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Abstract 

Keywords: Digital Soil Mapping, Soil Organic Carbon, Soil, Land Use, Stable Soil Organic 

Carbon, Carbon Deficit, Machine Learning, Random Forest, Soil Management 

 

Climate change and mitigation measures are important topics in science and public attention 

these days. Carbon storage in soil has been claimed as one potential measure of mitigation. 

In addition, soil carbon is linked to many important soil functions. For example, it positively 

influences soil fertility and cushions the negative effect of climate change on soil attributes. 

Especially in agricultural context soil organic carbon (SOC) is a good indicator for soil health. 

Different land management techniques can be used in advisory level, to have a positive impact 

in improving SOC levels over time. For targeted action, detailed saturation or deficit maps for 

consultancy are needed. Due to the increase in availability of high-resolution environmental 

data and increase of computing power, these maps can be created cost efficiently with several 

Digital Soil Mapping (DSM) methods and with the help of related spatial environmental layers. 

Stable soil organic carbon (SSOC), soil organic carbon saturation potential (Csat) and soil 

organic carbon deficits (Cdef) are important key figures to identify areas that need 

improvement through agricultural management. To track the situation for the province of Lower 

Austria for arable and grassland soils to a depth of 20 cm, SSOC, Csat and Cdef were 

calculated for the sampling points. Subsequently, three different DSM methods were compared 

for prediction accuracy: Stepwise Regression Kriging, Random Forest and Support Vector 

Machine Learning. In addition, different sets of covariates were tested. Kriging performed best 

regarding accuracy but was too time intensive. Random Forest achieved the second-best 

results, but in a reasonable time. It was used as the method for the final prediction of SSOC, 

Csat and Cdef, in combination with all available environmental covariates’ layers including data 

from the Austrian soil map. The results were then prepared via Q-GIS into maps which can be 

used for policy making and agricultural advisory activities. In particular, these maps can be 

helpful for identifying areas, where soil health can be improved through change in 

management. This would improve soil fertility, increase water retention and hinder soil erosion. 

The point data which is used for prediction was gathered 1990/91. Therefore, the final 

prediction maps will only give a baseline map for further research and later comparison.  
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Zusammenfassung 

Schlüsselwörter: Digitale Bodenkartierung, Organischer Kohlenstoff im Boden, Boden, 

Landnutzung, Stabiler organischer Kohlenstoff im Boden, Kohlenstoffdefizit, Maschinelles 

Lernen, Random Forest, Bodenmanagement 

Der Klimawandel und Klimaschutzmaßnahmen sind heutzutage ein wichtiges Thema in den 

Nachrichten und wissenschaftlichen Veröffentlichungen. Dabei ist die Kohlenstoffspeicherung 

im Boden eine mögliche Gegenmaßnahme. Darüber hinaus ist der Bodenkohlenstoff mit vielen 

wichtigen Bodenfunktionen verknüpft. Zum Beispiel beeinflusst er die Bodenfruchtbarkeit 

positiv und federt die negativen Auswirkungen des Klimawandels auf die Bodeneigenschaften 

ab. Insbesondere im landwirtschaftlichen Kontext ist organischer Kohlenstoff im Boden (SOC) 

ein guter Indikator für die Bodengesundheit. Verschiedene Landmanagement-Techniken 

können in der Beratung eingesetzt werden, um SOC-Werte im Laufe der Zeit positiv zu 

verbessern. Dazu sind detaillierte Karten für die Beratung erforderlich. Aufgrund der 

zunehmenden Verfügbarkeit von hochauflösenden Umweltdaten und der Zunahme der 

Rechenleistung können diese Karten kosteneffizient mit verschiedenen Methoden der 

digitalen Bodenkartierung (DSM) und mit der Hilfe verschiedener räumlicher Umweltlayern 

erstellt werden. Stabiler organischer Kohlenstoff im Boden (SSOC), Sättigungspotential des 

organischen Kohlenstoffs im Boden (Csat) und Defizite des organischen Kohlenstoffs im 

Boden (Cdef) sind wichtige Kenngrößen zur Identifizierung von Gebieten, die durch 

landwirtschaftliches Management verbessert werden müssen. Um die Situation für das Land 

Niederösterreich für Acker- und Grünlandböden bis zu einer Tiefe von 20 cm zu erfassen, 

wurden SSOC, Csat und Cdef für die Probenahmepunkte berechnet. Im Weiteren wurden drei 

verschiedene DSM-Methoden zur Vorhersage getestet. Es handelt sich dabei um Stepwise 

Regression Kriging, Random Forest und Support Vector Machine. Darüber hinaus wurden 

auch verschiedene Sets von Kovariaten getestet. Kriging schnitt hinsichtlich der Genauigkeit 

am besten ab, war aber zu zeitintensiv. Random Forest hatte die zweitbesten Ergebnisse, bei 

geringerer Rechendauer. Er wurde als Methode für die endgültige Vorhersage und in 

Kombination mit allen verfügbaren Umweltlayern einschließlich der Daten aus der 

österreichischen Bodenkarte verwendet. Dabei wurden SSOC, Csat und Cdef vorhergesagt. 

Die Ergebnisse wurden dann in Q-GIS zu Karten aufbereitet, die für politische Entscheidungen 

landwirtschaftliche Beratungstätigkeiten verwendet werden können. Insbesondere können 

diese Karte bei der Identifizierung von Gebieten hilfreich sein, in denen die Bodengesundheit 

durch Managementveränderungen verbessert werden kann. Dies würde die 

Bodenfruchtbarkeit verbessern, die Wasserrückhaltung erhöhen und die Bodenerosion 

verhindern. Die Punktdaten, die für die Vorhersage verwendet werden, wurden 1990/91 

gesammelt. Daher sind die endgültigen Vorhersagekarten nur eine Basiskarte für weitere 

Untersuchungen und spätere Vergleiche. Zusätzlich sind sie erste Referenzkarten für 

Beratungstätigkeiten bis zur Entnahme neuer Bodenproben. 
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Abbrevations 

BZI  Soil Status Inventory (German: Bodenzustandsinventur) 

C   Carbon 

CEC  Cation exchange capacity 

Cdef   Carbon deficit 

CH4  Methane 

Csat   Carbon saturation potential 

Cstock  Carbon stock 

COV  Covariate 

DSM  Digital soil mapping 

E   East 

eBOD  Austrian digital soil map 

f<20 μm Mineral particle fraction <20 μm 

GHG  Greenhouse Gas Emissions  

fsilt   Fine silt fraction (2–20 μm) 

N2O  Nitrous oxide 

R  Programming language for statistical computing and graphics 

RK  Regression Kriging 

RF  Random Forest 

SOC   Soil organic carbon 

SOCS  Soil organic carbon stocks Mg ha-1 

SOM   Soil organic matter  

SSOC  Stable soil organic carbon 

TWI  Topographic Wetness Index 

 



1 

1 Introduction 

Carbon (C) is one of the essential elements for life on earth (Hazen et al., 2012; Oró et al., 

1990). Through the extraction and burning of fossil carbon, humanity released huge amounts 

of carbon dioxide (CO2) into the atmosphere (Le Quéré et al., 2009; Zeebe et al., 2016). 

Besides the massive benefits for cheap energy and consequently increased wealth and 

development, it massively influenced the global carbon cycle and led to global warming, which 

is threatening our livelihood (Roston, 2010). The global C cycle divides into atmospheric, 

marine and terrestrial sub cycles, with different pools and different residence times of C, which 

are interlinked through C-dynamic processes (Battin et al., 2009; Dawson and Smith, 2007; 

Heimann, 1993; Post et al., 1982; Schimel, 1995). The largest terrestrial organic C pool is soil 

with ~1,500 Pg C to a depth of 1 m and ~ 2,400 Pg C to 2 m depth (Batjes, 1996), compared 

to that, the current amount of C stored in the atmosphere as CO2 is currently one third (~830 

Pg C) of it. The annual fossil fuel emissions with 10 Pg are less (Ciais et al., 2013). Therefore, 

it underlines the importance of preservation and if possible, an increase of the soils organic C 

pool. Through intensive agricultural use, land use change and degradation SOC pools losses 

are estimated at around 456 Gt until 2010 with no significant reduction until now (Houghton et 

al., 2012; Ruddiman, 2003). Additionally with intensive agriculture and change of land use 

higher methane (CH4)  and nitrous oxide (N2O) as GHG emissions have to be taken into 

account (Paustian et al., 2016) 

Part of the terrestrial pool is soil organic matter (SOM). It can have turnover times in soil ranging 

from weeks to several decades, depending on its chemical origin and environmental conditions 

(Schmidt et al., 2011). SOM can be subdivided in following measurable pools. biochemically-

protected, silt- and clay-protected, microaggregate-protected and unprotected C pool (Six et 

al., 2002) and, in turn part of the different SOM pools are SOC. The internationally accepted 

operational definition of SOC is the organic carbon present in the fraction of the soil that passes 

through a 2 mm sieve (Whitehead and Tinsley, 1964), which is the fine earth fraction. The silt- 

and clay protected part of SOC is called stable soil organic carbon (SSOC) (Angers et al., 

2011). Hassink et al. (1997) proposed the concept of soil carbon saturation potential (Csat) 

based on the particle fraction <20 µm (clay + fine silt), with a least-squares linear regression. 

This was confirmed by Angers (1998) and by Stewart et al. (2007). Feng et al. (2013) 

recalculated Csat for different soils with a upper boundary line. This showed that due to the 

variance in soil condition no universal formula for calculation should be used. Instead it should 

be calculated based on regional information. The Csat can then be used to calculate the soil 

carbon saturation deficit (Cdef) through subtraction with SSOC (Angers et al., 2011), in order 

to evaluate areas for long term carbon management and to use the calculated value of Cdef 

in policy decision making (O'Rourke et al., 2015). It was then further discussed how to use 

Cdef for the “4 per 1000 initiative” to increase global carbon stocks (SOCS). It was proposed 

to aim for an attainable model, based on Cstock values, because of the asymptoticly 

enrichment of SSOC (Barré et al., 2017; Lal, 2016a). 

This study, however, will focus on the SSOC, Cdef and Csat parameters because of the lack 

of bulk density information in our data set and research area. In the following three different 

digital soil mapping (DSM) techniques were tested and the three parameters for agricultural 

and grassland soils of Lower Austria from 0 – 20 cm were spatially predicted. The predictions 

with environmental covariates (COVs) are based on the soil forming factors principle (Jenny, 
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1941) which were recently adapted to the S.C.O.R.P.A.N. factors for DSM by (McBratney et 

al., 2003). This approach differentiates from the traditional approach of reference areas 

(“Landesmusterstücke und Referenzprofile”) and is using spatial data. The final goal is to 

create maps that will help policymakers and advisors to define long-term and small-scale local 

measures for farmers to increase SSOC in the soil.  

The following research questions are defined and tested within this study 

- Do high resolution predictions of SSOC, Csat and Cdef with environmental covariates 

delivers usable maps of acceptable accuracy and resolution? 

- Will covariates of the Austrian soil map significantly improve SSOC, Csat and Cdef 

predictions? 

- Does land use have a major influence on Cdef? 

2 Materials and Methods 

2.1 Material 

 Study Area 

The study area is confined by the province of Lower Austria. It has a total area of 19,186 km². 

In the year of 2018 675,295 ha were used as arable land and 167,626 ha as permanent 

grassland (Statistik Austria, 2018). In this study, only areas with this type of land use are 

utilized. The targeted areas and their spatial distribution can be seen in Fig.2-1. In the 

Weinviertel, north-east of Lower Austria, mainly arable land is dominant. South, at the foothills 

of the Alps, grassland is dominant. North-west in the Waldviertel arable and grassland is 

equally distributed. 

Figure 2-1 Land use in Lower Austria assigned to arable and grassland 
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Lower Austria’s climate varies from a dry continental lowland climate in the northeast to a 

continental highland climate in the northwest. The Marchfeld and Viennese basin in the east 

have a Pannonian climate with low precipitation and hot summers, but only moderately cold 

winters. The remaining area can be defined as alpine transition climate and mountain humid 

climate in the southwest (Niederösterreich, 1994; Strauss et al., 2013). This can be seen in the 

following maps with average temperature of 8,5°C Fig.2 -2 and the average precipitation Fig.2-

3 of the last Climate Normal from 1971 to 2000 (Hiebl et al., 2011). 

Figure 2-2 Mean Temperature map of Lower Austria 
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Figure 2-3 Mean Precipitation map of Lower Austria 

The geology of Lower Austria is very diverse. From the northwest it starts with the Bohemian 

Massif in the Waldviertel, followed by the molasse zone in the south and east and transitioning 

to the Alpine Massif in the south west. The Alpine Massif is divided into the Flysch zone, the 

Calcareous Alps and in the southern Greywacke zone. Located in the southwest is the central 

Alp Massif. The east of Lower Austria is characterized by the alluvium of the Danube with the 

Vienna Basin and Marchfeld nearby (Wessely and Draxler, 2006). 

The described geological variation is reflected by the soil upon see Fig-2-4 through soil forming 

from parent rock. The Weinviertel and Marchfeld soil has mainly Tschernosem (Chernozems) 

with some parts of Feuchtschwarzerde (Gleyic Phaeozem) and Braunerde (Cambisols). Near 

rivers and the Danube there is alluvial soil (Fluvisols) present. The Waldviertel soils are mainly 

Podsols (Albic Podsols), Braunerden (Cambisols) and Parabraunerden (Luvisols) and some 

Pseudogleye in the northern part. The major soil types in the Flysh zone and the Mostviertel 

are Pseudogleye (Stagnosols) and Parabraunerden (Luvisols). In the mountainous parts int 

the south south-east of Lower Austria Rendzina are the common soils. In the Industrieviertel 

southeast of Vienna the soils are very divers, ranging from Feuchtschwarzerden (Gleyic 

Phaeozem) to Pararendzina, Tschernosems (Chernozems) and Podsols (Albic Podsols), 

amongst others. The translations in brackets are according to the international soil 

systematics, IUSS Working Group WRB, 2006. 
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Figure 2-4 Soil map of Lower Austria 

 Software 

Different software was used for data preparation and prediction. The data preparation of 

covariates was performed with QGIS 3.4, ArcGIS Map 10.6.1 and with R 3.6.1 in R-Studio. 

