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Abstract 

Fusarium head blight (FHB) is one of the most hazardous diseases affecting small grain cereal 

grains including both bread and durum wheat, with the latter being especially susceptible. 

Aside from agronomic management, the most sustainable approach to counter fight against 

FHB is the development and growth of resistant varieties. Resistance to FHB in wheat is highly 

complex and quantitatively controlled by just a few medium to large effect QTL and numerous 

of loci with small effects, which makes it a perfect target for genomic prediction (GP) 

approaches. Selection of candidates for disease resistance based on genomic estimations or 

genomic selection (GS) have shown promising results. 

A precedent study analysed a European multi-environment trial featuring a diversity panel of 

186 durum wheat lines in the context of genome-wide associations revealing the negative 

correlations of FHB severity and both plant height (PH) and heading date (HD). Therefore, in 

the present work it was proposed to evaluate alternatives for the genomic prediction of FHB 

resistance involving the correlated traits PH and HD with three different approaches: (1) 

correcting the FHB severity scores using PH and HD followed by using the corrected 

phenotypic data for single-trait GS (STGS), (2) using PH and HD for multi-trait GS (MTGS), 

and (3) using selection indices to modulate the restrictions for FHB severity, PH and HD. The 

multi-trait GP model with HD gave a significant boost in prediction ability although with the 

concomitant larger response towards earliness, while the usage of restricted indexes led to 

reduction in prediction abilities for FHB but also a stricter control of an unfavourable response 

for PH and HD. 

Anther retention (AR) is an agronomically neutral floral trait linked to the FHB resistance, and 

breeding against it is recommended as indirect selection strategy for resistant wheat 

genotypes. It is also known that the type of association between earliness and FHB 

susceptibility is highly dependent on weather conditions around anthesis and even more 

recent changes in climate patterns are believed to have contributed to more frequent FHB 

epidemics. The latter statements motivated the following aims: (1) to incorporate thermal 

measurements in the correction of FHB severity scores, and (2) to evaluate trait-assisted 

genomic prediction models incorporating anther retention. The first aim was achieved by using 

a best subset multi-linear regression analysis combining flowering time (FT) and accumulated 

thermal time (ATT) variables. Phenotypic accuracy for corrected scores was up to three times 

higher with the suggested correction. Analogously, GP model accuracies were on average 

higher when the corrected FHB severity scores were predicted compared with the uncorrected 

scores. Better performances were also found for MT.GS models with AR as assisting trait. 

Another important feature of the genomic predictions based on corrected scores was the 

higher consistency when lines from different trials were combined in larger training sets. 
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Genomic-based selection for FHB resistance has thus a high potential and is already being 

applied in many practical breeding schemes, as it facilitates saving both time and field space 

when conducted in early generations. The across-cycle GP must be carefully assessed since 

several studies already showed its lower accuracy, and therefore training population 

composition is a critical factor. In addition, specific and when possible, effective actions must 

be taken to balance responses to selection for FHB resistance and correlated traits that 

consider the cause and strength of unfavourable trade-offs. Finally, the importance to expand 

the research for the multitude of traits involved in the resistance to FHB open-up further 

possibilities like bringing the latest technologies like phenomics and high-throughput 

phenotyping to the field. 
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Zusammenfassung 

Ährenfusariosen (FUS) gehören zu den schwerwiegendsten Krankheiten welche kleinkörnige 

Getreidearten wie Brot- und Hartweizen befallen, wobei die Letztere als besonders anfällig 

gilt. Neben diversen agronomischen Maßnahmen stellen die Züchtung und der Anbau von 

resistenten Sorten die nachhaltigsten Maßnahmen zur Bekämpfung von Ährenfusariosen dar. 

Die genetische Resistenz gegen Ährenfusariosen unterliegt einem quantitativen Erbgang und 

wird durch zahlreiche chromosomale Regionen kontrolliert von denen nur wenige einen 

mittleren bis großen Resistenzeffekt bewirken. Der Großteil der Resistenz wird durch 

chromosomale Regionen mit geringem Effekt bewirkt, was die Verbesserung de 

Ährenfusariosenresistenz zu einem perfekten Anwendungsgebiet zur Nutzung genomischer 

Vorhersagen für die züchterische Selektion macht.  

In einer vorangegangen genomweiter Assoziationskartierung zeigte sich eine deutlich 

negative Korrelation zwischen Ährenfusariosenresistenz (FUS) und der Wuchshöhe (WUH) 

sowie dem Zeitpunkt des Ährenschiebens (AE) in einer mehrortig geprüfte 

Hartweizenpopulation von 186 Linien. In der vorliegenden Arbeit wurden daher verschiedene 

Methoden der Genomischen Vorhersage von FUS unter Einbezug der korrelierten Merkmale 

AE und WUH untersucht: Genomische Vorhersagen mit (1) phänotypisch adjustierten 

Beobachtungen von FUS für AE und WUH, (2) Multivariate Analyseverfahren und (3) 

Selektionsindices für FUS mit Restriktionen für den korrelierten Selektionserfolg von AE und 

WUH. Die Multivariate Analyseverfahren resultierten in einem signifikant höherem 

Selektionserfolg für FUS, welcher jedoch mit einem ungünstigen Selektionserfolg für Spätreife 

verbunden war. Die Verwendung von Restriktionsindices führte zu geringeren 

Vorhersagegenauigkeiten für FUS, jedoch konnte die ungewünschte indirekte Selektion für 

Spätreife und größere Wuchshöhe reduziert werden. 

Die Antherenretention (AR) ist ein agronomisch neutrales Merkmal das eng mit 

Ährenfusariosenresistenz korreliert ist, wobei offenblühende Genotypen eine eher geringere 

Anfälligkeit ausweisen. Darüber hinaus wurde bereits in der Vergangenheit die Hypothese 

aufgestellt, dass die oft-berichtete Assoziation zwischen Frühreife und 

Ährenfusariosenresistenz stark von den Wetterbedingungen während der Blüte beeinflusst ist. 

Die Beiden genannten Faktoren waren ausschlaggebend um (1) die Inbezugnahme von 

thermischen Variablen zu bei der Auswertung von Ährenfusariosenbonituren zu untersuchen 

und (2) die Möglichkeit die Genomische Selektion für Ährenfusariosenresistenz mit 

Multivariate Analyseverfahren unter Einbezug der Antherenretention zu evaluieren. Die 

Genauigkeit der Phänotypischen Daten für Ährenfusariosenresistenz konnte durch die 

Korrektur für das Blühdatum und die thermischen Variablen durch multivariante 

Regressionsmodelle verdreifacht werden. Die Vorhersagegenauigkeit der genomische 
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Modelle konnte analog verbessert werden, wobei die vorgeschlagene Methode vor allem der 

Kombination von Trainingspopulationen aus verschiedenen Feldversuchen und der Nutzung 

der Antherenretention in multivariaten Vorhersagemodellen förderlich war.  

Die Genomische Selektion für Ährenfusariosenresistenz hat somit großes Potential und wird 

bereits in zahlreichen Zuchtprogrammen routinemäßig angewandt, da sich aus dieser 

Methode viele Vorteile wie eine deutliche Zeitersparnis und ein geringerer Aufwand für 

Feldversuche ergeben. Die genomische Vorhersage über Züchtungszyklen hinweg muss 

jedoch genau untersucht werden da hier geringere Genauigkeiten zu erwarten sind. Die 

Zusammenstellung der Trainingspopulation und der Einbezug von korrelierten Variablen bei 

komplexen Merkmalen wie der Ährenfusariosenresistenz sind somit entscheidende Faktoren 

für eine erfolgreiche Anwendung der Genomische Selektion im praktischem Zuchtbetrieb. Die 

vorliegende Arbeit dient daher als Ausgangspunkt für ein weiteres Studium des Weizen-

Ährenfusariosen-Pathosystems mit weiteren Methoden welche sich durch die 

technologischen Fortschritte, wie die Verfügbarkeit günstigerer 

Hochdurchsatzphänotypisierungsplattformen, eröffnet haben.  
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Resumen 

Fusarium de la espiga de trigo (FET o en ingles Fusarium Head Blight) es una de las 

enfermedades más peligrosas que afecta a los cereales de grano pequeño, incluyendo trigo 

harinero y trigo duro, siendo este último especialmente susceptible a dicha enfermedad. 

Además del  manejo agronómico, el enfoque más sostenible de lucha contra el FET es el 

desarrollo y cultivo de variedades resistentes. La resistencia a FET en trigo es altamente 

compleja y cuantitativamente controlada por pocos QTL de efecto moderado y numerosos 

loci con efectos pequeños, lo que lo convierte en una diana perfecta para aproximaciones de 

predicción genómica (PG o en inglés genomic prediction). La selección de genotipos 

candidatos para resistencia a enfermedades basada en estimaciones genómicas, a saber, 

selección genómica (SG o inglés genomic selection), ha mostrado resultados prometedores. 

En un estudio precedente se analizó un ensayo multi-ambiente en Europa con un panel de 

diversidad compuesto por 186 líneas de trigo duro en el contexto de asociaciones del genoma 

completo (en inglés, GWA Genome-wide association) se revelaron correlaciones negativas 

entre la severidad de FET y los rasgos de: altura de planta (AP) y fecha de espigado (FE). 

Por lo tanto, en el presente trabajo se propuso evaluar alternativas de predicción genómica 

para resistencia a FET que involucren los rasgos asociados AP y FE con tres diferentes 

aproximaciones: (1) corregir las mediciones de severidad de FET usando AP y FE seguido 

del uso en predicciones genómicas de rasgos fenotípicos sencillos o simples (PG.RS), (2) 

emplear AP y ET en predicciones genómicas para rasgos múltiples (PG.RM), y (3) uso de 

índices de selección que modulen las restricciones para severidad de FET, AP y FE. El 

modelo de PG de rasgos múltiples con FE dio un impulso significativo en la habilidad de 

predicción aunque con la concomitante mayor de respuesta hacia madurez, mientras que con 

el uso de índices de restricción se redujo la habilidad de predicción para severidad de FET, 

pero también un control más estricto de la respuesta desfavorable para AP y FE. 

La retención de anteras (RA) es un rasgo floral agronómicamente neutral ligado a la 

resistencia a FET y la mejora en su contra es recomendada como estrategia de selección 

indirecta para genotipos de trigo resistentes. Es también conocido, por otro lado, que el tipo 

de asociación entre madurez y susceptibilidad a FET es altamente dependiente de las 

condiciones meteorológicas alrededor de la antesis y que incluso los recientes cambios en 

los patrones climáticos habrían contribuido a brotes epidémicos más frecuentes de FET.  Las 

anteriores afirmaciones motivaron los siguientes objetivos: (1) incorporar mediciones de 

temperatura en la corrección de la severidad de FET y (2) evaluar modelos de predicción 

genómica asistidos para el rasgo RA. El primer objetivo se consiguió con el empleo de un 

análisis de regresión lineal múltiple combinando las variables fecha de antesis (FA) y de 

tiempo térmico acumulado (TTA). Las precisiones fenotípicas para las mediciones corregidas 
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fueron hasta tres veces superiores con el método de corrección propuesto. Análogamente, 

las precisiones de los modelos de PG fueron en promedio superiores cuando las mediciones 

corregidas de severidad a FET fueron predichas, comparadas con las mediciones no 

corregidas. También fueron detectados mejores desempeños por parte de los modelos de PG 

de rasgo múltiple asistidos con RA. Otra característica importante de los modelos de 

predicción genómica basados en mediciones corregidas fue su mayor consistencia cuando 

líneas de diferentes ensayos fueron combinadas en sets de entrenamiento aumentados. 

La selección genómica para resistencia a FET tiene entonces un gran potencial y está siendo 

aplicada en varios esquemas prácticos de mejoramiento ya que permite el ahorro de tiempo 

y espacio cuando es llevado a cabo en generaciones tempranas. Los modelos de PG inter-

ciclo deben ser evaluados cuidadosamente ya que varios estudios mostraron su baja 

precisión y por ende la composición de las poblaciones de entrenamiento de los modelos es 

un factor crítico. Adicionalmente, acciones efectivas deben tomarse cuando sean posibles 

para mantener el balance entre la respuesta a la selección para resistencia a FET y los rasgos 

correlacionados que se consideren la causa y magnitud de dichas desfavorables 

asociaciones. Finalmente, la importancia de expandir la investigación para una multitud de 

rasgos involucrados en la resistencia a FET abre las puertas a futuras posibilidades de llevar 

al campo tecnologías de vanguardia como la fenómica y el fenotipado de alto rendimiento 

(high-throughput phenotyping). 
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Introduction  

The crops 

Bread wheat (Triticum aestivum L.) is one of the top-three most important crops in the world, 

providing the calorific energy for around 20% of the world population 

(http://www.fao.org/faostat). It is the first and second source of protein and calories in 

developing countries [1–3]. In the year 2019–2020, global wheat production was 765.41 

million tonnes over an area of 218.5 million ha (Statista 2019). 

Durum wheat (Triticum turgidum L. var durum Desf.) is the 10th worldwide cultivated cereal 

with a yearly average production of 40 million tonnes in 2016/17 [4]. Durum is cultivated in a 

mix of variable and harsh environmental conditions, but primarily in three different regions: the 

Mediterranean basin, the Northern Plains in North America, and the south west of the United 

States and Mexico [5]. Durum is mainly produced for making pasta while couscous and bulgur 

are likewise important food products in North Africa and the Middle East. Couscous and pasta 

are products made from durum semolina resulting from milling of the hard-textured durum 

wheat kernel, whereas bulgur is obtained by cracking parboiled durum grains. Durum 

production reached 16 million hectares globally in 2020, which represented 5% of total wheat 

production [4]. 

The trait: Fusarium Head Blight resistance  

Causative agents, epidemiology  

In wheat, Fusarium Head Blight (FHB) is attributable to a number of Fusarium species such 

as the F. graminearum species complex (FGSC) which is the worldwide most important agent 

[6]. The latter is together with F. culmorum, F. avenaceum and F. poae among the abundant 

for wheat in Europe [7]. Additionally, Fusarium asiaticum was reported to produce FHB in 

durum wheat in Japan [8]. 

The mixed reproduction system that combines sexual and asexual reproduction allows genetic 

recombination, and the propagation of clones within a genome with low levels of repetitive 

elements leads to its rapid adaptation to selection pressures [9, 10]. F. graminearum also can 

display several pathogenicity factors to ultimately invade a host under various circumstances 

thus helping to explain the partial levels of resistance displayed in wheat [11, 12]. 

Fusarium belongs to the Ascomycota phylum. It can infect kernels, spikelets, or the full head 

of small grain cereals. Infection bodies are derived mainly from residues of previous crops. 

Infection begins when either the airborne perithecial bodies that colonized the host spikes 

release the sexual spores (ascospores) or via a splash dispersion of the asexually produced 

http://www.fao.org/faostat
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spores (macroconidia). Germination takes place when the germ tubes differentiate to hyphae 

in a process that can take 6-12 hours on wheat [13]. Anthesis is the period of the highest host 

susceptibility on wheat since the swelling of lodicules that open the floret make the host 

vulnerable to infection. Once florets get opened, germ tubes may grow into the inner cavity. 

Another important factor is the formation of choline and betaine during anthesis as both have 

been reported as growth stimulants for F. graminearum. After a short biotrophic period the 

pathogen shifts to a necrotrophic phase that increases its proliferation. This phase is 

associated with an amplified production of mycotoxins to overcome the rachis and enable a 

spread throughout the spike tissue. Promoted by high humidity, hyphae may even grow on 

the outside of spike surface and infect distal florets. The expression of FHB appears as the 

bleaching of portions of the spike and kernels that finally become chalk-like tombstones.  

