent substrate composition for direct implementation in ADM1 from a minimal set of 

measurements – the COD, TOC, organic nitrogen and the alkalinity. Yet this guidance is 

not convenient for this study as it is only suitable for wastewater without any particulates.

Table 4.2.1 shows the measurement methods used in this study to estimate the input 

state variables and initial conditions and gives suggestions for alternative methods and 

further analytical methods.

The COD and CODsoluble can be measured by standard methods (DEV S9 (DEV 1997))

or a test kit (for example LCK 114 (Dr. Lange)). These are very important parameters

when using the ADM1, as the ADM1 is COD based.

The gas production is normally a standard measurement in every biogas plant and easily 

defined on a lab scale with any kind of gas flow meter or by displacement measurement. 
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Measured variable ADM1 state variable Measurement method

Acetic Acid, Propionic Acid, VFA
Spro, Sac, Sva, Sbu, Sva-, Sbu-, Spro- and 
Sac- 

HPLC, FTIR, GC, test kit

COD, CODsoluble ADM1 variables are based on COD standard method (DEV S9), test kit

gas production flow meter, displacement method

gas components (CH4, CO2, H2, (H2S)) infrared sensors, dräger tubes, GC

VSS, SS
Xxc, XI, Xsu, Xaa, Xfa, Xc4, Xpro, Xac 

and XH2
standard method (DEV H1, DIN 38414-10)

Glucose Ssu enzymatic tests, HPLC, titration, polarimetry

Amino Acids Saa Ninhydrin method, HPLC

Lipids Xli solvent extraction

Carbohydrates XCH HPLC, Anthrone method

Protein Xpr Kjeldahl, Lowry, Bradford

NH4
+, NH3 single measurement rod

Total Nitrogen Kjeldahl, test kit

Total Alkalinity, Partial Alkalinity  standard method (DIN EN ISO 9963-1)

Total Carbon, Total Organic Carbon TC Analyser

pH SH+ pH electrode, standard method (DIN 19265, DIN 19268)

Sulphate Standard method (ISO/DIS 10304), test kit
Sulphide Standard method (DIN 38405-26)

SCH4,gas, SCO2,gas, SH2,gas, SCH4, SCO2, SH2, 

(SH2S,gas and SH2S)

SIN, SNH3

SIC

SS2-, SSO42-, SHS-

Table 4.2.1: Parameters measured for the estimation of the “Input”/”Initial Condition” in the model
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The CH4, CO2, H2S and H2 content in the gas phase can be determined by online 

measurement (for example infrared sensors), “dräger” tubes and or by GC. Using the 

gas components and the total gas production the amount of CH4, CO2 and H2 (esp. H2S) 

in the gas (Sgas,CH4, Sgas,CO2 and Sgas,H2) and the liquid phase (SCH4, SCO2 and SH2) can be 

estimated using Henry’s law.

The VSS content was used to estimate the biomass in the reactor DEV H1 (DEV 1997). 

Yet, the measurement of biomass as VSS is a significant limitation in studies of the 

kinetic of the process, since substrate which is not degraded is also measured. Direct 

count procedures (microscopy methods), however, yield the highest estimate of micro-

organisms (De la Rubia et al. 2006), this method however is very extensive and definitely 

only suitable for laboratory use. A further problem is that substrate which is not degraded 

is also included in the VSS content – thus Xxc, Xch, Xpr and Xli. Moreover the VSS content 

only gives an overall content for the biomass that has to be separated into the single 

bacteria groups Xsu, Xaa, Xfa, Xc4, Xpro, Xac and XH2, which means that the VSS content is 

rather a rough estimation of the different bacteria groups used in the model. An 

alternative is therefore the determination of single bacteria groups: Methanogens, for 

example, can be counted by auto-fluorescence microscopy, due to their UV-induced 

blue-green auto-fluorescence (Doddema and Vogels 1978). This method, however, only 

shows methanogens with a high F420 content (De la Rubia et al. 2006).

Xxc (complex particulates) and XI (inert particulates) can be estimated using the SS 

content.

Different methods for the estimation of organic acids can be used, such as titration, GC, 

HPLC, test kits (for example LCK 365 (Dr. Lange)) or FTIR. Yet using a test kit has the 

disadvantage that normally only VFA can be measured. In this study propionic (Spro) and 

acetic acid concentrations (Sac) are measured directly, whereas valeric (Sva) and butyric 

acid concentrations (Sbu) are estimated from the VFA concentration. Having measured 

the pH (using a pH-electrode), SH+ is estimated directly and thus Sva-, Sbu-, Spro- and Sac-

can be estimated, as well. 

Inorganic carbon (SIC) can be determined with a TC/TOC-Analyser. Alternatively SIC can 

be estimated using the total alkalinity and the VFA concentration.

The inorganic nitrogen is estimated by measuring the total nitrogen (Kjeldahl-nitrogen, 

test kits (e.g. LCK 338 (Dr. Lange)), and the measurement of NH4 and NH3 by a sensitive 

single-rod measuring cell.

Protein (Xpr), carbohydrates (XCH), lipids (Xli), monosaccharides (Ssu) and amino acids 

(Saa) can be ascertained directly using an adequate measuring method (Table 4.2.1). An 

alternative would be to perform a standard nutrient analysis procedure, such as the 

“Weender” analysis – where crude ash (CA), crude fibre (CF), crude protein (CP), crude 

lipids (CL) and nitrogen free extract (NfE) are measured or the “Van Soest” analysis in 

the area of the carbohydrate analysis.
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The estimation of the cations (Scat) and anions (San) is very sensitive and also difficulty 

(Feng et al. 2006). Cations and anions were estimated using the data used by Rosen 

and Jeppsson (2002).

4.2.2 Processing of raw data measured

Due to measurement errors and other disturbances in reactor operation the data gets 

noisy, whereby extreme disturbances in the reactor operation (for example: broken 

tubes, leaky reactor,…) were removed manually from the data set.

Thus, a filter was used to smooth the noisy data. In order to obtain, but still relevant data 

three different low pass filters (Olsson and Newell 2001) were tested: 

• a simple low pass filter (1)

• a modified low pass filter (2) and 

• an exponential filter (3) (Figure 4.2.1)

The (1) simple low pass filter (Equation (77)) corresponds to a moving average, not 

based on future measurements and can be written in the following form (Olsson and 

Newell 2001):

( )121 ...
1

ˆ +−−− ++++= niiiii yyyy
n

y (77)

The (2) modified low pass filter also uses the moving average, but data before and after 

the current time (Equation (78)) (Olsson and Newell 2001): 






 ++++++++=

+−−−++−+ 12
211212

......
1

ˆ niiiiiinii yyyyyyy
n

y (78)

Another possibility is the (3) exponential filter, which is very commonly used (Olsson and 

Newell 2001). The exponential filter has the advantage that older data is less important 

for defining the current data output. This filter can be described as 

(Equation (79)) (Olsson and Newell 2001):

( ) ...*1**)1(**)1(ˆ 2
2

1 +−+−+−= −− iiii yyyy ααααα (79)

The simple low pass filter and the modified low pass filter were tested for different 

n-values (n = 1…9), here a high n-value means a very smooth, but also more delayed 

value (Olsson and Newell 2001). The exponential filter was tested for α − values from 0.1 

to 0.9 (Figure 4.2.2). Where a low α - values means that a short data history is 

considered. 

It was finally decided to use the exponential filter, due to the fact that here historic data is 

less considered in the calculation depending on the “age”, which conforms more to the 

constantly changing time series.
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Figure 4.2.1: Comparison of different filters: low pass filter, modified low pass filter and 
exponential filter – on the example of the pH in the mesophilic reactor system FM1 from day 
200 to 300

Figure 4.2.2: Comparison of different -values (0.3, 0.6, 0.9) for the exponential filter – on the 
example of the gas production of the mesophilic reactor system FM1 from day 200 to 300

For the exponential filter the data with an α − value of 0.3 was found be the best 

compromise between smooth data and considering all relevant changes in the data 

(Figure 4.2.1). It has further to be mentioned that to obtain a continued time series 
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missing data was displaced through linear interpolation of surrounding data, which is not 

completely consistent with the biochemical behaviour in the reactor, that is non-linear, 

but as the interpolated time is small (two days on average), the resulting error is 

negligible. 

4.2.3 Mass balance of the AD process

A mass balance was used to estimate the initial conditions for the ADM1. This estimation 

is especially applied in the Virtual Laboratory 1.2. 

The basis of this mass balance is the ADM1 model itself, where the calculation of the 

initial conditions happens iteratively. For these calculations a MATLB®-Script was written 

(“mass_balance”) (Figure 4.2.3). 

The estimation of the methane production was done according to Baserga (1998)18 using 

the protein, fat and carbohydrate content in the feed and the reactor sludge.

The carbohydrate, protein and lipid content in step n is then (Equation (80) to (82)):

( ) 938.0*1___ −+= nchinchnch XXX (80)

( ) 695.0*1___ −+= nprinprnpr XXX (81)

( ) 350.0*1___ −+= nliinlinli XXX (82)

where:
Xch_in carbohydrate content in the feed [kgCOD]
Xch_n-1 carbohydrate content in the sludge after last iteration step [kgCOD]
Xpr_in protein content in the feed [kgCOD]
Xpr_n-1 protein content in the sludge after the last iteration step [kgCOD]
Xli_in lipid content in the feed [kgCOD]
Xli_n-1 lipid content in the sludge after the last iteration step [kgCOD]

The gas production is now calculated as (Baserga, 1998)18 (Equation (83) to (85)):

[ ]1³.7.0 −= kgmGYch (83)

[ ]1³.79.0 −= kgmGYpr (84)

[ ]1³.25.1 −= kgmGYli (85)

Baserga (1998)18 gives for the methane content digesting carbohydrates 50 %, for 

proteins 71 % and for lipids 68 %, thus the methane production arises as (Equation (86)

to (88)):

[ ]1³.395.0 −= kgmMYch (86)

[ ]1³.497.0 −= kgmMYpr (87)

[ ]1³.85.0 −= kgmMYli (88)

18 Baserga, U., 1998, Landwirtschaftliche Co-Vergärungsanlagen, FAT-Berichte Nr. 12
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Figure 4.2.3: Structure of the “massbalance” program

Using the overall gas and methane production, the methane content (Equation (89) and 

(90)) is calculated (Equation (91)):

linliprnprchnch GYXGYXGYXGP *** ___ ++= (89)

linliprnprchnch MYXMYXMYXMP *** ___ ++= (90)

MPGPMC *)/100(= (91)
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Figure 4.2.4: Gas production measured in the mesophilic reactor FM1 compared to the 
theoretical gas production according to Baserga, 1998 

Figure 4.2.5: Methane production measured in the thermophilic reactor FM2 compared to the 
theoretical methane production according to Baserga, 1998

The gas and methane production calculated was now compared with values measured in 

the mesophilic reactor FM1 and the thermophilic reactor FM2 (Figure 4.2.4 and Figure 

4.2.5) in order to prove that the estimation using the data from Baserga (1998) is 

accurate (Table 4.2.2). For the comparison the same statistical indicators as for the 
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A
Gas 

Production
Methane 

Production B
Gas 

Production
Methane 

Production

r2 0.557 0.573 r2 0.472 0.456
Rmean 0.295 0.301 Rmean 0.343 0.395
RSME 23.968 11.912 RSME 20.428 10.570
d 0.690 0.693 d 0.650 0.628

investigation of the model performance are used: the square of the correlation coefficient 

(r2), the ratio of means (Rmean), the root mean square error (RSME) and the index of 

agreement (d). Rmean shows, as was expected, an overestimation of the gas and 

methane production using the conversion factor from Baserga (1998)18. As the index of 

agreement in both cases (mesophile and thermophile) for both the gas production and 

the methane production is > 0.6 and the r2 is acceptable as well.

Table 4.2.2: A) Correlation coefficient, Ratio of means, RMSE and the index of agreement (d) of 
the mesophilic reactor and B) Correlation coefficient, Ratio of means, RMSE and the index of 
agreement (d) of the thermophilic reactor

The Hydrogen content was given as a constant value by HC = 0.05 %, as hydrogen was 

now measured in this study. The Carbon Dioxide content is so given by (Equation (92)):

HCMCCC −−= 100 (92)

The initial conditions are then calculated based on the ADM1 (Batstone et al. 2002)

(Equation (93) to (100)):

( )( )( )( ) 0.25*100064*VM10*S
4CHgas, MC= (93)

( )( ) 100010*CCS COgas, 2
VM= (94)

( )( )( )( ) 0.125*100016*VM10*HCS
2Hgas, = (95)

444 CHH,CHgas,CH K*Temp*R*SS = (96)

222 COH,COgas,CO K*Temp*R*S S= (97)

222 ,, *** HHHgasH KTempRSS = (98)

+=
HCOa,COHCO )/SK*(SS

223
(99)

32 HCOCOIC SSS += (100)

where:
Sgas,CH4 CH4 in the gas phase [kgCOD.m-3]
Sgas,CO2 CO2 in the gas phase [kmolC.m-3]
Sgas,H2 H2 in the gas phase [kgCOD.m-3]
SCH4 CH4 in the liquid phase [kgCOD.m-3]
SCO2 CO2 in the liquid phase [kmolC.m-3]
SH2 H2 in the liquid phase [kgCOD.m-3]
SHCO3 Hydrogencarbonate [kgCOD.m-3]
SIC inorganic carbon [kgCOD.m-3]
VM molar Volume [m³.mol-1]
R gas constant [bar.M-1.K-1]
Temp temperature in the reactor [K]
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Figure 4.2.6: Stoechiometric mass balance of the ADM1

Complex particulates (Xc), carbohydrates (Xch), proteins (Xpr), lipids (Xli), particulate inerts 

(XI), soluble inerts (SI), soluble sugar (Ssu), soluble amino acids (Saa), soluble LCFA (Sfa), 

valeric acid (Sva), butyric acid (Sbu), propionic acid (Spro), acetic acid (Sac), hydrogen 

(SH2), methane (SCH4), sugar degraders (Xsu), amino acid degraders (Xaa), LCFA using 

bacteria (Xfa), valeric acid and butyric acid using bacteria (Xc4), propionic acid degrading 

bacteria (Xpro), acetate degraders (Xac) and hydrogen using bacteria (XH2) are estimated 

using a stoechiometric mass balance (Figure 4.2.6) and parts of the ADM1. 

Box 4.2.1 shows a part of the “mass_balance” MATLAB®-Script and illustrates the

assumptions made in this estimation of the initial conditions using the example of 

complex particulate matter (Xc). XC at the current iteration step (Xc_all) arises from the 

input fraction (XC_in’) and the mass fraction of Xc calculated in the last iteration step. It is 
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now assumed that at the same time as Xc is formed it is also degraded. Xc_out is the 

actual mass fraction of this iteration step. Xc_abbau is the degraded part of Xc_all. This 

degraded part is divided into particulate carbohydrates (Xch_xc_all), particulate proteins 

(Xpr_xc_all) and particulate lipids (Xli_xc_all) according to Figure 4.2.6. Here again it is 

assumed that a part of the carbohydrates, proteins and lipids formed is degraded at the 

same moment as they are arising, and so on. Moreover from a part of all degraded 

products biomass is formed, which is equally partly degraded at the same moment as it 

is formed. 

…

Xc_all = Xc_in + Xc_tminus1;

Xc_out = (Xc_all)*exp(-k_dis);

Xc_abbau = Xc_all - (Xc_out);

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

Xch_xc_all = f_ch_xc*Xc_abbau;

Xch_xc_out = Xch_xc_all*exp(-k_hyd_ch);

Xch_xc_abbau = Xch_xc_all - Xch_xc_out;

C_xch_xc_out = C_ch*Xch_xc_out;

%--------------------------------------------------------------------------

Xpr_xc_all = f_pr_xc*Xc_abbau;

Xpr_xc_out = Xpr_xc_all*exp(-k_hyd_pr);

Xpr_xc_abbau = Xpr_xc_all - Xpr_xc_out;

N_xpr_xc_out = N_aa*Xpr_xc_out;

C_xpr_xc_out = C_pr*Xpr_xc_out;

%--------------------------------------------------------------------------

Xli_xc_all = f_li_xc*Xc_abbau;

Xli_xc_out = Xli_xc_all*exp(-k_hyd_li);

Xli_xc_abbau = Xli_xc_all - Xli_xc_out;

C_xli_xc_out = C_li*Xli_xc_out;

%--------------------------------------------------------------------------

Xi_xc_out = f_xi_xc*Xc_abbau;

Si_xc_out = f_si_xc*Xc_abbau;

N_xI_xc_out = N_I*Xi_xc_out;

N_sI_xc_out = N_I*Si_xc_out;

C_xi_xc_out = C_xI*Xi_xc_out;

C_si_xc_out = C_sI*Si_xc_out;

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

Ssu_xc_all = Xch_xc_abbau + (1 - f_fa_li)*Xli_xc_abbau;

Ssu_xc_out = Ssu_xc_all*exp(-km_su*(Ssu_xc_all/((Ks_su*Volume) + 

Ssu_xc_all))*Xsu_all*I5);

Ssu_xc_abbau = Ssu_xc_all - Ssu_xc_out;

C_ssu_xc_out = C_su*Ssu_xc_out;

%--------------------------------------------------------------------------

Saa_xc_all = Xpr_xc_abbau;

Saa_xc_out = Saa_xc_all*exp(-km_aa*(Saa_xc_all/((Ks_aa*Volume) + 
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Saa_xc_all))*Xaa_all*I6);

Saa_xc_abbau = Saa_xc_all - Saa_xc_out;

N_saa_xc_out = N_aa*Saa_xc_out;

C_saa_xc_out = C_aa*Saa_xc_out;

%--------------------------------------------------------------------------

Sfa_xc_all = f_fa_li*Xli_xc_abbau;

Sfa_xc_out = Sfa_xc_all*exp(-km_fa*(Sfa_xc_all/((Ks_fa*Volume) + 

Sfa_xc_all))*Xfa_all*I7);

Sfa_xc_abbau = Sfa_xc_all - Sfa_xc_out;

C_sfa_xc_out = C_fa*Sfa_xc_out;

%--------------------------------------------------------------------------

Sbu_xc_all = (1-Yaa)*f_bu_aa*Saa_xc_abbau + (1-Ysu)*f_bu_su*Ssu_xc_abbau;

Sva_xc_all = (1-Yaa)*f_va_aa*Saa_xc_abbau;

Sbu_xc_out = Sbu_xc_all*exp(-km_c4*(Sbu_xc_all/((Ks_c4*Volume) + 

Sbu_xc_all))*Xc4_all*I8*(Sbu_xc_all/(Sbu_xc_all+Sva_xc_all+1*10-6)));

Sva_xc_out = Sva_xc_all*exp(-km_c4*(Sva_xc_all/((Ks_c4*Volume) + 

Sva_xc_all))*Xc4_all*I9*(Sva_xc_all/(Sbu_xc_all+Sva_xc_all+1*10-6)));

Sbu_xc_abbau = Sbu_xc_all - Sbu_xc_out;

Sva_xc_abbau = Sva_xc_all - Sva_xc_out;

C_sbu_xc_out = C_bu*Sbu_xc_out;

C_sva_xc_out = C_va*Sva_xc_out;

%--------------------------------------------------------------------------

Spro_xc_all = (1-Yaa)*f_pro_aa*Saa_xc_abbau + (1-Ysu)*f_pro_su*Ssu_xc_abbau 

+ (1-Yc4)*0.54*Sva_xc_abbau;

Spro_xc_out = Spro_xc_all*exp(-km_pro*(Spro_xc_all/((Ks_pro*Volume) + 

Spro_xc_all))*Xpro_all*I10);

Spro_xc_abbau = Spro_xc_all - Spro_xc_out;

C_spro_xc_out = C_pro*Spro_xc_out;

%--------------------------------------------------------------------------

Sac_xc_all = (1-Yaa)*f_ac_aa*Saa_xc_abbau + (1-Ysu)*f_ac_su*Ssu_xc_abbau + 

...

(1-Yfa)*0.7*Sfa_xc_abbau + (1-Yc4)*0.8*Sbu_xc_abbau + ...

             (1-Yc4)*0.31*Sva_xc_abbau + (1-Ypro)*0.57*Spro_xc_abbau;

Sac_xc_out = Sac_xc_all*exp(-km_ac*(Sac_xc_all/((Ks_ac*Volume) + 

Sac_xc_all))*Xac_all*I11);    

Sac_xc_abbau = Sac_xc_all - Sac_xc_out;

C_ac_xc_out = C_ac*Sac_xc_out;

%--------------------------------------------------------------------------

Sh2_xc_all = (1-Yaa)*f_h2_aa*Saa_xc_abbau + (1-Ysu)*f_h2_su*Ssu_xc_abbau + 

(1-Yfa)*0.3*Sfa_xc_abbau + ...