The prediction models were executed with R in R-Studio.  

 Data 

To predict the different soil parameters SSOC, Cdef and Csat several data types are needed: 

first, point data with laboratory sample information and coordinates; second, different 

environmental spatial data sets covering the survey area; third, a boundary mask to enclose 

the survey area and last a mask defining the insides of the studies boundary, in this case 

defining arable land and grassland. 

2.1.3.1 Point Data  

The point data’s source is the soil inventory of Lower Austria from 1991/92 (Niederösterreich, 

1994). Sampling locations had been arranged in a regular, 3.9 x 3.9 km grid system. Out of 

1730 sampling locations in agricultural land (i.e., arable and grassland), only 1449 had been 

realised, because parts of the grid knots were located in areas which were inaccessible or 

covered (sealed) by infrastructure. In this study, only samples of a depth of 0 − 20 cm were 

considered, resulting in 1300 sample points in total. 
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In arable land (576 locations), soil samples had been collected from the depth increments 

0 − 20, 20 − 40 and 40 − 50 cm. In the centres of each grid cell (consisting of four regular nods) 

topsoils had been sampled from 0 − 20 cm depth, resulting in 575 additional locations in arable 

land, and 149 samples in grassland areas. At the regular grid locations, samples had been 

pooled for each depth increment from four subsamples collected in open soil pits located within 

a circle area of 314 m2 around the grid not. Sampling at additional locations had been pooled 

from 20 subsamples collected with a Pürckhauer corer. Soil sampling took place in the period 

from May 1990 till May 1992.  

Samples had been air-dried and passed through a 2 mm screen. The fine earth fraction 

(< 2 mm) had been analysed for the following characteristics: 

- textural classes sand (2000 − 63 µm), silt (63 − 2 µm) and clay (< 2 mm) using a 

combined sieving and sedimentation method after dispersion with sodium 

pyrophosphate, and – at humus contents > 50 g kg-1 − pre-treatment with H2O2 

(ÖNORM L 1061); 

- soil organic matter (SOM) using wet oxidation with K2Cr2O7 solution and 

concentrated sulfuric acid and subsequent colorimetric measurement of the 

resulting Cr(III) (ÖNORM L 1081). 

Soil sampling and analysis had been conducted by the former Bundesanstalt für 

Bodenwirtschaft, Vienna. 

2.1.3.2 Environmental spatial data 

For spatial prediction, different environmental variables are needed. These should be assigned 

to the S.C.O.R.P.A.N. factors for digital soil mapping (DSM) (McBratney et al., 2003) which 

are extended soil forming factors (Jenny, 1941). SOC relation to the environment is a broadly 

discussed field of interest (Lal, 2016b; Ramesh et al., 2019; Wiesmeier et al., 2019). 

These factors are, for example, topography (Cardinael et al., 2017), climate (Muñoz- Rojas et 

al., 2017), soil type (Zhao et al., 2006), soil sampling depth (Li et al., 2017) mineralogical 

composition (Dwivedi et al., 2017), soil biota (Komarov et al., 2017), land use and management 

practices (Li et al., 2017;Wang et al., 2017a,b). Wiesmeier et al. (2019) summarized these 

drivers and indicators specially for SOC storage in context of prediction purposes. 

Based on the scientific work described in the upper section and on the data availability the 

following covariates were selected and used (Table 1).
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Table 1: Environmental variables used in the prediction of SSOC, Csat and Cdef 

Variables Definition and formula Value Resolution Source 

Topography 

 

 

  

Digital Elevation Model (DEM) Elevation = Height above sea level m meter 10x10m Land Niederösterreich 

(https://www.data.gv.at/katalog/dataset/la

nd-noe-digitales-hohenmodel-10-m) 

Aspect Inclination direction of the maximum rate of 

change of the value of one cell compared to its 

neighbouring cells 

° degree to north 10x10m Calculated from DEM 

Slope rate of change of elevation for each DEM cell. 1. 
Derivative of the DEM. 

% 10x10m Calculated from DEM 

Curvature 2. Derivative of the DEM. 4.- Order polynomial of 

the 3 x 3 window around the cell. 

  𝑍 =  𝐴𝑥2𝑦2 +  𝐵𝑥2𝑦 +  𝐶𝑥𝑦2 +  𝐷𝑥2 +  𝐸𝑦2 +

 𝐹𝑥𝑦 +  𝐺𝑥 +  𝐻𝑦 +  𝐼 

dimensionless 10x10m Calculated from DEM 

Roughness Rate of irregularity of the surface.  The dispersion 

of vectors normal to surface areas (pixels). Normal 

vectors are defined by slope and aspect. 

% 10x10m Calculated from DEM 

Topographic Wetness Index (TWI) 
𝑇𝑊𝐼 = ln (

𝑢𝑝 − 𝑠𝑙𝑜𝑝𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎

tan(𝑠𝑙𝑜𝑝𝑒 𝑎𝑛𝑔𝑙𝑒)
 ) 

hydrological flow paths /potential runoff generation 

dimensionless 10x10m Calculated from DEM 
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Soil Variables (eBod mask only)     

Texture Classes Soil texture classes Category Polygon Austrian Digital Soil Map, Bfw (2019)  

Sand % of total mineral soil % Polygon Austrian Digital Soil Map, Bfw (2019)  

Silt % of total mineral soil % Polygon Austrian Digital Soil Map, Bfw (2019)  

Clay % of total mineral soil 

 

% Polygon Austrian Digital Soil Map, Bfw (2019)  

Soil Type  Austrian Soil Type System Category Polygon Austrian Digital Soil Map, Bfw (2019)  

pH -log10 a (H+) 0 − 14 Polygon Austrian Digital Soil Map, Bfw (2019)  

Lime % of soil % Polygon Austrian Digital Soil Map, Bfw (2019)  

SOM Balance In relative categories from 1 to 6 Category Polygon Austrian Digital Soil Map, Bfw (2019)  

SOM Value In relative categories from 0 to 5 Category Polygon Austrian Digital Soil Map, Bfw (2019)  

Permeability In relative categories from 0 to 9 Category Polygon Austrian Digital Soil Map, Bfw (2019)  

Bedrock 

 

Named Bedrock Types Category Polygon Austrian Digital Soil Map, Bfw (2019)  

Field capacity  In relative categories from 1 to 4 Category Polygon Austrian Digital Soil Map, Bfw (2019)  

Climate     

Precipitation Mean yearly precipitation 1971 - 2000 mm  300x200 m Austrian Climate Data, Hiebl et al. (2011) 

Radiation Mean yearly precipitation 1971 - 2000 kWh/m² 250x250 m Austrian Climate Data, Hiebl et al. (2011) 

Temperature Mean yearly precipitation 1971 - 2000 °C 300x200 m Austrian Climate Data, Hiebl et al. (2011) 

Vegetation/anthropogenic factors     

Corine Land Cover 1990 (CLC) Nomenclature with 27 classes Category Polygon Umwelt Bundesamt 

(https://www.data.gv.at/katalog/dataset/9

e60aeed-ddfa-4be8-b647-

b67ab96880ff=) 

Geology Geological Map of Austria Category Polygon Metallogenetischen Karte von Österreich 

1:500.000“ (GBA, L. Weber 1997). 
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2.1.3.3 Masks and Boundaries 

The study area is confined by the Lower Austria’s administrative boarders within a scale of 

1:1000 (Land Niederösterreich, 2019). The area for prediction is determined through land use 

of grassland and agricultural land. Depending on the used covariate layers, two different masks 

were applied. One was the “INVEKOS Feldstücke” (AMA - AgrarMarkt Austria, 2019) data set. 

The other one was created from the land use layer of the digital soil map of Austria (Bfw, 2019). 

The second mask needed to use e-Bod data as covariates because of the different spatial 

expanses and missing areas compared to the INVEKOS boundaries. In contrast has the land 

use layer of the eBod data set has disadvantages, as not being up to date and not using single 

polygons to differentiate every field from each other. Both land use datasets had to be 

processed before use. Therefore, the different types of land use were generalised into 

grassland and agricultural land. Categories, not fitting to ones mentioned before were deleted. 

The R-Code for this can be found in the Appendix. 

2.2 Data pre-processing 

For the prediction, data pre-processing is needed. The pre-processing directly influences the 

quality and accuracy of the prediction. 

 Covariate pre-processing 

Covariates are the main elements for successful DSM. To use different spatial layers from 

different sources, pre-processing of each COV-layer is needed in order to use them for 

prediction. This pre-processing is divided in several tasks. These are: selecting, acquiring and 

masking to the same extent, reprojection, rasterizing to one conform grid size and for 

categorical COVs, creation of Dummy Variables. This was done twice, creating a separate 

stack for each mask. Therefore R-Studio, Q-GIS and ArcGIS were used for data processing, 

depending on the program’s performance for the task. The Dummy Variable creation is 

necessary for COVs with non-numerical categorical data, so they can be used with the different 

machine learning algorithms. A single raster layer for each class was created indicating the 

presence of the respective class type at each cell location. 

 Point Data spatial processing 

The correct spatial positioning of the BZI datapoints was checked. Three points had wrong 

coordinates and were located outside of lower Austria. These points are erased from the 

dataset. After that the sample point location was compared with the two different masks. For 

each mask a set of points was created. Each set of points was then compared to the 

corresponding mask. More than 98% of the non-matching points, where less than 20 meters 

off. Therefore, points, which weren’t inside the mask were relocated to the closest raster cell, 

but only if in a radius of 35 m. Considering the inaccuracies of GPS and the 10 m sampling 

radius, only points in a radius of 35 m were relocated. The R-Code can be found in the 

appendix at section “Point Calculation”. Each set of points was then split into a training and a 

validation set. 75 % of the points were used for training, 25 % for testing/validation of the 

prediction. This operation was conducted with R-Studio via a self-written code. 

In the following you can see the comparison of point SOC distribution for the training and 

validation sets. Figure 2-5 shows the distribution for the eBOD mask. Figure 2-6 shows the 



10 

distribution for the Invekos Mask. Each divided data set had nearly the same SOC distribution 

with only minor deviations. This approves both to be used use as train and test data. 

 

Figure 2-5 Statistical SOC Value distribution of the eBod datasets training and testing split 

Figure 2-6 Statistical SOC Value distribution of the Invekos datasets training and testing 

split 

 Calculation of Derived Soil Variables 

Before a prediction could be made, continuative soil variables of the original sample points had 

to be calculated. In the following the different calculations are explained. The calculation code 

can be found in the Appendix. 
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2.2.3.1 Calculation of SOC 

The initial values of SOC for estimation are derived by dividing the measured soil organic 

matter (SOM) by the widely accepted Van Bemmelen factor of 1.724. To account for the 

differences between organic carbon measured by wet oxidation and combustion-based total 

elemental analysis, the data was corrected using a factor of 1.2 determined for Austrian soils 

(Gerzabek et al., 2005), yielding the SOC data as further used in this study. 

2.2.3.2 Calculation of stable soil organic carbon (SSOC) 

Stable soil organic carbon (SSOC) was calculated by multiplying SOC with the factor 0.85 

(Angers et al., 2011) to correct for organic carbon not bound to the fine textural fraction 

f < 20 µm (i.e., particulate organic matter). This factor is based on the analysis of French 

topsoils and corresponds well with SSOC proportions in other European soils and data from 

literature reviews (Angers et al., 2011). 

2.2.3.3 Calculation of the particle fraction < 20 µm (f<20µm) 

Predicting Csat from soil textural data according to Hassink et al. (1997) or Feng et al. (2013) 

requires information on the fraction <20 µm (f < 20 µm). As the Lower Austrian soil database 

only provides information on the clay (f < 2 µm), silt (f 2 − 63 µm) and sand (f63 − 2000 µm) 

fractions, Wenzel (unpublished) used published data from various other sources (Alge, 1993; 

Bröcker and Nestroy, 1995; Jandl, 1987; Katzensteiner et al., 2001; Mentler et al., 2001; 

Nelhiebel et al., 2001; Nestroy et al., 2001; Rampazzo et al., 2001; Schneider et al., 2001; 

Strauss et al., 2001) to establish a regression equation predicting f < 2 − 20 µm (g 100 g-1) from 

measured f < 63 µm (g 100 g-1): 

f < 20 µm =  0.3171 (±1.1547) ∗  f < 63 µm1.1647 (±0.0358) 

(n=258; R2 = 0.8053; RMSE = 1.3491) 

Equation 1 (Wenzel, unpublished) 

The fraction f<63µm was calculated as the sum of the measured clay (f< 2 µm) and silt 

(f 2 − 63 µm) fractions. The database for predicting f < 20 µm covers soils of different land use 

(arable, grassland, forest) and various major WRB soil groups (reference), including Leptosols, 

Fluvisols, Gleysols, Chernozems, Phaeozems, Podsols, Stagnosols, Umbrisols, Cambisols, 

Regosols. Most data originate from soils collected in Lower Austria or neighbouring provinces. 

It includes data from different soil horizons as preliminary calculations showed no relevant 

difference between data subsets of different soil depth. 

2.2.3.4 Calculation of Csat 

Wenzel (unpublished) employed three different regression models to calculate Csat from the 

particle size fraction < 20 µm (f < 20 µm): Hassink´s least squares linear regression, the upper 

boundary line equation of Feng et al. (2013) using their parameters obtained for 2:1 mineral 

soils, and an upper boundary line equation calculated from his own grassland topsoil 

(0 − 20 cm) data. The regression line obtained with his data (Csat = 1.227(±0.0625) f < 20 µm; 

R2=0.9872; R2adj=0.7872; RMSE=6.7003, p<0.005; n=6) indicates a considerably higher 

saturation potential than obtained with the parameters for 2:1 minerals reported by Feng et al. 
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(2013) , and those of  Hassink et al. (1997). Figure 2-7 shows a plot of SSOC against f < 20 µm 

along with the carbon saturation potentials as calculated via the three models. 

