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Abstract 

Fertility problems are the most frequent reasons for animal losses in Austrian dairy farms. Pregnancy 

diagnosis is a very important tool for the reproductive management in efficient and productive dairy 

farms. Today, the mid infra-red (MIR) spectroscopy is the method of choice in the routine milk 

recording system for quality control and to analyze the standard milk contents, such as fat, protein, 

casein, lactose and urea. In some instances, equations based on MIR spectra are used to predict 

diseases (e. g. mastitis, lameness) and other traits like methane emissions or body energy status. The 

aim of this study was to develop a calibration equation to predict the pregnancy state from routinely 

recorded MIR spectral data. A further objective was to evaluate the effect of different sample sizes in 

calibration. The data for this study was from the Austrian milk recording system and included test day 

information (e. g. breed, parity, days in milk, milk yield, milk components) as well as information about 

inseminations and calvings. Test day records of Fleckvieh, Brown Swiss and Holstein Friesian cows 

between 3 and 305 days of lactation were used for the study. The first derivatives of 212 selected MIR 

spectral data points, corrected for days in milk by applying Legendre Polynomial, were used for the 

prediction models. The data set contained about 400,000 records from about 40,000 cows and was 

randomly split by farm into calibration (50 %) and validation (50 %). The calibration set was balanced 

(1:1) in terms of pregnant and open cases, while the validation set was kept unbalanced. Pregnancy 

prediction was done with Partial Least Square Analysis by applying the function ‘trainControl’. In a first 

step, a single prediction equation was applied on all test day records across the whole lactation. The 

sensitivity and specificity of this model were 0.856 and 0.836. Splitting the results by pregnancy 

months, showed that sensitivity was very low for the first month of gestation (0.380). Therefore, 

separate prediction equations for different ‘expected’ pregnancy stages were created. This strategy 

led to a much higher sensitivity (0.825) in the first pregnancy months, compared to the sensitivity 

(0.380) of the model with a single prediction equation. When splitting up the results of this model 

(separate prediction equation for different pregnancy stages) by lactation month, it was observed that 

cows which got pregnant very early or very late in lactation were mostly misclassified. Hence, in the 

final model a separate prediction equation for different ‘expected’ pregnancy stages and lactation 

stages was developed. Balanced accuracies were in a range from 0.523 to 0.918. In general, prediction 

of pregnancy performed better at later pregnancy stages. The evaluation of different sample sizes in 

calibration demonstrated that sensitivity and specificity was slightly increasing with a higher sample 

size and standard deviation (sd) was decreasing.  

Key words: MIR spectroscopy, pregnancy detection, dairy cow 
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Zusammenfassung 

Fruchtbarkeitsprobleme sind die häufigste Abgangsursache von Kühen in österreichischen 

Milchviehbetrieben. Eine sichere Fruchtbarkeitsdiagnose ist daher ein sehr wichtiges Instrument eines 

effizienten und produktiven Milchviehbetriebes. Die Mittlere-Infrarot (MIR) Spektroskopie ist die 

Methode der Wahl in der routinemäßigen Milchleistungsprüfung zur Qualitätskontrolle sowie zur 

Bestimmung der Milchinhaltsstoffe wie Fett, Eiweiß, Kasein, Lactose oder Harnstoff. Darüber hinaus 

werden MIR Spektraldaten auch verwendet, um bestimmte Krankheiten (z. B. Mastitis, Lahmheit, 

Ketose) oder andere Merkmale, wie Methanemission oder der Körperenergiestatus, vorherzusagen. 

Das Ziel dieser Masterarbeit war es, eine Kalibrierungsgleichung zu entwickeln, um den 

Trächtigkeitsstatus von Milchkühen aus den routinemäßig erhobenen MIR Spektraldaten 

vorherzusagen. Ein weiteres Ziel war die Evaluierung des Effekts unterschiedlicher Stichprobengrößen 

in der Kalibrierung. Die Daten für diese Studie stammten aus der österreichischen 

Milchleistungsprüfung und enthielten neben den allgemeinen Testtagsinformationen (Rasse, Herde, 

Laktation, Laktationstag, Milchmenge, Inhaltsstoffe, ect.) auch Informationen zu Besamungen und 

Abkalbungen. Für die Studie wurden Testtagsdaten von Kühen der Rassen Fleckvieh, Braunvieh und 

Holstein verwendet, welche sich zwischen 3 und 305 Laktationstag befanden. Als MIR-

Vorhersagevariablen wurden nur selektierte Bereiche des Spektrums verwendet, welche die meiste 

Information enthalten. Der komplette Datensatz enthielt zirka 400.000 Einträge von ungefähr 40.000 

Kühen und wurde nach Betrieb zufällig in einen Kalibrierungs- und einen Validierungsdatensatz geteilt. 

Zusätzlich wurde der Kalibrierungsdatensatz in Bezug auf den Trächtigkeitsstatus (offen/trächtig) 

balanciert (1:1). Der Validierungsdatensatz hingegen wurde unbalanciert und somit realistisch 

belassen. Die Vorhersage erfolgte mit der Methode Partial Least Square Analysis (PLS) unter 

Anwendung der Funktion ‘trainControl‘ vom R package ‚caret‘. Im ersten Schritt wurde eine 

Vorhersagegleichung für alle Kühe und deren Testtagsergebnisse über die gesamte Laktation 

entwickelt. Die Sensitivität und Spezifizität bei diesem Modell lag bei 0,856 bzw. 0,836. Die Aufspaltung 

der Ergebnisse in einzelne Trächtigkeitsmonate zeigte jedoch, dass die Sensitivität im ersten 

Trächtigkeitsmonat nur bei 0,380 lag und mit fortschreitender Trächtigkeitsdauer anstieg. In einem 

nächsten Schritt wurde daher eine separate Vorhersagegleichung für jedes (erwartete) 

Trächtigkeitsmonat erstellt. Bei diesem Modell stieg die Sensitivität im ersten Trächtigkeitsmonat von 

0,380 auf 0,825 an. Eine genauere Betrachtung der Ergebnisse zeigte aber, dass Kühe welche sehr früh 

bzw. sehr spät in der Laktation trächtig wurden, sehr häufig falsch eingestuft worden sind. Um diesen 

Effekt auszugleichen, wurde im finalen Modell eine separate Vorhersagegleichung für jedes 

(erwartete) Trächtigkeitsstadium sowie jedes Laktationsstadium entwickelt. Die Ergebnisse (Balanced 

Accuracies) dieses Models lagen breit gestreut im Bereich zwischen 0,523 und 0,918. Im Allgemeinen 



  4 

4 

war die Vorhersage in späteren Trächtigkeitsstadien genauer, als jene in früheren Trächtigkeitsstadien. 

Die Evaluierung des Effekts unterschiedlicher Stichprobengrößen bei der Kalibrierung zeigte, dass 

Sensitivität und Spezifität mit einer steigenden Stichprobengröße leicht zunahmen und die 

Standardabweichung abnahm. 

Schlüsselwörter: MIR Spektroskopie, Trächtigkeitsvorhersage, Milchkuh 
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1. Introduction 

1.1. General background 

This study is part of the international project D4Dairy. This project is led by the Rinderzucht Austria 

with the overall goal to provide digital support to dairy management via digitalization, data integration, 

detection and decision support to further improve animal health, nutrition, animal welfare and 

product quality. The D4Dairy subprojects are divided into two areas. The goal of the first area is Data 

and Decision. In this area, digitalization, data integration and decision support are the main parts. The 

second area is Data and Detection. The goal of this second part is to improve health by data-driven 

detection of risk factors and early predictors. The sub goal 2.2 is defined as the use of milk mid-infrared 

(MIR) spectroscopy to predict the health of dairy cows. In this sub goal the pregnancy detection has 

been included additionally (D4Dairy, 2020).  