FHB disease: epidemics, impact and control  

One of the earliest descriptions of the FHB causing agent  and the disease symptoms dates 

to the end of 19th century during an epidemic in the UK [14]. Few years later in 1890, the first 

FHB reports appeared in the USA [15–17]. During the first half of the last century, first reports 

of FHB appeared in Canada (1919) and in southern China (1936) where seven severe and 14 

medium outbreaks have been reported throughout the 20th century. A severe outbreak 

affected Ireland in 1954 [18]. The FHB epidemic in 1993 that affected the wheat growing states 

of Minnesota, North Dakota and South Dakota in the USA and the Canadian province 

Manitoba resulted in yield losses of 4.8 million tonnes and an economic loss of over 1 billion 

US dollars [19]. In the beginning of the 21st century, important outbreaks were reported in 

Australia [20], Brazil [21], and China [22]. The severe epidemic of 2014-2016 in North America, 

with disease incidences up to 80% in some production fields in Georgia, caused significant 

yield losses in the Canadian province of Saskatchewan as well [23]  

Usually the overall economic impact arises from the sum of both direct and secondary losses. 

Wheat yield losses were reported to range between 2% and 54% during 1997-2011 in a state-

case study [24]. Additional studies have confirmed the strong correlation of FHB severity and 

yield reduction [25, 26]. Moreover, in terms of global economic impact F. graminearum has 

been considered as the fourth most threatening plant-pathogenic fungus in the world [27].  

Additionally, the greatest impact of FHB is the contamination by various mycotoxins, 

particularly trichothecenes (e.g. DON and its derivatives) and the mycoestrogen zearalenone 

(e.g. ZEA). The consumption of zearalenone contaminated grains can cause intestinal 

irritation, vomiting, skin and immunological problems in mammals and feed refusal in livestock 
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[28, 29]. Therefore, legal maximum limits for the presence of mycotoxins in feed and food have 

been set in Europe and a range of countries worldwide [30] 

Host-pathogen interactions are typically controlled by qualitative and quantitative resistance 

mechanisms. The former bases its mechanisms on resistance genes coding for proteins that 

trigger the so called effector-trigged immunity while the hypothesized mechanisms for the 

latter include among others the regulation of morphology traits, basal defence, production of 

anti-fungal compounds, and defence signal transduction [31, 32]. Resistance against FHB is 

however mostly quantitative in nature [33] and reflects controlled by many (hundreds to 

thousands) genes with small to moderate effects highly influenced by environment, plant organ 

and developmental stage. The magnitude of quantitative disease resistance QDR varies 

continuously from very small to nearly full resistance in visual assessments of symptoms. This 

complex inheritance and the fact that QDR is typically non-race specific provides a higher 

durability than qualitative DR [34].  

Several types of resistance against FHB have been described, i.e. type I: resistance to initial 

infection, type II: resistance to spread from the initial point of infection, type III: resistance to 

kernel infection, type IV: tolerance to FHB yield loss, type V: resistance to DON accumulation, 

type VI: resistance grain constituents’ modifications [35, 36]. Under field conditions disease 

severity scoring like an estimation of the average percentage of symptomatic spikelets in a 

spike in a given plot reflects both type I and II resistance. Given that initial infections may occur 

in several spikelets within a single spike, genotypes with fewer initially infected spikelets will 

most likely have higher type I resistance [37]. In bread wheat, genetic variation for FHB 

resistance is large and a range of resistance sources from “exotic” and “native” wheat 

germplasm are known [38]. Contrastingly, durum wheat resistance source are scarce and 

most durum wheat germplasm is susceptible to FHB [39, 40].  

Breeding for FHB resistance 

Chemical fungicides and agronomic practices have proven to be only partially effective for 

controlling FHB [24, 41], with genetic resistance offering the most promising approach for 

limiting the economic and ecological impacts of the disease [42, 43]. 

Although breeding for resistance to pests and diseases is usually considered as the most cost 

effective and sustainable approach against significant economic losses, factors such shifts in 

climate and the subsequent changes in weather patterns, cropping system responses, and 

pest and pathogen populations might result in altering breeding targets and goals faster and 

more frequently [44].  
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The main goal of breeders is to transfer resistance to FHB into lines with desirable quality and 

agronomic performances. The quantitative nature of this resistance in wheat task a 

challenging endeavour if only conventional breeding methods are used since with more than 

550 quantitative trait loci (QTL) have been reported in the literature [45, 46]. Additionally, 

seven of these QTL have been fine mapped [47]. Fhb1 was the first FHB resistance gene to 

be cloned but its true identity and function remains controversial. Fhb2 does not seem to 

provide high resistance by itself [33]. In adapted European germplasm [45, 48] low to medium 

effect loci have been found, that might be accumulated to provide a higher resistance level by 

recurrent selection to accumulate numerous resistance loci. Difficulties might arise however 

with such an approach as FHB resistance is prone to complex GxE interactions [45], which 

oftentimes result in low to medium heritabilities.  

Correlated traits 

Morphological and developmental characteristics such as plant height, days to heading or 

flowering, anther extrusion (AE), head compactness [49, 50], content and composition of cell 

wall polymers [51], spike length, spike inclination, spike density, and spikelet number [52] are 

among the traits affecting FHB resistance.  

Contrarily to earliness, the relation of FHB resistance with plant height, stating that the taller 

the plants the more resistant they tend to be, has been consistently demonstrated by 

numerous studies with wheat [35, 49, 53–59]. Plant height in wheat is controlled by reduced 

height Rht genes, and since the Green Revolution until present days selection towards their 

semi-dwarfing alleles has been used to achieve high yielding cultivars in many breeding 

programs [60].  

Furthermore, co-localizations of PH and FHB resistance loci were found on chromosomes 2D 

(Rht8) [61], 4B (Rht1 or Rht -B1) [62–64] and 4D (Rht2 or Rht-D1) [64, 65]. On the other hand, 

it has been recently shown that a major dwarfing gibberellin-sensitive gene, Rht24 located in 

chromosome 6A, did not increase FHB severity in a winter wheat population [66]. Some others 

mechanisms besides tight linkage might explain associations among these traits e.g. 

differences in stature per se, which might confer a disease escape that has been sometimes 

attributed to be a major explanation for the PH-FHB resistance trade-off in durum wheat [67, 

68]. More recently [59] conjectured that spikes of taller plants dry faster and will be less 

affected by the disease. Finally, other possible explanation can arise from pleiotropic effects 

of the Rht genes Rht-B1 and Rht-D1 in wheat, causing a point-nonsense mutation in DELLA 

domain proteins, responsible for ultimately both shorten plant height [69–71] and possibly 



17 
 

allied with some physiological responses to FHB infection like cell death [60] or further 

pleiotropic instances like reduction of peduncle length or anther extrusion diminishment [72].  

The latter trait anther extrusion (AE) shows a complex and quantitative inheritance [73] has 

also revealed to be associated with the FHB pathosystem in several studies [50, 72, 74]. Some 

Rht genes (RhtD1, RhtB1) were found to co-localized and negatively affect AE unlike Rht24 

which has been suggested for use in male lines for hybrid wheat breeding [75] as it appears 

not to have adverse effects on FHB resistance nor on maturity [66].  

Genomic selection   

Genomic selection (GS) is a modified form of marker-assisted selection (MAS) meaning that 

instead of using a restricted amount of markers genome-wide distributed markers are taken 

into account [76, 77]. A major assumption of this method is that each QTL associated with the 

trait of interest is targeted by at least one marker by linkage disequilibrium (LD) between them. 

GS implementations start training a given GP model with a training set of genotyped and 

phenotyped individuals and infer so-called genomic estimated breeding values (GEBV) for a 

validation set that has only been genotyped. Breeders can then make use of those GEBVs to 

select the best or discard the poorest performing individuals or breeding lines [78]. Although 

the seminal GS paper [77] suggested the usage of high dense SNP markers technologies for 

animal breeding, some previous reports already suggested the merit of employing molecular 

markers to predict the performance of hybrid maize [79] or animals [80].  

Prediction accuracy of GP models is equivalent to the accuracy in the breeders’ equation and 

therefore proportional to genetic gain [76]. Several factors are governing GS accuracy as 

recently reviewed by [81] e.g. marker density, statistical modelling, training population size, 

trait heritability, relatedness between training and validation sets, population structure, and 

retraining the GP models after several selection cycles. Regarding the GP model of choice, a 

plethora of parametric or non and semiparametric models have been developed in recent 

years. Parametric models under equal marker variance assumption include ridge regression-

best linear unbiased prediction (RR-BLUP) [77] and GBLUP [82], while models from the 

Bayesian alphabet are also considered to be parametric but some of them assume 

heterogeneous marker effect variances following a prior defined distribution. Semiparametric 

models comprise e.g. kernel regression and reproducing kernel Hilbert spaces (RKHS) [83] 

while nonparametric include random forest or the variety of deep learning models. The main 

advantage of the latter two model classes is that they also allow to capture non-additive 

effects. Aside from accuracy, several studies have additionally compared GS and phenotypic 

selection in terms of response to selection. For instance, it took the same to two rounds of GS 

to perform equivalent to one round of phenotypic selection when breeding for resistance to 
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stem rust in wheat [84]. Responses 18 and 43 percent greater were achieved for GS compared 

to MAS in maize [85] and no significant differences in the response to selection were found 

between GS, PS and MAS in oats [86].  

Given the complex and quantitative genetic architecture of FHB resistance, GS seems an ideal 

candidate tool for its study since phenotyping for FHB and mycotoxins is expensive and 

laborious. GS models are on the other hand able to inform breeders about selection 

candidates’ performance in early breeding stages when FHB phenotyping is less feasible due 

to the large sample sizes even if PS can be more accurate than GS in some cases. Steiner et 

al [40] showed a 43% advantage of GS over PS using in a two-stage selection scheme. In a 

panel of 322 genotypes panel four models (RR-BLUP, Lasso, RKHS and RF) and two sets of 

markers (whole set and a subset of FHB related markers) were investigated to predict six FHB 

related traits [87]. Arruda et al [88] tested several training set sizes and marker subsets in a 

soft red winter wheat population and found that the best prediction accuracies were achieved 

with a density marker between 1500 and 3500 SNPs and a RR-BLUP model. The RR-BLUP 

model has been one of the most common used models and others like Lasso or Bayes are 

less common with the lower computational demand one of the reasons for the broader 

adoption of the former [89]. To improve predictions GP models can furthermore use loci 

identified by GWAS as fixed effect. Arruda [90] reported 15% higher accuracies for this GS 

plus de novo GWAS approach, although an artefact might be introduced if both TS and VS 

are used to identify QTLs. The expected transformation in the coming years include areas 

such: (1) prediction of the progeny’s potential (2) prediction beyond additive effects (3) usage 

and exploit of pleiotropy and high-throughput phenotyping HTP (4) inclusion of the genetic 

architecture into GS models (5) utilization of big data and machine learning approaches [91]. 

Genomic selection for multiple traits 

A necessity in crop breeding is the selection for multiple traits from several categories i.e. 

resistance to biotic and abiotic stress, grain quality as well as yield components. Multi-trait 

selection poses the challenge of balancing different breeding objectives and different 

strategies have been suggested for this purpose: (i) tandem selection i.e. different traits are 

sequentially selected in different generations [92] (ii) independent culling of traits each under 

different thresholds in the same generation (iii) index selection by switch weighted linear 

combinations between traits based on e.g. their economic importance of each trait and (iv) 

Pareto optimal solutions [93].  

Selection indices (SI) can be either directly incorporated into the GS framework as new traits 

or in an indirect manner where SI are calculated based on multi-trait GS (MTGS) models. A 

study in rye [94] showed that better predictabilities might be obtained when directly 



19 
 

incorporating SI. Breeding goals in this context become crucial as e.g. maximizing one trait 

while keeping minimum standards on the others can also be addressed by specific restriction 

indexes [95]. Additional optimal solutions have come from nonlinear indexes [96] or more 

recently the look-ahead selection (LAS) algorithm which simultaneously maximizes the focal 

trait while constraining the indicator traits within flexible ranges at a given resource allocation, 

mating plan and selection strategy as exemplified in a study in maize [97].  

Some complex traits being selected by breeders are genetically correlated and oftentimes be 

share a common genetic architecture. Although GS models were at first developed to calculate 

GEBVS of a single trait, the advantages of MT.GS models with correlated traits were soon 

demonstrated in animal breeding [98]. Jia [99] showed first evidence of how the prediction of 

low heritable traits can benefit from correlated disease resistance traits with higher 

heritabilities. Additionally, the study of Fernandes et al [100] was among the first reports 

showing that if the secondary trait is available for both testing and training lines the accuracies 

could be improved up to 50% versus the single trait versions. The latter cross validation 

strategy has been called CV2 or trait assisted genomic selection. Bayesian and GBLUP 

models mostly have been extended to multi-trait versions and applied in several studies in 

crops as reviewed by Tong and Nikoloski [101]. Deep learning approaches have been also 

attempted e.g. in a wheat population multi-trait DL models outperformed the single trait 

versions but failed to do it with the single trait GBLUP [102, 103]. Various studies in wheat 

[104, 105], sorghum [100], and barley [106] have given proofs that predictabilities were 

boosted by using the trait-assisted GS. Predictabilities in a CV2 scenario may be biased since 

the usage the records of assisting traits in the testing population and Runcie and Cheng [107] 

proposed an alternative CV2* scenario using the phenotypic data of the close relatives of the 

genotypes in the testing population. 

Phenomics has brought also new heritable correlated measurements or completely new traits 

like hyperspectral imaging. Algorithms capable to detect wheat spikes from images collected 

by Ground Mobil imaging open new perspectives on future application of deep learning models 

to detect infected spikes [108]. In this sense, high throughput phenotyping (HTP) has 

significantly enlarged data for additional traits in early stages of selection aiming to increase 

selection intensity in a combined phenomic-genomic breeding strategy [109, 110].  
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Abstract Selection for multiple traits is a highly

challenging task for breeders due to potential unfa-

vorable associations between characters. Fusarium

head blight FHB, being one of the most relevant

diseases affecting durum wheat frequently shows in

this respect an unfavorable correlation with morpho-

agronomical traits like plant height (PH) and heading

date (HD). In this study, we used a cross-validation

scheme to assess the prediction ability of the genomic

predictions (GP) for FHB severity relying on genomic

best linear unbiased prediction models in a diverse

panel of 178 durum wheat lines evaluated across five

environments. Additionally, we compared three types

of approaches to include HD and PH as covariates into

the analysis: (1) correcting FHB severity values before

training GP models, (2) tuning the GP model param-

eters that included multi-trait alternatives, and (3)

adjusting the genomic-based predictions by restriction

indexes. Models that weighted genomic estimated

breeding values (GEBV) by restriction indexes as well

as models that predicted FHBms values corrected by

regression-based methods were efficient alternatives

in diminishing the HD trade-off, nonetheless they

were also associated with large reductions in predic-

tion ability for FHB severity. After a simulated round

of genomic selection, considering HD as fixed effect in

the GP model were the most suitable alternative to

select a higher proportion of genotypes moderately

resistant with lower-than-average HD and PH estima-

tions. Hence, an appropriate GP model given unfa-

vorable association between characters should

combine high predictabilities and adequate reduction

of undesired trade-offs.

Keywords Fusarium head blight � Genomic

prediction � Durum wheat � Covariates � Restriction

indexes

Introduction

Fusarium head blight FHB, also called scab, is one of

the most calamitous diseases affecting cereals such as

wheat, barley, maize and oat (Walter et al. 2010;

Beres et al. 2018). FHB is mainly caused by Fusarium

graminearum and Fusarium culmorum with the

former being considered as the fourth most economic
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and scientifically important plant fungal pathogen

worldwide (Dean et al. 2012). The disease’ effects

comprise losses in grain yield and quality as well as

contamination by mycotoxins like deoxynivalenol

(DON) and its acetylated derivatives, which in turn

are a serious threat for human and animal health and

malting purposes (Darwish et al. 2014; Dweba et al.

