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Abstract 

The usage of data obtained from Personal Laser Scanning (PLS) for forest inventory purposes 

has increasingly gained recognition in the past few years. The advantages and thus the 

reasons for the growing popularity of PLS in forestry are not far to seek: Laser scanning 

technology allows for an acquisition of highly precise individual tree and stand information in 

a relatively short amount of time.  

Nevertheless, the high labor cost efficiency of Personal Laser Scanning has one limitation 

which is not to be underestimated when “wall-to-wall” data, in contrast to forest inventory data 

with realtively small sample plots, is desired: larger areas (>1-3 ha) cannot be scanned at one 

go, due to the scanning time limitation associated with software and data processing 

restrictions. Therefore, multiple scans must be conducted and co-registered to obtain one 

continuous point cloud. One way of doing this is to use easily recognizable artificial reference 

markers, like white spheres placed on tripods. These markers can afterwards be detected by 

semi-automatic software and used for the referencing of spatially adjacent scans. However, 

the transportation and deployment of such markers constitute great logistic and occupational 

efforts. Taking into account the additional time needed for the preprocessing and the matching 

of the point clouds, this semi-automatic registration can be considered as bottleneck for the 

otherwise high efficiency of PLS-based inventory and monitoring on larger areas. 

The goal of this master thesis was to develop and evaluate an algorithm for the automatic and 

marker-free registration of point clouds to eliminate this bottleneck and to pave the way for a 

more practical and time-efficient usage of PLS on larger areas in the future. 29 scans obtained 

from a forested area of 35 ha serve as data basis for this work. The point clouds were obtained 

with a GeoSLAM ZEB Horizon (GeoSLAM Ltd., Nottingham, UK), featuring a high data 

acquisition rate (300.000 points per second) and scanning range (100 m). Possible 

approaches for the registration algorithm, which will be tested in the thesis, include feature-

based methods, like a rough 3D transformation using the tree positions and diameters as 

matching features, as well as individual 3D-point-based methods, directly matching point 

clouds based on the LiDAR data itself. The latter might be implemented using the Iterative 

Closest Point (ICP) method, which could serve as fine tuning after the rough registration of 

the point clouds. In summary, the aim of this work is to develop an easy-to-use algorithm for 

the automated, marker-free registration of forest point clouds and to evaluate the resulting 

point clouds in terms of their accuracy. 
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1. Introduction 

Forest inventory plays an important role in the sustainable management of forest ecosystems. 

Stand parameters, such as the growing stock timber and the increment, were usually derived 

from aggregates of single-tree parameters like DBH and height that were used as input for 

taper functions. These stand-level estimates are crucial for the planning of thinning or harvests 

[1]. Through the introduction of Terrestrial Laser Scanning (TLS) for forest inventory purposes, 

the methods and possibilities of data acquisition for forest inventory purposes have undergone 

significant changes in the past two decades. The usage of TLS for forest mensuration does 

not only improve accuracy and efficiency, but also allows for an easier determination of stand 

volume and biomass as well as the conduction of repeated measures across time [2]. A further 

enhancement was achieved through the introduction of Personal Laser Scanning (PLS), 

allowing for an improved mapping and a higher labour efficiency [3]. 

However, the efficiency of PLS in forestry also has limitations: Due to the restricted scanning 

time associated with software and data processing, point clouds of larger areas can’t be 

obtained in one go. Multiple scans of smaller subareas must be conducted, resulting in 

separate point clouds which are all produced in their own local coordinate reference systems. 

These separate point clouds need to be co-registered to merge the separate datasets and 

obtain one continuous point cloud of the study area. Usually, easily recognizable targets like 

white spheres are used as reference objects for a manual registration of point clouds [4]. 

Although a high registration accuracy can be achieved via this approach, its high time 

consumption and intensity of labour strongly restrict the practicability of the described method 

[5]. Therefore, the aim of this master thesis is to find and evaluate an algorithm for the 

automated, marker-free registration of multiple PLS point clouds.  

Several methods for point cloud registration have already been developed and described in 

literature [6–10]. Apart from the already mentioned target-based methods, which need exterior 

information like GNSS (Global Navigation Satellite System) data [11] or reference targets [12], 

feature- and point-based methods are commonly used approaches. Feature-based methods 

use features which can be identified within the point cloud itself, working without any additional 

input [13–15]. Similarly, point-based methods directly match point clouds based on the LiDAR 

points themselves and on the geometric information they provide [16,17]. Such information 

might for example be generated by computing “spin-images”, as described by Johnson [10]. 

Since these geometric descriptors are computed via the relative positions of the points to each 

other, this method is invariant to a changing translation of the point clouds [10]. A similar 

approach was described by Yang et al. [6], who took the relative distances and positions 
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between separate points as input features to decouple scale, rotation and translation for an 

easier computation of the transformation. Figure 1 was adapted from a summary on existing 

registration methods by Guan et al. [16] and lists the different groups of co-registration as well 

as exemplary applications of them which can be found in literature.   

 

Figure 1: Illustration of different methods for point cloud registration. Adapted from Guan et al. [16]. 

 

The goal of this thesis was to adapt an algorithm described by Hyyppä et al. [13], which was 

initially developed to co-register the priorly extracted tree locations of terrestrial and airborne 

point clouds. In the course of this work, this algorithm was adapted in such a way that it allows 

for the coarse registration of the tree positions of multiple, partially overlapping terrestrial point 

clouds using R software (version 4.2.1).    
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2. Materials and Methods 

Table 1 gives an overview of the materials and methods used in the course of this thesis, with 

detailed explanations following in the next sections. 