(1-Yc4)*0.2*Sbu_xc_abbau + (1-Yc4)*0.15*Sva_xc_abbau + (1-

Ypro)*0.43*Spro_xc_abbau;

Sh2_xc_out = Sh2_xc_all*exp(-km_h2*(Sh2_xc_all/((Ks_h2*Volume) + 

Sh2_xc_all))*Xh2_all*I12) + Sh2_xc_all*exp(-kLa*(Sh2_xc_all -

16*K_H_h2*pgas_h2));         

Sh2_xc_abbau = Sh2_xc_all - Sh2_xc_out;

%--------------------------------------------------------------------------

Sch4_xc_all = (1-Yac)*Sac_xc_abbau + (1-Yh2)*Sh2_xc_abbau;
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Sch4_xc_out = Sch4_xc_all*exp(-kLa*(Sch4_xc_all - 64*K_H_ch4*pgas_ch4));

C_sch4_xc_out = C_ch4*Sch4_xc_out;

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

Xaa_xc_all = Yaa*Saa_xc_abbau;

Xaa_xc_out = Xaa_xc_all*exp(-kdec_aa);

Xaa_xc_abbau = Xaa_xc_all - Xaa_xc_out;

N_xaa_xc_out = N_bac*Xaa_xc_out;

C_xaa_xc_out = C_bac*Xaa_xc_out;

%--------------------------------------------------------------------------

Xsu_xc_all = Ysu*Ssu_xc_abbau;

Xsu_xc_out = Xsu_xc_all*exp(-kdec_su);

Xsu_xc_abbau = Xsu_xc_all - Xsu_xc_out;

N_xsu_xc_out = N_bac*Xsu_xc_out;

C_xsu_xc_out = C_bac*Xsu_xc_out;

%--------------------------------------------------------------------------

Xfa_xc_all = Yfa*Sfa_xc_abbau;

Xfa_xc_out = Xfa_xc_all*exp(-kdec_fa);

Xfa_xc_abbau = Xfa_xc_all - Xfa_xc_out;

N_xfa_xc_out = N_bac*Xfa_xc_out;

C_xfa_xc_out = C_bac*Xfa_xc_out;

%--------------------------------------------------------------------------

Xc4_xc_all = Yc4*Sbu_xc_abbau + Yc4*Sva_xc_abbau;

Xc4_xc_out = Xc4_xc_all*exp(-kdec_c4);

Xc4_xc_abbau = Xc4_xc_all - Xc4_xc_out;

N_xc4_xc_out = N_bac*Xc4_xc_out;

C_xc4_xc_out = C_bac*Xc4_xc_out;

%--------------------------------------------------------------------------

Xpro_xc_all = Ypro*Spro_xc_abbau;

Xpro_xc_out = Xpro_xc_all*exp(-kdec_pro);

Xpro_xc_abbau = Xpro_xc_all - Xpro_xc_out;

N_xpro_xc_out = N_bac*Xpro_xc_out;

C_xpro_xc_out = C_bac*Xpro_xc_out;

%--------------------------------------------------------------------------

Xac_xc_all = Yac*Sac_xc_abbau;

Xac_xc_out = Xac_xc_all*exp(-kdec_ac);

Xac_xc_abbau = Xac_xc_all - Xac_xc_out;

N_xac_xc_out = N_bac*Xac_xc_out;

C_xac_xc_out = C_bac*Xac_xc_out;

%--------------------------------------------------------------------------

Xh2_xc_all = Yh2*Sh2_xc_abbau;

Xh2_xc_out = Xh2_xc_all*exp(-kdec_h2);

Xh2_xc_abbau = Xh2_xc_all - Xh2_xc_out;

N_xh2_xc_out = N_bac*Xh2_xc_out;

C_xh2_xc_out = C_bac*Xh2_xc_out;

%--------------------------------------------------------------------------

…

Box 4.2.1: Part of the “mass_balance” program – Calculation of the state variable Xc
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measured value
value calculated in 
the mass balance Difference [%]

Sva [kgCODm-³] 3.18E-01 4.17E-01 30.92

Sbu [kgCODm-³] 2.83E-01 8.40E-01 197.04

Spro [kgCODm-³] 1.22E-02 3.58E+00 29341.24

Sac [kgCODm-³] 5.96E-01 3.07E+00 414.17

SCH4 [kgCODm-³] 1.12E-02 9.96E-03 11.46

SIC [kmolCm-³] 1.02E-02 2.08E-02 103.41

Xxc [kgCODm-³] 4.00E+00 2.85E+00 28.85

SNH3 [kmolNm-³] 5.41E-05 1.20E-06 97.79

Sgas,CH4 [kgCODm-³] 3.79E-01 3.35E-01 11.46

Sgas,CO2 [kmolCm-³] 4.30E-03 5.04E-03 17.18

state variable

Comparing now the results of the iteration process using 500 iterations with the 

measured values, starting with a X0_Start of 0 for all state variables except Scat, San and 

SH+. 

Table 4.2.3: Comparison of the state variables measured with the state variables calculated 
using the “mass_balance”

Some differences can be found; especially the propionic acid and acetic acid 

concentrations are overestimated. This makes it clear that some further developments 

which where not possible within the frame of this study are still necessary. Especially as 

some simplifications are made in the mass balance: thus the pH (pH = 7) is taken as 

constant, because the pH calculation in the program was too unstable. The same is true 

for the calculation of some bacteria concentrations (Xaa, Xpro and XH2). A further difficulty 

is the nitrogen balance.

Yet, the results of the mass balance for nearly all state variables lay in the same range 

as the state variables for the initial conditions measured or otherwise determined and 

therefore within an acceptable range. These results indicate that the mass balance is 

definitely suitable for a first estimation of the initial conditions.

4.2.4 Sensitivity analysis

In order to obtain more information for the model calibration a sensitivity analysis was 

done to find the most sensitive parameter. 

Similarly to DePauw (2005), a pre-selection of parameters which have to be calibrated 

was carried out in order to reduce the calculation effort: it will be not necessary to 

calibrate stoechiometric parameters (as they are well known), influent composition 

parameters, and temperature correction factors (De Pauw 2005).
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Figure 4.2.7: Sensitivity functions “plus” and “minus” for a perturbation factor of 1e-8 for kdis 
as parameter and XH2 as variable – showing the effect of non-linearity effects of the ADM1 
using a perturbation factor of 1e-8. Sensitivity function “plus” and “minus” differ from each 
other to the nonlinearties.

So, for example, kLa was also excluded from the sensitivity analysis: for the kLa Pauss et

al. (1990) reported for H2 and CH4 values of 3.84 and 2.16 d-1 for anaerobic digestion in a 

CSTR. Whereas (Siegrist et al. 2002) gained a kLa value for CO2 of over 100 d-1. But in 

the range between 1 to 1000 d-1 the kLa value has no influence on the model output. It is 

only if the kLa value is less than 1 d-1 that the model output is affected (Feng et al. 2006).

Sensitivity functions (mean value of sensitivity function “plus” and “minus”) were 

calculated for different perturbation values (Figure 4.2.7), from 5.00*10-1 to 1.00*10-8. 

Subsequent error values (Sum of squared errors (SSE), Sum of absolute errors (SAE), 

Maximum relative errors (MRE) (Zaher 2005)) were determined, to find the best 

perturbation value (Figure 4.2.8 to Figure 4.2.11).

Optimal perturbation values are parameter dependant, the values can be found when the 

criteria value (here named “error”) reaches the minimum (De Pauw 2005). SSE was used 

in this study as the actual criteria value. Thus the optimal perturbation value was found to 

be 5.00e-1.

Looking at Figure 4.2.8 respectively Figure 4.2.9 and Figure 4.2.10 respectively Figure

4.2.11 it comes clear that the perturbation factor is not only dependant on the parameters 

but also on the variables. DePauw (2005) came to the same conclusion in his study.

The parameter with the most influence on the original ADM1 (Table 4.2.4) according to 

the sensitivity analysis carried out is the hydrolysis rate of the proteins (khyd,pr), further the 

hydrolysis rate of the carbohydrates (khyd,ch) and the hydrolysis rate of the lipids (khyd,li). 
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Figure 4.2.8: Errors (SSE, SAE and MRE) for the parameter kdis and variable Sac

Figure 4.2.9: Errors (SSE, SAE and MRE) for the parameter kdis and variable XH2

Further the disintegration rate (kdis) and the substrate uptake rate of amino acids (km,aa).

The protein hydrolysis rate mostly affects the particulate protein concentration (Xpr) and 

the soluble amino acid concentration (Saa). This parameter also has a relatively important 

influence on the hydrogen concentration (SH2) and the hydrogen concentration in the gas 

phase (Sgas,H2).
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Figure 4.2.10: Errors (SSE, SAE and MRE) for parameter khyd,li and variable Sac

Figure 4.2.11: Errors (SSE, SAE and MRE) for parameter km,c4 and variable Sac

The carbohydrate hydrolysis rate has the greatest impact on the particulate carbohydrate 

(Xch) and on the sugar concentration (SSu), but also on the hydrogen concentration in the 

gas phase and the hydrogen concentration.
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Whereby the lipid hydrolysis rate mostly influences the particulate lipid concentration (Xli) 

and long chain fatty acid concentration (Sfa), as well as the methane concentration in the 

gas (Sgas,ch4) and the methane concentration (Sch4).

The disintegration rate is affected most of all by the complex particulate concentration 

(Xxc) as well as the methane concentration in the gas (Sgas,ch4) and the methane 

concentration (Sch4) in the liquid phase, and finally the complex particulate concentration.

The hydrogen concentration in the gaseous phase is the variable that is affected most by 

most of all parameters. For instance by all half saturation constants (KS,IN, KS,su, KS,aa, 

KS,fa, KS,c4, KS,pro, KS,ac and KS,H2) and other parameters, too, such as Yfa, KI,H2,fa, Yc4, 

KI,H2,c4, km,pro, Ypro, KI,H2,pro, km,ac, Yac, and YH2. Followed by the hydrogen concentration in 

the liquid phase, which is governed by the sugar and amino acid substrate uptake rate 

and the biomass yield of monosaccharides and amino acids.

All other variables are most influenced by one parameter only, thus the bacteria are 

mostly effected by their decay rates, for example Xsu  is mostly influenced by kdec,su, Xaa

by kdec,aa, Xfa and so on. In the same way the particulate components are most of all 

influenced by their hydrolysis and disintegration rate (i.e. Xxc by kdis, Xch by khyd,ch, Xpr by 

khyd,pr and Xli by khyd,li). Interesting here is that Xxc is also most of all influenced by km,H2, 

Xch also by km,fa and Xli by km,c4.

The IWA Task group came to a similar conclusion in the ADM1 report (Batstone et al.

2002) investigating different data from literature, they found that kdis, khyd,ch, khyd,pr, km,ac, 

KS,ac and pHUL,ac have a significant sensitivity. 

Wett et al. (2007) found that the most sensitive parameters are the disintegration rate, 

the saturation coefficient for monosaccharides, the decay rate of sugar degraders and 

also the carbon and nitrogen contents of the particulate fraction Xc.

Insensitive parameters should be omitted from the parameter estimation for reasons of 

simplification (Olsson and Newell 1999). Following the results of the sensitivity analysis 

the disintegration and hydrolysis rates are determined and calibrated up front in the 

model.
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# Parameter
Senstivity 
Coefficient

Wett et al. 
2007

Batstone et al., 
2002 # Parameter

Senstivity 
Coefficient

Wett et al. 
2007

Batstone et al., 
2002

1 khyd,pr 1.12E-02 o 20 KS,aa 1.27E-10

2 khyd,ch 1.12E-02 o 21 KS,pro 6.30E-11

3 khyd,li 1.11E-02 22 KS,H2 4.92E-11

4 kdis 9.82E-03 o o 23 km,fa 4.75E-11

5 km,aa 1.54E-03 24 km,H2 3.61E-11

6 kdec,pro 1.29E-03 25 KS,su 3.12E-11 o

7 kdec,su 1.11E-03 o 26 KS,fa 3.03E-11

8 kdec,ac 1.08E-03 27 km,c4 2.45E-11

9 kdec,c4 1.07E-03 28 Yfa 2.18E-11

10 kdec,fa 9.45E-04 29 KS,IN 1.66E-11

11 kdec,h2 9.23E-04 30 KS,ac 1.36E-11 o

12 kdec,aa 9.09E-04 31 Yc4 1.32E-11

13 km,su 1.97E-07 32 Ypro 1.10E-11

14 KI,H2,pro 1.80E-08 33 KS,c4 8.22E-12

15 Ysu 9.52E-09 34 YH2 8.18E-12

16 Yaa 8.09E-09 35 Yac 6.66E-12

17 KI,H2,c4 7.70E-09 36 KI,NH3,ac 6.21E-12

18 KI,H2,fa 1.70E-09 37 km,ac 3.21E-12 o

19 km,pro 9.49E-10

Table 4.2.4: Results of the sensitivity analysis of the ADM1 (Parameter ranking according to the calculated Sensitivity coefficients). Furthermore: 
comparison with the literature data: Most sensitive parameter of the ADM1 found by Wett et al., 2007 and Batstone et al., 2002 (shown as circles 
(without ranking)).
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4.2.5 Parameter estimation

Parameters have to be chosen in such a way that the likelihood that measured data can 

be predicted by the model is the highest (Olsson and Newell 1999). Yet, most of the 

parameters suggested in the ADM1 are not fully suitable for energy crops. Therefore a 

literature search for appropriate parameters was done for the most important and 

sensitive parameters (Table 4.2.5 and Table 4.2.6). This data includes experimental data 

and data used in modeling (Henze and Harremoes 1983). 

Pavlostathis and Gossett (1985) found that the limiting steps in anaerobic digestion are 

those related to the conversion of substrate into a soluble form and the formation of 

methane from acetate and propionate. The IWA task-group came to a similar conclusion 

in their description of the Anaerobic Digestion Model No.1 (Batstone et al. 2002). 

As there is generally a great lack of specific data on energy crop digestion in literature 

(Lindorfer 2007) and the values found in the literature have a great range of margin, the 

parameters were also experimentally estimated (from other project partners, too) for 

different crops, particularly maize silage.

Looking at the hydrolysis (disintegration) rates (first order) from literature, a mean value 

of 1.42 d-1 ± 8.10 is found, with a minimum value of 4.10*10-3 d-1 and maximum of 

1.06*102 d-1 independent from substrate and temperature range. Normally a hydrolysis

rate is valid for a certain substrate under certain conditions and other factors such as e.g. 

the particle shape (Bolzonella et al. 2005). This seems the reason why even for one and 

the same substrate at the same temperature great differences are noticed, for example 

for the hydrolysis rate of carbohydrates (n = 9) at a temperature of 35 °C a minimum of 

1.30*10-1 d-1 and maximum of 1.06*102 d-1 is found. For the proteins hydrolysis rate 

(n = 10) and lipids hydrolysis rate (n = 12) a minimum of 9.60*10-3 d-1 and 5.00*10-3 d-1

and a maximum of 2.70 d-1 and 1.00*101 d-1 respectively were determined. Thus 

estimated rates should be seen as indicative and not as universal (Bolzonella et al.

2005).

The same applies for the substrate uptake rate – here a mean value of 

7.90*101 kgCODkgCODd-1 ± 4.68*102 with a minimum of 1.40*10-1 kgCODkgCODd-1 and a 

maximum of 5.07*103 kgCODkgCODd-1 independent from substrate and temperature was 

detected. As before even for the same substrate at the same temperature great 

differences can be observed, for example for substrate uptake rate of acetate (n = 7) at 

35 °C a minimum of 3.10 kgCODkgCODd-1 and maximum of 1.30*101 kgCODkgCODd-1  were 

spotted. For butyrate at 35 °C, as well, a minimum of 3.50 kgCODkgCODd-1 and a maximum 

of 4.10*101 kgCODkgCODd-1 were found.

The yield coefficients of anaerobic processes are generally lower than of aerobic 

processes, which is a result of the small ATP yield (Henze and Harremoes 1983).

During the project hydrolysis rates for energy crops and other substrates were 

determined in batch experiments over a temperature range from 35 °C to 55 °C by 
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Substrate khyd(first order) Temperature Reference

[d-1] [°C]
Bark 7.60E-02 30 Veeken and Hamelers, 1999
Blackwater + Kitchen refuse 4.50E+00 38 Feng et al., 2006
Cattle manure 1.30E-01 37 Vavilin et al., 1997
Cellulose 9.00E-02 37 Myint et al, 2007
Diapers 2.50E-02 35 Jokela et al., 2005
Excrement wih gelatine 1.00E+00 55 Angelidaki et al., 1999
food waste 4.10E-01 55 Vavilin et al., 1998
forest soil 5.40E-01 30 Lokshina and Vavilin, 1999
Grass 3.50E-02 20 Veeken and Hamelers, 1999
Grey waste 3.10E-02 35 Jokela et al., 2005
Hemicellulose 1.40E+00 37 Myint et al, 2007
Leaves 6.80E-02 20 Veeken and Hamelers, 1999
Lipids 1.00E+01 38 Feng et al., 2006
Manure/Oil 2.40E-01 55 Angelidaki et al., 1992
Meat peptone 2.30E+00 37 Gonzalez et al., 2005
Newsprint 5.60E-02 35 Jokela et al., 2005
Newsprints 5.68E-02 35 Vavilin et al., 2004
Office paper 3.60E-02 35 Jokela et al., 2005
Orange peelings 1.45E-01 20 Veeken and Hamelers, 1999
Packaging 5.80E-02 35 Jokela et al., 2005
Packagings 5.60E-02 35 Vavilin et al., 2004
Pig manure 9.60E-02 6 Vavilin et al., 1997
Pond silt 1.30E-02 28 Lokshina and Vavilin, 1999
Primary Sludge 2.50E-01 55 Siegrist et al., 2002
Protein 1.00E+01 38 Feng et al., 2006
Putrescibles 1.07E-01 35 Jokela et al., 2005
Slaughterhouse 7.00E-02 35 Salminen et al., 2000
Straw 2.40E-02 20 Veeken and Hamelers, 1999
Textiles 2.10E-02 35 Jokela et al., 2005
Two-phase olive pomace 5.40E-02 35 Borja et al., 2005
Wholewheat bread 1.95E-01 30 Veeken and Hamelers, 1999

project partners, such as the hydrolysis rates for Bracken, Buckwheat, Carrots, Hay, 

Jerusalem artichoke, Knotweed, Lawn, Lupine, Maize silage, Oil seed rape, Sweet clover 

and more (Table 4.2.7). 

Table 4.2.5: Hydrolysis rates (disintegration rates) of different substrates from literature
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Substrate Input Substrate km KS Y kdec Temperature Reference
[kgCODkgCODd-1] [kgCODm-3] [kgCODXkgCODS

-1] [d-1] [°C]

Acetate Pig slaughterhouse wastewater 1.28E+01 3.00E+00 2.60E-01 1.99E-02 Batstone et al., 2000
Butyrate Blackwater + Kitchen refuse 1.80E+01 1.10E+02 38 Feng et al., 2006
Formate Cassava starch wastewater 6.00E+00 35 Zaher et al., 2006
Glucose 1.77E+02 2.46E-02 2.00E-02 20 Costello et al., 1991
Hydrogen Pig slaughterhouse wastewater 1.77E+01 5.50E-02 1.93E+01 9.00E-03 Batstone et al., 2000
Lactate Pig slaughterhouse wastewater 1.39E+02 1.14E+00 2.06E-02 Batstone et al., 2000
LCFA Pig slaughterhouse wastewater 1.11E+00 3.10E+00 3.14E-02 3.00E-02 Batstone et al., 2000
Propionate Blackwater + Kitchen refuse 1.40E+01 1.20E+02 38 Feng et al., 2006
Sugar Manure/Oil 4.93E+01 5.33E-01 1.00E-01 1.00E-02 55 Angelidaki et al., 1992
Valerate Manure/Oil 1.37E+01 3.57E-01 5.00E-02 1.00E-02 55 Vavilin et al., 1996

Table 4.2.6: Substrate uptake rate, half saturation constant, growth rate, yield and decay rate for different substrate from literature
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Substrate khyd(first order) Temperature Reference

[d-1] [°C]

Braken 1.81E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Carrot 1.00E+00 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Grass hay 2 since day 0 1.90E-02 Lehtomäki et al., 2005
Jerusalem artichoke 1 since day 0b 2.10E-02 Lehtomäki et al., 2005
Knotweed 1 5.60E-02 Lehtomäki et al., 2005
Lawn since day 49a 9.40E-02 Lehtomäki et al., 2005
Lupine 1 since day 25a 6.70E-02 Lehtomäki et al., 2005

Maize silage 2.70E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Marrow kale 1since day 0 9.00E-03 Lehtomäki et al., 2005
Mix Market waste (fruit+vegetable) 2.10E-01 37 Bolzonella
Mixed Agro-wastes 2.80E-01 Bolzonella
Mixed market waste and sewage sludge 3.05E+00 55 UNIVE-DSA, Cavinato
Nettle 2 since day 0 3.00E-02 Lehtomäki et al., 2005

Oil seed rape 1.61E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Red clover 1 since day 10 3.90E-02 Lehtomäki et al., 2005
Reed canary grass 1 3.90E-02 Lehtomäki et al., 2005
Rhubarb 1 since day 0 3.40E-02 Lehtomäki et al., 2005
Sewage Sludge + Market waste (1305.7 gCODd-1) 4.28E+00 Pavan

Spartina-Cordgrass 1.67E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Straw of oats since day 17 4.30E-02 Lehtomäki et al., 2005
Tops of sugar beet since day 0 1.90E-02 Lehtomäki et al., 2005

Triticale 1.21E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Vetch 2 since day 12 4.70E-02 Lehtomäki et al., 2005

Yellow lupin 3.18E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Table 4.2.7: Hydrolysis rates of different substrate determined during CROPGEN by project partners



RESULTS AND DISCUSSION

- 103 -

y = -4.5233x + 6069.4
R2 = 0.8075

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200 1400 1600

time [min]

C
P

ro
te

in
 [

g
.l-1

]

protein
Linear (protein)

As it is not possible to get suitable kinetic parameters in the CSTR. Syringe experiments 

were used to estimate hydrolysis rates. Simultaneous batch experiments were used as a 

basic method for the estimation of parameters (Flotats et al. 2006). In this approach the 

evolution of different substances in a set of batch experiments were distinguished by 

different initial conditions for known substances and constant initial concentrations for 

others (Flotats et al. 2006).

In this study a hydrolysis rate for protein was determined in batch experiments. The batch 

experiments were performed in 100 ml plastic syringes (VWR, BD Plastipak). This test 

arrangement has the advantage of being simple, fast and space-saving.

