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Abstract

Bread wheat is one of the most important food crops worldwide and stripe rust is one of the most

devastating diseases of wheat, especially in temperate climates.  Recent epidemics, caused by re-

combination of the pathogen in the Near-Himalayan center of diversity, are rendering breeding ef-

forts void and demand novel solutions. Resistance breeding relies on phenotypic and marker-as-

sisted selection to combine resistance genes in high yielding genotypes. New genotyping methods,

falling costs, and improved statistical  methods enable prediction and selection based on a large

number of markers in plant breeding. The goal of this thesis was to use these tools and methods, to

improve quantitative, non-race-specific resistance against stripe rust using data from wheat breeding

trials in the years of 2013, 2014, 2015 and 2016, as well as genotyping by sequencing (GBS) mark-

ers. The genetic architecture was analysed and two large effect QTLs were found, one on chromo-

some 2A, largely fixed in the population and one on 2B, found in low frequency and therefore

highly interesting for future breeding efforts. Evidence was found that the QTL on chromosome 2A

might be associated with the translocation 2AS-2N. Genomic best linear unbiased predictor (GB-

LUP) models were used to predict stripe rust within- and across-years. Prediction performance was

medium to high within-years, but predictions failed across-years. There was some variability across

years (and across trials), possibly due to different races of stripe rust, that impaired genomic predic-

tion. A prediction model can only perform as well as the data that was used to train the model and

when a model is trained with conflicting data the predictions will not be reliable. This thesis con-

cluded, that breeder’s trial data could show strong variation ultimately impairing the power of gen-

omic prediction models. Data has to be investigated thoroughly, and only the best trials have to be

selected to build prediction models.

Keywords: stripe rust resistance, resistance breeding, genomic prediction, genomic selection, wheat

breeding, genetic architecture, QTL, GWAS
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Zusammenfassung

Weizen ist eine der wichtigsten Nutzpflanzen weltweit,  wobei Gelbrost eine der verheerendsten

Weizenkrankheiten  ist.  Epidemien  die  auf  die  Rekombination  des  Erregers  im  Zentrum  der

Diversität im Himalaja zurückzuführen sind machen bisherige Erfolge der Züchtung zunichte und

erfordern neuartige  Lösungen. Resistenzzüchtung nutzt  dazu phänotypische und markergestützte

Selektion  um Resistenzgene  in  ertragreichen  Genotypen  zu  kombinieren.  Neue,  kostengünstige

Methoden  der  Genotypisierung  mit  hoher  Dichte  und  statistische  Methoden  ermöglichen  die

Selektion  auf  der  Basis  von  genetischen  Markern.  Ziel  dieser  Arbeit  war  es  die  quantitative

Resistenz gegen Gelbrost in Weizen anhand von Daten aus Zuchtversuchen in den Jahren 2013,

2014, 2015 und 2016 sowie Genotypisierung durch Sequenzierung (GBS) Markern zu verbessern.

Die  Analyse  der  genetischen  Architektur  lieferte  zwei  QTL  mit  großer  Wirkung.  Jener  auf

Chromosom 2A ist annähernd fixiert in der Population, ein weiterer auf Chr. 2B dessen resistentes

Allel nur in wenigen Genotypen vorhanden ist. Es wurden Hinweise gefunden, dass der QTL auf

Chromosom  2A  mit  einer  Translokation  assoziiert  ist  (2AS-2N).  GBLUP  Modelle  wurden

verwendet,  um  Gelbrost  innerhalb  von  Jahren  und  über  Jahre  hinweg  vorherzusagen.  Die

Genauigkeit  dieser Modell  war innerhalb der Jahre mittel  bis hoch, über mehrere Jahre hinweg

jedoch gering.  Die  Ursachen dafür  sind in  der  Variabilität  der  Versuche und Jahre  zu  suchen,

welche zum Teil durch verschiedene Gelbrost-Rassen erklärt werden kann. Die Leistungsfähigkeit

eine  Modells  ist  abhängig  von  der  Qualität  der  Trainingsdaten,  trainiert  man  ein  Modell  mit

widersprüchlichen Daten sind die Vorhersagen nicht zuverlässig. Diese Arbeit kam zu dem Schluss,

dass  Versuchsdaten  starke  Unterschiede  aufweisen  können,  die  letztendlich  die  Anwendung

genomischer Vorhersagemodelle beeinträchtigen. Um zuverlässige Modelle zu erhalten, sollten nur

die besten Versuche zum Trainieren von Vorhersagemodellen auswählt werden.
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1 Introduction

Bread wheat (Triticum aestivum L.) is one of the most important crops in Austria, with 280 000 ha

planted in 2018 (BMNT, 2019) and has worldwide importance as a food crop, providing, on aver-

age, roughly 20% of the total calories and protein of the daily total dietary intake (Shiferaw et al.,

2013). Wheat is vulnerable to many diseases, one of which is stripe or yellow rust (P. striiformis f.

sp. tritici Eriks. & Henn). Stripe rust epidemics do not occur every year, high occurrence depends

on autumn infections, mild winters and favourable (cool, moist) weather in spring, which can lead

to severe yield reduction of 15 to 40% (Hanson et al., 1982; Oberforster, 2015), making it a serious

threat to global food production and food security. 

In the developed world, stripe rust is controlled by applying fungicides, but in the developing world,

subsistence farmers often do not have access to fungicides (Miedaner, 2017). Stripe rust is also con-

trolled by resistant varieties, but with the introduction of new races in Europe, which happened for

example in 2011, formerly resistant varieties might be highly susceptible today (GRRC, 2020). Res-

istance breeding relies on the application of single or multiple resistance genes, coming from di-

verse gene pools. In times of rapidly emerging races of stripe rust, the selection of single resistance

genes in a breeding scheme do not lead to durable varieties. Therefore another approach, selecting

not only for qualitative, single gene resistance, but for quantitative resistance, distributed over the

whole genome, may be more favourable (Ellis et al., 2014).

1.1 Stripe Rust of Wheat

Rusts are some of the most devastating fungal diseases since the first cultivation of cereals, and

their spores were found on archaeological sites in Israel dating back to 1300 BC. In the 1950s, Stem

Rust resistant varieties were developed and disseminated in Africa, helping farmers in this region to

control this devastating disease. However, in 1998, a new race of Stem Rust appeared in Uganda,

later called Ug99, which had overcome the previously effective resistance genes. This led to heavy

infestations in East Africa and West India, threatening global wheat production and food safety with

constantly evolving races of Stem Rust up until today. While in warmer regions, Stem Rust is a ma-

jor problem, in cooler climates newly emerging stripe rust races and epidemics have and are re-

cently and currently threatening wheat production (Miedaner, 2017). 

Stripe rust appears on a number of cereal and grass species, but is of high economic importance in

barley (Hordeum vulagere L.) and wheat. Both its names, stripe rust and yellow rust, are descriptive
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of the symptomatic appearance and can be used to distin-

guish it  from other rusts at  a certain point in time  (X.

Chen and Kang, 2017). Stripe rust appears on wheat in

the form of yellow to orange urediniospores, emerging

from pustules arranged in long narrow stripes along the

leaf veins of its host. In seedlings, the infection sites are

not constrained by leaf veins and therefore progress out-

wards from the point of infection in all directions. Pus-

tules are usually oblong, 0.4 to 0.7 mm in length and 0.1

mm in width. Urediniospores are ellipsoidal and broadly

obovoid with a mean of 24.5 x 21.6 µm, yellow to orange

in colour and have from 6 up to 18 germ pores on their

surface (Figure 1). At around 7 to 12 °C, urediniospores

germinate rapidly on leaf blades if water is available. At higher temperatures and later development

stages of the host, the fungus is producing black telia, which are similar in size to uredia, but con-

tain two-celled brown or black, thick-walled teleutospores (W. Chen et al., 2014). For a long time it

was believed that the teleutospores did not serve any purpose in the life cycle of stripe rust, and in-

fections of wheat would only be possible through urediniospores, until Jin et al. (2010), found the

secondary host to be Berberis chinensis, which is infected by the mentioned teleutospores produced

on the primary grass host (Figure 2). 

This does not only show that there is a second host, but while on wheat, stripe rust is reproducing

only clonally, on  Berberis chinensis a sexual stage of reproduction through pycniospores and ae-

ciospores is possible. The details of sexual reproduction are

still largely unknown, but this means that genetic diversity

in stripe rust is not only possible through mutation but also

through genetic recombination  (Zheng et al., 2013). Since

then, further species were identified to be infectable, with

the sexual reproduction stage,  under artificial  inoculation

conditions (M. N. Wang and Chen, 2013).

While in most areas of the world, the clonal reproduction is the main or only way of propagation in

stripe rust, Duan et al. (2010) showed that Chinese stripe rust populations have a much higher ge-

netic diversity, and annual infections are likely to be originating from the sexual reproduction phase

2

Figure  2:  Life  cycle  of  Puccinia strii-
formis f. sp. tritici (Jin et al., 2010).

Figure  1:  Microscopic  images  of  P.  strii-
formis, Uredia with spores emerging. In the
corner  are  images of  one  uredospore and
two teleutospores.



of the pathogen. The fact that sexual recombination of the pathogen happens only at certain places

around the world, allows for the analysis of migration routes across time, showing that European

stripe rust isolates usually originate  in the Middle-Eastern and East-African areas.  Migration of

stripe rust has historically not only been documented through natural causes like wind dispersal but

also through human activity like travel and commerce (S. Ali et al., 2014). Long-distance travel of

stripe rust is documented as far back as 1915, for the first time having been found in the US where

it was introduced from Europe, as well as in remote locations like New Zealand in 1980, being in-

troduced from Australia (Hovmøller et al., 2011; Schwessinger, 2017). 

A recent epidemic in Europe starting in 2011, was also caused by long-distance dissemination of a

novel stripe rust race. The stripe rust race groups “Warrior” and “Kranich” were detected in high

frequency at multiple sites firstly in Western Europe, and later all across Europe, overcoming previ-

ously durable resistance genes and replacing local rust populations. The origin of the aforemen-

tioned races is in the Near-Himalayan region, which is the center of diversity for stripe rust. These

newly emerged races differ from previous strains not only in virulence but also in the production of

more telia and therefore more spores (Hovmøller et al., 2016).

Historical control of rust diseases included early harvest at signs of infections, as well as pulling

nets and cords across the fields to remove morning dew and reduce humidity, which aids spore ger-

mination. Other strategies against rust diseases included eradication of the alternate hosts, Berberis

sp. as far back as the 1660s in France (Zadoks and Bouwman, 2017). Nowadays, synthetic fungi-

cides are a measure of control in integrated pest management. In Austria, currently 55 different syn-

thetic fungicides are available and registered for the control of stripe rust, containing 13 different

active components and combinations thereof  (BAES, 2020). While the availability (local registra-

tion), effectiveness (pathogen resistance) and societal acceptance (residues, environment) of chem-

ical fungicides are steadily declining, an alternative measure of control is the use of resistant cul-

tivars.

When breeding for resistant cultivars one has to take into account the relationship between host and

pathogen. In case of wheat and stripe rust this is on the one hand how the pathogen is able to infect

the host, and on the other hand how the host defends itself against infections. Stripe rust is an oblig-

ate parasite, meaning it depends on the host for growth, survival and reproduction. If it cannot infect

the host, it is not able to complete its life cycle. As previously mentioned, rust fungi have a rather

complex life cycle, producing up to five different types of spores on two different hosts. This sec-

tion will only focus on the uredinial  stage, since uredospores can lead to new infections,  which
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again lead to the production of the same spores. The uredinial stage is the one which is most import-

ant for epidemic occurrence of stripe rust on wheat, while other stages are necessary for sexual re-

combination and the emergence of new races. Once urediniospores are deposited on wheat leaves,

heads or awns by rain or wind, they germinate after approximately 3 hours by producing a germ

tube. Within 6 to 8 hours post germination, the germ tube penetrates a stoma and enters into the

plant tissue. Within the mesophyll cells, in the space between cell walls and plasma membrane,

haustoria are produced that extract nutrient from the cells to supplement the formation of more

fungal hyphae and further haustoria. Once enough nutrients are gathered, spore buds develop and

start producing urediniospores. Sporulation starts around 12 to 14 days after inoculation and newly

emerging spores then infect other plants and new leaves  (W. Chen  et al., 2014; Z. Kang  et al.,

2017). 

Stripe rust cannot infect every plant species, a compatible plant-host interaction is necessary for in-

fection and within compatible host species some genotypes can be resistant to infection. This resist-

ance can be largely categorized into two main classes commonly designated as Adult Plant Resist-

ance (APR) and All Stage Resistance (ASR), or Seedling Resistance (SR) since it is tested on seed-

lings. The level of ASR is usually complete or at least very high, but also race-specific and there-

fore prone to the risk of being overcome by new races. APR is usually non-race-specific and there-

fore more durable, but can be of low level and insufficient if disease pressure is high and conditions

are favourable for the pathogen. A series of host responses are involved in seedling resistance, in-

cluding cell wall apposition, papilla formation,  accumulation of antifungal compounds including

lignin, plant hydrolases, and reactive oxygen species. Hypersensitive reaction is accompanied by

cell  apoptosis  at  the  infected  location  and  considered  one  of  the  most  effective  plant  defence

strategies. Similar reactions can be associated with APR, it is linked to reduced fungal growth in

resistant compared to susceptible cultivars (Z. Kang et al., 2017). High temperatures in spring can

induce host resistance (Luig, 1985), which leads to a further distinction of High Temperature Adult

Plant Resistance (HTAP), while it is believed that most cases of APR are in fact HTAP (M. Wang

and Chen, 2017).

Genes responsible for ASR, APR or HTAP are recurrently being described in literature, 78 are per-

manently and 67 temporarily named, 327 quantitative trait loci (QTL) associated with stripe rust

resistance are described in literature (McIntosh et al., 2017). These resistance genes are associated

with ASR, APR or HTAP. Another distinction within susceptible varieties can be done by classify-

ing them into “Slow Rusting” or “Fast Rusting” (Caldwell, 1968). They are defined based on the
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spread and development under field conditions, whereby slow rusting is associated with partial res-

istance, similar to APR. While these terms are loosely defined, they are accepted and valuable from

a  practical  viewpoint.  Further  classifications  are  made  by  distinguishing   “monogenic”  versus

“polygenic” resistance, referring to the number of genes involved, and “major-gene” versus minor-

gene”  or  “qualitative”  versus “quantitative”  resistance,  referring  to  the effect  of  each  gene  (M.