Currently, the MIR spectra is the method of choice in the milk recording system to analyze the standard 

milk components including fat, lactose, protein and urea (Grelet et al. 2015, 2016). Moreover, MIR 

spectra data could also be used to predict some other detailed milk components such as lactoferrin 

(Soyeurt et al. 2012), minerals (Soyeurt et al. 2009) or fatty acids (Soyeurt et al. 2011). It is well known 

that there are changes in milk yield and also milk components during the pregnancy in dairy cows (Olori 

et al. 1997). Therefore, the focus of this study was the prediction of pregnancy stage with MIR spectra 

data, because pregnancy and pregnancy diagnosis are among the most important elements in a 

successful reproduction management on dairy farms (e.g. Balhara et al. 2013, Pohler et al. 2016, Hirpa 

et al. 2018). The MIR spectra pregnancy probabilities could be an extra information for the farmers in 

the framework of the routine milk recording system. So this would allow the farmers to be informed 

about the pregnancy state of individual cows on each test day and therefore the reproduction 

management could be optimized.  

 

1.2. Aim of the thesis 

The main aim of this study was to develop a calibration equation to predict the pregnancy state from 

routinely recorded MIR spectral data and to evaluate its specificity and sensitivity. Further, we aimed 

to provide a formula to give the probabilities of pregnancy for each test day. Further, we evaluate the 

effect of different sample sizes in the calibration setting.  
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1.3. Literature review 

1.3.1. Pregnancy Diagnosis in Dairy Cows 

Pregnancy diagnosis is a very important tool for the reproductive management in efficient and 

productive cattle farms. On an economical dairy operation, cows need to calve every year and for this 

reason the identification of pregnant and non-pregnant animals at an early date is necessary (Hirpa et 

al. 2018). Furthermore, fertility is the most frequent reason for animal losses in dairy farms. According 

to Egger-Danner et al. (2018), fertility was with an average of 24.2 % the most common cause for dairy 

cows leaving the herd. For these reasons, an ideal pregnancy test should have high sensitivity, which 

is defined as the proportion of pregnant cows predicted as pregnant, as well as specificity, which is 

defined as the proportion of non-pregnant cows predicted as non-pregnant, and should be inexpensive 

and simple carried out under field conditions (Pohler et al. 2016). Basically, there are two types of 

pregnancy diagnosis methods available: 

Direct Methods 

1. Estrus detection: This is a simple method and in cattle the estrus is generally known as heat. If 

the insemination was not successful, the cow does return to estrus 18 to 24 days after 

breeding. A farmer does not need specialized skills or instruments but there are many factors 

that limit its accuracy like lactation state or undernutrition. For a good pregnancy detection, it 

is very important to be properly trained to recognize heat behavior (Pohler et al. 2016). 

2. Transrectal palpation: This direct method is very common in dairy cows and it was first 

described by Cowie (1948). Traditionally, the examination is not earlier than 40 to 60 days after 

the insemination but a good trained examiner can predict pregnancy as early as day 30. It also 

depends on the size and the age of the dam. When a cow is pregnant, some changes in the 

location, content, size and texture of the uterus occur and the examiner can declare the 

pregnancy state of the cow. It is also possible to estimate the embryonic or fetal age and to 

detect the ovarian structures (e.g. corpus luteum or follicle). There are various published 

evidences regarding to the effect of the examination on the embryo or fetus but in conclusion, 

the risk of embryo or fetal loss is less than the value of the gained information (Fricke et al. 

2016, Pohler et al. 2016). 

3. Transrectal ultrasonography: This third direct method has made pregnancy diagnosis possible 

as early as day 25 after insemination. The fetal heartbeat can be detected as of day 21 but it is 

easier and safer after day 25. With the use of ultrasonography, the pregnancy state, fetal sex, 

ovarian function and uterine morphology can be evaluated. The advantages of this method 
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are also that it is less invasive than transrectal palpation and the pregnancy detection can be 

made in an earlier pregnancy state (Pohler et al. 2016).  

Indirect Methods 

4. Progesterone: Progesterone is an important steroid hormone and it is involved in the female 

reproduction cycle, pregnancy and embryogenesis. At the beginning of the pregnancy it is 

primarily produced and secreted by the corpus luteum and from about day 70 the placenta 

produces significant quantities (DeWitt & Grondin 2011). The concentrations of progesterone 

in blood or milk vary with the estrous cycle. The maximum value is 14-15 days after estrus and 

if the cow is pregnant, this high level continues. So low progesterone levels at 18 to 24 days 

after insemination can indicate non-pregnant cows. In Figure 1 the representative 

progesterone level of an open cow (orange line) and a pregnant cow (blue line) is shown. Based 

on these lines it is not accurate to use the progesterone level to detect pregnant cows because 

of the high level during the normal estrous cycle (Balhara et al. 2013, Fricke et al. 2016, Pohler 

et al. 2016). For these reasons of inconsistences, the pregnancy diagnosis based on 

progesterone has not been heavily adopted in the agricultural practice (Pohler et al. 2016). 

 

Figure 1: Representative progesterone profiles from blood samples (according to Fricke et al. 2016) 
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5. Pregnancy-associated glycoproteins (PAGs): PAGs are produced by the binucleate trophoblast 

cells of the placenta and entered to the maternal circulation (plasma and milk) at day 22 to 24 

after the successful insemination. To get an acceptable accurate pregnancy diagnosis, this test 

is made earliest at day 28 (Pohler et al. 2016). To analyze the PAG value of milk and plasma, a 

commercial enzyme-linked immunosorbent assay ELISA kit is used. Commercial ELISA kits are 

offered by different companies. One example for a commercial PAG ELISA manufacturer is the 

IDEXX milk or plasma pregnancy test (IDEXX Laboratories). The results of this test are separated 

into three different classes. In plasma, a cow is open when the results are <0.300 and the cow 

is pregnant when the result is >1.000. Between 0.300 and 1.000 the cow is classified as 

“recheck”. In milk, a cow is classified as open when the results are <0.100 and the cow is 

classified as pregnant when the results are >0.250. Between 0.100 and 0.250 the cow is 

classified as “recheck” (Ricci et al. 2015). In Table 1 there are the sensitivity and the specificity 

obtained using PAG tests based on several experiments. In Austria, the IDEXX milk pregnancy 

test is very common. This test is also offered by the Austrian milk recording system.  

Table 1: Sensitivity and Specificity for ELISA PAG test results based on several studies 

Reference Days after AI Test Sensitivity  
[% (no./no.)] 

Specificity 
 [% (no./no.)] 

Lawson et al. 2014 33-52 ELISA (milk PAG) 100 (65/65) 98 (46/47) 

Sinedino et al. 2014 28-30 ELISA (plasma PAG) 96.1 (173/180) 90.7 (204/225) 

Ricci et al. 2015 32 
ELISA (plasma PAG) 100 (57/57) 87 (73/84) 

ELISA (milk PAG) 98 (52/53) 83 (68/82) 

 

6. According to Balhara et al. (2013) there are several other indirect indicators for pregnancy but 

they are not frequently used in practice and therefore they are only listed and not described 

further: 

1. Estrone Sulphate 

2. Conceptus and Placenta Secreted Products 

3. Early Conception Factor 

4. Interferon-Tau 
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1.3.2. Pregnancy Losses 

As already mentioned, fertility is a very important part for a successful dairy farm and pregnancy losses 

play an important role. Generally, the gestation is divided into two periods. The embryonic period 

starts with the conception and ends with the differentiation stage, which is approximately at day 42-

45 of gestation. Then the fetal period starts and this period ends with the birth of the calf (Committee 

on Bovine Reproductive Nomenclature, 1972). For this reason, pregnancy losses are also divided into 

these two periods. According to a review paper of 14 studies, the embryonic mortality in dairy cows 

averaged 12.8 % based on transrectal ultrasonography (Santos et al. 2004). Another study by Humblot 

(2001) averaged the early and the late embryonic pregnancy losses in Holstein cows in 44 herds in 

France after first insemination to 31.6 % and 14.7%.  The average of late embryonic and fetal losses 

and their ranges of 17 studies are shown in Table 2. According to another study, fetal losses from day 

56 to day 98 of gestation were 2 % (Vasconcelos et al. 1997). 

