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5. Abstract 

Area Wide Pest Management (AWPM) consists in the development of pest management tactics over 

large spatial areas and represents a potential solution to reduce costs and environmental impacts of 

pest infestation (Giles et al., 2008) thanks to the more targeted use of pesticides. The Olive Fruit Fly 

(OFF) is a major pest of Olive trees in Italy however, the intensity of damages varies according to the 

location of the olive groves, and the associated climatic factors. Relating the OFF distribution and 

dynamics with climatic factors is essential to design and implement successful AWPM strategies. This 

research integrated the use of trapping data, satellite image data and mathematical models to predict 

the OFF infestation in an area of Northern Italy. (I) Normalized Difference Vegetation Index derived 

metrics, from Copernicus Sentinel-2 image data, and (II) topographic variables (i.e. elevation, aspect 

and distance from the coast), were used as a proxy of temperature, to predict the OFF infestation. The 

results shown that (I) NDVI data from Sentinel-2 satellite acquisitions do not meet the spatial 

requirements for the extraction of seasonality parameters for the olive groves in the study area. This 

is probably due to the small size, the irregular shape, and the presence of non-vegetation pixels in the 

neighbourhoods of the parcels. Nevertheless, the proposed methodology might provide useful 

outcomes to pest managers, and could be tested in areas with extensive olive plantations. The spatial 

analysis (II) was conducted through a Neural Network regression and the model topology selected by 

Cross-Validation. Although the resulting model will require an external data set to be tested, this study 

provided a baseline model to predict the OFF infestation and produced a map of the OFF distribution 

in the study area. Information on the olive load and management practices should be considered in 

further studies to include other factors influencing the OFF-population dynamics. 
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1. Introduction 

In a world facing an increasing food demand associated with limited cropland availability, the 

reduction of yield losses caused by crop pests is of great importance to achieve sustainable food 

production. In fact, excessive pest populations can lead to widespread short term crop failures and 

food insecurity (Yan et al., 2015). Several different strategies have been implemented to reduce pest-

related risks such as the use of pesticides, resistance cultivars and a number of management 

strategies, including Area Wide Pest Management. 

Area Wide Pest Management (AWPM) consists in the development and application of pest 

management tactics over a large spatial area, and it has been recognized as a potential solution to 

reduce costs and environmental impacts of pest infestation for both agriculture and forest sector 

(Giles et al., 2008). Nevertheless, if insect monitoring networks are not integrated with information of 

population ecology and environmental factors influencing the pest population, AWPM can be 

unsustainably costly and might lead to inconsistent results. 

The spatial variation of insect populations depends on environmental factors, such as topography and 

climate, and biotic interactions including anthropogenic factors. Relating pest distribution with such 

factors, and understanding their spatial dynamics, is an essential part to design and implement 

successful pest management strategies (Kounatidis et al., 2008; Petacchi et al., 2015). 

The olive tree Olea europea subsp. sativa L. is a typical Mediterranean culture which developed in 

areas characterized by mild climate and suffer from very low temperature in winter.  

It is a traditional cultivation in Italy, which is well-known for the production for both table-olives and 

olive oil. Extensive cultivations can be found in the southern and central regions, but there is also a 

significant presence of this species in the area surrounding the subalpine lakes in the North of the 

Country. In these areas, the olive trees take advantage of the mitigation effect exerted by the water 

mass on the local climate (Rolfi, 2003). 

The Olive Fruit Fly (OFF), Bractocera oleae Gmelin, is a major pest of Olive trees in Southern Europe 

as well as other olive-growing regions all over the world (García‐Chapeton et al., 2020). 

Even though the distribution of the OFF interest all olive-cultivated areas in Italy, the intensity of 

damages varies according to the location, the elevation of the olive groves, and to the associated 

climatic factors (Delrio & Lentini, 2016). 

Especially temperature, have a strong influence on the OFF population on the mortality rate, length 

of the reproductive period and duration of the development cycle. It also has an indirect effect 

influencing the phenology of the Olive trees (Delrio & Lentini, 2016). 
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In the next section, we will provide an overview of the biology and life cycle of the pest and the most 

common adopted strategies for its management and control. 

The following part of this chapter is a review of different approaches to study pest-related risk and 

pest population dynamics in relation to climatic factors over large areas. Pros and cons of the different 

methodology are presented, and their relevance to the present research is eventually discussed. 

1.1. The Olive Fruit Fly 

The Olive Fruit Fly is an Insect pertaining to the order of Diptera and the family of Tephritidae. The 

Pupae generally overwinter in the soil and the first generation of adults emerges in spring (march-

may). At this time of the year, there is no fruits available on the olive trees and the adults will have to 

wait until the seed begins to harden to break the reproductive-dormancy and lay their eggs into the 

olives. This phenological phase is reached in Northern Italy around mid-July (Petacchi et al., 2015). 

The biology of the insect is therefore related to olive fruit age and availability (Gutierrez et al., 2009) 

and both are linked to local weather conditions. The development Temperature threshold at have 

been reported by Rice (2000) and are summarized in (Table 1). 

Table 1 Temperature thresholds for the development of the Olive Fruit Fly (Rice, 2000) 

Stage Lower Upper 

 °C °C 

Egg 6-8 35-38 

Larvae 4-8 35 

Pupae 5-9 30 

Adult 4 39 

 

Adults Females prefer to lay single eggs in untouched fruit, but multiple attacks can happen in case of 

fruit scarcity (Gutierrez et al., 2009), and can lay up to 200-250 eggs in their life cycle (Ferrari et al., 

2006). The eggs hatch after few days and the larvae begins feeding on the olive pulp. The larval stages 

(three larval instars) last around 20 days and then pupation occurs. After one week the pupae turns 

into adult and emerge from the fruits. In summer months the whole cycle can be even faster and, 

from egg to adult, takes around 3 weeks to complete (Ferrari et al., 2006). 

The number of generations/years vary according to the climatic areas. It can reach up to 6-7 

generation in warmer regions while only 2-3 generations are found in relatively colder ones (such is 

the case of this study area). The second generation is the one causing the most severe damages to the 

olive production (Delrio & Lentini, 2016). 
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The damage caused by the OFF to olive cultivations interest the fruits, causing the partial destruction 

of the pulp and early fruit fallen. Moreover, the insect causes an alteration of the pulps which facilitate 

the entry of secondary infections by bacteria and fungi that rot the fruit (García‐Chapeton et al., 2020). 

Rotting eventually results in acidification and a decrease of oil quality and loss of economic value. 

Monitoring the OFF-adult’s population is normally done using chromotropic traps activated with 

sexual pheromones and food-bates. Trap measurements are used as one of the indicators for the OFF 

infestation and so, as an information support tool, for the application of pesticides, which are active 

on the adult’s population (Kalamatianos et al., 2017) and preventive treatments. One OFF per trap per 

inspection date (i.e. 5 days) and five OFFs per trap per inspection date were reported as intervention 

thresholds by Castrignano et al. (2012) for table olives and olive oil production, respectively. An 

economic threshold of 7 olive fruit flies per trap in summer and 5 OFFs in autumn is instead given by 

Kalamatianos et al. (2017)  

However it is worth noting that the intervention threshold for the application of larval pesticides have 

to be set based on the active infestation rate (I-II larval stages), normally over a sample of 100 olives. 

Haniotakis (2005), reported an economic threshold based on preimaginal infestation rate of 8-10 % of 

fruit infested for oil production while the acceptable infestation for table olive was set as zero.  

The threshold can differ from region to region and varies according to the nature of the treatment to 

be applied and to the final use of the fruits (table olives or olive oil). 

The chemical control of the OFF is done using pesticides such as Dimethoathe, Fosmet and 

ImidaCloprid, which have a lethal effect on the larvae. According to local farmers and experts, the 

Dimethoate was the most utilized product in the area due to its high efficacy and low solubility in fats. 

However, the use of this pesticide has been banned by COMMISSION IMPLEMENTING REGULATION 

(EU) 2019/1090 of 26 June 2019 Concerning the Non-Renewal of Approval of the Active Substance 

Dimethoate, because it is considered a threaten to the user’s health as well as for non-target mammals 

and arthropods including honey bees. 

Even though alternative methods, such as mass-trapping, bait sprays and preventive treatments using 

organic products are already available, they still have some practical limitations and are not 

completely widespread among farmers. The banning of the dimethoate put more pressure on both 

technicians and producers to find effective and more sustainable solutions.  

In addition to that, the efficacy of all preventive methods depends largely on the size of the treated 

area (Belcari, 2019). The best results are obtained when the treatment is applied on large extensions. 

These facts support the need for innovative solutions and consistent information on the OFF-

population dynamics to support decision making by Area Wide Pest Managers and farmers. 
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1.2. Remote Sensing for Area Wide Pest Management 

The term Remote Sensing (RS) refers to measurements of the radiation (reflected or emitted) from 

the Earth’s surface, and it is based on the interaction between the electromagnetic radiation and soil 

or plant materials.  

Among many applications, RS data allows with a minimum amount of ground sampling, the 

identification and assessment of crop stress and pest damage. Thanks to the wide coverage, 

repeatability, and comparatively low cost, with respect to field data collection, RS data represent a 

potential time and cost-effective alternative to provide information about insect outbreaks 

(Haghighian et al., 2020). 