 

Table 1: Workflow table 

 

  

Step No. Step/ Sub-step Hard-/ 
Software 

1 Scanning GeoSLAM ZEB 
Horizon 

2 Preprocessing of the point clouds Workstation / 
GeoSLAM Hub 

3 Tree detection and extraction of tree locations as input data 

Workstation / R 
& R Studio 

4a 

Computation of 
feature descriptor 
vector for each tree 

Spanning of four quadrants (one axis in direction of nearest 
neighboring tree, one axis perpendicular to the other) around each 
tree location 

4b Identification of the nearest neighboring tree in each of the four 
quadrants within a search radius of 10 m 

4c Computation of angles and distances to the nearest neighboring 
trees (8-digit feature descriptor vector) 

 Computation of Euclidean distances between the feature descriptors of the two datasets 

 Ranking matching pairs (Euclidean distance below threshold) based on second nearest 
neighbor distance ration (NNDR) 

5c 

Identification of 
optimal parameter k 

Selection of k = 60 best matching pairs and calculation of the 
corresponding transformation parameters 

5d Computation of variance between the calculated y-translations in 
steps of 3 

5e Selection of optimal k (median of the triplet with smallest variance)   

6a 

Computation of the 
transformation 
parameters 

Application of the k transformations to all points of the point 
pattern which must be transformed 

6b Calculation of the number of matching pairs (Euclidean distance 
below threshold) for each of the k transformations 

6c Selection of the transformation which results in the highest number 
of matching pairs 

6d Iterative optimization algorithm for final adjustment of selected 
transformation parameters 
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2.1. Data acquisition 

The study site was located nearby Jaidhof (Lower Austria) and covered an area of 

approximately 35 ha. To gain area-covering point clouds, 31 scans had to be conducted 

(Fig. 2). Since the Scans 19 and 21 did not contain enough trees for the registration algorithm 

to work, they could not be co-registered, involving the exclusion of Scans 22, 23 and 24. Thus, 

26 scans spanning an area of approximately 30 ha were included for the development and 

testing of the co-registration algorithm. The device used for the scanning process was the 

Personal Laser Scanner (PLS) GeoSLAM ZEB Horizon (GeoSLAM Ltd., Nottingham, UK), 

featuring a scanning speed of up to 300.000 points per second. The portability and relatively 

small weight of the scanner facilitate the fast and flexible acquisition of large amounts of data. 

A minimum of 3 white spheres was deployed in the overlap areas of adjacent scans as 

reference points, allowing for an opportunity to compare the output of the registration algorithm 

with the results of a target-based, manual co-registration.  

 

Figure 2: Map of the scanned areas  
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2.2. Hard- and Software 

Processing of the point clouds using SLAM (Simultaneous Localization and Mapping) 

algorithm was conducted using GeoSLAM Hub, a processing platform provided by the 

company which produces the scanner. The software allowed for an easy transition of the raw 

data obtained from the scanner in “.geoslam” – format to point cloud data in “.las” – format. 

Afterwards, the data could be imported into the workspace of the R software (version 4.2.1), 

enabling further processing of the data via the statistical programming language R [18]. Since 

the tree positions are needed as input data for the registration algorithm, an automatic tree 

detection algorithm, as described by Gollob et al. [19], was applied.  

The computations for the registration algorithm were performed using a PC workstation 

equipped with an Intel® Xeon® W-3223 processor possessing 8 cores and 16 threads. 

256 GB of internal memory were available, so that the partly CPU- and memory-intensive 

computations could be performed without problems. 

2.3. Methodology 

The approach adapted as part of this thesis was developed and described by Hyyppä et al. 

[13], who co-registered terrestrial and airborne point clouds by matching the priorly detected 

tree positions of the two data sets and thus finding a 2D-transformation for the tree locations 

extracted from the terrestrial point cloud. The algorithm computes a set of feature descriptors 

for each tree location in both data sets by calculating the distances and angles to the nearest 

neighbouring trees and finds matching tree pairs by minimizing the Euclidean distance 

between these feature descriptors. In the course of this study, the described algorithm was 

adapted in such a way as to enable a co-registration of tree locations from multiple terrestrial 

point clouds obtained with a Personal Laser Scanner (PLS) and when overlapping areas are 

small.  

2.3.1. Initial algorithm 

The purpose of the algorithm developed by Hyyppä et al. [13] was to find the 2D Euclidean 

transformation between the detected tree locations derived from terrestrial and airborne point 

clouds. After some adaptions, which will be addressed in section 2.3.2, this algorithm 

performed well also for the co-registration of only sparsely overlapping PLS point clouds. The 

initial algorithm described by Hyyppä et al. [13] computes a feature descriptor vector for each 

tree in both data sets, consisting of the angle and distance to the closest neighbouring tree in 

each of four quadrants. The characteristic direction, which is essential for the definition of the 
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quadrants, is derived from the direction to the closest neighbouring tree. As illustrated in Figure 

3 [13], the characteristic direction and the vector perpendicular to it span the four quadrants 

needed for the following steps: In each of the quadrants, the closest neighbouring tree within 

a search radius 𝑅 = 10 m is identified.  

 

Figure 3: Illustration of the feature descriptors. Adopted from Hyyppä et al. [13]. The quadrants are 
spanned using the characteristic direction 𝑣 , . For each quadrant, the distance (𝑟 ) and angle (𝜑 ) 
to the closest neighbouring tree within a search radius 𝑅 is calculated. 

 

The distances and angles from the investigated tree to these closest neighbouring trees 

constitute the feature descriptors for the eight-digit feature descriptor vector. If no tree is 

detected within the predefined search radius of 10 m, the corresponding feature descriptors 

are set to -1. The resulting feature descriptor vectors are the basis for a comparison and thus 

matching of the point patterns derived from two separate laser scans. Since every tree in each 

of the data sets has its own feature descriptor vector, it is possible to identify matching trees 

which were detected in both point clouds by calculating the Euclidean distance between the 

feature descriptors of trees in data set 1 and the ones in data set 2 [13].  