Table 2: Late embryonic and fetal losses in lactating and primigravid dairy and beef cattle (according to Santos 
et al. 2004) 

 Dairy cattle Beef cattle 

Lactating cow 10.70 (8.3-24.0) 9.17 (6.5-10.8) 

Primigravid  2.52 (1.5-10.2) 4.21 (4.0-4.8) 
 

These pregnancy losses reduce the benefit of the early pregnancy diagnosis. One or more subsequent 

pregnancy diagnoses may be necessary to identify these pregnancy losses and to re-inseminate the 

cows. Therefore, many dairy farmers do a pregnancy diagnosis around 28 to 35 days after insemination 

and then a second diagnosis around 4 to 6 weeks later to confirm the result (Fricke et al. 2016). 

Therefore, the prediction of the pregnancy state of a cow every test day from analysis of MIR spectra 

would be a truly useful tool for farmers. 

 

1.3.3. Milk mid-infrared (MIR) spectroscopy 

The need for secure, fast, cheap and high-throughput analyzation methods has led to the application 

of infrared spectroscopy in the livestock and also in the food sector (De Marchi et al. 2014). Today, the 

MIR spectroscopy is the method of choice in the routine milk recording system, for quality control and 

to analyze the standard milk contents, such as protein, casein, fat, lactose and urea (Grelet et al. 2015, 

2016). With MIR it is also possible to analyze some other milk traits like minerals (Soyeurt et al. 2009), 

fatty acids (Soyeurt et al. 2011) or lactoferrin (Soyeurt et al. 2012). The technique is based on the 

interaction between electromagnetic waves and matter. The different spectral regions can be seen in 
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Figure 2. The x-ray region is in the wavelength region 0.5 to 10 nm, the UV region in 10 to 350 nm, 

visible region in 350 to 800 nm, near-infrared region in 800 to 2,500 nm, mid-infrared region in 2.5 to 

25 µm, microwaves in 100 µm to 1 cm and radio frequency regions in 1 cm to 1 m (De Marchi et al. 

2014).  

According to the international norm ISO 9622:2013 for milk and liquid milk products, the milk sample 

is analyzed after pretreatment and homogenization in a so-called infrared spectrometer. That 

instrument records the quantity of radiation in transmittance at specific wavelengths in the MIR 

region. These obtained spectral data are transformed into estimates of constituent concentrations or 

other physico-chemical parameters through calibration models (ISO, 2013). Figure 3 shows a typical 

MIR absorption curve of a milk sample. 

 

       Figure 3: Typical milk MIR absorption curve (Source: OptiMIR) 

As already mentioned, MIR spectroscopy is not only used to analyze the standard milk components or 

other milk traits. Because of the increasing importance of fitness and health traits in national breeding 

programs, there are several studies to predict diseases with MIR spectroscopy, e.g. mastitis (Dale & 

Werner 2017, Rienesl et al. 2019), lameness (Mineur et al. 2017, Bonfatti et al. 2019) or ketone bodies 

Figure 2: Different spectral regions according to De Marchi et al. 2014 
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(De Roos et al. 2007). Further, there are studies on methane emissions (Vanlierde et al. 2015), body 

energy status (McParland et al. 2011), energy intake and efficiency (McParland et al. 2014) or ration 

composition (Klaffenböck et al. 2017).  

There are only a few studies available on prediction pregnancy with MIR spectra. According to a study 

from Laine et al. (2013), changes in the MIR spectra can provide indications of the change in the 

pregnancy state of a dairy cow. The aim of this study was the development of a formula to identify 

open cows from pregnant after an insemination within 20 to 50 days by using the MIR spectra data. 

Residual spectra were used, defined as observed spectra minus expected spectra. The expected 

spectra were calculated before in a mixed model.  The sensitivity and the specificity are given in Table 

3.    

Table 3: Sensitivity and Specificity of the pregnancy prediction with MIR spectral data  
according to Laine et al. (2013) 

Days after insemination Sensitivity [%] Specificity [%] 

21 – 30 99.2  89.1 

31 – 40 99.5 83.6 

41 – 50 99.7 84.2 
 

Another study from Toledo-Alvarado et al. (2018) used the whole raw MIR spectrum or some other 

milk components such as fat, protein, casein or lactose to diagnose the pregnancy state. In this study, 

only test day records after an insemination and with a calving event were used for the model. They 

concluded that the prediction of pregnancy by using the MIR spectrum is difficult because of the 

indirect correlation of the pregnancy state with the milk compositions. The results [area under the 

receiver operating characteristic curve (AUC)] of this study were in a range of 0.607 in Holstein and 

0.645 in Alpine Grey.  

According to another study from Delhez et al. (2020), the pregnancy prediction with MIR spectra gives 

promising accuracy in the late stage of pregnancy but not in the early one. In this study, three strategies 

were applied. In the first strategy, they only used test day records after an insemination. In comparison 

to Toledo-Alvarado et al. (2018), they also used cows with no calving event after insemination. The 

AUC value in the test set was 0.650. They concluded this poor performance of the model, that the 

spectra after an insemination was too noisy and contained not only the effect of pregnancy, such as 

genetics, management or lactation stage. In the second part, they used the spectral differences 

(residual spectra), which were defined as a spectrum before minus a spectrum after an insemination.  

The aim of this strategy was to eliminate the noisy effects. The AUC value, using the residual spectra 

(0.580) were not observably different from those which used only spectra after insemination (0.620) 
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on the same data set. They concluded that residual spectrum was not better for diagnosing the 

pregnancy state. The third strategy of this study was to classify the spectra data to 7 groups based on 

the period after insemination (1-30 d, 31-60 d, 61-90 d, 91-120 d, 121-150 d, 151-180 d and >180 d). 

In this part, they only used spectra data after an insemination. The aim of this classification was to 

reduce pregnancy signal variability as well as spectral variability and therefore enhanced the prediction 

accuracy. The AUC value of the test set was in a range of 0.590 to 0.650 in class 1 to 5 and increased 

to 0.700 in class 6 and to 0.820 in class 7. Generally, they concluded that MIR may not be adequate to 

predict the pregnancy state in early and mid-stages after an insemination. However, the model using 

records after 150 days of pregnancy showed promising prediction accuracy.  
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2. Material and Methods 

2.1. Data 

The data for this study was from the Austrian milk recording for the period of July 2014 to February 

2019 and was provided by Zuchtdata GmbH. The test day milk data consisted of information on breed, 

herd, region, parity, days in milk, milk yield, milk components (fat, protein, urea, lactose), somatic cell 

count (SCC) and the MIR spectra data for the respective test days. Additionally, we had information 

about the inseminations and the exact calving dates. Test day records of Fleckvieh, Brown Swiss and 

Holstein Friesian cows between 3 and 305 days of lactation were included. Information about the 

pregnancy test IDEXX was also available for some cows. The average lactation day of successful 

insemination was about day 93. Table 4 shows the number of records of the complete data set. 