The detection of pest infestation by remote sensing techniques is based on detecting changes in the 

green parts of the plants. Vegetation indices (VIs) are indicators that describes the characteristics of 

vegetation (e.g. vegetation health, density, water content) for each pixel of an image and their main 

purpose is to enhance the information of the reflectance data, by extracting the variability due to 

vegetation characteristics. 

Prabhakar et al.( 2012), cited 24 different vegetation indices which have been used to detect different 

kinds of biotic stress, caused by arthropods, termites, fungi, or bacteria. 

The Normalized Difference Vegetation Index (NDVI) is a VI describing the “greenness” of the 

vegetation and it is the most widely used for monitoring conditions of plants and vegetation 

worldwide (Acharya & Thapa, 2015). 

The NDVI can be computed using Equation 1: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (1) 

 

where the RED and NIR are the surface reflection for red (665 nm) and near infrared (842 nm) bands, 

respectively. NDVI values range from +1 to -1, where negative values correspond to an absence of 

vegetation. The formula is based on the fact that chlorophyll absorbs RED radiations while the 

mesophyll leaf structure scatters NIR. 

The NDVI was used in several studies to monitor biotic stresses and insect breakouts both in the 

agriculture and forest sectors (Olsson et al., 2016; Prabhakar et al., 2012). 

With high spatial resolution and short revisit frequency, Copernicus Sentinel-2 satellites are a good 

source of images for deriving NDVI over large areas (Haghighian et al., 2020). 



5 

 

Pettorelli et al. (2005), exhaustively described the characteristics of NDVI annual time-series for 

vegetated areas and how to derive NDVI indices, which are linked to the vegetation phenology and/or 

productivity.  

The yearly NDVI time-series of a vegetated area typically shows an increase in correspondence with 

the start of growing season, the NDVI peaks, establishing a plateau, and then eventually decreases 

when the vegetation senescence starts (Figure 1). 

 

Figure 1 - Smoothed annual NDVI curve for vegetation. The NDVI values start rising since the beginning of the 

growing season, it reaches a maximum and then decreases in respondents to the start of the vegetation 

senescence. Adapted from Pettorelli et.al (2005) 

Because of the residual noise in the NDVI data sets, mainly due to atmospheric conditions and clouds, 

the time-series needs to be gap-filled and smoothed through the application of different filtering 

algorithms. Shao et al. (2016), reported three different smoothers which can be applied in the 

TIMESAT software package namely i) adaptive Savitzky-Golay, ii) asymmetric Gaussian and iii) double-

logistic function.  

The Savitzky-Golay uses quadratic polynomial function to fit all points within a moving window of a 

given time-series dataset, and then the value of the central point is replaced by the fitted value. 

The adaptive Savitzky-Golay reassign the weight for each point to favour points located above the 

initial polynomial fit, assuming that noises from clouds normally reduce the original NDVI value. 

The asymmetric Gaussian algorithm relies mainly on five parameters to fit time-series data (i.e. Time 

of the min, or Max NDVI, width and flatness of both the right side and the left side of the function). 

Eventually, the double logistic function estimates four parameters to determine the left inflection 

point, the right inflection point, and rates of changes at two inflection points. 



6 

 

An empirically based comparison of six selected NDVI time series smoothing techniques revealed the 

general superiority of the double logistic and asymmetric Gaussian function methods in terms of 

overall noise reduction and data integrity (Hird & Mcdermid, 2009). 

According to the TIMESAT software manual (Eklundh & Jönsson, 2017), the asymmetric Gaussians or 

double logistic functions may be the better choice, compared to the adaptive Savitzky-Golay, when 

dealing with noisy time series. 

After smoothing, a variety of NDVI-derived indices, or land surface phenology (LSP) metrics, can be 

derived from the curve.  

Some LSP metrics are related to the overall vegetation productivity, such as the Integrated NDVI 

(INDVI) or the annual maximum NDVI value. They also include dates of the beginning (and the end) of 

the growing season, the timing of the annual maximum NDVI and the rate of increase and decrease of 

the NDVI. A list of the most important metrics, their features and biological meaning are presented in 

(Table 2) and graphically displayed in (Figure 1). 

Table 2 - Examples of NDVI derived indices and their ecological meaning. Adapted from Pettorelli et.al (2005) 

NDVI derived Index Definition Biological meaning 

INDVI Sum of positive NDVI over a given period Annual production of vegetation 

Annual maximum Max value over a year Annual production of vegetation 

Time of the max Time of Max Timing max availability of 
vegetation 

Beginning/End of the growing 

season 

Dates estimated from moving average 
procedure 

Start of the green-up/senescence 

 

NDVI derived Indices were mainly used to assess the effects of climatic conditions on biomass and 

plants phenology. However, they were also applied to study trophic interactions (Pettorelli et al., 

2005), to provide information for grassland management in protected areas(Weber et al., 2018) and 

for the prediction of crop phenology (Badr et al., 2015). 

Due to their link with climatic and weather conditions, NDVI indices could provide additional 

information to predict the Olive Fruit Fly population for Area Wide Pest Management.  

However, the correlation between the above-mentioned indices and the Olive Fruit Fly population 

density has not been studied yet.  

The integration of Satellite data for the monitoring of this pest represents an opportunity to increase 

the effectiveness of area-wide monitoring programs while improving their time and cost efficiency. 
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1.3. Modelling pest risk using climatic and geographic data 

Mathematical modelling is a widely adopted strategy to improve the knowledge on pests’ population 

dynamics and achieve the early prediction of pest damages (Yan et al., 2015).  

In this section, an overview of different modelling approaches, namely temperature-driven models, 

geostatistics, correlation analysis and Artificial Neural Networks, are presented. The main features, 

including different purposes, advantages, and disadvantages of each method and their relevance to 

this work is eventually discussed. 

Temperature-driven models have been largely used to predict target events linked to the insect’s 

phenology such as the occurrence of a development stage for certain pests. 

Climate has a strong effect on the distribution and abundance of insects and so the mathematical 

description of such a relation has been of great interest among entomologists (Damos & Savopoulou-

Soultani, 2012). Being temperature a factor of great influence, most of the models that describe insect 

development are temperature driven. Knowing this kind of relationship is a prerequisite for the 

prediction of timing and phenology of insects.  

The application of temperature-driven model to study pest population dynamics can be found in 

several studies (Blum et al., 2015; Gutierrez et al., 2009; Petacchi et al., 2015). 

Population modelling has been usually driven by temperature indices (e.g. Cumulated Degree Days-

CDD) derived from weather-station data, which are then interpolated in order to obtain meaningful 

dataset, representative of large geographic areas. In case of limited availability of weather stations 

data, Land Surface Temperature (LST) data from satellites have also been used (Blum et al., 2015), 

even though their application so far was limited to homogeneous flat areas due to the coarse spatial 

resolution of LST maps (Malbéteau et al., 2017). 

The application of temperature-driven models can become problematic when weather station’s data 

are not available, and the rough topography of the area does not allow the use of LST data. 

Geostatistical methods represent one category in the broader field of Spatial Interpolation Methods. 

They are a family of generalized least-squares regression algorithms, also known with the name of 

“Kriging” (Li & Heap, 2014). 

Geostatistics can be a powerful tool to study spatial variation of insect populations and to support 

Integrated Pest Management, from field to regional level, it can be used to analyse spatial 

heterogeneity and optimize the use of chemicals, as well as to produce risk assessment maps 

(Sciarretta & Trematerra, 2014). Risk maps are important tools for land managers and other 

stakeholders to understand the distribution of the pest population in the interested area and support 

decision making (García‐Chapeton et al., 2020). 
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The application of multi-variate geostatistics for the study of the OFF-population dynamics was given 

by Castrignanò et al., (2012), with a focus on a large olive growing area in Greece.  

Data from a regional network of monitoring traps (700 McPhail traps) has been analysed by principal 

component analysis. Co-Kriging and factor Kriging, including elevation as independent variable. The 

model outputs were used to produce thematic maps and to define different priorities to monitoring 

zone for each of the selected periods. They found that OFF population density in summer was 

positively influenced by elevation, while the relation became less clear in October (patchy OFF 

distribution on the map). These results confirmed the findings of a previous research conducted in the 

same region (Kounatidis et al., 2008). 

The geostatistics approach requires a large sample size to perform a meaningful variogram analysis 

(Sciarretta & Trematerra, 2014). As a rule-of-thumb, at least 50-100 samples are necessary to achieve 

a stable variogram; or at least 100, to produce a reliable estimation of the variogram (Li & Heap, 2014). 

Such sampling effort requires a considerable investment of both time and economic resources 

especially when it comes to large geographic areas.  

Multiple regression is a linear regression method which models the relation between a set of 

independent variables, or predictors, and a target variable. It has been adopted for the evaluation of 

pest risks for different pests and crop types such as the cowpeas pests (Karungi et al., 2000) and the 

paddy stem borer in rice fields (Yang et al., 2008). 

It is the simplest method for pest prediction and has the advantage that the statistical significance of 

every single selected predictor can be identified, and the results are easy to interpret. 