After computing the Euclidean distances, the tree pairs are ranked based on the “2nd nearest 

neighbour distance ratio” (NNDR), which is defined as follows: 

𝑁𝑁𝐷𝑅 =
,  , ( )

,  , ( )
                                           (1) 

𝑓 , ( ) is the nearest neighbour descriptor in point cloud 1 (𝑝𝑐 ) to each feature descriptor 

in point cloud 2 (𝑓 , ), whereas 𝑓 , ( ) is the second nearest neighbour descriptor. The 

smaller the described ratio, the more reliable the tentative matches are. The 𝑘 = 20 most 

reliable matches, thus the ones with the lowest NNDRs, are afterwards taken to compute the 

corresponding Euclidean transformations. This approach results in 20 different 

transformations, which are subsequently applied to both point patterns. After separately 
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shifting and rotating the coordinates according to these 20 transformations, the one with the 

highest number of matching tree pairs with a Euclidean distance below 𝑟 = 1 m is selected 

as the best fitting transformation.  

On a final note, the rotational (𝜃) and translational (𝑡) parameters of this transformation are 

taken as initial values for the loss function 

𝐿(𝜃, 𝑡) =  ∑ 𝑅(𝜃)𝑥 , ( ) + 𝑡 − 𝑥 ,              (2) 

which is finally minimized by applying an iterative optimization algorithm. The loss function 

computes the sum of the squared Euclidean distances between the transformed matching 

pairs in the first data set and the matching pairs in the second data set, where 𝜃 and 𝑡 are 

rotation and translation, thus the parameters which are being refined. Their initial values are 

taken from the best Euclidean transformation parameters, which have been identified as 

described above [13]. 

Using the described approach, Hyyppä et al. [13] were able to efficiently match terrestrial and 

airborne point clouds. The authors learned that the proposed algorithm is robust even when 

the scanned areas greatly differ in size or show only partial overlap, which should make it 

perfectly suitable as basis for the co-registration of two adjacent terrestrial point clouds and 

hence for achieving the objectives of this thesis. Moreover, this coarse registration can serve 

as basis for a finer registration, using for example point-based methods such as ICP (Iterative 

Closest Point). Since ICP operates by minimizing the distances between the closest 

neighbouring points in two adjacent scans, this method requires a smaller difference between 

the initial and the transformed point clouds, and a prior coarse registration - as elaborated in 

this thesis – is prerequisite for a successful application of ICP [17,20]. The fine registration 

using the ICP method could be implemented using CloudCompare software [21], which 

includes a tool for the automatic registration via ICP [22].  
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2.3.2. Adaptions of the algorithm 

2.3.2.1. Parameter settings 

In the initial algorithm described by Hyyppä et al. [13], there are essentially three parameters 

that can be changed: the search radius 𝑅, the threshold for the Euclidean distance 𝑟  and 

the number of matching pairs 𝑘, taken for the computation of the 𝑘 tentative Euclidean 

transformations. Initial trials have failed to match the tree positions from the laser scans 

according to descriptions in section 2.1. As solution, caliper thresholds were introduced to 

minimize the number of misleading points. As depicted exemplarily for Scan 12 and 13 in 

Figure 4, the filtering of trees with a DBH < 20 cm already led to a successful co-registration 

of these two scans. However, the optimal caliper threshold is different for other scans and 

strongly dependent on stand density and number of trees, making it hardly predictable.  

 

Figure 4: Tree locations of Scan 12 (in black) and Scan 13 (in red). The first picture shows the 
unregistered tree locations, whereas the second and third picture show the tree locations after the 
transformation. The green and blue points signify matching tree pairs in Scan 12 and 13 respectively. 
The right point set results from a co-registration with a prior threshold for the tree diameters set to 
DBH > 20 cm. The point pattern in the left panel results from a co-registration without any threshold. 
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A more easily implementable way of optimizing the algorithm for our purposes was to change 

the parameter 𝑘. As mentioned before, this parameter determines the number of tentative 

matching pairs taken for the computation of 𝑘 transformations, from which the best one is 

afterwards identified by comparing the number of matching pairs. A static parameter setting 

with 𝑘 = 20 turned out to be unsuitable for most of the scans, leading to inadequate registration 

results. The algorithm was thus extended in such a way that the optimal number of tentative 

matching pairs is evaluated beforehand. To illustrate the issue, the transformations derived 

from 𝑘 = 100 matching pairs were computed at first. Figure 5 exemplarily shows the resulting 

x- and y-translations for Scan 13 when matching it with Scan 12, exhibiting congruent and 

thus appropriate results for the first 6 transformations. The same conclusions can be drawn 

when examining the rotation parameters. The almost compliant x-translations of the 6 

matching pairs with the lowest NNDRs indicate the correctness of the calculated 

transformations, whereas the other pairs exhibit strongly varying translations.  

Figure 5: 100 best x- and y-translations when matching Scan 13 to Scan 12 (no caliper threshold) 
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An examination of this graphic for the same point pattern after filtering all trees with a DBH 

below 20 cm indicates why the application of this caliper threshold led to good registration 

results (Fig. 6), since the transformations were congruent for the first 31 tentative matching 

pairs. Accordingly, without the pre-filtering of points, choosing 𝑘 = 20 matching pairs for the 

computation of tentative transformations more likely leads to the selection of wrong 

transformation parameters.  