                                                    Table 4: Number of records of the complete data set 

Variables Records 

Farms 6,899 

Animals (Cows) 40,106 

 Fleckvieh 30,589 

 Brown Swiss 3,854 

 Holstein Friesian 

 

5,663 

Test day records 403,863 

 open 124,163 

 pregnant 279,700 

  IDEXX 8,216 
 

The MIR spectra was analysed with infrared spectrometer from the brand Foss, consisting of 1,060 

data points. These points are the absorbance values of infrared light at different wavenumbers, with 

frequencies from 926 to 5010 nm. The received MIR spectra data were standardized into a common 

basis according to a procedure developed by Grelet et al. (2015). To remove noisy areas, only following 

spectral areas were selected: 968.1 to 1,577.5 nm, 1,731.8 to 1,762.6 nm, 1,781.9 to 1,808.9 nm and 

2,831 to 2,966 nm (Grelet et al. 2016). These selected 212 data points contain most of information 

whilst the other areas have less information because they are noisy induced by water absorbance or 

they are not repeatable between the different MIR instruments. According to some other studies 

(Soyeurt et al. 2011, 2012, Grelet et al. 2016, Lainé et al. 2017, Mineur et al. 2017, Ho et al. 2019, 

Rienesl et al. 2019) first derivative spectra values (Savitzky-Golay filter) were used for developing the 

prediction model.  
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2.2. Data preparation for the final model tests 

The different data sets were merged and primary data preparation was done in SAS (SAS Institute Inc., 

2017). The pregnancy state of each cow was connected to the associated test day by the following 

procedure. First, the real gestation length was calculated as the date of re-calving minus the date of 

the last insemination, which was also defined as the successful date of insemination. If this real 

gestation length was within an acceptable gestation length range, which is in Fleckvieh between 275 – 

305 days, in Holstein between 268 – 298 days and in Braunvieh between 276 – 306 days, the cow and 

her test days were included, if not, the cow and her test days were deleted. Finally, all test day records 

before the successful insemination date were coded as ‘open’ and all test day records between the 

date of successful insemination and date of re-calving were coded as ‘pregnant’. This procedure is 

visualized for an example in Figure 4. All doubts and irregularities in the recorded dates were removed 

to ensure the data quality.  

 

Figure 4: Graphic representation of coding ‘open’ (O) & ‘pregnant’ (P) on an example Fleckvieh dairy cow 

 

 

Another important variable for the prediction model was the pregnancy day of each cow at each test 

day. This variable was the result of the date of test day minus the date of successful insemination. The 

next step was the calculation of the first derivative of the MIR spectra data points according to some 

other studies (Soyeurt et al. 2011, 2012, Grelet et al. 2016, Lainé et al. 2017, Mineur et al. 2017, Ho et 

al. 2019, Rienesl et al. 2019). The first derivative was calculated by applying the formula dx(n)=x(n)-

x(n+4).  Finally, the 212 selected wavelengths of the MIR spectra were taken in the final data set (Grelet 

et al. 2016). 

Further data preparations were done in Rstudio (R Development Core Team, 2008). The days in milk 

(DIM) correction of the 212 selected wavelengths was done according to Vanlierde et al. (2015). For 

this, each first derivative spectral value was multiplied by a constant (i.e. 1), a linear (√3 * x) and a 

quadratic [√5/4 * (3x² - 1)] modified Legendre polynomial (Gengler et al. 1999), where x= –1 + 2 [(DIM 

– 3) / (305 – 3)]. The range of the application of the equation was not, as in the study of Vanlierde et 

al. (2015), between 5 and 365 DIM but between 3 and 305 days because of the standard lactation of 

AI = artificial insemination 
C = calving 
GL = gestation length (theoretical gestation length in Fleckvieh is between 275 – 305 days) 
Red Cross = test day with coding ‘open’ or ‘pregnant’ 
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305 days in Austria. The results of this modification were 636 (212 data points for each constant, linear 

and quadratic part) spectral values and they were finally used for the prediction model.  

The complete data set consisted of 403,863 records. These records were further randomly split by farm 

and pregnancy state into half a calibration (training) set and half a validation (test) set (except for the 

last model test, where also other ratios were split). In this way, it was not possible to have cows from 

the same herd in calibration and validation set. Additionally, the calibration set got balanced (1:1) in 

terms of pregnancy states of the cows, thus open or pregnant, by using random down sampling. 

Further, to evaluate various factors, different settings were applied on calibration sets. 

2.3. Calibration and validation settings for final model tests 

For the evaluation of various effects in the model, different settings were applied on the calibration 

subsets of each model test. These different subsets are explained in detail below. In order to get a 

realistic validation data set, another variable was introduced, the so called ‘expected’ pregnancy day. 

This ‘expected’ pregnancy day was calculated as date of test day minus date of the most recent 

insemination. This variable was important because in reality, the real pregnancy day is not known and 

so the ‘expected’ pregnancy day was used in the validation data set.  

2.3.1. Single prediction equation across the whole period 

The first step was to develop and apply a single prediction equation across the whole lactation and 

gestation period, so there was one prediction equation for every test day record, regardless of the 

lactation and gestation stage. Further, the data set with all cows was compared to a data set with cows 

with only one insemination. The total number of records for each data set is given in Table 5. 

Application of a single prediction equation on all cows 

First we applied a single prediction equation with no restrictions in the calibration and also the 

validation data set to all cows in the data set. In this step, all 403,863 records (Table 5) were used and 

were randomly split into half a calibration and half a validation data set. To have the same number of 

pregnant and open cows in the calibration data set, the random down sampling was used again. The 

validation data set was kept unbalanced to get realistic conditions.  
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Application of a single prediction equation on cows with only one insemination  

In this part, the prediction equation was used on animals with only one insemination. This step was 

done because of the relatively high values of pregnancy losses at the beginning of the gestation, which 

is mentioned in section 1.3.2. For animals with only one insemination and confirmed next calving, non-

pregnancy and pregnancy may be determined without error. In total there were 225,229 test day 

records of cows, which were inseminated only once before calving. These records were randomly split 

1:1 into calibration and validation set. Additionally, to get the same numbers of pregnant and open 

cows in the calibration data set, random down sampling was used. The exact ratio of pregnant and 

open animals can be seen in Table 5. The average lactation day of the successful insemination in this 

class was about day 70. The validation set was kept unbalanced.  

Table 5: Number of records of cows with one insemination at all and  
number of all records 

  Records of animals Records of all  

 with one insemination animals 
open 50,775 124,163 

pregnant 174,454 279,700 
total 225,229 403,863 

 

2.3.2. A prediction equation for each different ‘expected’ pregnancy stage 

After the first results, we decided to make different prediction equations for different ‘expected’ 

pregnancy stages. The different stages, which were used, are given in Table 6. In the calibration set, 

the real pregnancy day of a cow at any test day was used for the classification. So, in the training set 

there were only animals which were certainly in the respective gestation stage. However, in the test 

set the ‘expected’ pregnancy day was used to classify the animals to the respective stage. In terms of 

the open animals, there were no differences between the calibration and validation data set. In each 

class, all open animals were used, which were not inseminated yet and also the open animals with a 

non-successful insemination and an ‘expected’ pregnancy day in the respective pregnancy class.  
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Table 6: Subclasses depending on the pregnancy day in calibration set and  
‘expected’ pregnancy day in validation set 

Pregnancy  Calibration setting Validation setting 
class pregnancy day ‘expected’ pregnancy day 

1 1 - 30 1 - 30 
2 31 - 60 31 - 60 
3 61 - 90 61 - 90 
4 91 - 120 91 - 120 
5 121 - 150 121 - 150 
6 151 - 305 151 - 305 

 

2.3.3. A prediction equation for each different ‘expected’ pregnancy stage and 

lactation stage 

The next objective was to evaluate the effects of the classification into different ‘expected’ pregnancy 

stages and lactation stages to the accuracy of the prediction model. For this step, different prediction 

equations for different ‘expected’ pregnancy and lactation stages were produced. The individual 

classes are presented in Table 7. In the calibration set, the real pregnancy day and the lactation day 

were used to classify the test day record to the associated prediction equation. Additionally, in some 

training settings only cows with one insemination were used. It was not possible to use only animals 

with one insemination in all calibration settings because of the small numbers of records in some 

classes. The respective setting for each class is also given in Table 7. The code ‘O1P1’ means that there 

were open and pregnant animals with one insemination. ‘OAP1’ means that there were pregnant 

animals with one insemination and all open cows. The last code ‘OAPA’ means, that there were no 

restrictions concerning to the number of inseminations of open and pregnant cows.  In the validation 

data set, the ‘expected’ pregnancy day and the lactation day were used for the classification. No 

further settings or restrictions were applied to get a realistic validation data set. In this part also the 

open cows were classified into these classes in both data sets.  
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Table 7: Subclasses depending on the pregnancy day & lactation day in calibration set and ‘expected’ pregnancy 
day & lactation day in validation set 