 

Figure 2-7 Csat regression line comparison (Wenzel, unpublished) 

2.2.3.5 Calculation of Cdef 

At last Cdef was calculated as the difference between Csat and SSOC values for each 

individual sampling point (Angers et al., 2011) 

2.3 Mapping techniques 

To spatially estimate SSOC, Csat and Cdef, several geostatistical methods are possible. In 

the scientific field of Pedometric mapping a huge variety of methods are used − like Support 

Vector Machines, Random Forest, Generalized Additive Models, Boosted Regression Trees, 

Artificial Neural Networks and more (Bhunia et al., 2018; Dai et al., 2014; Liu et al., 2015; Ma 

et al., 2019; Nayak et al., 2019; Padarian et al., 2019; Pouladi et al., 2019; Taghizadeh-

Mehrjardi et al., 2020).  

In this study Stepwise Regression Kriging, the Random Forest Regression Tree Method and 

Support Vector Machines were tested, which in general have good performances (Pouladi et 

al., 2019). They are also proposed in the Soil Organic Cookbook (Yigini et al., 2018) and two 

of them were recently used to make a high resolution Csat map of France (Chen et al., 2018). 

In addition, they are relatively easy to handle with R and they have the same requirements for 

environmental spatial layers. These are based on the McBratney et al. (2003) S.C.O.R.P.A.N. 

Principle for Digital soil Mapping, which is described by the soil environmental spatial 

relationship and its correlation. The original principle was developed by Jenny (1941) as the 

soil forming equation. 
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The main goal was to predict three different soil characteristics for Lower Austria. Therefore, 

the best set of covariates and the best prediction method should be used. To narrow down the 

amount of work, a pre-test was conducted to choose one prediction method. It was tested if 

there is a significant difference in the results by adding COVs from the eBOD, because of its 

own generalized soil description and consequently close relation to soil variables. Additionally, 

the impact on the results accuracy by factor COVs needing a conversion into dummy variables 

was determined. 

In the following the three methods which were tested are described. 

 Stepwise Regression Kriging 

Stepwise Regression Kriging is a hybrid method combining a multiple regression model with 

kriging of the prediction residuals. The relationship between the multiple COVs and the target 

variable to be predicted is modelled by the multiple regression equation. This equation is then 

used to predict the unknowns of the target variable via kriging the residuals (Minasny et al., 

2017; Yigini et al., 2018). Kriging is a geostatistical interpolation method with the help of kriging 

weights. These are dependent on the applied kriging method (Wackernagel, 1995). Stepwise 

kriging means that the COVs regression model is refitted by removing or adding COVS and 

testing the model performance via F-test or T-test. Later collinearity among the models' COVs 

is tested using variance inflation factors. Failing COVs are excluded from the model. The fitted 

model, in our case, the regression equation, predicts the dependent variable using a linear 

function of the independent variables (Fig 2-8). The predictor consists of the values of the 

different COVs. The coefficient is calculated with multiple regression, reflecting the importance 

of each COV for the dependent variable. 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + … + 𝛽𝑛𝑋𝑛 + 𝜀  

𝑌 = 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒; 𝛽𝑛 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 𝑋𝑛 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠;  𝜀 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠   

Equation 2 (Yigini et al., 2018) 

Before using the model for kriging, the following assumptions had to be checked to improve 

the predictions accuracy: normality of the variable of interest; test COV for collinearity; delete 

one of the high correlating COVs. 

 Random Forest 

Another tested method was Random Forest. It is a machine learning method based on many 

decision-tree models, which together assemble a “forest” (Breiman, 1998). DSM is an often 

used method to predict dependent variables (Chen et al., 2018; Pahlavan Rad et al., 2014; 

Poggio et al., 2013; Wiesmeier et al., 2011), like SOC through COVs. RF splits the main data 

set into uniform classes based on their distribution and variability. This is called Bagging, which 

is a bootstrapping technique. (Breiman, 2001). Each tree represents randomly selected sub-

samples from the data. The number of COVs used for each tree (mtry) and the number of trees 

in the forest (ntree) varies for each data set and is internally re-calculated for each prediction 

based on error stabilisation. Through out-of-bag cross validation the relative importance of 

each COVs can be determined internally. This gives the advantage of a relative high 

robustness against outliers and overfitting through averaging over large number of trees and 

yields estimates about the variable importance of the different predictors (Breiman, 2001). The 
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importance of the prediction factors is then used to give statistical weights to the different trees. 

Thereon the final prediction result is the average over all aggregated trees. 

 Support Vector Machines 

SVM is a machine learning technique which maps input vectors, in the given case the COVs, 

in a non-linear relation through a high dimension feature space. Therefore it uses the help of 

kernel functions (Cortes and Vapnik, 1995). It is widely used to solve classification problems 

but also suitable to solve regression problems (Guevara et al., 2018). In the case at hand the 

linear model is set into a high dimensional feature space. It creates n-hyperplanes through n-

dimensional spectral space, separating numerical data based on a kernel function. The planes 

shape is defined by the SVM parameters gamma, cost and epsilon, to divide the data and to 

set tolerances. Epsilon defines the insensitive-loss function. Higher epsilon values mean that 

larger errors while tuning the model, are not penalized. Cost regularizes the optimization model 

with the help of constrains of the Lagrange formulation. Gamma is the parameter of a Gaussian 

Kernel to handle non-linear classification. The best model is selected with the help of cross-

validation of the mean squared error. Therefore, the best combination of cost and epsilon is 

selected. The support vector falls within each hyperplane, where the linear model is fitted to 

the vectors. Later this is used to predict the missing values (Yigini et al., 2018). 

2.4 Validation 

For validation the previously split test-dataset was used to calculate the error of the predictions 

at the test dataset location. Therefore, the predicted values of each map were extracted at the 

test-data point locations and then subtracted from the measured test-data values. Proceeding 

five map quality measures were calculated for each prediction: the mean error (ME), mean 

average error (MAE), mean squared error (MSA), root mean squared error (RMSE) and the 

amount of variance explained (R² or AVE). In addition, scatterplots were plotted for the three 

prediction methods. For the final prediction of all three soil parameters scatterplots were plotted 

as well as error bubble maps to visualize the spatial distribution of the prediction errors. 

Additionally, boxplots for comparison of the predictions values related to land use were 

created. This was accomplished in Q-GIS with the help of the zonal statistics function. For 

each land use polygon of the eBOD data the mean of enclosed raster cells of the prediction 

was calculated. For the final prediction the variable importance of used COVs is calculated. It 

indicates how much the removal of each unique COV reduces the model’s accuracy and 

expresses the importance of each COV in the predictive model. 
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2.5 Workflow 

In Figure 2-8 the order of the necessary tasks for this studies prediction can be seen.  

3 Results 

3.1 Prediction Method Selection 

Digital Soil Mapping offers several different methods to predict soil characteristics. To narrow 

down available options pre-selected methods from the Soil Organic Cookbook were tested and 

compared (Yigini et al., 2018). 

Used Covariates are: Digital Elevation Modell, Precipitation, Radiation, Temperature, Aspect, 

Slope, Curvature, Roughness and Topographic Wetness Index (TWI). 

To validate the results, the prediction error (Table 2) was calculated with the help of previously 

separated test points. 

Table 2 Validation of the prediction error (PE) for Regression Kriging (RK), Random Forest (RF) 

and Support Vector Machine (SVM) 
 

PE − RK PE − RF PE − SVM 

Min. -18.9435 -18.9608 -18.69129 

1st Quantile -0.7577 -0.8393 -0.93415 

Median 0.1056 0.1249 0.05542 

Mean -0.3184 -0.4285 -0.43345 

3rd Quantile. 0.6745 0.8309 0.76071 

Max. 16.6593 3.7536 3.76603 

Figure 2-8 Workflow Diagram of this studies prediction 
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Figure 3-1 shows the Regression line with the 1:1 line for each prediction, showing promising 

results for RF and SVM and more pronounced deviation for the RK prediction. 

Figure 3-1 Scatterplot of predicted versus observed SSOC content for the three different 

predictions with Regression Kriging (rk), Random Forest (rf) and Support Vector Machines 

(svm), blackline represents the 1:1 line of prediction versus observed, the blue line represents 

the regression between observed and predicted values  

Comparing the prediction error statistics of the three prediction methods in Table 2 shows that, 

regression kriging (RK) has the lowest mean prediction error of -0.3184, followed by random 

forest with -0.4285 and at last support vector machines with slightly worse results of -0.43345. 

It seems that RK overestimates in the prediction more than the other two methods, see Table 

2 in the row Max prediction error. In Figure 3-1 the Scatterplot of the three predictions is 

displayed with the 1:1 line and the regression line. Random Forest and Support Vector 

Machine represents there better the observed values with their prediction than Regression 

Kriging. Random Forest was chosen over regression kriging due to superior processing speed 

and lesser pre-prediction preparation. It also performed slightly better than SVM. 

3.2 Prediction with RF 

Map quality measures are calculated from the prediction error to select the final set of COVs. 

Table 3 shows the statistics of the different RF predictions. The Soil map (eBod) (e) covariate 

layers significantly improve the R² of Csat and Cdef prediction compared to the predictions 

utilizing only the Invekos (i) layers. For example, Cdef_i_ofk_rf 0.475 compared to 

Cdef_e_ofk_rf 0.613. The R² shows the major improvement of the prediction by using the 

additional eBod covariates. R² continuously remains above 50 for Csat and Cdef predictions 

with the eBod layers, as seen in Fig. 3.2. and 3.3. in contrast to the SSOC results in Fig. 3.4. 

Comparing only the SSOC prediction the eBod covariates provided also a better result 

compared to the Invekos only predictions. But for the SSOC prediction, the eBod COVs didn’t 

significantly improve the prediction compared to Invekos prediction. Also, the use of categorical 

COVs improved the prediction for all three variables. Potential problems with the converted 

Dummy Variables were ruled out via successful testing of predictions with and without 

categorical COVs. For example, to high cardinality of the variables can cause overfitting and 
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hence deterioration of the prediction results. These results deviate from the statistics results in 

3.3, due to minor changes in the final predictions calculation and changes in the point 

calculation. 

Table 3 Pre-Prediciton testing the different covariate combinations with Random Forest, 

colours indicating the performance of each error value within each prediction relatively, green 

= good, red = poor ( e = with eBod COVs, i = Invekos COVs only, fk = with 

 e i fk ofk ME MAE MSE RMSE R² 

C
d

e
f 

x  x  -0.885 8.350 115.290 10.683 0.627 

x   x -0.797 8.532 118.980 10.889 0.613 
 x x  -0.645 10.016 157.718 12.559 0.496 
 x  x -0.688 10.415 164.405 12.822 0.475 

  
    

     

C
s

a
t 

x  x  -1.054 8.388 117.979 10.807 0.599 

x   x -0.925 8.492 121.165 10.989 0.586 
 x x  -0.874 10.433 169.146 13.006 0.453 
 x  x -0.858 10.820 179.065 13.382 0.421 

      
     

S
S

O
C

 x  x  -0.459 1.321 9.605 3.084 0.304 

x   x -0.452 1.394 10.455 3.228 0.237 
 x x  -0.435 1.392 7.126 2.670 0.302 
 x  x -0.464 1.454 7.791 2.791 0.237 

Standard deviation of different mask for prediction  

Variations in the different predictions can be found in the following density plots, visualizing the 

standard deviation. A difference was visible for the Cdef and Csat plots (Fig. 3-2; 3-3), which 

is based in the usage of eBod or Invekos set of COVs. In the SSOC prediction (Fig. 3-4) the 

differences are neglectable. The addition of soil map COV made a significant impact for Cdef 

and Csat. 

Figure 3-2 Density plot Cdef prediction with RF 
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Figure 3-3  Density plot Csat prediction with RF 

Figure 3-4 Density plot SSOC prediction with RF 

Out of these predictions the best COVs and mask combination was selected to predict the final 

SSOC, Csat and Cdef maps with random forest. Therefore, the eBOD mask with all available 

COVs was selected for the final prediction. 

3.3 Final Predictions 

Some changes in the point value calculation had been made to correct minor errors. Therefore, 

the test calculated error statistic deviates from the final results error statistic. 

In Table 4 the error statistics of the best performing predictions can be seen. SSOC has a 

higher ME in comparison to Cdef and Cdef. Cdef has the highest MSE of 131.25, indicating a 

high scattering of the prediction values. The Csat prediction with an MSE of 48.81 shows  the 

smallest scattering as wells as the best R² value compared to the other two predictions. 
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Table 4 Error Statistics of the final Cdef, Csat and SSOC prediction (ME = Mean Error, MAE = 

Mean Absolute Error, MSE = Mean Squared Error, RMSE = Root Means Squared Error, R² = 

Amount of Variance Explained) 

Prediction ME MAE MSE RMSE R² 

Cdef -0.115 6.772 131.247 11.398 0.517 

Csat -0.561 5.353 48.808 6.951 0.577 

SSOC -1.500 4.457 108.443 10.361 0.306 

 

The scatterplots in Fig.3-5 show the 1:1 and the regression line for each prediction. Csat and 

Cdef predictions have only little variances from the 1:1 line. The SSOC prediction shows a 

higher slope compared to the 1:1 line, which is confirmed by the R² value in table 4. All three 

plots are showing a reasonable prediction through the models with variability and few outliers. 

The Csat prediction shows the widest scattering. 

 

Figure 3-5 Scatterplot for SSOC, Csat and Cdef prediction, blackline represents the 1:1 line of 

prediction vs. observed, the blue line represents the regression of observed and predicted 

values 

 SSOC prediction with RF 

The SSOC prediction results in Fig.6-4 show high values of 20 − 25 g/kg and higher mainly in 

the southern parts of lower Austria and in the west near to the boarder of Upper Austria. Low 

SSOC values ranging from < 10 − 12.5 g/kg can be found in the Weinviertel. Slightly higher 

values of 15 − 20 g/kg can be found southeast in the Industrieviertel and in the flood plains near 

the Danube as well in the Marchfeld east of Vienna and the plains next to Tulln. Also, in the 

central Waldviertel medium values can be found. In areas with grassland, there are mainly 

high SSOC values and in areas with arable land low SSOC values are present. 
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Figure 3-6 SSOC prediction for agricultural and grassland top soils 0-20cm (1990/92) 

In Table 5 the 10 most important COVs for the prediction can be seen, with their percentage 

of importance within the RF prediction. The Digital Elevation Modell and Precipitation COVs 

have the highest influence on the SSOC prediction. On third place is the number five layer of 

the Soil Organic Value Layers of the Austrian Soil Map which directly shows an influence on 

SSOC prediction. The SOM Value Layers ranging from 0 to 5 indicating the relative amount of 

SOM in the study area. They are in separate layers because they are converted into Dummy 

Variables. The rest of the remaining COVS have similar influence ranging from 58 − 44%. 