Here a hydrolysis rate for proteins of 0.702 d-1 could be found (Figure 4.2.12).

Figure 4.2.12: Results of the degradation test to obtain kinetic data: protein concentration 

In the ADM1 now a value of 10 d-1 is suggested - It is assumed that under certain 

circumstances the same rate can be used for carbohydrates, proteins and lipids (Feng et 

al. 2006). The high value makes the model easier to manipulate, as the influence of the 

hydrolysis is excluded from the model (Feng et al. 2006). It also makes the model less 

sensitive to distribution ratios between the three, if the hydrolysis rates are the same 

(Feng et al. 2006).

4.2.6 Calibration algorithms

The application of an automatic calibration algorithm is especially interesting for 

simplified AD models that are identifiable. Automatic control algorithms are applicable for 

the ADM1if the model is divided in smaller sub-models, which again are identifiable. 

In this study now three different automatic control algorithms were adapted for the use 

with AD models: 
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• a Genetic algorithm, 

• Simulated Annealing and

• a Luus-Jaakola algorithm. 

All three algorithms were implemented in script-form in MATLAB®.

Parameter estimation can primarily seen as an optimisation problem, where the 

parameters sought can be determined by minimizing a so called “objective function” 

(Linga et al. 2006). This function is a measure of the difference between the values 

observed and the values predicted (Laquerbe et al. 2001; Linga et al. 2006; Kremling 

and Saez-Rodriguez 2007). It has to be recognized that model predicted values will 

never fit perfectly to measurement data, due to measurement errors or noise (De Pauw 

2005). In the literature a lot of different object functions are found. A frequently used 

objective function is the sum of squares (De Pauw 2005) (Equation (101)):
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A feasible multiple objective function (OF(k)) is according to Linga et al. (2006) (Equation 

(102)):
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where
k vector of unknown parameter
x,, mes measured values
xi, pre predicted values
wi weighting matrix
n number of measured values

Possible weighting matrices are (Kremling and Saez-Rodriguez 2007) (Equation (103)):
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Here the OF is weighted by the average of two models. Another approach is (Kremling 

and Saez-Rodriguez 2007) (Equation (104)):

( ) 1
21

−++= VCVCCwi  with 
TWWFVC 1−= (104)

Where C is the variance of measured values and VC is the covariance-variance of the 

values predicted, determined from the sensitivity matrix W and the Fisher Information 

matrix (FIM). Only the diagonal elements of C and VC are used here (Kremling and 

Saez-Rodriguez 2007).

Another possibility for an objective function is (Kremling and Saez-Rodriguez 2007)

(Equation (105)): 
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where
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xi,j,mes measured values
xi,j,pre predicted values
k parameter vector
σI,j standard deviation of the measured values

In this OF the measurement error is considered by adding the variance of the measured 

values, where 2
,

1
jiσ
 acts as a weight to compensate for the measurement errors (De 

Pauw 2005).

Laquerbe and co-workers (2001) define the objective function similar to the De Pauw 

(2005) as (Equation (106)):
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where
n Number of experimental values
xi,j,mes measured values
xi,j,pre predicted values

they further weighted the objective function with a outer penalty term (

(Laquerbe et al. 2001) (Equation (107)):

( )pOFOF dim' ρ+= (107)

where
p parameters that are optimized
ρ penalty factor

In the case that the parameters chosen are close to the “true” parameter values the 

difference between the predicted and the observed values approaches zero and thus the 

OF gets small. This minimization of the OF can be done by trial and error by an 

automatic optimization method. In order to be effective an optimisation method must 

solve the optimisation problem in passable time and the global minimum/maximum must 

be found after the smallest possible number of evaluations. (Kaczmarski and Antos 

2006). 

Optimisation methods can be distinguished in two classes: gradient methods and direct 

search methods (Linga et al. 2006). These methods are a set of functions with adjustable 

parameters and approximate the optima by varying these variables (Tsoulos and Lagaris 

2006). It has to be indicated the gradient search methods require derivatives of the 

objective function (Linga et al. 2006). It has further to be mentioned that these methods 

often fail to find the global optimum for “hard-to-optimise” objective functions (Kaczmarski 

and Antos 2006).

An example of a gradient search method is the Gauss-Newton method (Linga et al.

2006). This method should always be associated with the Marquardt-Levenberg 

modification to enhance robustness (Linga et al. 2006). 

Frequently used direct search algorithms are neural networks, genetic algorithms, 

iterative dynamic programming (Bojkov and Luus 1994) and Luus_Jaakola (LJ) 

optimization (Linga et al. 2006). Further alternatives are “simulated annealing” or “taboo 

search” (Kaczmarski and Antos 2006). These search algorithms are especially suited to 
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solve optimisation problems, where the optima is surrounded by a lot of local minima 

(Kaczmarski and Antos 2006). Other alternatives are, for example, the Simplex algorithm 

and the Praxis optimisation algorithm (De Pauw 2005).

Genetic Algorithm (GA)

Genetic Algorithms (GA) are loosely based on the mechanics of natural selection and 

genetics (Laquerbe et al. 2001; Alcock and Burrage 2004; Mwembeshi et al. 2004; De 

Pauw 2005; Coleman and Block 2006). Convergence to the exact minima cannot be 

guaranteed, but it is a robust method for a lot of objective functions to find at least a 

“near-optimum” (Alcock and Burrage 2004). In the GA a potential solution is called 

individual or chromosome – each is represented by a sequence of “genes” and ranked 

corresponding to their objective function value (= fitness) (Laquerbe et al. 2001; Alcock 

and Burrage 2004; Mwembeshi et al. 2004). A population is then a set of chromosomes 

with their fitness values (Alcock and Burrage 2004). The GA is iteratively improving the 

fitness either by reproduction, cross-over or mutation (Laquerbe et al. 2001; Alcock and 

Burrage 2004) – that means that the GA emulates the evolutionary theory (Laquerbe et 

al. 2001) and simulates a digital survival of the fittest (Mwembeshi et al. 2004). 

Reproduction means the copying of the genes of a chromosome from one generation to 

another, cross-over stands for the mixing of genes of individuals to form new individuals 

in the next generation and mutation is a random switching of genes in an individual 

(Alcock and Burrage 2004). 

The algorithm consists of four phases: Initialisation, Fitness evaluation, genetic 

operations and the Termination control (Tsoulos and Lagaris 2006). In the first phase the 

mutation (control of changes inside a chromosome) and replication rate (rep_rate, 

number of chromosomes that will not be changed) are defined (Tsoulos and Lagaris 

2006). The cross-over rate is therefore determined as 1 – rep_rate (Tsoulos and Lagaris 

2006). Tsoulos and Lagaris (2006) chose 10 % for the replication rate and 5% for the 

mutation rate. To define the GA parameter (npop, ngen, rmut and rrep) can be quite difficult 

and can also lead to unusual values “to insure good convergence” (Laquerbe et al.

2001).

Initialisation is performed once in the 1st generation (Tsoulos and Lagaris 2006). The 

initial population is normally generated using a random procedure (Laquerbe et al. 2001). 

In the next step the fitness value is calculated (= objective function).

The genetic operations are then performed in all generations (Tsoulos and Lagaris 

2006). First the individuals are sorted according to there fitness values (best to worse) 

(Tsoulos and Lagaris 2006). Then (1 – rep_rate)*num_in19 new chromosomes are 

reproduced by cross-over (Laquerbe et al. 2001; Tsoulos and Lagaris 2006). For cross-

over a group of N  2 randomly selected individuals is chosen and from this group the 

chromosome with the best fitness is taken (Tsoulos and Lagaris 2006). There are 

19 Num_in = number of individuals
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different possibilities for cross-over and mutation operators: simple crossover (variables 

of two solutions are exchanged), arithmetic cross-over (two complimentary linear 

combinations of two solutions), heuristic cross-over (linear exploration of two solutions), 

uniform mutation (one variable is exchanged with a uniformly random number), non-

uniform mutation (one variable is swapped with a non-uniformly random number) and 

boundary mutation (a randomly selected variable is set to its lower or upper limit (Alcock 

and Burrage 2004).

Mutation is applied for all chromosomes except those that are replicated (Tsoulos and 

Lagaris 2006).

The probability Pi that an individual survives can be formulated as (Laquerbe et al. 2001)

(Equation (108)):

∑
=

=
popn

k
k

i
i

f

f
P

1

(108)

where
fi fitness of the individium
fk overall fitness

The 2nd and the 3rd steps are repeated until the termination criteria is met or the 

maximum number of generations is reached (Laquerbe et al. 2001; Mwembeshi et al.

2004; Tsoulos and Lagaris 2006). The fittest individual of each generation stays either 

the same or is gets better, the same applies for the average fitness function (Mwembeshi 

et al. 2004).

The size of the populations is critical factor – if too small the method is ineffective and if 

too big it becomes slow (Tsoulos and Lagaris 2006). Tsoulos and Lagaris (2006) found 

that a population size of between 200 and 1000 is proper (they used 1000, with a 

chromosome length of 50). 

Mwembeshi and co-workers (2004) formulated the fitness function in the maximisation 

process of the GA optimization procedure as the following (Equation (109)):

( )m
i

i
OF

l
f

+
=

1
(109)

where:
OF Objective Function, which has to be minimized
m sensitivity integer
i positive constant that scales the fitness values
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Figure 4.2.13: Adapted structure of the Genetic Algorithm (GA) optimisation algorithm for use 
with AD models
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Mwembeshi et al. (2004) was using the integral absolute error (IAE) as objective 

function. Laquerbe and co-worker (2001) set the fitness function to (Equation (110)):
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f (110)

where
npop Size of population

Here the fitness of each individium is scaled by the average fitness of the whole 

population (Laquerbe et al. 2001).

The size of the “search space” (SESP) of the GA can be estimated according to 

(Laquerbe et al. 2001) (Equation (111)):

( )[ ]overcrossmutgenpop rrnnSESP −++= *1* (111)

The adapted GA algorithm is partly based on a MATLAB®-Sript by Houck and co-

workers (1995) (see also (Houck et al. 1995)).

Simulated Annealing (SA)

A further optimisation technique is the simulated annealing (SA) procedure. SA is a 

heuristic method (Schramm et al. 2004) and was first introduced by Kirkpatrick and co-

workers in 198320 (Lee et al. 2008) and copies the annealing of solid, where the 

reordering of the crystals follows the laws of probability rules (Laquerbe et al. 2001; 

Kaczmarski and Antos 2006). The aim is to reach the atomic configuration, which 

minimizes the internal energy (Laquerbe et al. 2001; Kaczmarski and Antos 2006). In a 

SA algorithm not only downhill moves, but also uphill moves are permitted (Lee et al.

2008). The SA procedure distinguishes between different local optima (Roytman and 

Safro 1998) – as it finds the global optima, as slow annealing leads to the lowest internal 

state, and avoids stopping at local minima, as fast cooling generates a metastable state 

(Laquerbe et al. 2001; Kaczmarski and Antos 2006). 

If during the gradual temperature decrease the energy (= object function) of the material 

is lower than the energy in the current state, then the new state replaces the current 

state (Lee et al. 2008). Yet, if the energy of the new state is higher than the energy in the 

current state a probability factor decides whether the current state is replaced by the new 

state or not (Lee et al. 2008). 

The method makes only few assumptions regarding the function, which is optimised and 

can be thus used as an optimiser for difficult functions (Roytman and Safro 1998).

20 Kirkpatrick, S, Gelatt, C.D. and Vecchi, M.P., 1983, Optimization by Simulated Annealing, Science, 

220, 4598, 671-680
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Figure 4.2.14: Adapted structure of the Simulated Annealing (SA) optimisation algorithm for 
use with AD models
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Luus-Jaakola Algorithm (LJ)

The LJ method (Figure 4.2.15) is an optimisation method using random search points 

and region reduction (Peng Lee et al. 1999) and was introduced by Luus and Jaakola 

(1973). With the LJ method even optimisation problems with multiple local minima could 

be solved (Linga et al. 2006). 

Linga and co-workers (2006) found an optimum for the number of randomly chosen 

points (npoints) of 30, by a chosen value of 100 iterations (niter). The concentration factor 

(ε) is 0,95, the Tolerance (TOL) is set to 10-6 and φ, the p-dimensional vector of random 

numbers between -0,5 and 0,5 (Linga et al. 2006). Whereas Luus and Hennessy (1999)

where using random numbers between -1 and 1.

As there is always the possibility of a local optimum (minimum), it useful to use a second 

optimisation algorithm (Luus and Hennessy 1999). It has to be mentioned that Luus 

(2001) changes the region size for the first passes (npasses = 10) following the formula 
qq rr *1 η=+ , with 7,0=η , after 10 passes the region value is restored to rq = 0,01. 

Further parameters are TOL = 10-8, npasses = 200 and niter = 15 (Luus 2001). Luus (1999)

found that using a multipass procedure with a smaller number of iterations was more 

effective, than using a single pass system with a large number of iterations.

It was shown that the efficiency of the method can be increased, when at the beginning 

of the passes the region size is determined from the size of the variation of the 

corresponding variables during the previous pass (Peng Lee et al. 1999).

The chance to approach the global minimum is improved by using an increased initial 

search region (Peng Lee et al. 1999). Especially for the first pass the initial search region 

should be sufficiently large to cover the entire feasible region (Peng Lee et al. 1999).

Unfortunately it was only possible to test these control algorithms cursorily within the 

framework of the project. For practical application further tests and possibly some 

improvements are still necessary (e.g. adaptation of optimisation parameters).

The development of more than one optimisation algorithm was necessary as in a lot of 

practical applications many local minima exist, this applies also for the ADM1. The global 

optimum, is therefore difficult to determine, a cross-checking with different optimisation 

procedures is important (Bojkov and Luus 1992).
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Figure 4.2.15: Adapted structure of the LJ optimization procedure according to Linga (Linga et 
al. 2006) for use with AD models
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Substrate CF-content Type Reference
[g.kg-1]

Maize 208 fresh DLG, 1997
260 silage Preston, 2002

Rye 328 fresh DLG, 1997
328 silage National Academy Press, 2001

Triticale 227 fresh DLG, 1997
300 silage Preston, 2002

Sunflower 210 fresh Jeroch et al., 1993
310 silage Putnam et al., 1990

Lucerne 286 fresh DLG, 1997
276 silage LFL, 2005

4.3 AD models for energy crop digestion

By far the majority of the existing anaerobic digestion models are developed or 

implemented for use with wastewater or sludge as substrate. AD models especially for 

the use of energy crops as substrate were not found in literature. Therefore the ADM1 

was adapted to model the biogas process using crops as feed input. For use in the 

Virtual Laboratory the sulphate reduction process was added, as well. Furthermore a 

simpler model, based on the ADM1 (Batstone et al. 2002) and the AD model by Marsili-

Libelli and Beni (1996), was developed for implementation in a model based decision 

support system.

4.3.1 Adaptation of the ADM1

The original ADM1 does not specify all the mechanisms of anaerobic digestion, for 

instance solid precipitation, homoacteogenesis, glucose alternative products, sulphate 

reduction and sulphide inhibition, nitrate, weak acid and base inhibition, LCFA inhibition 

and acetate oxidation (Batstone et al. 2002), but encourages the extension and 

development of it (Strik 2004). 

The main limitations of the ADM1 are the incomplete regulation of the products from 

glucose, the uncertainty in parameter values and the lack of satisfactory understanding 

of related processes (Batstone et al. 2005).

Table 4.3.1: Cellulose and Hemicellulose content of different substrates (presented as crude 
fibre content), partly assembled by Julia Brändle21

21 DLG, 1997, DLG Futterwerttabellen Wiederkäuer. Hrsg: Universität Hohenheim-

Dokumentationsstelle. DLG-Verlags-GesmbH. Frankfurt am Main

Preston, 2002, 2002 feed composition guide 

National Academy Press, 2001, Requirements of Diary Cattle, Seventh Revised Edition

Jeroch et al., 1993, Futtermittelkunde

Putnam et al., 1990, Sunflower; in: Alternative Field Crops Manual. University of Wisconsin-Extension, 

Cooperative Extension, University of Minnesota: Center for Alternative Plant and Animal Products and 

the Minnesota Extension Service 

LFL, 2005, Gruber Tabelle zur Fütterung der Milchkühe, Zuchtrinder, Mastrinder, Schafe, Ziege, 

Bayrische Landesanstalt für Landwirtschaft
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Moreover some of the model hypotheses restricts the ability of the model to simulate 

every application, for example the definition of the particulate component Xxc, which 

consists of both the influent particulate and the biomass decay products (Huete et al.

2005). Huete et al. (2005) solved this restriction by uncoupling the biomass decay from 

the influent particulate component.

Addition of a second hydrolysis rate

Energy crops, such as rye, triticale, sunflower…, have a high content of cellulose and 

hemicellulose (Table 4.3.1). A second hydrolysis rate for slow degradable carbohydrates 

was added in order to compensate for the slower degradation of this material 

(Figure 4.3.1 and equation (112), (113) and (114)). 

Figure 4.3.1: Schema of the biochemical processes of the adapted model. The red dots 
(   ) shows the changes compared to the original model

Therefore a new process rate was added (Equation (112)) and the existing differential 

equation for sugar (Ssu respectively Xi) was changed (Equation (113)) and a new 

differential equation was also added (equation (114)).

)37(*__20 Xk schhyd=ρ (112)

............ 20
1 ++= ρ

dt

dX
(113)

( ) 201,3728,
37 ** ρρ −+−= xcchsin

liq

in fXX
V

q

dt

dX
(114)

This minor adaptation was encouraged by a comparison of the adapted model and the 

original model (Figure 4.3.2, Table 4.3.2 and Table 4.3.3) using the original parameters, 

suggested by the IWA Task group for the mathematical modelling of anaerobic digestion 
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(Batstone et al. 2002). It was observed that using the adapted model better results can 

be achieved compared to the original model using different statistical methods, such as 

the determination coefficient (= square of the correlation coefficient) (r2), the index of 

agreement (d) and the Ratio of means (RMean). Looking at the methane production and 

COD reduction – here for the original model a value for r2
CH4,original = 0.19 and 

dCH4,original = 0.60 can be found, though for the adapted model the determination 

coefficient r2
CH4,adapted = 0.40 and dCH4,adapted = 0.62. For the COD reduction 

r2
COD,original = 0.06 and dCOD,original = 0.06 and r2

COD,adapted = 0.62 and dCOD,adapted = 0.88. 

Whereby a correlation coefficient of 1 would describe an ideal model (Elias et al. 2006). 

Figure 4.3.2: Comparison of the original and the adapted model using the parameter suggested 
by the IWA Task group for mathematical modelling of Anaerobic Digestion (Batstone et al.
2002)

In accordance with Elias et al. (2006) in this study it was established that a value > 0.6 

indicates a accurate model. Even though the determination coefficient is rather low in 

both cases, the index of agreement indicates a good model, as the values of d > 0.6.

Values of d between 0.5 and 0.6 would be within an acceptable range. A value of < 0.3 

(absolute) for the Ratio of means (RMean) indicates that the model predicts the 

observation with acceptable accuracy (Elias et al. 2006). The determination coefficient 

for the pH and the gas production is higher for the original model (Table 4.3.2 and

Table 4.3.3), however the original cannot follow the development of the data. The model 

predicts the correct magnitude of the acetate, propionate and VFA concentration, but the 

model cannot follow the developing of the data, as well, which results in the low 

determination coefficient and index of agreement (Table 4.3.2 and Table 4.3.3). This 

applies for both cases. 



RESULTS AND DISCUSSION

- 116 -

r2
d RMean

Gas production 0.26 0.54 0.87 okay
Methane production 0.40 0.62 0.90 okay
Acetate Concentration 0.00 0.23 1.41 bad
Propionate Concentration 0.03 0.43 -0.99 bad
VFA 0.00 0.36 0.00 bad
pH 0.18 0.53 0.05 okay
COD Reduction 0.62 0.88 0.02 good

r2
d RMean

Gas production 0.35 0.68 0.39 okay
Methane production 0.19 0.60 0.06 okay
Acetate Concentration 0.05 0.00 41143.52 bad
Propionate Concentration 0.07 0.00 26121.59 bad
VFA 0.02 0.00 32915.33 bad
pH 0.42 0.05 -0.22 okay
COD Reduction 0.06 0.06 -0.59 bad

Table 4.3.2: Values of the statistical indicators r², d and RMean for the original model using the 
parameter suggested by the IWA Task group for mathematical modelling of Anaerobic 
Digestion (Batstone et al. 2002) (green = good, yellow = okay)

Table 4.3.3: Values of the statistical indicators r², d and RMean for the adapted model using the 
parameter suggested by the IWA Task group for mathematical modelling of Anaerobic 
Digestion (Batstone et al. 2002) (green = good, yellow = okay)

The parameters recommended in the technical report (Batstone et al. 2002) are a 

reasonable compromise and case-specific adaptations may be necessary (Batstone et 

al. 2005) and, as in both cases, the model cannot predict the values accurately enough, 

a calibration of the model is absolutely necessary. For the calibration the data set was 

divided into two groups – one group for the calibration (about 2/3 of the data) and the 

other group for the validation of the model (1/3 of the data set).

In the same way as for the original ADM1, a sensitivity analysis was done for the 

adapted anaerobic digestion model (Table 4.3.4), to find the most sensitive parameters. 

The most sensitive parameters will be calibrated up front. The result of this analysis was 

rather similar to the one made for the original model, as the disintegration rate (kdis) and 

hydrolysis rates (khyd,ch, khyd,pr, khyd,li and khyd,chs) have the most impact on the model 

output. 

Whereby a change of kdis has the greatest impact on Xxc, further on Sgas,H2 and SH2. 