 Calibration setting Validation setting 
pregnancy day setting code 'expected' pregnancy day 

1 - 60 
1 - 30 O1P1 1 - 30 

31 - 60 O1P1 31 - 60 

61 - 120 

1 - 30 O1P1 1 - 30 
31 - 60 O1P1 31 - 60 
61 - 90 O1P1 61 - 90 

91 - 120 O1P1 91 - 120 

121 - 180 

1 - 30 OAP1 1 - 30 
31 - 60 OAP1 31 - 60 
61 - 90 OAP1 61 - 90 

91 - 120 OAP1 91 - 120 
121 - 150 OAP1 121 - 150 
151 - 180 OAP1 151 - 180 

181 - 240 

1 - 30 OAPA 1 - 30 
31 - 60 OAPA 31 - 60 
61 - 90 OAP1 61 - 90 

91 - 120 OAP1 91 - 120 
121 - 150 OAP1 121 - 150 
151 - 180 OAP1 151 - 180 
181 - 210 OAP1 181 - 210 
211 - 240 OAP1 211 - 240 

241 - 305 

1 - 30 OAPA 1 - 30 
31 - 60 OAPA 31 - 60 
61 - 90 OAPA 61 - 90 

91 - 120 OAPA 91 - 120 
121 - 150 OAP1 121 - 150 
151 - 180 OAP1 151 - 180 
181 - 210 OAP1 181 - 210 
211 - 240 OAP1 211 - 240 
241 - 305 OAP1 241 - 305 

 O1P1 = open and pregnant animals with one insemination 
OAP1 = all open animals and pregnant animals with one insemination  
OAPA = all open and pregnant animals 
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2.3.4. Effect of different sample sizes for the calibration set 

Another objective of this study was to evaluate the effects of different sample sizes of calibration data 

sets to the accuracy of the prediction model. As already mentioned above, the records were normally 

split randomly half in calibration and half in validation data set. To evaluate the effects, the sample 

sizes of the calibration data set for the different sub settings were reduced as presented in Table 8. 

Table 8: Sample size classes of the calibration data set  

Class 
Calibration   

Class 
Calibration 

Open Pregnant   Open Pregnant 
10 10 10   1,000 1,000 1,000 
20 20 20   2,000 2,000 2,000 
50 50 50   5,000 5,000 5,000 

100 100 100   10,000 10,000 10,000 
200 200 200   20,000 20,000 20,000 
500 500 500   all all all 

 

The validation data set consisted in each sub setting of half of the full data set.  
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2.4. Methodology 

Model predictions were done with Partial Least Square Analysis (PLS) by applying the function 

‘trainControl’ of R package ‘caret’ (Kuhn 2008). A 10-fold cross validation was used, the number of 

components was set automatically for every run and discrimination was done by class probabilities. 

The spectra values were centered and scaled for prediction.  

According to the sample size generator (https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html), 5 

replications per setting were used for the final model tests. A standard deviation of 0.003 was given 

for replicates and it allowed to detect significance at p-value of 0.05 for differences of around 0.007. 

The indicators of model fit were as follows (Lantz 2015): 

1. Sensitivity: is defined as the proportion of pregnant cows predicted correctly as pregnant 

2. Specificity: is defined as the proportion of open cows predicted correctly as open 

3. Balanced Accuracy: is defined as the mean of sensitivity and specificity 

4. AUC values (Area under the ROC curve):  

The ROC (Receiver Operating Characteristic) curve is defined as the plot of the true positive rate TPR 

(=sensitivity) versus the false positive rate FPR (= 1 – specificity) for different values of the threshold, 

so it is a graph showing the performance of a classification. An example is displayed in Figure 5. The 

diagonal line represents random classification. A ROC curve above the diagonal line means that a 

prediction model is better than the random classification and a ROC curve under the diagonal line 

means that the prediction is worse. The AUC value indicates the accuracy of a model and it can be 

classified into classes, which can be seen in Table 9.  

 

         Table 9: Classification of AUC values  
                  (according to Lantz 2015) 

 

 

 

 

 

 

  

AUC value Classification 

> 0.9 outstanding 

0.8 to 0.9 excellent/good 

0.7 to 0.8 acceptable/fair 

0.6 to 0.7 poor 

0.5 to 0.6 no discrimination 
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Figure 5: Example for a ROC curve (according to Lantz 2015) 
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3. Results 

3.1. Application of a single prediction equation across the whole period 

Results for the application of a single prediction equation across the whole period for the data set of 

cows with only one insemination and the data set with all cows are shown in Table 10. This Table 

includes the indicators of model fit (sensitivity, specificity and balanced accuracy) for the large, 

imbalanced validation set for each model.  

Table 10: Mean and standard deviation (sd) of sensitivity, specificity and balanced accuracy of the model with 
animals with only one insemination and the model with all animals  

 sensitivity specificity balanced accuracy 
mean sd mean sd mean sd 

one insemination 0.889 0.002 0.904 0.003 0.896 0.001 

all inseminations 0.856 0.003 0.836 0.004 0.846 0.001 

  
 
In general, all three indicators of model fit were higher in the model which used only cows with one 

insemination. The sensitivity increased from 0.856 in the formula on all cows to 0.889 in the formula 

on cows with one insemination. The specificity increased from 0.836 to 0.904. For this reason, the final 

calibration data sets consisted, when it was possible, of animals which were only inseminated once. 

The test (validation) data set still contained all animals. 

The sensitivity, using the formula across the whole period on all animals, for individual pregnancy 

months are displayed in Table 11. The sensitivity in the first pregnancy month was about 0.380, 

increased in the second pregnancy month to about 0.695, in the third pregnancy month to about 0.945 

and from the fourth month the sensitivity was above 0.999.  

Table 11: Sensitivity of the single prediction equation on all animals divided into the different  
pregnancy months 

pregnancy 
month sensitivity pregnancy 

month sensitivity 

1 0.380 6 0.999 

2 0.695 7 1.000 

3 0.945 8 0.999 

4 0.997 9 1.000 

5 0.999 10 1.000 
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3.2. A prediction equation for each different ‘expected’ pregnancy stage 

Because of the results in chapter 3.1, the next step was to create different prediction equations for 

each different expected pregnancy stage, as explained in chapter 2.3.2. The results of this classification 

into pregnancy stages is given in Table 12.  

Table 12: Mean and standard deviation of sensitivity, specificity, balanced accuracy and AUC value of the model 
with different ‘expected’ pregnancy classes  

‘expected’ 

pregnancy 

stage 

sensitivity specificity balanced accuracy AUC 

mean sd mean sd mean sd mean sd 

1 - 30 0.825 0.003 0.679 0.003 0.752 0.001 0.818 0.001 
31 - 60 0.912 0.007 0.838 0.003 0.875 0.003 0.929 0.001 
61 - 90 0.964 0.003 0.923 0.003 0.943 0.001 0.973 0.001 

91 - 120 0.986 0.001 0.959 0.001 0.972 0.001 0.988 0.001 
121 - 150 0.995 0.001 0.978 0.001 0.986 0.001 0.995 0.001 
151 - 305 0.996 0.001 0.991 0.001 0.993 0.001 0.999 0.001 

 

This model test showed that the indicators for model fit increased with a higher pregnancy stage. 

