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Abstract 

A combination of electric-automated technologies has been hailed as a greener alternative to a 

traditional internal combustion engine and a solution to the increasing energy demand by the 

transport sector. Whilst many automated electric vehicles (AEVs) have been deployed in pilot projects 

over the last decade, their energy consumption has not been empirically tested, especially in rural 

areas where terrains are more challenging than typical urban road geometries. Since the specified 

energy consumption by manufacturers can often underestimate vehicles’ actual energy consumption, 

field data is necessary to analyse how much energy is spent in real-world scenarios. Utilising data 

collected from the Digibus project, an automated electric shuttle service deployed in the municipality 

Koppl, this master thesis aims to examine the energy consumption of an automated bus service in a 

peripheral terrain with up to 8 % slope. A digital elevation model was calculated and a panel regression 

analysis was employed to explore the impact of rural road characteristics on the vehicle’s energy 

consumption. The results confirm a correlation between energy consumption and road gradient and 

indicate that steep uphill slopes cause a significantly higher energy consumption than flat terrains. 

However, they also illustrate how significantly less energy is spent on downhill slopes compared to 

flat terrains. These findings imply that the counteracting effects will likely balance each other out 

leading to a similar average energy consumption compared to urban areas. The energy consumption 

of the AEV was also evaluated against traditional internal combustion engines of comparable size and 

was found to perform more energy-efficiently in all tested scenarios. Although there is still a lot of 

research and advancement of technology necessary for a big roll-out of AEVs, this thesis shows how 

much potential they have to reduce energy consumption within transport in both urban and rural 

scenarios. 



 

 v 

Kurzfassung 

Elektrische automatisierte Fahrzeuge (AEVs) werden als umweltfreundlichere Alternative zu 

herkömmlichen Verbrennungsmotoren und als Lösung für den steigenden Energiebedarf des 

Verkehrssektors gepriesen. Obwohl in den letzten Jahren viele Pilotprojekte mit automatisierten 

Elektrofahrzeugen durchgeführt wurden, wurde ihr Energieverbrauch nicht empirisch getestet, 

insbesondere in ländlichen Gebieten, wo das Gelände schwieriger ist als in typischen urbanen 

Gebieten. Anhand von Daten, die im Rahmen des Digibus-Projekts, einem automatisierten 

elektrischen Shuttleservice im ländlichen Koppl, gesammelt wurden, soll in dieser Masterarbeit der 

Energieverbrauch eines automatisierten Busdienstes in einem Gelände mit bis zu 8 % Steigung 

untersucht werden. Es wurde ein digitales Höhenmodell berechnet und eine Panel-

Regressionsanalyse verwendet, um die Auswirkungen von ländlichen Straßenmerkmalen auf den 

Energieverbrauch des Fahrzeugs zu untersuchen. Die Ergebnisse bestätigen eine Korrelation zwischen 

Energieverbrauch und Straßenneigung und zeigen, dass steile Steigungen einen deutlich höheren 

Energieverbrauch verursachen als flaches Terrain. Sie verdeutlichen aber auch, dass auf 

Gefällestrecken deutlich weniger Energie verbraucht wird als in flachem Gelände. Diese Ergebnisse 

deuten darauf hin, dass sich die gegenläufigen Effekte wahrscheinlich ausgleichen, was zu einem 

ähnlichen durchschnittlichen Energieverbrauch im Vergleich zu städtischen Gebieten führt. Der 

Energieverbrauch von AEVs wurde auch mit dem herkömmlicher Verbrennungsmotoren 

vergleichbarer Größe verglichen, wobei sich herausstellte, dass der Minibus in jedem getesteten 

Szenario energieeffizienter ist. Obwohl noch viel Forschung und technologischer Fortschritt für eine 

breite Einführung von automatisierten elektrischen Fahrzeugen notwendig sind, zeigt diese Arbeit, 

wie viel Potenzial sie haben, den Energieverbrauch im Verkehr sowohl in städtischen als auch in 

ländlichen Szenarien zu reduzieren. 
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1. Introduction 

Mobility is a key element of today’s life and the demand for mobility services is continuously 

increasing. However, in the light of growing environmental awareness and the climate crisis, the 

transport sector is facing huge challenges (Le Boennec et al. 2019; Underwood et al. 2014). Especially 

regarding energy consumption, transport is responsible for almost a third of the total global energy 

consumption which, in return, is the cause for greenhouse gas emissions and contributes to global 

warming. With over 90 % of vehicles driving on oil-based fuels and an increase in demand for mobility 

due to increasing living standards, emissions are constantly rising with the biggest growth in energy 

consumption compared to any other sector (International Energy Agency 2020). Moreover, higher 

living standards go along with an increase in individual mobility which only enhances the negative 

effects of transport (Conti et al. 2016; Khalili et al. 2019). 

As an answer to these pressing issues, electrification and automation of transport have been praised 

for providing the solutions (Lee and Kockelman 2019). Electric vehicles are proven to be more energy-

efficient than internal combustion engines (ICEs), they reduce oil dependency and can reduce 

emissions by 40 to 70 % depending on the electricity mix and location (Albatayneh et al. 2020). They 

also shift carbon emissions from the tail pipe towards electric generators which leads to fewer local 

emissions which affect people’s health, especially in dense urban areas (Schmidt et al. 2021). In these 

settings, electric vehicles have turned out to be particularly efficient due to their ability to regenerate 

energy while braking giving them a huge advantage over ICEs (Chen et al. 2021). Automation of 

vehicles, on the other hand, is predicted to make transport safer as most traffic accidents are caused 

by human error, as well as less congested due to the vehicles’ ability to communicate with other 

vehicles and road infrastructure leading to more ecological routing. Smoother driving cycles lead to a 

reduction of energy consumption and public transport can be more adaptable as automated vehicles 

can serve routes that are economically and ecologically not feasible in (non-autonomous) public 

transport due to savings in operating and personnel costs (Riener et al. 2020; Underwood et al. 2014). 

In the light of these positive changes that both technologies are hoped to achieve, automated electric 

vehicles (AEVs) for public transport have emerged on the market. Over the last decade, small 

manufacturers have brought out automated electric shuttle buses that hold approximately 12 

passengers and can drive up to 20 km/h (Antonialli 2019). Multiple pilot projects have been 

implemented in which their technology and automation level have been tested as well as people’s 

willingness to use AEVs. The automated electric buses have also served as a basis for a discourse on 

harmonisation and standardization of data in order to prepare stakeholders for the roll-out of 

automated vehicles (AustriaTech - Gesellschaft des Bundes für technologiepolitische Maßnahmen 

GmbH 2020). The shuttle buses have operated in various countries all over the world and projects 

have been situated mostly in closed areas like airports or hospitals and in urban settings (Cregger et 

al. 2018; Hagenzieker et al. 2021). Nonetheless, although the combination of automation and 
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electrification is praised to lead to a reduction in energy consumption which is one of the most 

important problems within transport, the real-world energy consumption of the shuttle buses has not 

been the focus of research so far. 

Additionally, most pilots have been done in urban scenarios rather than rural areas where road 

conditions and gradients can be quite varied compared to well-maintained urban roads that are 

typically relatively flat (European Road Safety Observatory 2006). Since steep slopes cause higher 

energy consumption, these terrains can be challenging and cause the vehicle’s battery to drain faster 

than in flat areas (Liu et al. 2017). However, especially in rural areas where public transport can be 

sparse or non-existent, there is a big potential for automated electric shuttles to make the public 

transport system more attractive. Especially the last mile problem, which refers to travellers finding it 

difficult to reach their final destination from a transportation hub like a railway station, could be solved 

by AEVs in rural areas (Qin et al. 2018; Riener et al. 2020). 

Since the real-world energy consumption of AEVs that are currently on the market has not been 

investigated in-depth by current research, this master thesis aims to fill this gap. It provides an 

approach to estimate the energy consumption of an automated electric vehicle in operation with a 

special focus on rural and hilly environments. It also puts the estimated energy consumption into 

context by comparing it with an internal combustion engine and evaluating in which conditions they 

perform better or worse. The goal is to identify scenarios where AEVs are more energy-efficient and 

scenarios where ICEs might be favourable. Thereby, the following research questions are addressed: 

(1) What is the impact of rural road characteristics on the energy consumption of an automated 

electric bus operation? 

(2) How does the energy consumption of an electric autonomous vehicle compare to a traditional 

combustion engine? 

The findings of this thesis contribute to the understanding of the current technology of AEVs and their 

energy consumption as well as the potential for further developments within this field. They serve as 

a foundation for a data-based discourse over the deployment of automated electric shuttle buses in 

rural areas. 
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2. Literature Review 

This chapter gives a summary on the main findings of the literature review that has been conducted 

on the topic of autonomous electric vehicles and their potential in rural areas. The aim is to lay the 

foundation in order to give context for the quantitative analysis of this thesis that will be explained in 

the next chapters. 

The chapter is divided into four parts, starting with the current developments and trends within the 

transport sector and its role in global energy consumption. Following, an overview is given on the 

electrification of transport which is seen as a great chance to achieve the goal of reducing emissions 

drastically within the next decade. The third sub-chapter focuses on the estimation of energy 

consumption by electric vehicles in current literature. After that, the automation of transport is 

presented, giving an understanding of why automobile manufacturers are putting so much effort into 

developing automated vehicles at the moment. Lastly, everything is tied together by explaining the 

potential of automated electric vehicles while research gaps are identified and explained. 

2.1. Effects of Global Transport 

Mobility of people as well as goods has played a key role in society and economic activities over the 

last decades and keeps being the basis for many processes the modern world is heavily relying upon. 

Even as the socio-cultural standards of success are changing and not defined by the ownership or use 

of a car anymore, comfort while travelling and autonomy remain very important (Le Boennec et al. 

2019). 

 

Figure 2.1-1 Worldwide total final consumption of energy divided by sectors (International Energy Agency 2020) 
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Looking at the global energy demand by sectors, the transport sector accounts for almost 30 % of total 

final consumption of energy worldwide (see Figure 2.1-1). Donev et al. define the total final 

consumption as “the aggregate of all of the end use energy that is used for providing various energy 

services”. Therefore, this percentage includes most dominantly running cars and other vehicles 

burning fuel, but also the production of vehicles, the creation of roads, airports, sea ports and 

pipelines (Donev et al. 2021). 

For other sectors like industry or the residential sector, the share of energy use has been quite stable 

over the last 50 years. However, transport has recorded the biggest growth in the timespan since 1971 

(International Energy Agency 2020) and is continuing to grow as economic growth raises standards of 

living and demand for personal transportation (Conti et al. 2016). 

Globally, passenger travel has increased by 74 % in the span from 2000 until 2015 while the 

motorisation rate has increased by 27 %. Especially in urban regions, the global demand for passenger 

mobility is estimated to double by 2050 (Nemoto et al. 2021), as 55% of the world’s population is 

currently living in urban areas and this number is estimated to rise to 68% (Antonialli 2019). 

Since the transport sector is one of the most energy-intensive sectors in the world, this also makes it 

one of the major contributors to the earth’s rising greenhouse gas emissions (Albatayneh et al. 2020). 

With over 92 % of the energy for transport provided by oil, 3 % by natural gas and only 1 % by electricity 

and 4 % by other fuels, there is a lot of potential for change. However, major suppliers of fossil fuels 

do not expect huge changes of fossil-fuel demand over the next years, as there is such high 

dependence on them (Khalili et al. 2019). Especially in developing countries, the  transportation 

energy demand is growing fast, therefore, it becomes even more pressing to reduce emissions in order 

to combat climate change (Albatayneh et al. 2020). 