The generalized approach consists in relating the target variable, to climatic and, or topographic 

factors (predictors)  

Petacchi et al. (2015) used a temperature-driven model, kriging, and multiple regression to predict the 

expected day of emergence of overwintering adults of Bractocera oleae, in a mountainous region in 

Italy. First a CDD model was calibrated and validated using data collected in 3 experimental sites and 

historical data from extension service. Once validated, the model was run on 78 weather stations 

placed in the region. Spatial fits of model output were carried out using both ordinary Kriging and a 

regression correlation approach, the second one showing better results. The better accuracy was 

explained by the fact that the regression approach is independent from input data location and 

accounted for the rough topography of the site. 

Elevation, (Euclidean) distance from the sea and aspect (cos α) were used as predictors to include all 

geographic factors influencing temperature. Elevation was found to be the best predictor however, 

the determination coefficient improved by increasing the number of independent variables confirming 

that other topographic factors have an influence on temperature. 
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Artificial Neural Networks are also a popular model approach for the prediction of crop pest risk (Yan 

et al., 2015). They are a family of techniques of artificial intelligence which were inspired by the 

computational mechanism of the human brain. The brain performs complex, non-linear, parallel 

computation and can self-organize and build its own “experience” (Mas & Flores, 2008). ANN’s present 

several advantages over conventional methods as they can account for any non-linear complex 

relationship between the predictors and the dependent variables and so do not require any 

assumptions about the used data set. 

Yan et al. (2015) tested the use of Multiple Regression and Neural Network (NN) to predict the crop 

risk related to two different pests. The results shown that NN improved the predictions accuracy 

compared to the traditional approach however, the authors also stressed some disadvantages of NN 

models particularly: 

 The importance of the single predictors cannot be identified as NN performs like a black box. 

 The setup of the model parameters (e.g. model topology) is subjective. 

 The model can run into overfitting issues in non-linear data training. 

An application of NNs to the study the occurrence of the Olive Fruit Fly was developed by Kalamatianos 

et al. (2017), who tested different machine learning algorithms, for the prediction of future trap 

measurements. The model training and cross-validation was performed using two years trapping data 

from a small network of 16 traps, while the outputs of a CDD model, temperature data from sensors 

and the previous trapping measure (N flies in the previous visit) were used as predictors of the target 

variable. The NN experiment was set up as a classification problem (three different classes based on 

the intervention threshold), using a feed forward NN with one hidden layer and an increasing number 

of hidden nodes (1-15). The results shown that NN precision (% of correct classification) was 

comparable to other machine learning techniques and that the model performance increase when the 

CDD model outputs were included in the predictors. In another work (Kalamatianos et al., 2019) the 

same authors used weather sensors and trapping data, through a combination of Clustering 

algorithms and Neural Network based classification, to identify and localise microclimatic areas which 

have an influence on the OFF-life cycle. 

The application of a variety of mathematical models to study the OFF-population dynamics in relation 

with climatic and topographic factors is well documented. 

For the present research geostatistic methods were not considered due to resource constraints 

because of the high sampling effort they require to produce meaningful variograms (Sciarretta & 

Trematerra, 2014). 

On the other hand, CDD models needs temperature data from sensors, or weather stations 

(Kalamatianos et al., 2017; Petacchi et al., 2015), which were not available at a sufficient spatial density 
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in the study area of this research. The alternative use of LST data was also excluded because their 

spatial resolution does not meet the requirements in relation to the rough topography of the region 

(Malbéteau et al., 2017). 

In mountainous areas, topographic factors such as elevation, aspect, and the distance from large 

water bodies, play an important role in defining local climatic conditions and can be used as a proxy 

of temperature. The application of Neural Networks models to study the climatic influence on the B. 

oleae population has been a topic of interests in recent research works (Kalamatianos et al., 2017, 

2019), but the relation between the OFF infestation and topographic factors using Neural Network 

regression has not been investigated yet. This is worth to be tested because it might provide a 

comparatively low-effort methodology, which could be easily replicated by local institutions without 

any major changes in their pest-monitoring protocols. 

1.4. Aim of the study and research questions 

The present research aimed at testing whether the use of NDVI derived metrics and spatial analysis 

can improve the efficiency and the effectiveness of AWPM programs of the Olive Fruit Fly in the 

Mountain Community of Sebino Bresciano (Italy). 

A first exploratory investigation wanted to answer the question whether NDVI metrics from Sentinel-

2 satellite data, could be used to enhance the information on the OFF-population density in the study 

area. 

It is worth noting that, the Olive Fruit fly does not directly damage the tree vegetation. In fact, this 

work did not look for a correlation between the NDVI metrics and damages to the tree canopy but, 

the LSP indices were used as proxy of temperature to predict the pest population density. 

The second part of this work tested the correlation between the main topographic factors influencing 

temperature, and the OFF population in the study area by a Neural Network regression model.  

The aim of the spatial analysis was to produce an OFF risk map of the study area as a support tool for 

local pest monitoring and management programs. 
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2. Materials and methods 

2.1. Study Area: Comunità Montana del Sebino Bresciano 

The area of the present research corresponds to the administrative borders of the Comunità Montana 

del Sebino Bresciano) (Mountain Community of Brescian Sebino) (CMS), located in the Region of 

Lombardia in Northern Italy. The CMS is a local public body formed by nine municipalities counting 

approximately 35 000 inhabitants. The purposes of the institution are the valorisation of alpine areas, 

the support and coordination of the administrative tasks, the implementation of programs and 

initiatives in the agriculture, craftmanship, culture and tourism sectors (Comunità Montana del Sebino 

Bresciano, 2021). 

The CMS Office of agriculture and forest, provides technical support to the olive oil producers through 

different activities and initiatives. The idea of the present research and its design was developed in 

close collaboration with the technicians of the “Forest and agriculture Office” to meet their needs to 

improve AWPM of the OFF in the CMS area. 

 

Figure 2 - Geolocation and the administrative borders of the study area. It is possible to distinguish the 9 

municipalities composing the Comunità Montana del Sebino Bresciano. 
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The CMS cover a surface of 17826 ha of which almost 3 500 ha occupied by the Sebino lake, 14 000 ha 

considered as mountainous area and the remaining classified as hilly area (Figure 2). 

The highest peak in the area is the Monte Guglielmo with an altitude of 1948 m the island of Monte 

Isola, in central sector of the Sebino Lake, reaches an elevation of 600 m. 

The main element influencing the climate, especially along the shore and the hilly areas in the 

surrounding, is the huge mass of water represented by the lake. 

The lake mitigation effect makes the climate to have a temperate to hot-temperate characteristics up 

to 400 m elevation. Between 400 and 1000 m the climatic conditions get more and more Atlantic, the 

precipitation increase, and winter mean temperature decrease. Above 1500 m we encounter colder 

and longer winters, together with short summer characterized by heavy rainfall (Bontempi, 2016). 

2.2. The olive oil sector and classification of the olive groves 

The mitigation effect caused by the lake, creates a microclimate which allows the olive trees to grow 

well in the CMS, close to the extreme northern border for the cultivation for this species. Anyway, in 

the recent years the olive cultivation has spread towards other areas which are not directly influenced 

by lake such as the hills south of the Sebino lake. 

The traditional cultivars, which are still the most widespread in the area, are namely the Frantoio, 

Sbresa, Casaliva, Leccino and Pendolino (Rolfi, 2003). All those varieties are mainly used to produce 

olive oil, while the production of table olives is rare. The elevation range of the cultivation goes from 

the lake level (187 m) up to around 600 m. Above this threshold low temperatures, become a limiting 

factor for the development of the species. 

The classification of olive groves was done manually using the software QGIS version 3.14 (QGIS.org, 

2021. QGIS Geographic Information System. QGIS Association. http://www.qgis.org), by visual 

interpretation of orthophotos taken in the period from June to September 2015 (50x50cm). The 

orthophotos are available for public online consultation from the geodatabase of Region Lombardia 

(Agea, 2015). The classification was done using a nominal scale of 1:2000 and a minimum of 10 olives 

trees has been set as the lowest threshold for an olive grove to be considered. A total area of 243,8 

has was classified as olive cultivation in the whole CMS. It is worth to say that field surveys for the 

correction of doubtful parcels are still in progress and so the area might vary slightly after this 

verification. The olive groves classification map is displayed in (Figure 3). 
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Figure 3 – Map showing the Classified olive groves in the CMS area and the location of the OFF-monitoring 

traps used in this research. A zoom-in to trap number 3 is shown to provide an example of a sample olive 

grove. 

2.3. Sampling and data Collection 

The CMS office of Agriculture since 2020 started a monitoring program of the OFF population in the 

area, setting a network of 9 traps in the CMS area (1 per each municipality) which have been 

monitored weekly starting from 30/07/2020 until the 17/09/2020. For the season 2021 the number 

of trapping stations was increased to 23 (1 trap/point). The location of the traps was selected to be 

representative of the different geographic conditions influencing temperature. 
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The sample size was defined in accordance with budget and time constraints while the location of the 

monitoring stations was limited by the willingness of the producers to give the permission to install 

the trap and to access their fields. 