Comparing those results with the results applying one prediction equation across the whole lactation 

(see Table 11), the sensitivity for the first pregnancy month increased from about 0.380 in the formula 

across the whole period to about 0.825 in the formula for the first pregnancy stage. Regarding 

specificity, the mean value decreased from 0.836 through the whole period to 0.679 in the formula for 

the first pregnancy stage. In the second month, the sensitivity increased again from 0.695 in the 

formula across the whole period to 0.912 in the formal for the second pregnancy month and the 

specificity increased also from about 0.825 in the formula across the whole period to 0.838 in the 

formula for the second pregnancy stage. In the third pregnancy month, the indicators were also higher 

in the formula with the different ‘expected’ pregnancy stages. In the fourth month, the sensitivity was 

higher in the formula across the whole period (0.997) than in the formula for the fourth pregnancy 

stage (0.986) but the specificity was higher, 0.959 compared with 0.836. The results of the formula for 

the last two ‘expected’ pregnancy stages were nearly the same like in the formula across the whole 

period concerning to sensitivity. Specificity was higher in the formula for the different pregnancy 

stages.  

Table 13 displays the results of the formulas for different ‘expected’ pregnancy stages depending on 

the lactation stages. It is shown that the sensitivity increased with the lactation month and the 

specificity decreased with the lactation month. There were irregularities only in the last lactation 
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month. For this reason, formulas for each different ‘expected’ pregnancy stage and also lactation stage 

were created. 

Table 13: Sensitivity and specificity of the different ‘expected’ pregnancy stages depending on lactation stages 

lact. mo. = lactation month 
sens. = sensitivity 
spec. = specificity 

 

3.3. A prediction equation for each different ‘expected’ pregnancy and lactation stage 

Based on the results in chapter 3.2, the final step was to create prediction equations for each different 

‘expected’ pregnancy and also lactation stage, as explained in chapter 2.3.3. The results of this 

classification are provided in Table 14. The sensitivities were in a range of 0.494 and 0.995, thus, 

differences were very big. The range of specificities was also very big, from 0.512 to 0.884.   

Within lactation stage, the indicators of model fit increased with ‘expected’ gestation stage. So for 

example, in the first lactation stage, which was from day 1 to day 60 of lactation, the sensitivity 

increased from 0.890 for the first ‘expected’ gestation stage, which was between 1 and 30 days of 

expected pregnancy day, to 0.946 in the second ‘expected’ gestation stage, which was between 31 and 

60 days of expected pregnancy day. However, the standard deviation was higher in the second 

gestation stage because of the low number of ‘pregnant’ records in this stage.  

Regarding to the ‘expected’ gestation stages, the indicators for model fit were mostly decreasing with 

lactation stages. Sensitivities for the first ‘expected’ gestation stage (1 to 30 days of ‘expected’ 

pregnancy) were 0.890 in the first lactation stage, 0.620 in the second lactation stage, and 0.494 in the 

third lactation stage.  

lact. 

mo. 

‘expected’ pregnancy stage 
1 - 30 31 - 60 61 - 90 91 - 120 121 - 150 151 - 305 

sens. spec. sens. spec. sens. spec. sens. spec. sens. spec. sens. spec. 
1 0.000 0.999 - - - - - - - - - - 
2 0.124 0.965 0.000 0.999 - - - - - - - - 
3 0.840 0.276 0.513 0.855 0.043 0.997 - - - - - - 
4 0.995 0.011 0.947 0.158 0.766 0.641 0.345 0.960 - - - - 
5 0.997 0.006 0.996 0.016 0.983 0.077 0.916 0.370 0.784 0.826 - - 
6 0.996 0.006 0.995 0.006 0.998 0.006 0.996 0.028 0.966 0.228 0.689 0.840 
7 0.991 0.018 1.000 0.004 1.000 0.000 0.999 0.000 0.999 0.000 0.952 0.341 
8 0.955 0.086 0.997 0.004 1.000 0.000 1.000 0.000 0.999 0.000 0.999 0.009 
9 0.784 0.330 0.984 0.019 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 

10 0.589 0.496 0.743 0.216 0.973 0.067 0.994 0.000 0.999 0.000 0.999 0.000 
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Table 14: Mean and standard deviation of sensitivity, specificity, balanced accuracy and AUC value of the model 
with different ‘expected’ pregnancy and lactation classes 

lactation 
stage 

records test set sensitivity specificity balanced 
accuracy AUC ‘expected’ 

pregnancy 
stage open pregnant mean sd mean sd mean sd mean sd 

1 - 60 35,158 2,497 0.890 0.007 0.690 0.009 0.790 0.003 0.853 0.002 1 - 30 
1 - 60 32,479 37 0.946 0.090 0.750 0.024 0.848 0.040 0.919 0.046 31 - 60 

61 -120 15,023 11,421 0.620 0.007 0.512 0.003 0.566 0.003 0.592 0.003 1 - 30 
61 -120 10,992 9,575 0.827 0.009 0.623 0.009 0.725 0.001 0.792 0.001 31 - 60 
61 -120 8,780 2,438 0.922 0.005 0.840 0.004 0.881 0.003 0.937 0.002 61 - 90 
61 -120 8,388 43 0.969 0.045 0.857 0.056 0.913 0.014 0.974 0.013 91 - 120 

121 - 180 3,647 4,303 0.494 0.011 0.553 0.014 0.523 0.003 0.534 0.005 1 - 30 
121 - 180 2,819 7,791 0.565 0.008 0.590 0.017 0.577 0.008 0.606 0.010 31 - 60 
121 - 180 2,037 11,555 0.597 0.008 0.625 0.002 0.611 0.003 0.658 0.004 61 - 90 
121 - 180 1,318 9,074 0.772 0.005 0.676 0.008 0.724 0.005 0.798 0.004 91 - 120 
121 - 180 1,324 2,367 0.897 0.006 0.834 0.007 0.866 0.004 0.929 0.005 121 - 150 
121 - 180 1,157 45 0.951 0.050 0.884 0.032 0.918 0.014 0.964 0.013 151 - 180 
181 - 240 990 1,582 0.553 0.014 0.527 0.015 0.54 0.003 0.559 0.005 1 - 30 
181 - 240 771 2,729 0.592 0.014 0.597 0.023 0.594 0.007 0.636 0.011 31 - 60 
181 - 240 573 4,606 0.607 0.015 0.622 0.024 0.614 0.006 0.66 0.007 61 - 90 
181 - 240 459 7,918 0.587 0.014 0.652 0.028 0.620 0.009 0.666 0.009 91 - 120 
181 - 240 380 11,407 0.623 0.013 0.623 0.032 0.623 0.014 0.674 0.010 121 - 150 
181 - 240 288 9,506 0.766 0.010 0.718 0.017 0.742 0.011 0.821 0.013 151 - 180 
181 - 240 289 2,477 0.896 0.010 0.846 0.015 0.871 0.005 0.939 0.005 181 - 210 
181 - 240 279 48 0.995 0.011 0.820 0.006 0.908 0.006 0.958 0.015 211 - 240 
241 - 305 307 559 0.504 0.024 0.584 0.036 0.545 0.016 0.568 0.015 1 - 30 
241 - 305 256 938 0.598 0.018 0.537 0.039 0.568 0.012 0.612 0.016 31 - 60 
241 - 305 155 1,643 0.623 0.012 0.633 0.038 0.628 0.020 0.675 0.026 61 - 90 
241 - 305 155 2,759 0.610 0.011 0.706 0.023 0.658 0.009 0.713 0.011 91 - 120 
241 - 305 107 4,557 0.612 0.009 0.676 0.046 0.644 0.021 0.691 0.015 121 - 150 
241 - 305 93 8,153 0.638 0.013 0.725 0.042 0.681 0.022 0.742 0.021 151 - 180 
241 - 305 88 11,741 0.684 0.013 0.768 0.056 0.726 0.026 0.792 0.018 181 - 210 
241 - 305 83 8,563 0.776 0.007 0.849 0.049 0.813 0.022 0.885 0.019 211 - 240 
241 - 305 79 506 0.852 0.015 0.855 0.036 0.854 0.021 0.933 0.013 241 - 305 
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3.4. Effect of different sample sizes for the calibration set 

For this model test, the sample sizes for the different calibration subsets were reduced to the numbers, 

which are displayed in Table 8 in chapter 2.3.4. The results are shown in Table 15.  

