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Abstract 

Mid-infrared (MIR) spectroscopy is the method of choice for the standard milk recording system, to 

determine milk components including fat, protein, lactose and urea. Since milk composition is related 

to health and metabolic status of a cow, MIR spectra could be potentially used for disease detection. In 

dairy production, mastitis is one of the most prevalent diseases. The main aim of this study was to 

develop a calibration equation to predict mastitis events from routinely recorded MIR spectra data. 

Further objectives were to evaluate the use of test day somatic cell score (SCS) as covariate and to 

evaluate different calibration settings, such as sample size and time windows (days between diagnosis 

and test days). The data for this study are from the Austrian milk recording system and its health 

monitoring system (GMON). Test day data including MIR spectra data was merged with diagnosis data 

of Fleckvieh, Brown Swiss and Holstein Friesian cows. As prediction variables, MIR absorbance data 

after taking first derivatives and selection of wavenumbers, corrected for days in milk, were used. The 

data set contained roughly 600,000 records and was split into calibration and validation sets by farm. 

Calibration sets were made to be balanced (as many healthy as mastitis cases), while the validation set 

was kept large and realistic. Prediction was done with Partial Least Squares Discriminant Analysis, key 

indicators of model fit were sensitivity and specificity. Results were extracted for association between 

spectra and diagnosis with different time windows in validation. The comparison of different sets of 

predictor variables (MIR, SCS, MIR + SCS) showed an advantage in prediction for MIR + SCS. For this 

prediction model, specificity was 0.79 and sensitivity was 0.68 in time window -7 to +7 days (calibration 

and validation). Corresponding values for MIR were 0.71 and 0.61, for SCS they were 0.81 and 0.62. In 

general, prediction of mastitis performed better with a shorter distance between test day and mastitis 

event. For time windows of -21 to +21 days, sensitivities ranged from 0.50 to 0.57 and specificities 

remained unchanged (0.71 to 0.85). The comparison of different calibration time windows gave better 

results for the larger time windows. The evaluation of sample sizes in calibration showed slight 

advantages for the biggest set. Though, there was no regular up trend in sensitivity with an increasing 

sample size. Additional research to further improve prediction equation, and studies on heritability and 

genetic correlations among clinical mastitis, SCS and MIR predicted mastitis are planned.  

 

Key words: MIR spectroscopy, dairy cow, milk, mastitis, somatic cell count, PLS-DA 
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Zusammenfassung 

Die Mittlere-Infrarot (MIR) Spektroskopie ist die Methode der Wahl in der routinemäßigen 

Milchleistungsprüfung zur Bestimmung von Milchbestandteilen wie Fett, Protein, Laktose und 

Harnstoff. Da die Milchzusammensetzung mit der Gesundheit und dem Stoffwechsel einer Kuh 

zusammenhängt, besteht die Möglichkeit, MIR-Spektren zur Erkennung gewisser Krankheiten zu 

verwenden. Auf Milchviehbetrieben ist Mastitis eine der häufigsten Krankheiten bzw. auch 

Abgangsursachen. Aus diesem Grund ist die Thematik wirtschaftlich und nicht zuletzt hinsichtlich 

Tierwohl höchst relevant. Das Hauptziel dieser Studie war die Entwicklung einer Kalibrierungsgleichung 

zur Vorhersage von Mastitisereignissen aus den bei der Milchleistungsprüfung routinemäßig 

aufgezeichneten MIR-Spektren. Weitere Ziele waren die Evaluierung der Verwendung der Zellzahl 

(SCS) als Covariable und die Evaluierung verschiedener Kalibrierungseinstellungen, wie 

Stichprobenumfang und Zeitfenster (Tage zwischen Diagnose und Testtag). Die Daten für diese Studie 

stammen aus der österreichischen Milchleistungsprüfung und dem Gesundheitsmonitoring (GMON). 