Table 5 SSOC - Variable Importance top 10 in % of the RF prediction 

Covariate % 

Precipitation 100 

Digital Elevation Model 76.55 

SOM Value 5 75.00 

Roughness 58.63 

Clay 57.31 

Temperature 55.66 

SOM Value 4 55.18 

Sand 47.86 

Lime 44.18 

Topographic Wetness Index 44.09 
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Arable land in Lower Austria has lower mean SSOC contents than grassland (Fig.3-7). The 

mean for arable land is 14.98 g/kg (SD = 5.1) and for grassland 20.29 g/kg (SD = 8.53). The 

Boxplot mean calculation description can be found at section 2.4. 

 

Figure 3-7 Boxplot of the mean predicted SSOC of arable and grassland soils 

 Csat prediction with RF 

The carbon saturation potential map (Fig 3-8) shows high values from 40 g/kg up to over 50 

g/kg of possible C saturation in nearly every part of the Weinviertel. In the north-western parts 

of the Waldviertel low Csat values are visible, ranging from 30 – 25 g/kg and lower. One 

outstanding area in the Marchfeld also displays low values from < 25 – 30 g/kg. In the southern 

part of the Industrieviertel low values ranging from 35 – 25 g/kg are observable. In the Alpine 

foothills of the Mostviertel higher values from 40 – 50 g/kg can be found. 
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Figure 3-8 Csat prediction for agricultural and grassland top soils 0-20cm (1990/92) 

In the following (Table 6) the 10 most important COVs for Csat prediction can be seen. Sand 

COV is of highest importance with 100%. Followed by the DEM and Clay with ~60%. 

Temperature and Precipitation also have a significant share in the prediction with 58% and 

~56% in variable importance. 

Table 6 Csat - Variable Importance top 10 in % of the RF prediction 

Covariate % 

Sand 100.00 

Digital Elevation Model 60.57 

Clay 60.14 

Temperature 58.05 

pH 56.74 

Precipitation 56.65 

Silt 45.88 

Roughness 42.95 

Lime 34.35 

Textur Classes 3 33.01 

 

Csat mean values are comparable between arable and grassland, the latter expressing a 

broader range (Fig.3-9). The mean for arable land is 37.4 g/kg (SD = 6.76) and 38.5 g/kg (SD 
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= 6.63) for grassland. Soil texture is therefore relatively homogenously distributed over the two 

different types of land usage. The calculation method can be found in section 2.4 

 

Figure 3-9 Boxplot of the mean predicted Csat of arable and grassland soils 

 Cdef prediction with RF 

The Cdef predictions (Fig. 6-6) indicate the remaining storing potential of SSOC in Lower 

Austria. The highest deficit in the Weinviertel is located in the western parts with an additional 

C storage of 30 – 50 g/kg possible. In the northern parts of the Weinviertel lower levels can be 

found. They are ranging from 20 – 30 g/kg. In the Marchfeld Region in the east of Lower 

Austria, midrange deficits of 30 – 40 g/kg are visible. There is also a small area with around 

20 g/kg in the soil present. In south-eastern parts the deficits are low, ranging from 30 – 20 g/kg. 

The area in the southwest of Lower Austria has higher values from 35 – 50 g/kg. The highest 

deficit can be found northwest of Vienna. Low levels of 25 g/kg and less are visible in the 

northwest area of Lower Austria.  
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Figure 3-10 Cdef prediction for agricultural and grassland top soils 0-20cm (1990/92) 

Table 7 represents the 10 most important COVs for the alongside their respective influence. 

The DEM has the biggest importance, followed by sand and temperature. Clay and silt are 

also in the top 10, as well as precipitation and radiation COVs. All three available climate COVs 

are in the top 10 underlining their importance. With the SOM-Value5, pH and Lime layer three 

other important COVs of the Austrian Soil map are included. This represents the combination 

of the SSOC and Csat COVS most important Variable Importance’s. 

Table 7 Cdef - Variable Importance top 10 in % of the RF prediction 

Covariate % 

Digital Elevation Model 100.00 

Sand 95.33 

Temperature 84.68 

Precipitation 64.78 

Clay 59.64 

SOM Value 5 57.53 

Silt 55.92 

pH 52.42 

Solar Radiation 52.10 

Lime 50.16 
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Figure 3-11 Boxplot of the mean predicted Cdef of arable and grassland soils 

Arable land in Lower Austria has higher mean Cdef values, indicating a strong influence of 

land use (Fig.3-11). The mean for arable land is 21.23 g/kg (SD = 9.80) and for grassland 

14.8 g/kg (SD = 10.93). The Cdef means for the Boxplot in Figure 3-11 were calculated with 

the same method mentioned above. 

 Statistical Verification of land use influence on SSOC, Csat and Cdef 

In the following Table 8 the results of the conducted unpaired Welch two sample T-tests for 

the soil values SSOC, Csat and Cdef in comparison with land use can be seen. 

Table 8 Statistic results of an unpaired Welch two sample t-test for the land use Zonal Statistic 

mean values of SSOC, Csat and Cdef (Mean = mean of all polygon means, σ = standard 

deviation, H0 = Null hypothesis ,H1
 = alternative hypothesis, α, t = Test variable calculated from 

the means, standard errors and sample size, df = degrees of freedom, p-value = largest 

probability under H0, 95% con. I. = 95% confidence interval) 

 SSOC Csat Cdef 

  arable land grassland arable land grassland arable land grassland 

Mean 14.98 g/kg  20.29 g/kg  37.4 g/kg  38.5 g/kg  21.23 g/kg  14.8 g/kg  

 σ 5.1 8.53 6.76 6.63 9.8 10.93 

H0 Mean Arable SSOC = Mean 
Grassland SSOC 

Mean Arable Csat = Mean 
Grassland Csat 

Mean Arable Cdef = Mean 
Grassland Cdef 

H1 
Mean Arable SSOC ≠ Mean 

Grassland SSOC 
Mean Arable Csat ≠ Mean 

Grassland Csat 
Mean Arable Cdef ≠ Mean 

Grassland Cdef 

α 0.0001 0.01 0.0001 

t − 6.0361 −1.3051 4.8849 

df 211.74 243.49 245.81 

 p-value  6.98E-06 1.93E-01 1.87E-06 

95% con. I. −7.084697 −3.596506 −2.7878739 −2.7878739 3.839073 9.026812 
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The p-value of the SSOC T-test is smaller than α. Therefore, H0 can be rejected. The SSOC 

mean values for arable and grassland are not equal. H1 can be accepted, which concludes 

that there is a statistically significant difference between the means of the two land use types. 

The p-value of the Csat T-test is bigger than α. Therefore, H0 is not rejected. The Csat mean 

values for arable and grassland showing no significantly difference between mean values 

regarding land use.  

The p-value of the Cdef T-test is smaller than α. Therefore, H0 can be rejected. The Cdef 

means for arable and grassland are not equal. H1 can be accepted, which concludes that there 

is a statistically significant difference between the both means. 

 Prediction Error Bubble Map 

The following figures 3-9, 3-10 and 3-11 show the prediction errors for the three different soil 

values based on the pre-selected test point. Red represents underestimation, green 

overestimation. The circle radius corresponds to the size of the Error. SSOC has mainly 

homogeneous under- and overestimation, spreading over the study area including some 

underestimating outliers, especially in areas of the Industrieviertel. Csat has homogeneous 

under- and overestimation. Cdef has some overestimating outliers with high values in the 

Industrieviertel. 

 

Figure 3-12 Prediction Error Bubble Map for SSOC 
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Figure 3-13 Prediction Error Bubble Map for Csat 

 

 

Figure 3-14 Prediction Error Bubble Map for Cdef 
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3.4 Discussion 

 Interpretation of the final calculated SSOC, Cdef and Csat results 

The variable importance of all three predictions shows that the three texture classes and the 

climate COVs temperature, precipitation and radiation, have a major influence on the 

prediction. Additionally, the DEM and its derivates, like surface roughness and TWI strongly 

affect the prediction, validating the widely accepted soil forming factors. Other soil map 

variables like pH and lime should not be underestimated in their effects, too. A correlation 

between SSOC, Cdef and land use is demonstrated (Fig.3-7 and 3-11). This can be also seen 

visually by comparing the SSOC and Cdef prediction with Fig.2-1. It is also approved by the 

Welch t-test in 3.3.4, also resulting in high Cdef values for arable land and high SSOC values 

for grassland and verifying the assumption that arable land has in general lower SOC values 

in comparison to grassland (Martin et al., 2011; Meersmans et al., 2011; Wiesmeier et al., 

2012). The boxplot statistic was carried out with a soil map land use layer which wasn’t used 

in the prediction. For the prediction the Corine Land Cover data from 1990 (CLC90) was utilized 

due to its similar survey period compared to the soil sampling. The CLC90 COVs had an 

influence (Appendix 8.3), but only marginal. The broadly known and used “Universal Soil Loss 

Equation” (USLE), developed by the US department of agriculture estimates the average 

annual soil loss based on different environmental factors (Wischmeier and Smith, 1978). The 

equations factors are inter alia influenced by rainfall, topography and management of the soil. 

Therefore soil erosion has an implied influence towards the predicted SSOC and Cdef values 

(Li et al., 2017). This is reflected in the high Variable Importance of the DEM and its calculated 

COV-derivates like slope, roughness and TWI in combination with precipitation (see Table 5 

and 7). The relatively high importance of the clay COV of SSOC can be related to its direct 

influence of its stabilisation and protection ability for organic matter (Hassink et al., 1997; Six 

et al., 2002). In the Csat prediction the COV top ten covariate importance (Table 6) reflects the 

strong correlation to texture with Sand Clay and Silt COVs, justified due to the Csat calculation 

from the particle size fraction < 20 µm. These were calculated through a regression equation 

in 2.2.3.3 out of the sum of the silt and clay fraction (f < 63 µm). Sand has the highest variable 

importance for the Csat prediction. It can be assumed that this is due to a negative correlation 

with the Csat prediction since it is the only texture fraction which is not included in the Csat 

calculation. In Table 6 the pH and lime layer show high importance for the prediction, these 

layers are part of the eBOD. This altogether underlines the importance of the Austrian soil map 

as COVs for prediction, especially regarding the texture layers. 

A comparison of the prediction performance of this study with others shows similar results. The 

final prediction results of this study yields a R2 of 0.517 for Cdef, 0.577 for Csat and 0.306 for 

SSOC. Chen et al. (2018) calculated a R2 of 0.47 for the prediction of the C sequestration 

potential. Wiesmeier et al. (2011) attained better results with a R2 of 0.74 for their SOCS 

prediction. Really good performances were achieved by Taghizadeh-Mehrjardi et al. (2020) 

with a SOC predictions with combined machine learning methods and advanced COV 

selection resulting in R2’s from 0.63 up to 0.9 for the best prediction within soil depths up to 30 

cm. This shows that with the right data and methods results close to reality are achievable, 

improving accuracy of future soil maps. It must be considered that for each study different 

initial conditions and variations of SOC types were present. 
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 SSOC Benefits through related management practices 

Benefits of SOC sequestration  

In order to understand the motivation behind the performed prediction, background knowledge 

about the benefits of carbon in soil is essential. Organic carbon (OC) is one of the most 

important indicators for healthy soil (Lefèvre et al., 2017). It plays a major role in the four soil 

services which are supporting, regulating, provisioning and cultural services. Lal (2011) 

summarizes the benefits of high soil quality if SOC-pools in agricultural lands are increased, 

resulting in co-benefits like improving resilience against climate change, increasing fertility and 

therefore productivity as well as increasing CO2 storage capacities (Lal et al., 2015; Smith, 

2008). This summary can be seen in Fig.3-15. It shows how physical, chemical and biological 

quality factors are positively influence SOC-pools in terms of quantity and quality.  

 

 

Figure 3-15 Soil quality improvements by increase in soil organic pool in agricultural soils (Lal, 

2011) 

The resistant or stable fraction of SOC mainly increases the soil’s nutrient holding capacity 

(cation exchange capacity - CEC) and acts as a reservoir for plant nutrients (Banwart et al., 

2015). Additionally, the SSOC’s slow decomposing rates are especially interesting in terms of 

long-term SOC sequestration in soil (Lefèvre et al., 2017; Schmidt et al., 2011). Further positive 

features of enlarging the SOC pool are the increase of water holding capacity (Acín-Carrera et 

al., 2013; Karhu et al., 2011), greater soil permeability and therefore low runoff losses (Lal, 

2004). Root growth is also benefiting (Kell, 2012; Mondal et al., 2020). With C input the 

availability of nutrients is increased through higher microbial activities (Fang et al., 2018). Other 

benefits are increasing the soils aggregate strength, leading to reduced erosion and acting as 

a buffer for sudden soil pH reactions (Lal, 2004). These factors emphasise the importance of 

increasing the quality and quantity of carbon in our managed soils (Lal, 2011). Additionally, 

there are also offsite functions with economic and environmental benefits, including reduced 
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sediment load in waterbodies, filtering pollutants and biodegradation of contaminants (Lal, 

2004). The mentioned benefits are not a universal remedy for soils threats and climate change, 

but one important option to buffer their effects. For example, SSOC is prone to disturbances 

with multidimensional reasons, such as leaching, erosion and change in microbial activity 

caused by intensive land use, wrong management, climate change and extreme weather 

conditions. Exposure of C to O2 results in microbial decomposition and therefore carbon loss 

happens. Accordingly, higher temperatures promote higher losses of SOC (Conant et al., 

2011). This is one reason that the world’s main soil SOC storage is located in the northern 

hemisphere in tundra, permafrost, wetlands and peat soils, which are most vulnerable to 

climate change (Scharlemann et al., 2014). One benefit named before relates to the role of 

SOC in CO2 sequestration. Frank et al. (2015) calculated the mitigation potential of European 

cropland and concluded that we should put more emphasis on higher-effective mitigation 

measures like stopping deforestation, decreasing meat consumption to fight the increase of 

GHG. Prohibiting land use change is consequently more important for GHG mitigation than 

improvement of SSOC values regarding the small CO2 storage capabilities for Lower Austria 

(Paustian et al., 2016; Smith, 2008). But Paustian et al. (2016) underlined that the focus with 

GHG-mitigation in context with agricultural soil should not be only on SOC storage but also on 

N2O and CH4 mitigation. He proposed a decision tree for cropland GHG mitigation practices, 

calling the management practices “climate smart agriculture”. They estimated the total soil 

GHG mitigation potential worldwide, ranging from 5.3 Pg CO2(eq) yr−1 (without Economic 

constraints) to 1.5 Pg CO2(eq) yr−1 for agricultural land, being 50 − 10% of the annual fossil fuel 

emissions (Ciais et al., 2013; Paustian et al., 2016), further accentuating the importance of 

correct soil management not only for SOC storage. 
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Management practices to increase SOC/SOCS 

To achieve SOC accumulation in soil, different management practices are available. Lal 

(2016c) summarized the recent development and research in SOC sequestration and possible 

management techniques to accomplish a positive carbon budget, visible in Fig. 3-16.  