Khyd,ch has the most influence on Xch, moreover the carbohydrate hydrolysis rate has a 

great influence on the sugar concentration and the methane concentration in the liquid 

phase. In the same way khyd,pr, khyd,li and khyd,chs have the most influence on Xpr, Xli and 

Xch,s. 

The hydrogen concentration in the gas is the variable that is above all influenced by most 

of the parameters, such as KS,su, KS,aa, km,aa, Yaa, km,fa and KS,H2. 
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# Parameter
Sensitivity 
Coefficient

# Parameter
Sensitivity 
Coefficient

1 kdis 1.52E-02 23 km,c4 2.24E-08

2 khyd,li 1.11E-02 24 Ysu 2.20E-08

3 khyd,ch 1.10E-02 25 KS,fa 2.18E-08

4 khyd,pr 1.10E-02 26 KS,c4 1.89E-08

5 khyd,ch,s 1.07E-02 27 Yaa 1.79E-08

6 kdec,su 1.60E-03 28 KI,H2,fa 1.31E-08

7 kdec,pro 1.25E-03 29 KI,H2,c4 9.33E-09

8 kdec,ac 1.05E-03 30 km,H2 9.07E-09

9 kdec,c4 1.02E-03 31 kA,B,va 3.85E-09

10 kdec,fa 9.16E-04 32 kA,B,bu 2.08E-09

11 kdec,h2 8.97E-04 33 KS,su 3.72E-10

12 kdec,aa 6.65E-04 34 YH2 2.52E-10

13 km,aa 2.34E-05 35 KS,ac 5.76E-11

14 KS,aa 1.58E-05 36 km,pro 5.73E-11

15 kA,B,co2 9.51E-06 37 Yfa 3.77E-11

16 km,su 6.02E-06 38 KI,NH3,ac 3.06E-11

17 KS,H2 6.64E-08 39 KS,pro 2.72E-11

18 kA,B,pro 5.74E-08 40 KI,H2,pro 2.25E-11

19 KS,IN 4.41E-08 41 km,ac 1.86E-11

20 kA,B,IN 3.64E-08 42 Ypro 1.67E-11

21 kA,B,ac 3.09E-08 43 Yc4 1.10E-11

22 km,fa 2.46E-08 44 Yac 4.88E-12

Table 4.3.4: Results of the sensitivity analysis of the adapted ADM1

For the parameter calibration, literature data, data from our own experiments and from 

experiments performed by project partners were used. Yet, the problem is that the data 

found in literature and also those determined in the laboratory experiments have a large 

margin of deviation, makes the identification of adequate parameters rather difficult.  

Moreover some of the influent components in the ADM1 with a different defining 

characters are difficult to estimate, such as the soluble and particulates substrate, 

biomass and the inerts (Huete et al. 2005). Whereby the particulate component Xxc  and 

the inerts (SI and XI) are the variables with greatest degree of uncertainty (Huete et al.

2005). Huete (2005) suggests therefore that Xxc, XI and SI  should be chosen so that the 

elemental mass fractions of Xxc are consistent with the stoichiometric parameters and the

model predicts nitrogen as well as possible. 

Furthermore after acclimatisation to high ammonium and ammonia levels the process 

became less sensitive to changes in NH3 and NH4
+ concentrations and also changes in 

the pH, but the ADM1 cannot simulate this acclimatisation (Feng et al. 2006).

Fifteen parameters were changed during the calibration of the model (Table 4.3.5): For 

the NI and the NXC content the values suggested by Rosen and Jeppsson (2006) and 

their implementation of the ADM1 into the BSM2 framework were used. The value of 

6 gN.gCOD-1 for NI was chosen to be consistent with the ASM1 model (Henze et al. 1986), 
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original values adapted values

fXI,Xc [] 2.50E-01 3.00E-01

fli,xc [] 2.50E-01 2.00E-01

Nxc [] 2.00E-03 2.69E-03

Ni [kmolNkgCOD
-1] 2.00E-03 4.29E-03

kdis [d-1] 5.00E-01 4.10E-01

km,aa [d-1] 5.00E+01 3.00E+01

km,c4 [d-1] 2.00E+01 2.20E+01

kA,B,va [M-1d-1] 1.00E+08 1.00E+10

kA,B,bu [M-1d-1] 1.00E+08 1.00E+10

kA,B,pro [M-1d-1] 1.00E+08 1.00E+10

kA,B,ac [M-1d-1] 1.00E+08 1.00E+10

kA,B,co2 [M-1d-1] 1.00E+08 1.00E+10

kA,B,IN [M-1d-1] 1.00E+08 1.00E+10

Cxc [kmolCkgCOD
-1] 3.00E-02 2.79E-02

khyd,ch,s [d-1] 1.20E+00 8.50E-01

Parameter

thus the NXC value had to be adapted to close the nitrogen balance (Rosen and 

Jeppsson 2006). As the stoechiometric relationships were updated to keep track of 

excess nitrogen and carbon, as suggested by Rosen and Jeppson (2006) – the term Nbac

- Nxc and Cbac-Cxc was added to the Peterson matrix – the CXC value has to be changed 

to 0.02786 kmolC.kgCOD
-1 to avoid excess amounts of inorganic carbon and thus low 

values of methane in the biogas (Rosen and Jeppsson 2006). Batstone and co-workers 

suggest that kA,B should “be at least one order of magnitude larger than the fastest time 

constant” and proposed a value of 1.108 M-1d-1 (Rosen and Jeppsson 2006). Yet, Rosen 

and Jeppsson (2006) found that a value of 1.108 is not sufficient and recommended a 

value of 1.1010 M-1d-1, this value was used for all kA,B in this study. All other parameters 

were calibrated by trial and error.

Table 4.3.5: Original and calibrated parameters in the adapted ADM1

The adapted and calibrated model predicts most of the values accurately enough 

(Table 4.3.6 and Figure 4.3.3). The COD reduction is predicted very well by the model 

(r2 = 0.57, d = 0.85 and RMean = 0.03). The low determination coefficients are a result of 

the large amount of data, in similar studies a data range of 66 days on average 

(Angelidaki et al. 1993; Christ et al. 2000; Kalyuzhnyi et al. 2000; Seok and Komisar 

2002; Siegrist et al. 2002; Aceves-Lara et al. 2005; Bernard et al. 2005; Flotats et al.

2006) is shown. If only part of the data is examined higher determination coefficients can 

be found, for example for the final period (day 501 – 555) an r² = 0.92 can be found for 

the COD reduction. Yet, as biogas plants are planned and constructed as long term 

processes, it seemed more reasonable to make also a long term simulation. The 

prediction of the gas and methane production (Figure 4.3.3) as well as the pH was done 

accurately. The negative value of RMean of the acetate, propionate and VFA 

concentration, and the COD reduction signifies that the values measured are 

underestimated in the model (Elias et al. 2006). It seems that the model cannot handle 

http://.kg
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Gas production 0.48 0.70 0.73 okay
Methane production 0.48 0.68 0.84 okay
Acetate Concentration 0.00 0.36 -0.46 bad
Propionate Concentration 0.03 0.43 -0.99 bad
VFA 0.01 0.40 -0.77 bad
pH 0.43 0.72 0.03 good
COD Reduction 0.57 0.85 0.03 good

the high VFA concentration which appeared in this study, which leads to an 

underprediction of these values – the addition of a new inhibition function could improve 

the performance of the model. Yet, the implementation of a new inhibition function was 

not possible within the frame of this study.

Figure 4.3.3: Methane production predicted using the calibrated adapted model

Table 4.3.6: Values of the statistical indicators r², d and RMean for the adapted model using the 
calibrated parameter (green = good, yellow = okay)

The results of the calibrated adapted model were compared with results from the 

calibrated original model (Table 4.3.7). In the original model sixteen parameters were 

adapted for this study. Whereby Nxc, NI, Cxc, and kA,B were adapted according to Rosen 

and Jeppson (2006), in the same way as for the adapted model. All other parameters 

were calibrated by trial and error. Whereby the hydrolysis rates had to be chosen as 1 d-1

instead of 10 d-1 (suggested by Batsone and co-workers (2002)), to obtain reasonable 

results.

Comparing the adapted and the original calibration it was found that rather similar results are 

achieved using the calibrated original model. 

The gas and methane production was predicted less adequately using the adapted model 

(r2
gas,adapted = 0.48 and dgas,adapted = 0.70 and r2

methane,adapted = 0.51 and dmethane,adapted = 0.68 
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original values adapted values

fXI,Xc [] 2.50E-01 3.00E-01

fli,xc [] 2.50E-01 2.00E-01
Nxc [] 2.00E-03 2.69E-03
Ni [kmolNkgCOD

-1] 2.00E-03 4.29E-03

kdis [d-1] 5.00E-01 3.00E-01

khyd,ch [d-1] 1.00E+01 1.00E+00

khyd,pr [d-1] 1.00E+01 1.00E+00

khyd,li [d-1] 1.00E+01 1.00E+00

km,ac [d-1] 6.00E+00 8.00E+00

kA,B,va [M-1d-1] 1.00E+08 1.00E+10

kA,B,bu [M-1d-1] 1.00E+08 1.00E+10

kA,B,pro [M-1d-1] 1.00E+08 1.00E+10

kA,B,ac [M-1d-1] 1.00E+08 1.00E+10

kA,B,co2 [M-1d-1] 1.00E+08 1.00E+10

kA,B,IN [M-1d-1] 1.00E+08 1.00E+10

Cxc [kmolCkgCOD
-1] 3.00E-02 2.79E-02

Parameter

r2
d RMean

Gas production 0.51 0.74 0.67 okay
Methane production 0.51 0.70 0.81 okay
Acetate Concentration 0.00 0.40 -0.76 bad
Propionate Concentration 0.03 0.43 -0.99 bad
VFA 0.01 0.42 -0.90 bad
pH 0.42 0.70 0.03 good
COD Reduction 0.52 0.84 -0.01 good

respectively) compared to the original model (r2
gas,original = 0.48 and dgas,original = 0.74 and 

r2
methane,original = 0.51 and dmethane,orignal = 0.70 respectively). On the other hand the pH and the 

COD reduction were predicted slightly better using the adapted model compared to the 

original model. The VFA could not be predicted better in the original model than in the 

adapted model. 

Table 4.3.7: Calibrated and original parameters in the original ADM1

Table 4.3.8: Values of the statistical indicators: square of the correlation coefficient (r²), index 
of agreement (d) and Ratio of means (RMean) for the original model using measured values to 
estimate the initial conditions (case 1) (green = good, yellow = okay) 

In order to prove that the “mass_balance” was completely suitable for a first estimation of 

the initial conditions especially if no or only few measurements are available, a 

comparison was made predicting the gas (Figure 4.3.4) and methane production, the 

VFA, pH and COD reduction using the measured values as estimations for the initial 

conditions (case 1) and using the values determined by the mass balance to estimate the 

initial conditions (case 2) (Figure 4.3.4, Table 4.3.8 and Table 4.3.9). Whereby the 

measured values were used for the acetic and propionic acid concentrations as well as 

the inorganic nitrogen. 

Using the values estimated by the “mass_balance” to determine the initial conditions, the 

pH and the COD reduction were predicted as acceptably as using the measured values. 

Only the prediction of the gas and methane production displayed a lower determination 



RESULTS AND DISCUSSION

- 121 -

0

50

100

150

200

250

300

350

0 100 200 300 400 500

time  [d]

G
as

 P
ro

d
u

ct
io

n
 [

m
3
.d

-1
]

gas production measured

gas production predicted X0 measured

gas production predicted X0 massbalance

r2
d RMean

Gas production 0.31 0.59 0.76 okay
Methane production 0.28 0.54 0.90 okay
Acetate Concentration 0.00 0.41 -0.79 bad
Propionate Concentration 0.01 0.43 -0.98 bad
VFA 0.00 0.42 -0.90 bad
pH 0.40 0.68 0.03 good
COD Reduction 0.55 0.85 -0.01 good

coefficient (Table 4.3.9) compared to case 1 (Table 4.3.8). Also in “case 2”, the VFA 

concentration was predicted far too low and very low values for the determination 

coefficient were found. A value of < 0.3 for RMean, which is acceptable, was only obtained 

for the pH and the COD reduction in both cases. Yet, the index of agreement for the gas 

and methane production and the pH and COD reduction was higher in case 1 than 0.6, 

which indicates a good model (Elias et al. 2006). In case 2 for the prediction of pH and 

COD reduction values of > 0.6 were found. For the prediction of the gas and methane 

production acceptable values of between 0.5 and 0.6 were found.

Figure 4.3.4: Comparison of the original ADM1 using measured values as initial conditions and 
using values from the mass balance as initial conditions.

Table 4.3.9: Values of the statistical indicators: square of the correlation coefficient (r²), index 
of agreement (d) and Ratio of means (RMean) for the original model using measured values to 
estimate the initial conditions (case 2) (green = good, yellow = okay) 

These results indicate that the mass balance is definitely suitable for a first estimation of 

the initial conditions.

After calibration of the model a validation and examination of the estimated parameters is 

necessary. Since parameter estimation means the fitting of the model to data from a 

specific process, whereas validation is the testing of the fitted model (Olsson and Newell 

1999).
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Model validation was done with one third of the data, which was not used in model 

calibration.

Figure 4.3.5 shows the results of the validation of the adapted model. RMean indicates in 

nearly all cases an accurate model – for the gas and methane production, the acetate 

concentration, the pH and the COD reduction RMean < 0.3. The index of agreement 

indicates for the gas and methane production and surprisingly for the acetate 

concentration a good model. For the VFA are the values acceptable for the index of 

agreement. Yet the determination coefficient shows very low values, except for the COD 

reduction (Table 4.3.10).

Figure 4.3.5: Prediction of the gas production during model validation of the adapted ADM1

Table 4.3.10: Values of the statistical indicators r², d and RMean during validation of the adapted 
model (green = good, yellow = okay)

Summarizing it can be said that no real difference could be found between the original and 

the adapted model. This indicates that the original model was not structurally wrong for this 

application – except for the problem of predicting VFA values, which is true for both models. 

Yet, the adapted model is a better illustration of the reality.

The model predicts the measured data accurately enough to predict the rough 

development of the data and the correct range of the data, however not precisely enough 
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to predict the “correct” value and thus the model is not suitable for a Decision Support 

System (DSS). 

Moreover for practical application in technical plants the large amount of data needed in 

the ADM1 is a core issue – as only a small number of the values are normally measured 

in technical plants. Sure it is useful to calibrate the model using a laboratory reactor and 

it is possible to estimate most of the values, for example using the “mass_balance”. Yet, 

the more the values are estimated the more imprecise the prediction is, as changes in 

the input and the initial conditions have a great impact on the model output.

Surely better results could be achieved if more state variables could have been 

measured during the study. A further core issue is also that the adaptation to high 

ammonium and ammonia values can not be modelled and that apparently the high, in 

part, VFA concentrations cannot be modelled.

Addition of the Sulphate reduction process according to Federovich et al.

(2003) and according to Batstone (2006)

In particular when substrates with high protein content are used, e.g. sunflower press 

residues, high amounts of sulphate are found in the liquid and gas phases. These high 

levels of sulphate and sulphide result in different problems. First of all, sulphate reducing 

bacteria (SRB) compete with the methanogenic bacteria for the same substrate. In 

addition the H2S in the sludge causes an inhibition of the metabolic activity of the 

bacteria (Gerardi 2003). The first inhibition effects have to be taken into account 

beginning at an H2S concentration of 30 mg.l-1. An H2S content of more than 10 % in the 

biogas disrupted the acetate production (Bischofsberger et al. 2005). An elimination of 

the H2S is not only important for the successful operation of the AD process, but also to 

prevent problems of corrosion in the plant or minimize SO2 emissions during the 

combustion of the biogas (Bischofsberger et al. 2005).

Thus the ADM1 augmented by the sulphate reduction process was added into the Virtual 

Laboratory 1.2 in two versions: the sulphate reduction process according to Federovich 

(2003), already described in (Strik 2004), and the extension with the SR according to 

Batstone (2006).

The addition of the sulphate reduction (SR) process is very complex as the sulphate acts 

as electron acceptor for the oxidation of VFAs and reacts with hydrogen (Batstone et al.

2005). Moreover sulphide is inhibitory and affects the pH (Batstone et al. 2005). Thus for 

a comprehensive model of sulphate reduction every part of the ADM1 has to be modified 

(Batstone et al. 2005). Such an implementation of the SR was done by Federovich and 

co-workers (2003), also described in (Strik 2004) (Figure 4.3.6). Batstone (2006)

suggests a simpler model, with only one group of sulphate reducers, however this model 

works only with an influent S:COD ratio of up to 0.1 kgS.kgCOD
-1.

SRB are capable of using many intermediates formed during the AD process and 

therefore competes for with the acidogenic bacteria for sugars and amino acids, 

http://.kg
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Particulates (including inactive biomass)Particulates (including inactive biomass)
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LipidsLipidsProteinsProteinsCarbohydrates Carbohydrates 
fastfast

Inerts Inerts (soluble (soluble 
and particular)and particular)

acetogenic bacteria for VFAs and methanogenic bacteria for acetate and hydrogen 

(Fedorovich et al. 2003).

For the sugars and amino-acids the competition is won by the acidogenic bacteria 

(Fedorovich et al. 2003). The ADM1 should be therefore augmented by VFA, acetate and 

hydrogen removal by sulphate reduction (Fedorovich et al. 2003).

Four bacteria groups are considered in the extension for the SR process: the butyrate-

degrading sulphate-reducing bacteria (X5), propionate-degrading sulphate-reducing 

process (X6), acetotrophic sulphate-reducing process (X7) and hydrogenotrophic bacteria 

(X8) (Fedorovich et al. 2003).

Figure 4.3.6: Schema of the biochemical processes of the adapted model (implementation of 
the SR process according to (Fedorovich et al. 2003) -        Shows changes compared to the 
original model

The extension of the ADM1 to include sulphate reducing processes is described in more 

detail by Federovich and co-workers (2003) and by Strik (2004), as well. 

To find the most sensitive parameter a sensitivity analysis was done for the model 

augmented with the SR process according to Federovich and co-workers (2003) (Table

4.3.11). 

The most sensitive parameters should be calibrated up front. The acetate uptake rate 

(km,ac), the half saturation rate (KS,ac) and the 50% inhibitory concentration (KI,H2S,c4) have 

the most impact on the model output. 
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# Input variable
Sensitivtiy 
coefficient # Input variable

Sensitivtiy 
coefficient

1 km,ac 1.17E+15 42 KI,h2s,h2 4.74E+03

2 KS,ac 1.30E+14 43 KS,c4 4.73E+03

3 KI,h2s,c4 1.89E+12 44 KI,h2s,x5 3.72E+03

4 KS,H2 1.55E+12 45 kdec,ac 3.49E+03

5 KI,h2s,fa 4.92E+11 46 Ka,hs 3.03E+02

6 pHLL,srb 1.27E+10 47 KI,h2s,su 3.44E+01

7 kLah2s 8.95E+09 48 kdec,aa 2.24E+01

8 KH,CH4 4.37E+09 49 kdis 1.03E+01

9 kA,Bhs 3.39E+09 50 kA,B,co2 9.36E+00

10 KH,h2s 2.37E+09 51 km,so4,bu 6.78E+00

11 Ysu 2.17E+09 52 km,so4,h2 5.98E+00

12 km,so4pr 9.24E+08 53 KI,h2s,x8 4.87E+00

13 KI,h2s,ac 5.26E+08 54 KS,IN 4.66E+00

14 Yc4 3.58E+08 55 KI,H2,fa 4.24E+00

15 Yx7 2.64E+08 56 Yac 2.57E+00

16 KI,h2s,x6 1.61E+08 57 kdec,X7 2.09E+00

17 KI,H2,c4 7.66E+07 58 KS,aa 1.97E+00

18 Yx6 5.41E+07 59 KI,h2s,aa 1.64E+00

19 km,fa 3.08E+07 60 kdec,X5 9.12E-01

20 Yaa 2.83E+07 61 Yx5 8.36E-01

21 km,so4,ac 2.39E+07 62 kdec,h2 4.14E-01

22 Ka,h2s 2.38E+07 63 khyd,li 1.68E-01

23 KS,fa 9.77E+06 64 kdec,su 1.27E-01

24 KI,h2s,x7 5.67E+06 65 KS,so4,h2,h2 1.24E-01

25 KI,NH3,ac 3.59E+06 66 pHUL,srb 1.01E-01

26 kdec,fa 2.61E+06 67 kdec,X8 9.05E-02

27 km,H2 8.20E+05 68 YH2 3.74E-02

28 KS,so4,ac,ac 6.21E+05 69 khyd,pr 8.96E-03

29 kdec,pro 4.57E+05 70 khyd,ch 8.92E-03

30 Yfa 1.41E+05 71 KS,so4,pr,so4 1.75E-44

31 kdec,X6 9.65E+04 72 KS,so4,bu,so4 2.75E-45

32 km,aa 9.45E+04 73 km,pro 0.00E+00

33 kdec,c4 9.01E+04 74 KS,pro 0.00E+00

34 KS,so4,bu,bu 8.66E+04 75 Ypro 0.00E+00

35 km,su 6.23E+04 76 KI,H2,pro 0.00E+00

36 kLa 4.21E+04 77 KS,so4,h2,so4 0.00E+00

37 km,c4 3.00E+04 78 KI,h2s,pro 0.00E+00

38 KS,so4,ac,so4 1.57E+04 79 ∆H0Ka,hs 0.00E+00

39 KS,su 9.04E+03 80 ∆H0Ka,h2s 0.00E+00

40 KS,so4,pr,pr 6.66E+03 81 ∆H0KH,h2s 0.00E+00

41 Yx8 5.65E+03

Table 4.3.11: Sensitivity coefficients of the ADM1 augmented with the Sulphate reduction 
process according to Federovich et al., 2003
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These parameter have the greatest influence on the sulphate concentration (SSO4,2-), 

hydrogen sulphide anion concentration (SHS-) and the hydrogen carbonate concentration 

(SHCO3-). The sulphate concentration state (SSO4,2-) is moreover the variable that is the 

most influenced by the majority of the parameters, followed by the hydrogen sulphide 

anion concentration (SHS-) and the sugar concentration (SSU). 