Wang and Chen, 2017). Monogenic, major-gene, qualitative, ASR is associated with a high level

but non-durable resistance, while polygenic, minor-gene, quantitative APR is associated with vary-

ing levels of resistance, but is considered more durable. While some argue that breeding for HTAP

is the most effective strategy (X. Chen, 2013) and others warn that also APR genes can break down

and every genetic resource should be deployed (Ellis et al., 2014), combining all types of resistance

might be the most sustainable breeding strategy to obtain a durable stripe rust resistance.

1.2 Resistance Breeding

When a new stripe rust race appears that is virulent on previously resistant cultivars, resistance

breeding has to adapt to the situation by looking for new sources of resistance. This is of course not

a quick solution, since it takes many years from crossing two varieties to the release of a new vari-

ety. Depending on the source of resistance, this involves one or two main activities, pre-breeding

and incorporation into the breeding population. Pre-breeding is necessary if the source of resistance

is not agronomically adapted. Aside from hexaploid and tetraploid wheat cultivars, sources of res-

istance are landraces and crossable related or non-crossable wild species  (Aktar-Uz-Zaman et al.,

2017). To identify resistance genes in cultivars,  regional sets of differential  lines have been de-

veloped that carry single resistance genes. These are only available for selected ASR genes, since

for some races, single gene lines are not available or other genes mask the action of a gene (Wan,

Wang,  et al., 2017). In some cases, embryo-rescue methods, bridge-crossing or genome-doubling

might be necessary, if the resistance source is of a different ploidy level, or genetically incompat-

ible. If normal crossing is possible, successive backcrossing is used to transfer resistance genes into

genetically adapted material and to get rid of linkage drag. Genetic markers, that are tightly linked

with the genes of interest, might be helpful in selecting the desired lines and speeding up the breed-

ing process (Bariana, 2003). Such genetic markers are especially useful for introgression of genes

from exotic material rather than selective breeding within elite material (Würschum, 2012). and can

facilitate the pyramidization of resistance genes. If this process, which can take many cycles of

crossing  and back-crossing,  is  completed,  the  resulting  genotypes  can  be  transferred  into  elite

breeding populations which yield variety candidates (Bariana, 2003). 
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A range of new biotechnology tools is becoming readily available, partly due to advances in geno-

typing and sequencing technologies. DNA markers are a valuable tool in the pyramidization of res-

istance genes, since screening for multiple genes is not possible when one gene is masking the ef-

fects of others. Some efforts, accelerated by recent advances in genome editing, focus on the devel-

opment of genetic constructs of multiple resistance genes and types of genes that can be integrated

using genetic modification or gene editing techniques (Ellis et al., 2014). While in some parts of the

world, genetic modified food is considered safe, public acceptance towards genetic modification is

low in Europe  (Lucht, 2015). Recent resolutions by the Court of Justice of the European Union,

classify new gene editing techniques in the same category as established transgenic techniques, pos-

sibly even requiring the recategorizing of century old mutagenesis techniques  (Callaway, 2018).

Gene editing might promise quick and easy solutions in many areas of research, but the durability

of resistance through gene editing is largely unknown, and registration cost are potentially prohibit-

ive to the commercial release of varieties. Therefore the strategy that this work will be focusing on,

is the use of statistical tools to enhance breeding progress. Here, stripe rust field scoring data and

genetic markers are used to train a model which can predict the performance of untested lines (Juli-

ana et al., 2017).

1.3 Genetic markers and genome-wide association mapping

A major driving force of genetic studies and analyses are advances in high-density genotyping tech-

nology. Genotyping by sequencing (GBS) uses restriction enzymes and DNA sequencing techno-

logy to detect SNP variations in the genome. After cutting the DNA with restriction enzymes, size

selection filtering to roughly 100bp is performed, reducing genome complexity drastically, while

avoiding repetitive, non coding regions of the genome by using methylation sensitive restriction en-

zymes. Barcode adapters are then attached to these segments and PCR (Polymerase Chain Reaction)

amplification is performed. These fragments are sequenced by next generation sequencing techno-

logy and aligned to the specific reference genome (Elshire et al., 2011; He et al., 2014). The advant-

age of GBS compared to chip-based SNP methods is a lower cost per sample, but with the draw-

back of a large number of missing data points (Bajgain et al., 2016). 

High-density genotyping is needed for powerful genetic studies that link phenotypes to genotypes.

With the low cost and advancing technologies in sequencing, GBS is well equipped to be an import-

ant tool in the future. Today already many types of GBS exist, providing different options for spe-

cific needs. The problem of missing data can only be solved by increasing sequencing depth, which
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also drives cost, or by imputation through various methods. However, some analysis can handle

non-imputed data, which is preferred if available (Poland and Rife, 2012). 

Simple Sequence Repeats (SSR) or microsatellite markers are a PCR based system that relies on

non-coding, repeating motifs of variable length in the genome. Flanking site specific primers are

used to amplify these regions and variations in length are detected. Advantages of SSR markers in-

clude codominance, sub-genome specificity in allopolyploid plants like wheat and good transferab-

ility into various genetic backgrounds. This makes them ideal for genetic diversity analysis but also

for applied plant breeding (Röder et al., 2005). Markers were developed by groups around the world

and aggregated into a consensus map (Somers et al., 2004). What makes them interesting for this

thesis, is that SSR markers  are widely used in mapping studies, which makes them ideal for the

comparison of results across studies. Furthermore, a large number of SSR markers can be found in

the wheat reference genome (IWGSC et al., 2018), which nowadays enables precise location in the

genome and comparability to other marker systems like GBS.

One of the hypotheses formulated by Mendel (1860) is that plant traits are inherited independently

in plant hybrids. This is only true if traits, their genes or markers are on different chromosomes.

However, when genes and markers are on the same chromosome, and depending on their distance,

they are more likely to be inherited together. Linkage mapping is making use of this “linkage dis-

equilibrium” (LD) by correlating phenotypic and genetic data to find markers which are related to

plant traits, so-called quantitative trait loci (QTL)  (Bernardo, 2002).  Linkage mapping is usually

performed as a controlled experiment, where two or more parents are crossed and filial generations

are analysed for recombination rates of markers and traits. Since recombination events are recent

and therefore rare in these populations, genetic maps of coarse resolution can be generated in such

studies. Association mapping on the other hand uses unrelated or related individuals from any pop-

ulation, exploiting historical recombination, and a high marker density to achieve a higher mapping

resolution. Hence, advances in high-density, genome-wide, low cost marker technology have con-

tributed to the rise of Genome-Wide Association Studies (GWAS) as an alternative tool for linkage

mapping in genetic studies (Mathew et al., 2019).

In breeding programs, data from a large number of individuals is routinely gathered. When using

this data in Genome-Wide Association Studies (GWAS), non-random population structure is in-

troduced into the models, which increases the number of false positive marker-trait association. Ap-

propriate statistical models (like the EMMA algorithm (H. M. Kang et al., 2008)) have to be used,

that take into account the non-random structure of such a population. Special multi-parent popula-
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tions have been developed, such as NAM in barley and MAGIC in wheat, that combine the advant-

ages of high LD and high population diversity without introducing population structure. GWAS res-

ults can be used in breeding programs to perform Marker-Assisted Selection (MAS), which allows

the prediction of the performance of untested individuals, by using significant markers (QTL). QTL

can usually only explain a small fraction of the variance of quantitative traits, this is supposed to be

overcome by genomic prediction (GP) (Dreisigacker, 2019).

1.4 Genomic Selection

Genomic selection (GS) or Genomic Prediction (GP) goes one step further than GWAS, by using

dense genome-wide marker data to predict the genotypic performance of an individual. This can po-

tentially lead to higher genetic gain compared to marker-assisted selection based only on a few

QTL, and was first simulated for cattle breeding (Meuwissen et al., 2001). BLUP (best linear un-

biased prediction) allows the estimation of random effects by using LMM (Bernardo, 2002), which

was widely used in cattle breeding. Pedigree information and ancestry performance, was used to

predict  offspring breeding values.  Genomic BLUP (GBLUP) uses  a  genetic  relationship  matrix

(GRM or G-matrix), which is a variance-covariance matrix that is created from the marker data, and

provides more precise relatedness information than a pedigree. The G-matrix is used as a random

factor in a mixed model that calculates Genomic Estimated Breeding Values (GEBVs) (VanRaden,

2008). GEBVs can then be used instead of real breeding values, to make selection decisions in a

breeding program.

Phenotypic and genomic data is used to train a model which is able to predict performance of un-

phenotyped lines, based on their genomic data. This model has to be validated by splitting the phen-

otypic data from the training population into two parts. While one part of the population is used for

model training, another part is used for validation and optimization of the model. If the model is op-

timized repeatedly based on the training/validation split, splitting the population into three parts can

be useful. The third part can then, at the end of the optimization process, be used to get an unbiased

estimate of model performance (Korjus et al., 2016; Roberts et al., 2017).

The true breeding value of an individual will always be unknown, therefore to assess the model per-

formance, predictions are usually compared to an estimated breeding value. The estimated breeding

value is calculated from real observations as a BLUP using LMM. One way to do so is to calculate

prediction ability, which is the Pearson correlation coefficient of the observed value (BLUP) and

the predicted value (GEBV), or the prediction accuracy which is the correlation between the ob-

8



served value and the true genotypic value. Other, more sophisticated, methods have been proposed

for assessing model performance (Ould Estaghvirou et al., 2013), which are promising more robust-

ness of the parameter but are usually more complex and can be computationally demanding.

By using GP in a breeding program untested genotypes can be predicted without or before test data

is available. If the genotyping cost is lower than the cost of a field trial plot, more lines can be tested

at the same cost, however usually with lower accuracy since the genomic prediction will not explain

the whole variation in the population. Heffner et al. (2010) demonstrated that the main advantage of

GS compared to MAS is not in larger genetic gains per cycle, but in shortening breeding cycle time

due to the fact that superior lines can be determined earlier in the breeding cycle and reused as mat-

ing partners for the next breeding cycle. In cattle, one of the first agricultural species that were sub-

ject to genomic selection, reports of genetic gain per year doubling and generation interval reducing

by half are supporting these results (Doublet et al., 2019).

One main challenge of genomic prediction models is, that the number of markers or predictor (p) is

usually larger than the number of observations (n). A variety of models have been proposed to deal

with this  p>n problem in GP. While  GBLUP uses the G-matrix to calculate  GEBVs, a similar

method uses ridge regression best linear unbiased prediction (rrBLUP) and the full marker informa-

tion to obtain an estimate for each marker effect. Multiplying the marker matrix with the effects

vector, generates a GEBV for each line, which has mathematically been shown to be equivalent to

the GEBV obtained by GBLUP (Liu et al., 2016). Ridge regression is shrinking the marker effects

towards zero to deal with the p>n problem. GBLUP and rrBLUP are based on the assumption of

equal contribution of every locus to a quantitative trait. Bayesian models take into account various

prior distributions of marker effects and allow distinct variances for each marker. LASSO models

are using variable selection rather than shrinkage methods to deal with the p>n problem. Further

methods use various machine learning techniques or neural networks models to build increasingly

sophisticated models for genomic prediction  (Crossa  et al., 2017; Poland and Rutkoski, 2016; X.

Wang et al., 2018).

1.5 Aims of this thesis

In light of recent epidemic outbreaks of stripe rust around the years 2000 and 2014 in Austria and

changes in the susceptibility of registered varieties  (Oberforster, 2018), a better understanding of

breeding for stripe rust resistance and new stripe rust resistant varieties are in high demand. The

main aim of this thesis was therefore to explore statistical and bioinformatic tools to facilitate a
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more efficient breeding for stripe rust resistance. To this end, the following research questions (RQ)

and goals were stated:

• RQ: Can the susceptibility of wheat to stripe rust be predicted by the use of genetic markers

and genomic prediction to replace phenotypic selection in years without natural infections?

• RQ: What are the limitations of genomic prediction for stripe rust in bread wheat?

• RQ: Is it possible to use genomic prediction models to select for quantitative resistance to

stripe rust versus race-specific qualitative resistance?

• Goal: Use genome-wide association mapping to dissect the genetic architecture of stripe res-

istance in a breeding population of wheat in natural and artificial infection scenarios.

• Goal: Use state of the art genomic prediction models to predict stripe rust susceptibility and

validate the models to determine their ability to predict future performance.

• Goal: Improve resistance and stability against stripe rust by genomics-assisted wheat breed-

ing.

10



2 Materials and Methods

The data for this thesis was kindly provided by Saatzucht Donau (SZD) and came from their winter

wheat breeding program. It consisted of stripe rust scorings in years of high field infections as well

as artificial inoculation sites. This data was supplemented by GBS marker data for part of the breed-

ing lines. Scoring was done on multiple locations in the years 2013, 2014, 2015 and 2016. 

2.1 Plant material and trial locations

Plant material used in this thesis were of the following types:

 Mostly F5, F6, F7 and recombinant inbred (RI) as well as doubled haploid (DH) lines from

winter wheat breeding programs of SZD.

 Varieties registered in Austria (AGES, 2019) and other countries as well as advanced lines

(variety candidates).

In total, 68 trials were analysed, consisting of 11074 lines, of which 3252 were fingerprinted with

genome-wide distributed markers. Testing was done at multiple locations in Austria (AU), France

(FR), Germany (DE), Hungary (HU), Romania (RO), Serbia (RS), Slovakia (SK), Turkey (TR) and

Canada  (CA).  Locations  in  Austria  also  included  Probstdorf  (PRO,  PRks,  Prkf),  Marchtrenk

(MAR), Leopoldsdorf (LEO),  Melk (MLK), Weikendorf (WEI), and Dörfles  (DOE).  Addition-

ally, a total of 6307 lines from the entire set of 11074 breeding lines and varieties were tested in a

disease nursery in Reichersberg, Austria (RBG), which is part of the western region of Austria with

higher rainfall as compared to the drier continental climate of the other Eastern Austrian trial loca-

tions. The disease nursery was artificially spray-inoculated with multiple diseases, as well as an in-

okulum of stripe rust from the Julius Kühn Institute (JKI) (pathotypes unknown). All other trials

were subject to natural infection.

2.2 Trial designs

The disease nursery, as well as most other large trials, are non-replicated designs i.e. in which most

of the lines are only tested on one plot. One or more lines are replicated across the trials to enable

some correction of a field trend along rows or columns, this is also called a “replicated control

design” (RCD) or “check plot design”. In some of the smaller trials, lines were replicated up to four
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times, with the trials still being modeled like the non-replicated ones, i.e. only according to row and

column information. 