 

Figure 3-16 Technological options for soil carbon sequestration (Lal, 2016c) 

These various options include applying organic agriculture with conservation agriculture, like 

cover cropping and no-till and the use of organic amendments like compost or biochar. Also, 

integrative farming with agroforestry and the restoration of degraded lands through farm 

scaping are options to alter the soil’s content positively (Dawson and Smith, 2007; Lal, 2016c). 

With the use of cover crops and perennial cultures more root mass is introduced into soil, which 

again increases the carbon input through biomass (Rasse et al., 2005). All these options are 

creating synergies between each other. Only with a combined approach of used techniques 

and a broad application among farmers with the right policies, “the 4 per 1000” goal and a long-

term improvement of soil quality can be achieved. The question remains, which the right 

incentives are to encourage farmers to apply the promoted techniques, even when resulting in 

a surplus of necessary labour. Carbon build-up in soil is a slow process, achievable only 

through long-term projects that needs time to reach lasting results, especially for SSOC (Olson 

et al., 2014), which together can make carbon build up to a tedious work and must be taken 

into account when changing the management practices of the land. 
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4 Conclusion and Outlook 

The results show that usable prediction results can be achieved, even with soil samples lacking 

high-resolution satellite soil reflection images are available for the time of sampling. 

The prediction result could significantly improve with the use of COVs from the Austrian soil 

map. Most of the available studies with similar spatial resolution are predicting smaller areas 

or having coarser resolutions. Therefore, it shows that predictions for larger areas with high 

resolution are possible with decent results. 

The initially proposed research questions: 

- Do high resolution predictions of SSOC, Csat and Cdef with environmental covariates 

delivers usable maps of acceptable accuracy and resolution? 

- Will covariates of the Austrian soil map significantly improve SSOC, Csat and Cdef 

predictions? 

- Does land use have a major influence on Cdef? 

could all be evaluated and confirmed. 

Recent soil sample data should ne used alongside new types of high-resolution covariates like 

spectral Sentinel satellite images, in different wavelengths for future predictions. Resulting in 

improved prediction accuracy. Combining different methods by stacking also yields promising 

results (Taghizadeh-Mehrjardi et al., 2020). Another possible improvement is the use of a 

feature selection technique called Boruta, which is based on shadow features and the iteration 

over them (Kursa and Rudnicki, 2010). Utilizing the latter would decrease the amount of COV 

and further reduce computation time and prediction noise. The creation of Dummy variables 

from categories to numeric can create the problem of underrepresentation of the converted 

COV in the prediction model. A slight generalisation of categorized COVs is a possible solution. 

Another option to improve computing time and storage problems is to decrease the final 

prediction resolution. For future studies, this should be focused more on improved concept 

planning, like selection of the needed types of statistics and pre-selection of the right 

parameters for comparison with the prediction results. Nevertheless, DSM methods should be 

used in future to improve several soil parameters of the Austrian Soil map and whenever there 

is a need for a high-resolution prediction of point data to spatial maps. This should have a 

major benefit for users of the Austrian soil map. In addition, it could be an improvement of the 

Austrian “Finanzbodenschätzung”. In future analysis, not only SSOC, Cdef and Csat should 

be estimated but also soil carbon stocks (SOCS) SOCS sequestration potentials and SOCS 

deficits. This requires a precise information about the bulk density (BD), which should be 

included in future sampling campaigns. For BD, DSM methods can be used to create spatial 

maps which then can be utilized for SOCS, stock Csat and stock Cdef predictions. Without 

including BD another error biased has to be considered. 

Therefore, the final prediction maps will give a very good baseline map for further research 

and comparison if new maps with recent soil data are created. It also proves that these novel 

methods can be applied successfully and should be used more frequently in future, to update 

existing and create new high-resolution prediction maps. It will be also a good starting point to 

make changes visible over time. At present, it will be used as a first reference map for advisory 

activities to improve agricultural management with practices stated above. 
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8 Appendix 

8.1 R-Code 

pointdata-location-calculation.R 

#install.packages("remotes") 

#remotes::install_github("SEEG-Oxford/seegSDM" 

library(seegSDM) 

library(sf) 

library(raster) 

library(rgdal) 

library(tidyverse) 

setwd('C:/Mapping/R') 

 

#Load Data 

 

point = st_read("C:/Mapping/Soil/BZI_fin.shp") 

st_crs(point) = 31259 

 

point = shapefile("C:/Mapping/Soil/BZI_fin.shp") 

invekos = raster("F:/Masterarbeit Daten - 

FIN/mask/maske_invekos/maske_invekos.tif") 

eBOD = raster("F:/Masterarbeit Daten - 

FIN/mask/maske_eBOD/maske_eBOD_fin.tif") 

crs(point) <- CRS('+init=EPSG:31259') 

crs(invekos) <- CRS('+init=EPSG:31259') 

crs(eBOD) <- CRS('+init=EPSG:31259') 

 

#calculation change eBOD to invekos for the other mask calculation 

 

vals <- raster::extract(eBOD, point) 

outside_mask <- is.na(vals) 

outside_pts <- point[outside_mask, ] 

 

c = 35 # distance to closest cell inside of the mask 

#calculation 

results = nearestLand(outside_pts, eBOD, c) 

summary(results) 

summary(is.na(results)) 

results = as.data.frame(results) 

names(results)[names(results) == 'x'] <- 'X' 

names(results)[names(results) == 'y'] <- 'Y' 

 

#ad new coordinates to points and delete NA’s not in in range       

b_results = cbind.data.frame(outside_pts,results) 

q = b_results %>% drop_na() 
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q$geometry = NULL 

q$x = NULL 

q$y = NULL 

 

#points to dataframe 

w = cbind(point,st_coordinates(point)) 

w$geometry = NULL 

w$x = NULL 

w$y = NULL 

   

#save only points that fit 

outside_ptsdf = cbind(outside_pts,st_coordinates(outside_pts)) 

outside_ptsdf$geometry = NULL 

outside_ptsdf$x = NULL 

outside_ptsdf$y = NULL 

   

d = anti_join(w,outside_ptsdf, by = 'NR_PROFL') 

   

#hinzufügen von  

t = full_join(d,q) 

 

#create sf object 

eBOD_point = st_as_sf(t,coords = c("X", "Y"), crs = 31259) # or 

invekos_pointst = ... 

 

#Safe as gpkg 

st_write(eBOD_point, dsn= "pointsBZI.gpkg", layer = "eBOD_point", driver = 

"GPKG") 

st_write(invekos_pointst, dsn= "pointsBZI.gpkg", layer = 

"invekos_pointst", driver = "GPKG") 

 

 

#test point location 

valst <- raster::extract(invekos, invekos_pointst) 

outside_maskt <- is.na(valst) 

outside_ptst <- invekos_pointst[outside_maskt, ] 

summary(outside_maskt) 

 

#display 

plot(invekos) 

plot(invekos_point, pch = ".", add = T) 
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soil-value-calculation.R 

#load data 

setwd('C:/Users/IBF/Documents/Masterarbeit MAYR/Pointdata/fin') 

 

#data 

train.i = read.csv("dat_train_i.csv") 

test.i = read.csv("dat_test_i.csv") 

train.e = read.csv("dat_train_e.csv") 

test.e = read.csv("dat_test_e.csv") 

 

#delete old calc 

dat = train.e # --> change for each data set 

dat$SOC = NULL 

dat$SSOC = NULL 

dat$Csat = NULL 

dat$Cdef = NULL 

dat$part_fra = NULL 

dat$'pred.p.f.<20u'= NULL 

dat$'pred.p.f..20u'= NULL 

 

colnames(dat)[106] <- "X" 

colnames(dat)[107] <- "Y" 

 

#calc new variables 

dat$SOC = ((dat$HUMUS/1.724)*1.2*10 

dat$SSOC = dat$SOC*0.85 

dat$part_fra = 0.3171*(dat$KF_TON + dat$KF_SCHLU)^1.1647 

dat$Csat = 1.227*dat$part_fra 

dat$Cdef = dat$Csat - dat$SSOC 

train.e = dat # --> change for each data set 

 

#save point data 

write.csv(train.i, file="dat_train_i_f.csv", row.names = FALSE, 

fileEncoding = "UTF-8") 

write.csv(train.e, file="dat_train_e_f.csv", row.names = FALSE, 

fileEncoding = "UTF-8") 

write.csv(test.i, file="dat_test_i_f.csv", row.names = FALSE, fileEncoding 

= "UTF-8") 

write.csv(test.e, file="dat_test_e_f.csv", row.names = FALSE, fileEncoding 

= "UTF-8") 
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DataSplitting.R 

## DataSplitting 
 
library(caret) 
library(sf) 
 
setwd('C:/Mapping/R') 
 
dat_point = st_read("pointsBZI.gpkg",layer = "eBOD_point") 
dat = cbind(dat_point,st_coordinates(dat_point)) 
dat = as.data.frame(dat) 
dat$geom = NULL 
 
train.ind <- createDataPartition(1:nrow(dat), p = .75, list = FALSE) 
train <- dat[ train.ind,] 
test  <- dat[-train.ind,] 
 
plot(density (log(train$SOC)), col='red', 
     main='Statistical distribution of train and test datasets') 
lines(density(log(test$SOC)), col='blue') 
legend('topright', legend=c("train", "test"), 
       col=c("red", "blue"), lty=1, cex=1.5) 
 
write.csv(train, file="dat_train_eBOD.csv", row.names = FALSE) 
write.csv(test, file="dat_test_eBOD.csv", row.names = FALSE) 

Dummy-Variables.R 

###Create DummyVariables### 
########################### 
#packages 
library(sp) 
library(raster) 
 
#functions 
dummyRaster <- function(rast){ 
  rast <- as.factor(rast) 
  result <- list() 
  for(i in 1:length(levels(rast)[[1]][[1]])){ 
    result[[i]] <- rast == levels(rast)[[1]][[1]][i] 
    names(result[[i]]) <- paste0(names(rast), 
                                 levels(rast)[[1]][[1]][i]) 
  } 
  return(stack(result)) 
} 
 
 
#load Data 
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_eBod/Faktoren" 
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_eBod/Faktoren main" 
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files <- list.files(path = cov, pattern = "tif$", 
                    full.names = TRUE) 
covs <- stack(files) 
names(covs) 
crs(covs) <- CRS('+init=EPSG:31259') 
 
# convert  from factor to dummy 
 
#ebodfaktoren 
COV2= stack() 
 
for (name in names(covs)){ 
  print(Sys.time()) 
  tStart <- Sys.time() 
   
  name <- dummyRaster(covs[[name]]) 
  COV2 = stack(COV2, name) 
   
  tEND <- Sys.time() 
  print(paste(tEND," Loop",name,"finished!")) 
  print(Sys.time() - tStart) 
} 
 
#save as Raster!! 
for (name in names(COV2)){ 
  print(Sys.time()) 
  tStart <- Sys.time() 
   
  writeRaster(COV2[[name]],paste("C:/Users/IBF/Documents/Masterarbeit MAYR
/layer_eBod/faktoren_dummy/",names(COV2[[name]]),".tif", sep = "")) 
   
  tEND <- Sys.time() 
  print(paste(tEND," Loop",names(name),"finished!")) 
  print(Sys.time() - tStart) 
} 
 
#load Data 
covi = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_invekos/Faktoren" 
 
files <- list.files(path = covi, pattern = "tif$", 
                    full.names = TRUE) 
covis <- stack(files) 
names(covis) 
crs(covis) <- CRS('+init=EPSG:31259') 
 
# convert  from factor to dummy 
 
#invekos faktoren 
COVi= stack() 
 
for (name in names(covis)){ 
  print(Sys.time()) 
  tStart <- Sys.time() 
   
  name <- dummyRaster(covis[[name]]) 
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  COVi = stack(COVi, name) 
   
  tEND <- Sys.time() 
  print(paste(tEND," Loop",name,"finished!")) 
  print(Sys.time() - tStart) 
} 
 
#save as Raster!! 
for (name in names(COVi)){ 
  print(Sys.time()) 
  tStart <- Sys.time() 
   
  writeRaster(COVi[[name]],paste("C:/Users/IBF/Documents/Masterarbeit MAYR
/layer_invekos/faktoren_dummy/",name,".tif", sep = "")) 
   
  tEND <- Sys.time() 
  print(paste(tEND," Loop",name,"finished!")) 
  print(Sys.time() - tStart) 
} 
 
save(COVi, file = "covariates_invekos_dummy_clc_geo.RData") 
save(COV, file = "covariates_ebod_dummy.RData") 
save(COV2, file = "covariates_ebod_dummy_clc_geo.RData") 

StepwiseRegressionKriging.R 

## Stepwise Regression Kriging 
#################################### 
library(raster) 
library(car) 
library(rgdal) 
library(sf) 
library(dplyr) 
library(ggplot2) 
############# 
library(xlsx) 
############## 
setwd('C:/Users/IBF/Documents/Masterarbeit MAYR/WD') 
 