To obtain optimal registration results, the variance between the y-translations (x-translation 

and rotation would lead to the same results) of the first 60 tentative matching pairs was 

calculated in steps of 3, i.e., for matches 1-3, for matches 2-4 etc. The value 3 was chosen for 

this step because 3 transformations were at least necessary to indicate correctness when 

congruent. Choosing a larger number might have led to false results, as there might only be 3 

congruent y-translations for some point patterns. The medial matching pair of the triplet with 

the smallest variance was finally selected to function as the new parameter setting for 𝑘. Using 

the example of Scans 12 and 13, the hereby selected parameter setting of 𝑘 = 3 resulted in 

an adequate co-registration, even without the preliminary thinning of the point pattern through 

the application of a caliper threshold (Fig. 7).  

Figure 6: 100 best x- and y-translations when matching Scan 13 to Scan 12 (caliper 
threshold: 20 cm) 
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Figure 7: Tree locations of Scan 12 (in black) and Scan 13 (in red). The green and 
blue points signify matching tree pairs in Scan 12 and 13 respectively. No caliper 
threshold was applied, the value for parameter 𝑘 was set to 3.  



 12 

2.3.2.2. Registration of multiple scans 

Unlike the task solved by Hyyppä et al. [13], the challenge which was met in the course of this 

study was the co-registration of a large number of adjacent scans. In order to obtain 

appropriate transformation parameters for each single scan and to produce a single 

comprehensive pattern of tree locations, two methods were applied and evaluated.  

The first method, which is henceforth referred to as sequential method, was based on the 

consecutive co-registration of point patterns, which functions as follows: The registration 

process starts at one point pattern, with the first step being the calculation of the transformation 

parameters for the second point pattern to fit to this first one. After obtaining the transformed 

x- and y-coordinates of the second point pattern, the third point pattern is likewise attached to 

these already transformed coordinates. Thus, there is always one set of tree locations 

obtained from one scan, which are co-registered referring to the very first scan, and one set 

of tree locations that has to be matched to it. The second method, applying a cumulative co-

registration, starts in a similar way to the sequential method and is henceforth referred to as 

cumulative method. The second scan is matched to the first scan and the transformed 

coordinates of the former are saved for the next step. This time however, the third set of 

coordinates is not only matched to the coordinates of the second one, but to the combined set 

of both the first and second scan. The described two methods could themselves be varied by 

selecting different starting scans, which will be further addressed in Sections 3.1.1 and 3.2.1.  
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3. Results 

3.1. Application of the algorithm using sequential co-registration 

3.1.1. Tree pair matching 

When applying the modified algorithm proposed by Hyyppä et al. [13] with a varying parameter 

k and consecutively matching the coordinate sets of located trees starting from Scan 34 

(compare Fig. 1), a contiguous point pattern as depicted in Figure 8 could be obtained. The 

tree locations seem fitting, roads and open spaces are clearly distinct from forested area. 

 

Figure 8: Tree locations after sequential transformation 

As can be derived from a closer look at Figure 8, the remaining offset after the application of 

the above-mentioned method was quite large, especially for point patterns which were 

adjacent but not directly co-registered. The matching tree locations of the Scans 11 and 5 for 
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the centre of the scanned area were also conducted, since in the semi-automatic manual co-

registration using target spheres this approach has turned out to exhibit less error propagation 

and thus resulted in smaller offsets. However, the deviation between matching tree locations 

did not considerably change when applying this method, ranging from 0.27 to 3.29 m with a 

mean of 1.48 m and a standard deviation of 0.93 m.  

 
Figure 9: Plotted matching pairs of Scan 5 & 11. The offsets top right of the plot reach over 3 m. 
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3.1.2. Computation time 

The time needed for the computation of all transformations, using the hardware components 

listed in section 2.2, is depicted in Table 2. Since each point pattern is only matched with one 

of its directly neighbouring point patterns, the computation time per iteration does not 

continually increase.  

Table 2: Computation time for sequential co-registration 

 

  

Matched Scans computation time [min] Matched Scans computation time [min] 
Scan 34 & 33 2.39 Scan 8 & 10 2.78
Scan 33 & 32 1.85 Scan 10 & 11 3.57
Scan 32 & 30 1.29 Scan 11 & 12 2.09
Scan 30 & 29 1.91 Scan 12 & 13 1.25
Scan 29 & 27 2.00 Scan 13 & 14 0.99
Scan 27 & 26 1.56 Scan 14 & 16 0.91
Scan 26 & 25 1.43 Scan 16 & 15 0.73
Scan 25 & 28 2.07 Scan 15 & 17 0.5
Scan 28 & 5 2.17 Scan 17 & 18 0.28
Scan 5 & 4 1.86 Scan 8 & 7 1.22

Scan 4 & 31 1.27 Scan 7 & 6 0.7
Scan 31 & 9 1.4 Scan 25 & 20 1.09
Scan 9 & 8 1.51

Total
26 Scans - c. 30 ha c. 39 min
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3.2. Application of the algorithm using cumulative co-registration 

3.2.1. Tree pair matching 

When matching the obtained tree locations cumulatively, again starting at Scan 34, at first 

appearance a similar output to the one described in section 3.1.1 was obtained (Fig. 10). The 

remaining offsets between matching pairs of adjacent scans, however, were lower after the 

application of the cumulative method. To facilitate a closer look at each separate scan after 

the application of this co-registration method, detailed cuttings of each tree location point 

pattern with its adjacent point patterns are provided in Appendix A. 

 
Figure 10: Tree locations after cumulative transformation 
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Especially when once again taking a closer look at the exemplary clipped section of Scans 11 

and 5 (Fig. 11), the difference becomes obvious. The offsets between the same matching 

points which have been analysed in Section 3.1.1 ranged between 0.44 cm and 19.20 cm, 

with a mean deviation of 5.10 cm (standard deviation = 3.19 cm). When choosing an initial 

point pattern near the centre of the scanned area, the deviation between matching tree 

locations ranged between 0.48 cm and 20.66 cm with a mean of 4.50 cm and a standard 

deviation of 3.31 cm.  