As the effects of climate change are more and more evident, the European Commission has published 

a white paper addressing the need for the transport system to become more sustainable. One of the 

big goals is for the transport sector to reduce greenhouse gases by at least 60 % until 2050, with 

respect to 1990. As transport is responsible for almost a quarter of Europe’s greenhouse gases and 

seen as the main cause of air pollution in cities, three key levers have been defined in order to steer 

transport toward low carbon emissions: 

 Higher efficiency of the transport system 

 Low-emission alternative energy for transport 

 Low- and zero emission vehicles (European Commission 2016). 

However, not only is the European Union taking steps, but many countries are participating in an 

energy transition  (Huang and Zhai 2021; Nam and Jin 2021) as the target of the Paris Agreement to 

keep temperature rise well below 2 degrees Celsius is getting harder to achieve (United Nations 

Framework Convention on Climate Change 2015). The main focus is the decarbonisation of electricity 

and heat generation as well as the transport sector since they together accounted for two thirds of 
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the global CO2 emissions in 2017 and almost the entire global growth in emissions since 2010. 

Especially the road transportation with mostly passenger travel is responsible for three quarters of 

the total transportation emissions (Yuan and Li 2021; Yuan et al. 2021). 

Similarly to the European Union, the major solutions to reducing emissions worldwide are, firstly, 

lowering primary energy intensity by improving energy efficiency as well as, secondly, electrification 

based on renewable energy. Implementing these solutions has the potential of reducing carbon 

emissions by more than 30 % (Nam and Jin 2021). 

The main strategy for transport at the moment is alternative fuel penetration, especially with 

electricity, but also including hydrogen and renewable fuels like synthetic fuels. Moreover, 

technological efficiency will play a role as well as demand-side solutions (Khalili et al. 2019) that 

involve end users and, thus, lifestyle and behavioural change (Creutzig et al. 2016). In this regard, the 

focus on public transport is also seen as a major factor in order to reduce individual ownership of 

private vehicles and, hence, to reduce emissions (Pamuła and Pamuła 2020). An attractive public 

transport system can lead to a sustainable change in mobility behaviour as individual mobility can be 

replaced by public mobility in many cases. This then leads to fewer local emissions and less noise 

pollution as well as a significant decrease in energy consumption. Furthermore, far less sealed land is 

required for parking private vehicles, while parking time accounts for an average of 23 out of 24 hours 

or 96% of a day (Riener et al. 2020). 

Achieving a decrease in private vehicles is especially difficult in rural areas where mobility is a central 

prerequisite to participating in social life or having access to jobs and services for health care. Access 

to mobility and its maintenance in rural areas are decisive factors for the quality of life and contribute 

to these regions remaining attractive places to live in the future (Berg and Ihlström 2019). Public 

transport often is not able to ensure coordination between the means of transport at transfer points, 

e.g. when changing bus lines or between train and bus, so people opt for private vehicles instead. 

Therefore, there is a need for solutions for public transport to become more ecologically friendly and 

economically attractive in less densely populated areas in the future (Riener et al. 2020). 

2.2. Electrification of Transport 

There are different sectors and areas in society with the possibility to lower emissions and achieve 

carbon neutrality (Huang and Zhai 2021), however, the largest potential is seen by improving 

transport, particularly via electrification (Creutzig et al. 2016). The environmental effects of global 

transport as well as concerns about energy security are the main reasons for trying to reduce energy 

consumption by vehicles while still keeping all processes that involve mobility intact. The 

electrification of transport seems to be one of the most effective solutions (Pollák et al. 2021). 

Electric vehicles (EVs) can be broadly defined as road vehicles whose propulsion involves electricity or 

as “vehicles with motors that are powered by electricity rather than liquid fuels” (Foley et al. 2020). 
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Electromobility dates back to the 19th century when Thomas Davenport built the first electric car that 

included a non-rechargeable battery. After that, a lot of research went into inventing the first lead-

acid batteries that could be recharged. The entry of electric vehicles to the market shaped and altered 

the transport ecosystem including old and new players and brands (Schmidt et al. 2021). With the 

development of new battery technologies, electric vehicles became a commercially available product 

since the late 2000s and, regarding technology, development has not stopped. Tesla, Nissan and BMW 

have all come out with EV models that offer the possibility of charging the battery to 80% in only 30 

minutes (Wang 2016). In general, the whole automobile industry is pursuing strategies to move e-

mobility further, Volkswagen shared their “e-offensive” and Hyundai included electromobility into 

their “Strategy 2025” while Toyota published an electrification strategy for sustainable mobility 

(Volkswagen AG 2021; Hyundai Motor Company 2019; Toyota UK Magazine 2017). 

Table 2.2-1 Different types of Electric Vehicles with their acronym and description (based on (Harrison et al. 

2018)) 

Acronym Term Description 

BEV Battery Electric Vehicle A vehicle with an electric powertrain fully powered by 

an internal battery charged from an external source. 

PHEV Plug-In Hybrid Electric 

Vehicle 

A vehicle with a combustion engine as well as an 

electric powertrain which is powered by an external 

source. 

HEV Hybrid Electric Vehicle A vehicle with an electric powertrain which is powered 

by a conventionally fuelled combustion engine. 

FCV Fuel Cell Electric Vehicle A vehicle with an electric powertrain powered by a 

hydrogen fuel cell. 

Annual sales of electric vehicles (EVs) have been steadily rising since 2011, with a global sale of 2.1 

million in 2019. This increase can be explained by the continued improvement in the cost and 

performance of commercial EVs, environmental awareness an increased EV options available to 

consumers (Ahmed et al. 2021). These options include mostly four types of EVs (shown in Table 2.2-1) 

which are battery EVs, hybrid EVs, plug-in hybrid EVs and fuel-cell EVs (Chen et al. 2021). When talking 

about EVs, however, people usually refer to battery electric vehicles (BEVs) as they are solely powered 

by electricity and do not rely on any other fuel. 

One of the strongest arguments in favour of electric mobility is how it shifts carbon emissions from 

the tail pipe towards electric generators. Therefore, EVs make an especially big difference if the carbon 

intensity of the generation mix is low. As the share of renewable energy within the electricity mix is 

growing, carbon emissions are decreasing, however, not only C02, but also many other pollutants like 

nitrogen oxide or particulate matter (Schmidt et al. 2021). 
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The difference between a conventional internal combustion engine (ICE) and an electric vehicle is that 

there are no emissions during the usage of EVs. The well-to-wheel analysis helps explain this as it 

monitors energy consumption and emission production from production of energy to its final 

consumption and is divided into two parts. The first phase, well-to-tank, includes energy and emissions 

that are consumed and produced during energy production, while the second phase, tank-to-wheel 

comprises energy consumption and emission production during vehicle operation (Petro and Konečný 

2017). Generally, it is important to always clarify the scope of the measurement method when 

describing energy consumption. For EVs, the tank-to-wheel scope corresponds to a plug-to-wheel 

scope as it refers to the timeframe after plugging the vehicle to the alternating current (AC) electric 

grid. It then covers the energy consumption of the energy that is stored within the battery for 

powering both the drivetrain and auxiliaries (Cauwer et al. 2015a). 

 

Figure 2.2-1 Well-to-wheel approach for ICEs as well as EVs/PHEVs (IRU International Road Transport Union 

2018) 

Within the well-to-wheel approach it becomes clear how EVs have a major advantage over ICEs 

regarding emission production as they cause fewer local emissions and improve public health (Yuan 

et al. 2021). Moreover, there has been a lot of debate whether EVs cause decreased emissions overall, 

as electricity generation involves using fossil fuels (well-to-tank). Some question if the diffusion of EVs 

can mitigate climate change as long as electricity is not fully decarbonized. However, in 2020 Knobloch 

et al. have calculated that already under current carbon intensities of electricity generation electric 

cars are less emission intensive than fossil-fuel-based alternatives in 53 world regions, representing 

95% of the global transport. One of the few exceptions is Poland where coal remains the main energy 

source. These findings show that already, EVs can mitigate climate change under the current 

conditions and there is a big potential to reduce emissions even more while decarbonising the 

electricity grid (Knobloch et al. 2020). 
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When examining energy loss along the well-to-wheel chain, EVs perform very well regarding energy 

efficiency (Cauwer et al. 2015a; Zuccari et al. 2019; Albatayneh et al. 2020). EV motors are more 

efficient than internal combustion engines with the ratio between wheel power to total energy in ICEs 

and BEVs being in the range of 15-24 % and 60-70 % respectively (Xie et al. 2020). However, in a well-

to-wheel approach, the energy source plays a vital role.  Values of energy efficiency for  EVs can drop 

significantly when renewable energy sources are used, from around 40 to 70 % depending on the 

energy source and its location (Albatayneh et al. 2020). 

Other benefits of opting for EVs are the improvement of energy security through reducing the 

dependency on fossil fuels as well as their lower operational costs (Yuan et al. 2021). However, the 

global market share is still incredibly low with only around 1 % and in some countries even less than 

that (Foley et al. 2020). The reason for this are high purchase prices, a limited driving range which can 

cause so called “range anxiety” and longer charging time compared to conventional vehicles (Ajanovic 

and Haas 2018). Schmidt et al. point out that the prerequisite for using an electric vehicle is having 

infrastructure available for them to recharge their batteries. Therefore, they emphasise how poor 

availability of dedicated infrastructures and low user awareness are the main issues that need to be 

addressed (Schmidt et al. 2021). 

2.3. Estimation of EV Energy Consumption 

For estimating energy consumption of EVs, the scope in current literature is usually a plug-to-wheel 

framework (Chen et al. 2021). The following figure describes the energy flow starting from the energy 

stored within the battery powering the generator until reaching the propulsion of the wheels through 

the transmission system: 

 

Figure 2.3-1 Energy consumption within an EV including auxiliaries (based on (Zhang and Yao 2019; Baxter et 

al.)) 
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When only considering the energy flow within the vehicle, energy consumption of electric vehicles is 

the sum of: 

- Energy that is required to move the vehicle (hence, to propel the wheels) 

- Energy losses along the powertrain 

- Energy that is needed to operate the auxiliary systems 

(Miri et al. 2021). The auxiliary systems include air conditioning and heating, often called HVAC, which 

can cause the battery to drain very quickly in very hot or cold weather. For automated vehicles, the 

auxiliaries also comprise the different sensors and cameras to detect obstacles and their environment 

as well as the computer that processes all the data and steers the vehicle (Baxter et al.).  

Mamala et al. describe how all components that have an impact on energy consumption can be 

summarized in one word with the acronym CARE, Chauffeur, Automobile, Road, and Environment. 

Chauffeur stands for the driver and their driving style. Aggressive driving, which can be roughly defined 

by more intense acceleration and deceleration phases, is often the reason for higher energy 

consumption compared to a smooth driving style. The vehicle or automobile itself also plays a role, 

therefore, vehicle parameters like its weight, construction properties and coefficient of drag have an 

impact. The vehicle’s technology also falls under this category including the state of the battery (age, 

type, capacity) and the included auxiliaries (navigation system, heating, air conditioning, driver 

assistance etc.) (Sweeting et al. 2011; Mamala et al. 2021; Li et al. 2016).  

In a study by Li et al., the remaining components are not called road and environment, but rather 

artificial environment and natural environment. Artificial environment factors include road conditions 

and surface, degree of urbanization and traffic (congestion, traffic lights etc.). Environmental 

environment factors comprise topography with gradient and altitude profile as well as all weather 

related factors as cold weather, for example, noticeably reduces battery capacity (Li et al. 2016). 

Energy consumption, particularly of electric vehicles, has been the focus of a lot of research over the 

course of the last ten years. Chen et al. reviewed the state of the art of EV energy consumption models 

and classified approaches based on modeling scale (microscopic vs. macroscopic) and methodology. 

