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Abstract: 

Q-learning has become one of the most popular reinforcement learning methods for 

simulating market participants. Traditional optimization methods are not effective in 

all instances since some of the underlying optimization problems are non-convex and 

therefore not well solvable. To address this challenge, Q-learning continuously 

improves player actions, thus converges towards the optimal solution. In this thesis 

we implement a Q-learning algorithm and use it on a simplified model of a 

hypothetical electricity market with uniform pricing. We assess if strategy 

combinations, derived from Q-learning, are pure Nash equilibria. Further, we want to 

determine limits of the method. We show that Q-learning is indeed capable of finding 

pure Nash equilibrium states for simple electricity market situation. Moreover, we 

learn that the model converges to certain pure Nash equilibria more frequently.  

Finally, we analyze and explain the distribution of results.  

 

 

 

Zusammenfassung: 

Q-learning ist eine der beliebtesten Methoden des verstärkenden Lernens um 

Marktteilnehmer zu simulieren. Herkömmliche Optimierungsmethoden sind nicht in 

allen Fällen dafür geeignet da die zugrundeliegenden Aufgabenstellungen nicht immer 

konvex sind und daher nur schwer gelöst werden können. Q-learning ist in der Lage 

diese Probleme zu umgehen indem nicht die optimale Lösung gesucht wird, sondern 

das Spielerverhalten kontinuierlich verbessert wird. In dieser Arbeit implementieren 

wir einen Q-learning Algorithmus und wenden diesen am Beispiel eines einfachen 

Elektrizitätsmarktes an. Wir analysieren in wie weit simulierte 

Strategiekombinationen reinen Nash-Gleichgewichten entsprechen. Weiters 

untersuchen wir, wo die Grenzen der Methode liegen. Wir zeigen, dass Q-learning 

tatsächlich in der Lage ist reine Nash-Gleichgewichte für einfache Marktsituationen zu 

finden. Außerdem stellen wir fest, dass das Model zu gewissen Gleichgewichten öfters 

konvergiert als zu anderen. Diese Ergebnisverteilung wird analysiert und erklärt.  
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1. Introduction 

1.1 Aim of the thesis  

Understanding the dynamics of complex markets is fundamental for regulators to 

design market rules which prevent market participants from gaining excessive rents. 

Thus, different methodologies for analysing markets, like optimization and game 

theoretical concepts, have been developed. However, markets become more and 

more complex and therefore very difficult to analyse. Traditional methods like 

optimization algorithms are pushed to their limits due to the non-convex character of 

some underlying problems (Papageorgiou et al., 2015). Finding the optimal solution 

for complex market models with optimization can take an infeasibly large amount of 

computational time (Tesfatsion, 2006). In order to deal with this issue heuristics are 

needed. 

As such, reinforcement learning deals with the idea of agents solving problems by trial 

and error (Kaelbling et al., 1996). On the one hand reinforcement learning can be used 

to represent realistic real-life individuals with the aim to analyse their behaviour. On 

the other hand, reinforcement learning can be utilized in a more technical sense in 

order to find the most effective actions. In this thesis we will mainly focus on the 

technical aspect of optimizing the selection of actions.  

According to Osborne and Rubinstein (1994) a player is classified as rational, if she 

satisfies four constraints. These are: A clear preference, awareness of all alternatives 

and constraints, optimization of behaviour and expectations about unknowns. For 

reinforcement learning an agent’s preference is defined by a distinct reward function. 

Further, the agent has all information about her possible actions. Thus, the first two 

properties of rationality are given for reinforcement learning. However, optimization 

of actions and expectations of the unknown are only satisfied to a certain extent. An 

agent is not motivated to find the optimal available action in the first place, but 

improves her decision making slowly over time by trial and error. Furthermore, the 

only considered information about possible future events is based on the rewards of 
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the past. Agents do not know how to deal with risk or even uncertainty and do not use 

economic expectation values. 

This restricted form of rationality fits well to simulate players on a complex market, 

since real-life individuals often have clear preferences and know their possibilities but 

are limited in predicting future rewards and finding optimal actions. Moreover, the 

assumption of completely rational market participants is not realistic, like behavioural 

economics show (for instance: Wilkinson, 2012).  

The need for suitable market analysing methodologies and the appealing properties 

of reinforcement learning strategies are the fundamental motivation for writing this 

thesis. We implement a simple Q-learning algorithm suggested by Watkins (1989) and 

apply it to a basic model of the electricity market. This reinforcement learning method 

allows modelled players to evaluate chosen actions and to pick future actions 

according to past evaluations. In specific, the following questions are addressed: Is it 

possible to determine pure Nash equilibria with a basic Q-learning algorithm using the 

example of simple electricity market situations? Where are the computational limits 

of determining Nash equilibria with a Q-learning algorithm in terms of computational 

time and size?  

In order to answer these research questions we simulate different possible market 

situations using a Q-learning algorithm, implemented with the programming language 

Python. Each parameter setting is run multiple times. Then we compare the results 

with pure Nash equilibria and analyse the computational time needed to find those. 

We expect to find Nash equilibria for simple set-ups like Krause et al (2004) and others 

have found for similar approaches. Limits of the method are analysed in order to 

improve future work on this topic.  

1.2 Thesis structure  

Following the introduction, we give a brief summary of relevant related topics 

including game theoretical equilibria, reinforcement learning and electricity markets. 

Afterwards we present the implemented Q-learning algorithm with all specifications 

and parameters. Then the results of three different experimental set-ups are shown 
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and analysed. Finally, we compare our simulation with similar approaches in 

literature, identify weaknesses and limits and give a short outlook on possible future 

work.  
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2. Theoretical foundations  

This chapter will illustrate the theoretical foundations of game theory and Q-learning. 

At the end of the chapter, we will also describe the Austrian electricity market, since 

a very simplified version of it is used as example application throughout the thesis. 

2.1 Equilibria in game theory  

Non-cooperative game theory is used to describe and understand situations in which 

decision-makers interact in a way that one player’s pay-off depends on the actions of 

other players. It is the formalized study of the strategic choice of actions. Decision-

makers are called players and try to maximize their pay-offs by choosing actions from 

an available action-set. This can either happen simultaneously for static games or 

sequentially for dynamic games (Gibbons, 1992). The algorithm implemented in this 

thesis reflects a static game. As an example, a player may be a company, deciding on 

a price for its product (action) in order to maximize its profit (pay-off). The outcome 

of the game is determined by the interaction of all actions chosen by all players. 

Therefore, a player’s pay-off is influenced by all players’ decisions and not only by her 

own. All chosen actions for one iteration of a game are summarized in the action 

profile. 

One main aim of game theory is to study which actions are optimal for decision-

makers to choose in a strategic game. We assume that players want to pick an action 

which maximizes their pay-offs. Moreover, all players are assumed to behave 

rationally, i.e. they pursue a policy of pay-off maximization. Such behaviour can lead 

to one or more equilibrium states. These are referred to as Nash equilibria. By 

definitions a Nash equilibrium is an action profile a∗ with the property that no player 

i can do better by choosing an action different from a∗i, given that every other player 

j adheres to a∗j (Osborne, 2003). Thus, each player’s action is a best response to each 

other player’s. A Nash equilibrium represents a state in which no player has an 

incentive to deviate from her chosen strategy. By this definition, Nash equilibria are 

not necessarily unique (Gibbons, 1992).  
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We can distinguish between pure and mixed strategy Nash equilibria. Pure strategy 

Nash equilibria describe certain combinations of single best response actions. 