2.3 Phenotypic Analysis 

For the genetic and phenotypic analysis the data had to be prepared by using linear mixed modeling

(LMM). Linear mixed models allow the definition of fixed and random effects, depending on the

type of effect and the goal of the analysis. From these models, effect size and residuals can be ex-

tracted and estimates  for individuals  (BLUEs, BLUPs) can be calculated.  Linear mixed models

were set up for the phenotypic analysis of the data according to Equation 1, where y is the response

vector that is aimed to be modeled, X and Z are incidence matrices for the fixed and random effects.

β is a vector with fixed effects, and u is a vector of random effects. The error term, e is used for de-

scribing unexplained residuals of the model.

y=Xβ+Zu+e Equation 1: Linear mixed models

In Figure 3 the process of the phenotypic analysis is shown in a schematic representation. First, a

heritability estimation is done, then estimated marginal means are calculated and finally the data has

to be rescaled to the original range. This could have been done in a single process, however, this

was regarded to be computationally too demanding with such a large dataset as in the study at hand,

since the computation time increases in a non-linear exponential  way with the number of data-

points. Therefore the process was split into a two-stage sequence, which reduced the computational

load dramatically. 
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The first part of the phenotypic analysis focused on identifying the trials that had a sufficient data

quality for further downstream analyses. This was achieved by computing the broad sense heritabil-

ity (H²) per trial, using the following formula:

H ² =
V G

(V G+V e /r )
Equation 2: Broad sense heritability

Heritability (H²) is calculated as the fraction of genetic variance (VG), explaining the phenotypic

variance (VG + Ve/r) as the sum of the genetic and the error variance, divided by the number of rep-

licates (r). For the purpose of calculating heritability per trial, the following LMM was set up:

y = µ+gi+r j+ck+spline jk+e Equation 3: LMM first stage

The response y represents the value for each plot, and µ is a grand mean. To extract the variance

components needed, the genotype (gi) had to be added as a random factor. Other random factors are

row (rj) and column  (ck) information from the plot layout,  as well  as a two-dimensional  spline

model (splinejk) across rows and columns, which allows for more precise estimation of variance due

to spatial environmental effects (Rodríguez-Álvarez et al., 2018), and a random error term (e). The

model did not include any fixed effects. The genetic and error variance was extracted directly from

the model for the calculation of broad sense heritability. 

To generate adjusted means per genotype, another LMM according to Equation  3 was used. This

time, the model contained the genotype as a fixed effect to calculate BLUEs (best linear unbiased

estimators). The spatial information was modeled in the same way as in the heritability model as

random effects. QQ-plots and residual plots were produced to inspect the residuals concerning the

assumptions of a normal distribution and the homogeneity of the residual variance.

Finally, since the scoring data is of an ordinal type but was treated as metric data in the study at

hand, the resulting BLUEs were not distributed between 1 and 9 like the original data. This was

compensated for by rescaling the data in a way that did not influence their distribution. The follow-

ing formula was applied to all the resulting BLUEs:

y ' = 1+
y− ymin

ymax− ymin

∗8 Equation 4: Rescaling BLUEs
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In the second stage of the analysis, heritability estimates were generated, using the trial BLUEs

from each trial, additionally for each year. The model contained genotypes (g i), trials (envj) and an

error term (e) as random factors, and yielded variance components to calculate heritability per year

in the same way as per trial:

y = µ+gi+env j+e Equation 5: LMM for second stage

Another  LMM according to  Equation  5 was set  up that  used the previously generated rescaled

BLUEs from each trial to generate BLUEs for each year. Genotype (gi) was added as a fixed factor

and trial (envj) was added as a random factor. BLUEs per year were extracted from the model and

rescaled according to Equation 4.

2.3.1 Scoring results across years

Since the data was recorded from a breeding population, most genotypes were tested only for one or

two years, since they proved not to have a high breeding value or failed to meet breeder’s selection

criteria. However, some genotypes, especially check varieties and other registered varieties were

tested across several years. These genotypes can therefore be used to get information about the tem-

poral dynamics of stripe rust, such as changes in race occurrence and virulence.

This was done on the one hand by comparing pairs of years and the correlation of scorings from one

year to the other years, as well as by more sophisticated methods like k-means clustering (Hartigan

and Wong, 1979) and k-medoids clustering (Kaufmann and Rousseeuw, 1987). The k-means clus-

tering algorithm, as implemented in the stats package for R (R Core Team, 2018), was applied to

the scoring data of multiple lines and years, with the aim of grouping similarly behaving lines to-

gether into so called “clusters”. This algorithm was tested with a range of predefined numbers of

clusters that grouped the lines in a way, which minimized the sum of squares of the respective data

points to their cluster centers. A local optimum of the cluster number was accordingly defined in

this process, as a minimum of total within group sum of squares.

This algorithm was tested with a range of predefined numbers of clusters that grouped the lines in a

way which minimized the sum of squares of the respective data points to their cluster centers. A

local optimum of the cluster number was accordingly defined in this process, as a minimum of total

within group sum of squares.
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A similar  method for  clustering  is  k-medoids  or  partitioning  around medoids  (pam) clustering,

which uses data points as cluster centers rather than cluster means. The implementation used in R

was from the “fpc” package (Hennig, 2019). The algorithm has to be provided with a range of pos-

sible or reasonable cluster centers and returns critical values for each number of cluster centers and

the optimal number of clusters. Interaction plots were used to visualise the results. Optimal cluster

sizes were selected by finding a maximum in the critical  value,  which is the average silhouette

width of all data points. Silhouette width is a measure of how similar each data-point is to its own

cluster versus the other clusters and can range from 0 to 1.

A further analysis was done to assess the similarity of trials within years and across-year. Pairwise

correlation coefficients and p-values for the significance of the coefficients were calculated, based

on lines present in both years of each pair of  trials. In some trials, less than three common lines

were tested, which prevented the calculation of a Pearson correlation. A higher number of common

observations allowed for a more precise estimation of correlation coefficients. 

2.4 Genetic Analysis

2.4.1 Marker data

Using the GBS system, 3188 lines out of the total ~12000 available lines were genotyped with

Single Nucleotide Polymorphism (SNP) markers. SNP markers analysis returns only three possible

values; the allele is homozygous minor (-1), heterozygous (0) or homozygous major (1). The minor

or major allele coding is usually assigned, according to their frequency in the reference population,

so that the minor allele is the rare one and the major allele is the more abundant one. However, ma-

jor or minor can be associated with each one of the alleles in a given population. For further ana-

lysis the missing, previously imputed values, which were represented by fractions of (+/-) 1, were

rounded to the nearest whole number value. This  resulted in a matrix of genotypes in the rows, and

markers in the columns coded as “-1”, “0”  and  “1”.

The markers were filtered for minor  allele  fre-

quency  (MAF),  a  common threshold  for  MAF

filtering is 5%  i.e.. Markers with a MAF lower

than 5% were not considered for further analysis.

This filtering strategy removed 65% of the avail-

able 7365 markers, which resulted in 2582 mark-

15

Table 1: Marker density per chromosome after fil-
tering for MAF (2582 total).

Chr. ID 1 2 3 4 5 6 7

A 104 155 142 149 113 123 149

B 206 338 189 69 218 118 100

D 68 81 62 25 33 52 88 



ers that were used for further genomic analyses (Table  1, Appendix 7.1.2). They were distributed

roughly equally among all 21 chromosomes.

Heterozygosity per individual was calculated by dividing the number of heterozygous marker allele

calls by the total number of markers. The expected heterozygosity is zero for doubled haploid (DH)

lines, and in recombinant inbred (RI) lines lower than 12.5% or 6.25% for the F4 or F5 selfing gen-

eration. The actual heterozygosity is expected to be lower, since the parental lines are not com-

pletely unrelated and usually share some alleles. The mean heterozygosity was thus found to be

4.7% with a maximum of 24.6% and a minimum of 0.7%. Lines with heterozygosity higher than

15% were excluded from the analysis, since they might not produce reliable results, which led to the

removal of 45 lines.

2.4.2 Genome-wide association mapping for stripe rust resistance

For the GWAS, each year was seperately analysed using the BLUEs that were generated in the

mixed model analysis of 2013, 2014, 2015 and 2016. The available markers were filtered for their

MAF in each year, using the “snpQC” function from the package NAM (Xavier et al., 2015), which

resulted in 2675, 2717, 2290 and 2212 markers for 2013, 2014, 2015 and 2016 respectively. 

The GWAS (R package sommer) analysis was based on the application of an LMM according to

Equation 6. The response y represents the phenotypic observations, X is a design incidence matrix

and β is a vector with fixed effects, not associated with genetic differences. Z is a covariance matrix

of kinship, generated from the marker matrix that represents kinship between individuals and g is a

variable of kinship effects. M is the marker matrix and τ a vector of genetic effects not explained by

genetic relationship but by the individual SNP, while e is a vector with random error, not explained

by the rest of the model (Yu et al., 2006) (Covarrubias-Pazaran, 2016, 2018).

y=Xβ+Zg+M τ+e Equation 6: LMM for GWAS

This model yields effects size, significance (-log10(p)), F-statistic and proportion of explained vari-

ation (R²) for each marker. The threshold for declaring a significant marker trait association was de-

termined by using the Bonferroni method, which takes into account a multiple testing situation. This

is necessary because one trait is tested against a lot of markers repeatedly. This leads to some results

being significant just by chance, and generates a lot of false positives. Raising this significance
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threshold according to the number of markers used, or tests done, leads to the formula in Equation

7,

crit = α
nmmaf

Equation 7: Bonferroni correction

where nmmaf designates the number of markers after filtering for MAF. The threshold was calculated

for each year seperately, due to a different number of markers in each year after MAF filtering (nm -

maf). Hence p-values below the α = 0.05 threshold (adjusted for number of markers) were declared to

be significantly associated with the trait of interest, i.e. Stripe rust resistance. Neighbouring signific-

ant markers were grouped, while only the marker with the lowest p-value per locus (QTL) was re-

tained for further analysis. Manhattan plots, usually showing the -log10(p) value, were produced us-

ing the “qqman” R package (Turner, 2018) for visualizations of the GWAS results.

QTL were named with a sequential number per year and the year they were found in (number – year

/ ...). Due to the proprietary nature of the genetic map and missing physical location information,

the QTL found in the genome-wide association study were located using BLAST (Altschul, 1997)

and compared to the v1.0 reference genome of wheat, using an online genome browser (IWGSC et

al., 2018). Known stripe rust resistance genes and QTL were discussed using the online catalogue

of gene symbols (McIntosh et al., 2017) as well as other sources.

2.4.3 Genomic selection models for predicting stripe rust resistance

GBLUP, first proposed by VanRaden (2008) and Habier et al. (2007), is chosen in many studies for

its  high  computational  efficiency  and high predictive  ability,  and was  therefore  the  method  of

choice for this thesis. Genetic marker data was used to construct the G-matrix, which is needed to

set up a GBLUP model. The data which was fed into the GS model was the same as for the GWAS

model. BLUEs from the phenotypic analysis and genotypes were filtered for heterozygosity. The

markers used for building the G-matrix were previously filtered for a MAF of 5%. The GBLUP

model is based on an LMM, according to:

y=Xβ+Zg+e with var (g)=G∗σg
2 Equation 8: LMM for GBLUP

The model uses the G-matrix and the genetic variance (σ²g) to construct the vector g, which is used

as a random effect in conjunction with the design matrix Z that allocates lines to their genetic val-

ues. This model also incorporates fixed effects (β) and a design matrix (X) as well as a random un-

explained error term (e) to model the phenotypic performance (y) (Clark and van der Werf, 2013) of
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stripe rust resistance. In within-year prediction, no fixed effects are present, but in prediction across

multiple years, prediction-year is an additional random effect (u) in the model. Results from the

GBLUP model were simply calculated by summing up the intercept plus the random effects plus

the fixed effects to obtain predictions for untested genotypes.

An alternative model that was implemented,  called GBLUPA  (Juliana  et al.,  2017; Zhao  et al.,

2014), uses known high-effect loci, in this case QTL from the GWAS, as fixed effects  (β)  in the

GBLUP model to improve the resulting accuracy of GEBVs. If no QTL were found in the GWAS

for a particular year, the four highest scored loci were used instead. 

2.4.4 Genomic predictions within years

Both of the models for genomic prediction described above were initially tested within each of the

years. For this purpose, the population was split randomly into five parts or sets and then one out of

five sets was used for validation while the other parts were used for the training of the prediction

models. Each set was used as a validation set in combination with the different numbers of training

sets to simulate different training population sizes on the one hand, and to generate five replicates

for each training population size on the other hand. Different marker densities were simulated by

not only using all 7365 markers, but also randomly selecting 100, 1000 and 3000 markers out of the

full set. Both models described above, GBLUP and GBLUPA, were used for the simulation. In case

of the GBLUPA model, the QTL used as fixed effects were not estimated in the training set each

time but taken from the previous GWAS analysis.

All the combinations of 2 models, 4 years, 4 marker densities, 5 validation sets and 4 different train-

ing set sizes result in a total of 640 combinations. The models were evaluated based on the Pearson

correlation coefficients of the validation set and the predicted values for the same set of lines, which

is called the prediction ability. The prediction accuracy was calculated by dividing the prediction

ability by the square root of the heritability calculated in the phenotypic analysis, which can be in-

terpreted as the correlation between the true and the predicted breeding values. 

2.4.5 Genomic prediction across years

Genomic selection was also tested across years, where one or more years were used for building the

model to predict another year’s individuals stripe rust resistance. Out of the four years of data, 1 to

3 years were chosen for training and one year for validation. All possible combinations were tested,

e.g. using 2013 and 2014 for training and the subsequent year 2015 for validation, as well as more
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theoretical combinations with backwards prediction like using 2015 and 2016 for training the model

to predict the performance in 2013. A random year effect was added to the model to account for dif-

ferent stripe rust occurrence in the training years.

One thing that has to be taken into account when modeling and predicting across years, is that some

genotypes might be present both in the training and in the validation population, which can posit-

ively bias the predictive ability. To account for that, two variants were modeled: one where duplic-

ate genotypes were removed from the training population, -and another one where duplicates were

removed from the validation population. Using either GBLUP or GBLUPA for building prediction

models resulted in the calculation of 48 models of different years and variants when using one or

two training years, and 18 models when using three training years.