They split methodologies of existing models into rule-based and data-driven models. Rule-based 

models follow a white-box approach that is based on fundamental laws of physics and mimic the 

dynamic and interactions of various vehicle and powertrain components to calculate energy 

consumption (Chen et al. 2021). Physical models are usually based on Newton’s second law where the 

tractive effort of an EV is expressed as the sum of rolling resistance, grading resistance, inertial force 

and aerodynamic drag respectively (Zhang and Yao 2019).  

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑎𝑐𝑐𝑒𝑙 + 𝐹𝑔𝑟𝑎𝑑𝑒 + 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑎𝑒𝑟𝑜 (Faris et al. , 2011) (1) 

Such a model is called a vehicle longitudinal dynamics model. For accelerating a vehicle against 

external resistances (air drag, rolling and grade resistance), the electric motor provides a tractive 

effort. This tractive power for moving the vehicle comes from the motor which is connected to the 
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battery. The energy consumption of these models, therefore, only includes the forces that are acting 

upon the moving vehicle, but not auxiliaries or energy losses along the powertrain (Graser et al. 2015).  

Data-driven models, on the other hand, take on a black-box approach where users do not need to 

understand the physical process of electricity generation and consumption, but rely on the exploration 

of the statistical relationship between inputs and outputs of energy. The most widely used statistical 

method is multivariate linear regression, but some studies have also implemented machine learning 

techniques like neural networks (Chen et al. 2021). Wang argues that “using real-world driving 

measurements can result in more realistic values for energy consumption”, but access to real-world 

data is not always given and they often cannot reflect changes of vehicle parameters and 

environmental conditions (Wang 2016). The advantage of data-driven methodologies is that they 

describe correlations between certain input parameters and the vehicle’s energy consumption and 

are able to capture complex relations between parameters and energy consumption. However, the 

quality depends on the available data and its accuracy. Some studies actually use a combination of 

physics-based and data-driven methods where the model structure is based on underlying physics 

even though a data-driven approach is used (Beckers et al. 2019). Cauwer et al. take the physical 

formula in order to extract a simplified regression model which contains a speed-squared-dependent 

term describing aerodynamic losses, a height-dependent term for potential energy, but also adds an 

independent variable to account for ambient temperature (Cauwer et al. 2015b). 

Energy consumption models can also be classified by modeling scale which is defined by the temporal 

resolution of the data. Microscopic-scale models can estimate energy consumption of EVs at high 

frequency, typically 1 Hz. This means that the data would exist on a second-by-second level and can 

be used to determine energy consumption during different traffic scenarios and evaluate energy 

implications of EVs in traffic simulation. As a counterpart, macroscale models explore the relationship 

between energy consumption and driving characteristics at an aggregated spatial or temporal span. 

They are usually applied for planning of charging infrastructure or energy portfolio prediction. Figure 

2.3-2 shows how the majority of models since 2011 have been macro-scale models, however, there 

has been a huge increase in research overall and micro-scale models have been implemented more 

and more (Chen et al. 2021). 
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Figure 2.3-2 Number of research papers for microscale and macroscale EV energy consumption estimation 

model from 2011 until 2019 (Chen et al. 2021)  

An example of a macro-scale model is how Wang et al. calculated energy consumption of electric 

buses on the basis of data per trip driven by public buses. This was done by taking the difference 

between the State of Charge in the beginning of the trip and the end and the distance that the bus 

travelled. This resulted in average energy consumption per kilometer for each trip as the target 

variable to be explained. Average speed and acceleration as well as standard deviations were then 

taken into account to check for causalities (Wang et al. 2020). Qi et al. also investigated energy 

consumption per trip by 50 test vehicles and focused on the influence of distance, initial SoC, 

temperature and speed (Qi et al. 2018). Braun et al. estimated energy consumption per segment of a 

route and also used speed distribution, speed and acceleration means and the occurrence and 

duration of stops (Braun and Rid 2017). Liu et al. combined large-scale GPS data and terrain data to 

reveal the contribution of road gradient on energy expenditure. With a polling frequency with a 60 

seconds interval, the information on actual driving patterns and changes in SoC was not detailed 

enough, therefore, energy consumption per trip in kilowatt-hours per kilometre was used as the 

energy efficiency measure (Liu et al. 2017). 

In micro-scale models, on the other hand, energy consumption is usually determined on real time by 

installing an instant power measurement system. This allows to track how much power the vehicle is 

demanding at each point in time. For instant power measurement, both current and voltage of the 

batteries are required (Flores et al. 2015). Yao et al. used a regression model with speed, acceleration 

as well as the initial State of Charge to determine energy consumption per second (Yao et al. 2013a). 

Microscopic-scale models are often used in applications related to optimizing real-time vehicle 

control, called eco-driving, particularly to reduce congestion on corridors or signalized intersections 

(Chen et al. 2021).  

Micro-scale and macro-scale models serve different purposes in research, depending on the focus of 

the study and the relationship that wants to be focused on. However, the decision on a model always 

lies in the data that is available (Chen et al. 2021). 
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2.4. Automation of Transport 

Stocker and Shaheen broadly define automated vehicles (AVs) as “vehicles used to move passengers 

or freight with some level of automation that aims to assist or replace human control” (2017). 

Chmielewski, on the other hand, describes self-driving vehicles as vehicles capable of navigating 

roadways and interpreting traffic-control devices without a driver actively operating any of the control 

systems (Chmielewski 2019). Controlled, fixed-guideway systems like trains or airport people movers 

are examples of AV systems already in operation today. Currently, AVs are being developed for use on 

public roadways and most major automobile manufacturers and lots of technology companies are 

trying to bring automated vehicles to the market as soon as possible (Stocker and Shaheen 2017). 

Table 2.4-1 Explanation of the six SAE Levels from No Automation at Level 0 to Full Automation at Level 5 (based 

on (Yeong et al. 2021)) 

SAE Level 0 SAE Level 1 SAE Level 2 SAE Level 3 SAE Level 4 SAE Level 5 

No 

Automation 

Driver 

Assistance 

Partial 

Automation 

Conditional 

Automation 

High Automation Full 

Automation 

The human 

driver 

performs all 

tasks 

related to 

driving. 

The vehicle 

features a 

single 

automated 

system for 

driver 

assistance 

with the 

anticipation 

that the 

human driver 

performs all 

remaining 

driving 

aspects. 

The vehicle can 

perform steering 

and acceleration 

or deceleration, 

but the human 

driver is required 

to monitor the 

driving 

environment and 

can take control 

at any time. 

The vehicle can 

detect 

obstacles and 

perform most 

driving tasks. 

Human 

override is still 

required. 

The vehicle can 

perform all 

aspects of 

dynamic driving 

under specific 

scenarios. 

Georeferencing is 

required. Human 

override is still an 

option. 

The vehicle 

performs all 

driving tasks 

under all 

conditions and 

scenarios 

without human 

intervention. 

Human drivers monitor the driving environment The automated system monitors the driving 

environment 

As a framework needed to be put into place in order to have a common understanding of how 

automated a vehicle actually is, the SAE International, previously known as the Society of Automotive 

Engineers (SAE) put out a standard defining the different levels of driving automation for consumers 

(see Table 2.4-1). The J3016 “Levels of Driving Automation” standard comprises six distinct levels of 

driving automation starting with the driver having full control of the vehicle at SAE level 0. On the 
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other side, at SAE level 5, vehicles control all aspects of the dynamic driving tasks without human 

intervention (Yeong et al. 2021). 

Automation Levels 0 through 4 will require a driver to be present in the vehicle in order to step in in 

case of an incident that the automated system cannot handle, only when Full Automation is achieved 

in Level 5 does the vehicle drive completely on its own. However, vehicles at SAE Level 3 and 4 already 

change the experience of driving significantly since the driver is relieved of the task of constantly 

monitoring the environment (Lutin 2018).  

With multiple benefits of automation, safety is usually the first that is mentioned. It is claimed that by 

automatization of the vehicle fleet an improvement of 90 % or more regarding traffic fatalities and 

injuries can be achieved. Equity and accessibility are also big factors as automated vehicles can 

improve access to vehicle mobility for seniors, disabled people as well as low-income groups. AVs 

could significantly change the quality of life for elderly people or people with severe disabilities who 

otherwise face challenges in using today’s modes of transport. Since AVs are likely to be small, light, 

energy efficient and suited for alternative power sources, they would also benefit the environment. 

Furthermore, the use of AVs can mitigate congestion which creates higher fuel and energy 

consumption and local emissions. Congestion is usually caused by capacity bottlenecks, traffic 

incidents, poor signal timing and construction, and can be reduced by the vehicle automatically 

adapting its speed, choosing different routes and having fewer accidents (Ticoll 2015).  

Even though there are great advantages of AVs, there are complex issues regarding legal aspects, 

liability, privacy, licensing, security and insurance regulation that need to be solved (Antonialli 2019). 

Moreover, a big concern is how self-driving vehicles will affect energy consumption. This question is 

hard to answer since their implementation could either result in a reduction or an increase of energy 

consumption. On the one hand, automation leads to smoother driving cycles which would lower 

energy consumption, on the other hand, users might be less reluctant to travel farther distances or to 

make additional trips which would have the opposite effect. Another reason for higher energy 

consumption of AVs is seen in their computer and sensor power demands (Lee and Kockelman 2019).  

Autonomous vehicles have a large number of sensors or cameras that work, for example, with 

ultrasound, laser scanners or radar technology.  Thus, the environment is continuously captured which 

makes orientation in road traffic possible. A wiring architecture connects all sensors to the power 

sources and enables communication, while on-board computer processors analyse the generated data 

and convert it into commands that allow the vehicle to drive without a driver (Baxter et al.). 

A large component group is the sensor system which is crucial for operating an automated vehicle. 

Different sensor systems are usually implemented. Ultrasonic sensors guarantee near-field monitoring 

by transmitting sound waves above the range of human hearing which are reflected by obstacles. 

Radar sensors work similarly. They cover their detection range with electromagnetic waves and 

primarily cover the area in front and behind the vehicle. Radar sensors are especially important for 

capturing moving objects like other vehicles. Other sensors that are needed for object detection next 
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to the roadway are Lidar sensors. Lidar (Light detection and ranging) stands for a method based on 

light waves, typically infrared laser beams. They emit several laser beams which form independent 

transmission channels due to slightly different wavelengths and phase lengths. By evaluating the back 

radiation, distances and relative speeds as well as contours of objects can be determined. On the basis 

of this sensor data, algorithms can calculate very precise spatial models of the vehicle’s surroundings. 

The sensors are complemented with optic cameras that detect the lanes, traffic signs and obstacles 

(Büro autoBus et al. 2018; U.S. Energy Information Administration 2017). 

In order to handle data errors that are inevitable, different sensors need to be in place at all times to 

be able to correct the data and to provide maximum safety (Yeong et al. 2021). The higher the SAE 

automation level of a vehicle, the more necessary redundant data becomes. If the vehicle would 

suddenly lose the power line to a set of sensors or the computer processor, the system would need 

to have enough redundancy to safely bring the vehicle to a stop without causing danger (Baxter et al.). 

Individual sensors do not present large loads to the energy consumption, however, the power drawn 

by a multitude of sensors and processing of the huge amount of captured data can be significant 

(Baxter et al.). The sensors and computer deliver better performance, higher efficiency as well as an 

improved and smoother driving experience, however, these systems need additional energy. Lee and 

Kockelman estimate an increase in energy consumption from 4 % to as much as 15 % produced by the 

sensor systems and computers used in automated vehicles (Lee and Kockelman 2019). 

2.5. Automated Electric Shuttles for Public Transport 

When picturing future scenarios for transport development, automation and electrification are often 

seen as a combination rather than separate developments. Lee and Kockelman argue that increased 

adoption of automated vehicles is likely to inspire greater adoption of electric and hybrid powertrains. 