Table 15: Effect of different sample sizes for the calibration set  

sample 

size train 

all animals 
sensitivity specificity bal. acc. 

mean sd mean sd mean sd 
10 0.801 0.107 0.838 0.066 0.822 0.023 
20 0.849 0.078 0.811 0.063 0.83 0.012 
50 0.847 0.014 0.825 0.014 0.836 0.004 
100 0.856 0.019 0.817 0.025 0.837 0.007 
200 0.862 0.026 0.818 0.027 0.84 0.001 
500 0.848 0.015 0.834 0.013 0.841 0.001 
1000 0.853 0.012 0.831 0.013 0.842 0.001 
2000 0.857 0.01 0.829 0.01 0.843 0.002 
5000 0.857 0.003 0.831 0.003 0.844 0.001 
10,000 0.857 0.002 0.834 0.003 0.845 0.001 
20,000 0.853 0.002 0.839 0.002 0.846 0.001 
all 0.856 0.003 0.836 0.004 0.846 0.001 

 
The differences between the different sample size classes were not that big but the standard deviation 

was higher in the small sample size classes.   
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4. Discussion 

4.1. Comparison of the single prediction equation across the whole period applied on 

data of cows with one insemination and on all cows 

Due to the results of the first part of this work (section 3.1), the results of the single prediction equation 

on cows with only one insemination were in all indicators for model fit (sensitivity, specificity, balanced 

accuracy) significantly higher, compared to the results of the single prediction equation with all cows. 

The results are visualized in Figure 6. 

However, in practice, there are not only cows with one insemination, so the general use of a single 

prediction equation on cows with one insemination is not realistic. But the use of cows with only one 

insemination in the calibration data set could increase the indicators for model fit. So for this reason, 

in the final model, which was subdivided into the different pregnancy and lactation stages, in 

calibration we only used cows with one insemination, when the number of records was high enough 

in this group. 

The comparison of these two data sets also showed that in the prediction equation on cows with only 

one insemination the specificity was higher than the sensitivity and in the formula on all cows it was 

vice versa. With regard to the standard deviation, there were no significant differences between the 

different groups. 

According to the study of Laine et al. (2013), which used also all cows with no restrictions compared 

to the number of inseminations, the sensitivity (>0.99) was much higher than in this work (0.856). One 

reason for these higher sensitivities could be the observed time range. In the study of Laine et al. (2013) 

0,7

0,75

0,8

0,85

0,9

one insemination all inseminations

sensitivity specificity balanced accuracy

Figure 6: Sensitivity, Specificity and balanced accuracy of the formula on cows with only 
one insemination and the formula on cows with all inseminations 
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only the first 50 days after an insemination were observed and, in this study, respectively in this part 

of the study, the whole period was observed. With regard to the specificity, the differences were not 

that big: 0.862 (Laine et al. 2013) compared to 0.836 in this study. Another reason could also be that 

Laine et al. (2013) only used a residual spectrum and in this work the raw milk MIR spectrum was used.  

As already mentioned, in the study of Delhez et al. (2020) there are two different strategies related to 

one formula across the whole period. In the first strategy, which used only spectral records after an 

insemination, the sensitivity (0.650) and also specificity (0.560) were much lower than in this work 

(0.856, 0.836). Also in the second part, which considered the spectral differences, the sensitivity 

(0.590) and specificity (0.520) were much lower. One reason for these differences could be the 

different strategies of the use of MIR spectra to predict the pregnancy state. Another reason could be 

the lower number of records. The study of Delhez et al. (2020) included information about MIR spectra 

and inseminations from 8,064 Holstein cows and this study included information from 40,106 

Fleckvieh, Holstein and Brown Swiss cows.  

According to the results in Table 11, which showed the sensitivity of the single prediction equation on 

all cows and additionally separated by the expected pregnancy month, the sensitivity was very low in 

the first pregnancy month and increased with pregnancy months. The course of these sensitivity values 

and the percentage of test day records in each different pregnancy month is displayed in Figure 7.  The 

relatively high value of sensitivity across the whole period (0.856) was possible because only about 29 

% of the total records were in the first and second pregnancy month. So, in the first two pregnancy 

months, the prediction was not that good but in the other months the prediction was >0.94. For this 

reason of low values during the beginning of gestation, the formula was split into different pregnancy 

stages.  
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Figure 7: Course of the sensitivity value of the single prediction equation on all cows 
additionally separated into the different expected pregnancy months and the distribution 
of the test day records 



  34 

34 

4.2. A prediction equation for each different ‘expected’ pregnancy stage 

In general, the indicators for model fit increased with a higher pregnancy stage. Comparison of the 

single prediction equation across the whole period and prediction equations for each different 

‘expected’ pregnancy stage showed some interesting differences. First, especially the sensitivity in the 

first two months of ‘expected’ pregnancy was different. This can also be seen in Figure 8. The sensitivity 

increased from 0.380 in the single prediction equation across the whole period to about 0.825 in the 

prediction equation for the first ‘expected’ pregnancy stage. Also, in the second pregnancy month, the 

sensitivity increased significantly from 0.695 to 0.912. From the third pregnancy month on, the 

sensitivity was nearly the same in both formulas.  

Regarding to the specificity, there was a lower value for the first pregnancy month in the prediction 

equation for the first ‘expected’ pregnancy month (0.679) compared to the single prediction equation 

across the whole period (0.836). In the second pregnancy month, the specificity was approximately 

the same in the two models and from the third pregnancy month on, also the specificity was higher in 

the model with ‘expected’ pregnancy classes.  

Sensitivity and specificity were more balanced in the model with different prediction equations for 

each different ‘expected’ pregnancy stage than in the model across the whole period, especially from 

the third pregnancy month on. The balanced accuracies were always higher in the models with 

different ‘expected’ pregnancy classes. This is visualized in Figure 9. 
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Figure 8: Sensitivity of the model across the whole period, additionally separated by pregnancy month, and the 

model with pregnancy stages 
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According to the study of Delhez et al. (2020), which also made different classes after insemination, 

the indicators of model fit are much better in this study. Sensitivity and specificity of the first 30 days 

after insemination were at 0.570 and 0.580 in the study of Delhez et al. (2020). In this study, the 

sensitivity was 0.825 and the specificity was 0.679. The same differences can be observed in the other 

classes. One reason for these differences could be the fact that Delhez et al. (2020) only used records 

after an insemination and in this study records before and after an insemination were used. Another 

reason could be the different number of records per class.  

 

 

Additionally, analyses and prediction equations were separated by month of lactation. The results of 

this separation are displayed in Table 13. Results indicate that during the first months of lactation, the 

sensitivity was very low and the specificity was very high. At the end of lactation, it was visa versa. 

During the different lactation months, in the formula for the first ‘expected’ pregnancy stage, the 

values of sensitivities increased to over 0.99 in lactation month 4 and the specificity decreased to 

approximately 0.011 in the same month of lactation. This example can be seen in Figure 10.  

The same results can also be observed with regard to the other pregnancy months. At the beginning 

of the lactation, the majority of the animals were predicted as ‘open’ and with increasing of the 

lactation day, more animals were classified as ‘pregnant’. Overall, the indicators for model fit were 
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Figure 9: Sensitivity, specificity and balanced accuracy of the formula across the whole period and for the 
formula with pregnancy stages 
 exp. = expected 
sens. = sensitivity   
spec. = specificity 
bal. acc. = balanced accuracy 
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getting better but when these results were separated by month of lactation, the results were similar 

to the results of the example for the first pregnancy month, which are explained above. 