As described above the implementation of the SR process according to Batstone (2006)

is much simpler (Figure 4.3.7).

Figure 4.3.7: Schema of the biochemical processes of the adapted model (implementation of 
the SR process according to (Batstone 2006) -        Shows changes compared to the original 
model

The following equations show the extension of the ADM1 with sulphate reducing 

processes (according to (Batstone 2006)). The algebraic equation for the pH calculation 

was extended to (Equation (115)):
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The inhibition function describes the influence of excessive amounts of sulphides 

(Fedorovich et al. 2003) (Equation (116)):
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Subsequent process rates were added to the ADM1 (Equation (117) to (119)):
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New gas phase equations for H2S were added as well (Equation (120) and (121)):
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The carbon balance was extended with subsequent equations, too (Equation (117) to 

(118)):
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Following new or adapted differential equations were implemented in the model 

(Equation (124) to (129)):
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A sensitivity analysis was done, in order to find the most sensitive parameters for the 

extension of the ADM1 with the SR process according to Batstone (2006) (Table 4.3.12). 

In this case the upper and lower limit of pH inhibition (pHUL,srb and pHLL,srb) and the 

sulphate uptake rate (km,SO4) are the most sensitive parameters, followed by the 

disintegration rate (kdis) and the hydrolysis rates (khyd,ch, khyd,pr, khyd,li and khyd,chs). 

Whereby a change in the limits of pH inhibition or km,SO4 has the highest impact on the 

hydrogen in the liquid and gas phases. The disintegration rate has the highest impact on 

the complex particulates and the methane concentration in the liquid and in the gas 

phase. The hydrogen concentration in the gas is the variable that is most influenced by 

the majority of the parameters, such as KS,IN, km,su, Ysu, km,aa, KS,fa, km,c4 and km,H2. 

The calibration and validation of the implementation of the SR process in the ADM1 

according to Federovich and co-workers (2003) and according to Batstone (2006) was 
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# Parameter
Sensitivity 
Coefficient # Parameter

Sensitivity 
Coefficient

1 pHLL,srb 1.49E+10 27 kdec,aa 5.05E-04

2 km,so4 3.49E+00 28 km,H2 5.01E-04

3 pHUL,srb 2.65E-02 29 Yaa 4.55E-04

4 kdis 1.37E-02 30 kdec,h2 4.36E-04

5 khyd,ch 1.05E-02 31 Yso4 4.35E-04

6 khyd,pr 9.70E-03 32 kdec,fa 4.29E-04

7 khyd,ch,s 9.67E-03 33 kA,B,va 2.60E-04

8 khyd,li 9.38E-03 34 km,ac 2.19E-04

9 km,su 6.11E-03 35 KI,NH3,ac 2.19E-04

10 km,aa 2.40E-03 36 Yac 2.19E-04

11 km,c4 1.95E-03 37 KS,ac 2.19E-04

12 KS,c4 1.88E-03 38 YH2 2.19E-04

13 kA,B,co2 1.76E-03 39 kdec,pro 1.88E-04

14 kA,B,IN 1.76E-03 40 KS,fa 1.22E-04

15 KS,IN 1.66E-03 41 Yfa 7.61E-05

16 kA,B,pro 1.49E-03 42 Yc4 1.65E-05

17 KS,H2 1.28E-03 43 KI,H2,c4 1.12E-05

18 km,fa 1.28E-03 44 KS,so4 1.02E-05

19 KS,aa 1.27E-03 45 kLah2s 6.14E-06

20 Ysu 7.59E-04 46 KI,H2,fa 9.07E-07

21 kA,B,ac 7.19E-04 47 KS,su 6.66E-07

22 kdec,XSO4 6.85E-04 48 KS,pro 1.53E-12

23 kdec,su 5.68E-04 49 Ypro 9.27E-15

24 kdec,c4 5.48E-04 50 KI,H2,pro 3.02E-15

25 kA,B,bu 5.39E-04 51 km,pro 4.77E-18

26 kdec,ac 5.35E-04

not in the frame of this study. Moreover, validation of the SR process according to 

Federovich et al. (2003) has been done in the thesis by Strik (2004). However, both 

ADM1 adaptations were implemented in the Virtual Laboratory 1.2.

Table 4.3.12: Sensitivity coefficients of the ADM1 extended with the Sulphate reduction 
process according to Batstone, 2005

4.3.2 AD model based on the ADM1 (Batstone et al. 2002) and the model by Marsili-

Libelli and Beni (1996) (ADMML)

Since the ADM1 is too complex and the results gained by the ADM1 not precisely 

enough to be suitable for a DSS, a simpler model was developed. The model developed 

(Figure 4.3.8) was based on the anaerobic digestion model by Marsili-Libelli and Beni 

(1996) and the ADM1 (Batstone et al. 2002).

The model by Marsili-Libelli and Beni (1996) is a simplified mathematical AD model, 

especially developed to describe the behaviour of anaerobic digesters under shock 

loading conditions with a special emphasis on bicarbonate alkalinity. This model was 
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designed for the implementation of control strategies to minimize the effects of organic 

load shocks (Marsili-Libelli and Beni 1996).

In contrast to the model by Marsili-Libelli and Beni (1996) in the ADMML the substrate is 

not only soluble, but also in a particulate form. All complex particulates are hydrolysed to 

one soluble component, idealist in the form of glucose. The glucose is then degraded to 

the fatty acids, idealist in the form of acetate and CO2. The simplification is done as in a 

digester under normal conditions. The fatty acids are present for the most part as acetic 

acid (Marsili-Libelli and Beni 1996). Finally methane and carbon dioxide is produced. The 

decayed biomass becomes a part of the complex and the inert particulates. As methane 

is not very soluble and not used in the biochemical processes only a gaseous methane 

component is included in the model (Sötemann et al. 2006). That means that the 

acetoclastic methanogenesis process produces methane in the gas phase directly 

(Sötemann et al. 2006). 

Figure 4.3.8: ADMML based on ADM1 (Batstone et al. 2002) and the AD model by Marsili-Libelli 
and Beni (1996)

Only one inhibition function was included in the model (Equation (130)):

acIAC

IAC
ac SK

K
I

+
=3 (130)

The following process rates were implemented in the model (Equation (131) to (136)):
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# Parameter
Sensitivtiy 
Coefficient

1 KS,ac 1.57E-06

2 kdec,su 1.53E-06

3 kdec,ac 1.52E-06

4 Ysu 1.25E-06

5 km,su 1.23E-06

6 Yac 1.07E-06

7 km,ac 1.03E-06

8 khyd 2.16E-07

9 KS,su 1.57E-09

10 KIAC 1.82E-12

The model comprises the subsequent differential equations (Equation (137) to (145)):
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It was not possible to calibrate or validate the ADMML within the framework of this study, 

however a sensitivity analysis was carried out (Table 4.3.13).

Table 4.3.13: Sensitivity coefficients of the simplified Model ADMML

The half saturation rate of acetate KS,ac and the decay rate of sugar kdec,su and acetate 

kdec,ac are the parameters that have the most impact on the model output. KS,ac, kdec,su

and kdec,ac have the greatest impact on the acetate concentration Sac, the sugar 

concentration Ssu and the complex particulates Xc. The complex particulates is the state 
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variable that is most influenced by most of the parameters, followed by the acetate 

concentration and the sugar concentration.

This simplified model was implemented in a control tool. The control tool was developed, 

but could only be cursorily tested as it was not within the framework of the study to 

calibrate the model.

The input data of the current day is first increased by 20% and then the reactor data of 

the next day is predicted using the data measured of the current day as initial conditions. 

The output is then compared with “ideal” values. The increase of the feed input is 

decreased as long as the “ideal” values are not reached. And so the organic loading rate 

of the next day can be predicted.

Figure 4.3.9: Control tool based on the ADMML 
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4.4 Virtual Laboratory (VL) 

One output of this study was the development of a so-called “Virtual Laboratory” (VL), 

which was one of the goals of the CROPGEN project, for data processing and 

interpretation as well as the mathematical model formulation of the biogas process. Two 

different VLs were developed. The basis of the VLs is the ADM1 (Batstone et al. 2002). 

The VL is conceived of as a software training tool to provide users with a more detailed 

insight into the AD process. 

4.4.1 Virtual Laboratory VL 1.1

The first version of the VL (VL 1.1) is a software training tool for the simulation of the AD 

process, using different energy crops (maize, lupine (blue, white), soy, sunflower, rape, 

rye and triticale) as input substrate and the original ADM1 (Batstone et al. 2002). 

Additionally the “mass balance” was implemented in the tool to estimate the initial 

conditions.

The VLs are written in the graphical programming system LABVIEW®, with an 

implementation of the ADM1 as MATLAB® script, compiled in MATLAB® executable. 

The MATLAB® code for the VL was written, based on an existing MATLAB®-

SIMULINK® file of the original ADM1 (Rosen and Jeppsson 2002). The LABVIEW® 

program serves as a user interface. 

Structure of  the VL 1.1

The VL is organized into several levels (Figure 4.4.1). The possibility to choose different 

reactor types has not been implemented in the frame of this work, but is foreseen in the 

program structure. First of all there is the possibility to choose a substrate or a mixture of 

substrates. Next there is a characterization of the reactor used. Then the selected case 

is modelled using the ADM1. The output of the model is then presented as diagrams 

and/or tables and can be printed out. 
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Figure 4.4.1: Structure of the Virtual Laboratory. Options marked red in the flow sheet are not available in the Version 1.1, but will be available in later 
versions. Boxes with a dashed line will not be realized in the frame of CROPGEN project.
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A

Figure 4.4.2: Screenshots of the redesigned Virtual Laboratory 1.1: A) Start of program, B) 
Choose of Reactor type, C) Simulation of the AD process, D) and E) Output of the simulation 
results in form of tables and graphs 

Furthermore the user can choose different values for the disintegration rate and the 

hydrolysis rates. Since, according to literature, the limiting steps in anaerobic digestion 

are the hydrolysis of macromolecules and the methanogenesis from acetate 

(Pavlostathis, 1986).

4.4.2 Virtual Laboratory VL 1.2

The Virtual Laboratory (VL) version 1.2 is software tool for the simulation of the AD 

process with mathematical models based on the ADM1. 

The VL 1.2 is written, like the VL 1.1, in the graphical programming system LABVIEW®, 

with an implementation of the ADM1 as MATLAB® script, compiled in MATLAB® 

executable. 

Structure of  the VL 1.2

The VL 1.2 is organized into several levels (Figure 4.4.3), similar to the VL 1.1. First of all 

there is the possibility to choose the model version and model alternative (batch or 

continuous). Next there is a characterization of the reactor used and subsequently the 

parameters. Then the selected case is modelled using the ADM1. The output of the 

model is then presented as diagrams and/or tables and can be saved and printed out. 
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Figure 4.4.3: Structure of the VL 1.2

Figure 4.4.4: Screenshots of the User Interface of the VL 1.2: A) Start of program, B) Choice of 
model, C) Reactor data, D) Choice of parameter, E) Simulation of the AD process and F) Output 
of the simulation results – choice of table and / or graphs 

4.4.3 Virtual Laboratory VL 2.1

The Virtual Laboratory VL 2.1 (Figure 4.4.5) is also, similarly to the VL 1.1, conceived as 

a training instrument for students to gain an insight into the biogas process.
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Figure 4.4.5: Screenshot of the VL 2.1

Structure of  the VL 2.1

The basis of the VL 2.1, is like in the VL 1.1, the Anaerobic Digestion Model No.1 

(ADM1) (Batstone et al. 2002). However in comparison to the VL 1.1 the structure is 

much simpler (Figure 4.4.6): At the beginning the temperature range can be chosen 

(either mesophile or thermophile), after pressing start the program begins to run. It first 

waits 20s – during this time it is possible to chose the substrate type and also the feed 

amount, afterwards the feed button has to be pressed – then the biogas process is 

simulated for one day and the program gives the data for the current (Figure 4.4.5 (A)) 

and also the development of the parameters since the program was started (Figure 4.4.5

(B)) – then the program starts again and waits again. If the feed button is not pressed 

within the “wait” period, the program calculates the input array with a feed amount of 

zero.

Figure 4.4.6: Structure of the VL 2.1

The reactor condition is defined by the gas production (gp), the methane content (mc), 

the pH (ph), the volatile fatty acid concentration (vfa), the propionic acid concentration 

B

A

C
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(pro), the acetic acid concentration (ac) and the COD Reduction (abbau), are indicated 

by different colours (green = “good”, orange = “okay” and red = “bad”).

As in the VL 1.1, in the VL 2.1 eight different substrates (maize, lupine (blue, white), soy, 

sunflower, rape, rye and triticale)) can be chosen, where up to four different substrates 

can be mixed. 
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4.5 Decision Support System based on Fuzzy Control

To make the biogas process economically attractive, the process has to be optimised. 

There are different ways to improve biogas production, such as substrate pre-treatment 

(thermal methods, chemical methods, biochemical methods and mechanical methods), 

removal of toxic components, co-digestion different substrates, innovative reactor 

designs and an advanced process control. Advanced process control can be realized 

using a decision support system (DSS). 

“DSS are computer-based systems used to assist and aid decision makers in their 

decision making processes” (Bogardi 2004) Normally such a system consists of several 

dimensions, where the actual decision-making is important, but nevertheless only a part 

of the whole DSS (Bogardi 2004).

For DSS based on complex mathematical models (e.g ADM1), a significant problem is 

the amount of data required, which is often a problem for technical biogas plants. This is 

due to the fact that there is a lack of online sensors available and existing sensors need 

extensive maintenance (Olsson and Newell 1999). Moreover operators are in most cases 

not sufficiently educated to deal with the instrumentation and control adequately (Olsson 

and Newell 1999). One possibility is to use a simpler model as the basis for the DSS, 

which was shown before. Another alternative is a fuzzy logic based control tool.

4.5.1 Comparison of different Fuzzy Tools using the ADM1 and a composite 

programming based ranking method

A fuzzy logic tool, which was designed during another EU project (AMONCO project), 

was now enhanced to improve the control performance. This DSS is designed to identify 

process control strategies to yield a high methane content final product.

The original tool used either the (i) total fatty acid concentration (from the current day and 

the day before) or the (ii) pH (from the current day and the day before) and also the 

methane content, the gas production rate and the organic loading rate of the current day 

as input and gave the organic loading rate of the following day as output. The fuzzy 

methodology used was the fuzzy interference method by Mamdani (for all used Fuzzy 

Tools). (Mandani and Assilian, 1975). 

Seven different tools were developed. These tools and the original tool developed (i) 

were tested with the ADM1 (Batstone et al. 2002) and compared with a composite 

programming based ranking method, not only to find the best structure, but also to find a 

possibility for supporting experts in the development of fuzzy tools. 

Composite Programming is an extension of Compromise Programming, which is itself an 

approach to multiple criterion decisions making (Bogardi 2004). The principle of multiple 

decisions making is to maximize the satisfaction of the different conflicting objectives in 

order to find the best option (Bogardi 2004). Compromise Programming is measuring the 

distance between the actual solution and the ideal solution and then selecting the 
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minimum distance. Composite Programming works with a hierarchical and normalized 

distance type. Here, the process is broken down into its elementary components, and 

then grouped in broader and higher leveled indicators (Bogardi 2004).

Firstly the tools themselves were tested to find the ideal membership functions. This 

examination is done by calculating one day with the ADM1. The output values of the 

ADM1 are then used as the input for the Fuzzy Tool. Herewith the amount of feed for the 

next day is calculated. This is considered in the input for the ADM1 and the next day is 

calculated. The output is again used as the input for the Fuzzy Tool and so on. The 

calculation is done for 50 days. Hereby 3 to 47 different scenarios were tested, changing 

either one or more “Fuzzy Blocks” (either changing only the input membership functions 

of the block or also changing the output membership functions, with 60 different values 

for each membership function (also varying between trapezoid and triangle forms). 

The gas production, the methane content, the concentration of the acetic acid, the 

concentration of the propionic acid, the total concentration of volatile fatty acids, the COD 

reduction and the pH were chosen as appraisal factors. 

Minima and maxima and a weight were defined for these criteria, depending on the 

range of the membership functions used (the range remained equal for all membership 

functions in all scenarios). For the evaluation here, the mean value of each criterion in 

each scenario was used, under consideration of the standard deviation. The mean 

values were normalized, multiplied by the weight and summarized. Thus each scenario 

gets one value, thus the scenarios can be ranked depending on this value.

Fuzzy Tool 1:  F_DSS_051006

The input of this tool (Figure 4.5.1) is the VFA concentration of the current day and the 

difference between the VFA concentration of the current day and the day before. The 

difference in the VFA concentration of the current day and the day before is added to the 

fuzzy tool as a second input factor, as not only the current VFA concentration is 

important, but the change in the VFA concentration. This is due to the fact that, if the 

reactor is adapted to high levels of organic acids, they have less effects on the reactor 

performance (Braun 1982). 

Figure 4.5.1: Structure of the Fuzzy Tool F_DSS_051006
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Figure 4.5.2: Result of the comparison of different combinations of membership functions 
F_DSS_051006

Figure 4.5.3: Structure of the best combination of the membership functions of F_DSS_051006; 
A) Membership function for the VFA concentration, B) membership function for the propionic 
acid concentration, C) membership functions for gas production and methane content and D) 
membership function for OLR.

The VFA concentration alone has his weaknesses as indicator, not the amount alone, 

but the composition is of importance, since the acetic acid concentration is less toxic 

than propionic acid (Henze and Harremoes 1983). During an inhibition of aceticlastic 
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methanogens an increase of the propionic acid can always be observed (Angelidaki et al.

1993; Gerardi 2003; Bischofsberger et al. 2005). Thus a further input block using 

propionic acid was added to the fuzzy tool, due to the fact that exalted values of 

propionic acid may indicate difficulties in any of the metabolic steps of anaerobic 

treatment (Speece 1996). Here the propionic acid of the current day and difference in the 

propionic acid of the current day and the day before are used as input.

Additionally the gas production and methane content of the current day were also chosen 

as inputs. These factors are used as input factors as one of the aims of the object tool is 

to reach a stable reactor, with as high a methane production as possible. The methane 

content is, like the VFA and propionic acid concentration, an indicator for the 

performance of the reactor. Due to the fact that Methanogenic bacteria are very sensitive 

to the toxicity of fatty acids and also to changes in pH, temperature and alkalinity 

(Gerardi 2003). The output of the tool is the organic loading rate of the next day and the 

feed volume. 

1320 different combinations of membership functions were compared to each other 

(Figure 4.5.2). Figure 4.5.3 shows the structure of the best combination of the 

membership functions for F_DSS_051006.

Fuzzy Tool 2:  F_DSS_051006b

The structure of this tool (Figure 4.5.4), is simpler than F_DSS_051006 and consists of 

only two input blocks – one using the concentration of the propionic acid of the current 

day and the difference between the propionic acid concentration of the current day and 

the day before and the other the gas production of the current day and the methane 

content of the current day. The output is the organic loading rate of the next day and the 

feed volume. 

Figure 4.5.4: Structure of the Fuzzy Tool F_DSS_051006b

In this case 1020 different combinations of membership functions were compared to 

each other (Figure 4.5.5) in order to find the best combination (Figure 4.5.6).
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Figure 4.5.5: Result of the comparison of different combinations of membership functions 
F_DSS_051006b

Figure 4.5.6: Structure of the best combination of the membership functions of 
F_DSS_051006b; A) Membership function for the propionic acid concentration, B) membership 
functions for gas production and methane content and C) membership function for OLR.

Fuzzy Tool 3:  F_DSS_090806

This tool (Figure 4.5.7) is, in principal, equal to the one developed in the AMONCO 

project. The input of this tool is the concentration of the VFA concentration of the current 

day and the difference between the VFA concentration of the current day and day before 

as well as the gas production and methane content of the current day. The output is the 
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organic loading rate of the next day and the feed volume. This tool is interesting, if only 

the total concentration of fatty acids is measured.

Figure 4.5.7: Structure of the Fuzzy Tool F_DSS_090806

Figure 4.5.8 shows the results of the comparison of the different membership function for 

the tool F_DSS_090806. In the figure the gas production and the methane content of the 

combination of membership functions of rank 1, rank 2 and rank 17 are shown. The final 

membership functions chosen are shown in Figure 4.5.9.

Figure 4.5.8: Result of the comparison of different combinations of membership functions 
F_DSS_090806
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Figure 4.5.9: Structure of the best combination of the membership functions of F_DSS_090806; 
A) Membership function for the VFA concentration, B) membership functions for gas 
production and methane content and C) membership function for OLR.

Fuzzy Tool 4:  F_DSS_101006

F_DSS_101006 (Figure 4.5.10) uses the same blocks as F_DSS_051006, however the 

structure is a bit more complicated. The tool is comprised of membership functions in all 

5 blocks. The input in this case, like in F_DSS_051006, is the VFA concentration of the 

current day and the difference between the VFA concentration of the current day and the 

day before, the propionic acid of the current day and the difference between the 

propionic acid of the current day and the day before, also the gas production of the 

current day and the methane content of the current day. The output, is as in all previous 

tools, the organic loading rate of the next day and the feed volume. 