Zunächst wurden die Testtagsdaten aus Milchleistungsprüfung mit den dazugehörigen MIR-Spektren 

und den Diagnosedaten aus dem GMON verknüpft. In der Studie waren Kühe der Rassen Fleckvieh, 

Braunvieh und Holstein inkludiert. Als MIR-Vorhersagevariablen wurden nur selektierte Bereiche des 

Spektrums verwendet, welche die meiste Information beinhalten. Außerdem wurden die ersten 

Ableitungen herangezogen und nicht die orignalen Spektrenwerte. Der komplette Datensatz enthielt 

ungefähr 600.000 Einträge und wurde nach Betriebsnummer zufällig in einen Kalibrierungs- und einen 

Validierungsdatensatz geteilt. Der Kalibrierungsdatensatz wurde danach hinsichtlich Mastitisfällen und 

gesunder Tiere balanciert (1:1), der Validierungsdatensatz wurde hingegen unbalanciert und realistisch 

belassen. Die Vorhersage erfolgte mit der Methode Partial Least Squares Discriminant Analysis (PLS-

DA). Indikatoren für die Genauigkeit des Vorhersagemodells waren Sensitivität und Spezifizität. Die 

Ergebnisse aus der Validierung beziehen sich auf das gesamte Zeitfenster von -21 bis +21 Tagen und 

wurden zusätzlich für kürzere Zeitfenser extrahiert. Beim Vergleich der verschiedenen 

Vorhersagevariablen (MIR, SCS, MIR + SCS), konnte die Kombiniation von MIR-Spektren und Zellzahl 

(MIR + SCS) die besten Ergebnisse erzielen. Bei diesem Modell betrug die Spezifität 0,79 und die 

Sensitivität 0,68 beim Zeitfenster von -7 bis +7 Tagen (in Kalibrierung und Validierung). Entsprechende 

Werte für MIR alleine waren 0,71 und 0,61 und für SCS alleine 0,81 und 0,62. Im Allgemeinen 

funktioniert die Vorhersage bzw. Erkennung einer Mastitis besser, wenn die Abstände zwischen 

Testtag und Mastitis-Ereignis kürzer sind. Beim größten Zeitfenster in der Validierung (-21 bis +21 Tage) 

lagen die Sensitiväten in einem Bereich von 0,50 bis 0,57 und die Spezifitäten zwischen 0,71 bis 0,85. 

Der Vergleich verschiedener Kalibrierungszeitfenster ergab bessere Ergebnisse für die größeren 

Zeitfenster. Die Analysen bezüglich unterschiedlicher Stichprobenumfänge in der Kalibrierung zeigten 

leichte Vorteile für den größten Datensatz, wobei kein regelmäßiger Aufwärtstrend in der Sensititiät 
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mit zunehmendem Stichprobenumfang erkennbar war. Weitere Studien zur Verbesserung der 

Vorhersagegleichung, sowie zur Heritabilität und den genetischen Korrelationen zwischen klinischer 

Mastitis, SCS und MIR-vorhergesagter Mastitis sind geplant. 

 

Schlüsselwörter: MIR Spektroskopie, Milckkuh, Milch, Mastitis, Zellzahl, PLS-DA 
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1 Introduction 

1.1 General background 

This study is part of the project D4dairy, the overall goal of which is to provide digital support to dairy 

management by a data-driven, networked information system, exploiting the potential of advanced 

technologies and data analysis to further improve animal health, nutrition, animal welfare and product 

quality (D4Dairy Consortium, 2019). A subarea of D4dairy is disease detection using Mid-infrared (MIR) 

spectral data from milk. MIR spectroscopy is the method of choice for standard milk recording systems 

to measure milk contents including fat, protein, lactose and urea. Besides, MIR spectra data could be 

used to predict other milk components (De Marchi et al., 2014). Because it is well known that the 

composition of milk is related to the health and metabolic status of the cow, its changes can be 

potential indicators (e. g. Hamann & Krömker, 1997). In recent years, MIR spectra data have been used 

to predict different variables of interest, as mentioned in section 1.3.1. The focus of this study was on 

detection of mastitis, which is one of the most prevalent diseases in dairy production (section 1.3.2). 

MIR spectra analysis could be an extra tool, additionally to somatic cell count (SCC) and veterinarian 

diagnosis, for mastitis prediction, to further improve genetic evaluation of the trait ‘Udder health’, or 

to provide farmers with a management tool.  

1.2 Aim of the thesis 

The main aim of this study was to develop a calibration equation to predict mastitis events from 

routinely recorded MIR spectra data. A preliminary objective was to test different pre-treatments of 

spectra data. Further, we aimed to evaluate the effect of different calibration settings and the use of 

somatic cell score (SCS) as covariate on the sensitivity and specificity of the prediction model. 
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1.3 Literature review 

1.3.1 Milk mid-infrared (MIR) spectroscopy 

The spectroscopic technique is based on the interaction between matter and electromagnetic waves. 