 
Figure 11: Plotted matching pairs of Scan 5 & 11. The offsets never exceed 20 cm. 
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3.2.2. Computation time 

The time needed for the computation of all transformations, using the hardware components 

listed in section 2.2, is depicted in Table 3. Since the number of points to which a point pattern 

is matched rises with each iteration, the computation time per iteration increases accordingly. 

Scan 10 had to be registered separately because of registration errors. They probably 

occurred due to a corrupted point cloud and tree location errors. This would also explain the 

relatively large offsets of Scan 10, which are clearly recognizable in Appendix A, even after 

the direct registration only with its neighbours.  

Table 3: Computation time for cumulative co-registration 

  

Matched Scans computation time [min] Matched Scans computation time [min] 
Scan 34 & 33 2.36 previous &10 204.97
previous & 32 5.04 previous & 11 234.06
previous & 30 9.21 previous & 12 281.95
previous & 29 16.39 previous & 13 306.56
previous & 27 25.45 previous & 14 331.84
previous & 26 36.34 previous & 16 353.72
previous & 25 47.97 previous & 15 407.99
previous & 28 65.61 previous & 17 429.27
previous & 5 87.29 previous & 18 446.46
previous & 4 106.94 previous & 20 519.80

previous & 31 125.23 previous & 7 493.11
previous & 9 140.07 previous & 6 512.67
previous & 8 177.78 Scan 10 and adjacent 11.99

Total
26 Scans - c. 30 ha c. 89 hours / 3.7 days
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4. Discussion 

4.1. Parameter settings 

The parameter which was varied to optimize the registration results was 𝑘, the number of 

matching pairs selected for the computation of tentative transformation parameters. As 

described in section 2.3.2.1, these 𝑘 transformations were applied to all tree locations of one 

point pattern to identify the transformation with the highest number of matching trees. Hyyppä 

et al. [13] suggest that suitable values for the parameter 𝑘 lie between 10 and 50, depending 

on stem density and estimation errors of the tree locations [13]. Since these variables change 

with each scan, an adaptable parameter 𝑘 seems to be a reasonable solution. As mentioned 

before, the temporary number of 𝑘, analysed for the identification of the optimal value for this 

parameter, was 60. The selection of this value allowed for a reliable determination of the 

optimal value for the parameter 𝑘, as the range suggested by Hyyppä et al. [13] is covered 

with certainty.  

4.2. Sequential versus cumulative co-registration 

The crucial difference between the two conducted methods for the registration of multiple 

adjacent point patterns is the accuracy of the transformations. As mentioned in the previous 

sections, the accuracies which can be achieved with sequential co-registration contrast 

strongly with those reachable when cumulatively matching the point patterns. Since the 

obtainment of one contiguous point cloud for the whole area could be useful for a variety of 

applications, a fine registration using point-based methods such as PCA should be possible, 

only functioning with already quite closely matched point clouds [17,20]. Thus, a high 

registration accuracy is a fundamental requirement of the algorithm. As a result, a distance 

between two matching trees of over 3 m, as was sometimes the case for the sequential 

registration method, disqualifies the latter for all further applications. 

The great registration errors of the mentioned method are probably a consequence of error 

propagation [23]. As outlined by Evangelidis et al. [24], these “sequential register-then-

integrate strategies” only lead to optimal results when applied locally, otherwise falling victim 

to error propagation. This assumption could explain why adjacent, yet not directly co-

registered point patterns displayed large offsets while point patterns directly matched with 

each other did not show these inaccuracies. The sequential method can be considered a 

pairwise registration method, contrary to global methods, meaning that transformation 

parameters are always computed between two point sets. Since point correspondences might 
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not only exist between the co-registered points when operating on multiple point sets, global 

methods are considered to be a better alternative for this case of application [25]. The 

cumulative approach applied in the course of this thesis resembles these global, also known 

as group wise, registrations to the extent that it considers all adjacent point sets which might 

have correspondences with the not yet transformed points [23]. The high accuracy of the 

applied method results from the fact that, in the end, each point set is finally correlated with all 

its neighbouring point sets, leaving less room for potential errors.  

Another downside of the sequential method is the impossibility of performing the point set 

registration in one run. Depending on the spatial distribution of the conducted scans, there 

were always one or more point patterns which could not be integrated into the “registration 

sequence” because, doing so, the algorithm was stuck in a false status beyond the global 

optimum. Thus, some point patterns had to be added separately, implying additional work and 

losses in efficiency. The cumulative method, however, allowed for the registration of each 

point set regardless of any predefined sequence, the only conditions being that the new set of 

points is adjacent to the already registered accumulation of point sets and that it contains 

enough trees which overlap with the latter. Scan 19 did not fulfil the second condition, as the 

scanned area was a deforested area with only few, scattered trees spread over it. The 

overlapping areas need to contain a high number of trees for the registration algorithm to work 

optimally, which was not sufficiently considered during the scanning process and thus lead to 

the exclusion of scans 19, 21, 22, 23 and 24.  

The drawback of the more accurate, cumulative registration method is its high computation 

time, which increases with each iteration, such as already mentioned in Section 3.2.2. Since 

the feature descriptor vectors for every single point in each of the point sets as well as the 

Euclidean distances between them must be calculated, computation time inevitably rises with 

increasing point number, as is the case when cumulatively matching the point sets. 

Undoubtedly, the original MATLAB version of the registration algorithm developed by Hyyppä 

et al. [13] would perform much faster than its modified R version, as R is known to be the 

slower of these two programming languages [26]. However, the computation time seems 

tolerable, especially when the relatively large extend of the study area is considered. 