Figure 4.5.10: Structure of the Fuzzy Tool F_DSS_101006
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Figure 4.5.11: Result of the comparison of different combinations of membership functions 
F_DSS_101006

Figure 4.5.12: Structure of the best combination of the membership functions of 
F_DSS_101006; A) Membership function for the propionic acid concentration, B) membership 
function for the VFA concentration, D) membership functions for gas production and methane 
content and E) membership function for OLR.
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In this case 2820 different combinations of membership functions were compared to 

each other (Figure 4.5.11) to find the best combination of membership functions (Figure 

4.5.12).

Fuzzy Tool 5:  F_DSS_181006b

Measurements are always a cost factor, therefore the attempt was made to simplify the 

control tool as much as possible. Thus three input tools were developed consisting of 

only one fuzzy block of membership functions with only two input variables. For these 

tools 180 combinations of membership functions were compared to each other, to find 

the best structure. The first tool is F_DSS_191006b (Figure 4.5.13). For this tool the 

concentration of the propionic acid of the current day and the methane content of the 

current day are used as input variables. Figure 4.5.14 shows the results of this 

comparison and Figure 4.5.15 the best structure of the membership functions.

Figure 4.5.13: Structure of the Fuzzy Tool F_DSS_181006b

Figure 4.5.14: Result of the comparison of different combinations of membership functions 
F_DSS_181006b
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Figure 4.5.15: Structure of the best combination of the membership functions of 
F_DSS_181006b - Membership function for the propionic acid concentration and methane 
content

Fuzzy Tool 6:  F_DSS_191006

The second of the simple fuzzy tools uses the pH of the current day and the methane 

content of the current day (Figure 4.5.16). 

Figure 4.5.16: Structure of the Fuzzy Tool F_DSS_191006

Figure 4.5.17: Result of the comparison of different combinations of membership functions 
F_DSS_191006
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Normally the optimum pH for the overall AD process is between 6.8 and 7.2 (Gerardi 

2003). The advantage of using the pH as the input for the fuzzy tool is that online 

sensors are cheap. Moreover the pH is normally a standard measurement in technical 

biogas plants. Yet, using the pH as a variable has the disadvantage that it can only serve 

as an indicator for what has already happened in the reactor.

Figure 4.5.17 shows the results of the comparison of the different membership functions. 

In the figure the gas production and the methane content of the combination of 

membership functions of the first three ranks is shown. The best membership function is 

shown in Figure 4.5.18.

Figure 4.5.18: Structure of the best combination of the membership functions of F_DSS_191006 
- Membership function for the pH and the methane content

Fuzzy Tool 7:  F_DSS_191006b

The input of this Tool is the VFA concentration and the methane content of the current 

day. The output is the organic loading rate of the next day and the feed volume. 

Figure 4.5.19: Structure of the Fuzzy Tool F_DSS_191006b

As for F_DSS_181006 and F_DSS_191006 180 combinations membership are tested for 

F_DSS_191006b (Figure 4.5.20). The best membership function is shown in Figure 

4.5.21.
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Figure 4.5.20: Result of the comparison of different combinations of membership functions 
F_DSS_191006b

Figure 4.5.21: Structure of the best combination of the membership functions of 
F_DSS_191006b - Membership function for the VFA concentration and the methane content

Fuzzy Tool 8:  F_DSS_191006c

The last fuzzy tool F_DSS_191006c is the most complicated tool of all the tools 

developed. 

In this tool not only are the organic acids considered, but also the pH of the reactor. The 

input of this tool was the concentration of the propionic acid of the current day and the 

day before, the pH of the current day and the day before and the gas production of the 

current day and the methane content of the current day, as well. The output is the 

organic loading rate of the next day and the feed volume. 

Figure 4.5.23 shows the results of the comparison of the different membership function 

for the tool F_DSS_191006c. In the figure the gas production and the methane content of 

the combination of membership functions of rank 1, rank 2 and rank 47 are shown. The 

membership functions which were finally chosen are shown in Figure 4.5.24.
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Figure 4.5.22: Structure of the Fuzzy Tool F_DSS_191006c

Figure 4.5.23: Result of the comparison of different combinations of membership functions 
F_DSS_191006c
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A B

C D

E

Figure 4.5.24: Structure of the best combination of the membership functions of 
F_DSS_101006; A) Membership function for the propionic acid concentration, B) membership 
function for the VFA concentration, D) membership functions for gas production and methane 
content and E) membership function for OLR

Comparison of Fuzzy Tool  1 to 8

After finding the best combinations of membership functions for the tools developed, all 

eight tools were compared to each other to find the best structure for the fuzzy based 

DSS (Table 4.5.1). This ranking of the different fuzzy tools’ structures is done in the 

same way as the search for the best combination of the membership of the single fuzzy 

tools.

Hereby the tools using the propionic acid concentration, the VFA concentration or pH, 

the gas production and the methane content or only the propionic acid concentration, the 

gas production and the methane content (F_DSS_051006b, F_DSS_101008 and 

F_DSS_191906c) were found to be the tools with the best structures. They were 

followed by the simple tool using only the propionic acid and the methane content as 

input variables (F_DSS_181006b). The tool using the VFA concentration, the gas 

production and the methane content (F_DSS_090806) was found to be at rank 5. The 

worst tools are the two other simple tools using either the VFA concentration 

(F_DSS_191006b) or the pH (F_DSS_191006) and the methane content and the tool 

(F_DSS_051006) using the same input variables as F_DSS_101006 (propionic acid, 
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Points
# Name

2 F_DSS_051006b 2.510E-16
4 F_DSS_101006 2.486E-16
8 F_DSS_191006c 2.468E-16
5 F_DSS_181006b 2.460E-16
3 F_DSS_090806 2.440E-16
6 F_DSS_191006 2.438E-16
1 F_DSS_051006 2.397E-16
7 F_DSS_191006b 2.338E-16

Fuzzy Tool

VFA concentration, gas production and methane content), however using another 

combination than in F_DSS_101006. 

Table 4.5.1: Sensitivity coefficients of the simplified Model ADMML

4.5.2 Testing of the Fuzzy Tool in the laboratory reactors

In order to ensure functionality and usefulness the DSS has to be evaluated. An 

evaluation for this kind of DSS is difficult, due to the fact that it depends on a lot of 

criteria and parameters. The evaluation of two tools (F_DSS_191006b and 

F_DSS_191006c) was done by testing the functionality and efficiency in the laboratory 

reactors. 

Firstly the F_DSS_191006b was tested in the mesophilic reactor for 22 days (Figure 

4.5.25 and Figure 4.5.26). Figure 4.5.25 shows the gas production and the methane 

content of the biogas produced. Moreover the organic loading rate calculated and the 

current organic loading rate are shown. The organic loading rate was hereby increased 

up to 5.91 kg.m-3.d-1. Figure 4.5.26 shows the VFA concentration and the pH.

This test, however, was only partly successful – the gas production and methane content 

increase slightly in the beginning, however after two weeks the VFA concentration starts 

to increase and the gas production and methane content decreases. The tool decreased 

the OLR, however the increase of the VFA was not reversed. After 22 days the test was 

stopped. This test showed that F_DSS_191006b has some weaknesses, which is 

consistent with the comparison done before of the fuzzy tools developed – where this 

tool was determined to be the worst of all eight tools.

The second fuzzy tool that was tested was F_DSS_191006c. This control tool was tested 

in the thermophilic reactor system for 16 days. F_DSS_191006c showed better results 

than the previously tested tool, which is again in accordance with the ranking of the tools 

performed earlier. 

In this case the methane content is decreased significantly (P = 0.001) in the beginning, 

but stabilised around 50 % Methane during the test period. Yet, the gas production rate 

increased significantly (P = 0.025) in the same period (Figure 4.5.27) and the volatile 

fatty acid concentration decreased (Figure 4.5.28). The OLR was rather low at the 

beginning, as the VFA concentration was about 4000 mg.l-1, but the OLR was increased 

to 2.5 kg.m-3.d-1 and the VFA concentration decreased to 778.5 mg.l-1 during the test. 
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These results indicate that the tool was able to stabilise the process and increase the 

methane production slightly from 0.46 m3
Biogasm

-3
Reactor

-1 to 0.68 m3
Biogasm

-3
Reactor

-1.

Figure 4.5.25: Test of the Fuzzy control tool (F_DSS_192006b) in the mesophilic reactor system 
– showing the gas production, methane content and the actual and calculated OLR

Figure 4.5.26: Test of the Fuzzy control tool (F_DSS_192006b) in the mesophilic reactor system 
– showing the VFA concentration and pH
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Figure 4.5.27: Test of the Fuzzy control tool (F_DSS_192006c) in the thermophilic reactor 
system – showing the gas production, methane content and the actual and calculated organic 
loading rates.

Figure 4.5.28: Test of the Fuzzy control tool (F_DSS_192006c) in the thermophilic reactor 
system – showing the VFA concentration and pH.

It was not possible in the frame of this study to test more of the fuzzy control tools. 

Therefore more tests are necessary. 
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Further evaluation of the final chosen fuzzy controller has to include a test in a technical 

scale reactor. Apart from that, one should evaluate, using a questionnaire, whether it is 

user-friendly, whether the tutorials and training units are adequate, also if the users like 

the appearance of the DSS. Furthermore whether the outcome of the DSS is 

understandable and can be directly implemented within the plant. Moreover one should 

evaluate whether the DSS influences the structure of the organisation, the people’s 

positions, or the information flow. Also, how heavy side effects are, such as cost factors 

and training.

4.5.3 Fuzzy Controller

To provide a user friendly HMI (human machine interface) the fuzzy based DSS was 

written in the graphic programming system LABVIEW®, with an implementation of the 

Fuzzy algorithm as MATLAB® script and the Fuzzy Logic Toolbox, compiled in 

MATLAB® executable (Figure 4.5.29 and Figure 4.5.30). 

Figure 4.5.29: Screenshot of the Fuzzy Logic based Decision Support System 

The implementation of such a system in technical plants is difficult, mostly to the 

scepticism of the plant operators, which is understandable due to a certain risk. To 

achieve a broad acceptance the DSS should be cheap, easy to use, which means that 

the user interface should be clearly arranged and self-explanatory. Also it should appeal 

to the users. A corresponding tutorial should be comprehensive and provide a lot of 

examples. 

Yet, an implementation of such a control tool will be very complicated for existing biogas 

plants; therefore a possible implementation and the type of control tool should already be 
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in mind during the planning phase of any biogas plant, as improved measurement 

equipment and the feasibility for sampling are necessary.

Figure 4.5.30: Labview Structure of the Fuzzy Logic based Decision Support System
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5 Conclusion

The objective of this study is the optimisation of the biogas process using enhanced 

process control. This advanced process control is achieved developing a Decision 

Support System (DSS). To obtain more knowledge of the process and to support the 

development of the DSS the AD process was modelled using a modified version of the 

Anaerobic Digestion Model No.1 (Batstone et al, 2002).

In order to obtain data for model validation and calibration and also to glean kinetic data, 

four completely stirred tank reactors (CSTR) were operated at 35°C (mesophilic) (FM1, 

FM3) and at 60°C (thermophilic) (FM2, FM4). Three different substrates were used in 

single crops experiments: Maize silage (only corn, “Maize”), whole crop corn silage 

(“GPS”) and sunflower press residues (“Sunflower”). 

The influence of the hydraulic retention time was tested, since it the HRT is one of the 

most important factors for the control of the process (De la Rubia et al. 2006). 

Additionally the influence of digesting different substrates (Maize, GPS and Sunflower) 

and the influence of different temperature ranges (mesophilic and thermophilic) were 

examined.

The optimal HRT is found to lie around 30 d. The gas and methane production is highest 

at lower HRTs, however at an HRT < 15 d a wash out of the biomass is observed, 

moreover the COD removal is lower and fluctuates more at lower HRTs. 

Comparing GPS with Maize in the thermophilic reactor system, it can be found that GPS

is more efficient than Maize as substrate. As the gas production and methane production 

are higher using GPS and considering additionally the harvest per hectare it is much 

more economical to use the whole plant. Yet some disadvantages have to be 

considered, as well. Higher VFA concentrations, sulphate and H2S concentrations are 

found for the GPS, which can easily lead to reactor failure if the process is not controlled 

properly. 

In addition Maize was compared with Sunflower in the mesophilic reactor system. Maize

was found here to have advantages over Sunflower as substrate – for the gas production 

no difference was found, however the methane production is higher when using Maize. 

Moreover the high ammonia nitrogen values and the high H2S concentrations can lead to 

fatal reactor failure if the reactor is not adapted to the Sunflower substrate. However if 

sunflower press residues are digested it is advisable to mix them with substrates of low 

protein content, for example potatoes or Sudan grass.

Comparing these three substrates, GPS is the one which should be preferred. It has also 

the advantage of being a crop grown in Central Europe since long time.

Furthermore the optimum temperature range was researched. No general optimum was 

found. In the thermophilic temperature range the gas and methane production is also 

significantly higher than in the mesophilic temperature range, however the VFA 

concentration is significantly higher in the thermophilic range. Yet the choice of 

temperature depends on several criteria: one important criteria is the bio-climatic 
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conditions (Bouallagui et al. 2004) – which has a great influence on the energy balance 

of the reactor. The substrate used has a great impact on the optimum temperature, as 

well, especially the sulphate and ammonia content of the substrate. 

One can therefore conclude that in Central Europe the mesophilic temperature range is 

in advantage over the thermophilic temperature range, due to the bio-climatic conditions. 

Yet, due to improved insulation and a change in substrate (more energy crops), self-

heating of reactors (Lindorfer, 2007) occurs, which leads to larger number of reactors 

operating in the lower limit of the thermophilic temperature range.

To get now more insight into the AD process, the process was modelled using the ADM1 

(Batstone et al., 2002). As mentioned previously, before a model can be used for any 

application it has to be calibrated, in the sense that the parameter values are chosen in 

such a way that best possible conformity between the model predictions and the data 

measured can be obtained (Madsen 2000).

Before the model can be calibrated several questions have to be answered and 

problems have to be solved: Which variables have to be measured and how can the 

variables required be measured? How can the data measured be further processed, due 

to measurement errors, missing data or experimental problems. Which parameter should 

be calibrated up front?

In order to determine experimentally all state variables required for the model (input, 

initial) a lot of measurements are necessary. It is practically impossible in an industrial 

plant to measure all parameters and variables required, even in laboratory experiments 

the determination of all variables is a difficult task. However the widespread utilization of 

the ADM1 stands or falls with an easy application of the model (Kleerebezem and Van 

Loosdrecht 2004).

Therefore a compilation of different measurement methods was done, comprising most 

of the variables needed. 

Yet, further research should focus on new measurement methods, as there is generally a 

lack on suitable online measurements for biogas plants. This makes the application of 

any AD model in a industrial plant a difficult task.

To compensate for measurements missing the initial conditions for the ADM1 were 

estimated using a “mass_balance”. This estimation is especially applied in the Virtual 

Laboratory 1.2. The basis of this “mass_balance” is the ADM1 model itself, where the 

calculation of the initial conditions occurs iteratively. The estimation of the methane 

production was done according to Baserga (1998)22 using the protein, fat and 

carbohydrate content in the feed and the reactor sludge.

Some differences can be found, in particular the propionic acid and acetic acid 

concentrations are overestimated. This makes it clear that some further developments 

are still contingently necessary, which were not possible within the framework of this 

study. Especially as some simplifications are made in the mass balance: In this way the 

22 Baserga, U., 1998, Landwirtschaftliche Co-Vergärungsanlagen, FAT-Berichte Nr. 12
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pH (pH = 7) is taken as constant, because the pH calculation in the program was too 

unstable. The same is true for the calculation of some bacteria concentrations (Xaa, Xpro

and XH2). A further difficulty is the nitrogen balance.

Yet, the results of the mass balance for nearly all state variables were in the same range 

as the state variables measured or otherwise determined for the initial conditions and 

therefore within an acceptable range. These results indicate that the mass balance is 

definitely suitable for a first estimation of the initial conditions.

However, this “mass_balance” is suitable alternative, but real measurements should be 

preferred. Thus one can conclude that without an improvement in measurement methods 

for example volatile , no widespread application of the ADM1 or other AD models will be 

possible and modelling of the AD process will always stick to laboratory scale reactors.

Due to the complexity of the ADM1 and in order to glean more information for the model 

calibration and to make a pre-selection of parameters a sensitivity analysis was done to 

find the most sensitive parameter. Which makes a sensitivity analysis to an important 

task, which should be carried out during calibration process, especially to avoid 

unnecessary laboratory experiments.

For the original ADM1 (Batstone et al, 2002) the parameters with the most influence 

according to the sensitivity analysis carried out are the hydrolysis rate of the proteins 

(khyd,pr), the hydrolysis rate of the carbohydrates (khyd,ch) and the hydrolysis rate of the 

lipids (khyd,li). Also influential are the disintegration rate (kdis) and the substrate uptake rate 

of amino acids (km,aa).

This leads to the conclusion that especially the particulates and their compositions and 

concentrations have great influence on the whole model and should be therefore 

carefully estimated during the calibration process. 

There are now different possibilities for finding the optimum parameter: determining the 

parameter in laboratory experiments, using literature data or automatic calibration 

algorithms. The application of automatic calibration algorithms is especially interesting for 

simplified AD models that are identifiable. Automatic control algorithms are applicable for 

the ADM1 if the model is divided in smaller sub-models, which are again identifiable.

In this study now three different automatic control algorithms were adapted for use with 

AD models: 

• a Genetic algorithm, 

• Simulated Annealing and

• a Luus-Jaakola algorithm. 

Unfortunately it was only possible to test these control algorithms cursorily within the 

framework of the project. For practical application further tests and possibly some 

improvements are still necessary (e.g. adaptation of optimisation parameters).

The development of more than one optimisation algorithm was necessary as in a lot of 

practical applications many local minima exist, this also applies for the ADM1. The global 

optimum, is therefore difficult to determine, a cross-check with different optimisation 

procedures is important (Bojkov and Luus 1992).
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But this cross-checking of different algorithms could be a possibility to use the calibration 

algorithms to the determine the parameter of the ADM1, without parting the model and 

ignoring its identifiable. Especially when this cross-checking is used with random start 

values for the first parameter guess and extended validation of the model. 

By far the majority of the existing anaerobic digestion models are developed or 

implemented for the use of wastewater or sludge as substrate. AD models especially for 

the use of energy crops as substrate were not found in literature. The original ADM1 

does not specify all mechanisms of anaerobic digestion, either.

Energy crops, such as rye, triticale, sunflower…, have a high content of cellulose and 

hemicellulose. In order to compensate for the slower degradation of this material a 

second hydrolysis rate for slow degradable carbohydrates was added. 

Yet no real difference can be found between the original and the adapted model. This 

indicates that the original model was not structurally wrong for this application – except for 

the problem in predicting VFA values, which is true for both models. However, the adapted 

model is a better illustration of the reality.

Generally it was found that the model predicts the data measured accurately enough to 

predict the rough development of the data and the correct range of the data, however not 

precisely enough to predict the “correct” value and thus the model is not suitable for a 

Decision Support System (DSS). 

Moreover for practical application in industrial plants the large amount of data needed in 

the ADM1 is a core issue – as only a small number of values are normally measured in 

industrial plants. Sure it is useful to calibrate the model using a laboratory reactor and it 

is possible to estimate most of the values, for example using the “mass_balance”. Yet, 

the more values are estimated the more imprecise is the prediction, as changes in the 

input and the initial conditions have a great impact on the model output. Which leads 

again to before mentioned need of sophisticated, cheap and easy handling measurement 

technologies and methods for biogas plants. Surely better results could be achieved if 

more state variable could have been measured during the study. 

A further core issue is also that the adaptation to high ammonium and ammonia values 

can not be modelled and that apparently the partly high VFA concentrations cannot be 

modelled. Thus further improvements in model would be necessary, however this was 

not possible in the framework of this study.

As an alternative to a model based DSS, a Fuzzy Logic based DSS was developed. 

Eight tools were developed, differing in their structure. These tools were tested with the 

ADM1 (Batstone et al. 2002) and compared with a composite programming based 

ranking method, not only to find the best structure, but also to find a possibility for 

supporting experts through the development of a fuzzy tool. 

To ensure functionality and usefulness the DSS has to be evaluated. An evaluation for 

this kind of DSS is difficult, due to the fact that it depends on a lot of criteria and 

parameters. The evaluation of two tools (F_DSS_191006b and F_DSS_191006c) was 

carried out by showing their functionality and efficiency in the laboratory reactors. 
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First the F_DSS_191006b was tested in the mesophilic reactor for 22 days. This test 

showed that F_DSS_191006b has some weaknesses, which is consistent with the 

comparison done previously of the fuzzy tools developed – where this tool was 

determined to be the worst of all eight tools.

F_DSS_191006c was tested in the thermophilic reactor system for 16 days. In this case 

the methane content decreased significantly (P = 0.001) in the beginning, but stabilised 

around 50 % Methane during the test period. Yet, the gas production rate increased 

significantly (P = 0.025) over the same period and the volatile fatty acid concentration 

decreased. F_DSS_191006c showed better results than the tool tested previously, which 

is again in accordance with the previous ranking of the tools. 

It was not possible in the frame of this study to test more of the fuzzy control tools. Thus 

more test are necessary, before the best tool can be identified. 

Yet, these results lead to the conclusion that the method used - combining the ADM1 

with a composite programming based ranking method – is suited to supporting the 

development of a proper Fuzzy Logic based DSS. 

Work pursued should concentrate on the testing of the automatic control algorithm and 

the use of this algorithm to calibrate the ADM1 and thus improve the performance of the 

model further. Furthermore on improved measurement methods, for example VFAs, H2,..