Monitoring was done using “WING TRAPS” which are star-shaped sticky chromotropic traps where the 

yellow colour attracts the target insects especially Diptera tephritidae (Figure 4a, 4b). 

The traps were trigged by both a sexual pheromone attracting males, and ammonia baits (attracting 

both males and females). 

 

Figure 4 -a) One of the wing traps used for the monitoring of the OFF population. It is possible to see the 

ammonia and the pheromones bates in the upper part of the trap. b) Males OFF adults captured by a trap. 

The traps were put in place between the 07/07/2021 and 09/07/2021. The number of adult’s flies 

captured was monitored every two weeks for the first month, from 07/07/2021 to 06/08/2021, and 

then weekly in the period from 07/08/2021 to 30/09/2021. 

The pheromones and the ammonia bate were replaced every 4 weeks or, for the ammonia bates, 

every time the content looked empty according to the instructions given by the producer (Isagro, 

2020). The OFF-monitoring network is displayed in (Figure 3) 
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2.4. NDVI metrics as predictors of the OFF-population density 

Drusch et al. (2012) provided an extensive description of Copernicus Sentinel-2 satellites, technical 

features, products, and possible applications. An overview of the satellite’s main characteristics is 

presented in the following paragraphs including a description of the different products. 

Sentinel-2 is a constellation of two multispectral high-resolution satellites, orbiting at a mean altitude 

of 786 km, providing optical observations over the Earth’s surface from -56° to 84° latitude. 

The mission includes two identical satellites operating simultaneously at the opposite side of the orbit, 

making it possible to halve the revisit frequency down to 5 days/visits at the equator. 

Multi spectral images are provided to the users in forms products of different Levels, according to the 

different processing operations implemented. Level 0 and Level 1 provide raw compressed and 

uncompressed data, respectively. Level 1B data are radiometrically corrected radiances while the 

Level 1C product provides geo-coded top of atmosphere (TOA) reflectance, a sub-pixel multi-spectral 

and multi-date registration. A cloud and land/water mask are associated with the product. The L1C 

unitary product is a tile of 100×100 km2. An additional atmospheric correction and enhanced cloud 

masks are applied to Level 2A products which represent the highest level of processed images 

provided to the users. In this work only L2A products were used as base images to perform any further 

analysis. 

Sentinel-2 satellites are equipped with a Multi Spectral Instrument (MSI) with 13 spectral bands (Table 

3) spanning from the visible and the near infrared to the short-wave infrared.  

Table 3 - Sentinel 2 Bands and Spatial resolution (ESA, 2015) 

Sentinel-2 Bands Central Wavelength (nm) Resolution (m) 

Band 1 - Coastal aerosol 443 60 

Band 2 - Blue 490 10 

Band 3 - Green 560 10 

Band 4 - Red 665 10 

Band 5 - Vegetation Red Edge 705 20 

Band 6 - Vegetation Red Edge 740 20 
Band 7 - Vegetation Red Edge 783 20 

Band 8 - NIR 842 10 

Band 8A - Vegetation Red Edge 865 20 

Band 9 - Water vapor 945 60 

Band 10 - SWIR - Cirrus 1375 60 

Band 11 - SWIR 1610 20 

Band 12 - SWIR 2190 20 

 

The spatial resolution varies from 10 m, for the visible and n-IR bands, to 60 m depending on the 

spectral band while the swath is of 290 km.  
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Even though the Sentinel-2 mission does not provide ready to use NDVI products, the index can be 

easily computed, considering the respective band’s wavelengths, by the Equation 1: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 =

𝐵8 − 𝐵4

𝐵8 + 𝐵4
(2) 

NDVI time-series can be extracted from Sentinel-2 imagery by using different software’s and web 

platforms. The planned methods for the extraction and further analysis of the NDVI derived indices 

consists of 4 steps: 

1. Creation of a Shapefile containing the polygons of 22 sample olive groves using QGIS; 

2. Extraction of the NDVI-timeseries for the sample polygons in Google Earth Engine (GEE); 

3. Extraction of the seasonality parameters from the time-series by TIMESAT; 

4. Neural Network regression using NDVI metrics and data from the monitoring traps in RStudio;  

The four steps are described in detail in the following paragraphs while a schematic representation of 

the planned procedure is shown in Figure 5. 

 

Figure 5- Schematic representation of the four steps for the planned methodology. Extraction of the NDVI time series for the 

sample groves (1-2) and seasonality parameters (3). Neural Network regression including OFF trapping data (4). 

In this research the median NDVI time-series, from Sentinel-2 images, for the 22 sample olive groves 

was obtained using the web platform GEE. 

 

GEE is a platform for scientific analysis and visualization of geospatial datasets, it hosts satellite 

imagery and stores it in a public data archive. The platform provides an application programming 

interface (API), an associated interactive development environment (IDE) and other tools to enable 

the analysis of large datasets and the visualization of the results (Gorelick et al., 2017). 
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The data catalogue is continuously updated and houses a large repository of publicly available 

geospatial datasets, including observations from a variety of satellites (e.g. Landsat, Sentinel-1 and 

Sentinel-2) in both optical and non-optical wavelengths. The images from the catalogue are grouped 

into “collections” which can be easily sorted and filtered to meet specific spatial, temporal or other 

criteria (e.g. Date range and Cloud cover) (Gorelick et al., 2017). 

A shapefile containing the polygons of the 22 sampling groves was created using the software QGIS 

and then uploaded in the GEE platform. A Sentinel-2 image collection from 01-01-2021 to 01-10-2021 

was uploaded and cloud-masking function was applied to exclude Cloudy pixels from the analysis and 

reduce the related-noise. 

The NDVI band was added to the Collection and, because the olive groves were larger than the pixel 

size of the images (10x10 m), the median NDVIs were computed to reduce them to a single NDVI value 

per each sample grove. The resulting time series was exported in a “.CSV” format. 

The same procedure descripted in the previous paragraph was used to obtain the median NDVI time-

series for the period 01-10-2019 to the 31-12-2019 which was lately joint to the data from 2021 to 

create an artificial time-series of one year. The reason for that was to create an ASCII readable format 

for the TIMESAT software as described in the following section. 

The TIMESAT program is primarily designed for the analysis of time-series of vegetation indices 

satellite data and the extraction of seasonality parameters. 

A complete description of the 3.3 version of TIMESAT, used in this research, can be found in the 

software manual (Eklundh & Jönsson, 2017), including the main technical features and applications. 

The software offers three different smoothers namely the adaptive Savitzky-Golay filtering method 

and methods based on upper envelope weighted fits to asymmetric Gaussian and double logistic 

model functions  

Data organized as ASCII files or images (two-dimensional spatial arrays) can both be handled by the 

system. To be read in TIMESAT the first line of the ASCII file must contain the information about the 

number of years spanned by the time-series, the number of data values per year, and the number of 

time-series in the file. The data structure of the ASCII file is displayed in Figure 6. 
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Figure 6 - Data structure of ASCII files. The first line includes the number of years, the number of data per year and the 

number of time series (nts). The time series are then given line by line (y)(Eklundh & Jönsson, 2017). 

In order to extract the seasonality parameters for the 2021 in TIMESAT at the time of this research 

(October 2021) it was necessary to integrate them with data from another year (2019) to complete 

the one-year time-series to be readable by the program Figure 7. This artifact would have no influence 

on the seasonality parameters which relates to the left side of the curve (max NDVI, time of the max, 

start of the growing season). 

 

Figure 7 – A hypothetical schematic representation of the 1 year artificial time-series. 

The steps of the processing in TIMESAT are summarized below: 

a. Read time-series y1; y2; - yN. 

b. Fit a smooth function. 

c. Use fitted function to extract seasonality parameters. 

d. Write seasonality parameters to file 

Following the extraction of the aforementioned parameters, the planned step was to build a Neural 

Network model using the extracted NDVI metrics as predictors of the OFF-population density. 

The Neural Network regression can be performed through a so-called multi-layer perceptron. 

The basic idea and mathematics of NN multi-layer perceptron is briefly presented by Yan et al. (2015), 

while Mas & Flores (2008) provided a deep dive into Neural Networks models and their application to 

remote sensing data. 
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A multi-layer perceptron (MLP) is composed of an input layer with input neurons (i.e., predictors), one 

or more hidden layers of computation neurons and an output layer (i.e., target variable) (Figure 8)  

 

Figure 8 –Multi-layer perceptron Neural Network with one hidden layer. Black numbers represent the weights while blue 

numbers are the so-called Bias representing the intercept. 

The hidden layers can detect and learn the relationship between the predictors and the dependent 

variable, no matter if such a relation is linear and non-linear.  

The model training process occurs in two phases: feedforward phase and backpropagation phase. 

In the feedforward phase, a training input vector is first given to the input layer and then propagated 

forward until the output vector is generated in the output layer The neurons in one layer are fully 

interconnected with all the neurons in the next layer. The strength of connection between two 

neurons from adjacent layers is named weight. 

In the backpropagation phase, the basic idea is to minimize the error through iterative backward 

propagation of error signals. The connection weights are adjusted recurrently until the cost function 

is minimized (i.e., one consecutive step with no decrease in error).  