Especially due to empty-driving capabilities, EVs would be able to self-charge without drivers by 

charging inductively or with a robotic arm. No human would need to be present for refuelling which 

would be specifically valuable for shared AVs as travellers would not have to worry about the range 

being sufficient (Lee and Kockelman 2019). Regarding energy consumption, Tate et al. come to the 

conclusion that an optimized EV powertrain in a fully automated transport system would only require 

one-third of the energy of an equivalent ICE vehicle (Tate et al. 2018). 

Underwood et al. identify four major problems with current transportation technology which are: 

(1) Oil dependence in transportation 

(2) Fatalities and injuries from road accidents 

(3) Congested roadways 

(4) Underutilisation of public transport.  

They also emphasise how automated electric vehicles have the potential to solve all of these issues as 

electrification of transport leads to higher energy efficiency and safety and less dependence on oil. 
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Fatalities and injuries are predicted to drastically decrease with self-driving vehicles as most accidents 

are caused by human error. Furthermore, automation is also likely to reduce congestion and public 

transport is presumed to be much more adaptable when automated vehicles are used (Underwood et 

al. 2014). 

In regard to public transport, the implementation of automated buses for public transport offers a lot 

of benefits. Due to reduced driver costs, bus fares could be lowered. They can also increase the 

capacity utilization of the existing road network and enhance traffic efficiency (Guo et al. 2021). 

Therefore, they can serve routes in public transport that are economically and ecologically not feasible 

in (non-autonomous) public transport due to savings in operating and personnel costs. They also might 

be a solution for the last mile problem which refers to the problems of travellers finding it difficult to 

reach their final destination from a transportation hub like a railway station or bus stop (Riener et al. 

2020; Qin et al. 2018). 

Even though automation is still in its early stages and a big roll-out of automated electric vehicles is 

not likely to happen any time soon, automated electric shuttles have increasingly been deployed and 

continuously tested for a few years now. Pilot projects have been launched in different countries like 

the United States, China, Germany, Austria and South Korea in order to test automated vehicles and 

integrate them into existing public transport (Hagenzieker et al. 2021). Especially Europe has been on 

the forefront of testing autonomous vehicles with programs like CityMobil2 funding demonstrations 

and showcases of small automated shuttle buses in cities (National Center for Transit Research 2016). 

Moreover, the majority of experimentations have been done in Europe and the continent holds almost 

half of all manufacturers that specialize in automated electric shuttle buses for collective transport. 

Navya and EasyMile are two French companies that have been dominating the field since their 

founding in 2015 and 2014 respectively. Their concept is similar as they both provide autonomous 

minibuses that are powered by electricity, reach a top speed of 20 km/h and hold around 12 people 

(Antonialli 2019). 

Most pilots have been deployed in urban areas in order to overcome mobility gaps, improve transport 

accessibility, flexibility and sustainability (Nemoto et al. 2021). More than half of all projects focused 

on testing the vehicles in closed and controlled areas like university campuses, parks, hospitals, resorts 

and airports. The remaining projects examined the shuttles among mixed traffic where the routes 

were mostly pre-determined for city centres and areas with a slow-speed circulation of regular 

vehicles (Antonialli 2019). The main research purpose of pilot projects has been to investigate user 

attitudes and willingness to use future autonomous services. However, public acceptance is difficult 

to test due to selection bias as those who choose to ride the automated shuttles might not reflect the 

general public’s opinion. Also, since there is an on-board operator present, this might change people’s 

feeling of security as well and might not represent their willingness to use an unaccompanied AV (Feys 

et al. 2020; Cregger et al. 2018). 
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Rural settings and roads are quite different than urban roads and have different factors that need to 

be taken into account. In urban areas, high density both of traffic and other functions are being served 

by the road, traffic needs to be integrated into residential space and the roads are catering to the 

needs of a wide range of road users using different modes (European Road Safety Observatory 2006). 

Rural roads are often defined as two-lane roads that are not set in an urban area which contains 

50.000 or more inhabitants within densely settled territory. Another method of defining rural roads is 

using traffic volume, specifically the average annual daily traffic level and setting a certain amount as 

a threshold (Cannon et al. 2009; Bhandari 2013). Rural road standards and characteristics can be very 

different depending on the country as well as definition of rural roads (European Road Safety 

Observatory 2006), however, in this context, the difference to urban traffic is of utmost importance. 

Urban environments present their own challenges with uncertainties and disruptions that can change 

traffic flow (like temporary lane blockages and road closures) as well as congestion, traffic signs and 

unsignalized intersections (Xie et al. 2014). Rural roads, on the other hand, are much more diverse, 

speed limits can be much higher and road grade, curvature and surface vary a lot. Single carriageways 

and two-lane roads are the cause of most fatal accidents and account for the majority of fatal and 

serious crashes. The risk of fatalities can be up to six times higher on two-lane rural roads than on 

motorways, and decrease as traffic flows increase (EuroRAP 2011; European Road Safety Observatory 

2006). 

Since most experiments of automated electric vehicles for public transport are taking place in urban 

settings or closed traffic environments, exploring how they would perform in a rural setting is crucial 

for future implementation of AEVs in different scenarios. Moreover, case studies show how much 

potential autonomous electric vehicles have and test people’s willingness to use them, but do not 

focus on energy consumption with real life data. Therefore, there is a lack of evidence how sustainable 

the deployment of AEVs can be with current technological standards. This master thesis aims to fill 

this gap and provide an approach to estimating the energy consumption of an automated electric 

vehicle in operation. The goal is to answer the following research questions: 

(1) What is the impact of rural road characteristics on the energy consumption of an automated 

electric bus operation? 

(2) How does the energy consumption of an electric autonomous vehicle compare to a traditional 

combustion engine? 
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3. Methodology 

The methodology is structured in three chapters including data collection, data processing and data 

analysis. The following flowchart shows an overview and which steps were taken during each phase 

until the final regression model was defined. 

 

Figure 2.5-1 Overview of the steps undertaken from data collection, processing to analysis 

3.1. Data Collection 

In order to analyse energy consumption of an automated electric vehicle, quantitative data was 

collected by a shuttle bus that was implemented during the project Digibus. Furthermore, data on the 

elevation and road gradient was included since rural areas often have a much more varying slope than 

urban regions which was provided by the Austrian Institute of Technology (AIT). Additionally, data on 

the weather conditions from Zentralanstalt für Meteorologie und Geodynamik (ZAMG) was added 

which signifies whether heating or air conditioning was being used. 

3.1.1. Digibus EZ10 

This master thesis is based on the data provided by the Austrian flagship project “Digibus Austria” 

which was funded by the Austrian Research Promotion Agency and the Federal Ministry for Climate 

Action, Environment, Energy, Mobility, Innovation and Technology. It was running from April 2018 

until March 2021 and included the operation of an automated electric vehicle in a real-life 

environment (Salzburg Research 2021). 
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Figure 3.1-1 The Digibus shuttle operating in Koppl (Salzburg Research 2021) 

A passenger shuttle, referred to as “Digibus” (depicted in Figure 3.1-1) within the framework of the 

project, was operating in the municipality Koppl near Salzburg from August until October 2020 running 

five times per weekday. The testing track was approximately 1.3 kilometres long. There was a safety 

operator present at all times, however, the small bus was operating automatically for most of the 

time. For every microsecond the shuttle was running, it collected time-stamped data on different 

factors like its exact location, direction, speed and many more. In total, over 30 variables have been 

documented by the sensors with more than 863.000 entries. 

Within Table 3.1-1, an overview is given regarding the operational characteristics of the shuttle. These 

include information about the vehicle type as well as the framework that it is operating within. It can 

hold up to 12 people, however, because of the Covid-19 outbreak, this number was reduced in order 

to fulfil the governmental requirements and to ensure safety. Since the legislation does not allow for 

automated vehicles to be unaccompanied by a driver, a safety operator was present during testing, 

however, the vehicle does not have a driving wheel, only a joy stick for driving manually. 

Table 3.1-1 Characteristics for the EZ10 Shuttle provided by EasyMile (Diary Ali 2020; Transport Canada 

Innovation Centre 2021; U.S. Department of Transportation 2019; Salzburg Research 2021) 

Operational Characteristics of the Digibus  

Trademark EasyMile EZ10 Generation 3 

Type of vehicle Electric Automated Shuttle 

Vehicle Driving Automation SAE Level 4 – High Automation 

Passenger Capacity 12 people (6 seats + 6 standing), 900 kg maximum 

Accessibility Equipped with built-in automated electric ramp 

Driving modes Two driving modes: automated mode (under normal 

conditions) & manual mode (operator is driving) 
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After looking at the operational characteristics, Table 3.1-2 shows the technical aspects of the vehicle 

and under which conditions it can operate. For the purpose of exploring factors resulting in energy 

consumption of the vehicle, especially battery capacity and engine power are of great importance. It 

also has to be mentioned that the four lithium-iron phosphate batteries are used to power the main 

motors and the steering motor as well as the Programmable Logic Controller (PLC), but also to 

recharge a 12 V battery that is used to power the accessories of the vehicle. This smaller battery is, 

therefore, powering the lights, the bell, the monitors and the computers. 

Table 3.1-2 Technical Specifications for the EZ10 Shuttle provided by EasyMile (Diary Ali 2020; Transport Canada 

Innovation Centre 2021; U.S. Department of Transportation 2019; Salzburg Research 2021) 

Technical Specifications of the Digibus  

Length / Width / Height 4,050 m / 1,892 m / 2,871 m 

Frontal area 4,7 m² 

Gross Vehicle Weight (fully loaded) 3.130 kg 

Net Vehicle Weight 2.130 kg 

Battery Capacity 30,72 kWh (four 48 V lithium-iron phosphate 

batteries with 7,68 kWh each) 

Traction and Engine Power Two independent asynchronous electric motors 

with 8 kW nominal power each 

Maximum Speed Up to 40 km/h, but electronically limited to 

20 km/h 

Vehicle Range Up to 16 hours 

Charging Time 6 hours 

Temperature conditions Operating from -15 to 45 °C 

Maximum slope 15 % 

Sensors GPS, Radar, Lidar, Camera, IMU, Odometry 

 

  



Sophie Wegscheider  Methodology 

Institute for Transport Studies  20 

 

Since the EZ10 shuttle has to know its position at all times, the vehicle’s software is designed to locate 

it with centimetre-level precision. It merges different types of data that the sensors (see Figure 3.1-2) 

are capturing during operation (San Joaquin Regional Transit District 2019). 

 

Figure 3.1-2 The multiple ways of localisation and obstacle detection sensors of the EZ10 vehicle including 

Cameras, Lidars, Odometry and IMU (San Joaquin Regional Transit District 2019) 

3.1.2. Data on Elevation and Weather 

The Digibus captured most variables of interest that would affect energy consumption of an AEV in a 

rural environment, however, it did not cover the road gradient at each point. As the influence of the 

slope on energy consumption is a major concern of implementing electric vehicles in rural areas, 

elevation data was added in order to calculate the slope during data processing.  

An elevation model was provided by the AIT which was provided especially for the Digibus operation. 

This model was made availabe in vector form and includes 7.380 points with their longitude and 

latitude as well as the elevation at each location.  

Furthermore, even though the data captured by the EZ10 included temperature within the vehicle as 

well as temperature outside, this data was examined and relatively inconsistent. Therefore, weather 

data by Zentralanstalt für Meteorologie und Geodynamik (ZAMG) was taken into account. By adding 

this data set, not only accurate outside temperature could be included, but also information on 

precipitation, wind speed and snow fall. There is no weather station exactly located in the municipality 

Koppl, but the next station Salzburg-Freisaal is only 12 kilometers away. 
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3.2. Data Processing 

After collecting data from various sources, the raw data had to be joined together and adapted in 

certain ways. The programs used for data processing were mostly FME, QGIS and R. The software FME 

was mostly used to join all the data sets together and to filter out the entries that had to be removed. 