However, this concept does not allow players to vary actions. More general concepts 

of equilibria allow a player’s choice of actions to vary as long as the pattern of choices 

remains the same. That means actions are chosen probabilistically according to an 

unchanging distribution. We can find Nash equilibrium states with this approach as 

well. These are called mixed strategy Nash equilibria (Osborn, 2003). Players in the 

implemented Q-learning algorithm do not randomize over strategies. Therefore, the 

algorithm can find pure Nash equilibria, but cannot find mixed Nash equilibria.   

If a game theoretical model gives a prediction about the actions each player will 

choose for a certain game, this combination of strategies has to be a Nash equilibrium. 

For any strategy profile, which is not a Nash equilibrium, at least one player has an 

incentive to improve her position by switching strategy. A pay-off maximizing player 

will always choose the best response action. This property makes the concept of Nash 

equilibria very useful (Gibbons, 1992).  

Even before the concept of Nash equilibria were first suggested and proven by John 

Nash in 1950, other economists anticipated his concept. Augustin Cournot did so in 

his famous model of oligopoly in “Researches into the mathematical principles of the 

theory of wealth” (1838). The model considers n players who sell identical products. 

Every unit produced is sold at the same price, determined by the inverse demand 

function and the players’ total output (i.e. total supply). Each player can choose which 

quantity to offer in order to maximize his profit. For sufficiently simple (inverse) 

demand functions, Cournot’s oligopoly games can be solved algebraically for the ideal 

quantity produced by each player. Indeed these solutions are Nash equilibria 

(Osborne, 2003).  

In 1883 Joseph Bertrand suggested that players rather choose prices and not 

quantities. From the basis of this assumption he developed his own model for 

oligopoly games. Bertrand’s model is similar to Cournot’s, but differs in strategy 

spaces and pay off functions. Here, the demand is a function of the current price 

(Gibbons, 1992). The solution of Bertrand’s model is a Nash equilibrium as well. The 

calculated equilibrium price equals the marginal costs of each player. Therefore, 
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players cannot generate economic profit in Bertrand’s model, whereas in Cournot’s 

model players are indeed able to generate positive profits (Osborne, 2003). 

Both presented oligopoly models act on the assumption that demand and price are 

influencing each other. Cournot assumed that the price is dependent on the current 

quantity of demand and total output, whereas Bertrand assumed that demand 

depends on the price. However, the algorithm implemented in this thesis considers 

an inelastic, constant demand. Therefore, it deals with a simplified special case.  

2.2 Q-learning  

In this thesis we will take a closer look at the Q-learning algorithm applied on an agent-

based system as a heuristic to find pure Nash-equilibria on electricity markets. Q-

learning was first suggested by Watkins (1989). It was initially designed for learning 

through interaction with a Markov Decision Process. Q-learning is counted among the 

reinforcement learning methods, which deal with the problem of agents learning from 

experience (Krause, 2004). Through reinforcement learning agents learn about their 

dynamic environment by trial and error. In each iteration the agent receives an input, 

which is an indication of the current state. The agent then chooses an action. This 

action changes the current state and this state transition is communicated to the 

agent through a scalar reinforcement signal. In the long-run the agent tries to 

maximize the total value of reinforcement signals (Kaelbling et al., 1996). Sutton and 

Barto (2017) compare reinforcement learning to an infant who does not have an 

explicit teacher but a connection to its environment. This connection produces plenty 

of information about cause and effect, about consequences and about what to do in 

order to achieve goals.  

In Q-learning, agents evaluate actions not only depending on their immediate 

consequences, but also on the new situation they lead to. Reinforcement signals are 

used to evaluate Q-values of state-action pairs (Watkins, 1989). The evaluation value 

𝑄(𝑠, 𝑎) is defined as the discounted sum of future rewards obtained by choosing an 

action a, in situation s (Weidlich, 2008). 
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Q-values are updated after every played iteration based on the received reward, 

according to the Bellman equation:  

 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡 ∙ [𝑟𝑡 +  𝛾 max
𝑎𝑡,𝑡

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)  ] (1) 

 

The learning rate  0 < 𝛼 < 1  regulates how strong new rewards influence the 

according Q-value. The discount factor 0 < 𝛾 < 1 describes how strong expected 

future rewards are represented in the according Q-value. Agents assume that state-

action pairs with high Q-values lead to high rewards. Therefore, they are more likely 

to be picked in the future. Watkins and Dayan (1992) were able to prove that Equation 

1 converges to an optimal solution 𝑄∗(s, a) under the condition that all actions and 

states were visited infinite times and the learning rate satisfies certain requirements. 

However, this only applies to situations with exactly one learning agent. In this thesis 

we want to analyse Q-learning under multiplayer settings. For a deeper insight into 

the theoretical convergence behaviour of Q-learning also see Tsitsiklis (1994), 

Bertsekas and Tsitsiklis (1996) and Borkar and Meyn (2000). 

Q-learning has been used to analyse complex markets under multiplayer settings 

before. Many of these Q-learning simulations had the aim to compare different pricing 

concepts. For instance, Xiong et al. (2004) compared uniform pricing and pay-as-bid 

pricing for electricity markets. Other papers discus Q-learning’s ability to find Nash 

equilibria. Naghibi-Sistani et al. (2006) and Krause et al. (2005) were able to find Nash 

equilibria with their simulations. We will take a closer look on their implementations 

in chapter 5.2.  

There are different possible strategies for a player to select an action for each 

iteration. To find the best possible strategy in a given experimental set-up, the agents 

need to explore the set of available actions. This is achieved by choosing random 

actions first and learning their value over time. On the other hand, players have to 

exploit an effective strategy, after some time, in order to generate profit. This 

balancing problem is called the exploration-exploitation trade-off. Both, exploration 

and exploitation, are necessary for players to be effective and need to be coordinated. 

At the beginning of the experiment exploration should dominate, since the players 
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have gathered little information yet. In later stages, exploitation is more relevant to 

maximize profits and to allow converging to a final strategy.  

2.3 The electricity market 

Starting in 1996 the European electricity market liberalization was initiated with the 

aim to foster competition in the previously quasi-monopolistic electricity sector.  The 

means to do this were to separate companies along the main electricity value chain 

(Hofbauer, 2006). Distribution and transmission were organizationally split from 

energy generation and retail supply, since the electricity grid is a natural monopoly 

while generation and retail are not. Under the new market regulations, all power plant 

owners, irrespective of their size, are able to offer their electrical power on the market 

and consumers are able to choose their provider individually (Weidlich, 2008).  

In Austria, the Energy Exchange Austria AG (EXAA) is operating the main power 

exchange market. Different forms of power markets exist where various forms of 

exchange contracts are negotiated. One important type are exchange-traded day-

ahead contracts in which certain amounts of energy are delivered for a specific time 

of the next day. Together with intraday and balancing markets these day-ahead 

contracts are traded on the so called spot-markets. Single hours, or even quarters of 

an hour, can be traded. Block bids, for subsequent hours, are common as well (EXAA, 

2019). A strongly simplified version of a day-ahead market will be considered in this 

thesis, as it is the most liquid electricity spot market.  

Other products traded at the power exchange are derivatives like futures and 

forwards. These are contracts for the future delivery of a specified quantity of energy 

for a certain time and location. The main difference between spot markets and future 

markets is the duration and time till contract expiry. While for spot markets delivery 

is typically at most for the next day, future markets consider time spans from one 

month to years ahead. Changing weather conditions, fuel prices, availability of 

generator capacity and other production costs can lead to high price volatility on spot 

markets. Futures and forwards are an option for generator owners to decrease long-

term risks on the volatile electricity market (Weidlich, 2008). 
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On Austrian and German day-ahead markets prices are determined by uniform 

pricing. That means that the price for every market participant is set by the most 

expensive bid, which is still necessary to cover the current demand completely. Thus, 

the day-ahead market can be perceived as a game in which the outcome of one 

player’s action depends on other player’s actions (Tierney et al., 2008). 
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3. Specification of Q-learning  

In the following chapter the concrete implementation of the Q-learning algorithm for 

this problem is shown. Initially, we introduce the model environment and explain all 

necessary steps for one iteration of the Q-learning algorithm. At the end of the 

chapter, hyper parameter settings and quality parameters are discussed.  