2017; Fung and Clark 2004). In comparison to

hexaploid bread wheat (Triticum aestivum L.), the

tetraploid durum wheat (Triticum turgidum L. ssp.

durum) is particularly susceptible to the Fusarium

species complex which makes the development of

resistant varieties a major breeding goal. Durum wheat

is a cereal crop with an annual global production of 39

million of tons corresponding to 5% of the total wheat

production (Kadkol and Sissons 2016). Besides bread

and bulgur, other essential foodstuffs like couscous

and pasta, consumed by hundreds millions people

worldwide, are prepared based on semolina that is the

granular milled product of durum grains (Fiedler et al.

2017; Tuberosa and Pozniak 2014). A certain level of

control over FHB can be achieved with a series of

cultural, biological and chemical control measures

plus cultivar resistance (Pirgozliev et al. 2003).

Moreover, and within a Genotype � Environment �
Management (G � E � M) interaction framework, the

development and adoption of cultivars tolerant to FHB

is and will remain to be the cornerstone of any strategy

aiming to manage this disease (Beres et al. 2018).

FHB resistance (FHBr), is a trait whose quantitative

inheritance is controlled by many loci each with small

effect which leads to a slow genetic gain per unit of

time. More than 500 QTL have been described for

FHB resistance on all 21 chromosomes of hexaploid

wheat (Buerstmayr et al. 2009; Jia et al. 2018; Liu

et al. 2009; Venske et al. 2019), which is not the case

in tetraploid wheats where only a small number of loci

are reported (Prat et al. 2014). For the latter wheat

species FHBr loci have been mapped on all chromo-

somes except 1A, 1B and 5A, though all of them

possess only small or moderate effects compared to

the major resistance loci in hexaploid wheat e.g. Fhb1

located on chromosome 3BS, Fhb2 located on 6BS

and Qfhs.ifa-5A all derived from the Chinese resis-

tance cultivar ‘‘Sumai 3’’ (Prat et al. 2014; Zhao et al.

2018). In addition, within the durum gene pool there is

a narrow genetic variation for FHBr in both the mostly

susceptible elite cultivars (Buerstmayr et al. 2003;

Miedaner and Longin 2013) and landraces, while

among the latter only few have shown some elevated

level of resistance (Huhn et al. 2012; Talas et al.

2011). Other wild wheat tetraploids relatives (T.

turgidum ssp. dicoccoides, T. turgidum ssp. dicoccum,

and T. turgidum ssp. carthlicum) have shown moder-

ate to high resistance levels (Oliver et al. 2007, 2008)

although the incorporation of loci from such sources

into elite germplasm faces some obstacles like linkage

drag, unfavorable epistatic interactions or pleiotropic

effects (Kumar et al. 2018; Prat et al. 2014; Zhu et al.

2016). Nevertheless, a couple of studies in this

direction have been conducted and reported successful

pyramiding of resistance genes from hexaploid wheat

together with native durum loci (Prat et al. 2014; Zhao

et al. 2018).

Marker assisted selection (MAS) has proved to be a

suitable and effective instrument for breeders when

targeting a trait with small number of large effect

genes like the stripe (yellow) rust resistance gene Yr15

in durum wheat (Yaniv et al. 2015). The actual

implementation of MAS for quantitative inherited

traits with an underlying complex genetic architecture

is though less feasible, while genomic prediction (GP)

has overcome such limitations since it uses genome-

wide markers to estimate the breeding values of

unobserved traits in a panel of selection candidates

targeting also the multitude of minor QTL (Meuwis-

sen et al. 2001). Precisely, GP models involving FHB

resistance in hexaploid wheat (Arruda et al.

2015, 2016b; Mirdita et al. 2015; Rutkoski et al.

2012; Schulthess et al. 2017; Dong et al. 2018) and in

durum wheat (Miedaner et al. 2017; Steiner et al.

2018) have shown higher prediction accuracy and

larger selection gain than traditional MAS approaches.

With few exceptions (Schulthess et al. 2017; Steiner

et al. 2018), suggestions and proofs of the advantages

of including correlated traits in GP models have been

barely explored for FHBr in wheat, even though the

well-known associations with others traits like head-

ing date or plant height are obvious. In this regard,

earlier flowering genotypes are generally more sus-

ceptible to FHB and most of the published evidence

support the existence of such negative and significant

effect in both bread wheat (Gervais et al. 2003; He

et al. 2016; McCartney et al. 2016; Paillard et al.

2004; Schmolke et al. 2005; Yi et al. 2018) and durum

wheat (Buerstmayr et al. 2012; Miedaner et al. 2017;

Miedaner and Longin 2013; Prat et al. 2017). Loci

affecting both traits were found to overlap specifically
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on chromosomes 4A, 5B, 6A, 6D and 7B in various of

the mentioned studies, although the correlation FHBr-

heading date might be also highly dependent on

environmental factors like temperature, rainfall and

humidity (Miedaner and Longin 2013). Another trait

studied in the host response to FHB is plant height

where previous findings suggest a clear negative and

significant trade-off between shortness and resistance

to FHB in bread and durum wheat (Buerstmayr et al.

2012; Miedaner and Longin 2013; Prat et al. 2017;

Talas et al. 2011). One of the most relevant height-

reducing mutant alleles, Rht-B1b, has been intensively

introgressed into elite durum wheat germplasm since

the 1960s’ and important loci for FHBr have been

mapped at the Rht-B1 position on chromosome 4B,

(Buerstmayr et al. 2012; Miedaner et al. 2017; Prat

et al. 2017; Steiner et al. 2018) suggesting a pleio-

tropic effect of the latter on susceptibility to FHB

(Srinivasachary et al. 2009).

In view of the findings described by Miedaner et al.

(2017) regarding to the potential and improvements

needed to implement GP methods for FHB, the scope

of such endeavor has thus to be widened to deal with

the multiple involved traits. Hence, the main objec-

tives of this study were (1) to evaluate the implemen-

tation of different approaches in order to include the

records of two covariates namely heading date and

plant height into GP models and (2) to assess the

performance of the developed GP models in terms of

prediction accuracy and selection gain for all involved

traits.

Materials and methods

Plant material

The international diversity panel in matter contained

170 winter and 14 spring types, including modern and

old cultivars as well as current breeding lines. Field

trials were conducted at the experimental stations

Heidfeldhof (Hoh) and Oberer Lindenhof (Oli) of the

University of Hohenheim, Stuttgart, Germany both in

the cropping season 2013 and 2014 as well as at the

experimental site of the Department of Agrobiotech-

nology Tulln in Austria (Tul) during 2014. The

combination of location and year provided five

environments (Hoh13, Hoh14, Oli13, Oli14, Tul14),

in which experiments were laid out as a-lattice designs

with three replications in the locations Hoh, Oli and

two replications in Tul.

The Fusarium inoculation procedure and its details

can be found in the studies of Miedaner et al. (1996)

and Miedaner et al. (2017). In short, the whole

experiment was inoculated by 2 � 105 conidiospores

ml�1 with a machine-driven small-plot field sprayer

(Hoh, Oli) or a motor-driven backpack sprayer (Tul)

several times during flowering. The inoculation dates

were spread across the whole flowering period of the

experiment in a way that each genotype was inocu-

lated at least once at full flowering. In Tul, the crop

canopy was kept moist by mist irrigation during 20 hr

after inoculations. Fusarium head blight (FHB) sever-

ity was scored several times by the visual evaluation of

all spikelets in a plot rating from 1 to 9, where 1 stands

for no visible symptoms and 2 to 9 respectively means:

\ 5%, 5–15%, 15–25%, 25–45%, 45–65%, 65–85%,

85–95% and [ 95%. Mean FHB severity (FHBms)

will be the term referred in this study to the arithmetic

mean of six individual plot ratings measured from the

beginning of the symptoms development (11–15 days

after inoculation) and repeated in a 3-days interval

until the beginning of the yellow ripening stage.

Heading date (HD) was noted as the day in the year

when 75% of the ears of the plot emerged to 75% and

plant height (PH) as the cm from the ground to the

middle of the ear at EC70 stage.

Phenotypic data analysis

A two-step approach, as described by Möhring and

Piepho (2009), was implemented in order to obtain the

Best Linear Unbiased Estimates (BLUE) of each

genotype for each of the traits. Firstly, each environ-

ment was analyzed by a linear mixed model of the

form:

yikm ¼ lþ gi þ rk þ bm þ eikm ð1Þ

where yikm is the phenotypic observation of a trait of

interest, l is the overall mean, gi is the effect of the ith

genotype, rk is the effect of the kth replicate, bkm is the

effect of the mth block nested within the kth replicate,

and eikm is the residual effect. All the effects except gi
were considered as random. In a second step, BLUEs

were calculated across the multi-environment trails

using the linear mixed model:
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yij ¼ lþ gi þ Ej þ eij ð2Þ

where yij is the BLUEs from the first step, Ej is the

effect of the jth environment and eij is the residual term

accounting for Genotype � Environment interaction

and the residual effect. The effect of genotypes was

considered here as fixed as in the first model.

Variance components were estimated by restricted

maximum likelihood (REML) to estimate the repeata-

bility and entry-mean heritability, (H2), within each

environment and across them as described by Piepho

and Möhring (2007) (Eq. 19) using instead the model

described in section 2.2 in Miedaner et al. (2017). The

models were implemented in the package sommer for

R (Covarrubias-Pazaran 2016). Accessions’ id and the

estimated BLUEs for each environment can be found

as supplementary material.

Correction of the FHBms estimators

Three methods were taken to correct BLUE of FBHms

in each of the environments and across them. The first

approach, ADJ.A, considered the residuals from the

linear regression of FHBms on the covariates HD and

PH, used both separate and simultaneously; in a

general form following the equation:

y ¼ 1b0 þ xHDbHD þ xPHbPH þ e ð3Þ

where y is a vector of BLUEs for FHBms (dependent

variable), 1b0 is the intercept, while xHD and xPH are

the BLUEs of the covariates HD and PH estimated

within each environment by model (1), bHD and bPH
are the regression coefficients and � are the residuals.

Finally, the mean of the FHBms was added to the

vector of residuals to be use as response variable in the

subsequent analysis.

In the second method, denoted as ADJ.B, we

investigated the approach suggested by Emrich et al.

(2008), Miedaner et al. (2006), and included plant

height and heading date as fixed covariates when

calculating BLUEs resulting in an extension of model

(1) to:

yikm ¼ lþ gi þ rk þ bm þ bHDc1ikm þ bPHc2ikm þ eikm

ð4Þ

where c1ikm and c2ikm modeled the plot basis obser-

vations of HD and PH, same as in above method bHD
and bPH are the regression coefficients, while

analogues to the adjustments made by model (3)

either both traits were considered simultaneously or

alone. The corrected FHBms values obtained from this

method were defined as the effect gi from model (4)

plus the overall mean of the FHBms.

The third correction method ADJ.C was adopted

from Rapp et al. (2018), and consisted in the combi-

nation of the target trait and the covariate(s) in a multi-

variate mixed model, following this equation:

yTijkm ¼ lT þ gTi þ ET
j þ ðgEÞTij þ rTjk þ bTjkm þ eTijkm

ð5Þ

where each of effects had the same nomenclature as

used in models (1) and (2), except for the superscript T

which denotes that each term is an array of n� t

dimension being t the number of traits involved. The

initial assumption is that all the effects are considered

as random and each follows a multi-variate normal

MVN distribution, like the one for the genetic effects

gFHBms; gHD; gPH:

gFHBms

gHD

gPH

0
B@

1
CA�MVN

0

0

0

0
B@

1
CA;

r2
FHBms r1rFHBmsrHD r2rFHBmsrPH

r1rFHBmsrHD r2
HD r3rHDrPH

r2rFHBmsrPH r3rHDrPH r2
PH

0
B@

1
CA

2
64

3
75

ð6Þ

where diagonal r2 terms stands for the respective

genetic variances; the genetic correlation of FHBms

with HD is: r1, with PH: r2 and between covariates: r3.

Then, the residuals from the model (5) were taken,

similarly as in Thorwarth et al. (2018), as the

corrected values for FHBms according to:

FHBmsADJ:C ¼ gFHBms �
r1rFHBms
rHD

gHD � r2rFHBms
rPH

gPH

ð7Þ

Genotypic data

After a refinement step to exclude markers either with

a minor allele frequency (MAF) of \ 5% or with a

percentage of missing data higher than 20%, as stated

in Sieber et al. (2017); a final set of 23,542 DArT

(Diversity Arrays Technology Yarralunla, Australia)

markers and 7070 single nucleotide polymorphism

(SNPs) markers were yielded. Missing data was

imputed as the average score of each marker by the

’’mean’’ method included in rrBLUP R package
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(Endelman 2011). Marker data is available for down-

loading as supplementary material.

Genomic predictions

Genomic best-linear unbiased predictions were

obtained from the following model:

y ¼ Xbþ Zgþ e ð8Þ

where y contains the calculated FHBms estimates with

or without any adjustment; b is the vector of the fixed

effects containing the overall mean; g is the vector of

genomic estimated breeding values (GEVB)

½g�Nð0;Gr2
gÞ� with g2 accounting for the genotypic

variance estimated by REML and G stands for the

genomic relationship matrix obtained according to the

description of VanRaden (2008): G ¼
ZZ 0=2

P
pjð1 � pjÞ where Z is a n� m matrix of m

markers and n individuals with elements zij ¼ xij �
2pj þ 1 and xij being the value of a given allele for the

ith genotype at the jth locus, and pj the allele frequency

of the jth marker. X and Z are the design matrices for

fixed and random effects respectively and, e is a vector

containing the residuals ½e�Nð0; r2
eÞ�.

The prediction ability (PA) was calculated by a

five-fold cross validation (CV) scheme as the corre-

lation between the GEBVs and the corresponding

BLUEs. Briefly, the panel was randomly divided in

five equally sized subsets, then four out of those were

used as the training set and the left one as the

validation set. The procedure was repeated 40 times

totaling 200 cross validation runs. Mean comparisons

between the PAs under any model were estimated with

Tukey’s HSD (honest significant difference) test

(Tukey 1949) with an alpha level of 5%.

Tuning GBLUP model parameters

The following GBLUP model reformulations included

the approach taken by Song et al. (2017), where the

covariates effects were directly integrated and con-

sidered as fixed in the GBLUP model (8). This

approach will be referred later on as G ? COV

method. In addition, multi-trait GBLUP models

(MT.GP) were executed following this general

equation:

yt ¼ Xtbt þMtgt þ e ð9Þ

where yt is the array for t traits, namely FHBms, HD

and/or PH, containing the BLUE values; gt is the array

of genetic effects GEBVs ½g�MVNð0;
P

g bGÞ�
with as the complete unstructured variance-covariance

matrix

r2
g1 covg1;2 covg1;3

covg1;2 r2
g2 covg2;3

covg1;3 covg2;3 r2
g3

0
B@

1
CA alongside with

its design matrix Mt. The former terms r2
g1, r2

g2 and r2
g3

are the genetic variances of FHBms, HD and PH;

covg1;2, covg1;3 are the covariance of FHBms with HD

and PH respectively, and covg2;3 is the covariance

between the covariates. The residual array follows a

distribution: ½e�MVNð0;
P

e b InÞ� where In stands

for an n� n identity matrix and for the variance-

covariance matrix similar to the previous one but

accounting for the residuals between traits.

Lastly we evaluated the so called trait assisted

genomic prediction (TA.GP) (Fernandes et al. 2018;

Michel et al. 2017) in which for each CV run, unlike as

in the MT.GP model framework described above, the

covariate estimators of the validation set were

included into the training set and represented pre-

existing information about the genotype performance.

Index selection

Genomic selection indexes were afterwards con-

structed out of the GEBVs obtained in the MT.GP

models. Briefly, we used a desired gains index

developed by Pešek and Baker (1969) but restricting

gains for the covariates and thus allowing only

response to selection towards the target trait.