To find out which factors are relevant for improving across-year prediction, the results from the

simulations were further analysed. In total, 224 different variants were calculated for GS across dif-

ferent number of years, untested or tested years, different GBLUP versions, different variants in

data splitting and prediction or training years. All these variants were included in a linear model and

ANOVA was performed on the model to find out which of factors affect the performance of GS. 

2.4.6 Genomic prediction across years, in tested years

In the before mentioned GS approach, the data from tested genotypes was used to predict untested

genotypes in untested years. Since the influence of different years can be quite large, the problem

could be reformulated in a way that unknown genotypes are tested in a known environment or year.

Similar to the previous approach, one two or three years were used to train the model to predict one

year, which was then used for validation. Additionally, some lines were moved from the validation

set to the prediction set in order to additionally estimate the validation year effect and achieve better

predictions for a particular year by reducing the overall model fit. Two variations of this approach

were evaluated. In the first variant, genotypes from the validation year that were also present in the

training years were also used for training (var 1), these were mostly check varieties and registered

varieties. In the second variant, some additional lines (10%) were randomly selected from the valid-

ation set to improve the model, and were therefore moved from the validation set to the training set

(var 2). These lines are breeding candidates, which should have higher relatedness than for example

check varieties.
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2.4.7 Genomic prediction and preliminary yield trials

A common feature of a plant breeding program is to use preliminary yield trials (PYT), to test a

large number of entries, in a limited number of environments, and preselect lines which are later ad-

vanced into extensive multi-location trials (Endelman et al., 2014). In the dataset used in this thesis,

a PYT consists of a lot of small plots of F5 or DH breeding lines, named PRkf (Probstdorf small

plots early flowering) or PRks (Probstdorf small plots late flowering). Stripe rust data from these

trials only exists for 2014, 2015 and 2016. 

The goal of this analysis was to simulate a practical approach to genomic prediction in a plant

breeding context. The data from one year’s PYT was used to predict the breeding line’s stripe rust

susceptibility in the following year(s). Model variants included GBLUP and GBLUPA, as well as

training the model only with the PYT data or with the year’s full data. As a reference, the pheno-

typic correlation of small plots to the following years multi-location trials was calculated.

2.5 Statistics software

All the statistical analysis, as well as the data preparation and graph drawing, was carried out by us-

ing R (R Core Team, 2018). Packages for specific purposes that were used, but not delivered with

the standard installation, are listed in Table 2.

Table 2: Software packages used in this thesis.

name version usage authors

corrplot 0.84 plotting correlation results (Wei and Viliam, 2017)

emmeans 1.3.5.1 estimated marginal means (Lenth, 2019)

fpc 2.2-2 medoids clustering (Hennig, 2019)

NAM 1.7.2 quality control, MAF filtering (Xavier et al., 2015)

R 3.5.2 programming language (R Core Team, 2018)

rrBLUP 4.6 additive relationship matrix (Endelman, 2011)

sommer 4.0.1 mixed modeling, GWAS, GS (Covarrubias-Pazaran, 2016, 2018)

qqman 0.1.7 manhattan plots (Turner, 2018)
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3 Results

3.1 Phenotypic analysis

Data from a total of 68 trials was provided for the analysis. After filtering the raw data 30 trials had

to be removed, and 38 were passed on to mixed modeling to generate BLUEs for further analysis.

Six trials were removed due to their low number of plots, and therefore low number of lines. These

trials do not provide  reliable  information  for the analysis of genetic effects, which need a larger

number of individuals to be representative. The same is true for seven trials, which have a low vari-

ance in yellow rust scorings.  Nine trials had to  be removed due to mixed modeling errors, which

were not investigated further. The final dataset included trials ranging from 60 to 3261 plots, 29 to

2238 lines, 1 to 4 replicates, 15 to 240 rows, 2 to 44 columns, 1, 2 or 3 scorings, mean scorings

from 1.21 to 4.56, maximum scorings from 4 to 9 and variance in the scoring from 0.25 to 7.05. The

mean number of plots per trial over all trials was 902 with 557 lines per trial, 1.8 replicates, 1.8

scorings, mean scoring of 2.47, mean maximum scoring of 8.08 and mean variance of 2.32. 

Before  calculating  marginal  means,  the

heritability  was estimated  for  each trial

and for each year (Figure 4). Some trials

yielded heritabilities below 0.5 and were

not  used for further  analysis  since they

were expected to impair the overall res-

ults.  The  actual  limit  was  increased  to

0.55  to  exclude  one  further  trial  from

2015 which was clustering more with the

lower  heritability  trials,  than  with  the

higher heritability  trials.  The trial  herit-

abilities are listed in section  7.2.3 in the

Appendix.  Most  trials  yielded  a  relat-

ively high heritability, so that after filter-

ing, only two trials were left for 2013, 17 trials for 2014, 10 trials for 2015 and 6 trials for 2016 to

be used for the phenotypic analysis across trials within each year. This selection of trials yielded

high heritability in the per-year estimation of 0.91 in 2013, 0.91 in 2014, 0.85 in 2015 and merely

0.57 in 2016.
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Figure 4: Heritability plot of trials versus years.
Trials above threshold (red line) used for further analysis
(blue: per trial, green: h² per year, red line: threshold).



The YR scorings show a pattern of rel-

atively  high  severity  in  2013,  where

only the disease nursery data was avail-

able.  The  average  stripe  rust  severity

was lowest in 2014, while it increased

in the years 2015 and 2016. The calcu-

lation of adjusted means per trial yiel-

ded  a  similar  distribution  and  similar

means  as  in  the  raw data,  with  some

overcorrection  appearing  towards  the

lower scoring. Due to this overcorrec-

tion,  some of  the  data  had to  be  res-

caled,  which led to an increase of the

mean scoring values, while conserving the distribution of the individual values. Calculating adjus-

ted means per year did not yield over-adjusted values, but was rescaled to use the full range (1-9) as

well. Rescaling per-year adjusted-means did not influence the data distribution, which was inspec-

ted using boxplots. The distribution of final, adjusted, rescaled, per-year means can be seen in Fig-

ure 5. The distributions of the adjusted means after each step of the whole process can be found in

section  7.3 in the Appendix. There, one can see that per year means and distributions of the data

were only rescaled but not distorted, which is an important requirement before advancing to further

analysis. The final dataset contained 1439 lines for 2013 with an adjusted mean scoring of 4.7, 3132

lines for 2014 with a mean of 4.0, 3308 lines for 2015 with a mean of 4.17 and 3373 lines in 2016

with an adjusted mean scoring value of 4.6.

3.2 Scoring results across years

Comparing different years in terms of overall stripe rust oc-

currence is one way of investigating the data on hand, while

another important aspect is to look at individual lines across

multiple years. A total of 143 lines were scored for their stripe

rust resistance across all three years, while 39 of those, also

had data for 2013 that was assessed in the artificially inocu-

lated disease nursery. The years 2013 and 2016 showed the highest correlation and would therefore

be expected to be similar in stripe rust virulence, 2013 and 2014 as well as 2014 and 2016 show
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Figure 5: Stripe rust (YR) adjusted means per year (1-9 score).

Table  3:  Pairwise  correlations  of
scoring across years.

2014 2015 2016

2013 0.17 0.34 0.58

2014 0.37 0.19

2015 0.49



very low correlations, which would suggest the presence of different races of stripe rust (Table 3).

Scorings in the year 2015 show medium to low correlation with all the other years.

The first clustering approach was carried out using the K-means algorithm. Since K-means does not

accept missing values, the clustering was done with the data from 2014 to 2016. Cluster sizes from

two to 16 clusters were investigated. An optimal number of clusters could not be found, as incre-

mentally increasing the cluster number merely led to a minimal change with respect to minimizing

the target criterion until a saturation was reached at around 15 clusters (Appendix 7.5).

The pam algorithm used for k-medoids clustering would accept missing values, however, the same

data as in the k-means clustering,  i.e. from 2014 to 2016 without missing values, was used in the

analysis. Figure 6 contains a plot of the critical value versus cluster size, where local maxima are

marked in red. Optimal cluster-sizes, in order of likelihood, would therefore be two, four and el-

even. The solution with two clusters, however, did not provide major insights into the stripe rust dy-

namics, since it only splits the lines into resistant and highly susceptibility lines with similar relative

performance, while the absolute score for each year is higher or lower according to the general oc-

currence (Figure in chapter 7.5). The clustering result with four clusters showed, similar to the two-

cluster solution, partitioning into different levels of susceptibility, but it also identified two clusters

in which the average performance crossed over when comparing 2014 and 2016 (Figure 6). 
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Figure 6: K-medoids clustering results. 
On the left, optimal cluster size selection criterion versus the number of clusters, local optima marked in red.
On the right, cluster allocation of 149 lines by line for four clusters. Dashed lines represent individual lines
and solid lines represent cluster medoids. Clusters are represented by different colours (1 red, 2 green, 3 blue,
4 cyan) (2013 medoids imputed with cluster means)



This provides evidence for a shift in susceptibility from 2014 to 2016, although the separation is not

quite clear and the cluster are still overlapping in some lines with 25, 28, 40 and 53 lines per cluster

(Appendix  7.5). Clustering did not take into account 2013 scoring data due to a lot of missing val-

ues.  However,  available values were plotted and medoids were replaced by cluster means in the

plot.  The imputed medoids in 2013 support the suggested clustering result,  by showing similar

grouping to the other years as was generated by clustering. No imputation was possible for cluster

four in 2013 because all cluster four lines were missing data for this year. A third clustering solution

that was further investigated resulted in eleven clusters. It showed even more crossing over, but

cannot be easily interpreted due to a large number of clusters and some clusters consisted only of

one line with extreme scorings in 2015.

3.3 Scoring results across trials

Due to the low correlation coefficients across years (Table 3) and low cluster-ability of the adjusted

year-wise means, further investigation of the similarity of trials within years and across-year was

carried out using a corellogram showing Pearson correlations between trials using pair-wise obser-

vations (Figure 7). While some correlation coefficients could not be calculated due to missing pair-

wise observations (not enough common genotypes tested), others showed non significant correla-

tions at a confidence level of α = 0.05. However, this confidence level  has to be decreased further

since we have a situation with multiple testing at hand according to the number of tests, which leads

to the plot on the right hand side of (Figure 7). Few significant correlations can be found between

trials, not only within years, but also across years. 

To further demonstrate this, a set of trials  was selected,  and pairwise observations were plotted

(Figure 26). The plots show the numbers  of pairwise observations (#), the p-value of the correlation

significance test (p) and the correlation coefficient (r). Significant and non-significant correlations

are marked (*, n.s.). Some plots, showing significant correlation between trials, demonstrate that tri-

als are agreeing strongly in the recorded stripe rust scores, e.g. “2014 LEO 116” and “2014 LEO

148”. Other combinations, e.g. “2014 AUM-Ob 120” and “2014 AU-RBG_NURS” show medium

correlation, but high variance of scores in one trial, and low variance in the other one. A lot of trials

however, show non-significant correlation due to a variety of possible reasons. 
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Figure 7: Correllogram of all trials used for across-year phenotypic and genetic analysis.
Non-significant trials p > 0.05 are not shown, non-significant trials considering multiple testing situation
0.05/ntest (6.9e-05) < p < 0.05 are shown but marked with “x”. Label colours indicate the same years trials.
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Figure 8: Pairwise observations of selected trials to demonstrate variability in trials.
Linear regression line and number of observations (#), correlation significance (p), correlation coefficient (r)



3.4 Genome-wide association study for stripe rust resistance

Bonferroni correction of the threshold for declaring significance of a marker-trait association in the

GWAS was applied for each year separately, which resulted in slightly different thresholds when

each year was analysed individually. Due to a different number of individuals, the threshold ranged

from a p-value  of  -log10 =  4.66 in  2016 to 4.73 in  2015,  and 4.72 for  2013/2014.  With  these

thresholds, no QTL were found for 2013 and 2016, while for 2014 and 2015, 6 potential QTL for

stripe rust resistance could be found on chromosomes 1B, 2A, 2B and 5B (Table 4). Close to these

QTL, ten markers with p-values below the threshold were found for 2014, and 13 markers for 2015,

but generally with lower signal intensity than for 2014. 

The first potential QTL “1-2014”, containing only one marker, only appeared with a relatively low

p-value of 5.2 in 2014. The allele  frequency was close to the threshold in 2014 and below the

thresholds in 2015 and 2016, therefore no score value is available. This fact and the positive signed

effect value indicate that the unfavourable minor allele has been displaced and the favourable major

allele has been fixed in the population.

Two markers were associated with the next potential QTL, “1-2015”, which were on the same chro-

mosomal location according to the genetic map, and almost indistinguishable by additive effects.

Even though they were present in all years except 2016, they only barely passed the threshold in

2015 with a score of 4.8. The positive signed effect value indicates that the major allele increases

stripe rust susceptibility, and the decreasing allele frequencies in the populations across years indic-

ate that this unfavourable allele has been selected against, until the allele was so rare that it did not

reach the MAF threshold in 2016. 

The clearest signal for the presence of a QTL was found for “2-2014/2-2015” on the short arm of

chromosome 2A, with four and seven markers being associated with this locus in 2014 and 2015 re-

spectively. All the associated markers have high positive or negative signed additive effects ranging

from 0.37 to 0.52 scoring points. Different markers were found to have the highest score for each

year, and some markers that were found to be significant in 2015 did not reach the threshold in

2014. Some small effect of the markers seemed to be present in 2013, but in 2016 their effects were

not visible any more. From 2014 to 2015 some selection towards the resistant alleles of these mark-

ers seemed to have happened, since the respective allele frequencies shifted accordingly. From 2015

to 2016 allele frequencies of these markers in the population did not change. Figure  9 shows de-

tailed score values along the chromosome for each year. Some markers with low score appear in
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between markers with high score, which indicates that the genetic map might be inaccurate, or that

there are two QTL in close proximity. Manhattan plots can be found in chapter  7.6.1 in the Ap-

pendix.

Another potential QTL “3-2014/3-2015” on the short arm of chromosome 2A is supported by two

markers, having some of the highest scores in 2014, and significant effect in 2015 as well. The al-

lele frequencies show some selection towards the favourable allele. According to the genetic map,

the markers are on the same position, but in the GWAS they show slightly differing results.

On chromosome 2B two positionally  separated markers  were found to have high scores in the

GWAS. One is QTL “4-2014/4-2015” with the associated marker 1030280, which is located very

close to the short telomere of chromosome 2B. The GWAS resulted in low p-values in 2014 and

2015, as well as a high effect size of 0.38 scoring points. The allele frequency was reduced by half

from 2014 to 2015, indicating selection towards the favourable allele. 