The cost function is defined as (Equation 2): 

𝐸 =
1

2
∑(𝑦𝑑,𝑘 − 𝑦𝑘)

2
𝑙

𝑘=1

(3) 

where 𝑦𝑑,𝑘 and 𝑦𝑘  are the desired and actual output of neuron k in an output layer, respectively and 

𝑙 is the total number of neurons in the output layer.  

When the value of the cost function reaches a pre-defined threshold value, a network is considered 

to have converged. 
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2.5. Spatial analysis of the OFF-population density in relation to 

geographic factors 

This part of the research aimed at testing the correlation between the OFF-population density and the 

climatic conditions in the area of the CMS. Due to the lack of weather stations at a sufficient spatial 

resolution and the limitation for the use of LST data from satellite in an area with rough topography, 

the main geographic factors influencing temperature were used as independent variables for the 

analysis. A Neural Network regression was selected as the most suitable model to account for any 

non-linear complex relationships among the selected variables and the pest population density. 

Elevation, Aspect (namely the direction, based on the azimuth, to which a surface slope faces) and the 

distance from the lake coastline, were selected as predictors of the OFF infestation, and their values 

for each of the sample stations were computed using open-source software QGis version 3.14.16. 

Elevation data were taken from the Digital Terrain Model (DTM) 5x5 m of the CMS area (Geoportale 

Regione Lombardia, 2015)  

The spatial distribution of the aspect was calculated using the “Aspect” geoprocessing tool, starting 

from the aforementioned DTM. The raster of the cos(aspect) was obtained using the raster calculator. 

The cosine of the aspect was computed to obtain a linear variable having values of 1 for North-facing 

slopes and -1 for South-facing slopes. 

The distance from the coastline was calculated using the GRASS “r.grow distance” tool, available in 

QGis, starting from the coastline shapefile from the regional geodatabase, setting spatial resolution 

of 100x100 m. Figure 9 shows the spatial distribution of the three dependent variables in the area of 

the research. 
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Figure 9 - Spatial distribution of the predictors in the CMS: Distance from the lake (1), Cos of the Aspect (2) and 

Elevation (3). 

The Neural Network used to perform the spatial analysis is a multi-layer perceptron (described in 

section 2.4). Before starting the training of the Neural Network data of both the dependent variable 

and the predictors were normalized into a range between [0,1]. Data normalization had the goal to 

avoid weights overestimation (as the predictors have different units of measurement) and to improve 

the computation efficiency (Jayalakshmi & Santhakumaran, 2011). 

The normalization was performed through a min-max equations as the following (Equation 3): 

𝑦 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(4)

A Leave One Out Cross-Validation (LOOCV) was selected as the method for the selection of the most 

suitable architecture based on the lowest mean error from the cross-validation. LOOCV is a special 

case of k-fold cross validation, in which the number of folds equals the sample size, it is a sensible 

model selection criterion as it provides an almost unbiased estimate of the true generalisation ability 

of the model (Cawley & Talbot, 2004). 

In this research the model selection was limited to a simple network having only one hidden layer, 

following the principle that this is sufficient to model any piecewise continuous function (Hornik et al., 

1989). Ten different architectures with an increasing number of hidden neurons, from 1 to 10, were 

used in the LOOCV to test the effect of an increasing complexity on the model accuracy. 

Models with more than 10 Neurons were not considered because it would increase the possibility to 

run into overfitting problems (Yan et al., 2015). 
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After the validation phase the model topology showing the lowest error was selected and used to 

draw a map of the predicted OFF density in the whole study area. 

This creation of the aforementioned raster map was performed using the raster and the rgdal 

packages in RStudio. The three Input rasters (i.e. Elevation, Cos Aspect and Distance) were first 

resampled to get the same spatial resolution (100x100m) and then given as Input to the Neural 

Network model to generate an Output raster showing the predicted values for the Target variable. 
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3. Results and discussion 

To get a first overview of the temporal and spatial distribution of the target pest in the study area, the 

trapping data for the 23 sample stations were plotted against the time of the monitoring period. 

The average trapping load line was added to the plot to enable a quick visual comparison between the 

trapping load for single station and the average values (Figure 10) (Appendix A). 

 

Figure 10 – Line plots showing the number of adults OFF per each monitoring visit (N) from 07-2021 to 10-

2021, for four sample locations (red lines). The Green line shows the average trapping load among the 23 

sample stations. 

From the plots it was possible to notice that the absolute N of captures varied widely from one station 

to the other while the temporal trend was similar among the different locations. 

Especially an increase in the number of captures was recorded in the month of September for all traps 

in accordance with the expected period of the second generation of the insect. 

Being the OFF second generation the one causing most of the damages to the olive production (Delrio 

& Lentini, 2016), and September the month in which the intervention threshold is generally exceeded 

(Guidotti et al., 2003), the mean trapping load for the month of September was selected as Target 

variable to perform all further analysis. 
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3.1. NDVI metrics as predictors of the OFF-population density 

The Google Earth Engine (GEE) platform was used to extract the median NDVI time series from 

Sentinel-2 images for the 22 sample olive groves. The GEE script used to these operations is attached 

in the Appendix B.1. 

The results were exported in a “.csv” file format and pre-processed in Microsoft Excel to obtain a 

TIMESAT readable ASCII format: 

• A regular time interval (5-7 days) between each NDVI value was set. 

• NDVI values outside the [0,1] range were excluded. 

• Data from 2021 were joint to the NDVI values from 2019 to obtain the artificial one-year NDVI 

time series.  

• The artificial time-series was then multiplied to simulate three years of data. 

• A first row including the TIMESAT required parameters was added (Table 4). 

Table 4 - NDVI median values for the 22 sample grove for the month of January 2021. The first row includes the number of 

years (3), number of observations per year (66) and the number of time-series (22). -9999 values are missing values or values 

outside the [0-1] range which were excluded from the analysis. 

3 66 22   
 

0.703794 0.67392 0.603283 0.676514 -9999 

0.768182 0.76607 0.641635 0.76373 -9999 

0.672913 0.992883 0.352641 0.994048 -9999 

0.707544 0.672194 0.510167 0.717647 -9999 

0.724568 0.742323 0.558532 0.741124 -9999 

0.687853 0.669697 -9999 0.679579 -9999 

0.781503 0.773573 0.715742 0.763098 -9999 

0.632 0.669031 0.571299 0.6648 -9999 

0.724844 0.688199 0.623637 0.750679 -9999 

0.614887 0.726084 -9999 0.804671 -9999 

0.576239 0.791667 0.649378 0.719417 -9999 

0.649617 0.695798 0.573748 0.683673 -9999 

0.665008 0.647704 0.545455 0.688401 -9999 

0.648248 0.643532 0.560976 0.628541 -9999 

0.712655 0.711103 0.636364 0.722346 -9999 

0.700913 0.73185 0.57927 0.72005 -9999 

0.638982 0.786262 0.44357 0.830308 -9999 

0.762306 0.784413 0.61003 0.781825 -9999 

0.71507 0.710454 0.539809 0.675456 -9999 

0.781761 0.78892 0.595665 0.785276 -9999 

0.672831 0.677115 -9999 0.662709 -9999 

0.721107 0.708025 -9999 0.749356 -9999 
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The resulting file was then used in TIMESAT to produce the NDVI time series and then extract the 

seasonality parameters.  

Because the raw NDVI data appeared to be still very noisy, the double logistic function was selected 

to smooth the curve. The polygons of all the 22 sample groves and the respective smoothed NDVI 

curves are displayed in Appendix C, while only the first six samples are shown in figure 11 as a support 

to the discussion.  

 

Figure 11 - Sample groves 1-6 and respective NDVI curves from TIMESAT. The red line showing the double 

logistic smoothed curve. 

 

Sample 
ID 

Olive grove polygon  MEDIAN NDVI TIME-SERIES Area (ha) 

1 

 

 

0.21 

2 

 

 

0.31 

3 

 

 

0.41 

4 

 

 

0.11 

5 

 

 

0.25 

6 

 

 

0.17 
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The smoothed NDVI curves shown an irregular shape which in some cases did not even follow the 

typical NDVI seasonal trend for vegetation (e.g. Sample grove n 5-8-10-21-22).  

Comparing the graphs of the different groves, they had very different shapes (e.g. Sample groves n 

11-10) making it impossible to detect any typical NDVI trend for olive tree plantations.  

Due to the aforementioned anomalies, detected through a visual assessment, it was not possible to 

extract meaningful and reliable seasonality parameters for the sample groves. This is why the relation 

between NDVI derived metrics and the OFF infestation could not be tested as it was planned at the 

beginning of the present work. 

From the visual analysis, one could observe that the application of the cloud mask and the exclusion 

of negative NDVI values, did not reduce the signal-noise sufficiently, and many low NDVI values were 

still presents, disturbing the signal (e.g. Sample groves n 8-17-21).  

If the noise caused by atmospheric conditions is a common problem regardless of the size of the field, 

the geometric positional accuracy of the image data influences the reliability of time series especially 

for small size agricultural parcels and for fields with an irregular geometry (Vajsová et al., 2020). 

In a study focusing on the ability of Sentinel-2 images to monitor vine growth across the year, Devaux 

et al. (2019) stress that the 10 m spatial resolution of S2 images represents a strong limitation in the 

case of small fields or fields with complex boundaries. 