GEBVindex ¼ g1b1 þ g2b2 þ g3b3 ð10Þ

where g1, g2 and g3 are the GEBVs obtained from

multi-trait model (9), b is the array containing the

indexes for each trait obtained as b ¼
P�1

g �a, with a

being the vector with the respective weights keeping

always aFHBms as 1 and aHD, aPH equal to zero. The

genomic variance-covariance matrix Rg was derived

from model (9). Finally, an alternative Rg matrix was

derived by calculating the variances and covariances

between the GEBVs obtained from the single trait

models ST.GP from model (8). Table 1 condense all

the GP approaches previously mentioned in the

preceding sections.
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Expected selection gain

The differences between the mean of BLUE estima-

tors of the best 5, 10, 15 and 20% performing lines and

the overall mean for a given validation set were

calculated in each CV run to estimate the expected

selection gain (Ge) The mentioned differences were

standardized, in order to make comparisons between

traits, according to:

Ge ¼
lselTrait � lallTrait

rTrait
ð11Þ

where lselTrait is the trait mean of the selected genotypes

ranked based on the FHBms GEBVs and lallTrait stands

for the overall mean of the respective trait. When any

correction approach was applied to perform the

predictions, subscript Trait referred always to the

non-adjusted estimations of FHBms. The standardized

Ge was also obtained choosing lines based on the

ranking on the phenotypic estimation of FHBms

(phenotypic selection).

Results

Phenotypic analysis

Plant height records of genotypes in 2014 season were

in average greater than in 2013, in which Hoh was the

location with the shortest plant stand while Tul had the

tallest one and in the across environment analysis plant

height was, on average approximately 81.02 cm

(Table 2). For the sake of the subsequent analyses

we decided to exclude six of the extremely tallest

genotypes categorized as outliers based on their across

environments’ BLUEs. These ‘‘outgroup’’ lines

included several genetic resources with exotic genetic

background from the US, Canada, Bulgaria and

Ukraine: DGE-1, Agathe, AC Navigator, Cirpan 13,

No3026 and Nursith. On average, the heading date

was 155 days after January with a significant later

heading behavior in 2013. High entry-mean heritabil-

ities are reported here for both covariates analyzed

and, moreover, their genetic variances were always

higher than both genotype � environment and residual

variances. In addition, a significant and direct associ-

ation between both covariates were detected in the

environments Hoh13 and Tul14 (Table 2).

The artificial inoculation of Fusarium was success-

ful in all environments, and a broad FHBms variation

could be found within the individual environments as

well as in the across trail environments analysis

ranging from resistant to highly susceptible genotypes.

Tul14 and Oli14 were the most and least affected

environments, respectively, and the later was the

environment with the largest FHBms variation and

heritability (Table 2). The updated top resistant lines

included the Italian variety ’’Belfuggito’’ released in

the 1960’s, the Russian cultivar ’’Amazonka’’, the

cultivar ’’Soldur’’ and several breeding lines from

breeding program of the University of Hohenheim.

FHBms had a moderate to high heritability, even

though its genotypic variance component which was

just slightly higher than both the residual and the G �
E components (Table 2), thus confirming the good

quality of the scoring for Fusarium in this multi-

environment study.

Both covariates plant height (PH) and heading date

(HD), exhibited significantly negative correlations

with FHBms of r ¼ � 0:25 and r ¼ � 0:63

Table 1 Summary of the different genomic prediction alternatives of FHB mean severity attempted in this study

Approach Method/model Description

Correction methods ADJ.A Residual method

ADJ.B Covariate(s) as fixed factor(s) on plot basis mode

ADJ.C Multi-trait model on plot basis

Tuning GP model parameters G ? COV GBLUP with covariate(s) as fixed factor(s)

MT.GP Multi-trait GBLUP

TA.GP Trait-assisted GBLUP

Selection Index IDX.ST Restricted index derived from single trait GP models

IDX.MT Restricted index derived from MT.GP models
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(p\0:001), respectively. Despite of dropping six

outlier genotypes for plant height PH, its correlation

with FHBms was still highly significant also for the

single environment Hoh13. FHBms was in all envi-

ronments but Tul14 as well as in the multi environ-

ment (MET) analysis highly associated with HD as

seen by coefficients higher than r ¼ � 0:60.

Correction effects

The variability of FHBms BLUEs decreased when

they were corrected by either HD or HD plus PH in

terms of their coefficient of variation under any of the

methods and the same effect was detected for their

heritabilities. A comparison between their distribu-

tions revealed how their frequencies increased around

the mean value being the more pronounced case the

FHBmsADJ:C BLUEs (Supplemental Figure 1).

Amongst the correction methods considering only

HD as covariate, ADJ.A and ADJ.C performed nearly

similar, both adjusting completely for the unfavorable

FHBms-HD correlation while ADJ.B reduced it until

non-significance only for the environment Oli13. The

former methods though led the coefficient of the

FHBms-PH trade-off to significance (p\0:05).

Almost the same first mentioned pattern was found

when FHBms’ BLUEs were adjusted exclusively for

PH under the former methods however, ADJ.B

significantly increased the correlation towards PH

except for the environments Hoh14 and Oli14

(Table 3).

The adjustment of the FHBms’ BLUEs considering

simultaneously both covariates was evaluated only

when worth it i.e. the environment Hoh13 and the

MET case. ADJ.A was the only capable to effectively

decrease the magnitude of correlation coefficients

Table 2 Summary statistics of the phenotypically estimated

values of 178 durum wheat genotypes for the traits: heading

date (HD), plant height (PH) and Fusarium head blight mean

severity (FHBms) as well as their variance components,

repeatability and entry-mean heritabilities (H2) and correla-

tions between traits (r) for each of the five environments (Env)

and across them

Trait Env Min Mean Max r2
G r2

GE r2
e Rep=H

2 rð�FHBmsÞ rð�PHÞ

HD (d) Hoh13 151.07 163.19b 171.62 8.17 2.82 0.90 � 0.65*** 0.31***

Oli13 169.27 176.59a 187.98 16.01 2.37 0.95 � 0.73*** 0.12

Hoh14 126.49 138.72e 148.54 9.77 2.33 0.94 � 0.75*** 0.07

Oli14 149.23 155.54c 162.14 3.71 0.78 0.93 � 0.60*** � 0.12

Tul14 140.50 144.49d 150.00 1.80 0.87 0.86 0.11 0.15*

MET 148.10 155.51 163.45 5.93 2.00 2.36 0.91 � 0.63*** 0.14

PH (cm.) Hoh13 58.29 70.16e 83.65 19.2 16.12 0.78 � 0.33*** –

Oli13 58.02 74.29d 90.05 30.29 9.97 0.90 � 0.06 –

Hoh14 63.98 82.49c 103.16 27.92 9.57 0.90 � 0.13 –

Oli14 69.57 87.03b 108.19 31.94 8.54 0.92 � 0.05 –

Tul14 71.54 91.11a 113.33 35.27 14.25 0.88 � 0.08 –

MET 64.65 81.02 99.04 22.77 5.14 14.69 0.92 � 0.25*** –

FHBms (1–9) Hoh13 2.21 4.29d 6.24 0.55 0.28 0.85 –

Oli13 2.13 4.94c 7.50 0.86 0.26 0.91 –

Hoh14 3.35 5.53b 7.52 0.63 0.18 0.91 –

Oli14 1.36 4.04e 7.58 0.83 0.21 0.92 –

Tul14 3.97 6.08a 8.64 0.92 0.43 0.86 –

MET 2.85 4.98 6.66 0.38 0.35 0.37 0.80 –

Trait values presented in days for heading date, cm for plant height and in 1–9 scale for FHBms with 1 for no visible symptoms and 9

for more than 95% of all spikelets per plot affected. Correlations with *, *** superscripts stand for significance level at a level 0.05

and 0.001 respectively. Mean values for each trait between environments were compared with Tukey’s HSD test with a ¼ 0:05. Env

(Environment). Genotypic variance r2
G, genotype � environment variance r2

G�E, and residual variance r2
e .

Field trials: Hoh= Heidfeldhof (DE), Oli= Oberer Lindenhof (DE), Tul=Tulln (AT)
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towards both covariates and turn them non-significant.

In the other hand, ADJ.B and ADJ.C merely reduced

the � HD coefficients’ magnitudes and regarding PH

both methods raised the coefficients in the environ-

ment Hoh13 and the former method did so in the MET

case (Table 3).

Genomic predictions

Prediction abilities

Prediction abilities of FHBms, across environments

ranged from PA ¼ 0:61 in Oli14 to PA ¼ 0:69 in

Hoh14 (Supplemental Table 1). However, when

predictions accounted for the G � E interaction term,

the prediction ability reached a significant higher

value of PA = 0.75. The above values corresponded to

the FHB mean severity estimators predicted without

any correction or parameter tuning in the GBLUP

model. It must be mentioned that both prediction

abilities and expected selection gain Ge rates for all the

models were calculated taking as reference the non-

adjusted estimators of FHBms. This consideration

turned out to be a remarkable point since, specifically

for the correction methods, it allowed us to compare

PAs from any type of approach.

Significant lower mean prediction abilities were

obtained when the corrected FHBms estimators were

used for genomic prediction as expected since these

estimators deviated from the non-adjusted FHBms. In

fact, this occurred irrespective of the applied adjust-

ment method, except when PH was the covariate

included (Fig. 1 left panel). Analogously, if the �PH

models are ignored since their predictabilities are

comparable to the reference model, prediction abilities

under the ADJ.B method were less diminished and

they, in turn, outperformed their equivalents from both

ADJ.A and ADJ.C methods. In the other hand, what

stands out in Fig. 1 (right panel) is the significant

improvement in the prediction abilities of the trait-

assisted TA.GP approach, reaching PA = 0.80, when

HD was included as covariate. There was no pre-

dictability upsurge for any of the multi-trait MT.GP

models and even for such version involving both

covariates a slight diminution in mean predictability

was found. Our so-called G ? HD and G ? HD ? PH

alternatives had poorer predictabilities than the multi-

trait GP models though greater than their respective

ADJ.A and ADJ.C correction models versions.T
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In addition, relative low PA ¼ 0:60 resulted when

GEBVs obtained from either MT.GP�HD or

MT.GP�HD?PH were weighed by restricted selec-

tion indexes (Fig. 2 right panel), however the lower-

most predictabilities amongst all the methods were

obtained when the restricted indexes were derived

from ST.GP’ GEBVs involving both HD and HD plus

PH versions (Fig. 2 left panel). Lastly, only for the

TA.GP approach a slightly predictability increase was

detected when the three traits at issue were fit taking

the NO.ADJ GP model as reference and the tri-variate

versions of both ADJ.C and IDX.ST models were the

only ones for which a significant lower prediction

ability was observed in a within version’s model

comparison.

Correlation with covariates

Genome-based estimators for non-adjustment FHBms

were negligibly associated (r ¼ �0:14; p[ 0:05) with

PH though still highly correlated

(r ¼ �0:47; p\0:001) with HD. Genomic predictions

under the correction method ADJ.B presented still

significant (p\0:01) correlations towards HD, never-

theless the genomic predictions using ADJ.A and

ADJ.C methods -omitting their �PH versions- were

able to decline the correlation with HD to marginal

non-significant levels. Regarding the trade-offs with

PH, FHBms’ predictions became significant (p\0:05)

when both PH and HD ? PH were corrected for in

method ADJ.B (Fig. 1 left panel).

All versions of MT.GP and TA.GP models’

predictions were highly associated (p\0:001) with

HD, and for the latter model correlation coefficients up

to r ¼ �0:85 and r ¼ �0:38 were detected for HD and

Fig. 1 Stem plots for the mean values of prediction ability PA

(above the zero line) and correlation with the covariates (below

the zero line) obtained from 40 cycles of five-fold cross

validation of genomic prediction for Fusarium head blight mean

severity (FHBms) and the covariates heading date (HD) and

plant height (PH). Prediction abilities for three FHBms

correction methods (left panel) and three GBLUP model

parameter tuning (right panel) including multi-trait versions,

are illustrated as the correlation of phenotypically estimated

BLUEs of both the target trait and covariates with the GEBVs

for the target trait. Mean PAs and correlation scores for the non-

adjusted values are highlighted in orange bars and the rest of the

models/methods are gray colored and decreasingly sorted by the

within method average PA. Mean PAs were compared with

Tukey’s HSD test with a ¼ 0:05 and displayed in compact

letters display fashion. Correlations with *, **, *** superscripts

stand for significance level at a ¼ 0:05, 0.01 and 0.001

respectively. Every model is denoted by its abbreviation (see

Table 2) followed by ‘‘� ’’ symbol and the

covariate(s) incorporated
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PH respectively (Fig. 1 right panel). The only MT

approach for which a non-significant trade-off

between FHBms and PH was found was

MT.GP�HD. On the other hand, the method G ?

COV presented no relevant correlation coefficients

between their predictions and both covariates, except-

ing when PH was the incorporated trait. Non-signif-

icant correlations with both PH and HD were observed

when predictions obtained either from ST or MT

models were weighted by restricted indexes (Fig. 2).

Expected selection gain

A single round of genomic-based selection was

performed targeting the 5, 10, 15 and 20% of the

most resistant genotypes, and their standardized

expected selection gain values are presented in

Fig. 3 ticked by approach type and both traits FHBms

and HD. Selection based on the most accurate model

(TA.GP) showed a larger indirect response towards

HD than the conventional GP model for uncorrected

FHBms values and such response was even compara-

ble to the one coming by means of phenotypic

selection when more than 5% of the lines were

selected (Fig. 3 central panel). In contrast, if the

GEBVs from ST.GP models were scaled by restricted

indexes, their gain differentials in heading time was

almost reduced to zero (Fig. 3 right panel). ADJ.A and

ADJ.C methods followed IDX.ST model being the

most effective alternatives to counteract the gains in

heading date (Fig. 3 left panel). G ? COV and

IDX.MT methods performed similar decreasing by

about a half standard deviation the unfavorable

expected selection gain towards a later average

heading date. Expected selection gains for FHBms

amongst approaches kept the same prediction

Fig. 2 Stem plots for the mean values of prediction ability PA

(above the zero line) and correlation with the covariates (below

the zero line) obtained from 40 cycles of five-fold cross

validation of genomic prediction (GP) for Fusarium head blight

mean severity (FHBms) and the covariates heading date (HD)

and plant height (PH). In each panel with gray bars are shown

the scores for different selection indexes applied over the single

and multi-trait GP models’ outputs. In the right panel, the scores

for the GP model of the non-adjusted FHBms are presented with

orange bars. In the left panel, the multi-trait genomic GP models

including the covariates both together and separately are

presented with orange bars. Mean PAs were compared with

Tukey’s HSD test with a ¼ 0:05 and displayed in compact

letters display fashion. Correlation coefficients with *, **, ***

superscripts stand for significance level at a ¼ 0:05, 0.01 and

0.001 respectively. Every model is denoted by its abbreviation

(see Table 2) followed by ‘‘� ’’ symbol and the

covariate(s) incorporated
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abilities’ ranking with the TA.GP model notably

increasing the disease resistance gains. Moreover,

confirmed after the simulation of the genomic selec-

tion of the best 20% genotypes proportion, the latter

was the only method which significantly decreased the

FHBms from the GP model with no modifications

(Fig. 4). Contrarily, the rest of methods increased in

average the susceptibility with exception of the multi-

trait MT.GP model for which no meaningful change

was detected. Additionally, from Fig. 4 it can be

advised that all methods, excluding MT.GP and

TA.GP, had the capability to choose more genotypes

having both susceptibility and heading date estimators

under the overall mean than the reference non-

adjusted model.

Fig. 3 Models performance in terms of expected selection gain

(Ge). Models that predicted FHBms corrected values (left

panel), GBLUP model tuning (central panel) and application of

restricted selection indexes (right panel) when predicting

FHBms –dotted lines–. Ge values are displayed for FHBms

and heading date HD across several selection intensities. In each

of the facets are included also the Ge scores for the non-adjusted

FHBms predictions –solid lines- and for the selection based

exclusively on the phenotypic BLUE values PS –two dashed

lines. Every model is denoted by its abbreviation (see Table 2)

followed the covariate(s) incorporated
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Discussion

Simultaneous selection for multiple traits is an exigent

task in plant breeding, hence some considerations have

to made in order to exploit favorable or to adjust

unfavorable trade-offs between traits. The present

research focused on the prediction of FHB severity in

the framework of its correlation with plant height and

heading date, using a diverse durum wheat panel as a

case study. The investigated alternatives for address-

ing these relationships ranged from corrections

applied prior and post genomic prediction either

through adjustments of FHBms estimations or usage

of restriction indexes, respectively, as well as the

tuning of GP model parameters including multi-trait

GP alternatives.