3.1 Simulation model design   

Any Q-learning algorithm is placed within its own model environment. This 

environment is a simplification of the real-life phenomenon to be simulated. The goal 

of our Q-learning algorithm is to optimize player behaviour in a strongly simplified 

electricity market.  

The electricity market bidders are labelled as players. Each player has a certain 

number of power generators with a specific maximum capacity and marginal 

generating costs. These players are bidding on a uniform day-ahead-market with the 

goal to maximize their profits. We decided to simulate a uniform market, since it is 

the dominant auction form in European day-ahead electricity markets right now.  

The duration of one experiment is predefined by a given number of iterations. Each 

iteration covers one bidding round. The current electricity demand for each iteration 

is defined by a perfectly inelastic constant demand function. Generator capacity and 

costs stay constant for the whole experiment. Players are only allowed to bid the full 

capacity of a generator.  

Our model is a highly simplified version of a real power market. It only contains fully 

flexible thermal power generators, and no storage hydro reservoirs of pumped 

storage hydro power stations. Also, there is no nodal pricing implemented 

(comparable to some European markets without nodal pricing, such as Germany or 

Austria). Implementing storage and inflexibilities into thermal power generators (such 

as combined-heat and power plants, ramping restrictions and minimum generator 

constraints) would have made the simulation unnecessarily more complex.  
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3.2 Players and their properties  

In the introduced Q-learning algorithm agents represent players on the electricity 

market. A player’s behaviour is depending on properties which can be made 

heterogenous in the simulation. In our simulation, players’ properties are described 

by their thermal generators’ characteristics (i.e. costs and capacities). The players’ 

behaviour is embodied in their selection of actions. All possible actions for one player 

are available in her action-set. The size and the elements of the action-sets of different 

players can differ within one experiment.  

We experimented with diverse numbers of players for different set-ups. Small 

experiments with two or three players seem to be best suited since they allow to 

derive equilibria also by brute force methods.  

Brute force methods were necessary, because a literature research did not yield non-

trivial multiplayer games with clear theoretical predictions, suitable for the purpose 

of this thesis. Indeed, a considerable part of the literature focus on two player games. 

Already, three player games are studied much more rarely. There are some N-player 

games that do not specify a specific number of players, but frequently this generality 

comes with a simplified problem set-up. Games that have been specifically designed 

with specific but low number of players larger than 3 are particularly hard to find.  

Bigger set-ups tend to become intractable and are therefore not used in our analysis.  

3.3 Actions and states  

In order to create a functional Q-learning model, players need to take actions. 

Available actions for one player are defined by her discrete action-set. The size of the 

action-set depends on the game. For simple discrete models two actions can be 

sufficient. For example, a coin flip game with the actions: choose head or choose tail. 

In this case using more actions would be meaningless. For more complex games, the 

right amount of actions may be difficult to define. A high number of possible actions 

enhances the authenticity of a model, since continuous real-world problems offer an 

infinite number of actions. However, the implemented Q-learning algorithm can only 
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represent discrete actions steps. Thus, a reasonable simplification is necessary, since 

a large action space increases the size of Q-tables and therefore computational time 

immensely.  

In the presented Q-learning model, players’ actions represent price bidding 

combinations. Every player can choose a price for each generator she owns. The 

minimum price equals the generator’s marginal costs for one unit of produced energy. 

The maximum price is the same for all generators. It equals a multiple of the minimum 

price of the most expensive generator in the game. The total number of potential price 

bids can be varied from experiment to experiment, but is the same for all generators. 

All price steps are evenly distributed in between minimum and maximum price. Table 

1 presents possible price bids for two different generators and 6 allowed prices.  

 

Table 1: Possible price bids for two generators with different marginal costs and six allowed prices 

 Marginal costs Possible price bids 

Generator 1 50 50, 72, 94, 116, 138, 160 

Generator 2 80 80, 96, 112, 128, 144, 160 

 

For players with one generator the number of possible actions equals the number of 

allowed price bids per generator. Players with multiple generators can choose any 

combination of generator price bids. The number of possible actions per generator 

𝐴𝐺𝑒𝑛 and the number of total player actions 𝐴𝑖 for a player i with n generators obeys 

to the rule:  

|𝐴𝑖| = |𝐴𝐺𝑒𝑛|𝑛 (2) 

 

Due to the exponential characteristic of this relation the number of player actions 

increases very fast for high numbers of generators and generator actions.  

In many games, agents face changing states of the environment. The best action for 

state A is in many cases a bad action in another state B. Therefore, it is reasonable for 

an agent to distinguish between different states. For Q-learning, there are no exact 

rules what a state may represent. The algorithm implemented in this thesis defines 

states as different demand levels within a certain range. The number of states can be 
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varied from experiment to experiment and needs to be appropriate for the given 

demand function. For a constant demand, over all iterations, one state is adequate. 

For changing demands an increased number of states will enhance the players’ 

performance. Since we want to analyse very basic market situations a constant 

demand and therefore a single state is sufficient. For situations with changing 

demands the state segmentation would be evenly distributed in between the 

minimum and the maximum value of the demand function. For instance: The demand 

alters between 100 and 150 units of energy per iteration. Five different states are 

allowed. Table 2 shows the state segmentation for the given case.  

 

Table 2: State segmentation for a demand in range 100-150 units of energy and five allowed states 

State Range of demand [Units of energy] 

State 0 100 - 110 

State 1 111 - 120 

State 2 121 - 130 

State 3 131 - 140 

State 4 141 - 150 
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Agents remember past market outcomes by evaluating action-state pairs depending 

on the received reward. The evaluation value is referred as Q-value Q(s, a), where s 

represents the current state and a represents the chosen action. All Q-values for 

potential action-state pairs are listed in an agent’s individual Q-table. An agent with 

an action-set of the size A in a system with S different states owns a Q-table with S 

rows and A columns. Figure 1 represents a visualized Q-table.  

 

Figure 1: Visualization of a Q-table (own representation) 

 

As mentioned before, a high number of states can improve players’ decision making. 

However, each action has to be evaluated for each state individually. Thus, the 

number of iterations needed to test all combinations properly increases linearly with 

the number of states, if we assume that all states appear the same amount of times. 

Equation 3 demonstrates the linear relation between the total number of state-action 

pairs 𝑛Q and number of states S for a given amount of player actions 𝐴𝑖.  

 

𝑛𝑄 =  𝑆 ∙ 𝐴𝑖 (3) 

3.4 Description of the auction process 

The auction process is the market clearing mechanism of the implemented electricity 

market model. It determines which generators are allowed to sell their capacity. In 

order to simulate a uniform market all generators are ranked depending on their price 

bid. The cheapest generator is ranked at first place and will sell first. This process is 

Actions 

States 

Q(s1, 𝑎1) Q(s1, 𝑎2) Q(s1, 𝑎3) Q(s1, 𝑎4) 

Q(s2, 𝑎1) Q(s2, 𝑎2) Q(s2, 𝑎3) Q(s2, 𝑎4) 

Q(s3, 𝑎1) Q(s3, 𝑎2) Q(s3, 𝑎3) Q(s3, 𝑎4) 

Q(s4, 𝑎1) Q(s4, 𝑎2) Q(s4, 𝑎3) Q(s4, 𝑎4) 
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repeated until the sum of electricity bids is equal to the current demand. If the 

remaining demand 𝐷𝑟𝑒𝑚 is bigger than the currently selling generator’s i capacity 

𝐶𝑎𝑝𝑖, it sells its whole generation. If 𝐷𝑟𝑒𝑚 is smaller than  𝐶𝑎𝑝𝑖 , then the generator 

will only sell  𝐷𝑟𝑒𝑚 in order to exactly satisfy the total demand. This is the only case 

where a generator can sell less than its total capacity.  