The other QTL “5-2014”, which also consisted of only one marker was located on the long arm of

chromosome 2B, close to the telomeric end. It was only found to have a significant effect in 2014

with one of the highest negative effects of -0.48. In 2015 the effect was a little smaller and the score

was a too small to pass the threshold, but it seemed to be active in 2015 as well. Some selection

might have been happening between 2015 and 2016, since the allele frequency doubled from a low

value of 0.07 to 0.12. 

The only QTL on chromosome 5B is “6-2014/5-2015”. In both years, this one marker had rather

low scores, but a relatively high positive effect, which would indicate at least a medium effect. The

allele frequency showed a slight selection against the unfavourable allele between 2014 and 2015.
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Figure 9: Chromosome 2A details of QTLs “2-2014/2-2015” on the left and “3-2014/3-2015” on the right. 

P-values versus marker name and marker location in cM shown in consecutive order. Due to strongly vary-
ing distances between markers the horizontal axis is not to scale for improved readability.



Table 4: GWAS results per year, grouped into potential QTL.
Peak markers per QTL are in bold letters, non-significant results are in italic letters. 
SC = -10log(p) score, R² = explained variance, β = marker effect. Pos. = Position [cM] on the (Chr.) chromosome

QTL
#

Chr
#

Pos
[cM]

Locus  name 2013 2014 2015 2016 Allele frequency (Maj.)

Sc R² β Sc R² β Sc R² β Sc R² β 2013 2014 2015 2016

1-2014 1B 201.49 1012285 0.5 0.004 0.12 5.2 0.014 0.35 - - 0.20 0.07 0.02 0.01

1-2015 1B 96.91
1107810 1.8 0.024 0.41 2.4 0.006 0.25 4.8 0.015 0.05 -

0.20 0.12 0.06 0.04
1114850 1.5 0.020 0.37 2.2 0.005 0.24 4.8 0.015 0.05 -

2-2014
2-2015

2A

8.26 1092023 1.5 0.020 0.37 2.0 0.005 0.22 4.8 0.015 0.49 - 0.20 0.12 0.06 0.04

8.29 1021197 1.7 0.022 0.39 3.9 0.010 0.30 6.8 0.56 0.02 - 0.20 0.12 0.06 0.04

8.60 1206128 1.8 0.024 0.25 17.2 0.052 0.50 7.0 0.022 0.37 0.04 0 0.01 0.41 0.24 0.13 0.12

8.76 3023902 2.1 0.029 -0.27 6.4 0.049 -0.52 6.8 0.021 -0.38 0.14 0 -0.02 0.59 0.76 0.87 0.88

9.11 3027663 2.4 0.034 -0.28 14.5 0.043 -0.48 7.3 0.023 -0.40 0.30 0 -0.04 0.61 0.78 0.88 0.89

9.47 1695267 1.6 0.020 0.38 1.5 0.003 0.17 5.4 0.016 0.49 - 0.20 0.12 0.07 0,04

13.34 3026123 1.8 0.024 -0.25 14.9 0.045 -0.50 7.8 0.025 -0.41 0.17 0 0.03 0.59 0.77 0.87 0.88

3-2014
3-2015

2A 65.86
3027084 2.3 0.033 -0.28 17.5 0.053 -0.52 6.2 0.019 -0.34 0.09 0 -0.02 0.58 0.75 0.86 0.88

4544569 1.4 0.018 0.21 13.9 0.042 0.45 5.1 0.31 0.02 0.01 0 0 0.42 0.23 0.13 0.12

4-2014
4-2015

2B 0.655 1030280 1.4 0.017 0.21 9.7 0.028 0.38 7.1 0.022 0.38 0.04 0 0 0.42 0.25 0.13 0.12

5-2014 2B 108.66 3024021 2.4 0.034 -0.54 8.3 0.024 -0.48 4.2 0.012 -0.39 0.70 0 -0.10 0.07 0.07 0.07 0.12

6-2014
5-2015

5B 50.75 7492401 0.1 0 0.03 4.9 0.013 0.31 5.5 0.017 0.51 1.24 0 0.18 0.17 0.10 0.06 0.06
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Figure 10: Cumulative effects of QTL for each year using QTL from 2014 or 2015.
Boxplots show the allele dosage effects of QTL, regression lines and effect sums. Bar-plots show: frequency distributions of allele doses in the re -
spective populations. In the top row are QTL found in 2014 and their effects in the phenotypic records from 2013 to 2016, in the bottom row are QTL
found in 2015 and their effects in years 2013 to 2016. 



In total, there is strong evidence for two QTL on chromosome 2A and one on chromosome 2B.

Four other QTL had either low effects or were not detected in multiple years. In the next step, the

cumulative effect of the detected QTL on the phenotypic value was investigated more closely. To

achieve this, each line was classified according to its total number of favourable allele dosage, with

one QTL carrying up to two allele doses. Figure 10 shows these effects for the QTL found in 2014

and 2015 respectively, and the according phenotypes of the lines within each year for 2013-2016.

Detailed figures for all years and all QTL, separately, can be found in the Appendix chapter 7.6.2.

It was apparent that the QTL found in 2014 had a major effect on the stripe rust scores for 2014 and

2015, where just a few allele doses significantly decreased the susceptibility, whereas more than

three doses did not lead to a major improvement (Figure  10). However, the effect of these QTL

seemed to be lower in 2015 than in 2014. On the other hand, the QTL found in 2015 appeared to be

even more effective in 2014 than in the year in which they were detected, while most of the QTL

were based on the same markers. The QTL detected in 2014 and 2015 did on the other hand not

have any positive or negative effect on the phenotypic values for the tested lines in 2013 and 2016.

Some dosage classes were not available (e.g. 0, 11, 12), since some alleles were not present homo-

zygously in any genotype, while the frequency of lines carrying multiple dosages of resistance con-

ferring alleles was generally high.

Using the QTL found in the GWAS, a cor-

relation  matrix  of  the  markers,  as  they

were  present  in  the  whole  population  of

wheat lines under investigation,  was pro-

duced (Figure 11). It revealed that a lot of

the QTL are strongly positively correlated

with each other, in the case of a group of

four  (consisting  of  “1-2015”,  “2-2015/2-

2014”,  “4-2014/4-2015”  and  “6-2014/5-

2015”)  with  70%  to  93%  correlation,

which  means  that  the  major  alleles  are

likely to be present together. This group is also strongly negatively correlated to QTL “3-2014/3-

2015” which means that the minor allele of one marker is likely to be present with the major allele

of the other four. Two QTL, namely “1-2014” and “5-2014” are neither correlated with each other,

nor with all the other QTL. 
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Figure 11: Pairwise correlations of QTL found in the GWAS
with  correlation  coefficients  in  the  top  right  and  colour
coded circles according to coefficients in the bottom left.



3.5 Locating QTL in the wheat reference genome

Using the BLASTN tool, the markers found to be significant in the GWAS were located in the

wheat reference genome. Some markers were found where they were expected to be according to

the genetic map provided by the genotyping service, others were not found at all or on a different

chromosome than expected (Table 5).

Table 5: GBS markers, QTL and best-fitting locations on the reference genome of wheat.

Locus
name

Clone ID

QTL #
TGAC refseq IWGSC refseq similarity 

commentChr Pos [cM] Chr Start pos. [B] End pos. [B]

marker sequence

1012285
1-2014 1B 201.49 6DL 473516100 473516044

TGCAGGAGCTGCGGCTGGAGCAGGAGCTGCGGGTGCTGGTGTGCGTGCACGGCGCCGAGATCGGAAGAG

1107810
1-2015 1B 96.913 7DL 488123747 488123689

TGCAGAGCAGAGCACGCAGACCATGGTGGCCGTCACGGTCGCCGTGACCACTGGCGCCGAGATCGGAAG

1114850
1-2015 1B 96.91

7AL
6BS

518146417
46351830

518146475
46351772

lower score on 1BL:
540991187 - 540991225 

TGCAGAGCAGAGCACGGAGACCATGGTGGCCGTCACGGTCGCCGTGACCGCTGGCGCCGAGATCGGAAG

1092023
2-2014/2-2015 2A 8.26 1DL 438585076 438585018

TGCAGAGTAGAGCACGGAGACCATGGTGGCCGTCACGGTCGTCGTGACCGCTGGCGCCGAGATCGGAAG

1021197
2-2014 / 2-2015 2A 8.30 2AS 18495218 18495150

TGCAGTTGTGTAAGGGTGCCCTCTGTGAGGTTCACCTGGAACACTGGATTGCACACGGCTAGGTTGCCG

1206128
2-2014 / 2-2015 2A 8.60 2AS 14215413 14215345 DArT marker 1206128

TGCAGGTACGTATGTGAATCAAATCAATCACCAGTGCTCTTTTTGTTCCACTCGGTACTATGCTTTCCC

3023902
2-2014 / 2-2015 2A 8.76 2AS 24002743 24002789

TGCAGGGAACCCAAGGACATGGTCGTCTCGTTGTGGCACTTCCTCCGAGATCGGAAGAGCGGTTCAGCA

3027663
2-2014 / 2-2015 2A 9.11 2AS 15459940 15459898

TGCAGCGATGATGGCGCCGAGTTCGTCCACGCCGTGGCGCCCGAGATCGGAAGAGCGGTTCAGCAGGAA

1695267
2-2014 / 2-2015 2A 9.47 2BS 30430752 30430684 2AS 19447986 - 19447918 

TGCAGGTCTATGATGCATTCTTCCGCCACCTTCGACTGCACCAATTCTTCCTTGACATCTACAAGCTCC

3026123
2-2014 / 2-2015 2A 13.34 2AS 5928501 5928454

TGCAGCCTCAGGAGCACGTCTAGCAGGTCCTCGTTGTCTTTAGTGCCGAGATCGGAAGAGCGGTTCAGC

3027084
3-2014 / 3-2015 2A 65.86 2AS 24111084 24111040

TGCAGCGGCATCAGCCAGAGGTCGTGCAGCCCGTGCATGGCACCGAGATCGGAAGAGCGGTTCAGCAGG

4544569
3-2014 / 3-2015 2A 65.86 - not found

TGCAGCGCCTTGAGGTTAACGGTTACGCCGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAT

1030280
4-2014 / 4-2015 2B 0.655 2BS 11076245 11076177 also on 2AS/2DS wPt-5960

TGCAGGATGTTGTCGGTGCTCCACAGGCTGCCGTCGTCGGCGTCGTCGCAGCCGCCGCAGTGGCTGAAA

3024021
5-2014 2B 108.66 2BL 763798474 763798511

TGCAGGCACAACTCTACATCAGCAAGAAGCCTCGGCCGAGATCGGAAGAGCGGTTCAGCAGGAATGCCG

7492401
6-2014 / 5-2015 5B 50.75 2DS 14744721 14744680

TGCAGGGTGCTGGTCCAGAAGCCGCCAGGCGGGTTCAGCCCGAGATCGGAAGAGCGGTTCAGCAGGAAT
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3.6 Genomic prediction within years

In addition to conducting a GWAS, genomic prediction for stripe rust resistance was tested in a

five-fold cross validation approach, using either the GBLUP or GBLUPA method with different

marker densities and training population sizes, resulting in a total of 640 different models combina-

tions.

On the left hand side in Figure 12(a), the effect of the training population size on the within-year

prediction ability can be observed. In general, the models using additional information from the pre-

viously calculated GWAS (GBLUPA) are performing better than the standard GBLUP models. The

best predictions were possible in 2014, while 2016 was second, and 2015 performed worst. In 2013

the number of individuals for training and prediction was rather low, due to the lack of field trial

data. Prediction abilities similar to the ones of 2014 and 2016 would be sufficient for effective se-

lection if transferable to across-year prediction. The effect of the training population size is consid-

erable in years with generally lower prediction abilities. While in 2015 an improvement might still

be possible by increasing the training population size, in 2014 and 2016 saturation is already notice-

able at 50% to 75% of the training data, and little improvement by using the full training popula-

tion. For 2013 saturation is not yet visible, which means more training data would be beneficial for

increasing prediction ability, but similar results as for 2014 or 2016 seem possible. In the GBLUPA

models, saturation seems to be reached with a lower number of training data, which means it would

be favourable for a breeding program if QTL were established and stable. 

On the right hand side in Figure 12(b) within-year prediction ability was calculated with different

sets of varying marker density (on a semi-logarithmic scale). The marker set was reduced by ran-

domly selecting a certain number of markers before filtering for MAF. Surprisingly, even a reduc-

tion of marker density from the full density of 7365 markers to 100 markers (~35 markers filtered)

allowed good prediction, especially in 2014 and 2016, i.e. years with generally high prediction abil-

ity. A generally lower prediction ability was on the other hand achieved in 2013 and 2015, where

the reduction of marker density also led to a stronger decline in prediction ability. Overall, a reduc-

tion of marker density from the full set of 7365 to 3000 did not seem to impair the prediction abil-

ity, while a reduction to 1000 markers showed a visible reduction. Using additional markers as

fixed effects in the GBLUPA models, a stronger reduction of marker density would be possible, as

the GBLUPA models generally performed better, leading to similar prediction ability as GBLUP

models, even with a lower number of markers.
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In Chapter 7.6.3 in the Appendix, detailed plots for all variations of marker density and the amount

of training data are documented.

3.7 Genomic prediction across years, for untested and tested years

When moving from prediction within years to prediction across years, one might expect prediction

ability to increase due to a larger number of individuals and a larger number of plots available for

model training, or decrease, due to differences in years and environmental effects, which make pre-

diction more difficult. The results obtained in this thesis, are shown in Figure 13. 

The highest prediction ability was achieved when predicting the year 2014, while there was some

variation of the prediction ability in terms of training years with all training year combinations con-

taining 2015 performing best. The prediction ability for 2015 was, in contrast, a lot lower, although

being highest when 2014 was used for training compared to other training years. Having prior in-

formation  about  the  year’s  performance  in  the  model  (“tested”  variant)  surprisingly  performed

worse than having no prior information when predicting 2013, while for 2014 and 2015, the models

with prior information performed better than predicting untested genotypes in untested years. Con-

trary to expectations, the number of training years did not improve prediction ability by a large ex-

tent, while in the within-year predictions the GBLUPA model generally performed better than the

GBLUP model, which could not be observed in across-year prediction. 
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Figure 12: Effects of training population size and marker density on within-year prediction ability per year
calculated from 160 simulations. 
Figure a on the left hand side shows the effect of training population size on the prediction ability in each
year. Figure b on the right hand side shows the effect of marker density size on the prediction ability in each
year. Boxplots in the graphs are jittered for better visibility and GBLUPA is a variant of the GBLUP model
that uses additional QTL as fixed effects.