Among the 22 sample olive groves used for this research, the 91% had a size below the 0.5 ha while 

68% were under 0.3 ha. This suggest that the size of the olive groves might have been a factor 

negatively influencing the reliability of the NDVI data from Sentinel-2 images. 

In addition to that, the irregular topography of the study area makes it very common to have olive 

plantations characterized by an irregular shape and a narrow-elongated geometry (e.g. sample groves 

n 4-10- 13-19) which might have a negative influence on the geometric positional accuracy of the 

fields. 

A third factor of disturbance, which could be detected from the visual assessment of the orthophotos 

of the area, might be the presence of different crops (e.g.  sample groves n 4-2-10), buildings (e.g. n 

11-8-5) or water (e.g. n 16-19) in the surroundings of the sample parcels. 

Especially in case non-vegetation pixels in the surroundings of the parcels, such as urban areas or 

water which are characterized by low or negative NDVI values (Viana et al., 2019), are included in the 

sample polygon, they can have a strong  effect on the resulting median value of the olive grove. 

Vajsová et al. (2020) proposed a possible approach to reduce the noise caused by heterogeneous 

pixels on the borders of parcels by introducing a 5m negative buffer, to isolate the clean pixels inside 

the parcels. The downside of this method is that very small blocks might disappear after the 

application of the negative buffer. Table 5 shows examples of possible factors of disturbances. 



27 

 

Table 5 - View of a selection of sample groves from Orthophoto and S2 image, and relative NDVI curves. 

 

 

ID 
SAMPLE OLIVE GROVES 

(Orthophoto) 

SAMPLE OLIVE GROVES 
(Sentinel-2-True colors 

composite) 
MEDIAN NDVI TIME-SERIES  

AREA 
(ha) 

POSSIBLE 
ERROR 

SOURCES 

8 

 
 

 

0.18 

• Small size 

• Proximity to 

non-vegetation 

pixels 

• Irregular 

geometry 

10 

  
 

0.07 

11 

 

 
 

0.5 

15 

  
 

0.23 

17 

 

 
 

0.46 

21 

  
 

0.35 
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From a comparison between the size of the sample olive groves and the size of the total olive groves 

obtained from the classification of the study area, it seems that the selected sample is quite 

representative of the global situation in the region (Table 6). Considering only the polygons with an 

area equal or greater than 0.05 ha, one could observe that the mean surface for the sample groves 

and the total is very similar, being 0,27 ha and 0,31 ha respectively. Moreover, the percentage of the 

total olive plantations under 0.3 ha in the area is 79%, compared to the 68% of the sample fields. Even 

though the accuracy of the classification over the whole area was not tested, these data suggests that 

the general context of the olive sector is characterized by a great number of small olive orchards. 

 

Table 6 -Comparison of the sample olive groves with the total. 

Olive groves N 

(>= 0.05 ha) 

Mean area 

(ha) 

% 

(<=0.3 ha) 

Sample 22 0.27 68 

Total  1060 0.31 79 

 

These findings lead to the conclusion that Sentinel-2 data are possibly not suitable to extract NDVI 

time-series for such small and irregular plots while the exclusion of small olive groves would lead to 

a misrepresentation of the global context in the area. 

Nevertheless, the proposed methodology could find an interesting application and should be tested 

in area characterized by a more regular topography and extensive olive plantations. 

 

3.2. Spatial analysis of the OFF-population density in relation to 

geographic factors 

Table 7 shows the descriptive statistics of the data set used for the analysis namely the mean trapping 

load for the month of September from the 23 locations (i.e. Target Variable) and the respective 

geographic factors (i.e. Elevation, Cos aspect and Distance from the coast). 

Table 7 - Descriptive statistics of the data set used for the spatial analysis 

Mean trapping load 

September (N of flies) 

Elevation 

(m) 

Distance from the coast 

(m) Cos aspect 

Min. : 16.00 Min. :187.0 Min. : 10 Min. :-0.9900 

1st Qu.: 39.00 1st Qu.:190.5 1st Qu.: 100 1st Qu.:-0.6250 
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Median : 69.00 Median :278.0 Median : 500 Median : 0.1800 

Mean : 71.96 Mean :273.6 Mean :1321 Mean : 0.1135 

3rd Qu.:102.50 3rd Qu.:322.5 3rd Qu.: 898 3rd Qu.: 0.9150 

Max. :150.00 Max. :482.0 Max. :7149 Max. : 1.0000 

 

It is worth to observe that the target variable shown a great variability, ranging from 16-150 adults 

flies, and that even the minimum trapping load value would exceed the intervention threshold found 

in literature (Castrignano et al., 2012; Kalamatianos et al., 2017). These first results showing the high 

OFF infestation reached in the area during the examined period. The target variable was then plotted 

against the predictors to get a first impression on the existing correlation between them (Figure 12).  

 

Figure 12 -Scatter plots showing the relation between the target variable and the predictors (red box) and the relation 

between each of the dependent variables. 

From the visual analysis of the plots there was no evident linear relation between the OFF infestation 

and the three geographic variables in fact the points appeared to be randomly distributed. 

To get a statistic measure of the strength of linearity the Pearson’s correlation coefficient was also 

computed (Table 8). 
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Table 8 - Pearson's correlation coefficients between the Mean trapping load of September and the selected geographic 

variables. 

PEARSON’ S CORRELATION COEFFICIENT 

Elevation Distance  Cosaspect 

0.351 -0.003  -0.531 

 

 The resulting Pearson’s coefficients values shown a moderate positive linear correlation with the 

Elevation, a weak negative relation with the Distance from the Coastline and a moderate negative 

relation with the Cosine of the Aspect (Ratner, 2009).  

Because from the first analysis of the data there was no evidence of an existing strong linearity, the 

Neural Network regression method was selected to account for any possible non-linear complex 

relation among the target and the geographic variables (Mas & Flores, 2008). 

After data normalization a Leave One Out Cross Validation for the three-layers perceptron with an 

increasing number of hidden Neurons (NN1-NN10) was implemented in RStudio (Appendix B.2)  

The average Sum of Squared Error (SSE) calculated using the error cost function (Equation 3), and the 

Mean Absolute Error (MAE) were computed for each iteration of the LOOCV process. The resulting 

errors were then averaged (Table 9) and used as the criterion for the selection of the model topology. 

Table 9 - Average Sum of Squared Error and Mean Absolute Error resulted from the Leave One Out Cross-Validation of the 

different model topologies (1-10 hidden neurons) 

 LOOCV ERRORS MEAN 

N HIDDEN 
NEURONS 

SSE MAE 

1 0.0481 0.2340 

2 0.0876 0.3140 

3 0.0514 0.2435 

4 0.4100 0.4798 

5 0.1281 0.4085 

6 0.1774 0.3636 

7 0.1136 0.3468 

8 0.0910 0.3277 

9 0.3757 0.5567 

10 0.1759 0.4462 
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Neural Networks topologies with 1 and 3 Neurons respectively performed very similarly. However 

the best model accuracy was obtained by the simplest model (NN1), with only one hidden neuron 

(SSE=0.0481; MAE=0.2340). 

Model topologies with 4 and 9 neurons shown much higher error compared to the rest of the 

models but generally, the variation of the errors in relation to the increasing complexity of the 

model architecture did not show any clear trend (Figure 13) 

 

Figure 13 – Histogram showing the mean SSE resulting from the cross-validation. NN1 to NN10 represents the 

model’s architectures with an increasing number of hidden neurons. 

Discussing the NN architecture (for classification problems) Mas & Flores (2008) stressed that too 

simple networks topologies might not be able to interpret the internal structure of the data, resulting 

in lower accuracies, while too large Networks are likely to overfit the training data set  

Nevertheless, from the results of the cross-validation the highest model accuracy, was obtained with 

the simplest possible model architecture. This might be related to the “simple” nature of our model 

(only 3 dependent variables) and the small size of the input data set. 

The model NN1 (Figure 14), with one hidden neuron, was selected to produce the thematic map of 

the predicted trapping load for the month of September in the study area. To help the interpretation 

of the LOOCV resulting error for the selected model, the MAE was transformed back to the original 

units (47 Adults of Olive Fruit Flies). 
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Figure 14 - Selected model topology (NN1) and the relative Mean Absolute Error (MAE). 

When compared to the average trapping load of all sample stations, it resulted in a 65% error which 

might be problematic for practical applications. 

However, the model needs to be tested on an external dataset before assessing its capability to predict 

the OFF-population density in the study area. An external data set was not available at the time of this 

research (trapping data from 2020 were not considered because they did not cover the entire month 

of September) and so it will be necessary to collect more data in the next years in order to test the 

model performance. 

Even though the model needs to be further tested, a first version of the OFF-risk map was produced 

to get a first impression of the spatial distribution of the pest according to the model predictions. 

The resulting raster map was drawn in RStudio (Appendix B.2). It shows the predicted trapping load 

for the month of September in the suitable elevation range for the olive trees in the study area, from 

the lake level (187m) to 600 m, with a spatial resolution of 100x100m (Figure 15). 
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Figure 15 - Map of the predicted average trapping load for the month of September in the study area. 