If two or more generators have a price bid equal to the clearing price, a tie-breaking 

algorithm is necessary. In this case first all generators with price bids under the 

clearing price are allowed to sell their capacity. Then 𝐷𝑟𝑒𝑚 and the total capacity of all 

generators which sell at clearing price are determined. Each of these generators is 

allowed to sell the same percentage share of their generation, which is equal to the 

proportion of 𝐷𝑟𝑒𝑚 and the calculated total capacity. That way the demand is exactly 

satisfied.  

Once the total demand is satisfied the auction process stops and the profit 𝛱𝑖 for each 

generator 𝑖 is calculated depending on its sold quantity 𝑄𝑖, according to Equation 4. 

The final clearing price 𝑝clear equals the highest selling price bid of the current auction 

round. 𝑐𝑖 represents a generator’s marginal costs for one unit of produced energy. 

𝛱𝑖 = 𝑄𝑖 ∙ (𝑝clear − 𝑐𝑖) 

 

(4) 

 

We assume that unsold units of energy are not produced at all. Therefore, generators 

with zero sold units receive a profit of zero. The profit is directly used as reward for 

the Q-value updating in the last step of each iteration.  
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3.5 The learning process 

In chapter 2.2 the Bellman equation was mentioned as part of Q-value updating. For 

the purpose of this thesis, the discount factor 𝛾 will be set to zero, since the outcome 

of one iteration does not affect the outcome of the following ones. Therefore, we 

adjust the Bellman equation and get to Equation 5.  

 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡 ∙ [𝑟𝑡 +  𝛾 max
𝑎𝑡,𝑡

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)  ] → 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡 ∙ [𝑟𝑡 − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] (5) 

 

Other Q-learning approaches for the electricity market, as Krause et al. (2004), used 

the same simplification of the Bellman equation for their models. Due to this 

simplification experimental set-ups with a single state (constant demand) are 

sufficient, since the outcome for one state cannot influence the outcome for another 

state.  

The learning process is the last step of each iteration. In our implementation, the profit 

calculated at the end of the auction process, is directly used as reward for the Q-value 

update. Q-values will increase and decrease over simulation time. A high Q-value 

𝑄(𝑠𝑡, 𝑎𝑡) indicates a high profit for choosing action 𝑎𝑡 in state 𝑠𝑡. 

The exploration-exploitation trade-off is coordinated by the probability variable 𝜀, 

which represents the probability to choose a random action. At the beginning of an 

experiment 𝜀 equals 1. Over time this value decreases. Thus, the probability for 

exploiting the highest known Q-value rises. This sort of action selection is typically 

called 𝜀-greedy. We will take a closer look on the 𝜀-decay process in chapter 3.6.2.  
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3.6 Hyperparameters  

3.6.1 Learning rate  

The learning rate α is part of the Bellman equation (see Equation 1 and 5). It influences 

how strongly one single reward affects the according Q-value. The learning rate can 

take values from zero to one. It is necessary to find a reasonable compromise between 

both extremes. Important indicators, which should be considered while setting the 

value of the learning rate, are the number of possible actions per agent and the 

number of iterations. Figure 2 shows the impact of different learning rates on the Q-

value over time when rewards are constant.  

 

Figure 2: Change in Q-values for a constant rewards of 100 monetary units over 5000 iterations 

 

A learning rate of 1 will push a Q-value to its maximum within a single iteration (100 

monetary units in Figure 2). However, such an extreme choice leads to the algorithm 

completely disregarding all past observations. In contrast, small values will lead to a 

slow learning process over many iterations. 
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Using a reasonable learning rate is a key factor for generating convergence situations 

within a Q-learning simulation. The learning rate is directly linked to the number of 

iterations and number of possible actions within an experiment. Therefore, it is 

difficult to give general advice on how to set it correctly. For experiments with a low 

number of actions per generator a small learning rate is necessary in order to avoid 

random Q-value maximizations. For high numbers of actions an increased learning 

rate can reduce the required amount of iterations. We propose to use the 

maximization parameter, introduced in chapter 3.7.1, as an indicator for reasonable 

learning rates.  

3.6.2 Epsilon decay rate  

In any Q-learning model the exploration-exploitation trade-off needs to be balanced 

in order to maximize efficiency. In the implemented model the temporal distribution 

of exploration and exploitation is described by the variable 𝜀 which is defined by 

Equation 6. This equation takes on the form of an exponential decay function which 

provides a reasonable exploration-exploitation trade-off.   

 

𝜀: =  𝜀𝑀𝑖𝑛 + (𝜀𝑀𝑎𝑥 −  𝜀𝑀𝑖𝑛) ∙ 𝑒(−𝜀𝐷𝑒𝑐𝑎𝑦 ∙ 𝑖)  (6) 

  

𝜀𝑀𝑖𝑛 and 𝜀𝑀𝑎𝑥 represent the minimum and maximum 𝜀 can reach. If 𝜀𝑀𝑖𝑛 equals 0 and 

𝜀𝑀𝑎𝑥 equals 1, 𝜀 represents the probability for a player to choose an action randomly. 

The probability to exploit the best known action is defined as 1 − 𝜀. With each 

additional iteration i, the probability for exploration decreases and therefore 

converging towards 𝜀𝑀𝑖𝑛 while the probability for exploitation increases in each step.  

The parameter 𝜀𝐷𝑒𝑐𝑎𝑦 regulates the speed of probability change and needs to be 

balanced with the number of iterations. In Figure 3 the effect of different 𝜀-decay-

rates on the exploration-exploitation trade-off is shown.  



 

19 
  

 

Figure 3: Effect of different ε-decay-rates over 5000 iterations. 

A high 𝜀-decay-rate leads to a shortened exploration phase, which causes incomplete 

information about possible actions. Thus, the probability for not representative Q-

values increases. Very low decay-rates generate a shortage of exploitation. Therefore, 

we expect high randomness in the final stages and the experiment most likely will not 

converge to an equilibrium. In the course of this thesis many decay-rates were tested. 

Experience has shown that a balanced 𝜀-decay-rate 𝜀𝐷𝑒𝑐𝑎𝑦 for 𝐼 iterations can be 

found according to Equation 7. It provides just enough exploration time to evaluate 

all actions properly, at the same time randomness is low enough to enable 

convergence. For instance: For I = 5000 iterations we would suggest a 𝜀-decay-rate of 

0.001 (see Figure 3).  

𝜀𝐷𝑒𝑐𝑎𝑦 =  
5

𝐼
 

(7) 

 

All upcoming decay-rates in this thesis were determined according to Equation 7. So 

the experimental set-ups can be compared more easily. 



 

20 
  

3.7 Quality parameters  

3.7.1 Possible maximizations  

A working Q-learning experiment depends on many parameters, which were 

described in the previous chapters. Many of these parameters affect each other and 

influence convergence behaviour, computational time and robustness of the 

experiment. However, no rules for how to best determine these exist. Therefore, we 

defined an experiment evaluation parameter called the maximization parameter 𝑀𝑄. 

It represents how many times a player’s Q-values could be maximized each, within a 

given number of iterations, number of actions per generators and learning rate for a 

constant profit.  