The highly quantitative nature of FHB resistance

regarding this case study panel was unveiled by

Miedaner et al., (2017) via genome-wide association

mapping, reporting nine loci explaining between 1%

to 14% of the genetic variance. Combining minor

FHBr loci detected in durum varieties with major QTL

from bread wheat has been showed certain efficiency

in decrease the levels of susceptibility e.g. Prat et al.

Fig. 4 Layout of 178 durum wheat genotypes according to their

FHBms and HD BLUE values. After a single round of simulated

genomic-based selection aiming the 20% most resistant lines,

the probability for a genotype to be selected based on 40 cross-

validation cycles is highlighted in a blue-red scale. The mean

values of the selected genotypes in each panel are cross-pointed

and the overall mean values are marked in the non-adjusted

panels. Every panel is labeled with the model abbreviation (see

Table 1)
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(2017) reported that concurrently introgressing the

major locus Fhb1with either loci on chromosome 2BL

or 5AL could even overcome the negative effects on

FHBr of the Rht-B1b allele and, Zhao et al. (2018)

combined the introgressed QTL Qfhb.ndwp-7A from

the Chinese line PI 277012 with both minor loci on

chromosomes 2A and 7A to significantly increase

FHB resistance. Such allele combination and deploy-

ment in durum populations has been typically

achieved by phenotypic selection or MAS in the past,

although genomic selection might nowadays be pre-

figured as a recommended strategy to capture the

genetic variation generated by many small-effect QTL

and might assist breeders by shortening the breeding

cycle or improve the selection gain in early stages

where typically more resistant lines could in this way

be selected. Moreover, among the studies demonstrat-

ing the higher efficiency of GS over traditional FHBr

breeding strategies, Mirdita et al. (2015) evidenced a

GS predictability three times superior than MAS in the

absence of major QTL using a large set of 2325

European winter wheat genotypes evaluated in 11

environments and, Arruda et al. (2016a, b) and Steiner

et al. (2018) also showed the same accuracy boost that

was even increased when significant FHBr loci were

included as fixed effects in the GP models. Pre-

dictability of MAS in the present dataset reached 0.65,

reported by Miedaner et al. (2017), being even higher

than some of our investigated approaches (Figs. 1, 2).

However, the latter MAS’ feature could be an

overestimation due to the relatedness between lines

which in turn is a drawback that GS could overcome as

revealed for instance by independent versus cross

validation sampling comparisons, that makes GP

models’ performance more stable in cases like Euro-

pean wheat breeding programs with slow allele

frequency dynamics Jiang et al. (2017).

Correction of covariates tradeoffs as an alternative

in GP

Roughly eight QTL for plant height explaining minor

proportions of phenotypic variation and not being

localized nearby any FHBr locus were revealed for the

panel in study. Apart from those loci, the Rht-B1

(Rht1) locus explained more than half of the pheno-

typic variation in plant stature. It has been verified, for

other durum germplasms as well, that Rht1 can

increase or even duplicate measurements of FHB

severity (Buerstmayr et al. 2012; Prat et al. 2017;

Talas et al. 2011). We partially mitigated this trade-off

by leaving out six out of nine of the tallest lines

carrying the Rht-B1a wild type allele which met the

outlier exclusion criteria, by doing so the range and

variance of FHB severity ratings did not dramatically

change and the correlation coefficient was reduced

from � 0:37 to � 0:25 (p \0:001). The latter exclu-

sion could be taken as a step in order to focus on

genomic predictions for elite durum wheat rather than

genetic resources. Unlike plant height, for the tandem

FHB severity-days to heading/flowering, both positive

(Clark et al. 2016; Prat et al. 2017; Steiner et al. 2004;

Zhao et al. 2018) and negative (Buerstmayr et al.

2012; Gervais et al. 2003; He et al. 2016; McCartney

et al. 2016; Paillard et al. 2004; Schmolke et al. 2005;

Somers et al. 2003; Yi et al. 2018) type of correlations

have been reported in bread and durum wheat. Co-

localization of these traits’ loci have been found in

durum on chromosomes 4AL and 6AS according to

Prat et al., 2017 and on chromosome 7B to Buerstmayr

et al. (2012). In all environments analyzed in this

study as well as in the across environments analysis

strong negative FHBms-HD trade-offs were detected

with the exception of Tul14 (Table 2), a circumstance

that may be attributable to the moist-keeping condi-

tions during flowering in this location and both its

lower HD repeatability and range (e.g. just 9.5 days

compared with 20.5 days in Hoh13). In addition, HD

loci detected for this panel were not in LD respect to

FHB resistance QTL yet when FHBms BLUES were

adjusted for this covariate (Miedaner et al. 2017),

therefore the great influence of specific differences in

weather factors or ripening and possible pleiotropy

events might be plausible explanations for this trade-

off.

Some alternatives have been investigated to assess

true genotypic effects of FHB resistance and dissect it

from a passive mechanism of resistance such as plant

height or development stage i.e. flowering time. For

instance Klahr et al. (2007) used a covariance analysis

and detected the only stable QTL QFhb.hs-5B non-

affected by plant height and heading date in a RIL

population of European bread wheat. Likewise,

Miedaner et al. (2006) adjusted the FHB ratings to

the effect of heading date and evaluated the effect of

QTL introgressed from resistant donors in European

elite spring wheat lines. Other covariance considera-

tions highlight additional advantages over traditional
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mapping methods when trying to identify QTL, i.e. He

et al. (2016) and Lu and Lillemo (2014) included HD

and PH as covariates into the QTL mapping algo-

rithms, while Yi et al. (2018) suggested a conditional

QTL mapping on either HD or PH. In the context of

genome-wide association mapping and genomic pre-

diction studies for FHB resistance in hexa- and

tetraploid wheat, several studies (Arruda et al.

2015, 2016a, b; Miedaner et al. 2017) have used the

strategy first proposed by Emrich et al. (2008) and

included the trait HD as a quantitative covariate in the

mixed linear model from where the adjusted BLUE/

BLUP values were obtained. The former covariance

analysis was also examined in this study under the

method ADJ.B (4) for which the unexpected higher

FHBms-PH correlations obtained after correction for

this covariate in addition to the unsatisfactory associ-

ation levels of the FHBmsADJ:B predictions discourage

considering this method for either low or moderately

correlated traits. Furthermore, as proposed by Song

et al. (2017), our so-called G ? COV approach

evaluated the inclusion of the covariates as fixed

effects in the GP model stated in [8] and it turned out to

be the most efficient method to accomplish both higher

predictabilities and negligible trade-offs (p[ 0:05)

with the covariates regardless whether HD alone or

together with PH were involved.

Regression-based correction methods are fre-

quently employed in a plant breeding perspective to

assess negative trade-offs between major agronomic

traits e.g. disease resistance and both maturity and

plant height (Bormann et al. 2004; Bradshaw et al.

2004) or grain yield and protein content (Monaghan

et al. 2001). In fact, one of the most extended

applications of regression-based adjustments address-

ing the latter traits in wheat are the so-called grain

protein deviations GPD, which are defined as the

residuals of regressing protein content on grain yield

(Rapp et al. 2018; Thorwarth et al. 2018). The ADJ.A

and ADJ.C methods took advantage of this procedure

as did the correction of FHBms based on regression

coefficients derived from either single or multi-variate

mixed models on a plot basis, respectively. The fact

that the predictions for the FHBms values corrected by

the latter methods were among the poorest in terms of

predictability can be explained since these adjust-

ments deviated the most from the original FHBms;

although, this attribute led, in turn, to a highly

effective reduction of the respective trade-offs both

at BLUEs and GEBVs levels.

Single-trait predictions comparison with multi-

trait models

Multi-trait genomic prediction MT.GP models tested

in this study provided no predictability’ advantage

over the reference non-adjusted model. These obser-

vation is supported by other empirical studies, where

the usage of multi-trait GP models did not necessarily

result in an increase in prediction abilities (Fernandes

et al. 2018; Schulthess et al. 2017; Guo et al. 2014),

but is in disagreement with reports that showed

important performance’ improvements when either i)

higher heritabilities for the indicator traits and/or ii)

significant correlations between traits were evidenced

(Calus and Veerkamp 2011; Guo et al. 2014; Jia and

Jannink 2012). In a simulation study Calus and

Veerkamp (2011) showed that only the inclusion of

traits with genetic correlations stronger than 0.5 and

higher heritabilities can lead to greater predictabilities

and Schulthess et al. (2017) suggested that the benefits

of MT.GP models could be limited since achieving

last mentioned requirements might be somewhat

unrealistic, as was evinced for our case where no

pronounced differences in heritabilities were found.

Plant height having moderately high phenotypic

associations with FHBms in this study, did not seem

to play a major role in multi-trait GP models as

expected if compared to, for instance, the evidence

showed in Lado et al. (2018) who have demonstrated

that the inclusion of a third mildly correlated trait into

MT.GP models was not suitable to increase pre-

dictabilities in comparison to the inclusion of a single

highly correlated indicator trait.

The multi-trait GP approach type that improved the

prediction ability was the one for which phenotypic

records of the correlated covariates were already

available in the validation population when predicting

the target trait i.e. the trait-assisted selection model

TA.GP Fernandes et al. (2018) also known as pheno-

typic imputation Jia and Jannink (2012). This pre-

dictability’ upsurge was evinced for both the TA.GP

model fitting HD alone and HD?PH simultaneously,

which was significant in the former case. A similar

effect has been noticed in several studies with different

crops (Fernandes et al. 2018; Jia and Jannink 2012;

Rutkoski et al. 2012, 2016; Schulthess et al. 2017;
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Wang et al. 2017), although the degree of association

between the target trait’ predictions and the covariates

has not been extensively assessed e.g. in Fernandes

et al. (2018) since the trade-offs between yield

biomass and either moisture or plant height in

sorghum were not of concern. While predictions

based on both approaches MT.GP and TA.GP exhib-

ited the higher predictabilities among the alternatives

studied here, the former had similar correlation levels

with the covariates than the NO.ADJ model but the

TA.GP models exhibited coefficients up to 44% higher

respect to HD and regarding to PH it was even more

than tripled in the TA.GP� PH model. Moreover, it

was demonstrated after selection simulation that under

TA.GP model none of the moderately resistant and

early flowering lines would have been selected. Using

this phenotypic imputation for multi-trait GP, Steiner

et al. (2018) revealed an important increase in the

trade-off FHB severity-PH when both PH and PH?FD

(flowering date) were fit in the GP models since in

their analyzed panel the only moderately correlated

trait with FHB severity was plant height. The actual

usage of such previous generated records, that are

routinely assessed in earlier generations during variety

development for GP models should therefore be

examined in the light of the indirect responses which

rise for such scenarios.

Weighting predictions by genomic restriction

indexes

Final products delivered by breeders in form of new

cultivars must satisfy a certain number of require-

ments. In this context, a durum cultivar is desirable if it

displays moderate resistance levels to Fusarium, high

yields, short stature and early flowering. Breeders have

been traditionally conducted multi-trait selection by

methods like tandem selection, independent culling

levels and index selection (Dudley 1997), while usage

of selection indexes is generally more efficient than

the former ones (Wang et al. 2018). Since the net merit

index proposed by Smith (1936) and Hazel (1943)

many modifications like restriction index have

appeared, where the aim is to improve a given trait

while keeping the response to others at zero

(Kempthorne and Nordskog 1959). Similarly, Pešek

and Baker (1969) presented an approach to achieve a

certain rate of desired gains for a set of traits. In our

case, weighting the GEBVs of FHBms, HD and PH

obtained in ST.GP models by employing this desired

gain index as restriction indexes had the best perfor-

mance in annulling any response towards the respec-

tive indicator traits HD and PH though with the

subsequent largest predictability penalization for

FHBms. However, the utter goal in a multi-trait GP

framework may not necessarily be the cancellation of

the unfavorable correlations towards the indicator

traits but rather their reduction till negligible levels of

either magnitude or significance, as it was accom-

plished here using the restriction indexes ponderating

the GEBVs derived from MT.GP. In the same regard,

the use of this genomic indexes deflated the enlarged

FHB severity-PH trade-off detected after either ST or

MT genomic-based predictions in a durum wheat

panel (Steiner et al. 2018). The authors of the men-

tioned study did not detect significant differences

between the index usage in either single or multiple

trait models in terms of predictability although on

average they were significantly lower than their

unweighted counterparts. In this regard, it must be

said that the most plausible models through which

both the less drastic predictability penalization and

non-significant �HD correlation levels were attained

appeared to be G ? HD and IDX.MT�HD, although

some features would give the former certain advan-

tage: (1) its slightly higher predictability, (2) due to it

is less computationally demanding and, (3) since it

was more prone to avoid the selection of the earliest

flowering-moderately susceptible genotypes after the

genomic selection simulation round (Fig. 4).

Conclusion

Highly significant associations of FHB severity and

the indicator traits PH and HD estimations were

detected, although the trade-off with HD turned out to

be the only one relevant and persisted after genomic

predictions. Including PH as the only covariate in

genomic prediction models resulted in imperceptible

changes in the GP performances, except when PH was

fit in the trait-assisted GP model for which a significant

decline in predictability was detected. Incorporating

simultaneously both covariates did not improve the

predictability and for the models dealing with multi-

trait frameworks such configuration led to worse

predictabilities. The approaches that corrected FHBms

phenotypic estimations by regression-based methods
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and weighting the FHBms’ genomic breeding values

by restriction indexes derived from single trait GP

models were the most effective alternatives control-

ling the indirect responses towards the covariates and

even decreased by up to two standard deviations the

most important trade-off. Multi-trait genomic predic-

tion approaches significantly outperformed in pre-

dictability the non-adjusted reference model only

when HD records for the validation population were

already available, which led in turn to the largest rise

in the correlation between HD and FHBms. Fitting HD

as fixed effect in the GP model (G ? COV) and

correcting the FHBms’ genomic estimations using

restriction indexes derived from multi-trait GP models

achieved smaller predictabilities but were on the other

hand capable to reduce HD trade-offs, and therefore

represent alternative models with the highest rele-

vance in this study.
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Abstract: Environmental factors like temperature and humidity are presumed to greatly influence
Fusarium head blight FHB infections in wheat. Anther retention AR, on the other hand, is a
morphologically neutral trait that shares a common genetic basis with FHB resistance. In this study,
our aims were to: (i) Evaluate two types of corrections of FHB severity scores, namely method-1 via
linear regression on flowering time (FT), and method-2 via a best-subset multiple linear regression
analysis comprising FT plus accumulated thermal time variables; and (ii) assess the performance
of multi-trait genomic selection (MT.GS) models for FHB severity assisted by AR. The forward
prediction scenarios where GS models were trained with data from the previous years revealed
average prediction accuracies (PA) of 0.28, 0.33, and 0.36 for FHB severity scores that were uncorrected
or corrected by method-1 and method-2, respectively. FHB severity scores free from the influences of
both environment and phenology seemed to be the most efficient trait to be predicted across different
seasons. Average PA increments up to 1.9-fold were furthermore obtained for the MT.GS models,
evidencing the feasibility of using AR as an assisting trait to improve the genomic selection of FHB
resistance breeding lines.