4.3. Outlook 

Since the starting positions of multiple scans are usually not exactly in the same height and 

each scan produces its own local coordinate system, the final step to complete the coarse 

registration would be the transformation of the z-coordinate. Wang et al. [7] for example 

computed the vertical translation by calculating the differences between the z-coordinates of 
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matching tree pairs and averaging the results over the total number of matches, which is 

possible because modern scanners usually produce well-levelled point clouds. This approach 

implies that each matching tree position in one point pattern can be assigned to its 

corresponding position in the other point pattern. An easily implementable way of doing this, 

which has already been tested successfully, is to identify trees which are closer than a certain 

threshold by applying the function “connected.ppp” from the spatstat.geom package [27]. Tree 

pairs which are closer than the chosen threshold and exhibit different scan IDs can be 

regarded as matching pairs. Taking the mean of their respective attributes, such as DBH, 

height or z-coordinate, allows for the merging of trees which would otherwise be duplicated 

and thus results in an accurate list of all scanned trees. From this list, stand parameters such 

as stem density or volume of standing timber can be calculated. As already mentioned, the 

knowledge of corresponding tree pairs also allows for the transformation of the z-coordinate 

following the approach described by Wang et al. [7]. 

After the completion of this step, a fine registration based on the coarsely transformed point 

clouds can be performed. The open-source program CloudCompare [21] includes a tool for 

the fine registration of point clouds based on an ICP algorithm, which could offer a solution for 

this final task of improvement. The input data required for this algorithm are basically two point 

clouds: a “data” point cloud, which should be transformed and a “model”-point cloud, which 

acts as reference. For each point of the data point cloud, the ICP algorithm in CloudCompare 

calculates the closest point in the model point cloud and afterwards minimizes the RMSD 

(Root mean squared deviation) between these points by applying iteratively optimized 

transformation parameters on the data point cloud. Adjustable parameters for this process 

include the number of iterations and a scaling parameter [28]. Although Rajendra et al. [20] 

pointed out that other ICP algorithms, such as Brute Force or KDTree, perform better than the 

algorithm implemented in CloudCompare when it comes to speed and accuracy, the latter still 

produced promising results in various studies [22,29].  

According to Hyyppä et al. [13], there are several possibilities for improving the efficiency and 

accuracy of the coarse registration algorithm. If desired, additional parameters can be added 

to the feature descriptor vectors, such as DBH or height of the trees. The computation of these 

feature descriptors could be parallelized in some degree and the identification of the nearest 

neighbouring trees can be accelerated by space-partitioning [13]. For the size of the given 

research area however, computation time kept within reasonable bounds and thus no further 

adjustments to increase time efficiency were made to the algorithm. The inclusion of the DBH 

as additional parameter was not considered as necessary, since the described registration 

method led to adequate results and every additional parameter would only lead to higher 

computation times. 
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5. Summary and Conclusions 

The efficient co-registration of point clouds obtained from Personal Laserscanning is an 

indispensable component of modern forest inventory based on LiDAR technology. The time- 

and labour-consuming target-based registration has long been a major obstacle, contributing 

eminently to the scepticism of many forestry companies towards the usage of PLS for forest 

inventory purposes. Therefore, alternative methods for an efficient co-registration need to be 

evaluated in order to put LiDAR technology into practice.  

In line with this, the goal of this thesis was to assess an algorithm in terms of its utility for the 

target-free coarse registration of PLS-point clouds and, if necessary, make adaptions to adjust 

to the given circumstances and tasks. To obtain practically relevant data for the testing of the 

algorithm, 30 ha of forested area were scanned in 26 scans using the Personal Laser Scanner 

(PLS) GeoSLAM ZEB Horizon (GeoSLAM Ltd., Nottingham, UK). The selected algorithm, 

described by Hyyppä et al. [13], is based on the spatial distribution of trees and their postitions 

relative to neighboring trees, making it resistant to any given translation or roatation. Some 

adjustments were made in order to minimize the input required for the algorithm, leaving only 

the tree locations and the neighborhoods of each scan as necessary input.  

The resulting transformations exhibited adequate accuracy, allowing for a further fine 

registration of the point clouds themselves. Concerning the array of registered tree location 

patterns, a cumulative method with each point pattern being matched to the accumulated total 

of the already registered point patterns led to the best results. A sequential approach however, 

with each point pattern being matched only to its previously registered, direct neighbor, 

resulted in large offsets to neighboring points which have not been directly registered.  

In summary, the described approach can lay the foundation of an efficient, target-free point 

cloud registration, enabling the fast and precise inventory of large forested areas without the 

need to spare time and space for the effortful target-based registration. The resulting 

redundancy of the latter could ideally pave the way for a broader usage of LiDAR technology 

in practical forest inventory.  



 23 

References 

1.  Graves, H.S. Forest Mensuration; John Wiley & Sons: New York, 1906; Vol. First 
Edition; 

2.  Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, 
H.; Jaakkola, A.; Guan, F.; et al. Terrestrial Laser Scanning in Forest Inventories. 
ISPRS Journal of Photogrammetry and Remote Sensing 2016, 115, 63–77, 
doi:10.1016/J.ISPRSJPRS.2016.01.006. 

3.  Chen, S.; Liu, H.; Feng, Z.; Shen, C.; Chen, P. Applicability of Personal Laser Scanning 
in Forestry Inventory. PLoS One 2019, 14, doi:10.1371/journal.pone.0211392. 

4.  Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-Held 
Personal Laser Scanning – Current Status and Perspectives for Forest Inventory 
Application. Croatian Journal of Forest Engineering 2020, 42, 165–183, 
doi:10.5552/crojfe.2021.858. 