𝑀𝑄: =  
𝑀𝑡𝑜𝑡𝑎𝑙

𝐴𝑖
 

 

(8) 

 

In order to calculate 𝑀𝑄 the total number of possible maximizations 𝑀𝑡𝑜𝑡𝑎𝑙  and the 

number of actions 𝐴𝑖  per individual player 𝑖 are required (If 𝐴𝑖  is different for players, 

the highest value is used). 𝑀𝑡𝑜𝑡𝑎𝑙  is defined as the quotient of the expected amount 

of exploitation iterations 𝐸(𝜀, 𝑛) and 𝐼99.5%, the amount of iterations needed to raise 

a Q-value up to 99.5% of its theoretical maximum. Exploration is excluded since it 

hardly maximizes single Q-values.  

𝑀𝑡𝑜𝑡𝑎𝑙: =
𝐸(𝜀, 𝑛) 

𝐼99.5%
 

(9) 

 

For the calculation of 𝐼99.5% a constant profit 𝛱 and a constant learning rate α are 

assumed. 99.5 percent of the maximum Q-value was chosen as a threshold since the 

full maximum is actually never reached due to the asymptotic character of the 

updating equation. The simplification of the Bellman equation, introduced in chapter 

3.5, dictates the Q-value change from iteration to iteration. However, for constant 𝛱 

and α we can transform the recursive character of the equation into an explicit form.  
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First we refactor Equation 5 in order to get to Equation 10:  

 

𝑄(𝑖 + 1) = (1 −  𝛼)𝑄(𝑖) +  α ·  𝛱  

 

(10) 

 

First order difference equations of the general form 𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏 with constant a 

and b follow the rule:  

𝑥𝑛 = {𝑎𝑛𝑥0 + 𝑏
𝑎𝑛 − 1

𝑎 − 1
    , 𝑎 ≠ 1

𝑥0 + 𝑏𝑛                     , 𝑎 = 1
 

 

(11) 

 

In our case we have 𝑎 = (1 − 𝛼) and  𝑏 = 𝛱 ∙ 𝛼. The condition 𝑎 = 1 is only satisfied 

if 𝛼 = 0. A learning rate of zero is not reasonable, since no learning process is possible 

in this case. Therefore, cases which fulfil the first condition are more interesting in this 

context. At the beginning of each experiment all Q-values equate zero. Thus, we 

conclude Q(0)  =  0. Substituting these values into Equation 11 results in: 

𝑄(𝑖) = (𝛱 ∙ 𝛼)
(1−∝)𝑖 − 1

(1−∝) − 1
 

 

(12) 

 

After further rearranging, we receive the final explicit form:  

 

𝑄(𝑖) = 𝛱 − 𝛱(1 − 𝛼)𝑖 (13) 

 

Equation 13 is known in mathematics as limited growth function with a certain limit 

and growth factor. In this case 𝛱 represents the limit and α stands for the growth 

factor. From here we can calculate 𝐼99.5% by substituting 𝑄(𝑖) for 99.5 percent of the 

growth limit.  

0.995 ∙ 𝛱 =  𝛱 − 𝛱(1 − 𝛼)𝐼99.5% 

 

(14) 

 

𝐼99.5% = 𝑙𝑜𝑔(1−𝛼)0.005 

 

(15) 

 

Equation 15 shows that 𝐼99.5% is only depending on the learning rate and not on the 

profit as long as it is constant. Since the learning rate is the same for all players and is 



 

22 
  

constant for each experiment, we conclude that all Q-values of all players can be 

maximized within the same amount of iterations.  

The exact number of exploitation iterations for one experiment cannot be calculated 

definitely since the exploration-exploitation trade-off is based on probabilities. 

However, we can calculate an expected value 𝐸(𝜀, 𝑛). For the trade-off these possible 

results can either be zero or one exploitations per iteration. Therefore, we can 

calculate 𝐸(𝜀, 𝑛)  by adding up the probabilities for exploiting the best action of one 

iteration i, for an experiment with n iterations. This probability is defined as the 

complimentary probability of 𝜀 which was introduced in chapter 3.6.2. For Equation 

16 we assume an 𝜀𝑀𝑎𝑥 of 1 and an  𝜀𝑀𝑖𝑛 of 0, as we did in our implementation. 

𝐸(𝜀, 𝑛): = ∑(1 − 𝑒−𝜀𝐷𝑒𝑐𝑎𝑦  · 𝑖)

𝑛

𝑖=0

 

 

(16) 

 

It is obvious that the value of the maximization parameter 𝑀𝑄 does not represent a 

realistic number of Q-value maximizations of an experiment. However, it can help to 

identify unreasonable parameter settings bevor the execution of an experiment. Thus, 

we mainly use 𝑀𝑄 for experiment design. First, we decide on a maximization 

parameter value that we want to achieve. Then we modify the learning rate, the 

amount of actions per generator and the amount of iterations in order to satisfy this 

condition. Moreover, the maximization parameter is an option to compare the quality 

of experiments with different parameters to each other. 

In the course of optimizing the experimental set-ups, maximization parameter values 

over 3.0 seem to lead to reasonable agent behaviour and convergence situations. 

However, there is no guarantee for a working experiment before actually running it.  

3.7.2 Dominant combination stability  

Another parameter we used to check the quality of an experiment is the dominant 

combination stability s. It is defined as the percentage of appearances of the most 

frequent strategy combination within the last percent of iterations. A dominant 

combination stability of almost 1 indicates a stable experiment state. We can assume 

that the converging process is completed. However, a value of exactly 1 is unrealistic 



 

23 
  

since there is still a small chance for random action selection within the last percent 

of iterations of the experiment. Values close to zero hint at an unstable state without 

convergence. In that case parameter settings need to be modified.  
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4. Results  

In this chapter we show the results of our experiments. First, we work on a simple two 

player game with the aim to show the general approach. Later on, we discuss a more 

complex two player game. As final example we take a look at the results’ quality and 

computational time of a symmetric two player game with a changing number of 

actions per generator. 

4.1 Symmetric two player game with two generators 

The initially presented experimental set-up considers a symmetric two player game. 

Both players have only one generator with identical properties. Table 3 showcases the 

chosen generator specifications.  

 

Table 3: Capacities and marginal costs for a symmetric two player game 

 Capacity [Units of energy] Marginal costs [Monetary units] 

Generator 1 (Player 1) 50 20 

Generator 2 (Player 2) 50 20 

 

Furthermore, we presume a constant demand of 70 energy units per auction round. 

The total generator capacity equals 100 units. Therefore, it is impossible for both 

players to sell their total load within one auction round. Thus, players are forced to 

compete with each other in order to maximize their profits. This happens by choosing 

price-policies. For this experiment both players can select one out of 7 possible price 

bids for each auction round. The maximal price is 40 monetary units.   

The goal of this simple experimental set-up is to analyse if the action-selection, of two 

learning agents converges to a certain pattern after a defined number of iterations. 

In order to enable convergence the number of iterations, the learning rate and the 𝜀-

decay rate need to be set properly. For small numbers of action-combinations a low 

learning rate is necessary in order to balance the increased probability for picking a 

certain action-combination randomly. High learning rates would lead to frequent 

random strategy changes, and therefore prohibit convergence. Considering these 
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facts we decided on a learning rate of 0.002. Experience has shown that this value 

works fine for experiments of this size.  

Furthermore, the number of iterations was set to 1.5 ∙ 105. Consequently, the 

maximization parameter 𝑀𝑄 equals 6.49. In other words: Each player theoretically has 

enough time to maximize each of her actions’ Q-values 6.49 times.  

The 𝜀-decay rate equals 3.3 ∙ 10−5 and was determined by using Equation 7. Thus it 

is coordinated with the number of iterations and provides a reasonable exploration-

exploitation trade-off. 

 

For small experimental set-ups a closer look on the pay-off matrix can help to get a 

deeper understanding of the situation. Table 4 visualizes the profit for each possible 

action-combination for both players. The pay-offs of 6 action combinations are 

highlighted in blue. While playing these action-combinations a single player cannot 

improve her position by changing her price policy. Therefore, these action-

combinations are pure Nash equilibria according to the definition in 2.1. The described 

experimental set-up was run 300 times.  