There are different regions of electromagnetic radiation, which are distinguished according to the 

wavelengths: x- ray region (0.5-10 nm), UV region (10-350 nm), visible region (35-800 nm), near-

infrared region (800-2,500 nm), mid-infrared region (2,500-25,000 nm), microwave region (100 μm-1 

cm), and radio frequency region (1 cm-1 m) (De Marchi et al., 2014). 

Mid-infrared (MIR) spectroscopy is the method of choice during routine milk recording, for quality 

control and determination of standard milk contents including fat, protein, lactose and urea. It is a fast 

and non-destructive method to quantify milk chemical properties (Grelet et al., 2015). The used 

instrument is called spectrometer, it records the quantity of radiation absorbed in transmittance at 

specific wavelengths in mid-infrared region. Trough calibration models on representative samples, the 

spectral data are then transformed into estimates of concentration or other physico-chemical 

parameters (IDF, 2012). Figure 1 shows a typical MIR absorption curve of a milk sample. 

 

 

Figure 1 Typical milk MIR absorption curve (Source: OptiMIR) 
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As MIR spectroscopy is a rapid and cost-effective tool for recording phenotypes on a large scale, it has 

been used to predict various milk traits and other variables of interest. Visentin et al. (2015) 

investigated the prediction of milk technical traits, like rennet coagulation time, curd-firming time and 

curd firmness, which are important factors for cheese production. Further, there are studies on fatty 

acid composition of milk (Soyeurt et al., 2007; 2011), methane emissions (Vanlierde et al., 2015), feed 

intake (Wallén et al., 2018), energy intake and efficiency (McParland et al., 2014) or ration composition 

(Klaffenböck et al., 2017). Since the last decade, fitness and health traits gain more and more 

importance in breeding programs, not only in Austria, which was a pioneer in that field, also in many 

other countries in Europe and across the world. Hence, there are several studies on the prediction 

health traits and diseases with MIR spectroscopy, e.g. subclinical ketosis (De Roos et el., 2007) and 

clinical ketosis (Belay et al., 2017), mastitis (Soyeurt et al., 2012; Dale & Werner, 2017) and lameness 

(Mineur et al., 2017). 

In animal breeding, not least for genomic selection, accurate and efficient tools to collect phenotypes 

play a key role (Houle et al., 2010; Pryce et al., 2010). MIR spectroscopy has been evaluated as an 

appropriate tool for collecting data at the population level for phenotypic and genetic purposes, and 

it opens many opportunities and a wide research field (De Marchi et al., 2014). 

 

1.3.2 Mastitis in dairy cattle 

Bovine mastitis is defined as ‘inflammation of the mammary gland’ and can have an infectious or non- 

infectious aetiology. The causes of the disease include pathogens as bacteria, mycoplasmas, yeasts and 

algae (Blowey & Edmondson, 2000; Bradley, 2002). Mastitis can either occur in a clinical or subclinical 

form. The symptoms for a clinical mastitis are a visible inflamed quarter changes in the appearance of 

the milk, which are the cow’s inflammatory response to the infection. The subclinical form does not 

show external changes that indicate the occurrence of mastitis, although the infection is present in the 

udder (Blowey & Edmondson, 2010). According to their epidemiology, mastitis pathogens can be 

classified into two types, contagious or environmental (Blowey & Edmondson, 2000; Cervinkova et al., 

2013). Contagious pathogens have their primary reservoir in the infected mammary gland and are 

spread from cow to cow. The main reservoir of environmental pathogens is a contaminated 

environment, as bedding, soil or manure. Consequently, environmental pathogens are strongly 

influenced by management practices and hygiene (Garcia, 2004). Typical contagious pathogens are: 

Streptococcus agalactiae, Staphylococcus aureus and Mycoplasma bovis. The most common 

environmental pathogens are Echerichia coli, Klebsiella spp, Enterobacter and environmental 

streptococci (Garcia, 2004; Cervinkova et al., 2013).  
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Somatic cells are primarily milk-secreting epithelial cells that have been shed from the lining of the 

udder gland, and white blood cells (leukocytes) that occurred in the mammary gland in response to 

injury or infection (Dairyman’s Digest, 2009). Thus, Somatic cells are related to mastitis, especially to 

contagious infections (Blowey & Edmondson, 2000). Further, SCC is a useful predictor for infections of 

mammary gland and can be used to monitor the level or occurrence of mastitis in herds or individual 

cows (Sharma et al., 2011). Figure 2 displays the average somatic cell count (SCC) of cows with acute 

and chronic mastitis. 