The resulting maps shown a predicted high OFF infestation in all the area with a minimum predicted 

value of 34 and a max of 122 flies.  

From the resulting patchy pattern of the predicted trapping load, it is hard to detect any clear relation 

between the pest population and the topographic factors in the area. Nevertheless, it is possible to 

notice that a high OFF infestation (>80 individuals) at high altitude was predicted similarly to the 

results reported by Castrignano et al. (2012) and Kounatidis et al. (2008) for the same period in a 

different region. At the same time, very high numbers of flies were predicted also at the lake level in 

line with the data collected during the monitoring campaign. 

It is worth to mention that these results were surprising when compared with the local knowledge of 

olive farmers, who claimed that in the past the OFF never exceeded the intervention threshold at 

higher altitudes. 
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In addition to that, it is important to stress that the olive production for the year 2021 in the area 

registered an estimated loss of 70-80% compared to the previous year according to local information 

sources (Romele, 2021). 

According to local expert knowledge from the local technicians the yield reduction was due to a 

combination of factors: 

• Alternate bearing typical of the olive trees; 

• Local drought after flowering; 

• Attacks of both Halyomorpha halys Stål  

• Attacks of the Olive Fruit Fly; 

Even though the estimated loss and the related causes might not be very accurate, due to the lack of 

scientific works addressing the topic, it is reasonable to hypothesize that the very low production 

influenced the OFF infestation.  

In fact, in a study conducted by Delrio & Lentini (2016), the recorded OFF infestation rate was generally 

higher (up to 100%) in correspondence to years of low olive production. 

Moreover, the lack of fruits availability might have influenced the dispersion rate of the adults’ flies 

which could have migrated to higher altitude looking for a source of food and a place to lay their eggs. 

In support to this hypothesis, Voulgaris et al., (2013) found that Mature Olive fruit fly can spread over 

long distances, which, depending on the climate, the topography, and the availability of olives, can 

reach up to 10km. 

Eventually the olives load can have an indirect effect on the OFF, influencing the management and 

number of treatments applied to the olive tree plantations. 

This suggestion came from the information given by the farmers during the monitoring campaign. In 

fact, most of the producers did not take any action to counteract the damage caused by the Olive Fruit 

Flies because the harvest was already compromised and so they loss any economic interest in 

protecting the olives. The cumulated effect of insecticide treatments and other agricultural practices, 

was proposed by Castrignano et al. (2012) as a possible explanation for the randomness in the 

distribution of OFF trapping rates. 

This work provided a baseline model to predict the spatial distribution of the OFF infestation in the 

study area focusing on the second generation of the pest which is the target of most of pest 

management actions. 

It was a first attempt to create the most suitable model to support local pest managers improving the 

information on the pest distribution without making major changes, and investments, in their 

monitoring protocol.  
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The simplicity of the resulting model might have negatively influenced its capability to capture the 

complexity of factors influencing the OFF-population dynamics. For further research on the topic 

additional variables such has the estimated olive production, management and weather data should 

be included to increase the ability of the model to capture the complexity of the system. 

Moreover, the model resulted from this work still need to be independently validated because of the 

lack of more trapping data in the area. 

The availability of a consistent and reliable dataset of trapping measures from several years would 

improve the model capability of generalization and would make it possible to include the effect of the 

olives load on the OFF infestation. In fact, due to the physiological alternate bearing of olive trees, the 

high load of olives normally happens once every two years. 

The data collected for this research could be an initial database to be enriched during the next year’s 

monitoring campaigns and used for further development of pest risk’s models. 

Eventually there is a need for longer time series of trapping data to assess whether the changes in the 

behaviour of the pest reported by the farmers was due to the exceptional conditions of this season or 

the pest will shift towards higher elevation in the future as a consequence of climate change. 



36 

 

4. Conclusions 

Nowadays and more than ever, there is a call for innovative solution in agriculture to achieve the goals 

of sustainability in the context of the ecological transition, to assure the access to healthy food and 

reduce the impact of pesticides on the environment.  

The reduction of yields losses caused by crop pests still threaten the food security in many developing 

Countries, while it causes unacceptable economic loss for farmers all over the world. 

Area Wide Pest Management strategies can help to reduce losses in the production and to improve 

the efficiency of pest control practices, especially when they are coupled with consistent information 

on pest ecology. The influence of climatic variables, especially temperature, on pest population 

dynamics has been of great interest by entomologists and a wide range of mathematical models have 

been used to study the complexity of factors influencing the pest development in an agroecosystem. 

The Olive Fruit Fly (OFF) is a major pest of Olive trees in all olive cultivated areas however, the intensity 

of damages varies in function to the location of the olive groves, and the associated climatic factors. 

Modelling the OFF dynamics in relation to the climatic variables can provide useful information to 

technicians, and farmers to support their decisions in the management of the insect and so reduce 

economic losses and the abuse of pesticides. 

This research integrated the use of trapping data, satellite images and mathematical models to predict 

the OFF infestation in the Mountain Community of Sebino (Italy). 

The local technicians of the Office of Forest and agriculture raised the need for a better understanding 

of the pest distribution in the area to enable early-detection of pest’s outbreaks and to drive their 

technical support to the most vulnerable areas. Moreover, the location of OFF low-risk areas through 

the creation of a risk assessment map would permit to highlight suitable zones for new olive groves 

to be planted. This would be of great interest to produce organic olive oil as they would not require 

any chemical treatment for the control of the OFF. 

Many of the works in literature addressing the relation between the OFF infestation and climatic 

factors made use of temperature data from weather stations or sensors which were not available in 

the study area at a sufficient spatial density. Land Surface Temperature data from satellite shown the 

same problem as their spatial resolution did not fit the rough morphology of the region. 

To overcome the lack of temperature data and to account for the mountainous topography of the 

study site, (experiment I) NDVI-derived metrics from Sentinel-2 image data and (experiment II) 

topographic variables (i.e. elevation, aspect and distance from the coast) were selected as a proxy of 

temperature, to predict the OFF infestation. 
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The computation of the median NDVI values for the 22 sample groves was performed using the Google 

Earth Engine web platform, while the analysis of the time series was done in the TIMESAT 3.3 software 

package. The results of the first experiment shown that NDVI data from Sentinel-2 images does not 

meet the spatial requirements for the extraction of seasonality parameters for sample olive groves in 

the study area. This is probably due to the small size, the irregular shape, and the presence of non-

vegetation pixels in the neighbourhoods of the parcels.  

Comparing the parcel’s size of the sample groves with the average size of the total of olive groves in 

the Mountain Community, obtained by visual interpretation of orthophoto, one could say the sample 

is quite representative of the overall situation and so the proposed methodology cannot be applied 

to the study area. Nevertheless, the possibility to use the NDVI metrics, from Sentinel-2 image data, 

to predict the OFF distribution could provide useful outcomes to pest managers and should be tested 

in other areas characterized by large and regular olive trees plantations such as the South of Italy.  

In the second experiment, a multi-layer perceptron Neural network was used to investigate the 

relation between the main topographic factors influencing temperature and the OFF infestation. The 

analysis was conducted using the statistics software RStudio and the model topology was selected by 

a Leave One Out Cross-Validation (LOOCV) process. According to the results of the LOOCV, the 

simplest model having just one hidden neuron in the hidden layer, shown the lowest error both in 

terms of SSE (0.0481) and MAE (0.2340). The selected model topology was then used to create a map 

of the OFF distribution in the CMS area (expressed as the predicted average trapping load for the 

month of September). From the visual assessment of the map, it was not possible to detect any clear 

pattern in relation to the selected geographic factors, but the predicted infestation was high all over 

the study area in accordance with the data obtained during the monitoring campaign 2021. 

Although the resulting model will require an external dataset to be tested, this study provided a 

baseline model to predict the OFF infestation which could be used as a starting point for further 

research. The trapping data collected for this study provided a first layer of information to be enriched 

in the following years to create a consistent database for the use of local technicians and researchers. 