########################################################################## 
##from here only one time. Load afterwards only the R files 
#cov preperation only once!!! load later just the R file 
 
#read data for calculation 
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_invekos" 
dat = readOGR(dsn = "C:/Users/IBF/Seafile/Meine Bibliothek/Masterarbeit/Da
ta/Punktdaten/pointsBZI.gpkg", layer = "invekos_point") 
crs(dat) <- CRS('+init=EPSG:31259') 
 
#dat = shapefile("C:/Mapping/Soil/BZI.shp",use_iconv = TRUE, encoding="UTF
-8") 
 
#plot sample locations in boundaries of lower autria 
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test = raster("C:/Mapping/Mask/test.tif") 
plot(test) 
plot(datn, pch = ".", add = T) 
 
 
files <- list.files(path = cov, pattern = "tif$", 
                    full.names = TRUE) 
covs <- stack(files) 
crs(covs) <- CRS('+init=EPSG:31259') 
 
save(covs, file = "covariates_invekos_RK.RData") 
 
 
covs@layers[[5]] = as.factor(covs@layers[[5]]) 
covs@layers[[2]] = as.factor(covs@layers[[2]]) 
 
 
#saveRDS(covs, file = "covariates10m.rds") 
 
#extract at sample points data from covs  
datx <- extract(x = covs, y = datx, sp = TRUE) 
 
summary(dat@data) 
#delete old calc 
dat$SSOC = NULL 
dat$Csat = NULL 
dat$Cdef = NULL 
dat$part_fra = NULL 
#calc new variables 
dat$SOC = ((dat$HUMUS*1.724)*1.2) 
dat$SSOC = dat$SOC*0.84 
dat$'pred.p.f.<20u'= dat$KF_TON + (0.3171*dat$KF_SCHLU^1.1647) 
dat$Csat.W = 1.227*dat$`pred.p.f.<20u` 
 
#save as dataframe  
dat <- as.data.frame(dat) 
summary(dat) 
 
# The points with NA values have to be removed 
dat <- dat[complete.cases(dat),] 
 
#reorder columns 
dat <- dat[c(1:105,119,106,120,121,107:118)] 
summary(dat) 
 
 
 
coordinates(dat) <- ~ coords.x1 + coords.x2 
crs(dat) <- CRS('+init=EPSG:31259') 
#make categorial variables to factors 
#dataframe 
dat$geo = as.factor(dat$geo) 
dat$clc = as.factor(dat$clc) 
 
dat@data$geo = as.factor(dat@data$geo) 
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dat@data$clc = as.factor(dat@data$clc) 
 
 
#rename columns 
names(dat)[116] <- "twi.1" 
 
#Export as a *.csv table 
write.csv(dat, "RegMatrix.csv", row.names = FALSE,fileEncoding = "UTF-8") 
#write.xlsx(dat, file = "RegMatrix.xlsx", sheetName="RegMatrix",  
#          col.names=TRUE, row.names=FALSE) 
########################################################################## 
#covs laden  
load("covariates_invekos.RData") 
covs = cov.new 
plot(raster::stack(covs)) 
dat = read.csv("RegMatrix.csv",fileEncoding = "UTF-8") 
coordinates(dat) <- ~ x + y 
 
datdf = as.data.frame(datx@data) 
datdf = datdf[,c("SSOC",names(covs))]  
 
############### 
model.MLR.step.RData = load("model.MLR.step.RData") 
model.MLR.step.RData.cd = load( "model.MLR.step.cd.RData") 
datdf.cd = load("datdf.cd.RData") 
################ 
 
#Kriging 
#log transformation and model calc 
model.MLR <- lm(log(SSOC) ~ ., data = datdf) 
 
summary(model.MLR) 
 
# Stepwise variable selection 
model.MLR.step <- step(model.MLR, direction="both") 
summary(model.MLR.step) 
anova(model.MLR.step) 
par(mfrow=c(2,2)) 
plot(model.MLR.step) 
plot(model.MLR) 
 
# Collinearity test using variance inflation factors 
library(car) 
vif(step(model.MLR, direction="both")) 
vif(model.MLR.step) 
# Problematic covariates should have sqrt (VIF) > 2 
sqrt(vif(model.MLR.step)) 
 
# Removing "?" from the stepwise model 
model.MLR.step <- update(model.MLR.step, . ~ . - temp) 
 
# Test the vif again 
sqrt(vif(model.MLR.step)) 
 
#check results 
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summary(model.MLR.step) 
anova(model.MLR.step) 
par(mfrow=c(2,2)) 
plot(model.MLR.step) 
 
# Outlier test using the Bonferroni test 
outlierTest(model.MLR.step) 
 
########################################################################## 
shapiro.test(log(datdf$SSOC)) 
 
names(log(datdf$SSOC)) 
 
datdf = data 
cd = cooks.distance(model.MLR.step) 
plot(cd) 
 
# Defining outliers based on 4/n criteria;  
cd.outlier <- ifelse(cd < 4/nrow(datdf), "keep","delete") 
summarise(cd.outlier) 
#### 
 
# Plot the Cook's Distance using the traditional 4/n criterion 
sample_size <- nrow(datdf) 
plot(cd, pch="*", cex=2, main="Influential Obs by Cooks distance")  # plot 
cook's distance 
abline(h = 4/sample_size, col="red")  # add cutoff line 
text(x=1:length(cd)+1, y=cd, labels=ifelse(cd>4/sample_size, names(cd),"")
, col="red") # add labels 
 
top_x_outlier <- 4 
influential <- as.numeric(names(sort(cd, decreasing = TRUE)[1:top_x_outlie
r])) 
 
datdf.cd <- datdf[-influential, ] 
datdf.cd <- datdf[-69, ] 
 
#log transformation and model calc 
model.MLR.cd <- lm(log(SSOC) ~ ., data = datdf.cd) 
 
summary(model.MLR.cd) 
 
# Stepwise variable selection 
model.MLR.step.cd <- step(model.MLR.cd, direction="both") 
summary(model.MLR.step.cd) 
anova(model.MLR.step.cd) 
par(mfrow=c(2,2)) 
plot(model.MLR.step.cd) 
plot(model.MLR.cd) 
 
qqPlot(model.MLR.step.cd) 
qqPlot(model.MLR.step) 
 
# Outlier test using the Bonferroni test 
outlierTest(model.MLR.step.cd) 
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outlierTest(model.MLR.step) 
 
# Collinearity test using variance inflation factors 
library(car) 
vif(step(model.MLR, direction="both")) 
vif(model.MLR.step) 
 
# Problematic covariates should have sqrt (VIF) > 2 
sqrt(vif(model.MLR.step.cd)) 
 
# Removing "dem" from the stepwise model 
model.MLR.step.cd <- update(model.MLR.step.cd, . ~ . - dem) 
 
# Test the vif again 
sqrt(vif(model.MLR.step.cd)) 
 
#check results 
summary(model.MLR.step.cd) 
anova(model.MLR.step.cd) 
par(mfrow=c(2,2)) 
plot(model.MLR.step.cd) 
 
cd = cooks.distance(model.MLR.step.cd) 
plot(cd) 
 
ggplot(data = datdf.cd, aes(x = row(datdf.cd), y = dist)) + geom_point() +  
  geom_smooth(method = lm) 
 
autoplot(datdf.cd) 
plot(model.MLR.step.cd) 
#### save models 
save(model.MLR.step, file = "model.MLR.step.RData") 
save(model.MLR.step.cd, file = "model.MLR.step.cd.RData") 
save(datdf.cd, file = "datdf.cd.RData") 
save(datdf, file = "datdf.RData") 
 
########################################################################## 
# Promote covariates to spatial grid dataframe. 
# Takes some time and a lot of memory! 
# set memory limit 
memory.limit(999999999) 
 
#create sp object 
covs.sp <- as(covs, "SpatialGridDataFrame") #not working connot allocate v
ector of size 11,7gb 
 
#make categorial variables to factors incovs rasterstack if they are not a
lready 
 
########################################################################## 
#removing not relevant layers (only if covs.sp is too big-- remove them be
fore creating sp data) 
 
#check which layers are left 
model.MLR.step$call$formula 
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save(covs, file = "covariates_invekos.RData") 
 
cov.new = dropLayer(covs, c(1,2,5,7)) 
 
covs.sp <- as(cov.new, "SpatialGridDataFrame") 
 
covs.sp$geo = as.factor(covs.sp$geo) 
covs.sp$clc = as.factor(covs.sp$clc) 
 
#same levels for all data 
levels(datdf$geo) = levels(covs.sp@data$geo) 
levels(datdf$clc) = levels(covs.sp@data$clc) 
 
levels(dat@data$geo) = levels(covs.sp@data$geo) 
levels(dat@data$clc) = levels(covs.sp@data$clc) 
 
########################################################################## 
# Run regression-kriging prediction. 
# This step can take hours! 
 
#dat to sp object 
coordinates(dat) <- ~ coords.x1 + coords.x2 
crs(dat) <- CRS('+init=EPSG:31259') 
crs(covs.sp) <- CRS('+init=EPSG:31259') 
 
library(automap) 
SSOC.krige <- autoKrige(formula = 
                         as.formula(model.MLR.step$call$formula), 
                       input_data = datx, 
                       new_data = covs.sp, 
                       verbose = TRUE, 
                       block = c(1000, 1000)) 
SSOC.krige 
 
# Convert prediction and standard deviation to rasters 
# And back-tansform the vlaues 
RKprediction <- exp(raster(SSOC.krige$krige_output[1])) 
RKpredsd <- exp(raster(SSOC.krige$krige_output[3])) 
 
plot(RKprediction) 
plot(RKpredsd) 
 
## Save results as tif files 
writeRaster(RKprediction, filename = "results/SSOC_RK.tif", 
            overwrite = TRUE) 
 
writeRaster(RKpredsd, filename = "results/SSOC_RKpredsd.tif", 
            overwrite = TRUE) 
 
# save the model 
saveRDS(model.MLR.step, file="results/RKmodel.Rds") 
 
#Cross-validation 
 
# autoKrige.cv() does not removes the duplicated points 
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# we have to do it manually before running the cross-validation 
datx2 = datx[which(!duplicated(datx@coords)), ] 
 
SSOC.krige.cv <- autoKrige.cv(formula = 
                               as.formula(model.MLR.step$call$formula), 
                             input_data = datx2, nfold = 10) 
summary(SSOC.krige.cv) 

Random Forest.R 

## randomForest 
library(raster) 
library(rgdal) 
library(randomForest) 
library(caret) 
library(snow) 
 
setwd('C:/Users/IBF/Documents/Masterarbeit MAYR/WD') 
 
load("covariates_invekos_RF.RData") 
crs(covs) <- CRS('+init=EPSG:31259') 
 
#data invekos 
train = read.csv("C:/Users/IBF/Documents/Masterarbeit MAYR/Pointdata/fin/f
inal/dat_train_i_f1.csv") 
 
#data eBod 
train = read.csv("C:/Users/IBF/Documents/Masterarbeit MAYR/Pointdata/fin/f
inal/dat_train_e_f2.csv") 
 
#e-BOD Covs Laden 
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_eBod/main_new" 
files <- list.files(path = cov, pattern = "tif$", 
                    full.names = TRUE) 
covs <- stack(files) 
crs(covs) <- CRS('+init=EPSG:31259') 
 
#dummy eBod covs laden  
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_eBod/faktoren_dummy" 
files <- list.files(path = cov, pattern = "tif$", 
                    full.names = TRUE) 
covd <- stack(files) 
crs(covs) <- CRS('+init=EPSG:31259') 
#combine stacks 
covs = stack(covs,covd) 
 
#covs laden  invekos 
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_invekos" 
files <- list.files(path = cov, pattern = "tif$", 
                    full.names = TRUE) 
covs <- stack(files) 
crs(covs) <- CRS('+init=EPSG:31259') 
covs = dropLayer(covs,2) 
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covs = dropLayer(covs,4) 
 
#dummy covs laden  
cov = "C:/Users/IBF/Documents/Masterarbeit MAYR/layer_invekos/faktoren_dum
my" 
files <- list.files(path = cov, pattern = "tif$", 
                    full.names = TRUE) 
covd <- stack(files) 
crs(covs) <- CRS('+init=EPSG:31259') 
 
#combine stacks 
covs = stack(covs,covd) 
 
#extract covs data to point 
 
datx <- train[c(104:105,110)] 
 
coordinates(datx) <- ~ X + Y 
crs(datx) <- CRS('+init=EPSG:31259') 
 
datn <- extract(x = covs, y = datx, sp = TRUE) 
crs(datn) <- CRS('+init=EPSG:31259') 
options(max.print=1000000) 
 
summary(datn@data) 
 
datntest <- as.data.frame(datn) 
 
datntest <- datntest[complete.cases(datntest),] 
datn = datntest 
coordinates(datn) <- ~ X + Y 
crs(datn) <- CRS('+init=EPSG:31259') 
 
#We have to convert the columns with categorical variables in the soil sam
ples 
#data.frame to dummies as well. For doing this we can use function 
#model.matrix(). After this, we use cbind() to merge the resulting data.fr
ame. 
# Convert soilmap column to dummy, the result is a matrix 
# To have one column per category we have to add -1 to the formula 
dat_clcmap_dummy <- model.matrix(~clc -1, data = datn@data) 
dat_geomap_dummy <- model.matrix(~geo -1, data = datn@data) 
 
# Convert the matrix to a data.frame 
dat_clcmap_dummy <- as.data.frame(dat_clcmap_dummy) 
dat_geomap_dummy <- as.data.frame(dat_geomap_dummy) 
 
datn@data <- cbind(datn@data, dat_clcmap_dummy, dat_geomap_dummy) 
names(datn@data) 
 
################################################################## 
 
####make categorial variables to factors 
#same levels for all data 
datx@data$geo = as.factor(datx@data$geo) 
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datx@data$clc = as.factor(datx@data$clc) 
 
geo.levels = levels(as.factor(geo.levels[[1]]$ID)) 
clc.levels = levels(as.factor(clc.levels[[1]]$ID)) 
 
levels(datx@data$geo) = geo.levels 
levels(datx@data$clc) = clc.levels 
 
summary(datn) 
 
datf<- datf[complete.cases(datf),]  
 