Moreover to show the advantages of using a DSS further evaluation of the final chosen 

fuzzy controller has to include a test in a technical scale reactor.
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6 Summary

The biological conversion of crops and agro-wastes in the absence oxygen (anaerobic 

digestion) can be used to produce a sustainable fuel. Converting the formed biogas via 

gas engines yields electrical energy and heat. However technical biogas plants often 

have to face severe problems: Low methane values in the biogas (approximately 50%) 

and low overall biogas production, instable process, reactor overload and process failure, 

low efficiency and high operational costs, self-heating in the plants and odour problems, 

which results often in a low economical efficiency. To make the biogas process more 

economically attractive, the process has to be optimised.

Thus main goal of the so-called CROPGEN project (Renewable energy from crops and 

agrowastes, from March 2004 to June 2007) is the integration of energy crops as an 

economically attractive energy source into the existing energy infrastructure. This 

integration as sustainable fuel source will be achieved by the optimisation of the biogas 

process. This optimisation is achieved by new reactor designs, determination methane 

yields, the optimisation of storage and pre-treatment and the identification of process 

using a Decision Support Systems (DSS).

This study was accomplished within the framework of the CROPGEN project and 

encompasses the modelling of the AD process using energy crops as substrate and the 

development of a DSS for optimisation. The main task to prove was that the AD model 

used can predict the digestion of energy crops accurately enough.

The majority of the AD model were developed for AD processes using wastewater, 

sewage sludge or manure as substrate, but hardly any model developments or 

applications for AD processes using energy crops as substrate exist in literature. 

Thus one objective of this study is the extension and adaptation of an existing AD model 

for the use of energy crops as substrate, here the ADM1 (Batstone et al. 2002) was used 

as a basis for further development. 

A further goal was the development of a “Virtual Laboratory” (VL) for data processing and 

the simulation of the AD process. The adjusted model is designed to be implemented in 

this VL. The VL should primary help to provide a better understanding of the AD process.

Moreover an existing Decision Support System (DSS) based on Fuzzy Logic was further 

developed to assist in operational control for optimisation. The DSS is used to identify 

process-control strategies in order to yield an optimised biogas production and a high 

methane content. 

6.1 Anaerobic digestion of energy crops

To obtain data for model validation and calibration and also to obtain kinetic data, four 

completely stirred tank reactors (CSTR), as described before, later noted as FM1 to FM4 

were operated at 35°C (mesophilic) (FM1, FM3) and at 60°C (thermophilic) (FM2, FM4). 

Whereby three different substrates were used in single crops experiments: Maize silage 
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(only corn, “Maize”), whole crop corn silage (“GPS”) and sunflower press residues 

(“Sunflower”). 

The main focus was to reach an optimal methane production in a stable reactor. Thus it 

was necessary to push the envelope of stable conditions. 

For a better understanding of the reactor behaviour and to find optimal conditions, the 

influence of the HRT, the substrates and temperature of the anaerobic digestion of 

energy crops in CSTRs were examined.

6.1.1 Influence of the hydraulic retention time (HRT) and OLR

The hydraulic retention time is one of the most important factors for the control of the 

process (De la Rubia et al. 2006). 

For lower HRTs (< 20 days) the data had a high fluctuation range, which could be a 

result of the partly wash-out of the biomass at HRT lower < 15 days and/or inhibitory 

effects. 

For the gas and methane production per volume of reactor in the thermophilic reactor 

digesting GPS the gas production declines by -0.06 m³Biogas.m
-3

Reactor.d
-1 per 10 d HRT 

respectively by -0.04 m3
Methane

.m-3
Reactor.d

-1 per 10 d HRT.. Using Maize as substrate in the 

same temperature range the gas production sinks by -0.03 m3
Methane

.m-3
Reactor.d

-1 per 10 d 

HRT and methane production per volume of reactor by -0.02 m3
Methane

.m-3
Reactor.d

-1 per 10 

d HRT. In the mesophilic temperature using the same substrate the gas production 

demounts by -0.02 m3
Biogas.m

-3
Reactor.d

-1 per 10 d HRT and the methane production falls 

by –0.01 m3
Methane.m

-3
Reactor.d

-1 per 10 d HRT. In the mesophilic reactor system using 

Sunflower as substrate the methane production lessens by -0.13 m3
Methane.m

-3
Reactor.d

-1

per 10 d HRT.

The pH significantly increases with higher HRTs. So the pH increases by 0.045 per 

10 d HRT using Maize as substrate in the thermophilic temperature range. In the 

mesophilic reactor using Maize the pH only rises by 0.036 per 10 d. The highest slope 

was found in the reactor using GPS as substrate (thermophilic range), here the pH rises 

by 0.055 per 10 d HRT. If Sunflower is used as substrate in at 35 ± 1 °C no significant 

change in the pH is found, which seems to be a result of the high buffer capacity in this 

system due to the high TAN concentration.

It is interesting that with higher HRTs the acetic acid, the propionic acid and the VFA 

increase significantly, as well. In the thermophilic system the acetic acid rises by 

0.036 g.l-1 per 10 d HRT (Maize as substrate), the acetic acid increases a bit slower 

(0.033 g.l-1/10 d) in the mesophilic reactor system using Maize as substrate. Digesting 

GPS the acetic acid is increasing by 0.042 g.l-1 per 10 d HRT. Using Sunflower as 

substrate no significant influence of the HRT on the acetic acid, propionic acid and VFA 

concentration is found. The propionic acid increases faster is in the mesophilic system 

(0.079 g.l-1/10 d HRT) than in the thermophilic (0.063 g.l-1/10 d HRT) reactor using 

Maize. However the average and maximum propionic acid concentration is higher in the 

thermophilic reactor system. For the systems using GPS and Sunflower no significant 
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influence of the HRTs on the propionic acid is detected. The VFA concentration rises by 

0.084 g.l-1 (thermophilic) and 0.056 g.l-1 (mesophilic) using Maize as substrate and by 

0.184 g.l-1 using GPS as substrate. 

For the mesophilic reactor using Sunflower the COD removal rate also increases with the 

HRTs, yet this correlation is not significant. An interesting effect can be observed, as the 

influence of the HRT on the COD removal efficiency can be separated in two parts – for 

a HRT < 40 d the efficiency is lower and fluctuates a lot and for a HRT of 40 to 100 d 

HRT the COD is higher and fluctuates less. 

Summarizing the above discussed knowledge about influence of the HRT in anaerobic 

systems it can be concluded that the optimal HRT lies around 30 d. The gas and 

methane production is highest at lower HRTs, however a at HRT < 15 d a wash out of 

the biomass is observed, moreover is the COD removal lower and fluctuates more at 

lower HRTs. 

6.1.2 Comparison of different substrates

Three different substrates, as mentioned before, were compared in single crops 

experiments: Maize silage (only corn, “Maize”), whole crop corn silage (“GPS”) and 

sunflower press residues (“Sunflower”). 

Comparison between Maize  and GPS  in the thermophilic reactor system

In the thermophilic reactor FM2 Maize and GPS were compared. The pH, the biogas 

production, the methane production, the acetate concentration, the total volatile fatty acid 

concentration (VFA), the degraded COD, the volatile suspended solids, the total nitrogen 

concentration (TAN), sulphate concentration and the H2S concentration. 

To be comparable all variables were based on the degraded COD and statistical outliers 

were removed, to get typical reactor values. “Wrong” data from reactor failure, due to 

broken tubes, leaking reactor, … was removed manually. The first 50 days were also 

removed, as this data was designated as the “start-up” of the reactor. 

The pH is significantly higher using GPS as substrate. The gas production and methane 

production (per COD) is on average lower for Maize compared to using GPS as feed. 

The acetic acid, the propionic acid and the VFA are lower for Maize, hereby the 

difference is significant for acetic and propionic acid. 

The VSS and TOC concentration are significantly lower in respect to the TOC 

concentration using Maize as substrate, as well. This can be a result of on the one side 

undegraded material from former experiments remaining in the reactor or higher biomass 

formed, as no new inoculum was used to if a new substrate was tested.

TAN concentration is significantly higher if Maize is used as feed, whereby the sulphate 

concentration in the reactor and the H2S concentration in the biogas are higher for the 

second case, where GPS is used as feed.
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These results indicate that it is more efficient to use GPS as substrate and not Maize. 

First of all the gas production and methane production are higher and considering 

additionally the harvest per hectare is it much more economical to use the whole plant. 

However some disadvantages have to be considered, as well. Higher VFA 

concentrations are found for the GPS, which can easily lead to reactor failure if the 

process is not controlled properly. Efficient digestion with low volatile fatty acids leads to 

a higher methane content in the biogas (Farhan et al. 1997). 

Yet, the TAN concentration is higher for the Maize, due to the higher protein content, 

which can lead on the one hand to dangerous NH3 concentrations in the reactor and on 

the other hand stabilize the reactor pH. 

The Sulphate and H2S concentration is higher using GPS as feed. This can lead to toxic 

concentrations in the reactor and therefore to an inhibition of the process (toxic effects 

appear from 30 mg.l-1 (Bischofsberger et al. 2005)). Increasing the process temperature 

can decrease inhibitory effects (Bischofsberger et al. 2005), because higher temperature 

means higher solubility of the H2S in the sludge. Yet, a high H2S content in the biogas is 

a problem for CHP or gas turbines. A removal of the H2S from the gas is thus absolutely 

necessary.

Comparison between Maize  and Sunflower  in the mesophilic reactor system

In the mesophilic reactor FM3 Maize and Sunflower were compared. The procedure was 

the same as for the comparison of Maize and GPS.

Comparing now the different substrate, it can be observed that the gas production when 

digesting Maize respectively Sunflower show no significant difference, however the 

methane production is significantly higher when digesting Maize. 

No significant difference could be found for the fatty acid concentration. The main 

different was the higher pH, TAN, NH3 and H2S concentration, if Sunflower was used as 

feed, which is a result of the high protein content in the sunflower press residues. 

Large increases in the ammonia nitrogen can cause inhibition of hydrogen and gas 

production (Sterling Jr. et al. 2001). The very high ammonia values for Sunflower (up to 

4900 mgNH4l
-1 and 260 mgNH3l

-1) (NH3 is inhibiting from 100 – 200 gN.l-1 (Henze and 

Harremoes 1983), however, is only in part a problem as the reactor got used to it. As 

adaptation can increase the ammonia tolerance of the micro-organisms (Sung and Liu 

2003). On the other hand increases in already high TAN concentration can stabilise the 

pH in the reactor. Nevertheless attention has to be paid to this high ammonia and 

ammonium concentrations during reactor operation. A further problem is the high H2S 

concentration when digesting Sunflower.

This comparison shows that Maize as substrate has an advantage over Sunflower –

however no yields per hectare are considered in this comparison. Yet if sunflower press 

residues are digested it is advisable to mix with substrates of low protein content, for 

example potatoes or Sudan grass. 
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6.1.3 Mesophilic vs. thermophilic

To find the optimum temperature range, two mesophilic reactors (FM1 and FM3), 

operating at 35 °C (± 1 °C), were compared with the two thermophilic reactors (FM2 and 

FM4), operating at 60 °C (± 1 °C). The procedure was the same as before for the 

comparison of the different substrates.

The gas production and the methane production are significantly higher in the 

thermophilic reactors.

The pH showed no significant difference. Nevertheless, on average the pH in the 

mesophilic reactors was lower than in the thermophilic reactors.

The VFA concentration is, on average, in both cases nearly the same, but shows a small 

but nevertheless a significant difference. While, the acetic concentration is higher in the 

mesophilic reactor than in the thermophilic reactor on the other hand the propionic acid 

concentration in the thermophilic reactor is significantly higher than in the mesophilic 

reactor.

The VSS and TOC concentrations were higher in the mesophilic reactor compared to the 

reactors with higher temperatures. The H2S concentration in the gas phase is 

significantly higher in the thermophilic reactor than in the mesophilic, which can be 

explained by the lower solubility of the H2S in the sludge at higher temperature.

The COD removal is higher in the thermophilic reactor compared to the mesophilic 

reactor (Kiyohara et al. 2000).

These results again confirm the higher gas yield operating the plant in the thermophilic 

temperature range. Kim and co-workers (2006), for example, found the optimum 

temperature to be at 50 °C. Whereas Ahring (1994) detected 60 °C as the optimum 

temperature to digest manure, but recommended that the reactor be operated at under 

60 °C to ensure that fluctuation in temperature have no disastrous effect on the microbial 

activity. Varel et al. (1980) suggested that there is no advantage in increasing the 

fermenting temperature of waste from 50 to 60 °C.

Generally it can be said, AD in the thermophilic temperature range is more efficient in 

terms of COD removal and methane production than operation in the mesophilic 

temperature range (Gavala et al. 2003). Moreover the thermophilic process has the 

benefit that, to a great extent, it destroys pathogens (El-Mashad et al. 2004). A further 

advantage is the less viscous sludge in the thermophilic reactor compared to the 

mesophilic reactor, therefore less energy is needed for stirring. 

However, more problematic is the higher propionic acid concentration, which supports 

the argument of the instable process in the thermophilic temperature range. 

Nevertheless with adequate reactor control this is not a real problem. El-Mashard and 

co-workers (2004) also concluded from their results that a stable digester operation 

under thermophilic conditions is very possible. 

The main disadvantage of reactor operation in the thermophilic range is the high energy 

consumption required to heat up the reactor. But if self heating occurs there is no need to 
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heat the reactor. On the other hand the reactor has to be cooled down to keep the 

process within the mesophilic temperature range. But taking the results observed as well 

as the literature it can be concluded that it make no sense to waste energy in order to 

keep the process within the mesophilic temperature range. Yet, one should ensure that 

there are no abrupt changes in the temperature, as variations in the temperature can 

dramatically affect the performance of the AD process (Leitao et al. 2006).

The choice of temperature depends on several criteria: one criteria is the bio-climatic 

conditions (Bouallagui et al. 2004) – which have an important influence on the energy 

balance of the reactor. The substrate used also has a great impact on the optimum 

temperature, especially its sulphate and ammonia content.

6.2 Calibration of an AD model

Before a model can be used for any application it has to be calibrated, in the sense that 

the parameter values are chosen in such a way that best possible conformity between 

the model predictions and the data measured data can be obtained (Madsen 2000).

Model calibration can be done in different ways either manual (trial and error), following a 

calibration protocol or using automatic optimisation and calibration tools (Madsen 2000). 

Most of the models which describe such complicate dynamic processes show a high 

degree of uncertainty, as the knowledge of the process is incomplete and the kinetic 

parameters are not normally known (Kremling and Saez-Rodriguez 2007). 

This study endeavoured to address comprehensively all issues of the calibration 

problem, however the calibration of such a model entails a lot of different questions and 

problems, which makes it impossible to deal with all issues in detail within the framework 

of this study. 

6.2.1 Suggested Measurements for the calibration of the ADM1

In order to determine experimentally all state variables required for the model (input, 

initial) a lot of measurements are necessary. But to determine the waste (resp. crop) 

composition from standard measurements as required for the ADM1 is not an easy task 

(Kleerebezem and Van Loosdrecht 2004). The same is true for the reactor conditions. In 

particular the intermediate products and the bacteria concentrations are difficultly to 

estimate.

Table 6.2.1 show the measurement methods used in this study to estimate the input 

variables and initial conditions and give suggestions for alternative methods respectively 

further analytical methods.
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Measured variable ADM1 state variable Measurement method

Acetic Acid, Propionic Acid, VFA
Spro, Sac, Sva, Sbu, Sva-, Sbu-, Spro- and 
Sac- 

HPLC, FTIR, GC, test kit

COD, CODsoluble ADM1 variables are based on COD standard method (DEV S9), test kit

gas production flow meter, displacement method

gas components (CH4, CO2, H2, (H2S)) infrared sensors, dräger tubes, GC

VSS, SS
Xxc, XI, Xsu, Xaa, Xfa, Xc4, Xpro, Xac 

and XH2
standard method (DEV H1, DIN 38414-10)

Glucose Ssu enzymatic tests, HPLC, titration, polarimetry

Amino Acids Saa Ninhydrin method, HPLC

Lipids Xli solvent extraction

Carbohydrates XCH HPLC, Anthrone method

Protein Xpr Kjeldahl, Lowry, Bradford

NH4
+, NH3 single measurement rod

Total Nitrogen Kjeldahl, test kit

Total Alkalinity, Partial Alkalinity  standard method (DIN EN ISO 9963-1)

Total Carbon, Total Organic Carbon TC Analyser

pH SH+ pH electrode, standard method (DIN 19265, DIN 19268)

Sulphate Standard method (ISO/DIS 10304), test kit
Sulphide Standard method (DIN 38405-26)

SCH4,gas, SCO2,gas, SH2,gas, SCH4, SCO2, SH2, 

(SH2S,gas and SH2S)

SIN, SNH3

SIC

SS2-, SSO42-, SHS-

Table 6.2.1: Parameter measured for the estimation of the “Input”/”Initial Condition” in the model
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6.2.2 Mass balance of the AD process

A mass balance was used to estimate the initial conditions for the ADM1. 

The basis of this mass balance is the ADM1 model itself, where the calculation of the 

initial conditions happens iteratively. For these calculations a MATLB®-Script was written 

(“mass_balance”).

The estimation of the methane production was done according to Baserga (1998)23 using 

the protein, fat and carbohydrate content in the feed and the reactor sludge.

Complex particulates (Xc), carbohydrates (Xch), proteins (Xpr), lipids (Xli), particulate inerts 

(XI), soluble inerts (SI), soluble sugar (Ssu), soluble amino acids (Saa), soluble LCFA (Sfa), 

valeric acid (Sva), butyric acid (Sbu), propionic acid (Spro), acetic acid (Sac), hydrogen 

(SH2), methane (SCH4), sugar degraders (Xsu), amino acid degraders (Xaa), LCFA using 

bacteria (Xfa), valeric acid and butyric acid using bacteria (Xc4), propionic acid degrading 

bacteria (Xpro), acetate degraders (Xac) and hydrogen using bacteria (XH2) are estimated 

using a stoechiometric mass balance and parts of the ADM1. 

Some differences can be found; especially the propionic acid and acetic acid 

concentrations are overestimated. This makes it clear that some further developments

which were not possible within the framework of this study are still contingently 

necessary. Especially as some simplifications are made in the “mass_balance”: thus the 

pH (pH = 7) is taken as constant, because the pH calculation in the program was too 

unstable. The same is true for the calculation of some bacteria concentrations (Xaa, Xpro

and XH2). A further difficulty is the nitrogen balance.

Yet, the results of the “mass_balance” for nearly all state variable lay in the same range 

as the state variables for the initial conditions measured or otherwise determined and 

therefore within a acceptable range. These results indicate that the “mass_balance” is 

definitely suitable for a first estimation of the initial conditions.

6.2.3 Sensitivity analysis

In order to obtain more information for the model calibration a sensitivity analysis was 

done to find the most sensitive parameter. 

Similarly to DePauw (2005), a pre-selection of parameters which have to be calibrated 

was carried out in order to reduce the calculation effort: it will be not necessary to 

calibrate stoechiometric parameters (as they are well known), influent composition 

parameters, and temperature correction factors (De Pauw 2005).

23 Baserga, U., 1998, Landwirtschaftliche Co-Vergärungsanlagen, FAT-Berichte Nr. 12
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# Parameter
Senstivity 
Coefficient

Wett et al. 
2007

Batstone et al., 
2002 # Parameter

Senstivity 
Coefficient

Wett et al. 
2007

Batstone et al., 
2002

1 khyd,pr 1.12E-02 o 20 KS,aa 1.27E-10

2 khyd,ch 1.12E-02 o 21 KS,pro 6.30E-11

3 khyd,li 1.11E-02 22 KS,H2 4.92E-11

4 kdis 9.82E-03 o o 23 km,fa 4.75E-11

5 km,aa 1.54E-03 24 km,H2 3.61E-11

6 kdec,pro 1.29E-03 25 KS,su 3.12E-11 o

7 kdec,su 1.11E-03 o 26 KS,fa 3.03E-11

8 kdec,ac 1.08E-03 27 km,c4 2.45E-11

9 kdec,c4 1.07E-03 28 Yfa 2.18E-11

10 kdec,fa 9.45E-04 29 KS,IN 1.66E-11

11 kdec,h2 9.23E-04 30 KS,ac 1.36E-11 o

12 kdec,aa 9.09E-04 31 Yc4 1.32E-11

13 km,su 1.97E-07 32 Ypro 1.10E-11

14 KI,H2,pro 1.80E-08 33 KS,c4 8.22E-12

15 Ysu 9.52E-09 34 YH2 8.18E-12

16 Yaa 8.09E-09 35 Yac 6.66E-12

17 KI,H2,c4 7.70E-09 36 KI,NH3,ac 6.21E-12

18 KI,H2,fa 1.70E-09 37 km,ac 3.21E-12 o

19 km,pro 9.49E-10

Table 6.2.2: Results of the sensitivity analysis of the ADM1 (Parameter ranking according to the calculated Sensitivity coefficients). Furthermore: 
comparison with the literature data: Most sensitive parameter of the ADM1 found by Wett et al., 2007 and Batstone et al., 2002 (shown as circles 
(without ranking)).
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The parameter with the most influence on the original ADM1 according to the sensitivity 

analysis carried out is the hydrolysis rate of the proteins (khyd,pr), also the hydrolysis rate 

of the carbohydrates (khyd,ch) and the hydrolysis rate of the lipids (khyd,li). Further the 

disintegration rate (kdis) and the substrate uptake rate of amino acids (km,aa).

6.2.4 Parameter estimation

Parameters have to be chosen in such a way that the likelihood that measured data can 

be predicted by the model (Olsson and Newell 1999). Yet, most of the parameters 

suggested in the ADM1 are not fully suitable for energy crops. Therefore a literature 

search for appropriate parameters was done for the most important and sensitive 

parameter. 