Keywords: Fusarium head blight (FHB); wheat; genomic selection; environment; anther retention

1. Introduction

Fusarium head blight FHB has become a major threat for wheat production, particularly in warm
and humid regions [1]. FHB is caused by several members of the Fusarium genus yet evidence supports
that resistance to FHB is neither Fusarium-species- nor isolate-specific [2–4]. The economic impact of
this fungal disease is caused by either subtle to severe grain yield and quality losses, or mycotoxin
accumulation [5]. According to recent studies, the combination of tolerant varieties, fungicides,
and specific management practices might be used to decrease FHB losses [6,7] such as the $1.18 billion
reached in United States in 2015–2016 [8].

Genetic improvement of host resistance is considered the most sustainable and suitable approach
to manage this disease [9]. Conventional breeding, however, is limited mainly by both the lack of
highly resistant germplasm and the quantitative nature of the resistance to FHB [10]. More than
500 quantitative trait loci (QTLs) for FHB resistance have been mapped into 44 chromosomal regions
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spreading across all 21 wheat chromosomes [10–14]. To date, ten QTL [10] have been either validated or
employed in Marker-Assisted Selection (MAS) breeding: 2B-2, 2D-2, 3A-1, 3B-1 (Fhb1), 3B-2, 4B-1 (Fhb4),
5A-1 (Fhb5), 6A-2, 6B-1 (Fhb2), and 7B-1. From these loci, Fhb1 is the most intensively studied, and it has
been deployed, through MAS, in a few registered cultivars in the United States [15–17], Canada [18],
Australia [19], and Europe [20]. Genomic selection (GS) appears to be ideal to target the complex
genetic architecture of FHB resistance under its assumption that at least some of the markers are in
linkage disequilibrium (LD) with loci associated with the trait of interest [21]. Several studies [10,11]
have assessed the effectiveness of GS models in FHB resistance improvement in wheat and some report
higher accuracies and selection gains than MAS. The performances of GS models varied in whether
a major QTL was included, the traits representing FHB resistance, the size and composition of the
training and validation populations, and the types of prediction models. Multivariate GS models
generally improve prediction accuracies employing strongly correlated and highly heritable traits as
covariates [22,23], and even more when the records of the indicator traits are also available for the
tested genotypes [24–27].

Morpho-agronomical and phenological traits plus the environment directly affect FHB infection [1].
Plant height, heading/flowering date, and floral morphological traits like anther retention (AR) are traits
that have been extensively studied in the context of FHB disease [11]. Concerning earliness, it has been
shown that there is no systematic type of its association with field FHB resistance, which frequently
results in ambiguous associations with reports of negative [28,29] and positive [5,30–33] correlations.
It has been postulated that season-specific weather conditions at flowering and inoculation time rather
than a shared genetic control might better explain this apparent tradeoff [34–36].

Variations in environmental temperature and humidity in the atmosphere are major factors
modulating FHB infection, and there is a general consensus that warm and wet conditions at anthesis
favor FHB disease severity [4,37–40]. Wetness periods of at least 24 h and temperatures above 15 ◦C are
required for successful infections by most of the FHB causing agents [4,39], although some epidemics
have occurred in seasons with lower temperatures and above-average precipitation at anthesis [41,42].
Temperature also plays an important role from inoculum production and dispersal to its infection
of wheat heads [43]. Optimum temperature conditions for disease development depend on the
Fusarium species, inoculum type and virulence, and the affected tissue [39]. The two most prevalent
Fusarium species that produce the mycotoxin deoxynivalenol (DON) are Fusarium culmorum and
Fusarium graminearum. Their growth temperature optima under in vitro growth are 24–28 ◦C and
20–25 ◦C for F. culmorum and F. graminearum, respectively [39,43,44]. This is in concordance with the
fact that F. graminearum is predominant in the United States, Canada, Australia, and parts of continental
Europe with hotter summers than North Western Europe, where F. culmorum and F. avenaceum are
among the more predominant species [45]. Ideal weather conditions at anthesis not only promote
infection but also encourage the vegetative spread of mycelium to neighboring florets by favoring
disease cycle components like perithecia maturation and ascospore formation [40,46–48]. Earliness and
environmental variables have been studied together in another pathosystem on wheat via a step-wise
multiple linear regression and resulted in temperature and rainfall measurements preferred over
heading date [49].

The extent of retained anthers after flowering is, on the other hand, a trait phenotypically associated
with FHB resistance [50] specifically with resistance to initial infection [51]. Anther retention (AR)
possesses a quantitative genetic nature and a shared genetic correlation with FHB traits as twelve QTL
have been reported to be associated with both FHB resistance and AR [51–58]. In the field, AR usually
shows a positive correlation with FHB severity, i.e., partially or not extruded anthers are indicative
of higher FHB infection and fully extruded anthers are associated with reduced FHB infection [56].
When anthers are either partially extruded or stuck between palea and lemma, they become the media
to facilitate the FHB infection into the floret cavity. However, if the anthers are fully extruded, it is
more difficult for the FHB pathogen to colonize the spikelet tissue [52]. It has been postulated that the
selection of wheat lines with low AR could be a good strategy for breeders when breeding against FHB
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susceptibility [56,57,59]. Successful cases have been reported in breeding programs in China [60] and
promising results in Europe [61].

In this study, we aim to compare the performance of FHB severity scores from a best-subset
multiple linear regression analysis involving flowering time and thermal variables within a genomic
prediction framework. Additionally, we are motivated to evaluate multi-trait GS models for FHB
severity having anther retention as an indicator trait measured in both the training and validation sets.

2. Materials and Methods

2.1. Plant Material and Field Experiments

Training Sets (TS) for GS models were tested in three trials seasonally evaluated between the
years 2015 and 2017 totaling 853 genotypes, being either F4:6, F5:7 or double haploid breeding lines.
On the other hand, the 143 overlapping lines each evaluated in two consecutive years in the time
period 2015 to 2018 were used as Validation Sets (VS). The lines belonged to 429 bi-parental families
with sizes varying from 1 to 22 individuals derived from 305 parents. For the purposes of this study,
the latter will be referred to as 16-OV1 (2015–2016), 17-OV2 (2016–2017), and 18-OV3 (2017–2018).
All the trials were phenotyped for Fusarium head blight severity (FHBs) in an artificially inoculated
disease nursery at the experimental station of the Department of Agrobiotechnology in Tulln (16◦04,
16′ E, 48◦19, 08′ N, and 177 m above sea level). Within each trial, two replicates per genotype were
sown in double-rows of 1 m length with 17 cm spacing. A DON-producing Fusarium culmorum isolate
(Fc91015) was applied at a conidial concentration of 2.5 × 104 spores mL−1 several times at anthesis
with an automatic backpack sprayer. The anthesis date itself was recorded as flowering time (FT)
observed as days after 1 May. Constant humidity/moisture conditions were kept through a mist
irrigation system during 20 h after each inoculation. Anther retention (AR) was measured at five days
post-anthesis as the proportion of 20 florets per plot: Four basal florets of five heads were manually
opened and inspected on whether anthers remained within the floret or between lemma and palea.
FHBs symptoms were scored as percentage of infected spikes for each plot on 10, 14, 18, and 22 days
after inoculation (dai). The area under the disease progress curve (AUDPC) scores were standardized
to a 0–100% scale as stated by [62].

AUDPC =

 r−1∑
t=1

(( yt + yt+1

2

)
× (dt+1 − dt)

)÷ (dr − d0) (1)

where yt is the observed data at time t and dt is the tth day of measurement, going from t = 10 to 22,
and r is the total number of observations r = 4.

Accumulated thermal time (ATT) at each of the disease evaluation’s scoring dates plus 1, 2, 4,
and 7 dai were determined as the sum of degree-days per every single 24 h period, calculated in a
modified form as suggested by [63]:

ATT = (Tmax − Tmin) ÷ 2, (2)

where minimal (Tmin) and maximal (Tmax) temperatures are measured in ◦C. Base temperature,
defined as the one below which growth in the system ceases, was ignored.

2.2. FHB Severity Correction Methods

The following correction methods were applied over the raw data in a plot observations basis for
each trial separately. In addition, every application was done every time a given TS or VS was sampled.
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2.2.1. Method-1: Residual Method

AUDPC scores were first corrected as the residuals from the regression on the FT scores xFT,
as stated in [64]:

AUDPC1 = AUDPC− β0 − xFTβFT, (3)

where β0 and βFT are the intercept and the regression coefficient, respectively.

2.2.2. Method-2: Feature Selection

Alternatively, a preceding filtering step of ATT variables was conducted targeting nonlinear
temporal trends. Basically, only the ATT variables showing a high correlation of r = ±

2√0.60 with
respect to flowering time were considered in the next analysis stages. A lasso regression [65] model was
employed for selecting relevant predictors amongst the input variables of flowering time, as well as the
thermal variables. Let y be the dependent variable, i.e., FHBr, and p be the total number of predictors
xi; the original linear regression model can be written as follows:

y = β0 +

p∑
i=1

βixi + ε, (4)

The lasso algorithm estimates linear regression coefficients (β) through L1-constrained least
squares, minimizing the residual sum of squares subject to the sum of the absolute value of the
coefficients being less than a constant (s). Specifically, for model (4), the constrained L1 norm can be
given by the following inequality:

p∑
i=1

∣∣∣βi
∣∣∣ < s, (5)

The lasso parameter estimates’ calculation is a problem equivalent to minimizing the following
loss function in a typical Lagrangian form for model (4):

βlasso =
1
2

N∑
l=1

y− β0 −

p∑
i=1

βixi,l


2

+ λ

p∑
i=1

∣∣∣βi
∣∣∣, (6)

where N is the sample size and λ ≥ 0 is a complexity tuning parameter controlling the degree of
shrinkage. It was obtained through cross-validation as implemented in the cv.glmnet function of the
glmnet R package [66]. Similar to (3), the new subset of features (p′) were the new predictors used to
correct AUDPC scores:

AUDPC2 = AUDPC− β0 −

p′∑
i=1

βixi, (7)

2.3. Field Trials Analysis

Best linear unbiased estimates (BLUEs) were derived from each trial and trait from a linear mixed
model of the form:

yi, j = µ+ gi + r j + ei j, (8)

where µ is the overall mean; yi,j are the plot-basis observations of the traits AR, FT, AUDPC, AUDPC-1,
and AUDPC-2; gi is the fixed effect of the ith genotype; rj is the random effect of the jth replication;
and eij is the random residual effect. Model (8) was expanded to account for the effect of the kth trial tk
as follows:

yi, j,k = µ+ gi + tk + (g·t)ik + (t·r)kj + ei jk, (9)

where µ is the overall mean; yijk are the plot-basis observations of the traits AR, FT, AUDPC, AUDPC-1,
and AUDPC-2; gi is the fixed effect of the ith genotype; tk is the effect of the kth trial; (g·t)ik and
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(t·r)kj are the interaction terms of “genotype × trial” and “trial × replication”, respectively; and eijk
is the random residual effect. Entry-mean heritabilities (h2) for both training and validation sets
were calculated as h2 = σ2

g/(σ2
g +

1
2 MVD), where σ2

g corresponds to the genetic variance and MVD to
the mean variance of a difference of the BLUEs [67]. Additionally, plot-basis heritabilities (H2) were

calculated as H2 =
σ2

g

σ2
g+

σ2
e

nr

for the training sets and as H2 =
σ2

g

σ2
g+

σ2
gt

nt +
σ2

e
nt×nr

for the validation sets where

nr is the number of replications, σ2
e is the residual variance, nt is the number of trials, and σ2

gt is the
“genotype × trial” variance component.

2.4. Genomic Predictions

2.4.1. Genotypic Data

DNA from all the lines was extracted with a modified protocol by [68], and each one was genotyped
with the genotyping-by-sequencing (GBS) approach (Diversity Array technologies P/L). Quality control
filtered out markers with more than 10% of missing data or a minor allele frequency smaller than 5%,
which resulted in a set of 5700 single nucleotide polymorphism (SNP) markers.

2.4.2. Validation Schemes

Every validation step consisted of randomly sub-setting 25 and 200 lines as validation (VS) and
training (TS) sets, respectively, from their larger sets. The latter sampling was repeated 300 times.
Only forward prediction scenarios were considered, resulting in each of the three OV being predicted
using their previous trial as TS (Figure 1a). In addition, 17-OV2 and 18-OV3 were predicted with
enlarged training sets of 400–600 lines composed of the sum of 200 sampled lines from each of the
previous two or three trials (Figure 1b).
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of sampled lines from different trials. GS stands for Genomic Selection model, PS for Phenotypic
Selection, TS for Training Set, and VS for Validation Set.
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2.4.3. GS Models

Genomic best-linear unbiased predictions were obtained from the following model:

y = Xβ+ Zg + e, (10)

where y contains the calculated AUDPC estimates either obtained by (1), (3), or (7); β is the vector of the
fixed effects containing the overall mean; g is the vector of genomic estimated breeding values (GEVBs)
[g ∼ N

(
0, Gσ2

g

)
], with σ2

g being the genotypic variance estimated by the restricted maximum likelihood
(REML) approach. X and Z are the design matrices for fixed and random effects, respectively; e is
a vector containing the residuals e ∼ N

(
0, σ2

e

)
; and G accounts for the genomic relationship matrix

as [69] G = ZZT/2
∑

p j
(
1− p j

)
, where Z is the matrix of m markers and n individuals with elements

zi j = xi j − 2p j + 1, xi j is the value of a given allele for the ith genotype at the jth locus, and pj the allele
frequency of the jth marker. Model (10) includes a fixed effect for the kth trial when multiple trials was
combined as a training set.

Additionally, a so-called trait-assisted genomic prediction [25,26] was evaluated, in which for
each validation run, the assistance trait (AR) estimators of the validation set were taken into account
and represented pre-existing information about the genotype performance corresponding to the AR
scores measured in the trial preceding the validation year.

Multi-trait genomic best linear unbiased prediction (GBLUP) models followed this
general equation:

yt = Xtβt + Mtgt + et, (11)

where yt is the array for a given number of t traits, i.e., AUDPC and AR, containing the BLUE from
the phenotypic analysis; and gt is the array containing the GEBVs [g ∼ MVN

(
0, Σg ⊗G

)
] with Σg

as the complete unstructured variance-covariance matrix,
(

σ2
g1

σg1σg2

σg2σg1 σ2
g2

)
, and Mt as its design

matrix. The terms σ2
g1

, σ2
g2

are the genetic variances of AUDPC and AR, respectively. The residual
array follows a distribution: [e ∼MVN(0, Σe ⊗ In)], where In stands for an nxn identity matrix and Σe

for the completely unstructured variance-covariance matrix accounting for the residual variance and
correlations between both traits.

Prediction accuracy (PA) was estimated as the Pearson correlation coefficient between the BLUE
estimates for AUDPC-corrected scores and their respective genomic-estimated breeding values GEBVs
accordingly divided by the square root of the entry-mean heritability h2.

3. Results

3.1. Phenotypic Values

Disease severity was considerably higher in 2016 than in the other years while the lowest range
and less variable scores were observed in the 2017 trial. The 2018 trial was the most variable in terms
of flowering time contrarily to the 2017 trial that had the smallest range in FT. The lines evaluated in
the 2017 trial were more prone to trap anthers across the largest training sets (Figure S1).

Flowering time was the trait with the highest heritabilities’ estimates concerning the across-trials
analysis. Heritabilities for AUDPC were moderately high and slightly lower in magnitude than
both corrected AUDPC scores, suggesting that the latter were able to capture a higher proportion of
genotypic variability.

However, across training sets, heritabilities of the corrected AUDPC scores were lower (Table 1)
and a closer look at the repeatability at plot level within each trial showed that they were not improved
by the applied corrections (Table 2). Interestingly, the genetic variances (σ2

g) were higher for the
validation sets than for the training sets.



Agronomy 2020, 10, 2008 7 of 16

Table 1. Descriptive statistics of the traits studied specified in the training and validation sets.