######################################################### 
writeOGR(datx, dsn= "datx.gpkg", layer = "datx_v3", driver = "GPKG", overw
rite_layer = TRUE) 
 
dat <- readOGR("dat.gpkg", "dat") 
 
coordinates(datx) <- ~ coords.x1 + coords.x2 
crs(datx) <- CRS('+init=EPSG:31259') 
 
 
################### RF PREDICTION ############################### 
# For its use on R we need to define a model formula 
# For not normal distributed data transformation is needed, like log. 
fm = as.formula(paste("log(SSOC) ~", paste0(names(covs[[-167]]),collapse = 
"+"))) 
 
# Default 10-fold cross-validation 
ctrl <- trainControl(method = "cv", savePred=T) 
 
# Search for the best mtry parameter 
rfmodel <- caret::train(fm, data=datn@data, method = "rf", trControl = ctr
l,importance=TRUE) 
 
# This is a very useful function to compare and test different 
# prediction algorithms type names(getModelInfo()) to see all the 
# possibilitites implemented on this function 
 
# Variable importance plot, compare with the correlation matrix 
# Select the best prediction factors and repeat 
varImpPlot(rfmodel[11][[1]]) 
 
varImp(rfmodel) 
 
############################### 
# Check if the error stabilizes 
plot(rfmodel[11][[1]]) 
 
#Make a prediction across all Lower Austria 
#Note that the units are still in log 
pred <- predict(covs, rfmodel) 
 
# Back transform predictions log transformed data if it was transformed 
pred <- exp(pred) 
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# Save the result as a tiff file 
writeRaster(pred, filename = "results/FIN2/SSOC_e_fk_rf_fin2.tif", 
            overwrite=FALSE) 
#back transform again for rf-qr 
pred <- log(pred) 
crs(pred) <- CRS('+init=epsg:31259') 
 
#Plot prediction 
pred = raster("results/FIN2/SSOC_i_fk_rf.tif") 

SVM.R 

## SupportVectorMachines 
 
# plot the names of the covariates 
train = read.csv("dat_train.csv") 
 
names(covs) 
daty <- train[c(109:111)] 
daty = cbind(daty,datdf[,2:9]) 
coordinates(daty) <- ~ coords.x1 + coords.x2 
crs(daty) <- CRS('+init=EPSG:31259') 
 
# variable selection using correlation analysis 
selectedCovs <- cor(x = as.matrix(daty@data[,1]), 
                    y = as.matrix(datx@data[,2:9])) 
 
# print correlation results 
selectedCovs 
 
library(reshape) 
x <- subset(melt(selectedCovs), value != 1 | value != NA) 
x <- x[with(x, order(-abs(x$value))),] 
 
idx <- as.character(x$Var2[1:5]) 
 
dat2 <- daty[c('Csat.W', idx)] 
names(dat2) 
 
COV <- covs[[idx]] 
 
# Selected covariates 
names(COV) 
 
# Categorical variables in svm models 
dummyRaster <- function(rast){ 
  rast <- as.factor(rast) 
  result <- list() 
  for(i in 1:length(levels(rast)[[1]][[1]])){ 
    result[[i]] <- rast == levels(rast)[[1]][[1]][i] 
    names(result[[i]]) <- paste0(names(rast), 
                                 levels(rast)[[1]][[1]][i]) 
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  } 
  return(stack(result)) 
} 
 
# convert soilmap from factor to dummy 
# soilmap_dummy <- dummyRaster(covs$soilmap) 
 
# convert LCEE10 from factor to dummy 
LCEE10_dummy <- dummyRaster(covs$LCEE10) 
 
# Stack the 5 COV layers with the 2 dummies 
COV <- stack(COV, LCEE10_dummy) 
# COV <- stack(COV, soilmap_dummy, LCEE10_dummy) 
 
# print the final layer names 
names(COV) 
 
# convert soilmap column to dummy, the result is a matrix 
# to have one column per category we had to add -1 to the formula 
# dat_soilmap_dummy <- model.matrix(~soilmap -1, data = dat@data) 
# convert the matrix to a data.frame 
# dat_soilmap_dummy <- as.data.frame(dat_soilmap_dummy) 
 
 
# convert LCEE10 column to dummy, the result is a matrix 
# to have one column per category we had to add -1 to the formula 
dat_LCEE10_dummy <- model.matrix(~LCEE10 -1, data = dat@data) 
# convert the matrix to a data.frame 
dat_LCEE10_dummy <- as.data.frame(dat_LCEE10_dummy) 
 
dat@data <- cbind(dat@data, dat_LCEE10_dummy) 
# dat@data <- cbind(dat@data, dat_LCEE10_dummy, dat_soilmap_dummy) 
 
names(dat@data) 
 
# Fitting a svm model and parameter tuning 
library(e1071) 
library(caret) 
 
#  Test different values of epsilon and cost 
tuneResult <- tune(svm, Csat.W ~.,  data = daty@data[,c("Csat.W",names(COV
))], 
                   ranges = list(epsilon = seq(0.05,0.5,0.02), cost = c(2,
5,7,15,20))) 
 
plot(tuneResult) 
 
# Choose the model with the best combination of epsilon and cost 
tunedModel <- tuneResult$best.model 
 
print(tunedModel) 
 
 
# Use the model to predict the SOC in the covariates space 
CsatSVM <- predict(COV, tunedModel) 
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# Save the result 
writeRaster(CsatSVM, filename = "results/CsatSVM_svm.tif", 
            overwrite=TRUE) 
 
plot(CsatSVM) 
 
# Variable importance in svm. Code by: 
# stackoverflow.com/questions/34781495 
 
w <- t(tunedModel$coefs) %*% tunedModel$SV     # weight vectors 
w <- apply(w, 2, function(v){sqrt(sum(v^2))})  # weight 
 
w <- sort(w, decreasing = T) 
print(w) 
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validation_prediction.R 

#Validation 

library(sp) 

library(raster) 

library(sjmisc) 

library(xlsx) 

 

#Load test data points 

#invekos 

test_i <- read.csv("F:/Masterarbeit Daten - 

FIN/points/final_point/dat_test_i_F.csv") 

coordinates(test_i) <- ~ X + Y 

crs(test_i) <- CRS('+init=EPSG:31259') 

 

#eBod 

test_e <- read.csv("F:/Masterarbeit Daten - 

FIN/points/final_point/dat_test_e_f.csv") 

coordinates(test_e) <- ~ X + Y 

crs(test_e) <- CRS('+init=EPSG:31259') 

 

#read predictions invkos 

i_pred = "C:/Mapping/FIN2/i" 

files <- list.files(path = i_pred, pattern = "tif$", 

                    full.names = TRUE) 

ipred <- stack(files) 

crs(ipred) <- CRS('+init=EPSG:31259') 

 

#read predicitons eBod 

e_pred = "C:/Mapping/FIN2/e" 

e_pred = "C:/Mapping/Results_final" 

files2 <- list.files(path = e_pred, pattern = "tif$", 

                    full.names = TRUE) 

epred <- stack(files2) 

crs(epred) <- CRS('+init=EPSG:31259') 

crs(ipred) <- CRS('+init=EPSG:31259') 

 

#Statistic Dataframe 

stat = data.frame(row.names = c("ME","MAE","MSE","RMSE","AVE")) 

 

#calc validation 

#invekos 

for (name in names(ipred)){ 

  # extract points for SSOC,Csat,Cdef 

 

  test_i <- extract(x = ipred[[name]], y = test_i, sp = TRUE) 
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  #alte variante:   stat[[paste("PE",name ,sep = ".")]] <- test_i[[name]] 

- test_i$Cdef 

   

  # prediction error 

  if (str_contains(name, "SSOC", ignore.case = FALSE, logic = NULL, switch 

= FALSE)){ 

     

    #PE 

    test_i[[paste("PE",name ,sep = ".")]] <- test_i[[name]] - test_i$SSOC 

    #ME 

    stat[1,name] = mean(test_i[[paste("PE",name ,sep = ".")]], na.rm=TRUE) 

    #MAE 

    stat[2,name] = mean(abs(test_i[[paste("PE",name ,sep = ".")]]), 

na.rm=TRUE) 

    #MSE 

    stat[3,name] = mean(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) 

    #RMSE 

    stat[4,name] = sqrt(sum(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) /  

                          length(test_i[[paste("PE",name ,sep = ".")]])) 

    #AVE/ r2 

    stat[5,name] = 1 - sum(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) / 

      sum( (test_i$SSOC - mean(test_i$SSOC, na.rm = TRUE))^2,na.rm = TRUE) 

     

    #adj-r2 

    #stat[6,name] = 1 - (n - 1) /(n - (k +1)) * (1- stat[5,name]) 

     

     

     

  }  

  else if (str_contains(name, "Cdef", ignore.case = FALSE, logic = NULL, 

switch = FALSE)){ 

 

    #PE 

    test_i[[paste("PE",name ,sep = ".")]] <- test_i[[name]] - test_i$Cdef 

    #ME 

    stat[1,name] = mean(test_i[[paste("PE",name ,sep = ".")]], na.rm=TRUE) 

    #MAE 

    stat[2,name] = mean(abs(test_i[[paste("PE",name ,sep = ".")]]), 

na.rm=TRUE) 

    #MSE 

    stat[3,name] = mean(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) 
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    #RMSE 

    stat[4,name] = sqrt(sum(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) /  

                          length(test_i[[paste("PE",name ,sep = ".")]])) 

    #AVE 

    stat[5,name] = 1 - sum(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) / 

      sum( (test_i$Cdef - mean(test_i$Cdef, na.rm = TRUE))^2,na.rm = TRUE) 

   

  }  

  else if (str_contains(name, "Csat", ignore.case = FALSE, logic = NULL, 

switch = FALSE)){ 

     

    #PE 

    test_i[[paste("PE",name ,sep = ".")]] <- test_i[[name]] - test_i$Csat 

    #ME 

    stat[1,name] = mean(test_i[[paste("PE",name ,sep = ".")]], na.rm=TRUE) 

    #MAE 

    stat[2,name] = mean(abs(test_i[[paste("PE",name ,sep = ".")]]), 

na.rm=TRUE) 

    #MSE 

    stat[3,name] = mean(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) 

    #RMSE 

    stat[4,name] = sqrt(sum(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) /  

                          length(test_i[[paste("PE",name ,sep = ".")]])) 

    #AVE 

    stat[5,name] = 1 - sum(test_i[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) / 

      sum( (test_i$Csat - mean(test_i$Csat, na.rm = TRUE))^2,na.rm = TRUE) 

  } 

} 

 

#eBod 

for (name in names(epred)){ 

  # extract points for SSOC,Csat,Cdef 

   

  test_e <- extract(x = epred[[name]], y = test_e, sp = TRUE) 

   

  #alte variante:   stat[[paste("PE",name ,sep = ".")]] <- test_i[[name]] 

- test_i$Cdef 

   

  # prediction error 

  if (str_contains(name, "SSOC", ignore.case = FALSE, logic = NULL, switch 

= FALSE)){ 
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    #PE 

    test_e[[paste("PE",name ,sep = ".")]] <- test_e[[name]] - test_e$SSOC 

    #ME 

    stat[1,name] = mean(test_e[[paste("PE",name ,sep = ".")]], na.rm=TRUE) 

    #MAE 

    stat[2,name] = mean(abs(test_e[[paste("PE",name ,sep = ".")]]), 

na.rm=TRUE) 

    #MSE 

    stat[3,name] = mean(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) 

    #RMSE 

    stat[4,name] = sqrt(sum(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) /  

                          length(test_e[[paste("PE",name ,sep = ".")]])) 

    #AVE 

    stat[5,name] = 1 - sum(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) / 

      sum( (test_e$SSOC - mean(test_e$SSOC, na.rm = TRUE))^2,na.rm = TRUE) 

     

  }  

  else if (str_contains(name, "Cdef", ignore.case = FALSE, logic = NULL, 

switch = FALSE)){ 

     

    #PE 

    test_e[[paste("PE",name ,sep = ".")]] <- test_e[[name]] - test_e$Cdef 

    #ME 

    stat[1,name] = mean(test_e[[paste("PE",name ,sep = ".")]], na.rm=TRUE) 

    #MAE 

    stat[2,name] = mean(abs(test_e[[paste("PE",name ,sep = ".")]]), 

na.rm=TRUE) 

    #MSE 

    stat[3,name] = mean(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) 

    #RMSE 

    stat[4,name] = sqrt(sum(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) /  

                          length(test_e[[paste("PE",name ,sep = ".")]])) 

    #AVE 

    stat[5,name] = 1 - sum(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) / 

      sum( (test_e$Cdef - mean(test_e$Cdef, na.rm = TRUE))^2,na.rm = TRUE) 

     

  }  

  else if (str_contains(name, "Csat", ignore.case = FALSE, logic = NULL, 

switch = FALSE)){ 
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    #PE 

    test_e[[paste("PE",name ,sep = ".")]] <- test_e[[name]] - test_e$Csat 

    #ME 

    stat[1,name] = mean(test_e[[paste("PE",name ,sep = ".")]], na.rm=TRUE) 

    #MAE 

    stat[2,name] = mean(abs(test_e[[paste("PE",name ,sep = ".")]]), 

na.rm=TRUE) 

    #MSE 

    stat[3,name] = mean(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) 

    #RMSE 

    stat[4,name] = sqrt(sum(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) /  

                          length(test_e[[paste("PE",name ,sep = ".")]])) 