The results of the ANOVA, using the prediction ability of across-year results to find significant ef-

fects influencing prediction ability, can be found in Table 6, factor levels and effects are found in

Table 7. While a lot of factors can be identified as having significant influence in prediction ability,

the ANOVA and effects table show that prediction year had the largest effect, with 2014 performing

best and 2013 performing worst. A similar picture is visible by inspecting the effect of the training

years, as including 2014 and to a lesser extent 2015, increased prediction ability. Whereas training

models with 2013 data did not improve prediction ability and including 2016 into the training popu-

lation  reduced the  prediction  ability  significantly.  The positive  effect  of  including  QTL in  the

within-year prediction model (factor GS model) is not visible in across-year predictions (Table  6

and Figure  13). As one would expect, the factor “Tested”, which indicates whether there is prior

knowledge of the year that is being predicted, has a significant positive effect on prediction ability.

However, having prior knowledge or not depends on the strategy of the breeding program and the

specific strategy in implementing GS. A similar effect size was found in the training data partition-

ing variants (factor “tested:variant”), which are mostly an indicator of the effect of training popula-

tion size which was not investigated separately in across-year prediction. 
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Figure 13: Across year prediction abilities of 224 simulations.
GS model variants on the vertical axis (GBLUP vs. GBLUPA, untested vs. tested prediction years and vari-
ants “1” and “2” of data partitioning) and years (grouped into validation, training and number of training
years) on the horizontal axis. Variants for untested years: 1 = lines present in training and validation years
eliminated from validation set (more lines in training set), 2 = eliminated duplicates from training set (more
lines in validation year set). Variants for tested years: 1 = lines present in training and validation years used
for estimation of year effect, 2 = additionally, 10% of the validation set lines used for year effect estimation
(more training data).



Table 6: Prediction models ANOVA table, predictions across years, response prediction ability.

Factor Df Sum Sq. Mean Sq. F value p value sig.

Tested 1 0.0559 0.0559 7.79 0.0057 **

GS model 1 0.0016 0.0016 0.22 0.6366 n.s

Prediction Year 3 1.987 0.6624 92.29 <2.2e-16 ***

Training 2013 1 0.0005 0.0005 0.072 0.7888 n.s.

Training 2014 1 0.2693 0.2693 37.52 4.33e-09 ***

Training 2015 1 0.1308 0.1308 18.22 2.96e-05 ***

Training 2016 1 0.0879 0.0879 12.25 0.00057 ***

Tested:variant 2 0.1353 0.0676 9.427 0.00012 ***

Residuals 212 1.522 0.0072

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 7: Prediction models ANOVA, table of effects.

Factor / levels Level 1 Level 2 Level 3 Level 4

Tested untested c -0.0158 tested c 0.0158

GS model GBLUPc -0.0027 GBLUPAc 0.0027

Prediction Year 2013a -0.073 2014a 0.162 2015a -0.048 2016a -0.041

Training 2013 nod 0.0011 yesb -0.0015

Training 2014 nod 0.0345 yesb -0.026

Training 2015 nod -0.018 yesb 0.024

Training 2016 nod 0.0145 yesb -0.193

Tested:variant untested:1a 0.01 tested:1a -0.03 untested:2a -0.01 tested:2a 0.03

Factor level description, see Figure 13 description. Number of observations: 56a, 96b, 112c, 128d

Testing for the number of years used for model training as well as for the effect of each training

year at the same time is not possible in the dataset at hand since the factors are collinear.
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3.8 Genomic prediction and preliminary yield trials

Only a limited number of year combinations can be tested in this case, since only forward predic-

tion might be regarded as being reasonable. Results were similar, or better, compared to the previ-

ous across-year prediction ability simulation. Additionally, prediction accuracy was listed in the res-

ults as well as the number of entries. Prediction ability results differed only slightly between using

all available data for training (Table 8) and using only the PYT entries for model training (Table 9).

Depending on the year only one half or one third of the entries were advanced from PYT to yield

trials, as can be seen in the number of entries in Table  9. In all cases, GBLUPA is performing

slightly worse than the basic GBLUP model. Phenotypic correlation is the Pearson correlation coef-

ficient of entries from training year with entries from the validation year, similar to the prediction

ability, which is the correlation of validation data and the predicted data. Prediction abilities are

generally in the range of phenotypic correlations.

Table 8: Results from preliminary yield trials simulations using all entries from training year for model train-
ing.

training 
year

validation 
year

n. training
entries

n valid. 
entries

phenotypic 
correlation

prediction ability prediction accuracy

GBLUP GBLUPA GBLUP GBLUPA

2014 2015 1407 346 0.46 0.34 0.29 0.40 0.34

2015 2016 1276 379 0.36 0.44 0.42 0.67 0.64

2014 2016 1407 62 0.38 0.21 0.20 0.33 0.31

Table 9: Results from preliminary yield trials simulations using only PYT entries for model training.

training 
year

validation 
year

n. PYT 
entries

n valid. 
entries

phenotypic 
correlation

prediction ability prediction accuracy

GBLUP GBLUPA GBLUP GBLUPA

2014 2015 1004 346 0.46 0.35 0.32 0.41 0.37

2015 2016 705 379 0.36 0.41 0.39 0.62 0.60

2014 2016 1004 62 0.38 0.28 0.19 0.43 0.29
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4 Discussion

Breeding and growing wheat varieties with resistance to stripe rust is part of a sustainable plant pro-

duction strategy to maintain the status of wheat as a profitable crop for conventional, organic and

low-input farming. Using genomic tools is promising to aid the breeders in achieving this goal. The

goal of this thesis was to find out if state of the art genomic prediction can be successfully used to

predict stripe rust resistance of breeding lines, without having to conduct extensive field testing, es-

pecially in years, when no natural disease pressure is present. For this purpose, stripe rust record-

ings from plant breeding trials in years with a relative high disease pressure and genetic marker data

was used. The phenotypic recordings have been preprocessed to assess the data quality and to ac-

commodate for field variability, and clustering was used to find groups of similarly behaving lines

across years. Further analysis aimed at using the genetic marker data to map QTL or possibly active

resistance genes, using a genome-wide association study. Finally, the phenotypic and the whole

genotypic data was used to simulate different situations in which stripe rust resistance was to be

predicted.

4.1 Phenotypic Analysis

Heritability is a measure of trial quality, and the results in this investigation revealed a large vari-

ation in heritabilities across all years. In 2013, heritabilities were generally low, i.e. after filtering

for low heritability trials only the disease nursery was left. Therefore the data from 2013 was not

particularly useful, since disease nursery results seemed to differ from naturally infected trials in the

subsequent years of 2014 to 2016. In the other years, a lot of high heritability trials were left after

filtering leading to relatively high heritabilities in the across trial analysis of each year. Only 2016

resulted in a medium heritability, probably due to high variability across trials. One explanation for

the low heritability of 2016 could be that due to different stripe rust races being present at different

sites, varying susceptibilities led to contrasting scorings across sites.

The two-stage phenotypic analysis resulted in adjusted means for stripe rust resistance per line and

per year, with the 2013 data being only partially comparable due to including only the disease nurs-

ery data. While, again, large variability was present in each year, the mean stripe rust susceptibility

increased slightly from one year to the next (2014 to 2016). This is, on the one hand, surprising,

since in a breeding population selection for resistance takes place. On the other hand it is to be ex-

pected, since new lines are added each year to determine their susceptibility. According to Oberfor-

ster (2018), who reported stripe rust incidence in the official variety trials in Austria, a stripe rust
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epidemic happened between 1998 and 2001, indicated by high incidence. Starting from 2002 up to

2012, stripe rust incidence was very low, with a further increase in incidence starting from 2013 and

lasting up to 2016, marking a new epidemic outbreak happening in the years analysed in this thesis.

This epidemic is attributable not only to favourable environmental conditions for stripe rust infec-

tion and proliferation, but also to a change in stripe rust pathotypes which occurred in the preceding

years. From 2011 onwards the new race “Warrior” (PstS7 grouped with PstS8 “Kranich”) was the

most prevalent in Europe, while from 2013 onwards, a pathotype called “Warrior -” (PstS10) was

starting to gain importance (GRRC, 2020; Hovmøller et al., 2016).

Not only newly emerging races are a problem for breeders, due to the breakdown of resistance

genes,  but also changing prevalence of stripe rust  races are.  The correlations  of scoring results

across years, were used as one way to find out if the analysed years were behaving similarly or dif-

ferently.  Medium correlations  were  found  between  2013/2016,  as  well  as  between  2015/2016.

2013/2015 and 2014/2015 showed medium low correlation, while 2013/2014 as well as 2014/2016

showed a very low correlation.  This indicates that the breeding lines behaved rather heterogen-

eously in the different years, which will also make stripe rust resistance prediction challenging. One

attempt to add some structure to the data was made by clustering the genotypes present in all years

into groups which behave similar across years. This resulted in a solution with 4 clusters, two of

which showed a crossover between 2014 and 2016. This means that previously (2014) resistant

varieties were more susceptible in 2016. The rest of the groups only showed differentiation into

levels of susceptibility, rather than changes across lines. At this stage, a variety of different reasons

could be pointed out for the low comparability across years. One reason could be inconsistently or

poorly scored trials. This was not only eliminated by using only trials with high variance in the

scoring and a minimum size of 60 plots, but also by looking at the heritability in the first stage of

the analysis as a data quality measure, and by only using trials with at least medium heritabilities.

Another source of error could be the two-stage design of the mixed model preprocessing step, since

the variance information of each line which is associated with the adjusted means was not carried

on to the second stage of the analysis. This could be done by using variances as weights in the

second stage. However, this was computationally too demanding and since it is not strictly neces-

sary (Möhring and Piepho, 2009), this was deemed not to be a major issue. It could also be possible

that different stripe rust races were present not only in different years, but also on different locations

within years.
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In an attempt to find out how well trials agree with one another within years, a correlation matrix

was produced, based on pairwise observations,  to visualise  differences  and similarities  of trials

across years and within years. Few trials showed statistically significant correlation in their scoring

results. Some highly correlated trials were found within years, but not all showed statistically signi-

ficant correlation. Across years, statistically significant correlations were even rarer. Missing correl-

ations across trials or low significance of correlations is sometimes caused by a low number of com-

mon genotypes. Especially yield trials do usually test a small number of genotypes and therefore

only two or three “standard” genotypes allow comparability. Low correlation coefficients are how-

ever also caused by differing scoring results, with some genotypes performing well in one trial and

not so well in other trials.

4.2 Genome-wide association study

During the genetic analysis markers were selected according to allele frequencies, excluding mark-

ers with an allele frequency below 5%. From the 7365 markers only one third, around 2500, were

left after this filtering. An explanation for such a large number of markers with low allele frequen-

cies could be that this is a breeding population which is heavily selected towards specific traits and

attributes. The genome-wide association study found some single markers and groups of markers to

be significant  in explaining stripe rust  susceptibility  in 2014 and 2015 respectively.  None were

found in 2013 and 2016. Stripe rust incidence in 2013 and 2016 was found to be quite high in gen-

eral. Possible reasons for missing QTL are the following:  

• For 2013, only the disease nursery data was available: Lines did not properly differentiate in

terms of stripe rust susceptibility due to mixed infections with other diseases. In the disease

nursery, other pathotypes of stripe rust may be present than are prevalent in natural infected

trials, which makes the data from the disease nursery only partly comparable with other tri-

als.

• Presence of different stripe rust races: Looking at the 2014 and 2015 QTL allele dosage ef-

fects on the stripe rust scores of 2016, one can clearly see that these QTL were not useful in

2016. Maybe some effect might be visible in 2013. This would explain why the QTL found

in 2014 and 2015 were not found in 2016, but would also suggest that races present in 2014

and 2015 were already part of the inoculum used in the disease nursery of 2013. According

to information from the Global Rust Research Center (GRRC, 2020), from 2013 onwards

“Warrior” (PstS7) was slowly replaced by “Warrior-” (PstS10). However, these races are
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quite similar in virulence, only differentiating on phenotype “Amb”. In lower prevalence

stripe rust race “Kranich” (PstS8) was present, mostly in northern Europe, which differs

from the above-mentioned in a few additional virulence phenotypes, but none of the putative

Yr genes considered in the next section.

In the process of locating the markers in the reference genome of wheat, QTLs “1-2014” and “1-

2015”, which were supposed to be on chromosome 1BL, were located with high confidence on 6D

and 7D. Due to this result, and having just barely passed the significance threshold in the GWAS,

they will not be discussed further. QTL “4-2014/4-2015” was supposed to be close to the telomeric

end of the short arm of chromosome 2B but was located to be on chromosome 2D. Despite having a

strong signal according to the p-value, possible candidates resistance genes for this QTL will not be

discussed further due to the uncertainty in its chromosomal location.

Another dislocated QTL is “6-2014/5-2014”, which was located on chromosome 2D, while it was

supposed to be on 5BS, is therefore also excluded from resistance gene discussion. However, even

if QTL cannot be located precisely, compared to resistance genes they show signs of selection. Al-

lele frequencies are shifted towards the resistant allele through the years, up to the point of being

fixed in the population (“1-2014”, 1% in 2016). Additionally, none of the above is present in the

susceptible homozygous state, except “1-2015” in 2014. Effect size indicates, compared to the other

QTL in this thesis, medium to high quantitative influence on stripe rust resistance.

The QTL “2-2014/2-2015” is located close to the telomeric end of chromosome 2AS. It was defined

by significant effects on up to 8 markers, all of which show comparably high effects, and allele fre-

quencies indicate selection towards the resistant allele. Resistance genes on chromosome 2A(S) are

Yr17, Yr56 (Qyr.sun-2A), Yr69 (YrCH86, linkage with Yr17 (Hou et al., 2016)) as well as tempor-

arily designated resistance gene YrR61 (McIntosh et al., 2017). Ledesma-Ramírez et al. (2019) also

found the marker 1206128, which is part of the QTL “2-2014/2-2015”, to be associated with stripe

rust resistance in a study with 419 pre-breeding lines developed at  the International  Maize and

Wheat Improvement Center (CIMMYT). They argue that Yr17 and YR56 are in close proximity of

this marker. According to this information, it is likely that QTL “2-2014/2-2015” is associated with

the linkage group also containing Yr17, Yr56 and Yr69, and not distinguishable with the resolution

of this map. In 2014, marker 1206128 showed up as the peak marker on this QTL, while in 2015,

marker 3026123 had the strongest signal. Due to this, 3026123 could be considered an additional

QTL being located 5cM from marker 1206128 and 4cM from the closest other marker of this QTL.