 

 

Figure 2 Average somatic cell count of cows with acute and chronic mastitis (slide produced and provided by 
Astrid Köck) 

 
Mastitis (clinical or subclinical) is one of the most prevalent diseases in dairy production and causes 

economic harm for farmers and not least, affects animal welfare (Halasa et al., 2007; Sharma et al., 

2011; Heikkilä et al., 2011; Guimarães et al., 2017). The economic losses are due to direct and indirect 

costs, which include: Milk production losses, costs for treatment and drugs, discarded milk, veterinary 

service, reduced product quality, extra labour, secondary diseases and higher culling and replacement 

rates (Blowey & Edmondson, 2000; Halasa et al., 2007).  

Furthermore, mastitis is also one of the most frequent reasons for animal losses in dairy farms. Figure 

3 shows the causes of losses in Austrian dairy cattle in 2018, for the breeds Fleckvieh, Brown Swiss and 
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Holstein Frisian. Accounting between 12 to 14 %, udder diseases are the third most common cause of 

losses, after fertility (22-27 %) and sale for breeding (15-16 %). 

 

 

Figure 3 Causes of losses in Austrian dairy cattle in 2018, in %, all lactations (modified after Egger-Danner et al., 
2018) 
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2 Material and Methods 

2.1 Data 

The data for this study was from the Austrian milk recording system and its health monitoring system 

(GMON), for the period of July 2014 to December 2018 and was provided by Zuchtdata GmbH. The 

test day milk data consisted of information on breed, herd, region, calving date, parity, days in milk, 

milk yield, somatic cell count (SCC), fat, protein and MIR spectra data for the respective test days. The 

GMON data included recorded mastitis diagnosis for acute and chronic mastitis, which were not 

distinguished for the prediction model. All data (test day and GMON) used in this study were derived 

from validated farms with complete disease diagnosis data recording. Test day records of Fleckvieh, 

Brown Swiss and Holstein Friesian cows between 3 and 305 days of lactation were included. Table 1 

shows the number of records of the complete data set. 

Table 1 Number of records of the complete data set 

Variables Records 

Farms 7,914 

Animals (Cows) 69,028 

 Fleckvieh 52,287 

 Brown Swiss 7,260 

 Holstein Friesian 

 

9,481 

Test day records 635,588 

 healthy 627,593 

 mastitis 7,995 

  acute 5,644 

  chronic 2,351 

 

MIR spectra consist of 1,060 data points, which are the absorbance values of infrared light at different 

wavenumbers (925.66 cm-1 to 5,010.16 cm-1). MIR spectra from different instruments and different 

periods were standardized into a common basis (Grelet et al., 2015). According to Grelet et al. (2016), 

it is recommended to use selected parts of the spectra for the prediction model: 968.1 to 1,577.5 cm-

1, 1,731.8 to 1,762.6 cm-1, 1,781.9 to 1,808.9 cm-1, and 2,831.0 to 2,966.0 cm-1. These spectra areas 

(212 data points) contain most of the information, whilst other areas are less informative, because of 

strong water absorbance, or not repeatable among MIR instruments. Moreover, in some studies 

(Soyeurst et al., 2011 and 2012; Grelet et al., 2016; Lainé et al., 2017; Mineur et al., 2017; Ho et al., 

2019) first or second derivative of spectra values (Savitzky-Golay method) were taken for the 

predictions, while in other studies (Visentin et al., 2015; McDermott et al., 2016; Visentin et al., 2016) 
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untreated spectra values were used, since no improvement was found with applying mathematical 

pre-treatments. Therefore, a preliminary aim of this thesis was to examine pre-treatments of the 

spectra data, before starting the main model tests. 

 

2.1.1 Preliminary tests on pre-treatment of spectra data 

Merging of the data sets, primary data preparation and pre-treatments of spectra data were done in 

SAS (SAS Institute Inc., 2017). Data preparation for the preliminary tests was done independently from 

the one of the final model tests and data sets differed in some settings. Mastitis diagnoses were linked 

with ‘adjacent’ milk recording test days. Test day records in the range of 20 days before and 15 days 

after diagnosis were considered as mastitis cases. For the healthy group, only records of cows without 

mastitis diagnosis 20 days before and 15 days after test day were used.  

In a next step, six individual datasets with different pre-treatments on spectra data were prepared 

(Table 2). For the data set original untreated spectra data was used. The first derivative of each spectra 

value was calculated by applying the formula dx(n)=x(n)-x(n+4), and second derivative by using the 

formula d2x(n)=dx(n)-dx(n+4). Then, of each dataset either the full spectra with 1,060 wavelengths 

were used, or only 212 selected spectra data points, according to Grelet et al. (2016). 