 

 

 

 

 

 



 

 
  

2
6 

 

 

 

 

Table 4: Pay-off matrix for both players for one auction round. Entries shown in blue represent pure Nash equilibria.

                             Player1              
Player2  

Action 0  Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 

Action 0 0/0 67/167 133/333 200/500 267/667 333/833 400/1000 

Action 1 167/67 117/117 133/333 200/500 267/667 333/833 400/1000 

Action 2 333/133 333/133 233/233 200/500 267/667 333/833 400/1000 

Action 3  500/200 500/200 500/200 350/350 267/667 333/833 400/1000 

Action 4 667/267 667/267 667/267 667/267 467/467 333/833 400/1000 

Action 5 833/333 833/333 833/333 833/333 833/333 583/583 400/1000 

Action 6 1000/400 1000/400 1000/400 1000/400 1000/400 1000/400 700/700 



 

27 
  

Table 5: Converged action-combinations of 300 runs [amount of appearances] 

 
0 1 2 3 4 5 6 

0 
      

84 

1 
      

69 

2 
      

1 

3 
       

4 
       

5 
       

6 81 65 
     

 

Table 5 presents the distribution of results. Since we are considering a symmetric 

game we can summarize symmetric results. In doing so we find that in 165 runs one 

player chose action 0 and the other player chose action 6. In 134 runs one player chose 

action 1 and the other player chose action 6. Only in a single run the combination of 

action 2 and action 6 was played. All other action-combinations did not appear at all 

after the convergence process finished. We will have a closer look at this uneven 

distribution in the conclusions.  

All appearing action-combinations lead to a profit of 400 monetary units for one 

player (action 6) and 1000 monetary units for the other one (action 0, 1 or 2). By 

comparing the pay-off matrices with the results’ distribution we find that all 300 

results are pure Nash equilibria.  

In average the dominant combination stability s equals 0.9866. This indicates that 

there were enough iterations to finish the converging process.  

 

Figures 4 and 5 show the change in Q-values over time for one representative run, 

where player 1 chose action 0 and player 2 chose action 6. This was the most frequent 

result. It is noticeable that the winning actions dominate other actions quite fast. 
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Figure 4: Q-value change over time for player 1 

 

Figure 5: Q-value change over time for player 2 
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Figure 6 visualizes the averaged profit for each iteration for both players over time.  

Player 1’s (action 0) profit converges to a profit of 1000 monetary units, whereas 

player 2’s (action 6) profit is near to 400 units. We see that both profits approach the 

according value of the pay-off matrices. This indicates that the experiment worked 

correctly.  

 

Figure 7 presents average price bids and the change in the average clearing price. We 

observe that player 2 sets the bid to the highest possible value. Visual differences in 

the clearing price and the price deciding bid occur from the moving average, which is 

necessary in figure 7 for a clearly laid out presentation.  

 

 

Figure 6: Averaged profit per iteration over time (moving average, window size: 100 iterations) 
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Figure 7: Price bids and clearing price (moving average, window size: 100 iterations) 
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4.2 Non-symmetric two player game with four generators 

Now we analyse a non-symmetric game with interesting results. Both players have 

two generators with different properties. Player 1 owns the cheapest and the most 

expensive generator, player 2 owns two medium priced generators. Table 6 shows the 

exact generator properties. 

 

Table 6: Capacities and marginal costs for a non-symmetric two player game 

Generator Capacity [Units of energy] Marginal costs [Monetary units] 

Generator 1 (Player 1) 50 20 

Generator 2 (Player 1) 50 50 

Generator 3 (Player 2) 50 25 

Generator 4 (Player 2) 50 25 

 

The demand stays constant at 125 units of energy per iteration. Each generator has 4 

possible levels of bids. Therefore, each player has 16 different bid combinations to 

choose from. The maximum bid equals double the highest marginal costs, which is 100 

monetary units.  

The learning rate is set to 0.003. This quite low learning rate is needed in order to 

prevent random Q-value maximizations, which could happen for 16 possible action-

combinations per player.  

One run of the experiment has 1.5 ∙ 105 iterations. Thus, we have a maximization 

parameter of 4.26. We can assume that all players have enough time to test their 

possible action-combinations properly.  

The 𝜀-decay rate, which regulates the exploration exploitation trade-off, was set to 

3.3 ∙ 10−5 according to equation 7.  

The experiment was repeated 300 times with the presented parameter settings. This 

experimental set-up has 29 different Nash equilibria. Since tractability of pay-off 

matrices become increasingly hard as experiments grow bigger, we will only show 

action-combinations which actually appeared after convergence. We distinguish 

between results that are Nash equilibria and results which are not.  
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Table 7 summarizes the outcome. In the appendix you can find an enumeration of all 

actions and the according prices for this set-up (Table 11). 

 

Table 7: Winning action combinations. Nash equilibrium results listed separately 

Nash equilibrium results Non-Nash equilibrium results 

P1 action P2 action Quantity P1 action P2 action Quantity 

3 3   24 11 3 22 

3 7 22 11 7 21 

3 11 5 11 11     5 

3 12 23 11 12 35 

3 13 15 11 13 12 

3 14 3 11 14 3 

7 3 29    

7 7 23    

7 11 4    

7 12 31    

7 13 21    

7 14 2    

Total:  202 Total:  98 

 

Only 67.3% of the runs ended in a pure Nash equilibrium. This is surprising since other 

experiments (not shown in the thesis) of the same size lead to higher percentage 

shares. In order to understand these unexpected results, we have to analyse the pay-

offs. For this reason, we take a closer look at the profits for the case that player 1 

chooses action 11 and player 2 chooses action 12. This action-combination was the 

most frequent result and not a pure Nash equilibrium. In this scenario player 1 makes 

profit of 4625 monetary units. In fact, there is no better option for player 1 as long as 

player 2 sticks to action 12. In this setting, player 2 earns 4687.5 monetary units. Player 

2 could improve her position by changing to strategies 0, 1, 4 or 5 in order to increase 

her profit to 4833.33 monetary units. However, in the simulation player 2 does not 

change actions and misses some profit. We assume the difference between the two 
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profits is too small to be represented by the according Q-values properly. This can lead 

the simulation to remain in non-Nash equilibrium states. All occurring non-Nash 

equilibrium states of this experiment exhibit the same property. In the conclusion we 

take a closer look at this phenomenon.  

On average, the stability parameter equals 0.976. Thus, we can assume that the 

convergence process was finished.  

 

Figures 8 and 9 visualize the Q-value development over time for one representative 

run, in which player 1 chose action 11 and player 2 chose action 12. Only winning 

actions’ Q-values are presented:   
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Figure 8: Change of winning actions’ Q-values over time for player 1 

 

Figure 9: Change of winning actions’ Q-values over time for player 2 
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Throughout all runs Player 1 choses three different actions (3, 7 and 11). In the 

presented run action 11 is dominating other actions. In all three cases generator 2 is 

bidding at the maximum price while generator 1 bids below it. For player 2 six different 

actions (3, 7, 11, 12, 13 and 14) seem to be reasonable. However, two actions are 

always identical, since both generators are symmetric. One of the two generators 

always bids at the maximum price while the second generator bids below it. In other 

words, both players learn to increase the clearing price by biding the maximum price 

with one of their generators. All converged action-combinations lead to the same 

profit distribution. Player 1 earns 4625 and player 2 makes 4687.5 monetary units. 

Figure 10 shows the average profit per iteration over time. We can observe that both 

profits approach the calculated pay-off values. Player 1 has a slight disadvantage in 

terms of profit, due to the high marginal costs of generator 2. Moreover, we find that 

both players strongly increase their profit per iteration around the 18,000th auction 

round. This happens in the period of time when the winning actions (actions 11 and 

12) take the lead.  