However, it was assigned to this QTL due to unclear separation by interspaced markers. According
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to literature (Sajid Ali et al., 2017; Hovmøller et al., 2016) recently prevalent races “Warrior” and

“Warrior-” are virulent on Yr17, and in fact epidemic occurrence of stripe rust in the late 1990s and

early 2000s in Europe was due to the breakdown of this resistance gene (Bayles et al., 2000). For

Yr56, Yr61 and YrR69 no data on virulence is available.

The other QTL “3-2014/3-2015” on chromosome 2AS is closer to the centromere. According to the

Catalogue of Gene Symbols for Wheat  (McIntosh et al., 2017), and previous considerations, only

temporarily designated resistance gene YrR61 is left as a candidate for this locus or the marker

3026123 of QTL “2-2014/2-2015”, which might be a separate QTL. No information on virulence of

stripe rust on this resistance gene is available. According to allele frequencies across the years, this

locus was heavily selected towards the resistant allele. While in 2013 the allele frequencies were

roughly equal on both alleles (50%), in the last year 2016, the frequency of the resistant allele is

88%, which means 78% of lines are homozygous for the resistant QTL allele and 1.5% are homo-

zygous susceptible, while the rest is heterozygous at this locus. The additive effect was found to be

comparably large at this locus in the GWAS.

Even though being on different chromosomes (2A, 2B and 5B), QTL “2-2014/2-2015”, QTL “4-

2014/4-2015” and  QTL “6-2014/5-2015”  are  highly  correlated  in  occurrence.  Surprisingly,  the

marker associated with QTL “6-2014/5-2015” which is supposed to be on chromosome 5B was loc-

ated on chromosome 2D using BLASTN, as well as with lower scores on chromosome 2B and 2AS.

Additionally,  the markers associated with QTL “1-2015” and “4-2014/4-2015”, were also found

with a lower score on chromosome 2AS. This would indicate that these three QTL, while sup-

posedly being dislocated from one another, are really one QTL which could not be detected due to

low quality of the marker map. Further investigation of the correlations between markers showed

that QTL “3-2014/3-2015”, which is also located on chromosome 2AS, is highly negatively correl-

ated (which means that the opposite allele is favourable) with the previously mentioned QTL. This

is surprising, since according to the genetic map and BLASTN results, these QTL should be on sep-

arate locations, with one being closer to the telomeric end, and one being close to the centromere.

This unexpected linkage can only be explained by the markers and QTL being together on a translo-

cated part of the chromosome, which has a low recombination rate and therefore high linkage dis-

equilibrium,  which  was  already  described  in  the  literature  (Bremenkamp-Barrett  et  al.,  2008;

Helguera et al., 2003; Xue et al., 2018). The 2AS-NS translocation supposedly confers resistance to

leaf rust, which is not associated with yield penalties but increased protein content and reduced mix-

ing strength (Dyck and Lukow, 1988), as well as powdery mildew resistance  (Bariana and McIn-
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tosh, 1993). A large study, using large-scale phenotypic and genomic data from CIMMYT, revealed

that this translocation carries not only resistance to all three rusts (Stem Rust, stripe rust, Leaf  Rust)

but is also positively influencing grain yield and stability  (Juliana  et al., 2019). Further QTL “1-

2014” and “5-2014” are not correlated to each other or any other QTL.

Another important QTL in this thesis is “5-2014”, which is located on chromosome 2BL. Associ-

ated with this chromosomal region are a number of stripe rust resistance genes and resistance gene

candidates:  Yr5 and  Yr7 (Zhang et al. (2009) reported Yr5, Yr7 and YrSp to be allelic), Yr43,

Yr44,  Yr53,  Yr72,  and  temporarily  designated  resistance  genes  YrV23,  YrS2199,  YrSte,  YrSp

(McIntosh et al., 2017). According to Ali et al. (2017) and Hovmøller et al. (2016), “Warrior” and

“Warrior-” races are virulent for Yr7 and YrSp from the above-mentioned candidates, but not for

Yr5. For the other proposed resistance genes no virulence information is available for Europe, while

for example in China, races virulent on Yr43 and Yr44 have been recorded (Wan, Muleta,  et al.,

2017). For Yr5 no virulent race has been recorded so far, neither in Europe nor China. Muleta et al.

(2017) located the group containing Yr43, Yr44 and Yr53 close to the telomeric end of chromo-

some 2BL and  since  the  marker  was  found  to  be  close  to  the  telomeric  end of  2B by  using

BLASTN, it is more likely that this QTL is associated with one of these resistance genes, rather

than the group containing Yr5/Yr7, or in fact is a novel QTL. Xu et al. (2013) used deletion lines

and SSR markers to map the interval between Yr5, Yr44, Yr53 and Yr43. According to this map-

ping, Yr53 is between the physical locations of Xwmc441 and Xwmc149 SSR markers, and accord-

ing to the physical location of these markers on the reference genome, the marker found for QTL

“5-2014” (Marker 3024021) is in the same interval. This means that it is highly likely that QTL “5-

2014” found in this thesis, is in fact Yr53 introduced from Ethiopian durum wheat, which was first

described by Xu et al. (2013). This QTL is quite interesting for breeding, since it was found to have

a high additive affect, while not even being present in the homozygous resistant state. In 2013, the

allele frequency of the resistant allele was merely 7% in the breeding population, rising to only 12%

in 2016 with no homozygous lines being present. This makes it highly promising for future breed-

ing activities, but it could also mean that it is in strong linkage with a non-wanted locus. However,

even if it was not found by the GWAS in 2016, it still shows some effect on stripe rust susceptibility

in the comparative box-plot in Appendix 7.6.2. 

This leaves us with two QTL, 5-2014 and 2-2014/2-2015, one being still available for selection, and

the other locus being mostly fixed in the population. Since it was not the main goal of this thesis to

find marker-trait associations, the GWAS was done with the year-wise means, so only QTL per
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year could be detected. A more sophisticated approach would have been to look for QTL in each

trial of each year. The results from such an approach would not be robust since line recordings in

trial are mostly not replicated, but it would certainly have resulted in a larger number and maybe

some interesting QTL. However, the aim of this thesis was to employ genomic prediction based on

the whole genome rather than single markers, which will be discussed in the next section.

4.3 Genomic prediction

The main goal of this thesis was the prediction of stripe rust susceptibility in wheat breeding lines

by using genetic marker data as a way of reducing the need for field testing, especially in non-viru-

lent years. In the previous sections of this chapter, the phenotypic analysis and QTL analysis was

outlined, in this section an attempt to answer the main research question will be made. Is it possible

to use genomic prediction models to reliably predict stripe rust susceptibility not only within but

also across years? 

Prediction of performance within years is only partly useful. It allows a breeder to reduce the num-

ber of entries tested in a year, since other individual’s performance can be inferred by markers, but

it is unknown if the model is useful in future years. However, it is very much suited to simulate and

optimize model parameters. The model of choice in this thesis was GBLUP, since it is computation-

ally efficient and the most widely used in plant breeding. Different marker densities, training popu-

lation sizes and a model with additional QTL from the GWAS as fixed effects were simulated. In

the models that were aimed at predicting performance across years, variations included: the number

of years for training, all combinations of training and validation years available, and an approach

which included some data from the validation year into the training data to improve the model per-

formance.

In most genomic prediction studies the main focus is on (grain) yield and quality traits (e.g. protein

content) and less on disease traits, which of course influence yield and quality but are not necessar-

ily correlated. In the following section, results from this thesis will be compared to results from lit-

erature, but for the specific topic of predicting stripe rust in wheat only a few studies were found to

be comparable. 

• Ornella et al. (2012) compared different prediction models for stem rust and stripe rust in bi-

parental  wheat  populations,  not applying a  GBLUP model  but a  ridge regression BLUP

model (rrBLUP) which usually performs equally well. 1400 DArT markers were used to
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predict performance across and within populations in two locations. They found a lower pre-

dictability of stripe rust than stem rust.

• Daetwyler et al. (2014) investigated stem, stripe and leaf rust in four years on a collection of

Australian wheat landraces. Marker data was extracted using a 9k SNP marker chip. Predic-

tion models were GBLUP, GBLUP with fixed QTL effects (GBLUPA) and BayesR.

• Rutkoski et al. (2014) worked with a large CIMMYT dataset from 6 years and 12 environ-

ments to predict stem rust resistance in wheat, comparing different models, applying  GB-

LUP and GBLUPA models. 

• Juliana et al. (2017) used data from 4 years of replicated CIMMYT trials and GBS markers

to assess the prediction accuracy for leaf, stem and stripe rust. Different model types were

compared, applying GBLUP and GBLUPA models. 

• Muleta et al. (2017) investigated a germplasm collection of spring wheat in two seasons for

stripe rust resistance and performed genomic prediction. Different marker densities of a 9k

SNP chip and training population sizes were simulated to find optimal values for these para-

meters.

• Juliana et al. (2019) conducted a large genomic study (44624 lines, 78606 GBS markers, 4

years,  evaluated  in  America,  Africa  and South-East  Asia),  looking at  35 traits  in  bread

wheat, one of which was stripe rust. GWAS was performed and Genomic prediction models

with different marker densities and prediction within as well as across panels were evalu-

ated. The 2AS-NS translocation described earlier in our study was also found in this thesis

as effective against rust diseases. 

• Miedaner  et al. (2019) did a study about genomic prediction of stem rust and stripe rust.

12000 GBS markers and scoring data from trials in 2 years were used to compare three dif-

ferent models (marker-assisted selection, rrBLUP, rrBLUP with fixed QTL effects). Three

QTL for stripe rust were found and prediction ability of stripe rust was found to be similar to

prediction ability of stem rust.

Comparing the  absolute values of model performance between studies is challenging for several

reasons. Some studies report prediction accuracy while others report prediction ability, and the as-

sociated heritabilities to link these parameters are not always given. A further problem is that differ-
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ent marker densities, training populations sizes and other design factors can influence these values.

However, minimum and maximum values for optimal design parameters will be provided in the fol-

lowing, as an attempt to compare the results. In this thesis, the maximum within-year prediction

abilities per year ranged from 0.3 to 0.7. In prediction across-year, the maximum (optimal) predic-

tion abilities per year were found to be around 0.3 in 2013 up to 0.65 for 2014, with some combina-

tions being almost zero, and the mean value being 0.26. It was found that prediction ability depends

not only but mostly on the validation year, which means that the model fits better for some years

than for others. Ornella  et al. (2012) reported prediction ability within populations between 0.15

and 0.6, while across populations the predictive ability decreased to a value of 0.05 to 0.16. Com-

pared to this result, our study achieved somewhat better results. Daetwyler et al (2014) reported pre-

diction accuracy and heritability, prediction ability was calculated to compare the results with our

study. They found a prediction ability of 0.31 for GBLUP and a prediction ability of 0.33 for GB-

LUPA. Compared to the results in this thesis, this is slightly better than the mean prediction ability.

Miedaner et al. (2019) found across-year and trial prediction ability to be 0.5 for rrBLUP and 0.55

for rrBLUP with fixed QTL effects. The following results were reported as prediction accuracy, the

values for prediction accuracy in our study ranged, for within-year prediction from 0.55 to 0.75, and

for across-year prediction from 0.32 to 0.68. Juliana et al. (2017) reported prediction accuracies for

across trials, within populations, and also highly dependent on the year used for model validation,

ranging from 0.39 to 0.73 for GBLUP and 0.41 to 0.78 for GBLUPA, which are slightly higher than

in our study. Muleta et al. (2017) reported peak within trial prediction accuracy to be between 0.6

and 0.65. In another extensive study, Juliana  et al. (2019) found prediction accuracies for within

panel predictions to be 0.52 and 0.55 and across panel predictions between 0.23 and 0.37. All these

results show a few things and while some consensus about the methods to report results is estab-

lished, details about populations and models make it hard to directly compare the results. However,

the results found in our study are well within the results reported in other studies. 

In within-year prediction, including QTL as fixed effects (GBLUPA) was found to increase pre-

dictive ability and always outperformed the simpler model without fixed effects. Especially in situ-

ations with a low number of markers and a small training population size, as opposed to a large

number of markers and a large training population, the difference in predictive ability was negli-

gible. In across-year prediction, this effect disappeared almost immediately and prediction abilities

can be substantially lower or higher, but are mostly equal. Some studies find that including QTL as

fixed  effects  does  consistently  increase  predictability  (Daetwyler  et  al.,  2014;  Miedaner  et  al.,

2019), while Rutkoski et al. (2014) also found that GBLUPA does sometimes, but not always out-
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perform GBLUP. Juliana et al. (2017) found GBLUPA to be equal or better than GBLUP for stripe

rust, however for leaf rust, GBLUPA performed worse than GBLUP. In this thesis, the GBLUPA

models might be performing worse due to overfitting caused by autocorrelation in the QTL used as

fixed effects, which was outlined in the discussion of QTL. 

In this thesis, the effect of marker density on prediction ability was investigated in within-year pre-

diction simulations. While a large improvement in prediction ability was possible by increasing the

number of markers from 100 to 1000, further increasing the number of markers to the  full set of

7365 only had a marginal benefit. In all years, except in 2015, only including known QTL (GB-

LUPA) and 100 randomly selected markers yields prediction abilities close to the best  performing

models with the full marker set, which is probably due to the QTL explaining a large part of the

variation.  Muleta  et al. (2017) compared genomic prediction models, using a variety of marker

densities from 1 SNP per 1.3cM (~6000 markers total) to 1 SNP per 14.8cM, and found saturation

at 1 SNP per 3.2cM, which is ~1850 markers total, noting that this is higher than in other GP studies

on different traits and species. The simulation results from this thesis also show similar results with

saturation being reached around 1000 markers. More simulations with a higher resolution of marker

densities would be needed to really find an optimum value, but based on these results, it could be

advised that obtaining 1000 markers for genomic prediction of stripe rust is feasible within years.

However, simulations of marker densities across years were not performed and might lead to differ-

ent conclusions.