Trait 1 h2 H2 σ2
g

2 σ2
gt

3 σ2
e

4 Min Mean Max

Training Sets

AU-R 0.837 0.675 88.63 30.66 0.17 16.35 83.36
AU-1 0.824 0.624 80.18 32.31 0.17 19.83 83.36
AU-2 0.816 0.606 76.27 32.33 0.17 20.22 83.36

FT 0.823 0.602 5.01 1.10 12.00 29.58 40.00
AR 0.772 0.746 322.99 187.98 0.00 51.82 100.00

Validation Sets

AU-R 0.735 0.751 111.62 122.66 50.23 0.67 16.49 86.67
AU-1 0.769 0.765 119.56 121.82 49.89 0.67 18.18 86.67
AU-2 0.757 0.759 116.62 122.46 51.11 0.67 18.08 86.67

FT 0.914 0.939 4.52 0.202 0.81 12.00 29.11 39.00
AR 0.862 0.869 331.12 20.75 162.90 0.00 50.66 100.00

1 AU—followed by either R (raw scores) or the respective numbers standing for correction method-1 and method-2,
FT: flowering time, AR: anther retention. 2 Genetic variance. 3 Genotype-by-trial variance. 4 Residual variance.

Table 2. Performance of the models for Fusarium head blight (FHB) severity under two different
correction methods.

Training Sets n
Method-1 Method-2 Repeatability

R2 AIC Features Selected R2 AIC AU-R 1 AU-1 2 AU-2 3

2015 317 0.26 −34.56 FT, ATT02, ATT14 0.32 −59.66 0.84 0.83 0.82
2016 270 0.07 148.20 - - - 0.87 0.86 0.86
2017 266 0.20 −35.40 ATT04, ATT07, ATT22 0.21 −39.20 0.79 0.75 0.75

1 AUDPC raw scores. 2 AUDPC scores corrected by method-1. 3 AUDPC scores corrected by method-2.

3.2. Trait Correlations and Variable Selection

Disease severity scores in the 2017 trial were atypically correlated toward FT as they showed a
moderate negative coefficient (r =−0.46), while in both the 2015 and 2016 trials, those traits were strongly
and moderately positively correlated with coefficients of r = 0.51 and 0.29, respectively. The smaller
validation set in the 2018 trials also exhibited a stronger positive tradeoff r = 0.73 (Figure S2).

The correlations between accumulated thermal time (ATT) and AUDPC scores were specific to
each trial and differed in magnitude and sense. ATT features in the 2015 trial showed a two-clustered
profile correlation with AUDPC being positive from one to four dai and negative from 14 to 22 dai.
In the 2016 trial, none of the ATT variables seemed to play a major role concerning disease severity
nor flowering time, and this led to method-1 and method-2 to be equivalent in this specific TS. ATT
variables at one, two, and eighteen dai were discarded from the feature selection process in the 2017 TS
and the rest of the ATT features were significantly positively correlated with disease severity except
ATT at 22 dai. In the 2018 trial, all ATT features were considered relevant, and conversely to the
2017 trial, disease severity and earliness were directly related, meaning that the most affected and
late-flowering genotypes accumulated a higher degree-day rating (Figure S2). The latter lead to the
observation that, typically, the most affected and earlier genotypes in this trial were also the ones that
accumulated much more degree-days.

Concerning the training sets of both 2015 and 2017 trials, a maximum of three predictors were
selected under method-2 and none of those were recurrent. Flowering time was not present on the
best-features set in the 2017 trial presumably replaced by ATT at 22 dai as both were negatively
correlated with disease severity. The models derived through method-2 significantly improved their
counterparts with FT as the unique predictor in terms of R2 and Akaike information criterion (AIC)
(Table 2). FT was consistently selected as the best explanatory variable in 2017 OV lines, and ATT04
was the unique variable producing the best fit in the 2018 trial (Table 3).
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Table 3. Performance of models for FHB severity regarding the overlapping lines evaluated in
consecutive years.

Validation Sets n
Method-1 Method-2 Phenotypic Selection

R2 AIC Features Selected R2 AIC AU-R AU-1 AU-2

15-OV1 62 0.34 −22.13 ATT04, ATT14 0.36 −23.40 0.57 B 0.59 A 0.59 A DS 1

16-OV1 62 0.09 46.34 - - - 0.55 A 0.51 B 0.51 B IS 2

16-OV2 64 0.09 45.17 - - - 0.74 B 0.77 A 0.77 A DS
17-OV2 64 0.01 19.86 FT - - 0.38 B 0.39 B 0.40 A IS
17-OV3 36 0.01 −30.98 FT - - 0.18 C 0.51 B 0.55 A DS
18-OV3 36 0.52 −32.24 ATT04 0.59 −38.50 0.58 A 0.31 B 0.29 C IS

1 Direct phenotypic selection. Uppercase letters reflect significant differences between correlation scores collected
through 300 rounds of selection and compared by Tukey’s HSD test with alpha of 5%. 2 Indirect phenotypic selection
based on anther retention.

3.3. Phenotypic Selection

The highest phenotypic correlation of AUDPC raw scores between overlapping lines was detected
between the 2016 and 2017 trials (r = 0.74) and the lowest between the 2017 and 2018 trials (r = 0.18).
Nonetheless, phenotypic selection based on corrected AUDPC scores was superior to the AUDPC
raw-based selection across every validation set (Table 3). Significant increments of 4% were on average
obtained when selecting lines from 16-OV1 and 17-OV2 regardless of the correction method and,
remarkably, selection of the 18-OV3 lines based on corrected scores led to up to more-than-threefold
increments where method-2 outperformed method-1 (Table 3).

Given that anther retention AR scores were used to select for disease severity (indirect selection IS),
the correlation coefficients were lower than the direct selection described above except for the selection
of AUDPC raw scores of 18-OV3 lines. This indirect selection based on AR was most favorable in the
selection of 16-OV1 lines because of both the high correlations AR-AR and AR-AUDPC on the implied
trials (Table 3, Figure S3).

3.4. Genomic Selection

3.4.1. Single Trials

Across the three validation scenarios with TS composed of single trials (schemes detailed in
Figure 1a), prediction accuracies PA averaged 0.28, 0.33, and 0.36 for the GS models based on AUDPC
raw scores (AU-R), and corrected under method-1 (AU-1) and method-2 (AU-2), respectively (Figure 2a).
Hence, genomic predictions based on corrected AUDPC scores under method-2 showed a slightly
superior PA among all three scenarios, being most notorious for the prediction of both 16-OV1 and
18-OV3 sets. This advantage of method-2 over method-1 reflects the better model fit in the phenotypic
analysis of FHB severity in both TS of the 2015 and 2017 trials, as well as in the 18-OV3 VS by selecting
additional and/or different features than flowering time (Table 2, Table 3).

Increments from 8% up to more than sixfold were achieved when anther retention scores from their
previous year served as the assisting trait in multi-trait genomic selection (MT.GS) models predicting
16-OV1 and 18-OV3 lines, respectively (Figure 2a). Single-trait ST.GS models predicting 18-OV3 lines
performed poorly in terms of PA; however, their MT versions produced the largest increments when
modeling AUDPC-corrected scores (Figure 2a). On the other hand, the prediction of the 17-OV2 lines
was the scenario where the most accurate ST genomic predictions were obtained, and it was precisely
the one that did not represent an opportunity for their MT versions with poorer PA performances,
which was 3% lower regardless of the type of AUDPC scores (Figure 2a). The latter observation for
such a case might be partly explained by the fact that this was the only validation scenario where,
on average, prediction accuracy is sensibly higher than the correlation of AR-AUDPC seen in the
indirect selection based on AR scores from the previous year.
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Figure 2. Prediction accuracies PA for the proposed genomic selection schemes: (a) For GS models
with training sets composed of lines from single trials and (b) with training sets composed of lines from
combined trials. TS and VS stand for training and validation sets, respectively. AU-R, AU-1, and AU-2
stand for area under the disease progress curve (AUDPC) scores either uncorrected or corrected under
method-1 or method-2, respectively. ST and MT explain whether the GS model included disease
severity alone or anther retention was included as an assisting trait, respectively. Standard deviations
are presented as the length of each segment, and the width of either the squares or diamonds correspond
to the 95% confidence interval.

3.4.2. Combined Trials

The GS models aiming to predict 17-OV2 lines trained with the combination of lines from the
2015 and 2016 trials led to worse PA performances for both traits AU-1 and AU-R scores (PA = 0.48
and 0.41) compared with the model trained only with the 2016 trial (PA = 0.52 and 0.54). In the latter
case, the prediction of the AUDPC scores corrected by method-2 (AU-2) outperformed the other traits
and was equivalent to its respective single-trial counterpart (Figure 2b).

The following outcomes might be highlighted from the three scenarios of the genomic selection of
the 18-OV3 lines employing TS composed from various trials (Figure 2b):

The poor performance of models exclusively trained with lines from the 2017 trial was improved
and, more specifically, genomic predictions based on AU-2 scores resulted in performances averaging
PA = 0.18 and 0.36 for the ST and MT models’ versions, respectively, versus models based on AU-1
scores PA = 0.15 and 0.38, and models based on AUDPC-raw scores PA = 0.13 and 0.38.
The only scenario where the type of FHB severity score represented significant differences in PA was
when 2015 and 2017 trials were combined to train the single trait GS model, leading to the following
order according to their PA: AU-2 > AU-1, AU-R.
The highest PA rates for the ST.GS models were obtained when the TS was combined with lines from
the three previous trials regardless of the type of severity score, while for their MT.GS model versions,
the most successful cases were models trained with the merge of lines from 2016 and 2017 trials.
Across all scenarios in consideration, the relative increments in PA of MT.GS models averaged 3.1, 2.6,
and 2.1 folds for the AU-R, AU-1, and AU-2, respectively, from their single trait model versions.
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4. Discussion

This study evaluated a procedure consisting of a best-subset multiple linear regression analysis
accounting for earliness and temperature variables to produce corrected FHB severity scores that
were subsequently compared with the original trait under various genomic prediction scenarios.
The convenience of including anther retention as an indicator trait in phenotypic and genomic selection
was also investigated, and by doing so, this becomes the first report, at least to the best of our knowledge,
of such an attempt in winter wheat.

QTL mapping studies have found twelve overlapping loci between HD/FT and FHB resistance
traits, with the most frequently detected QTL being close to the Vrn and Ppd genes that control,
among others, the vernalization requirement and photoperiodic sensitivity in wheat [11]. However,
when it comes to multi-environment trials, the nonsystematic type of FT-FHBr associations have
been detected [36] and several studies follow a pre-correction of the FHBs scores to dissect it from
passive mechanisms of resistance [34,70,71]. In order to tackle this trade-off, genome-wide association
mapping and prediction studies [27,70–72] oftentimes follow the approach described in [34], which is
basically the same as that referred to in this study as method-1. Our findings constitute in this way an
enhancement from the latter approach that exclusively considered earliness traits and increased the
explainability of the genetic variability of FHB resistance of wheat lines evaluated in consecutive years.
According to our results, up to three thermal variables were preferably selected over FT in 2017 and
2018 trials as best predictors. Noticeably, stepwise linear regression has often been used to identify the
best predictors when modeling epidemiologic data including the FHB pathosystem [73–75]. However,
the usage of the forward and backward elimination of variables has been discouraged, with all subset
selections being a more statistically grounded option [74], whereas lasso regression often outperforms
the latter methods due to a higher coefficient stability, especially in cases of multicollinearity between
predictor variables [76].

Wheat heads are most susceptible to FHB infection at anthesis [77] but infection can occur up to
the soft dough stage [78]. ATT at the day of anthesis/inoculation was significant and directly correlated
with FHBs, except in the 2016 trial, and it became the best predictor in the TS of the 2015 trial and the
18-OV3 lines. ATT variables closer to the date of anthesis were likewise chosen in 2015 (two dai) and in
2017 (both four and seven dai). On the other hand, ATTs at 14 and 22 dai were additionally selected
in 2015 and 2017 trials, respectively. Models employed to predict the risk of FHB epidemics [73,79]
often consider among their predictors temperature measurements at up to 15 days post-anthesis and
interactions with either rainfall or humidity variables. Considering the latter weather measurements,
as well as alternative nonlinear responses of FHBs to environmental variables [63], might improve the
proposed method-2. Concerning relative humidity, it was not accounted for in the presented approach
because of the assumption that mist irrigation conditions kept this factor at high and constant levels in
trials conducted for the study at hand.

The accumulation of temperature seemed to favor the development of disease at early stages
of disease development (one to seven dai) across all trials. Contrarily, less visible symptoms were
correlated with ATT variables at later evaluation stages in 2017 (at 22 dai) and especially in 2015 with
the difference that in the former trial, earliness was associated with more susceptible genotypes. A shift
in the daily temperature might explain those changes between 43 and 51 days after May 1st in 2015
where a decrease of almost 11 ◦C in the daily mean temperature was detected. Seemingly in 2017,
there was a sustained increase between 48 and 53 days after 1 May 2017 of 8.5 ◦C (Figure S4).

The composition and size of the training sets are of utmost importance in GS as evidenced by
simulated and empirical data [80–82], and in that regard, this study proposed validation scenarios
using complete trials as folds to validate genotypes in unobserved years. Poor performances of GS
models predicting 18-OV3 lines were found in absolute terms of prediction accuracies that were
improved on average 2.9- and 1.9-fold for 2–3 times larger training set sizes, respectively, by adding
both lines and additional trials. Nevertheless, the contrary effect was observed for 17-OV2 lines
especially for uncorrected AUDPC scores, where the prediction accuracy was 20% lower when the
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TS consisted of lines from both 2015 and 2016 trials. As both the 2015 and 2018 trials were heavily
dependent on earliness and temperature, adjusting their AUDPC scores from these strong phenological
influences putatively allowed the GS models to exploit genomic relatedness more efficiently. Prediction
accuracy is supposed to be directly related to the degree of genetic relationship between training and
validation sets. The performance of GS models in terms of prediction accuracy for FHB resistance in
wheat has been validated in independent samples [83] and found to be comparable to cross-validated
schemas conditioned to the relatedness level TS-VS. Additionally, based on empirical results, it has
been proposed that less biased predictions across breeding cycles/years can be expected for highly
heritable traits like FHB or plant height, as shown in barley [84] compared to quality traits in wheat [85]
and sugar beet [86].

The correspondence between a high proportion of retained anthers and an increased FHB severity
has been systematically found across wheat populations [58]. AR is considered a morphological
marker for FHBr, especially for its Type I or resistance to initial infection [52,59]. Here, indirect
selection based on AR measurements led to correlations between 0.30 and 0.51, and they were on
average 34% lower than the actual direct selection based on AUDPC scores. Anther retention keeps the
advantages of traits like plant height or flowering time as a low-cost phenotype indirectly associated
with FHBr, but unlike the latter two, it is agronomically more neutral in the sense that further breeding
implications/considerations like the selection of unfavorable tall genotypes might be largely avoided.
Although AR was also correlated with plant height in the germplasm studied here, this correlation was
low and mostly attributed to the presence/absence of the dwarfing alleles at the Rht-B1 and Rht-D1 loci
(data not shown). Multi-trait GS models in the FHB resistance context in wheat have been studied,
most of them accounting for flowering time and plant height [27,87,88] as covariates or related traits
like FHB incidence, DON concentration, or Fusarium damage kernel index (FDK) [89,90]. An upsurge
in prediction accuracy of MT.GS models was confirmed here with AR as the indicator trait for most of
the validation scenarios. For instance, increments in prediction accuracy averaged 46% across the three
scenarios consisting of multiple trial-training sets predicting 18-OV3 lines; however, the MT.GS models
performed slightly worse (−3%) when aiming to predict the set of 17-OV2 lines with lines from the
previous year. From simulation and empirical proofs, it has been noted that both higher heritabilities
and correlations are needed for the indicator trait in order to yield higher accuracies [23,88,91,92].
As both FHBr and AR had a similar heritability in the study at hand, the degree of their correlation
in each GS scenario seemed to be the major constraint for improving the prediction accuracy. Hence,
in cases when this correlation was low, the prediction accuracy could not be improved beyond the
respective single-trait model, while an advantage of using AR as an assisting trait in MT.GS models
was generally seen with an increase in the correlation of AR-FHBr. Finally, MT.GS models assisted by
AR also represented an advantage over their indirect phenotypic selection counterparts.