Elevation data was handled in QGIS, whereas indexing and aggregation was done in R. 

3.2.1. Data Cleaning and Aggregation 

One of the most important parts of data processing was removing certain data entries that had to be 

excluded from the final model. The overall goal was to keep as much data as possible, however, 

cleaning the data was crucial in order for the final model to not be distorted in any way. A combination 

of FME and QGIS was used for this step. FME was applied for filtering entries that were to be omitted, 

whereas the geographical information system allowed to check the location of the points and visualize 

any errors. 

Inspired by Liu et al., rules were applied for the process of data cleaning and served as a guideline, or 

threshold in some cases, to omit data where necessary (Liu et al. 2017): 

1. Data entries that were calculated via a simulation and were identified as not being data 

captured by the shuttle in real life 

2. Dates with greater than 10 % poorly map-matched GPS points (where location sensors did not 

function properly and the distance between the route in Koppl and the recorded points was 

greater than 10 meters) (see Figure 3.2-1 for examples) 

3. Data entries where no other attributes were recorded other than location and time 

4. Data entries that defined the mode of driving as null when it should either be “automated” or 

“manual” 

5. Date where battery State of Charge is given as 0 

After cleaning the data based on the rules above, 760.713 data entries remained. Subsequently, the 

data entries were aggregated from a microsecond-level to a second-by-second level in order to make 

data handling less difficult. Moreover, acceleration was calculated by taking the difference within 

vehicle speed between the timestamps that were always one second apart. 
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Figure 3.2-1 Examples of dates that had to be removed due to sensory issues 

3.2.2. Digital Elevation Model and Road Gradient 

For the calculation of slope which is a very important feature that needed to be included in the model, 

the elevation model of the AIT was taken as the basis. The elevation model consists of 7.150 points 

along the road that the Digibus was operating on and covers the location as well as the elevation at 

each point. The points are only centimetres apart which makes the model very accurate and ideal for 

calculating the slope precisely. 

As a first step, the vector data points were converted into a raster elevation model in QGIS in order to 

perform the calculation of the gradient. This also helped visualize the elevation along the route (see 

Figure 3.2-2). Through the rasterization of the vector data, each pixel within the defined polygon was 

assigned a certain elevation in metres. For interpolation, the inverse distance weighting method was 

used. Inverse distance weighing is quite a simple and commonly used interpolation technique which 

estimates the variable of interest by assigning more weight to closer points. It therefore takes a 

spatially weighted average of the sample values within a search neighbourhood (Babak and Deutsch 

2008).  

Since there are over 7.000 points within the vector data, the interpolation is very precise as there is 

not a lot of distance between the points. For that reason, the pixel values along the route are very 

accurate as the points are very close together, however, the more you move away from the street the 

less accurate the raster polygon will be. Nonetheless, this is not concerning as only the elevation along 

the street is of interest for calculating the slope. 
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Figure 3.2-2 Elevation raster model, yellow symbolizes a lower elevation, red the highest elevation level (left); 

Vector data points with their assigned elevation along the route (right) (background layer basemap.at) 

After interpolating the elevation along the route, a calculation of slope was done in QGIS based on the 

elevation raster. The slope was calculated for each pixel expressed in percent. In order to then join 

the data with the data entries of the vehicle again, the raster values for slope were assigned to the 

vector points based on their location. The final step was to calculate whether the bus was going uphill 

or downhill. As the calculated slope is always a positive value, the difference in elevation between the 

points in time was taken into account. If the difference was negative and the bus was going down, the 

variable for slope was adapted and the absolute value was converted into a negative value. 

3.2.3. Energy Consumption Rate 

Different measures can be used to evaluate energy consumption, for example consumption per unit 

distance (e.g. per kilometre) or consumption per trip (Liu et al. 2017). Within the collected data by the 

EZ10 shuttle, the information on State of Charge (SoC) was saved for each microsecond of operation. 

SoC of a battery pack is defined as the percentage of the rated capacity (RC) or nominal capacity. 
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Differently put, it is the ration between the saved energy in the battery and the total energy that can 

be saved in the battery (Kularatna 2015).  

As State of Charge reflects the level of charge compared to its capacity it can be used as a measure of 

energy consumption. It is scaled from 100 % which represents a fully charged status, to 0 % which 

signals an empty battery with no stored energy left (Wang et al. 2020). 

Following the calculation of energy consumption by Hao et al., it is assumed that during a discharge 

period the electric energy changes approximately linearly with the SoC (Hao et al. 2020). 

∆𝐸 = 𝑘 × ∆ 𝑆𝑜𝐶 (2) 

Variable k represents the battery capacity, while ΔE is the change in energy measured in kWh and 

Δ SoC is the change in the State of Charge. SoC is given in the range of 100 until 0 %, hence, k can be 

estimated as E0 / 100. As the battery capacity of the EZ10 is 30,72 kWh which is 110592 kWs, the 

coefficient is 1105,92 and will be multiplied by the change in SoC (Hao et al. 2020). As an example, if 

the State of Charge is going down from 75 to 72 % during a trip, Δ SoC is 3 % and is multiplied by 

1.105,92. The result is 3.317,76 kWs which is the energy that is consumed over the course of the trip. 

  

Figure 3.2-3 Battery State of Charge before and after smoothing (example of the 23rd of September 2020) 

Since the State of Charge represents the target variable that wants to be explained by the model and 

its accuracy strongly affects the results, battery smoothing was done to cancel out noisy data. There 

were, in total, 62 instances where the SoC had dropped already by one percent, but went back up for 

a few seconds to go down again later. These spikes caused some problems as the consumption rate 

was calculated on the basis of duration of each SoC percentage. For that reason, for each timestamp, 

the difference in SoC was identified and if it was positive, the SoC was changed to the SoC of the 
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moment before. Figure 3.2-3 shows how spikes in the data, where it would go up and soon down 

again, were smoothed. 

Since the variable on energy consumption was calculated on the basis of the amount of time that the 

same State of Charge was shown in the vehicle data, the variable was not always consistent and there 

were many outliers. These outliers stemmed from turning the vehicle on and the Digibus adjusting the 

State of Charge within the first seconds which resulted in a lot of high energy consumption values, 

specifically when the bus was not moving yet. Moreover, when the vehicle was turned off just after 

the SoC had changed, it would result in very high values as well. This affected energy consumption 

values during idling time in the beginning of a trip or the end. Therefore, the upper quartile was taken 

into account and the outliers were removed from the model. 

3.2.4. Identifying Charging Cycles and Distance travelled 

In order to identify at which point the vehicle was charging, an index was created in R. The beginning 

of a new charging cycle was defined as the moment when the difference of the State of Charge 

between the timestamps following each other was positive, meaning that the battery was filled up 

again. In order to calculate the distance that the bus has travelled during each charging cycle or usage 

during a day, the “haversine method” was used to calculate the shortest distance between each point 

of location. The method assumes a spherical earth, ignoring ellipsoidal effects which were neglected 

since the data points were so close together (Hijmans et al. 2019). 

3.3. Data Analysis 

3.3.1. From Linear to Panel Regression 

Using regression models, the goal is always to explore causal relationships between different factors. 

They can be used for policy recommendations, predictions or just statements like “x leads to y”. The 

basic regression model is simple linear regression. Simple linear regression is often avoided in applied 

econometrics as there can be multiple problems arising from using it. However, it can serve as a 

starting point to assess the nature of a relationship between variables since the algebra and 

interpretation are relatively straightforward. Simple linear regression involves only two variables, the 

explained variable (often y variable) as well as the explaining variable (x variable), also called 

dependent and independent variable. It uses the ordinary least-squares (OLS) algorithm to fit a linear 

model and to give estimates that define a fitted value for the explained variable y: 

𝑦𝑖 = 𝛽0 + 𝛽𝑖𝑥𝑖 + 𝜀𝑖  (3) 

, where yi is the explained variable, β0 the intercept and β1 the coefficient for the explaining variable 

xi, and εi represents the error term. The error term plays an important role as it holds all variables that 
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influence the explained variable other than xi. This can be a problem as it is often unknown which 

other variables have an impact and whether or not they might be correlated with the predictors. If a 

variable within the error term is influencing not only the dependent variable, but also the independent 

variables, the coefficients might be biased and the model will be inaccurate. One way of dealing with 

this problem of biased coefficients due to omitting important predictors is using multiple linear 

regression which uses multiple independent variables instead of just one. Other explaining variables, 

therefore, are included in the model rather than in the error term and cannot cause omitted variable 

bias. This means that a fundamental assumption for OLS regression is to have no unobserved variables 

that are associated both with the x variables or y variable. However, since there are often unknown 

variables that might influence the dependent variable or data on some factors is simply not available, 

other solutions must be found (Wooldridge 2013). 

One solution for estimating a model with unobservable variables is collecting panel data rather than 

cross-sectional data where data is collected as a whole at a single point in time. Panel data, on the 

other hand, is two-dimensional where the same individuals are observed repeatedly over different 

periods in time. Panel regression models are implemented in order to control for unobserved 

dependency of other independent variables, called unobserved heterogeneity. The most commonly 

used method is the fixed effects regression model: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥𝑖𝑡1 + ⋯ +  𝛽𝑘𝑥𝑖𝑡𝑘 + 𝑎𝑖 + 𝑢𝑖𝑡 (4) 

, where i is denoting individuals (often households, firms, countries etc.) and t stands for the time 

period. The error term consists of 𝑎𝑖  as the time constant unobserved effect, also called fixed effect 

or unobservable individual-specific effect, while 𝑢𝑖𝑡 denotes the remainder disturbance. In a fixed 

effects model, the individual-specific error component captures any unobserved effects that are 

constant across time, but different among individuals. One way to deal with 𝑎𝑖  is to transform the data 

in a way that it disappears, called within-group estimation. This is done by demeaning the data for 

each of the individuals and therefore, differencing the time-invariant fixed effects away, whether 

observed or unobserved. This has many advantages, but also leads to being unable to measure the 

effect of variables that are time-invariant within individuals (Wooldridge 2013; Baltagi 2005). 

Another method of estimating fixed effects is the Least Squares Dummy Variable (LSDV) estimation 

which creates a dummy variable for each individual, but achieves the same result as the within-

estimation. In contrast to the within-group estimation, this makes it possible to measure the effects if 

one is interested in the individual-specific effects. The dummy variables, or individual error 

components, can be thought of individual-specific intercept terms which capture any omitted 

variables that might not be included in the regression. The downside of the LSDV estimation is, 

however, a loss of degrees of freedom. If there are too many individuals, too many dummies can cause 

a problem of multicollinearity among the independent variables (Baltagi 2005). 



Sophie Wegscheider  Methodology 

Institute for Transport Studies  27 

 

In the case of the Digibus, the shuttle continuously saved its data during operation making the data 

two-dimensional. Therefore, individuals were selected to be different modes of driving and a panel 

model was implemented to account for unobservable variables.  

3.3.2. Model Building 

In current literature, macro-scale or meso-scale models are usually applied when the energy 

consumption can only be approximated based on the State of Charge given in the data (Wang et al. 

2020; Hao et al. 2020; Xie et al. 2020). Micro-scale models, on the other hand, are typically used when 

the power at each moment in time is captured by ampere and voltage and the energy consumption is 

much more precise (Badin et al. 2013; Cauwer et al. 2015b; Galvin 2017). Therefore, a macro-scale 

model was firstly considered by calculating the energy consumption per kilometre for trips, days or 

charging cycles. However, the Digibus always travelled the same route with the same shares of 

different road gradients. Also, the driving behaviour was relatively constant due to the automated 

system. Hence, the variance of energy consumption would mostly be explained by the differences in 

weather conditions or occurrence of obstacles that cause abrupt stops. For these reasons, a micro-

scale model was chosen in order to explore the influence of road gradient. This was possible due to a 

high temporal resolution of the independent variables the Digibus captured and a high spatial 

resolution of the elevation data. 