5.  Li, J.; Huang, S.; Cui, H.; Ma, Y.; Chen, X. Automatic Point Cloud Registration for Large 
Outdoor Scenes Using a Priori Semantic Information. Remote Sens (Basel) 2021, 13, 
doi:10.3390/rs13173474. 

6.  Yang, H.; Shi, J.; Carlone, L. TEASER: Fast and Certifiable Point Cloud Registration. 
2020. 

7.  Wang, X.; Yang, Z.; Cheng, X.; Stoter, J.; Xu, W.; Wu, Z.; Nan, L. Efficient Registration 
of Forest Point Clouds by Global Matching of Relative Stem Positions. 2021. 

8.  Guan, H.; Zhang, J.; Ma, Q.; Liu, M.; Wu, F.; Guo, Q.; Su, Y.; Hu, T.; Wang, R.; Ma, Q.; 
et al. A Novel Framework to Automatically Fuse Multiplatform LiDAR Data in Forest 
Environments Based on Tree Locations. IEEE Transactions on Geoscience and 
Remote Sensing 2020, 58, 2165–2177, doi:10.1109/TGRS.2019.2953654. 

9.  Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation; 

10.  Johnson, A.E. Spin-Images: A Representation for 3-D Surface Matching; 1997; 

11.  Klein, I.; Filin, S. LiDAR and INS Fusion in Periods of GPS Outages for Mobile Laser 
Scanning Mapping Systems; 

12.  Cho, H.; Hong, S.; Kim, S.; Park, H.; Park, I.; Sohn, H.G. Application of a Terrestrial 
LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica. Sensors 
(Switzerland) 2015, 15, 23514–23535, doi:10.3390/s150923514. 

13.  Hyyppä, E.; Muhojoki, J.; Yu, X.; Kukko, A.; Kaartinen, H.; Hyyppä, J. Efficient Coarse 
Registration Method Using Translation- and Rotation-Invariant Local Descriptors 
towards Fully Automated Forest Inventory. ISPRS Open Journal of Photogrammetry 
and Remote Sensing 2021, 2, 100007, doi:10.1016/j.ophoto.2021.100007. 

14.  Polewski, P.; Yao, W.; Cao, L.; Gao, S. Marker-Free Coregistration of UAV and 
Backpack LiDAR Point Clouds in Forested Areas. ISPRS Journal of Photogrammetry 
and Remote Sensing 2019, 147, 307–318, doi:10.1016/j.isprsjprs.2018.11.020. 

15.  Wendt, A. A Concept for Feature Based Data Registration by Simultaneous 
Consideration of Laser Scanner Data and Photogrammetric Images. ISPRS Journal of 
Photogrammetry and Remote Sensing 2007, 62, 122–134, 
doi:10.1016/j.isprsjprs.2006.12.001. 

16.  Guan, H.; Zhang, J.; Ma, Q.; Liu, M.; Wu, F.; Guo, Q.; Su, Y.; Hu, T.; Wang, R.; Ma, Q.; 
et al. A Novel Framework to Automatically Fuse Multiplatform LiDAR Data in Forest 



 24 

Environments Based on Tree Locations. IEEE Transactions on Geoscience and 
Remote Sensing 2020, 58, 2165–2177, doi:10.1109/TGRS.2019.2953654. 

17.  Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans Pattern 
Anal Mach Intell 1992, 14, 239–256, doi:10.1109/34.121791. 

18.  R Core Team R: A Language and Environment for Statistical Computing 2020. 

19.  Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed 
Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) 
Technology. Remote Sens (Basel) 2020, 12, doi:10.3390/RS12091509. 

20.  Rajendra, Y.D.; Mehrotra, S.C.; Kale, K. v.; Manza, R.R.; Dhumal, R.K.; Nagne, A.D.; 
Vibhute, A.D. Evaluation of Partially Overlapping 3D Point Cloud’s Registration by 
Using ICP Variant and Cloudcompare. In Proceedings of the International Archives of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS 
Archives; International Society for Photogrammetry and Remote Sensing, 2014; Vol. 
XL–8, pp. 891–897. 

21.  Girardeau-Montaut, D.C. 3D Point Cloud and Mesh Processing Software 2017. 

22.  Ahmad Fuad, N.; Yusoff, A.R.; Ismail, Z.; Majid, Z. Comparing the Performance of Point 
Cloud Registration Methods for Landslide Monitoring Using Mobile Laser Scanning 
Data. In Proceedings of the International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences - ISPRS Archives; International Society for 
Photogrammetry and Remote Sensing, October 26 2018; Vol. 42, pp. 11–21. 

23.  Zhu, H.; Guo, B.; Zou, K.; Li, Y.; Yuen, K.V.; Mihaylova, L.; Leung, H. A Review of Point 
Set Registration: From Pairwise Registration to Groupwise Registration. Sensors 
(Switzerland) 2019, 19. 

24.  Evangelidis, G.D.; Kounades-Bastian, D.; Horaud, R.; Psarakis, E.Z. A Generative 
Model for the Joint Registration of Multiple Point Sets. In Proceedings of the Lecture 
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics); Springer Verlag, 2014; Vol. 8695 LNCS, pp. 109–
122. 

25.  Williams, J.; Bennamoun, M. Simultaneous Registration of Multiple Corresponding 
Point Sets. Computer Vision and Image Understanding 2001, 81, 117–142, 
doi:10.1006/cviu.2000.0884. 