5. Conclusions

The approach presented here to account for temperature variations within and among seasons for
correcting FHB severity scores, although not being the most comprehensive, turned out to be a simple
and fast way to produce consistent predictions for observed and unobserved winter wheat genotypes.
Furthermore, multi-trait genomic selection models evidenced the feasibility of the usage of AR as an
assisting trait even in cases without FHB records available (e.g., early breeding stages), which could
be scored and used for indirect FHBr selection and will not require additional considerations to
compensate for undesirable indirect effects during selection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/12/2008/s1,
Figure S1: Boxplots on the distribution of the traits analyzed distinguished by both training and validation sets.
(a) Flowering time measured in days after May, (b) AR in percentage, and (c) AUDPC in a 0–100 scale. Figure S2:
Correlation plots of the traits analyzed in the years (a) 2015, (b) 2016, (c) 2017, and (d) 2018. The abbreviations
are as follows, AR: Anther retention, FT: Flowering time, ATT: Accumulated thermal time at different days
post-infection. AU-R: AUDPC scores, AU-1: AUDPC scores corrected under method-1, AU-2: AUDPC scores
corrected under method-2. Lower diagonals represent the training set and upper diagonals the validation set.
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Figure S3: Correlation plots between the overlapping lines in two consecutive years: (a) 2015–2016, (b) 2016–2017,
and (c) 2017–2018. Abbreviations of each trait are followed by the last two digits of the year of the respective
trial. AR: Anther retention, FT: Flowering time, AU-Raw: AUDPC scores, AU-1: AUDPC scores corrected under
method-1, AU-2: AUDPC scores corrected under method-2. Figure S4: Temperature profiles of each of the
seasons (a) 2015, (b) 2016, (c) 2017, and (d) 2018 measured at the experimental station of the Department of
Agrobiotechnology in Tulln (16◦04, 16′ E, 48◦19, 08′ N, and 177 m above sea level).
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Discussion 

The correction methods accounting for earliness applied in publication #1 revealed a lower 

across-environments genetic variance for FHB resistance, which was detrimental to the cross-

validated prediction abilities. On the other hand, it was also revealed the effectiveness of these 

methods including the usage of restriction indexes to control the indirect response to selection 

for the correlated traits earliness and plant height. Taking together, the tighter the relationship 

of the correlated traits with the trait of interest i.e. FHB resistance, the higher were the losses 

in prediction abilities. This finding was in concordance with a follow up study in durum wheat 

[40]. However taking a closer look on seasons’ contrasts, publication #2 proposed thermal 

measurements at several days post infection as additional covariates related to FHB severity. 

Such correlations were at least of moderate strength and mostly positive in all the evaluated 

years except in 2016, which was the year with the least variable temperatures in the 

inoculation plus evaluation time window (Appendices – Figure S4). It also suggests that these 

measurements were more explanatory of the variability on both training and validation sets 

than flowering time alone for FHB severity across seasons and at early stages of disease 

development. Even more, thermal patterns across years during flowering and disease 

evaluation presented drastic changes that were in correspondence with the thermal variables 

chosen as relevant explanatory features. Therefore, adjusting for this source of extra variability 

of FHB severity was the pivotal step to get further accuracy improvements in both phenotypic 

and genomic selection.  

Aside from the genetics, cultural practices or management strategies are also involved as key 

players to prevent FHB pandemics. For instance “ultra-early” planting date is an important 

management strategy for durum wheat in Canada to achieve higher attainable grain yield and 

quality and is also a matchable strategy with early maturing cultivars to diminish the 

probabilities of coincidence with the optimal conditions of FHB infection and other diseases 

[4, 111]. However West et al [112] suggested that such adaptation might have the unexpected 

consequence towards FHB. Based on simulation studies Madgwick et al [113] predicted higher 

epidemic FHB risk in the southern UK and mycotoxins levels exceeding the EU limits by 2050. 

On the other hand, [114] discussed how early flowering time winter wheat is a desirable feature 

given seasonal fluctuating conditions, plus the potential to mitigate drought stress, improve 

some logistics and crop management, and evade pest and pathogen damage specifically the 

ergot fungus, Claviceps purpurea, and orange wheat blossom midge (OWBM; Sitodiplosis 

mosellana). Most likely climate change will directly impact the prevalence and severity of FHB 

and mycotoxins concentrations in wheat crops since weather is one of the main factors 

affecting the severity of epidemics and also the proportions of the different FHB causing 

agents [112, 115]. The European Food Safety Authority (EFSA) has for instance suggested 
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that in the next 20-50 years extreme changes in rainfall/drought, elevated temperatures and 

CO2 will result in a much earlier ripening in cereals in the Mediterranean basin and central 

Europe [116]. Temperature and relative humidity are the most relevant ecophysiological 

factors influencing both fungal colonization and mycotoxin production [117]. Precisely, one of 

the manifestations of climate change is the raise in temperature [118] and this can inhibit, 

stimulate or not have any effect over fungi growth [117]. Warmer and more dry conditions for 

instance might provoke different reactions to mycotoxigenic fungi that are believed to adapt to 

changes due to their plasticity [119]. Biotic constrains like diseases affect wheat productivity 

and they must be included in the assessments of climate change studies. Several model 

simulations have been conducted [120–122], however they must be interpreted carefully and 

more studies are needed specially restricted to more locations [115]. One example are the 

prediction tools combining weather cropping practices and mycotoxins concentrations 

[DONCAST, TOOLBOX]. In general, mycotoxins increases with rainy days and days with 

relative humidity > 75% but decreases with temperatures <12 or > 32C [123]. In this light, 

Fernandes et al [124] showed a higher FHB risk factor under climate change scenarios, 

rendering the development of resistant cultivars one of the most effective measurement to 

control FHB. 

The scale on which FHB severity was assessed differed across publication 1 and publication 

2 since in the former it was presented as the average percentage taking four evaluations and 

in the latter with the area under the disease progress curve (AUDPC). This aspect turn out to 

be of great importance and there might be some indications that disease progress as AUDPC 

might be able to better represent drastic time course variations than individual scores and the 

correlations with other traits like DON concentration [125, 126]. In practical scenarios with 

large populations, FHB evaluations are done at fewer time points. Hence, special attention 

must be placed to handle those measurements as well as to come up with proper standards 

for their use and share. 

In both publications, earliness was analysed either as heading date or flowering time. Both 

heading date and flowering time are generally presented as the amount of days required to 

reach that respective stages with temperature being one of the major determinants [127]. 

Several authors agree on the switch of the quantification, report, and share of the such 

phenological records towards thermal units such as degree days (Cd) after sowing [128] or 

grown degree days GDD. Thermal time is considered a most reliable, steady and robust and 

widely accepted manner to represent HD/FT as relies on the collection of daily mean 

temperatures instead of a the number of days [129] [130]. In fact GDD has been used to 

predict anthesis date in perennial ryegrass [131] and other development stages in barley, corn 

and wheat [127, 132]. Bogard et al [133], Hyles et al [134] suggested that it is the most suitable 
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manner when conducting across-environments studies like the ones conducted by Rose and 

Kage [135] or Kahiluoto et al [136].  

Exotic taller lines considered as outliers were excluded from the analysis in the durum wheat 

panel of publication 1, which led to lessen the negative trade-off towards disease severity that 

was significant in only one of the environments. To some extent, PH played a less important 

role than heading date in that panel just in contrast to a couple of studies in hybrid [137] and 

durum wheat [40]. In those analyses PH was evaluated in trait- assisted genomic selection for 

FHB, and better predictabilities were found with authors recognizing that further 

considerations like culling or selection indexes should be adopted to counteract the above-

mentioned unfavourable trade-off. When selecting for FHB resistance the usage of selection 

indexes to mitigated the selection towards higher genotypes have been investigated in an elite 

durum wheat panel [40]. A drawback of selection indexes might though in general be that the 

eventual exclusion of the best individuals for single traits and their poor ability to control for 

inbreeding [138]. A multi-objective optimized breeding strategy that assessed the 

unfavourably trade-off of multi correlated traits in the simulated selection of parent 

combinations. Another alternative is the application of culling levels as studied in [139], who 

applied the average of the predicted plant height resulted in winter wheat genotypes smaller 

than 97 cm for improving FHB and Septoria leaf blotch resistance in Western European 

breeding material. Steiner et al 2018 additionally culled the earliest and latest genotypes in a 

durum wheat panel based on a phenotypic pre-selection followed by a genomic assisted 

selection strategy. 

In a recent published study [140] in spelt (Triticum aestivum subsp. spelta (L.) Thell.), 

significant negative correlations were found between plant height and FHB severity while 

positive coefficients were reported for anther retention and FHB severity.  From a previous 

study [141] it can be assumed that in traditional spelt wheat genes other than the Rht-B1 and 

Rht-D1 are responsible for the variation in plant height. Plant height has been hypothesized 

to play a ‘disease escape’ role from natural FHB infections via morphological and structural 

changes that led to differences in canopy microclimate [142]. It was also found a protective 

effect of tough glumes, which accumulated higher DON concentrations than those in the 

grains, towards FHB resistance in agreement with other studies in such crop [143, 144]. The 

mentioned study [140] was conducted in three European locations seasonally evaluated 

between 2016 and 2018 and evaluated a diversity panel of 80 genotypes included spelt 

landraces and modern and old varieties. It was point out in addition that modern spelt varieties 

tended to fall into the susceptible to highly FHB susceptible group, possibly due to introgressed 

Rht-alleles from bread wheat. 
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Regarding the study of correlated characters, multi-trait analyses are an interesting approach 

to better understand genetic correlations based on pleiotropy or linkage. An example is the 

general approximation of BayesCπ presented by [145] in which the genetic architecture of the 

traits can be stated via assumption of a mixture of priors, avoiding the -always violated- 

assumption that a given locus has an effect either on all traits or none of them and by allowing 

cases where a given marker has a null effect on a trait but not on the others. It was highlighted 

that the latter method can favour the prediction of highly heritable disease traits with low-

heritable traits correlated in loblolly pine [146]. A more recently study [147] tested the same 

dataset with a multi-trait Bayesian Lasso model that applies a differential shrinkage of the 

marker effects and it outperformed both the BayesCπ and MT.GBLUP models. It is expected 

that if there is a sort of homogeneity on the multi-trait vectors of the effects most methods will 

perform seemingly. On the other hand, if there are indications of certain level of sparsity, 

methods like the ones recently mentioned most likely outperformed counterparts like GBLUP. 

Moreover, it has been suggested from animal breeding studies that the accuracy of 

MT.GBLUP might be improved if marker effects are weighted by their heterogeneous 

covariances resulting from Bayesian methods [148, 149]. Genomic prediction problems are 

unique depending on the species, the trait as well as its underlying data structure it seems 

meaningless to compare the power of different prediction machines across datasets. Several 

studies have come to the common place of there is no universally best prediction machine 

[89, 102, 103, 150–153] and in some cases they can also lead to simplistic solutions if truly 

complex quantitative traits like diseases are studied. 

GS accuracies in the experiment proposed in publication 2 were in most of the cases 

beneficiated when MT.GBLUP. This approach has been called trait-assisted or CV-2 [100, 

154, 155] when the additional secondary trait’ records of the tested lines are included. This 

GS approach led to marginal accuracy increments compared to phenotypic selection only in 

one of the scenarios (TP15  VP16, PS=.59 GS=.62), however that increments were usually 

more important in comparison to indirect selection based on the assisting trait (IPS=.31 vs 

GS=.4, IPS=59, GS=.62). Selection gains were assessed in publication 1 where the most 

accurate GP model selected genotypes that were on average around 2% more resistant in 

comparison to the base model. The most efficient model to restrain the gains in the covariates 

(IDX.ST) allowed the selection of lines almost 2 days earlier flowering than genomic selection 

without considering the trade-off HD and FHB (Figure 3). Tessema et al [156], Gaynor et al 

[157] conducted simulated long-term wheat breeding programs to compare the genetic gains 

of PS vs GS and found increments up to 1.12 and 3 times higher respectively, mainly via 

increments in selection accuracy. Herter et al [139] reported an advantage of realized genetic 
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gains of 10.6 percentage for FHB resistance in a panel of 2500 winter wheat lines when 

training model with 1120 lines. Despite the former and further evidences from simulation and 

cross validated studies reporting higher accuracies for GS over conventional selection until 

this date, there is no breeding practical proof that GS increase long-term genetic gain [91, 

158]. Increasing the amount of selection cycles per time unit is crucial and it might now be 

attainable throughout methods like speed breeding [159]. Recently, Jighly et al [160], Sekine 

et al [161] showed improvements in accuracies of simulated combinations of shortening 

breeding cycles  and genomic selection for several traits in tall fescue and onion, although the 

former study also assessed the consequent side effect of a higher inbreeding rate.  

The validation scheme in the publication 2 was an attempt to mimic more realistic scenarios 

of a forward prediction compared to typical cross validated schemes. The accuracies ranged 

overall from very poor to moderate even with larger training populations, although beneficial 

effects of increasing training set sizes on prediction accuracies are well known [162–164]. 

Despite correction by season specificities, difficulties to predict FHB severity of genotypes in 

2018 by models trained with data from the previous year can be partially explained by the 

larger genetic distance as shown in a population structure analysis [Appendices – Figure S5]. 

Most precisely [165] reported prediction accuracies of new genotypes in new environments 

were lower than those obtained by cross validation, with the latter being the later 

overestimated on average by 12% for FHB resistance in European winter wheat. They echoed 

other references recommending sampling both genotypes and environments to cross-validate 

either in MAS or GS approaches. Forward validation -or prediction of genotypes’ performance 

in untested environments- schemes resulted in lower prediction accuracies compared to cross 

validated within years for grain yield in oats and barley [166]. Conversely, larger and closer-

related training sets led to better prediction accuracies for yield and quality traits in strawberry 

[167].  

In publication 2, the accuracies when predicting 2018 lines trained with sets of lines composed 

from different trials fluctuated less when corrected either by earliness or by thermal variables. 

The degree of genetic relatedness between training set and selection candidates is an 

important factor affecting accuracy [168, 169]. Despite demonstrations that enlargement of 

training sets with closely related individuals might optimize its composition, quality of the 

phenotypic records and genetic diversity of the training sets are also important criteria [170]. 

In addition, multi-objective optimizations have been envisioned in the design of training 

populations that would accordingly balance genetic diversity, relatedness and other criteria 

[138].  
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Conclusion 

The correlation of FHB severity towards earliness confirmed the ambiguity of this particular 

trade-off across the datasets analysed in this thesis. While in the durum wheat dataset the 

usage of corrected scores led to poorer cross-validated predictabilities, a similar approach 

was the most effective under independent validation scenarios across different seasons in 

winter wheat. Plant height and/or days to heading were used in the former while in the latter 

the adjustment targeted earliness and thermal variables. Therefore, an appropriate 

assessment of the genetic architecture of the traits involved in genomic prediction as well as 

the associations between them is crucial to avoid undesired side effects because of selection 

and also to get better prediction accuracies.  

Considering that anther retention has already been suggested as a trait to be selected for 

when FHB resistance is desired, here was presented one of the first demonstrations of the 

usage of anther retention as an assisting trait in genomic predictions for FHB resistance in 

wheat. Hence and more specifically, the multi-trait and across cycle genomic selection 

assessed might be seen as an appealing alternative to be further studied in wheat and hybrid 

wheat breeding programs. 

Evidence of shifting from single to multi-trait approaches in genomic prediction studies has 

been previously demonstrated and corroborated here. In the studied pathosystem, the 

accuracy of the genomic selections of lines based on the resistance to FHB must be revised 

in the light of the incorporation of additional correlated traits. This thesis has thus envisaged 

starting point alternatives when forth-coming numerous traits generated from the latest 

technologies need to be jointly analysed. 
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Figure S5. Population structure of each of the training sets (above panel) and validation sets 

(below panel). 
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