Hu et al. and Yao et al. used a categorization of vehicle data by driving mode into Idling, Acceleration, 

Deceleration and Constant Driving, while Liu et al. and Wang et al. grouped their data into bins for 

road gradient (Hu et al. 2017; Yao et al. 2013a; Liu et al. 2017; Wang et al. 2017). Since energy 

consumption and the effect of road gradient wanted to be explored, these ideas were combined and 

resulted in eight driving conditions for the Digibus shuttle bus (shown in Table 3.3-1). As the within-

group estimation of fixed effects would lead to not being able to measure these effects, LSDV 

estimation was applied. With only eight driving conditions to be estimated, loss of degrees of freedom 

and multicollinearity were not a big concern. 

Especially the effect of road gradient on energy consumption of an AEV has not been explored in 

current literature on such a detailed level. Therefore, the focus of the driving conditions is on the road 

gradient which can be much more varied in rural areas than in urban regions and can cause the energy 

stored within the battery to discharge faster. 
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Table 3.3-1 Driving Conditions used as individuals in the LSDV panel regression 

Driving Conditions Description 

Idling Vehicle is not moving, speed and acceleration 

are zero, but the battery power is turned on to 

supply the auxiliaries 

Moving on a flat surface Vehicle is moving, road gradient is quite flat 

(- 1 % to 1 %) 

Moving uphill on a slightly steep surface Vehicle is moving uphill, road gradient is 

1 % to 3 % 

Moving uphill on a steep surface Vehicle is moving uphill, road gradient is 

3 % to 6 % 

Moving uphill on very steep surface Vehicle is moving uphill, road gradient is greater 

than 6 % 

Moving downhill on a slightly steep surface Vehicle is moving downhill, road gradient is 

- 3 % to -1 % 

Moving downhill on a steep surface Vehicle is moving downhill, road gradient is 

- 6 % to -3 % 

Moving downhill on a very steep surface Vehicle is moving downhill, road gradient is 

smaller than -6 % 

 

However, other driving factors should also be accounted for by the model. Factors that are present in 

all micro-scale energy consumption models are speed and acceleration as they have a great impact on 

the energy that is spent and represent driving characteristics. Since the relationship between speed 

and energy consumption follows the laws of physics and is not linear, instantaneous speed and its 

higher orders, up to the third order, have been included in various studies as well as combinations of 

speed and acceleration (Yao et al. 2013b; Yao et al. 2013a; Liu et al. 2018; Galvin 2017; Chen et al. 

2021). 

Another variable that has been explored by multiple researchers is the initial State of Charge since the 

current level of energy stored in the battery has an influence on the energy consumption rate and 

discharging efficiency (Yao et al. 2013a; Qi et al. 2018; Chen et al. 2021). With a higher percentage of 

SoC, or more remaining energy in the battery, the battery usually drains a bit faster as its energy 

consumption curve is not perfectly linear (Espedal et al. 2021). 

Moreover, ambient temperature has an impact on energy consumption and driving range since 

battery performance, including its capacity, internal resistance, efficiency and open-circuit, is 
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dependent on temperature (Xie et al. 2020). Ambient temperature affects energy efficiency by 

influencing the output energy loss as well as auxiliary loading with the use of air conditioning and 

heating. The climate control system plays a big role in energy consumption of the auxiliaries. The 

measured amount of energy consumption by the HVAC system varies between studies from 18 to 

33 % of energy spent due to heating in winter, as well as 14 or 15 % due to air conditioning in summer 

(Liu et al. 2018; Doyle and Muneer 2019; Desreveaux et al. 2020).  

Since the use of HVAC is important to include in the model, but it is unknown when it was turned on, 

a factor variable was introduced to take additional energy consumption due to AC and Heating into 

account. A categorical variable was chosen with the following temperature ranges: 

 Temperature lower than 10 ° C 

 Temperature between 10 and 18 ° C 

 Temperature in the range from 18 to 24 ° C 

 Temperature higher than 24 ° C 

The temperature bin between 18 and 24 ° C is used as the base category as it roughly presents the 

range in which neither Heating nor AC is used (Doyle and Muneer 2019; Evtimov et al. 2017). 

Other weather conditions like rain or snow change the driving behaviour and cause changes in energy 

consumption due to the use of auxiliaries (e.g. for window cleaning, seat heating, use of lights) 

(Evtimov et al. 2017), however, as there was no snow during the time of deployment of the Digibus as 

well as no rain, the factors were disregarded. The Digibus captured data on the passenger load which 

would have an effect due to the increased weight of the vehicle, but the data was mostly unreliable 

which led to the exclusion of this factor. Since the individual-specific effect for the driving conditions 

would account for any differences, the outcome should not be affected too much. 

Figure 3.3-1 shows the final regression model that was used and which variables were taken into 

account. The dependent variable of the energy consumption rate is given in the unit of Kilowatt-

seconds which is important for interpreting the coefficients of the predictor variables. 

 

Figure 3.3-1 Final Panel Regression Model with dependent and independent variables 
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In the end, in addition to the driving condition dummies for the panel regression, seven independent 

variables were used to explain the AEV’s energy consumption, described in Table 3.3-2. The vehicle’s 

speed was used in four different terms, as the correlation between speed and energy consumption 

follows Newton’s second law and is not solely linear. Therefore, a quadratic and cubic term were 

included as well as an interaction term of acceleration and speed. Temperature range was added in 

order to control for the use of the HVAC system, while ambient temperature represents the climatic 

environment that impacts the battery efficiency. 

Table 3.3-2 List of explanatory variables of panel regression model with v [m/s], a [m/s²], T [° C] and SoC [%] 

Explanatory Variable Description 

v Instantaneous vehicle speed 

v² Quadratic speed term 

v³ Cubic speed term 

va 

 

 

Acceleration term (speed * acceleration) 

SoC Initial State of Charge 

T Ambient temperature outside of the vehicle 

Temperature Range Levels: < 10; 10 - 18; 18 - 24 (reference); > 24 

Driving Conditions Levels: Idling (reference); Flat moving; Uphill 1-3 %; Uphill 

3-6 %; Uphill > 6 %; Downhill -3- -1 %; Downhill -6- -3 %; 

Downhill < -6 % 
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4. Results 

The results are structured by first getting an overview of the data and looking at the descriptive 

statistics and distributions of the key variables. Then, the hypothesis is tested whether the energy 

consumption of the driving conditions in different road gradient settings is significantly different and 

whether they are suitable for usage in the panel data regression. Afterwards, the results of the 

regression are focused on explaining the goodness of fit of the model and the significance of the 

variables and their coefficients. The next sub-chapter revolves around the different scenarios for 

deployment of an AEV and how the energy consumption compares to an ICE. Lastly, the limitations of 

the study are explained and to what extent the results can be interpreted. 

4.1. Descriptive Statistics 

Table 4.1-1 summarizes the characteristics of the Digibus data which was used for the energy 

consumption analysis. It describes how many days of operation were taken into account and how 

much distance the shuttle bus covered. Charging of the battery usually happened only every second 

day of usage as there were many days with only a few scheduled trips which explains only 24 charging 

events compared to 41 days of usage. It can also be seen that a third of the time the bus was turned 

on, it was idling, hence standing in a bus station or momentarily not moving due to an obstacle. 

Table 4.1-1 Operational Statistics based on dataset used for the analysis within this study (after data cleaning 

and processing) 

Characteristics of the Digibus deployment in Koppl 

Days of operation 41 

Total energy consumption [kWh] 206,5 

Total time of usage [hours] 103 

 Hours idling 34 

 Hours moving 69 

Distance covered [km] 366,6 

Number of trips (each approx. 1,3 km) 282 

Number of Charging Cycles  24 

Temperature min [° C] -2,1 

Temperature max [° C] 32,8 
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Since the deployment of the automated electric shuttle bus started in July/August and ended in 

December 2020, the temperature minimum and maximum show that the bus was in use under various 

temporal conditions. However, there was no rain as well as no snow during the days of operation. The 

distribution of temperature can be seen in Figure 4.1-1 where it becomes clear that the most frequent 

temperature was around 20 to 25 ° C, however, there was a significant amount of time below the 

optimal temperature range where air conditioning or heating was likely being used. 

 

Figure 4.1-1 Distribution of temperature during the 

whole observed period of operation of the Digibus 

 

Figure 4.1-2 Distribution of velocity during the 

observed period while the Digibus was moving 

Next to the distribution of temperature over the course of the deployment of the AEV, the distribution 

of speed is also depicted (Figure 4.1-2). The histogram shows how the most frequent speed was the 

maximum speed of the vehicle with about 4,5 m/s, which is around 16 km/h. Looking at the variables 

describing the shuttle’s driving behavior in Table 4.1-2, the mean speed while moving (excluding idling 

time) was about 3 m/s, equivalent to approximately 11 km/h. The maximum absolute value of 

deceleration is much higher than the maximum acceleration which signifies that the bus made abrupt 

stops. This can be explained by the vehicle sensing obstacles very late and coming to a sudden halt. 

Nevertheless, the driving behavior seems very smooth as the mean acceleration and deceleration are 

both quite low which usually leads to a lower energy consumption. 

Table 4.1-2 Descriptive Statistics of explanatory variable and dependent variable while the Digibus was moving 

Variable mean std. deviation min max 

Energy consumption rate [kWs] 2,59 1,4 0,37 6,36 

Speed [m/s] 2,98 1,36 0 4,71 

Acceleration [m/s²] 0,075 0,16 0 1,19 

Deceleration [m/s²] -0,076 0,17 -3,21 0 
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4.2. Road Gradients and ANOVA 

Looking at the elevation profile for one trip from the southern to the northern bus stop in Figure 4.2-1, 

it becomes clear that there is almost no flat area along the route. In total, the bus was driving only 2 % 

of its time on flat ground covering 26 m per trip. The automated electric shuttle travelled the longest 

distance both uphill and downhill within the range of 3 to 6 % of road gradient, and -6 to -3 % 

respectively. The maximum slope that the Digibus was driving uphill as well as downhill was over 8 %, 

which is approximately 65 meters difference. Especially close to the bus stop “Sperrweg”, the highest 

road gradients were encountered. 

 

 

 

 

 

Before doing the panel regression, an ANOVA, short for analysis of variance, was performed in order 

to validate the driving conditions chosen as individuals. ANOVA is a statistical analysis procedure that 

allows to examine whether the means of different groups differ significantly from each other. The aim 

is the same as with the t-test, except that with ANOVA more than two groups can be compared at the 

same time. In the case of the road gradient factors, this method was used to test whether the driving 

conditions were suitable as individuals used in the panel regression model (Ostertagova and Ostertag 

2013). 

Flat_Moving
26 m

1 to 3 %
325 m

3 to 6 %
518 m

> 6 %
432 m

Distance covered per road gradient

Figure 4.2-1 Elevation profile for one trip from the start “Gemeindeamt” to the northern station “Sperrweg” (left) 
and the distribution of distance for each road gradient group travelled by the Digibus along the route (right) 
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Afterwards a pairwise comparison with the Tukey HSD test was done which compares the means of 

values for all combinations. The results confirmed the choice of driving conditions with only the pair 

“Flat moving” and “Downhill -3 to -1” having a non-significant difference in their mean values. Figure 

4.2-2 visualizes the means for each driving conditions with boxplots that include the mean as well as 

the lower and upper quartiles. The highest mean for energy consumption can be seen when the bus 

was driving uphill between 3 and 6 % of road gradient. During idling, the bus spent the least amount 

of energy. 