Using a five-fold CV approach, it was possible to simulate four different training population sizes,

in within-year prediction. The results from this simulation are highly dependent on the year of simu-

lation. In some years (2013, 2015), no saturation of prediction ability can be observed using the

available data of ~250 and ~1000 lines, in the years 2014 and 2016, however, saturation is reached

around 500 training individuals. Again, these results can be compared to the study done by Muleta

et al. (2017), who found saturation only at the largest training population size of 959 lines in within-

year prediction, or did not find signs of saturation, suggesting that a larger population size would be

needed to optimize prediction ability. 

In the genomic prediction simulations within years, the main factor influencing the variation in pre-

diction ability is the year of training and prediction. When simulating prediction across years, the

effect of training and prediction year might be distinguished. However, most combinations of train-

ing and prediction years yielded low prediction accuracies, only a few combinations showed results

that indicate useful models. Most combinations using 2015 data to train the model and predicting
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2014 performed reasonably well, with prediction accuracy in the range of 0.37 to 0.63 (prediction

accuracy 0.39 to 0.67). Even though showing up as significant effect in the ANOVA, including data

from more than one training year did not consistently improve model performance, neither did in-

cluding some data from the validation year into the prediction model. The breakdown of model per-

formance when moving to prediction across years can also be found in other studies, Ornella et al.

(2012) reported prediction ability up to 0.56 within environments and prediction ability of 0.05 to

0.15 across two environments (years) for rrBLUP, similarly Juliana et al.  (2019) report prediction

accuracy of 0.52 and 0.59 within panels, and 0.23 and 0.37 across panels using GBLUP. 

Simulating the situation of a breeder, using PYT showed similar or even better results than using all

the available data. Using more data for model training and validation, does not necessarily lead to to

higher prediction ability. Using less validation data narrows the variability in the data, and therefore

increases prediction ability, but not necessarily the performance of the model. Using less training

data, and therefore less genetic variability, might improve the accuracy of the GRM, since entries

might be more related. 

All of these factors lead to the conclusion that variability across and within years is a major problem

in predicting stripe rust. Investigation of the correlations of stripe rust across all trials showed that

scoring results differ between pairs of trials. If prediction models are therefore fed with data that is

conflicting, it is not surprising that the predictions obtained from such models are not performing

very well when validated. The conclusion of this is, that this thesis should be repeated, with a very

rigorous preselection of trials. Only trials with high stripe rust infestation, showing clear separation

of lines, and correlating well with each other should be used to train the prediction models. If trials

show high stripe rust infections but do not correlate well with other trials, different stripe rust races

might be present, these should not be included in the prediction model. 

Due to the race-specific nature of stripe rust, there is no “true” breeding value for stripe rust, the

breeding value would be different for each race. If one wanted to breed only for quantitative resist-

ance, the selection process would be impossible, since e.g. varieties with a low quantitative resist-

ance, could be highly resistant due to one ASR resistance gene. Breeding for real quantitative resist-

ance would therefore only be possible in a set of lines with absolutely no major resistance genes

present, and such a set is hard to impossible to create in the real world. 
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5 Summary, Outlook, Conclusion

In this thesis, a large number of field trials across multiple years were used to dissect the genetic ar-

chitecture of stripe rust in wheat and develop genetic prediction models using a breeding popula-

tion. Solid evidence for two QTL was found, while one of them might be part of a large transloca-

tion from Aegilops ventricosa and being almost fixed in the population, the other one is highly in-

teresting due to its large effect and still being available for selection. Genomic prediction results

were promising when validated within years, but failed to perform across years. 

Advanced methods of GWAS are focused on using variable selection prior to GWAS to increase its

statistical power, and to potentially find more QTL (Mieth et al., 2016). Further improvements in

prediction accuracy of genomic prediction might also be possible by using more sophisticated  ap-

proaches. Incorporating genotype by environment interaction (GxE) into prediction models can po-

tentially increase prediction performance by 10 – 40% (Crossa et al., 2017). The models used in this

thesis do only capture additive genetic effects, while Random Forrest for GWAS or GP could also

capture epistatic effects  (Brieuc  et al., 2018). Dominance effects are not relevant for inbreeding

crops like wheat, at least when aiming to develop line varieties. Some argue, that machine learning

methods (like support vector classification) are useful in predicting ordinal scored traits like stripe

rust (González-Camacho et al., 2018).

The number of methods proposed for genomic prediction is almost unfathomable, but the best pre-

diction model can only be as good as the training data that is fed into it and the genetic variability

available in the breeding population. For a disease like stripe rust, which is highly destructive in the

field and appears in new races, due to spontaneous recombination a non-race-specific resistance is

highly desirable. Race-specific resistance genes will still be important in the short term, in years of

high disease pressure. However, slow rusting varieties with quantitative resistance should be built

up in the long term, since these varieties do not only reduce disease severity but also the selection

pressure on the pathogen. 

The poor performance of genomic prediction across years might be improved, by doing a more rig-

orous preselection of trials before further analysis, using only trials for model training that show

strong differentiation and correlate well with other trials.
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7 Appendix

7.1 Results from marker data

7.1.1 Allele frequencies

Histogram of allele frequencies found in the genotyped population, markers with allele frequencies out-

side the area between the red lines were removed.

i

Figure 14: Allele frequency distribution in the population



7.1.2 Genetic Map

Figure 15: A representation of the genetic map
filtered for 5% MAF, showing the density of markers.

ii



7.1.3 Heterozygosity of lines

7.2 Trial information

7.2.1 Trials removed

Table 10: Trials removed due to low number of plots (<55)

Year and location mean 
score

var.
score

max.
score

plots lines reps rows cols nscore

2013 DOE 103 1 0 1 70 64 1.1 70 1 1

2013 TR-BAB 97 1 0 1 25 25 1 25 1 1

2013 TR-KON 99 4 1 5 3 2 1.5 3 2 1

2013 TR-PIN 100 1 0 1 25 25 1 25 1 1

2014 RBG 121 1.2 0.21 5 25 25 1 25 1 2

2016 TR-ALT 43 1.2 0.37 4 30 22 1.4 30 2 1

Table 11: Trials removed due to low variance (<0.21)

Year and location mean 
score

var.
score

max.
score

plots lines reps rows cols nscore

2013 TR-BAB 91 1 0 1 200 174 1.1 50 4 1

2013 TR-KAR 111 1 0 1 100 25 4 25 4 1

2016 AT-AUM_Jetzing 11 1.17 0.16 7 585 315 1.9 105 8 2

2016 AT-AUM_Pöding 10 1.48 0.18 5 90 44 2 45 2 2

iii

Figure 16: Heterozygosity distribution histogram among lines



2016 AT-PRO 4 1.17 0.2 4 528 436 1.2 132 4 1

2016 RO-L-n 31 1.04 0.02 2 268 223 1.2 67 4 2

2016 RO-LIV 30 1.12 0.05 2 268 223 1.2 67 4 2

Table 12: Trials removed due to problems in mixed modeling

Year and location mean 
score

var.
score

max.
score

plots lines reps rows cols nscore

2014 TR-Bab 141 2.37 2.58 7 200 182 1.1 50 4 1

2014 TR-Bab 142 2.99 5.53 9 100 25 4 25 4 1

2014 TR-Pin 143 1.29 0.89 6 200 182 1.1 50 4 1

2014 TR-Pin 144 1.72 2.04 8 100 25 4 25 4 1

2015 DE-BIE 16 1.25 0.78 7 200 185 1.1 25 8 2

2015 DE-BIE-n 17 1.33 0.9 6 199 184 1.1 25 8 2

2015 MAR 12 1.25 0.25 4 200 185 1.1 100 2 1

2015 MAR-n 13 1.32 0.27 3 200 185 1.1 100 2 1

2016 FR-AUC 22 3.21 3.15 8 230 222 1 65 4 1

2014 HU-MV2 147 3.45 3.45 8 99 33 3 35 3 1

Table 13: Trials removed due to low heritability results from mixed modeling 

Year and location mean 
score

var.
score

max.
score

plots lines reps rows cols nscore

2013 TR-KAI 98 1.07 0.49 8 100 25 4 25 4 1

2013 TR-KON 92 1.32 0.74 5 200 174 1.1 50 4 1

2014 RO-DRA 131 1.92 2.31 6 60 29 2.1 30 2 1

2014 RS-SOM 135 3.38 4.54 8 260 209 1.2 50 6 1

2015 LEO 5 1.14 0.62 8 610 276 2.2 102 6 1

2015 RS-SOM 29 1.51 0.65 5 300 239 1.3 65 6 1

2016 AT-PRO 1 1.32 0.38 8 456 406 1.1 76 6 1

2016 CA-RID 17 1.77 0.39 4 260 222 1.2 13 20 1
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7.2.2 Trials used

Table 14: Overview trials usable for mixed modeling

Year and location mean 
score

var.
score

max.
score

plots lines reps rows cols nscore

2013 RBG-AU NURS 2.84 0.99 8 3122 1439 2.2 240 14 2

2013 RBG-AU NUR2 3.79 2.45 8 2823 1360 2.1 240 14 1

2014 AUM_Ob 120 1.93 1.27 9 865 623 1.4 173 5 3

2014 AUM_Sch 119 1.68 1.62 8 540 260 2.1 90 6 2

2014 DOE 118 2.13 2.39 8 618 346 1.8 125 5 1

2014 HU-MV1 146 3.26 2.54 7 99 33 3 35 3 1

2014 LEO 116 1.73 1.46 9 1040 774 1.3 175 6 2

2014 LEO 148 1.77 1 7 200 182 1.1 50 4 2

2014 LEO 149 1.51 0.82 7 60 29 2.1 30 2 2

2014 MLK 124 1.51 0.75 7 220 146 1.5 40 8 2

2014 PRkf 112 2.95 3.42 9 1224 1086 1.1 102 12 3

2014 PRks 113 2.32 2.36 9 1284 1146 1.1 107 12 3

2014 PRO 114 3.68 3.56 9 260 209 1.2 65 4 3

2014 PRO 115 2.75 2.54 9 838 193 4.3 210 4 3

2014 RBG-AU NURS 1.21 0.25 8 2312 1385 1.7 200 13 2

2014 RO-FUN 134 2.08 3.24 8 200 182 1.1 25 8 2

2014 RO-LIV 132 2.25 3.02 8 60 29 2.1 20 3 2

2014 RO-MOD 133 1.37 1.5 8 146 63 2.3 45 4 1

2014 SK-HAN 129 3.33 7.05 9 60 29 2.1 30 2 2

2014 WEI 117 2.39 2.76 9 838 467 1.8 140 6 2.1

2015 AUM-Hardfeld 9 2.57 2.4 9 410 173 2.4 82 5 3

2015 AUM-Schindlmühl 8 2.02 1.79 9 868 339 2.6 177 5 2.4

2015 DOE 7 2.05 3.68 8 402 134 3 67 6 1

2015 PR-Ge 3 1.91 1.33 7 468 404 1.2 117 4 2

2015 PR-Ge 53 1.65 0.82 8 468 404 1.2 117 4 2

2015 PRkf 1 3.05 3.86 9 1248 1059 1.2 104 12 2

2015 PRks 2 2.17 1.9 9 1248 977 1.3 104 12 2

2015 PRO 4 3.23 1.82 9 1668 680 2.5 139 12 2

2015 RBG-AU NURS 1.42 0.79 7 2470 1528 1.6 90 30 1

2015 RS-S-n 29 1.69 0.78 5 260 220 1.2 65 4 1

2015 SK-HAN 31 2.42 3.37 8 60 29 2.1 15 4 1

2016 AT-PRO 2 3.99 3.93 8 122 78 1.6 42 4 1

2016 AT-PRO 3 3.09 2.92 9 1870 816 2.3 172 16 1.6

v



2016 AT-PROkf 5 4.56 4.5 9 1248 1042 1.2 104 12 2

2016 AT-PROks 6 4.32 4.79 9 1248 1009 1.2 104 12 1

2016 RBG-AU NURS 2.03 0.75 8 3261 2238 1.5 80 44 2

2016 SK-HAN 35 1.6 0.41 4 60 29 2.1 15 4 2

7.2.3 trial heritabilities

Table 15: Trial heritabilities

trials above threshold (>0.55) below threshold (< 0.55) 

Trial h² Trial h² Trial h²

2013 RBG-AU NUR2 0.72 2015 RS-S-n 29 0.68 2013 TR-KAI 98 0

2013 RBG-AU NURS 0.7 2015 PRks 2 0.74 2013 TR-KON 92 0.13

2014 LEO 148 0.67 2015 PR-Ge 53 0.75 2014 RO-DRA 131 0

2014 LEO 116 0.78 2015 SK-HAN 31 0.85 2014 RS-SOM 135 0.31

2014 DOE 118 0.83 2015 AUM-Schindlmühl 8 0.92 2014 RBG-AU NURS 0.49

2014 AUM_Ob 120 0.80 2015 AUM-Hardfeld 9 0.91 2015 RS-SOM 29 0.22

2014 AUM_Sch 119 0.91 2015 PRkf 1 0.84 2015 LEO 5 0.43

2014 RO-FUN 134 0.85 2015 PRO 4 0.93 2015 RBG-AU NURS 0.53

2014 MLK 124 0.90 2015 PR-Ge 3 0.87 2016 AT-PRO 1 0

2014 WEI 117 0.92 2015 DOE 7 0.97 2016 CA-RID 17 0.31

2014 PRO 115 0.97 2016 AT-PROkf 5 0.63

2014 RO-LIV 132 0.96 2016 AT-PROks 6 0.65

2014 SK-HAN 129 0.96 2016 RBG-AU NURS 0.71

2014 PRO 114 0.96 2016 AT-PRO 3 0.84

2014 PRks 113 0.95 2016 AT-PRO 2 0.97

2014 LEO 149 0.99 2016 SK-HAN 35 0.99

2014 PRkf 112 0.99
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7.3 Adjusted means

vii

Figure 17: YR scorings and adjusted means at different stages of mixed modeling



7.4 Correlations across years

ix

Figure 19: Pairwise correlations of genotypes  per year
Figure 18: Correlations of genotypes 
present in all years of 2014, 2015 and 2016, not 2013



7.5 Clustering results

x

Fig-
ure
20:
De-

tailed clustering results



7.6 GWAS results

7.6.1 Manhattan plots per year

Figure 21: Manhattan plot of GWAS results 2013

Figure 22: Manhattan plot of GWAS results 2014

xiii



xv

Figure 24: Manhattan plot of GWAS results 2016Figure 23: Manhattan plot of GWAS results 2015



7.6.2 QTL effects and additivity

Figure 25: QTL beta effects vs. phenotypic values
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7.6.3 GS in years detailed results

xvii

Figure 26: GS within years, variations in marker density, and training population size
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