    #AVE 

    stat[5,name] = 1 - sum(test_e[[paste("PE",name ,sep = ".")]]^2, 

na.rm=TRUE) / 

      sum( (test_e$Csat - mean(test_e$Csat, na.rm = TRUE))^2,na.rm = TRUE) 

  } 

} 

 

#Show result 

stat 

 

#Save Results 

write.csv(stat, "F:/BokuDrive/Seafile/Meine 

Bibliothek/Masterarbeit/Results/Statistik/rf_base.csv", row.names = T) 

write.xlsx(stat, file = "F:/BokuDrive/Seafile/Meine 

Bibliothek/Masterarbeit/Results/Statistik/rf_test.xlsx", sheetName=name,  

           col.names=TRUE, row.names=TRUE, append=TRUE, showNA=TRUE, 

password=NULL) 
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8.2 Maps 
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8.3 Variable Importance 

SSOC Variable Importance Csat Variable Importance Cdef Variable Importance 

Covariate % Covariate % Covariate % 

precip 100 sand 100 dem 100 

dem 76.5527268 dem 60.574723 sand 95.325731 

somvalue5 75.0023404 clay 60.136600 temp 84.676963 

rough 58.6292003 temp 58.048935 precip 64.780144 

clay 57.3136506 pH 56.740718 clay 59.642449 

temp 55.657249 precip 56.645336 somvalue5 57.530740 

somvalue4 55.1831137 silt 45.881634 silt 55.918255 

sand 47.8589583 rough 42.945729 pH 52.422782 

lime 44.1774668 lime 34.350070 radi 52.098749 

twi 44.0923748 texturclasses3 33.013253 lime 50.155368 

somvalue3 42.4906863 twi 31.456931 bedrock7100 50.106341 

pH 39.9232541 permeability7 28.928916 rough 46.959214 

radi 36.3426845 sombalance4 28.0252 permeability7 44.057502 

somvalue2 35.829687 texturclasses1 27.97583 permeability3 42.24065 

soiltype4 35.1515577 soiltype12 26.076351 clc211 40.667341 

soiltype2 34.2336632 bedrock7100 25.981095 somvalue4 39.469574 

silt 32.4829002 bedrock5400 25.668579 soiltype14 38.372046 

clc231 31.7315555 clc242 24.971506 clc231 38.352772 

clc211 31.3523299 sombalance5 24.589005 somvalue3 36.907542 

soiltype10 30.3478505 clc211 24.101214 texturclasses3 36.09729 

aspect 28.8803555 permeability3 23.825894 aspect 36.047535 

bedrock4240 26.334034 radi 23.523219 bedrock4240 35.723104 

sombalance6 25.3846964 permeability9 22.052794 sombalance4 35.578854 

texturclasses1 24.2553683 fieldcap2 21.553936 twi 34.18112 

bedrock7100 23.6263905 texturclasses10 20.923392 soiltype4 34.068285 

permeability3 23.3970099 permeability5 20.688719 bedrock5610 32.863101 

permeability5 23.0643749 soiltype4 20.64484 soiltype30 32.48738 

sombalance5 22.8100819 soiltype14 20.577035 texturclasses1 32.377113 

soiltype15 22.7633746 soiltype28 20.535354 bedrock5000 31.535925 

bedrock1410 22.2790604 aspect 19.296865 somvalue2 31.304935 

sombalance2 21.8196703 bedrock5210 19.186024 permeability6 30.661482 

soiltype12 21.6918904 somvalue1 19.153972 bedrock5210 30.61894 

soiltype35 21.6479116 soiltype2 19.06918 permeability9 30.146665 

fieldcap3 21.4737695 bedrock5820 18.914592 bedrock3100 28.826493 

soiltype17 21.2049308 bedrock5610 18.688512 clc243 28.423352 

sombalance4 21.203624 soiltype7 18.545285 fieldcap2 27.446608 

permeability7 21.1435029 somvalue2 18.486003 sombalance6 27.380504 

soiltype7 20.9327907 soiltype35 18.288604 bedrock5310 27.29065 

bedrock5610 20.9117419 soiltype26 18.084433 sombalance2 27.035561 

texturclasses4 20.8745154 sombalance2 17.853002 soiltype7 26.998145 

bedrock5400 20.6377945 soiltype15 17.622328 clc112 26.783182 

texturclasses3 20.4620854 bedrock3 17.614137 sombalance5 25.454971 

clc242 20.0886464 bedrock3100 17.36668 clc313 25.170467 

curvature 20.0286849 bedrock6 17.362765 bedrock2140 24.825679 
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clc313 19.7681373 fieldcap3 17.299363 fieldcap1 24.605976 

fieldcap4 19.3354911 bedrock15 17.269519 soiltype6 24.388815 

somvalue1 18.2677439 texturclasses2 17.145539 bedrock1210 24.212217 

soiltype5 17.6507635 bedrock2113 16.446683 bedrock1410 23.849084 

texturclasses7 17.5222678 sombalance3 16.358505 soiltype2 23.599985 

fieldcap2 16.599699 texturclasses5 16.196514 soiltype12 23.469525 

soiltype11 16.5230704 clc231 16.177492 curvature 23.164825 

bedrock1000 15.4518973 bedrock9 16.097436 bedrock5820 22.479188 

sombalance1 15.3679716 fieldcap1 16.070997 soiltype35 22.440647 

texturclasses5 15.2334883 texturclasses7 15.64931 sombalance3 22.351431 

fieldcap1 15.2220272 curvature 15.523229 soiltype13 22.262779 

soiltype14 14.52349 bedrock2140 15.479385 soiltype26 21.893032 

clc112 14.5200418 bedrock1000 15.44781 clc242 21.849166 

bedrock3 14.3985351 bedrock1210 15.107576 clc312 21.796239 

bedrock5820 14.3659871 somvalue4 14.995406 bedrock9 21.693688 

bedrock1211 14.0806248 bedrock2111 14.829097 bedrock2113 21.405996 

bedrock6100 14.072025 soiltype9 14.78957 fieldcap3 21.343849 

permeability1 14.041231 clc313 14.741663 texturclasses11 21.125361 

bedrock2100 13.9942559 fieldcap4 14.357204 bedrock1211 21.051244 

bedrock5 13.8907964 clc221 14.051359 somvalue15 20.856966 

soiltype19 13.456461 bedrock2100 13.998573 texturclasses5 20.826818 

bedrock2111 12.9754548 bedrock5000 13.877387 bedrock5612 20.765417 

soiltype27 12.9411838 somvalue5 13.845203 soiltype19 19.446793 

bedrock3110 12.5944349 sombalance6 13.617069 bedrock15 19.438728 

soiltype25 12.4497353 bedrock5310 13.465891 soiltype25 19.183113 

soiltype28 12.3633841 soiltype17 13.444028 soiltype28 19.172648 

soiltype3 12.2194426 bedrock5 13.383443 texturclasses10 18.989427 

texturclasses6 12.1806122 bedrock1211 13.376805 texturclasses2 18.949904 

sombalance3 11.8403703 soiltype1 13.333504 soiltype10 18.937924 

bedrock3100 11.8218281 bedrock5612 13.141395 permeability5 18.767024 

soiltype9 11.7810801 clc312 13.00443 texturclasses7 18.678153 

permeability4 11.4513707 bedrock5300 12.943579 bedrock3 18.510044 

bedrock2140 11.4026516 soiltype3 12.807795 soiltype8 18.330142 

bedrock2113 11.1246568 bedrock0 12.730327 bedrock7 17.673571 

bedrock5000 11.0191549 bedrock1 12.730327 texturclasses4 17.496248 

bedrock15 10.9813802 bedrock10 12.730327 bedrock0 17.333647 

soiltype1 10.5960304 bedrock11 12.730327 bedrock1 17.333647 

bedrock0 10.0710451 bedrock1120 12.730327 bedrock10 17.333647 

bedrock1 10.0710451 bedrock12 12.730327 bedrock11 17.333647 

bedrock10 10.0710451 bedrock1310 12.730327 bedrock1120 17.333647 

bedrock11 10.0710451 bedrock14 12.730327 bedrock12 17.333647 

bedrock1120 10.0710451 bedrock2120 12.730327 bedrock1310 17.333647 

bedrock12 10.0710451 bedrock4 12.730327 bedrock14 17.333647 

bedrock1310 10.0710451 bedrock4230 12.730327 bedrock2120 17.333647 

bedrock14 10.0710451 bedrock5500 12.730327 bedrock4 17.333647 

bedrock2120 10.0710451 bedrock7110 12.730327 bedrock4230 17.333647 

bedrock4 10.0710451 bedrock8 12.730327 bedrock5500 17.333647 
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bedrock4230 10.0710451 bedrock8100 12.730327 bedrock7110 17.333647 

bedrock5500 10.0710451 clc111 12.730327 bedrock8 17.333647 

bedrock7110 10.0710451 clc121 12.730327 bedrock8100 17.333647 

bedrock8 10.0710451 clc122 12.730327 clc111 17.333647 

bedrock8100 10.0710451 clc124 12.730327 clc121 17.333647 

clc111 10.0710451 clc131 12.730327 clc122 17.333647 

clc121 10.0710451 clc132 12.730327 clc124 17.333647 

clc122 10.0710451 clc141 12.730327 clc131 17.333647 

clc124 10.0710451 clc142 12.730327 clc132 17.333647 

clc131 10.0710451 clc321 12.730327 clc141 17.333647 

clc132 10.0710451 clc324 12.730327 clc142 17.333647 

clc141 10.0710451 clc333 12.730327 clc321 17.333647 

clc142 10.0710451 clc411 12.730327 clc324 17.333647 

clc321 10.0710451 clc511 12.730327 clc333 17.333647 

clc324 10.0710451 clc512 12.730327 clc411 17.333647 

clc333 10.0710451 permeability0 12.730327 clc511 17.333647 

clc411 10.0710451 permeability2 12.730327 clc512 17.333647 

clc511 10.0710451 permeability8 12.730327 permeability0 17.333647 

clc512 10.0710451 soiltype16 12.730327 permeability2 17.333647 

permeability0 10.0710451 soiltype18 12.730327 permeability8 17.333647 

permeability2 10.0710451 soiltype20 12.730327 soiltype16 17.333647 

permeability8 10.0710451 soiltype21 12.730327 soiltype18 17.333647 

soiltype16 10.0710451 soiltype22 12.730327 soiltype20 17.333647 

soiltype18 10.0710451 soiltype24 12.730327 soiltype21 17.333647 

soiltype20 10.0710451 soiltype25 12.730327 soiltype22 17.333647 

soiltype21 10.0710451 soiltype29 12.730327 soiltype24 17.333647 

soiltype22 10.0710451 soiltype31 12.730327 soiltype29 17.333647 

soiltype23 10.0710451 soiltype32 12.730327 soiltype31 17.333647 

soiltype24 10.0710451 soiltype33 12.730327 soiltype32 17.333647 

soiltype29 10.0710451 soiltype34 12.730327 soiltype33 17.333647 

soiltype31 10.0710451 soiltype36 12.730327 soiltype34 17.333647 

soiltype32 10.0710451 soiltype37 12.730327 soiltype36 17.333647 

soiltype33 10.0710451 soiltype38 12.730327 soiltype37 17.333647 

soiltype34 10.0710451 soiltype39 12.730327 soiltype38 17.333647 

soiltype36 10.0710451 soiltype40 12.730327 soiltype39 17.333647 

soiltype37 10.0710451 soiltype41 12.730327 soiltype40 17.333647 

soiltype38 10.0710451 soiltype42 12.730327 soiltype41 17.333647 

soiltype39 10.0710451 soiltype43 12.730327 soiltype42 17.333647 

soiltype40 10.0710451 soiltype44 12.730327 soiltype43 17.333647 

soiltype41 10.0710451 soiltype45 12.730327 soiltype44 17.333647 

soiltype42 10.0710451 soiltype46 12.730327 soiltype45 17.333647 

soiltype43 10.0710451 soiltype47 12.730327 soiltype46 17.333647 

soiltype44 10.0710451 soiltype48 12.730327 soiltype47 17.333647 

soiltype45 10.0710451 somvalue0 12.730327 soiltype48 17.333647 

soiltype46 10.0710451 somvalue15 12.730327 somvalue0 17.333647 

soiltype47 10.0710451 soiltype5 12.249146 soiltype5 16.933658 

soiltype48 10.0710451 bedrock1410 12.19096 bedrock5400 16.80058 
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somvalue0 10.0710451 texturclasses11 12.165626 soiltype3 15.48858 

somvalue15 10.0710451 clc112 11.630711 bedrock3110 15.280317 

clc311 10.0643601 soiltype19 11.415358 soiltype17 15.240806 

texturclasses8 9.6921596 clc311 11.303383 bedrock6 14.994646 

soiltype13 9.3938525 soiltype8 11.303021 clc311 14.670504 

texturclasses10 9.3582713 bedrock3110 11.099981 bedrock2111 13.946986 

permeability6 9.1878554 bedrock7 10.793483 bedrock1000 13.810327 

bedrock5210 8.8831298 somvalue3 10.78154 soiltype23 13.810327 

texturclasses11 8.8154082 soiltype23 10.460309 soiltype15 13.502736 

permeability9 8.7680095 soiltype6 10.301763 fieldcap4 12.775681 

bedrock5300 8.1178966 bedrock6100 9.972388 soiltype1 12.465177 

soiltype30 8.0715253 permeability1 9.605501 soiltype11 12.228605 

texturclasses2 6.6774434 soiltype27 9.517494 soiltype27 11.843831 

bedrock1210 6.5322299 sombalance1 9.278922 bedrock4120 11.706976 

clc221 6.475714 soiltype13 9.242461 permeability1 11.611292 

bedrock5310 6.4094464 soiltype30 8.968657 clc221 11.332763 

bedrock7 6.3395369 soiltype10 8.882178 bedrock5 11.091602 

bedrock5612 6.0745995 soiltype11 8.403527 bedrock5300 10.885785 

bedrock9 5.8658104 texturclasses4 8.048875 somvalue1 10.507573 

soiltype26 4.8873496 bedrock4120 8.01893 permeability4 10.481742 

clc243 4.7527929 bedrock4240 7.997258 bedrock6100 10.136586 

bedrock4120 4.4687831 texturclasses6 7.523689 sombalance1 10.026569 

bedrock13 3.9144303 clc243 7.358701 bedrock2100 9.876023 

bedrock6 3.4770136 bedrock13 7.125124 bedrock13 9.483656 

soiltype8 2.6941659 permeability4 5.019059 texturclasses6 8.708259 

bedrock4700 1.4254446 texturclasses8 4.319355 bedrock4700 6.974117 

soiltype6 0.5561257 bedrock4700 1.7028 soiltype9 6.648818 

clc312 0 permeability6 0 texturclasses8 0 

 