 

Figure 4.2-2 Boxplot for energy consumption rate per driving condition based on road gradient 

4.3. Regression Model 

Table 4.3-1 shows the results of the LSDV panel regression model explained in chapter 3.3.2. The 

coefficient of determination R² which serves as a goodness-of-fit measure for regression models 

is 0,21. R² is a key number for estimating the performance of a regression model. It ranges from 0 to 

1 and its value increases as the fitting effect improves (Bi et al. 2018). In this case, it means that 21 % 

of the variance within the variable of energy consumption is explained by the model. The p-values 

signify that all variables are significant on a 1 % level. Since the dependent variable is the energy 

consumption rate during one second [kWs], a positive coefficient means that the higher the variable, 

the higher the energy consumption will be. 

As an LSDV panel regression was used, the coefficients for the driving condition can be interpreted as 

different intercepts (constant variables) and show the effects of road gradient both uphill and 
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downhill. The factor for idling mode is by far the lowest compared to all other driving conditions when 

the vehicle is moving. The intercept for moving in a flat area is very close to the intercept for driving 

slightly uphill which indicates that small slopes do not increase energy consumption much. Driving 

downhill, on the other hand, has a smaller effect on energy consumption compared to driving in a flat 

area. The coefficients decrease with higher road gradients which can be explained by the use of gravity 

to keep the vehicle moving. Similarly to Figure 4.2-2, the coefficients for uphill driving confirm that 

most energy was consumed in the range of 3 to 6 % road gradient. This might be explained by difficult 

road conditions during certain parts along the route that could cause more energy to be consumed. 

Another reason could be the driving behavior of the automated vehicle. 

Table 4.3-1 Estimated parameters for the proposed model (see chapter 3.3.2), R² = 0,21 

Independent variable Coefficient t-value p-value 

Driving Condition (Idling) 0,093 4,479 7,51e-06 

Driving Condition (Flat Moving) 0,666 34,538 < 2e-16 

Driving Condition (Uphill 1 to 3 %) 0,710 48,312 < 2e-16 

Driving Condition (Uphill 3 to 6 %) 1,143 84,286 < 2e-16 

Driving Condition (Uphill > 6 %) 1,026 77,229 < 2e-16 

Driving Condition (Downhill -3 to -1 %) 0,572 42,126 < 2e-16 

Driving Condition (Downhill -6 to -3 %) 0,324 23,811 < 2e-16 

Driving Condition (Downhill < -6 %) 0,139 10,188 < 2e-16 

Initial State of Charge (SoC) 0,0066 58,920 < 2e-16 

Ambient temperature (T) 0,035 43,813 < 2e-16 

Temperature Bin < 10 ° C 0,911 61,221 < 2e-16 

Temperature Bin 10 to 18 ° C 0,508 63,632 < 2e-16 

Temperature Bin > 24 ° C 0,255 35,709 < 2e-16 

Instantaneous speed (v) 0,127 6,034 1,60e-09 

Speed² (v²) 0,054 5,060 4,18e-07 

Speed³ (v³) -0,014 -8,912 < 2e-16 

Acceleration * Speed (av) 0.0277 5,221 1,78e-07 
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The results confirm that the relationship between energy consumption and speed is not strictly linear, 

as both coefficients for speed² and speed³ are significant. In order to show the resulting effect 

(visualized in Figure 4.3-1), the following formula was used to calculate the estimated energy 

consumption per kilometer, based on the regression coefficients: 

𝐸𝐶𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑀𝑜𝑑𝑒  [
𝑘𝑊ℎ

𝑘𝑚
] = ((𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐶𝑜𝑛𝑑 + 0,127𝑣 + 0,054𝑣2 − 0,014𝑣3 + 0,035 ∗ 20) ∗

1000

𝑣
)

1

3600
  (5) 

, with 𝐸𝐶𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐶𝑜𝑛𝑑 standing for energy consumption per driving condition and v representing the 

vehicle’s speed [m/s]. Evtimov et al. concluded that the minimal energy consumption of auxiliary 

systems is realized at an external temperature of 20 ° C. Therefore, this was used as the reference 

temperature in order to only show the effects of speed and road gradient without additional energy 

consumption due to the HVAC system (Evtimov et al. 2017; Cauwer et al. 2015b). The formula was 

divided by 3600 to convert energy consumption from kilowatt-seconds to kilowatt-hours, while the 

term 
1000

𝑣
 was introduced to take the time into account that the vehicle needs to travel one kilometer. 

Initial State of Charge as well as acceleration were left out for simplification in order to focus on the 

impact of road gradient. 

 

Figure 4.3-1 Energy consumption [kWh] per km for different road gradients assuming constant speed 
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Due to the non-linear correlation, the energy consumption is high for low speeds while continuously 

decreasing with higher average speeds. The plot also emphasizes how the road gradient plays a big 

role during low speeds, but the effect becomes less obvious when the vehicle is driving faster. 

Regarding temperature, the highest coefficient was estimated for temperatures below 10 ° C where 

heating was turned on. For the temperature bin above 24 ° C, the coefficient is the lowest, however, 

ambient temperature is also included in the model and has a positive correlation with the energy 

consumption rate which increases the result especially for very high temperatures. The effects of 

temperature and implicitly, heating and AC, can be seen in Figure 4.3-2. The values are quite similar 

for 5 ° C, 15 ° C or 25 ° C, with only 20 ° C having a much lower energy consumption rate. The highest 

rate is estimated for 30 ° C where air conditioning is likely to have a great impact on the overall energy 

consumption. 

 

Figure 4.3-2 Energy consumption [kWh/km] for different temperatures from 5 to 30 ° C 
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4.4. Comparison with Internal Combustion Engines 

In order to put the estimated energy consumption of the Digibus into context, the vehicle’s energy 

consumption was evaluated against the energy consumption of an internal combustion engine with 

similar weight. As the average energy consumption is usually given in kWh/km, the total energy 

consumption was divided by the total distance travelled (see Table 4.1-1). Therefore, the resulting 

average energy consumption of 0,32 kWh/km also includes the time that the AEV spent idling (about 

one third during operation). Provided by the Umweltbundesamt in Austria, average energy 

consumption values for different ICE vehicle classes were drawn as a basis (Umweltbundesamt 2021): 

 Diesel minibus < 3,5 t:    0,87 kWh/km 

 Passenger car (Diesel or Gasoline):  0,67 kWh/km 

 Automated electric Digibus:   0,32 kWh/km 

 Electric passenger car   0,174 kWh/km 

The average fuel consumption of a minibus in Austria weighing below 3,5 tons is approximately 9 liters 

per 100 km, which corresponds to 0,87 kWh/km. As reference, the average energy consumption of a 

passenger car in Austria, diesel or gasoline, and of an electric passenger vehicle in Salzburg was also 

included (Umweltbundesamt 2021; Statistik Austria 2021). Comparing these average values, the 

energy consumption of the Digibus is about a third of the energy consumption of an ICE minibus and 

half of a standard ICE passenger car. However, it is still double the energy consumption of an electric 

passenger car which is due to the higher weight of the Digibus, but also to the current technology of 

the AEV. 

Table 4.4-1 Energy consumption for different scenarios assuming constant speed (Average speed when moving 

3 m/s = 10,8 km/h) as well as average values for ICE passenger vehicles and minibuses 

Scenarios (3 m /s) Energy Consumption kWh/km 

Digibus Downhill -6 to -3 % (20 ° C) 0,142 

Digibus Flat (20 ° C) 0,172 

Digibus Uphill 3 to 6 % (20 ° C) 0,216 

Digibus Uphill 3 to 6 % (5 ° C) 0,251 

Digibus Uphill 3 to 6 % (30 ° C) 0,272 

ICE passenger car Austria 0,67 

ICE Diesel minibus Austria 0,87 

As a next step, a more in-depth ranking was done to estimate the performance for different road 

gradients compared to an ICE vehicle. For this purpose, formula (5) was again used assuming the 

shuttle’s average speed of 3 m/s or 10,8 km/h (see Table 4.1-2). Since speed was held constant, these 



Sophie Wegscheider  Results 

Institute for Transport Studies  39 

 

values do not include any idling time or acceleration which leads to overall smaller energy 

consumption values per km (see Table 4.4-1).  

The energy consumption of the Digibus for all scenarios with various road gradients is only a fraction 

of the average energy consumption of an ICE minibus. The lowest value of 0,142 kWh/km is estimated 

for a downhill slope at the temperature of 20 ° C which is about half of the maximum energy 

consumption of the Digibus. This was found for an uphill terrain at 30 ° C ambient temperature 

signifying the usage of air conditioning. Nonetheless, the highest energy consumption of the Digibus 

is still not even half of the average consumption of an ICE passenger car. 

However, a comparison using averages for ICEs has limitations as the average speed of a vehicle in 

typical traffic would be much higher than 3 m/s or maximum 5 m/s. Therefore, a formula provided by 

Song et al. was used to focus on energy consumption at low speeds (Song et al. 2013): 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 1,56 ∗ 102 ∗ 𝑣−1 + 3,54 − 3,88 ∗ 10−2 ∗ 𝑣 + 7,76 ∗ 10−4 ∗ 𝑣² (6) 

The model is based off a gasoline light duty vehicle operating in Beijing which serves as an indication 

of how well an ICE minibus performs at low speeds. By comparing the energy consumption rates at 

the speeds from 0,5 to 5 m/s (see Figure 4.4-1), it becomes clear that the internal combustion engine 

spends much more energy during low speeds than the automated electric shuttle bus. The difference 

decreases with higher average speed, however, at 5 m/s the energy consumption of the ICE is still 

several times higher than the energy consumption of the Digibus. 

 

Figure 4.4-1 Energy consumption comparison of a gasoline light duty vehicle and the automated electric shuttle 

Digibus for the speed range from 0,5 to 5 m/s 
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Since the optimum speed range for ICEs is between 50 and 70 km/h (He et al. 2020), the energy 

consumption, calculated based on (6), for up to 100 km/h was also taken into consideration. 

Additionally, since the Digibus shuttle does not cover this range, a regression formula for the energy 

consumption of an electric light duty vehicle, provided by Yao et al., was used for comparison (Yao et 

al. 2013b): 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 0,247 +
1,520

𝑣
− 0,004𝑣 + 2,992 ∗ 10−5𝑣−2 (7) 

 

Figure 4.4-2 emphasizes how the energy consumption of the ICE does not decrease below 0,7 kWh/km 

which is twice the average energy consumption of the automated electric shuttle. The lowest energy 

consumption of the ICE is estimated for a speed of approximately 16 m/s which is equivalent to almost 

60 km/h. For electric light duty vehicles, the curve starts at a much lower energy consumption than 

that of an ICE and slowly decreases until slightly increasing again at a speed of 20 m/s, but always 

staying below the energy consumption of an ICE. While these curves might not be representative of 

all light duty ICEs and EVs, they show a significant difference in energy consumption at all speeds. 

 

Figure 4.4-2 Energy consumption of an ICE and an EV light duty vehicle for a speed range up to 28 m/s 

(equivalent to 100 km/h) 
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4.5. Limitations of the study 

In order to clarify the framework of this thesis, the limitations of the study need to be addressed. 

Firstly, it is important to understand that the Digibus has two batteries that are interacting with each 

other, but only the State of Charge for the main battery of 30,72 kWh is given. Therefore, it is unknown 

how much energy is lost during the interaction between the two batteries and how much is used for 

the sensors of the vehicle as well as air conditioning and heating. By consequence, the model cannot 

fully control for these factors. This is also an explanation for the State of Charge sometimes slightly 

increasing during usage as the system is probably adjusting itself. Moreover, the energy consumption 

rate that was used in the regression model is only an approximation of energy flow since the exact 

power (given by current and voltage) used each second is unknown. Under this premise, the results 

cannot be used for predicting the exact energy consumption of an AEV, but rather as an indication for 

correlations between energy consumption and explaining variables. In order to understand the 

relationship between energy consumption and road gradient in all its detail, the power the vehicle is 

using at every moment would have to be measured on a second-by-second basis as well as all other 

factors that are of interest in this regard. 