26.  Bora¼ Gan Aruoba, S.; Fernández-Villaverde, J. A Comparison of Programming 
Languages in Macroeconomics; 2015; 

27.  Baddeley, A.; Turner, R. Spatstat: An R Package for Analyzing Spatial Point Patterns. 
J Stat Softw 2005, 12, 1–42. 

28.  Bytyqi, G. Diplomarbeit Detektion von Oberflächenveränderungen Mit Terrestrischem 
Laserscanner Zur Erlangung Des Akademischen Grades Geodäsie Und 
Geoinformation; 

29.  Rahman, F.; Kartini, G.A.J.; Nugroho, H. The Comparison of Point Cloud Registration 
Quality on Maptek I-Site Studio and Cloud Compare. 2019. 

  

 

 

 

 

  



 25 

Appendix A  

0 50 100 150 200

-1
50

-1
00

-5
0

0

Tree positions - Scan 33 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 33
Scan 8
Scan 31
Scan 32
Scan 34

0 50 100 150 200 250

-1
50

-1
00

-5
0

0
50

Tree positions - Scan 34 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 34
Scan 8
Scan 7
Scan 33

0 50 100 150

-2
00

-1
50

-1
00

Tree positions - Scan 32 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 32
Scan 33
Scan 31
Scan 30

-100 -50 0 50 100 150

-3
00

-2
50

-2
00

-1
50

-1
00

Tree positions - Scan 30 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 30
Scan 32
Scan 31
Scan 4
Scan 29



 26 

  

-200 -150 -100 -50 0 50

-5
00

-4
50

-4
00

-3
50

-3
00

Tree positions - Scan 27 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 27
Scan 29
Scan 4
Scan 28
Scan 25
Scan 26

-150 -100 -50 0 50

-4
00

-3
50

-3
00

-2
50

-2
00

Tree positions - Scan 29 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 29
Scan 30
Scan 4
Scan 28
Scan 27

-350 -300 -250 -200 -150 -100 -50

-6
00

-5
50

-5
00

-4
50

-4
00

-3
50

Tree positions - Scan 25 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 25
Scan 26
Scan 20
Scan 16
Scan 28
Scan 27

-250 -200 -150 -100 -50

-6
00

-5
50

-5
00

-4
50

Tree positions - Scan 26 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 26
Scan 27
Scan 28
Scan 25
Scan 20

-300 -250 -200 -150 -100

-4
50

-4
00

-3
50

-3
00

-2
50

Tree positions - Scan 28 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 28
Scan 25
Scan 16
Scan 14
Scan 13
Scan 5
Scan 4
Scan 29
Scan 27

-300 -250 -200 -150 -100

-3
00

-2
50

-2
00

-1
50

-1
00

Tree positions - Scan 5 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 5
Scan 28
Scan 4
Scan 9
Scan 11
Scan 12
Scan 13
Scan 14



 27 

 

-200 -150 -100 -50 0 50

-3
00

-2
50

-2
00

-1
50

-1
00

Tree positions - Scan 4 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 4
Scan 5
Scan 28
Scan 27
Scan 29
Scan 30
Scan 31
Scan 9

-100 -50 0 50 100 150

-2
00

-1
50

-1
00

-5
0

Tree positions - Scan 31 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 31
Scan 4
Scan 30
Scan 32
Scan 33
Scan 8
Scan 9

-150 -100 -50 0 50

-1
50

-1
00

-5
0

0

Tree positions - Scan 9 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 9
Scan 31
Scan 33
Scan 8
Scan 10
Scan 11
Scan 5
Scan 4

-200 -150 -100 -50 0

-1
00

-5
0

0
50

10
0

Tree positions - Scan 8 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 8
Scan 9
Scan 31
Scan 33
Scan 34
Scan 7
Scan 10

-200 -150 -100 -50 0

0
50

10
0

15
0

20
0

Tree positions - Scan 7 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 7
Scan 8
Scan 34
Scan 6

-200 -150 -100 -50 0

10
0

15
0

20
0

25
0

Tree positions - Scan 6 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 6
Scan 7



 28 

-300 -250 -200 -150 -100 -50

-1
50

-1
00

-5
0

0
50

Tree positions - Scan 10 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 10
Scan 8
Scan 9
Scan 11

-400 -350 -300 -250

-2
50

-2
00

-1
50

-1
00

Tree positions - Scan 12 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 12
Scan 11
Scan 5
Scan 13

-380 -360 -340 -320 -300 -280 -260

-2
80

-2
60

-2
40

-2
20

-2
00

-1
80

Tree positions - Scan 13 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 13
Scan 12
Scan 5
Scan 28
Scan 14

 
  

-350 -300 -250 -200 -150 -100

-2
00

-1
50

-1
00

-5
0

0

Tree positions - Scan 11 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 11
Scan 10
Scan 9
Scan 5
Scan 12

-400 -350 -300 -250

-3
50

-3
00

-2
50

-2
00

Tree positions - Scan 14 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 14
Scan 13
Scan 5
Scan 28
Scan 16
Scan 15

-350 -300 -250

-4
50

-4
00

-3
50

-3
00

Tree positions - Scan 16 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 16
Scan 14
Scan 28
Scan 25
Scan 20
Scan 17
Scan 15



 29 

 

-450 -400 -350 -300

-4
00

-3
50

-3
00

Tree positions - Scan 15 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 15
Scan 14
Scan 16
Scan 17

-450 -400 -350 -300 -250

-5
50

-5
00

-4
50

-4
00

-3
50

Tree positions - Scan 17 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 17
Scan 15
Scan 16
Scan 20
Scan 18

-520 -500 -480 -460 -440 -420 -400

-5
00

-4
80

-4
60

-4
40

-4
20

-4
00

-3
80

Tree positions - Scan 18 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 18
Scan 17

-400 -350 -300 -250 -200

-6
00

-5
50

-5
00

-4
50

-4
00

Tree positions - Scan 20 and adjacent

X-coordinates

Y
-c

oo
rd

in
at

es

Scan 20
Scan 17
Scan 16
Scan 28
Scan 25
Scan 26