 

Figure 10: Average profit per iteration of both players over time (moving average, window size: 100 
iterations) 
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Figure 11 visualizes the price bids of each generator and the clearing price with moving 

average. Again we find that generator 3 and 2 learn to bid at the maximum price, 

which is 100 monetary units, while generator 1 and 4 bid below it. This is reasonable 

because that way the uniform market grants all generators the maximum price.  Again 

we can find strong shifts in bids and clearing prices around auction round 18.000.  

 

Figure 11: Average price bids and clearing price (moving average, window size: 100 iterations) 
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4.3 Symmetric two player games with changing actions per 

generator  

Finally, we look at a symmetric scenario under the condition of changing parameter 

settings. Both symmetric players own two generators (see Table 8).  

 

Table 8: Capacities and marginal costs for a symmetric two player game with changing parameter 
settings 

 Capacity [Units of energy] Marginal costs [Monetary units] 

Generator 1 (Player 1) 50 20 

Generator 2 (Player 1) 50 15 

Generator 3 (Player 2) 50 20 

Generator 4 (Player 2) 50 15 

 

The constant demand is set to 150 units of energy per iteration. The maximal price for 

all generators equals two times the highest marginal costs, which is 40 monetary units.  

The set-up was run in 9 different modifications with a changing number of allowed 

actions per generator. The aim is to determine the influence of the allowed number 

of actions per generator on the results’ quality. Table 9 shows the parameter setting 

for each modification.  

 

Table 9: Parameter settings for a symmetric two player game 

 Actions per gen Total actions Iterations Learning rate 𝜀-decay rate 

Set up 1 3 9 50,000 0.004 0.0001 

Set up 2 4 16 75,000 0.00475 0.000066 

Set up 3 5 25 100,000 0.0055 0.00005 

Set up 4 6 36 125,000 0.00625 0.00004 

Set up 5 7 49 150,000 0.007 0.000033 

Set up 6 8 64 175,000 0.00775 0.0000286 

Set up 7 9 81 200,000 0.0085 0.000025 

Set up 8 10 100 225,000 0.00925 0.000022 

Set up 9 11 121 250,000 0.01 0.00002 
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For set-ups with more than 1 generator per player the total number of allowed actions 

increases exponentially with increasing actions per generator.  Equation 2 in chapter 

3.3 describes this relation. The increasing complexity of the presented experimental 

set-ups is balanced with a higher learning rate and a higher number of iterations. 

However, the learning rate should not be set higher than 0.01 to avoid inconsistences. 

Therefore, for even higher numbers of actions per generator, a strongly increased 

number of iterations is needed to achieve satisfying values for the maximization 

parameter. This extends computational time massively. 

 

Table 10 presents the resulting quality parameters, the number of runs which ended 

in a Nash equilibrium and the computational time for one run. 

 

Table 10: Stability parameter (s), maximization parameter (MQ), number of total runs, Nash equilibrium 
results and computational time (CT) for a symmetric two player game 

  s 𝐌𝐐 Total runs Nash equilibrium CT [sec] 

Set up 1 0.9876 3.37 300 299 3.99 

Set up 2 0.9867 3.37 300 265 6.45 

Set up 3 0.9861 3.34 300 261 8.89 

Set up 4 0.9859 3.29 300 259 11.39 

Set up 5 0.9861 3.25 300 260 14.55 

Set up 6 0.9860 3.22 300 261 17.71 

Set up 7 0.9859 3.19 300 283 21.34 

Set up 8 0.9861 3.16 300 194 26.08 

Set up 9 0.9861 3.14 300 189 30.57 

 

The maximization parameter 𝑀𝑄 was used as an indicator for the set-up design. We 

tried to keep 𝑀𝑄 higher than 3 for all set-ups. The averaged stability parameter s is 

between 0.98 and 0.99 for all set-ups. Thus, we can assume that the convergence 

process has finished. 

 

Figure 12 visualizes the change in computational time. The number of iterations has 

the main influence on computational time. Due to the constantly increasing learning 

rate and constantly increasing number of iterations we find an almost linear increase 



 

39 
  

in computational time. However, since we do not want to increase the learning rate 

any higher, we expect exponential growth in computational time for numbers of 

actions per generator higher than 11.  

 

Figure 12: Computational time for different actions per generator  

The amount of runs which ended in a Nash equilibrium are shown in Figure 13. Only 

the set-up with 3 allowed actions per generator reaches nearly 100% of Nash 

equilibrium results. All other set-ups show at least some non-Nash equilibrium results. 

In general, it appears that a higher number of actions per generator increase the total 

number of existing pure Nash-equilibria but lowers the amount of runs which end in 

a Nash equilibrium. However, set-up 7 reaches 94.3% Nash equilibrium results, which 

is more than most other set-ups with less actions per generator do. Therefore, we 

assume that not only complexity but also the individual characteristics of each set-up 

can influence the amount of Nash equilibrium results found. In the conclusion we 

discuss what these characteristics might be.  
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Figure 13: Amount of Nash equilibrium results (out of 300 runs) for different actions per generator 

To stay concise, we do not show the concrete distribution of winning action 

combinations for these experimental set-ups. Nevertheless, it is necessary to mention, 

that the Nash equilibrium results are again unevenly distributed among possible pure 

Nash equilibria. Another fact we are going to discuss in the upcoming chapter. 
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5. Conclusion  

In this chapter we will first explain why the found Nash-equilibria are not uniformly 

distributed. Second, we will compare our results to other applications of Q-learning in 

similar settings. Finally, we will point out limits and weaknesses of the algorithm.  

5.1 Understanding the frequency of Nash equilibria found  

As we saw in the first presented example, the implemented Q-learning algorithm is 

indeed capable of finding Nash equilibria for simple experimental set-ups. However, 

we find that not all existing Nash equilibria are found with the same frequency. Some 

equilibria do not occur at all. We assume that the uneven distribution of results is due 

to the specific characteristics of an experiment’s pay-off matrix in conjunction with 

the used Q-learning algorithm. In the following we present some of these 

characteristics.  

The first influencing factor we found is the average profit of an action. The average 

profit 𝛱𝑎 is calculated by averaging the profits of all possible combinations including 

action 𝑎. 𝛱𝑎 represents an action’s average profit as long as all possible combinations 

are played the same amount of times. At the beginning of an experiment’s run this 

condition is approximately satisfied, since all actions are chosen randomly with the 

same probability.  Thus, we assume that actions with high average profits are more 

likely to build up strong Q-values and dominate the random early stages of the game. 

Indeed, we find that actions with high average profits tend to dominate the 

exploration phase. As we saw in the first and second presented experimental set-ups, 

winning strategies are taking the lead quite early (see figures 4, 5, 8 and 9). This 

advantage seems to be enough to dominate many runs.  

Further, we found that the average profit of an action does not only influence the 

early stages of an experiment, but can also affect the late Q-value maximization. This 

is especially the case if the profits of two action combinations are similar, like it is the 

case in the second game presented. Intuitively one would guess that the average profit 

is not relevant in exploitation dominated stages of an experiment, since random 
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actions selection happens rather rarely. However, we have to consider that almost 

maximized Q-values grow very slow for a constant profit, but can shrink rapidly for a 

single low profit. This is due to the limited growth characteristic of the up-dating 

formula. Thus, we conclude that actions with a slightly better pay-off but a worse 

average profit are not able to reach the theoretical limit of their Q-values since they 

are more likely to receive random low profits. This is the reason why the algorithm 

cannot find Nash equilibria in some cases in the second presented experiment.  

Beside the average profit an action’s stability can influence the distribution of results. 