It is worth to stress that the year when this study took place was characterized by a dramatic loss in 

the olive production due to a combination of factors. That is why there is a need for trapping data 

from several years to assess whether, and how, the olive production has influenced the OFF 

population during this season. Accounting for these last remarks, information on the olive load and 

management practices should be considered in further studies to include more factors influencing the 

OFF-population dynamics. 
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Appendix B: Scripts 

1. B.1 GEE Script: Extraction of the median NDVI time-series 

for the sample groves 

//NDVI band calculation function 

function addnd(input) { 

  var ndvi = input.normalizedDifference(['B8', 'B4']).rename('ndvi'); 

  return input.addBands(ndvi); } 

var ndvi_palette = 'FFFFFF, CE7E45, DF923D, F1B555, FCD163, 99B718, 74A901, 66A000, 

529400, ' + '3E8601, 207401, 056201, 004C00, 023B01, 012E01, 011D01, 011301'; 

//Cloud masking function 

function maskCloudAndShadows(image) { 

  var cloudProb = image.select('MSK_CLDPRB'); 

  var snowProb = image.select('MSK_SNWPRB'); 

  var cloud = cloudProb.lt(5); 

  var snow = snowProb.lt(5); 

  var scl = image.select('SCL');  

  var shadow = scl.eq(3); 

  var cirrus = scl.eq(10);  

  var mask = (cloud.and(snow)).and(cirrus.neq(1)).and(shadow.neq(1)); 

  return image.updateMask(mask); } 

//Loading and filtering Sentinel-2 Images 

var S2_collection = ee.ImageCollection("COPERNICUS/S2_SR") 

  .filterBounds(Study_area) 

  .filterDate('yyyy-mm-dd', 'yyyy-mm-dd') 

  .filterMetadata('CLOUDY_PIXEL_PERCENTAGE', 'less_than', “desired %”) 

  .map(addnd) 

  .map(maskCloudAndShadows); 

//Select NDVI band and show layers on the map  

var S2_ndvi = S2_collection.select('ndvi'); 

print(S2_ndvi); 

var S2_ndvi_mosaic = S2_ndvi.median().clip(“Study_Area”); 

Map.addLayer(S2_ndvi_mosaic, {min: -0.1, max: 1, palette: ndvi_palette}, 'NDVI S2'); 

Map.addLayer(groves, {color: 'yellow'}, 'sample olive groves'); 

Map.centerObject(CMS); 

//NDVI time series_Percentiles [5,95,50] 
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var percentiles = S2_ndvi.map(function(image) { 

  var withStats = image.reduceRegions({ 

  collection: groves, 

  reducer: ee.Reducer.percentile([5,95,50]).setOutputs(['p5','p95','p50']), 

  scale: 10  }) 

  .map(function(feature) { 

    var ndvi = ee.List([feature.get(['p5','p95','p50']), -9999]) 

      .reduce(ee.Reducer.firstNonNull()); 

    return feature.set('imageId', image.id());  }); 

  return withStats; 

}).flatten(); 

//Formatting the data frame of Median NDVI Values 

 var format = function(table, rowId, colId) { 

  var rows = table.distinct(rowId);  

  var joined = ee.Join.saveAll('matches').apply({ 

    primary: rows,  

    secondary: table,  

    condition: ee.Filter.equals({ 

      leftField: rowId,  

      rightField: rowId    })  }); 

       return joined.map(function(row) { 

      var values = ee.List(row.get('matches')) 

        .map(function(feature) { 

          feature = ee.Feature(feature); 

          var p= ee.List([feature.get('p50'),- 

9999]).reduce(ee.Reducer.firstNonNull()) 

          return [feature.get(colId), feature.get('p50')] 

        }); 

      return row.select([rowId]).set(ee.Dictionary(values.flatten())); 

    }); }; 

var timeSeriesResults = format(percentiles, 'fid', 'imageId'); 

print(timeSeriesResults.first()) 

//Exporting .csv 

Export.table.toDrive({ 

  collection: timeSeriesResults, 

  description: 'P50_NDVI_Series', 

  folder: 'earthengine', 

  fileNamePrefix: 'Median_ndvi_series', 

  fileFormat: 'CSV'}) 
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2. B.2 R-Script: Multi-layer perceptron LOOCV and creation of 

the OFF-risk output raster 

setwd("....") 

data<-read.csv2("Trapping_data.csv") 

colnames(data)<-c("id","mean","elevation","distance","cosaspect") 

##Loading required packages 

library(tidyverse) 

library(neuralnet) 

library(GGally) 

library(Metrics) 

library(plyr) 

library(raster) 

library(rgdal) 

library(tidyverse) 

library(ggplot2) 

library(gridExtra) 

 

################################################################################ 

scale01 <- function(x){ 

  (x - min(x)) / (max(x) - min(x)) 

} 

scaled<- data %>% 

  mutate_at (c("mean","elevation","distance","cosaspect"), scale01) 

################################################################################ 

#Leave-One-Out Cross validation  

#NN1 

SSE1 <- NULL 

MAE1<- NULL 

RMSE1<- NULL 

for(i in 1:nrow(scaled)){ 

  Train <- scaled[-i,] 

  Val <- scaled[i,] 

  set.seed(1211) 

  NN1 <- neuralnet(mean ~ elevation + distance + cosaspect, 

                     data = Train, 

                     hidden=1, 

                     act.fct = "logistic", 
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                     linear.output = TRUE) 

   

  NN1_pred <- predict(NN1, Val[,3:5]) 

  SSE1[i]<- sum((NN1_pred - Val$mean)^2)/2 

  MAE1[i]<-mae(Val$mean, NN1_pred) 

} 

############################################################################ 

Repeat for 1-10 Hidden Neurons 

############################################################################ 

#LOOCV error calculation 

SSE_CV<-cbind.data.frame(SSE1,SSE2,SSE3,SSE4,SSE5,SSE6,SSE7,SSE8,SSE9,SSE10) 

ID<-data.frame("NN1","NN2","NN3","NN4","NN5","NN6","NN7","NN8","NN9","ZNN10") 

ID = t(ID) 

SSE_mean<-data.frame(mean(SSE1),mean(SSE2),mean(SSE3),mean(SSE4),mean(SSE5), 

                    mean(SSE6), mean(SSE7),mean(SSE8),mean(SSE9),mean(SSE10)) 

SSE_mean=t(SSE_mean) 

MAE_mean<-data.frame(mean(MAE1),mean(MAE2),mean(MAE3),mean(MAE4),mean(MAE5), 

                     mean(MAE6), mean(MAE7),mean(MAE8),mean(MAE9),mean(MAE10)) 

MAE_mean = t(MAE_mean) 

Errors_stat<-cbind.data.frame(ID,SSE_mean,MAE_mean) 

################################################################################## 

#Barplot error mean 

SSE_mean_plot<- ggplot(Errors_stat, aes(x=ID, y=SSE_mean)) +  

  geom_bar(stat="identity",color="red",  

  fill=rgb(0.1,0.4,0.5,0.7))  

MAE_mean_plot<-ggplot(Errors_stat, aes(x=ID, y=MAE_mean)) +  

  geom_bar(stat="identity",color="red",  

           fill=rgb(0.3,0.8,0.9,0.9)) 

grid.arrange(SSE_mean_plot, 

             ncol = 1, nrow = 1) 

################################################################################ 

#Reverse normalization to the get the error in the original units 

max<-max(data$mean) 

min<-min(data$mean) 

Errors_stat$MAE_mean_r <-((Errors_stat$MAE_mean)* 

                      (max-min)+min)  
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################################################################################ 

#Creation of the output Raster 

################################################################################ 

cosaspect.r <- raster("Cosaspect.tif") 

elevation.r<-raster("Elevation.tif") 

distance.r<-raster("Distance.tif") 

#Resampling to get the same resolution of 100x100m 

elevation.r=resample(elevation.r,distance.r,"bilinear") 

cosaspect.r=resample(cosaspect.r,distance.r,"bilinear") 

#Creation of the spatial dataframes 

elevation<-as.data.frame(elevation.r, xy=TRUE) 

cosaspect<-as.data.frame(cosaspect.r,xy=TRUE) 

distance<-as.data.frame(distance.r,xy=TRUE) 

predictors<-data.frame(distance,cosaspect$Cosaspect_def,elevation$Elevation_def) 

predictors<- na.omit(predictors) 

#Data scaling 

predictors.n<-predictors %>% 

  mutate_all(scale01) 

predictors.n<-predictors.n[,c(1,2,5,3,4)] 

#Predict_raster_output using the NN1 model 

NN1_raster_output <- predict(NN1,predictors.n[,3:5]) 

predictors.n$output<-NN1_raster_output 

# Reverse normalization to the get the predictions in the original units 

predictors.n$rescaled <-((predictors.n$output)*(max-min)+min) 

raster.df<-as.data.frame(predictors.n[,c(1,2,7)]) 

#Rasterization of the resulting spatial dataframe 

raster<-rasterFromXYZ(raster.df, res=c(NA,NA), crs="", digits=5) 

writeRaster(raster,"NN1_ouput_map",format="GTiff", overwrite=TRUE) 

 

 

 

 



55 

 

10. Appendix C: NDVI curves for the sample olive groves 

 

 

 

Sample 
ID 

Olive grove polygon  MEDIAN NDVI TIME-SERIES Area (ha) 

1 

 

 

0.21 

2 

 

 

0.31 

3 

 

 

0.41 

4 

 

 

0.11 

5 

 

 

0.25 

6 

 

 

0.17 
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Sample 
ID 

Olive grove polygon  MEDIAN NDVI TIME-SERIES Area (ha) 

7 

 

 

0.29 

8 

 

 

0.18 

9 

 

 

0.19 

10 

 

 

0.07 

11 

 

 

0.5 

12 

 

 

0.16 
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Sample 
ID 

Olive grove polygon  MEDIAN NDVI TIME-SERIES Area (ha) 

13 

 

 

0.05 

14 

 

 

0.21 

15 

 

 

0.23 

16 

 

 

0.52 

17 

 

 

0.46 



58 

 

 

 

 

 

 

 

 

 

Sample 
ID 

Olive grove polygon  MEDIAN NDVI TIME-SERIES Area (ha) 

18 

 

 

0.72 

19 

 

 

0.09 

20 

 

 

0.24 

21 

 

 

0.35 

22 

 

 

0.12 
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