In addition to data limitations, another limitation is the current technological and legal framework of 

AEVs. A comparison with an internal combustion engine is difficult as automated electric shuttles have 

a strict speed limit they cannot surpass. Therefore, the resulting regression model can only control for 

the range from 0 to 5 m/s (18 km/h) while average energy consumption of vehicles usually covers a 

much wider range up to more than 100 km/h. Another important factor is that the shuttle bus does 

not possess a regenerative braking system which allows for recovering energy during braking phases 

by using the electric machine in generator mode. This usually improves powertrain efficiency and 

optimizes EV range and is state-of-the-art for electric vehicles (Badin et al. 2013). Since the Digibus 

does not have such a system installed, the vehicle does not represent the full potential of AEVs in 

respect to energy consumption. As Cregger et al. put it, “Many of the problems associated with low-

speed automated shuttles are related to the evolving nature of these vehicles.” The automated 

electric shuttle buses are produced and manufactured by small start-up companies which has an 

impact on their technology and performance. They do not have the same budget or experience 

designing and validating systems or mass-producing vehicles compared to traditional automakers 

(Cregger et al. 2018). 
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5. Discussion 

Automated electric vehicles offer new possibilities for mobility services, especially for public transport. 

Through reducing operational and personnel costs, they are able serve routes that are not 

economically feasible at the moment (Guo et al. 2021; Riener et al. 2020). This is a huge problem in 

peripheral areas where the public transport system can be very unattractive since the demand is not 

high enough. As a consequence, people usually opt for private vehicles and the vicious cycle continues 

as demand decreases even more (Brake and Nelson 2007). Automated electric shuttle buses could be 

one of the solutions to stop this trend and provide better accessibility in these regions. However, rural 

terrains are different to urban settings as the road conditions as well as gradients are much more 

varied (European Road Safety Observatory 2006) which can affect energy consumption of vehicles 

negatively. The results of this study confirm a correlation between energy consumption and road 

gradient. They indicate that steep uphill slopes do cause a significantly higher energy consumption 

than flat terrains, but they also illustrate how less energy is spent on downhill slopes compared to flat 

terrains. As vehicles will both drive uphill and downhill in hilly areas, especially serving a pre-defined 

route, these counteracting effects will likely balance each other out. 

With all driving conditions based on road gradient having a significant effect, the model confirms that 

road gradient should not be omitted from energy consumption models of AEVs. As studies on the 

energy consumption of EVs have found, the consequence of not incorporating road grade can be an 

over- or underestimation of a vehicle’s power output which can cause inaccuracy in the estimation of 

energy consumption or emissions (Wyatt et al. 2014; Graser et al. 2015; Liu et al. 2017). In line with 

Liu et al. who investigated the impact of road gradients on energy consumption of EVs by using a 

macro-scale model, steep road gradients were found to have a positive correlation with the energy 

consumption rate. However, while they demonstrated an almost linear increase of energy 

consumption with increasing absolute gradient (Liu et al. 2017), this was not the case for the Digibus. 

The AEV spent most energy driving uphill between 3 and 6 % of road gradient, a little bit more than in 

areas with over 6 % slope. This can be attributed to the driving behavior of the automated vehicle or 

difficult road conditions during certain parts along the route that could cause more energy to be 

consumed. For downhill slopes, however, an almost linear decrease of energy consumption was 

estimated. Driving slightly downhill does not reduce energy consumption much compared to moving 

on flat ground, but for slopes less than -6 %, energy consumption is by far the lowest coming close to 

the energy spent during idling. This can be explained by the automated vehicle driving energy-

efficiently and utilizing gravitational force to keep it moving downhill instead of spending extra energy 

on braking. As the coefficients for steep downhill slopes are much smaller than for flat areas and 

especially compared to uphill scenarios, there are two counteracting effects on the overall energy 

consumption in a hilly area. This implies that the reduction of spent energy during downhill road 

sections could be able to balance out the increase during uphill sections. Especially on a pre-defined 

route, the share of downhill and uphill sections are generally equal. 
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Liu et al. and Wang et al. estimated the energy consumption of EVs utilizing kinetic energy to generate 

electricity to the supply side which resulted in a rise of energy levels when going downhill  (Chen et al. 

2021; Liu et al. 2017; Wang et al. 2017). Since the Digibus did not possess a regenerative braking 

system, this implies that there is great potential for future AEVs to further reduce total energy 

consumption by adding this system. Braun and Rid, for example, measured a reduction of 

consumption by recuperation of electric energy between 11,6 and 16,3 percent (Braun and Rid 2017). 

The amount of energy that can be captured depends on the technological efficiency of the system as 

well as the driving behavior, whether vehicles brake gradually or severely (Muneer et al. 2017). For 

automated vehicles, algorithms can take energy recuperation into account and adapt the driving style 

accordingly in order to maximize its effects (Wadud et al. 2016). 

By examining the vehicle’s driving characteristics, the AEV generally showed a smooth driving behavior 

which was indicated by low means for acceleration and deceleration. Only the maximum for 

deceleration was quite high with 3,2 m/s² implying abrupt stops instead of slow deceleration. This is 

in line with reports from multiple pilot projects deploying automated electric shuttle buses where 

issues with obstacle detection have been mentioned. The vehicles often captured moving objects too 

late or wrongly came to a halt (Cregger et al. 2018; Zankl and Rehrl 2018; Transport Canada Innovation 

Centre 2021). However, as the technology is still advancing and evolving, these problems are likely 

going to be solved in the future. Flores et al. already showed how automated driving can lead to a 

reduction of energy consumption by 17 % compared to manual driving on the same route due to an 

eco-driving algorithm (Flores et al. 2015). Similarly, Lv et al. emphasized how algorithms for smoother 

driving can significantly decrease energy consumption (Lv et al. 2019). While the Digibus was not 

driven manually by the operator for the whole route which makes comparison between the modes 

difficult, its driving characteristics signify smooth driving cycles by low acceleration and deceleration 

means. 

Aside from road gradients, the results show how temperature including heating and air conditioning 

impact energy consumption significantly. As multiple studies on the HVAC system have illustrated, 

extreme temperature, both low and high, are the cause for a big increase in energy consumption up 

to 30 or 40 % (Evtimov et al. 2017; R. Farrington and J. Rugh). However, in contrast to literature where 

heating was found to have the biggest impact (Doyle and Muneer 2019; Liu et al. 2018; Desreveaux et 

al. 2020), the results show that AC during very high temperatures had the biggest effect on the battery 

of the Digibus. Nonetheless, as it is unknown when either AC or heating were turned on, there is an 

uncertainty around these coefficients. This could be related to the number of passengers using the 

bus, as more passengers might have been using the shuttle bus during the summer months, while on 

the last days of deployment, there were more test runs without people on board and heating was not 

in use. Especially during low speeds and idling, the HVAC system consumes a lot of energy which is in 

line with Evtimov et al. who found that during low speeds, the auxiliaries are responsible for a big 

share of the vehicle’s energy consumption (Evtimov et al. 2017; Badin et al. 2013). 
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In line with literature on the correlation between speed and energy consumption, a non-linear 

relationship was confirmed (Yao et al. 2013b; Yao et al. 2013a; Liu et al. 2018; Galvin 2017; Chen et al. 

2021). Extremely low speeds cause higher energy consumption due to low efficiency of the drivetrain 

and relatively high energy consumption for supply of the auxiliary systems. Evtimov et al. estimated 

that at a speed of 5 km/h, for example in heavy traffic which also includes a lot of stop-and-go waves, 

the energy consumption can be equal to that one at 100 km/h. At high speeds, on the other hand, the 

energy spent for air resistance becomes the largest. Following this pattern, the AEV’s energy 

consumption has been found to be the lowest while driving at its maximum speed. An optimum for 

EVs is usually reached at speeds around 40 km/h, however, this could not be measured for the Digibus 

due to the speed limit of 20 km/h (Evtimov et al. 2017). 

Since the energy consumption of AEVs has not been tested with real-world data, there might be 

hesitation whether to deploy AEVs in environments with high slopes and whether other vehicles might 

be a better option given the current technology. Evaluating the energy consumption of an ICE 

compared to the AEV, the results show that there is no scenario where ICEs perform better than the 

automated electric shuttle. No matter which speed, temperature or road grade was assumed, the 

energy consumption of the Digibus was only a fraction of that of an ICE. However, the comparison was 

done within the AEV speed limitation of 20 km/h, which is the range that the performance of ICEs is 

usually worst (Cho and Choi 2017). ICEs typically reach their optimum energy efficiency at 

50 to 70 km/h depending on the vehicle’s mass, which is above the optimum for EVs (He et al. 2020; 

Wang and Rakha 2016). However, comparing the energy consumption of light duty ICEs and EVs for 

increasing speed up to 100 km/h, it becomes clear how the energy consumption of ICEs does not come 

down to the same level as that of electric vehicles. These results are supported by Martins et al. who 

evaluated the energy consumption of electric vehicles against Diesel cars and found that the electric 

powertrain presents higher efficiency than the ICE engine for all speed ranges. They argue that the 

difference is reduced as the average speed and required power is increased, nevertheless, EVs have a 

lower energy consumption within every scenario (Martins et al. 2013). This leads to the assumption 

that, even at high speeds, AEVs would still consume less energy than traditional ICEs. 
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6. Conclusion and Outlook 

Automated electric shuttle buses have been brought out by small manufacturers over the last decade 

and deployed within pilot projects all over the world. Automated vehicles are seen as a solution to 

increase accessibility in rural areas since they reduce operational and personnel costs and can serve 

routes that are not economically feasible at the moment. However, the energy consumption of AEVs 

has not been tested with real-world data which is important for future deployment of the vehicles. 

This research aimed to explore the impact of rural road characteristics on the energy consumption of 

automated electric vehicles. Based on the empirical data of the Digibus project, an AEV shuttle bus 

service deployed in the rural municipality Koppl, a panel regression analysis was performed to 

estimate the effect of road gradient, temperature and different driving characteristics on energy 

consumption. The results of this study confirm a correlation between energy consumption and road 

gradient. They indicate that steep uphill slopes cause a significantly higher energy consumption than 

flat terrains, but they also illustrate how less energy is spent on downhill slopes compared to flat 

terrains. As vehicles drive both uphill and downhill in uneven peripheral areas, especially serving pre-

defined routes, these counteracting effects will likely balance each other out. Evaluating the energy 

consumption of the AEV against ICEs of the same mass, the AEV consumed less energy in every 

scenario that was tested. 

Since the energy consumption rate based on the State of Charge is an approximation of the actual 

energy consumption at each moment, the model can be used to describe correlations rather than 

predict the exact energy consumption. It gives insight into the effects of road gradient and how AEVs 

operate in rural areas. Further studies are recommended to capture the power for each second in 

order to evaluate scenarios in more detail. However, this analysis signifies how the operation in rural 

areas will have similar energy consumption to the operation within urban settings. It is also already 

more energy-efficient than an ICE would be. With the installment of a regenerative braking system, 

the energy consumption could be even further reduced which would make the implementation of 

AEVs for public transport more appealing and shows the potential of AEVs in rural areas. 
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List of abbreviations 

AV Automated Vehicle 

AEV Automatic Electric Vehicle 

EV Electric Vehicle 

HVAC Heating, Ventilation and Air Conditioning 

ICE Internal Combustion Engine 

LSDV Least Squares Dummy Variable 

OLS Ordinary Least-Squares 

SAE Society of Automotive Engineers 

SoC State of Charge 