The stability can be described by the difference between an action combination’s 

maximal Q-value and the maximal Q-value of the best response action for the current 

situation. For small differences it takes the algorithm longer to find the best response 

action than for big differences since the best response Q-value needs to be higher in 

order to surpass the current Q-value. Due to the variable stability, some actions are 

more likely to be retained. Therefore, best response actions and consequently Nash 

equilibria are the most stable configurations in the first place. In the first presented 

symmetric game this phenomenon can be observed. The average profit of the 

strongest actions (0, 1 and 2) is roughly the same. Thus, we assume that these actions 

win in the early exploration phase approximately the same amount of times. However, 

action combinations [0 6] and [6 0] are significantly the most frequent results since 0 

is the most stable action and forces the other player with a higher action to change to 

action 6. In the end, action 2 is almost never winning, because its stability is lower 

than the stability of action 0 and action 1.  

The third shown game presents the same experimental set-up for different numbers 

of actions per generator. As we expected, the computational time increases with rising 

actions per generator. By increasing the learning rate at the same time the amount of 

additional iterations needed can be limited. However, the learning rate can only be 

raised to a certain point in order to avoid disruptive randomness. Therefore, 

computational time grows exponentially for higher numbers of actions per generators 

and numbers of generators per player.  

On average, we find that a higher number of possible price bids leads to a lower 

number of Nash equilibria being identified, but there seem to be other influencing 

factors too. Especially set-up 7 surprised with high numbers of Nash equilibrium 
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results. We suppose this is the case because of favourable pay of matrices. Factors like 

average profit and stability of actions seem to benefit Nash equilibrium results in this 

set-up.  

It is worth mentioning that even though the maximization parameter 𝑀𝑄 is 

approximately the same for all set-ups in the third presented experiment, the amount 

of Nash equilibrium results differ. This is the case since 𝑀𝑄 only considers the 

theoretically possible Q-value maximizations and not the specific characteristics of 

pay-off matrices in conjunction with the used Q-learning algorithm. Therefore, we 

conclude that the maximization parameter is useful for creating comparable set-ups 

but can’t predict the amount of Nash equilibrium results. Moreover 𝑀𝑄 can be 

calculated easily, whereas determining pay-off matrices for complex games with 

multiple players and actions can be very time consuming.  

5.2 Comparison to similar simulations  

Q-learning has already been used multiple times in electricity market analysis over the 

last years. Nevertheless, it is difficult to find comparable work due to the high number 

of specifications possible for Q-learning. Krause et al (2005) used a similar approach.  

Their approach is best comparable to the algorithm we implemented. Players choose 

mark-ups on their clearing price in order to maximize their profit. The model considers 

3 players with ether 3 or 4 possible actions. As mentioned before, the same 

simplification of the Bellman equation was used for Q-value updating. Further, they 

used a 𝜀-greedy action selection with a constant 𝜀, whereas we chose to use a 𝜀-decay 

function. Krause et al (2005) included a restricting grid into their model and analysed 

simple games with one or two Nash equilibria. They found that agents are able to find 

Nash equilibria quite fast for small set-ups. For set-ups with two Nash equilibria they 

found cyclic behaviour. For a constant 𝜀 we can confirm their findings.  

Naghibi-Sistani et al. (2006) managed to produce similar results. In their model two 

players can choose three different slopes for their linear bid supply function. Two 

states represent high and low production costs. The action selection differs from our 

model. Here a softmax action selection rule was used. This type of action selection 
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uses the Boltzmann distribution and a temperature-parameter. It favours strong Q-

values even in the exploration phase. In this model players’ action combinations 

converge into a Nash equilibrium as well.   

Xiong et al. (2004) designed a similar model as well. Since the aim of their work was a 

comparison of pay-as-bid and uniform market, it is not beneficial to compare results 

but the model’s structure. They defined their Q-learning system’s states to be last 

round’s clearing price. 10 agents are able to choose one out of 21 different prices. The 

agents’ goal is to maximize profit and reach a certain utilization rate. Both factors are 

considered in the Q-value updating. Again, a 𝜀-greedy action selection strategy was 

used. Similar to our model generators are only allowed to sell their full capacity. Set-

ups were run with a price-inelastic and a responsive demand function.  

5.3 Limits and weaknesses of the implemented Q-learning 

algorithm  

First, it is necessary to mention that the implemented algorithm is a rather simple Q-

learning system. It does not fully utilize the possibility to take rewards of future actions 

in consideration. This could be a connection point for further improvement of the 

algorithm.  

In chapter 4.3 we show that the algorithm finds fewer Nash equilibria with increasing 

complexity. Especially set-ups with multiple generators per player grow rapidly for an 

increasing number of actions per generator. Thus, the implemented algorithm is not 

appropriate to simulate set-ups with more than three players or more than 100 

actions per player. We assume that the quality could be improved by an extended 

learning phase with more iterations. However, this also increases computational time. 

Since pure Nash equilibria can be found faster by brute force calculations, the 

algorithm should not be used to find Nash equilibria for a certain game, but rather to 

analyse Nash equilibria distribution over many runs.  

A general problem is the double impact of the learning rate α on results. On the one 

hand α needs to be low in order to prohibit random Q-value maximizations, on the 

other hand α should be high in order to detect small differences in possible profits 
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fast. For complex experimental set-ups it seems that a constant α can’t do both at 

once. 

The implemented Q-learning algorithm is not able to find mixed strategy Nash 

equilibria due to the fact that each agent is restricted by a single winning action. To 

get a better insight into the full spectrum of pure and mixed Nash equilibria other 

reinforcement learning approaches like the Erev-Roth algorithm, which assigns 

probabilities to all actions, could be used (Erev and Roth, 1988).  

6 Outlook 

In the course of this thesis we confirmed that basic Q-learning algorithms are able to 

find pure Nash equilibria of simple market situations. Moreover, we found certain 

characteristics of pay-off matrices which influence the convergence behaviour. At the 

same time we analysed weaknesses and limits of the system. Furthermore, we 

showed that computational time is only a limiting factor for large experimental set-

ups. Still, the amount of Nash equilibria found decreases with the number of players 

and number of actions per generator.  

Q-learning is an attractive method to simulate game theoretical problems. Even 

though many different Q-learning specifications have been used in the past, we think 

that there is still potential for improvement. This thesis can be seen as foundation for 

prospective work with similar simple Q-learning algorithms. For future enhancement 

we advise to remodel the use of states. Moreover, a more flexible use of learning rates 

could be beneficial. Changing the action-selection rule would be interesting too.  

Especially interesting are the uneven distributions of Nash equilibrium results and the 

influencing factors behind it. A deeper look in these factors can help to understand 

and improve Q-learning mechanics. Whether the influencing effect of average profit 

and the stability of an action can describe real life behaviour of market participants is 

a question worth considering.  
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7 Appendix 

Table 11: Possible actions and according prices for a non-symmetric two payer game (chapter 4.2) 

Action Player 1 Player 2 

Generator 1 Generator 2 Generator 3 Generator 4 

0 20.00 50.00 25.00 25.00 

1 20.00 66.66 25.00 50.00 

2 20.00 83.33 25.00 75.00 

3 20.00 100.00 25.00 100.00 

4 46.66 50.00 50.00 25.00 

5 46.66 66.66 50.00 50.00 

6 46.66 83.33 50.00 75.00 

7 46.66 100.00 50.00 100.00 

8 73.33 50.00 75.00 25.00 

9 73.33 66.66 75.00 50.00 

10 73.33 83.33 75.00 75.00 

11 73.33 100.00 75.00 100.00 

12 100.00 50.00 100.00 25.00 

13 100.00 66.66 100.00 50.00 

14 100.00 83.33 100.00 75.00 

15 100.00 100.00 100.00 100.00 
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