 

 

4.3. A prediction equation for each different ‘expected’ pregnancy stage and lactation 

stage 

According to the results of the first two parts of this work (section 3.1, 3.2, 4.1, 4.2), we created 

prediction equations for each different ‘expected’ pregnancy stage and also lactation stage in the final 

model test. The results of this final model test are given in Table 14. The comparison of the model with 

different prediction equations for each different ‘expected’ pregnancy stages and the model with 

different prediction equations for each different ‘expected’ different pregnancy stages and lactation 

stages showed that the balanced accuracy was getting better in the final model with ‘expected’ 

pregnancy and lactation stages. Figure 11 displays the results of the final model concerning to the 

indicators of model fit for the first pregnancy month. The sensitivity in the formula for only pregnancy 

stages was in average 0.062 for the first two months of lactation and increased in the final model to 

0.890. On the other hand, the specificity in the prediction equation for only pregnancy stages was in 

average 0.982 for the first two months of lactation and decreased in the final model to 0.690. The 

sensitivity was higher in the final model but the specificity was lower than in the model with only 

‘expected’ pregnancy month. However, the balanced accuracy was also higher in the final model and 

increased from 0.522 to 0.790. 
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Figure 10: Sensitivity, specificity and balanced accuracy of the formula for the first 
‘expected’ pregnancy month separated into the different lactation months 
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Figure 11: Sensitivity, specificity and balanced accuracy of the formula of the final model for the first ‘expected’ 
pregnancy month and in the different lactation stages 

According to the results of the final model (Table 14), the following two trends was observed. Within 

a lactation stage, the values of the indicators of model fit are increasing with ‘expected’ pregnancy 

stage. This trend was observed in each lactation stage. These promising prediction accuracy with the 

increasing day after insemination was also shown in the study of Delhaz et al. (2020). The second trend 

was that the indicators of model fit decreased with the lactation day of successful insemination.  

Three examples for the application of the final model are described here: 

As already mentioned, the day of successful insemination was on average lactation day 93. So at first 

we assumed, that a cow got pregnant at this time and there was also a test day record at this point. A 

second example was made with an animal, which got pregnant 50 % earlier than the average (lactation 

day 47), and a third example with an animal which got pregnant 50 % later than the average (lactation 

day 140). Furthermore, we assumed that there was a test day every 35 days. The exact example setting 

can be seen in Table 16. Finally, each test day was assigned to the associated formula of the final model. 

The results of the example are displayed in Figure 12. The best results can be observed in the example 

with the earliest date of successful insemination (example 2). In this example the balanced accuracy 

was 0.79 at the beginning of the pregnancy regard to 0.566 in the example of an average date of 

successful insemination and 0.523 in the example of a latest date of successful insemination. 
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Table 16: The setting of three different examples for the application of the final model 

Testday Day of lactation Pregnancy day 

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3 

1 93 47 140 1 1 1 

2 128 82 175 36 36 36 

3 163 117 210 71 71 71 

4 198 152 245 106 106 106 

5 233 187 280 141 141 141 

6 268 222 - 176 176 - 

7 303 257 - 211 211 - 

8 - 292 - - 246 - 

 

 

The application of the final model on three real cows is given in Figures 13, 14 and 15. The timeline 

with the date of the different events, like calving (C) or insemination (AI), is on the x-axis and on the y-

axis are the probabilities of pregnancy, which the final model predicated.  
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Figure 12: Sensitivity, specificity and balanced accuracy of the final model applied on three examples 
Example 1: date of successful insemination was lactation day 93 (average of the data set) 
Example 2: date of successful insemination was lactation day 47 (- 50 % of the average of the data set) 
Example 3: date of successful insemination was lactation day 140 (+ 50 % of the average of the data set) 
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The cow in Figure 13 was inseminated twice and the date of successful insemination was on lactation 

day 52. The pregnancy prediction at the first test day was wrong because the cow was not pregnant at 

this time. The other test days were after the successful insemination and so the cow was pregnant at 

these test days. But there were also two test days (4. & 6.) which were predicted incorrectly. The 

highest probability of pregnancy was at test day 3 with a value of about 77 %.  

The second real example is shown in Figure 14 and the cow was inseminated three times and the 

successful insemination was at lactation day 125. It can be seen that all test days were predicted as 

‘open’ but this was only correct for the first and second test days.  

The third example in Figure 15 depicts a cow inseminated once and the day of successful insemination 

was lactation day 70. In this example, there was also a positive IDEXX test result available. The 

prediction was correct on all test days and the probabilities were in a range of 58 % to 76 %.  

 

Figure 13: Application of the final model to a real cow (example 1) 
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Figure 14: Application of the final model to a real cow (example 2) 

 

 

Figure 15: Application of the final model to a real cow (example 3) 
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4.4. Effect of different sample sizes for calibration set 

The effect of different sample sizes of the calibration set was the last objective of this thesis. For this 

part, the results will be discussed and compared with the study of Saccenti and Timmerman (2016) 

and the study of Rienesl et al. (2019). These papers are two of the very rare references on sample size 

determination.  

Just like in this study, Saccenti and Timmerman (2016) created different models with an increasing 

number of samples. They started with a sample size of 50 (25 control + 25 cases) up to a sample size 

of 1000 (500 control + 500 cases) and the four experimental data sets, which were used, consisted of 

nuclear-magnetic-resonance (NMR) spectra of the serum blood metabolites (D.1 & D.2) and urine (D.3 

& D.4). The results of the study of Saccenti and Timmerman (2016) showed that the variability 

decreased with the sample size and sensitivity and specificity increased. These results can also be seen 

in Figure 16 (sensitivity) and Figure 17 (specificity). 

Rienesl et al. (2019) used MIR spectra data for mastitis prediction. They created four different models 

with different sample sizes but the sample sizes were much bigger than in the study of Saccenti and 

Timmerman (2016), and started from 1,165 (586 mastitis + 586 healthy) to 3,552 (1,776 mastitis + 

1,776 healthy). The result of this study was, that only specificity increased with the number of samples 

in the calibration set. There were almost no differences concerning to sensitivity. 

 
Figure 16: Sensitivity (A) of a PLS-DA model as a function of the total sample size for the discrimination between 

two group in a case-control design (Saccenti & Timmerman, 2016) 
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Figure 17: Specificity (B) of a PLS-DA model as a function of the total sample size for the discrimination between 

two group in a case-control design (Saccenti & Timmerman, 2016) 

The sample sizes in the current study were similar to the sample sizes in the study of Saccenti & 

Timmerman (2016) but there were also smaller and bigger sample sizes for calibration. Sample sizes 

started with 20 (10 pregnant + 10 open) to 125,162 (62,582 pregnant + 62,582 open). The results 

showed that the differences of sensitivity (Figure 18) and specificity (Figure 19) between the individual 

sample sizes were smaller than in the study of Saccenti & Timmerman (2016). In regard to the 

variability, this study showed also a decrease of the standard deviation with the sample sizes like in 

the study of Saccenti & Timmerman (2016). 

In terms of sensitivity, the results of this study were similar to the results of Rienesl et al. (2019) but 

there was no regular increase with the sample size for specificity. Yet, more than a few hundred 

samples per class (open/pregnant) in the calibration set did not substantially improve predictive 

capacity of the prediction formula applied to the large and imbalanced validation data set. 
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Figure 18: Sensitivities and their standard deviation for different sample sizes in calibration 

 

Figure 19: Specificities and their standard deviation for different sample sizes in calibration 
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5. Conclusion 

The main aim of this study was to develop a calibration equation to predict the pregnancy state from 

routinely recorded MIR spectral data. The results indicate that the prediction of the pregnancy state 

with MIR spectra data is difficult because of the strong effect of the lactation stage on the MIR 

spectrum and that fact that cows are typically open in early lactation and pregnant in late lactation. To 

account for this effect, separate prediction equations were developed for classes of lactation stage and 

expected pregnancy stage based on the most recent insemination. In general, balanced accuracy was 

good for cows getting pregnant early in lactation and increased with number of days pregnant. 

Although the accuracy of prediction is not very high, MIR spectra derived probabilities of pregnancy 

may be potentially implemented in routine recording in order to provide farmers with an additional 

tool for fertility management. Whether this is feasible needs to be explored by discussions with 

farmers.  
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