As there is generally a great lack of specific data on energy crops digestion in literature 

(Lindorfer 2007) and the values found in the literature have a great range of margin. The 

parameters were also experimentally estimated (by other project partners, too) for 

different crops, as well, particularly maize silage.

During the project hydrolysis rates for energy crops and other substrates were 

determined in batch experiments over a temperature range from 35 °C to 55 °C by 

project partners, such as hydrolysis rates for bracken, buckwheat, carrots, hay, 

Jerusalem artichoke, knotweed, lawn, lupine, maize silage, oil seed rape, sweet clover 

and more. 
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Substrate khyd(first order) Temperature Reference

[d-1] [°C]

Braken 1.81E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Carrot 1.00E+00 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Grass hay 2 since day 0 1.90E-02 Lehtomäki et al., 2005
Jerusalem artichoke 1 since day 0b 2.10E-02 Lehtomäki et al., 2005
Knotweed 1 5.60E-02 Lehtomäki et al., 2005
Lawn since day 49a 9.40E-02 Lehtomäki et al., 2005
Lupine 1 since day 25a 6.70E-02 Lehtomäki et al., 2005

Maize silage 2.70E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Marrow kale 1since day 0 9.00E-03 Lehtomäki et al., 2005
Mix Market waste (fruit+vegetable) 2.10E-01 37 Bolzonella
Mixed Agro-wastes 2.80E-01 Bolzonella
Mixed market waste and sewage sludge 3.05E+00 55 UNIVE-DSA, Cavinato
Nettle 2 since day 0 3.00E-02 Lehtomäki et al., 2005

Oil seed rape 1.61E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Red clover 1 since day 10 3.90E-02 Lehtomäki et al., 2005
Reed canary grass 1 3.90E-02 Lehtomäki et al., 2005
Rhubarb 1 since day 0 3.40E-02 Lehtomäki et al., 2005
Sewage Sludge + Market waste (1305.7 gCODd-1) 4.28E+00 Pavan

Spartina-Cordgrass 1.67E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Straw of oats since day 17 4.30E-02 Lehtomäki et al., 2005
Tops of sugar beet since day 0 1.90E-02 Lehtomäki et al., 2005

Triticale 1.21E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Vetch 2 since day 12 4.70E-02 Lehtomäki et al., 2005

Yellow lupin 3.18E-01 35(+-2)
Publication in preparation. Results Environmental Technology 
dpt. Wageningen University. Pabon, van Lier et al. 2007

Table 6.2.3: Hydrolysis rates of different substrate determined during the CROPGEN project from project partners
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6.2.5 Calibration algorithms

The application of an automatic calibration algorithm is especially interesting for 

simplified AD models that are identifiable. Automatic control algorithms are applicable for 

the ADM1 if the model is divided in smaller sub-models, which again are identifiable.

In this study now three different automatic control algorithms were adapted for the use 

with AD models: 

• a Genetic algorithm, 

• Simulated Annealing and

• a Luus-Jaakola algorithm. 

All three algorithms were implemented in script-form in MATLAB®.

Genetic Algorithm (GA)

Genetic Algorithms (GA) are loosely based on the mechanics of natural selection and 

genetics (Laquerbe et al. 2001; Alcock and Burrage 2004; Mwembeshi et al. 2004; De 

Pauw 2005; Coleman and Block 2006) Convergence to the exact minima cannot be 

guaranteed, but it is a robust method for lot of objective functions to find at least a “near-

optimum” (Alcock and Burrage 2004). In the GA a potential solution is called individual or 

chromosome – each is represented by a sequence of “genes” and ranked corresponding 

to their objective function value (= fitness) (Laquerbe et al. 2001; Alcock and Burrage 

2004; Mwembeshi et al. 2004). A population is then a set of chromosomes with their 

fitness values (Alcock and Burrage 2004). The GA is iteratively improving the fitness 

either by reproduction, cross-over or mutation (Laquerbe et al. 2001; Alcock and Burrage 

2004). 
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Figure 6.2.1: Adapted structure of the Genetic Algorithm (GA) optimisation algorithm for the 
use with AD models
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Simulated Annealing (SA)

A further optimisation technique is the simulated annealing (SA) procedure. SA is a 

heuristic method (Schramm et al. 2004) and was first introduced by Kirkpatrick and co-

workers in 198324 (Lee et al. 2008) and copies the annealing of solid, where the reorder 

of the crystals follows the laws of probability (Laquerbe et al. 2001; Kaczmarski and 

Antos 2006).

Figure 6.2.2: Adapted structure of the Simulated Annealing (SA) optimisation algorithm for the 
use with AD models

24 Kirkpatrick, S, Gelatt, C.D. and Vecchi, M.P., 1983, Optimization by Simulated Annealing, Science, 

220, 4598, 671-680
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The aim is to reach the atomic configuration, which minimizes the internal energy 

(Laquerbe et al. 2001; Kaczmarski and Antos 2006).

Luus-Jaakola Algorithm (LJ)

The LJ method is an optimisation method using random search points and region 

reduction (Peng Lee et al. 1999) and was introduced by Luus and Jaakola (1973). With 

the LJ method even optimisation problems with multiple local minima could be solved 

(Linga et al. 2006). 

Unfortunately it was only possible to test these control algorithms cursorily within the 

framework of the project. For practical application further test and possibility some 

improvements are still necessary (e.g. adaptation of optimisation parameters).

The development of more than one optimisation algorithm was necessary as in a lot of 

practical applications many local minima exists, this applies also for the ADM1. The 

global optimum, is therefore difficult to determine, a cross-checking with different 

optimisation procedures is important (Bojkov and Luus 1992).
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Figure 6.2.3: Adapted structure of the LJ optimization procedure according to Linga et al.
(2006) for the use with AD models
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6.3 AD models for energy crop digestion

By far the majority of the existing anaerobic digestion models are developed or 

implemented for the use with wastewater or sludge as substrate. AD models especially 

for the use of energy crops as substrate were not found in literature. Therefore the ADM1 

was adapted to model the biogas process using crops as feed input. For the use in the 

Virtual Laboratory the sulphate reduction process was added, as well. Furthermore a 

simpler model, based on the ADM1 (Batstone et al. 2002) and the AD model by Marsili-

Libelli and Beni (1996), was developed for the implementation in a model based decision 

support system.

6.3.1 Adaptation of the ADM1

The original ADM1 does not specify all mechanisms of anaerobic digestion, for instance 

solid precipitation, homoacteogenesis, glucose alternative products, sulphate reduction 

and sulphide inhibition, nitrate, weak acid and base inhibition, LCFA inhibition and 

acetate oxidation (Batstone et al. 2002), but encourages the extension and development 

of it (Strik 2004). 

Addition of a second hydrolysis rate

Energy crops, such as rye, triticale, sunflower…, have a high content on cellulose and 

Hemicellulose. A second hydrolysis rate for slow degradable carbohydrates was added 

in order to compensate for the slower degradation of this material (Figure 6.3.1). 

Figure 6.3.1: Schema of the biochemical processes of the adapted model.            Shows the 
changes compared to the original model
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This small adaptation was encouraged by a comparison of the adapted model and the 

original model using the original parameters, suggested by the IWA Task group for 

mathematical modelling of anaerobic digestion (Batstone et al. 2002). It was be observed 

that using the adapted model better results can be achieved compared to the original 

model using different statistical parameters such as the determination coefficient (r2), the 

index of agreement (d) and the Ratio of means (RMean). Looking at the methane 

production and COD reduction – for the original model a value for r2
CH4,original = 0.19 and 

dCH4,original = 0.60 can be found, though for the adapted model the determination 

coefficient r2
CH4,adapted = 0.40 and dCH4,adapted = 0.62. For the COD reduction r2

COD,original = 

0.06 and dCOD,original = 0.06 and r2
COD,adapted = 0.62 and dCOD,adapted = 0.88. Whereby a 

correlation coefficient of 1 would describe an ideal model (Elias et al. 2006). 

In this study it was established that a value > 0.6 indicates an accurate model, in 

accordance with Elias et al. (2006). Even though the determination coefficient is rather 

low in both cases, the index of agreement indicates a good model, as the values of 

d > 0.6. Values of d between 0.5 and 0.6 would be within an acceptable range. A value 

of < 0.3 (absolute) for the Ratio of means (RMean) indicates that the model predicts the 

observation with acceptable accuracy (Elias et al. 2006).

For the parameter calibration, literature data, data from our own experiments and from 

experiments performed by project partners were used (Table 6.3.1). 

The adapted and calibrated model predicts most of the values accurately enough (Table 

6.3.2). The COD reduction is predicted very well by the model (r2 = 0.57, d = 0.85 and 

RMean = 0.03). The low determination coefficient are a result of the large amount of data, 

in similar studies a data range of 66 days on average (Angelidaki et al. 1993; Christ et al.

2000; Kalyuzhnyi et al. 2000; Seok and Komisar 2002; Siegrist et al. 2002; Aceves-Lara 

et al. 2005; Bernard et al. 2005; Flotats et al. 2006) is shown. If only part of the data is 

examined higher determination coefficients can be found, for example for the final period 

(day 501 – 555) an r² = 0.92 can be found for the COD reduction. Yet, as biogas plants 

are planned and constructed as long term processes, it seemed more reasonable to 

make also a long term simulation. The prediction of the gas and methane production as 

well as the pH was done accurately. The negative value of RMean of the acetate, 

propionate and VFA concentration, and the COD reduction signifies that the values 

measured are underestimated in the model (Elias et al. 2006). It seems that the model 

cannot handle the high VFA concentration which appeared in this study, which leads to 

an underprediction of these values – the addition of a new inhibition function could 

improve the performance of the model. Yet, the implementation of a new inhibition 

function was not possible within the framework of this study.
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original values adapted values

fXI,Xc [] 2.50E-01 3.00E-01

fli,xc [] 2.50E-01 2.00E-01

Nxc [] 2.00E-03 2.69E-03

Ni [kmolNkgCOD
-1] 2.00E-03 4.29E-03

kdis [d-1] 5.00E-01 4.10E-01

km,aa [d-1] 5.00E+01 3.00E+01

km,c4 [d-1] 2.00E+01 2.20E+01

kA,B,va [M-1d-1] 1.00E+08 1.00E+10

kA,B,bu [M-1d-1] 1.00E+08 1.00E+10

kA,B,pro [M-1d-1] 1.00E+08 1.00E+10

kA,B,ac [M-1d-1] 1.00E+08 1.00E+10

kA,B,co2 [M-1d-1] 1.00E+08 1.00E+10

kA,B,IN [M-1d-1] 1.00E+08 1.00E+10

Cxc [kmolCkgCOD
-1] 3.00E-02 2.79E-02

khyd,ch,s [d-1] 1.20E+00 8.50E-01

Parameter

r2
d RMean

Gas production 0.48 0.70 0.73 okay
Methane production 0.48 0.68 0.84 okay
Acetate Concentration 0.00 0.36 -0.46 bad
Propionate Concentration 0.03 0.43 -0.99 bad
VFA 0.01 0.40 -0.77 bad
pH 0.43 0.72 0.03 good
COD Reduction 0.57 0.85 0.03 good

Table 6.3.1: Original and calibrated parameters in the adapted ADM1

Figure 6.3.2: Methane production predicted using the calibrated adapted model

Table 6.3.2: Values of the statistical indicators r², d and RMean for the adapted model using the 
calibrated parameter (green = good, yellow = okay)
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-1] 2.00E-03 4.29E-03

kdis [d-1] 5.00E-01 3.00E-01

khyd,ch [d-1] 1.00E+01 1.00E+00

khyd,pr [d-1] 1.00E+01 1.00E+00

khyd,li [d-1] 1.00E+01 1.00E+00

km,ac [d-1] 6.00E+00 8.00E+00

kA,B,va [M-1d-1] 1.00E+08 1.00E+10
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kA,B,co2 [M-1d-1] 1.00E+08 1.00E+10

kA,B,IN [M-1d-1] 1.00E+08 1.00E+10

Cxc [kmolCkgCOD
-1] 3.00E-02 2.79E-02

Parameter

r2
d RMean

Gas production 0.51 0.74 0.67 okay
Methane production 0.51 0.70 0.81 okay
Acetate Concentration 0.00 0.40 -0.76 bad
Propionate Concentration 0.03 0.43 -0.99 bad
VFA 0.01 0.42 -0.90 bad
pH 0.42 0.70 0.03 good
COD Reduction 0.52 0.84 -0.01 good

The results of the calibrated adapted model were compared with results from the 

calibrated original model (Table 6.3.3 and Table 6.3.4). In the original model sixteen 

parameters were adapted for this study. Whereby Nxc, NI, Cxc, and kA,B were adapted 

according to Rosen and Jeppson (2006), in the same way as for the adapted model. All 

other parameter were calibrated by trial and error. Whereby the hydrolysis rates had to 

be chosen as 1 d-1 instead of 10 d-1 (suggested by Batsone and co-workers (2002)), to 

reach reasonable results.

Comparing the adapted and the original calibration it was found that rather similar results are 

achieved using the calibrated original model. 

The gas and methane production was predicted less adequately using the adapted model 

(Table 6.3.2 and Table 6.3.4). On the other hand the pH and the COD reduction were 

predicted slightly better using the adapted model compared to the original model. The VFA 

could not be predicted better in the original model than in the adapted model. 

Table 6.3.3: Calibrated and original parameters in the original ADM1

Table 6.3.4: Values of the statistical indicators: square of the correlation coefficient (r²), index 
of agreement (d) and Ratio of means (RMean) for the original model using measured values to 
estimate the initial conditions (case 1) (green = good, yellow = okay) 
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Addition of the Sulphate reduction process according to Federovich (2003)

and according to Batstone (2006)

In particular when substrates with high protein content are used e.g. sunflower press 

residues high amounts of sulphate are found in the liquid and gas phase. These high 

levels of sulphate and sulphide results in different problems. First of all, sulphate 

reducing bacteria (SRB) compete with the methanogenic bacteria for the same substrate. 

The first inhibition effects have to be taken into account beginning at an H2S 

concentration of 30 mg.l-1. An H2S content of more than 10 % in the biogas disrupted the 

acetate production (Bischofsberger et al. 2005). An elimination of the H2S is not only 

important for successful operation of the AD process, but also to prevent problems of 

corrosion in the plant or minimize SO2 emissions during the combustion of the biogas 

(Bischofsberger et al. 2005).

Thus the ADM1 augmented by the sulphate reduction process was added into the Virtual 

Laboratory 1.2 in two versions: the sulphate reduction process according to Federovich 

et al. (2003), already described in (Strik 2004), and the extension with the SR according 

to Batstone (2006).

6.4 Virtual Laboratory (VL) 

One output of this study was the development a so-called “Virtual Laboratory” (VL), 

which was one of the goals of the CROPGEN project, for data processing and 

interpretation as well as mathematical model formulation of the biogas process. Two 

different VLs were developed. The basis of the VLs is the ADM1 (Batstone et al. 2002). 

The VL is conceived as a software training tool to provide users with more detailed 

insight into the AD process. 

The VLs are written in the graphic programming system LABVIEW®, with an

implementation of the ADM1 as MATLAB® script, compiled in MATLAB® executable.

The MATLAB® code for the VLs was written, based on an existing MATLAB®-

SIMULINK® file of the original ADM1 (Rosen and Jeppsson 2002). The LABVIEW® 

program serves as user interface. 
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6.5 Decision Support System based on Fuzzy Control

In order to make the biogas process economically attractive, the process has to be 

optimised. There are different ways to improve biogas production. One way is an 

advanced process control. Advanced process control can be realized using a decision 

support system (DSS). “DSS are computer-based systems used to assist and aid 

decision makers in their decision making processes” (Bogardi 2004)

For DSS based on complex mathematical models (e.g ADM1), a significant problem is 

the amount of data required, which is often a problem for technical biogas plants. This is 

due to the fact that there is a lack of online sensors available and existing sensors need 

extensive maintenance (Olsson and Newell 1999). Moreover operators are in the most 

cases not sufficiently educated to deal with the instrumentation and control adequately 

(Olsson and Newell 1999). One possibility is to use a simpler model as basis for the 

DSS, which was shown before. Another alternative is a Fuzzy based control tool. 

6.5.1 Comparison of different Fuzzy Tools using the ADM1 and a composite 

programming based ranking method

A Fuzzy Logic Tool, which has been designed during another EU project (AMONCO 

project), was now enhanced to improve the control performance. This DSS is thought to 

identify process control strategies to yield a high methane content final product.

Seven different tools were developed. These tools and the original developed tool were 

tested with the ADM1 (Batstone et al. 2002) and compared with a developed composite 

programming based ranking method, not only to find the best structure, but also to find a 

possibility to supporting experts in the development of Fuzzy Logic tool. 

The gas production, the methane content, the concentration of the acetic acid, the 

concentration of the propionic acid, the total concentration of volatile fatty acids, the COD 

reduction and the pH were chosen as appraisal factors. 

Comparison of Fuzzy Tools 1 to 8

After finding the best combinations of membership functions for the tools developed, all 

eight tools were compared to each other to find the best structure for the fuzzy based 

DSS (Table 6.5.1). This ranking of the different fuzzy tools’ structures is done in the 

same way as the search for the best combination of the membership of the single fuzzy 

tools.

Hereby the tools using the propionic acid concentration, the VFA concentration or pH, 

the gas production and the methane content or only the propionic acid concentration, the 

gas production and the methane content (F_DSS_051006b, F_DSS_101008 and 

F_DSS_191906c) were found to be the tools with the best structure. They were followed 

by the simple tool using only the propionic acid and the methane content as input 

variables (F_DSS_181006b). The tool using the VFA concentration, the gas production 

and the methane content (F_DSS_090806) was found to be on rank 5. The worst tools 



SUMMARY

- 184 -

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

time [d]

M
et

h
an

e 
co

n
te

n
t 

[%
]

G
P

 [
l.d

-1
]

0

0.5

1

1.5

2

2.5

3

3.5

O
L

R
 [

kg
m

-3
d

-1
]

3d
-1

]

Gas Production

Methane Content 

Organic Loading Rate - actual

Organic Loading Rate - calculated

Linear (Methane Content )

Linear (Gas Production)

Points
# Name

2 F_DSS_051006b 2.510E-16
4 F_DSS_101006 2.486E-16
8 F_DSS_191006c 2.468E-16
5 F_DSS_181006b 2.460E-16
3 F_DSS_090806 2.440E-16
6 F_DSS_191006 2.438E-16
1 F_DSS_051006 2.397E-16
7 F_DSS_191006b 2.338E-16

Fuzzy Tool

are the two other simple tools using either the VFA concentration (F_DSS_191006b) or 

the pH (F_DSS_191006) and the methane content and the tool (F_DSS_051006) using 

the same input variables as F_DSS_101006 (propionic acid, VFA concentration, gas 

production and methane content), however using a other combination as in 

F_DSS_101006. 

Table 6.5.1: Sensitivity coefficients of the simplified Model ADMML

6.5.2 Testing of the Fuzzy Tool in the laboratory reactors

To prove the suitability of the tools, they were tested in laboratory experiments. The first 

Fuzzy tool tested (F_DSS_191006b) was only partly successful (data not shown). The 

second Fuzzy tool (F_DSS_191006c) was tested in the thermophilic reactor system. 

Figure 6.5.1: Test of the Fuzzy control tool (F_DSS_192006c) in the thermophilic reactor system 
– showing the gas production, methane content and the actual and calculated organic loading 
rate.

In this case the methane content is significantly decreased in the beginning, but 

stabilised at around 50 % Methane during the test period. Yet, the gas production rate 
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increased over the same period (Figure 6.5.1) and the volatile fatty acid concentration 

decreased. The OLR was rather low in the beginning, as the VFA concentration was 

about 4000 mg.l-1, but the OLR was increased to 2.5 kg.m-3.d-1 and the VFA 

concentration decreased to 778.5 mg.l-1 during the test. These results indicate that the 

tool was able to stabilise the process and increase the methane production slightly from 

0.46 m3
Biogasm

-3
Reactor

-1 to 0.68 m3
Biogasm

-3
Reactor

-1.

6.5.3 Fuzzy Controller

To provide a user friendly HMI (human machine interface) the fuzzy based DSS was 

written in the graphic programming system LABVIEW®, with an implementation of the 

Fuzzy algorithm as MATLAB® script and the Fuzzy Logic Toolbox, compiled in 

MATLAB® executable. 



.
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Appendix

The appendix of this study is found on the enclosed DVD and contains:

• Statistical analysis of the reactor experiments

o Influence of the HRT (see chapter 4.1.1)

o Comparision of different substrates

§ Comparison between Maize and GPS in the thermophilic reactor 

system (see chapter 4.1.2.1)

§ Comparison between Maize and Sunflower in the mesophilic 

reactor system (see chapter 4.1.2.2) 

o Comparision of different temperature ranges (mesophilic and thermophilic) 

(see chapter 4.1.3)

• Kinetic Database for energy crops

• Matlab Scripts:

o Filter for the processing of measured raw data (see chapter 4.2.2)

o Massbalance (see chapter 4.2.3)

o Sensitivity analysis (see chapter 4.2.4)

o Optimization tools (Genetic algorithm, Simulated annealing and Luus-

Jaakola Algorithm) (see chapter 4.2.6)

o ADM1 (original, extension with a second hydrolysis rate, extension with the 

sulphate reduction process (according to (Fedorovich et al. 2003) and 

according to (Batstone 2006) ) (see chapter 4.3)

o Combination of composite programming based ranking method and the 

ADM1 (see chapter 4.5)

• Labview programs and Documentation:

o Virtual Laboratory (Version VL 1.1, 1.2 and 2.1) (see chapter 4.4)

o Fuzzy Logic based DSS (F_DSS 1.1) (see chapter 4.5)