Table 2 Datasets for preliminary test on pre-treatment of spectra data 

Dataset Pre-treatment of spectra data 

original full untreated full spectra (1,060 wavelengths) 

original select untreated selected spectra (212 wavelengths) 

1st der. full 1st derivative of full spectra (1,060 wavelengths) 

1st der. select 1st derivative of selected spectra (212 wavelengths) 

2nd der. full 2nd derivative of full spectra (1,060 wavelengths) 

2nd der. select 2nd derivative of selected spectra (212 wavelengths) 

 

Each of these six datasets was further randomly split by farm into half a calibration and a validation 

set. The calibration set, additionally, got balanced in terms of mastitis and healthy cases (1:1) by using 

random down sampling, which resulted in a final sample size of 2,098 (1,049 mastitis and 1,049 healthy 

cases). The validation set was kept unbalanced, but total sample size randomly reduced to roughly 

20,000 records, which resulted in a mastitis proportion of mastitis of around 5 %. 
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A prediction model was run with all datasets, by using the methodology, explained in section 2.2. The 

accuracy of the different models was then compared by applying a t-test (p-value of 0.05). 

 

2.1.2 Data preparation for final model tests 

Merging of the data sets and primary data preparation were again done in SAS (SAS Institute Inc., 

2017). Mastitis diagnoses were linked with ‘adjacent’ milk recording test days. Test day records in the 

range of 21 days before and 21 days after diagnosis were considered as mastitis cases. For the healthy 

group, only spectra from cows without mastitis diagnosis 21 days before and 30 days after test day 

were used.  

Based on the results of the preliminary tests on data pre-treatment (section 2.1.1), selected parts of 

the spectra, according to Grelet et al., (2016), were used for the prediction model. Before selecting the 

specific areas, first derivative (dx(n)=x(n)-x(n+4)) of full spectra was taken. Even though, the 

preliminary tests on data treatment did not show clear advantages, we decided to take first derivative 

of the spectra, pursuant to other relevant studies (Soyeurt et al., 2011; Soyeurt et al., 2012; Grelet et 

al., 2016; Lainé et al., 2017; Dale & Werner, 2017; Ho et al., 2019). 

Further data preparation was done in Rstudio (R Development Core Team, 2008). The 212 selected 

spectra variables were corrected for days in milk (DIM), according to Vanlierde et al. (2015): Each first 

derivative value of the selected spectra was multiplied by a constant (i.e., 1), a linear (√3 * x) and a 

quadratic [√5/4 * (3x² - 1)] modified Legendre polynomial (Gengler et al., 1999), where x = −1 + 2[(DIM 

− 3)/(305 − 3)]. This modification resulted in 636 (212 constant, 212 linear, 212 quadratic) spectra 

variables, which were finally used for the prediction model. The somatic cell count (SCS) was 

logarithmically transformed to the somatic cell score (SCS), by applying the formula: SCS = log2 (SCC 

/100,000) + 3 (Fürst et al., 2019). Further, all values were centered and scaled. 

The 635,588 records of the complete data set where randomly split by farm into half a calibration 

(train) and half a validation (test) data set (except for last model test, where splitting was done in other 

ratios also). In this way, cows in the validation set were from different herds than those in the 

calibration set. In final calibration data sets, the numbers of healthy and mastitis cases were always 

balanced (1:1) by using random down sampling. Further, different settings were applied on calibration 

sets for testing various factors. 
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2.1.3 Calibration and validation settings for final model tests 

To evaluate various effects in the model, different settings, as explained in detail below, were applied 

on the calibration subsets of each model test. The settings for validation data set remained the same 

for all model tests; mastitis cases with maximum -21 to +21 days between diagnosis and test day were 

considered. In order to have a realistic validation data set, no further settings or restrictions were 

applied. There were only changes in sample size of validation data for the last model test, which was 

about to examine the effect of different sample sizes of calibration data set (Table 7). The results for 

validation set (Table 5, 6 and 7) are displayed for the overall time window of -21 to +21 days and 

additionally split into different shorter time windows. This was to demonstrate the difference in 

accuracy of prediction, when test day is before or after mastitis event, and how accuracy of prediction 

changes with the distance of days between mastitis event and test day record. 

Effect of SCC restrictions in calibration set 

The first objective was to test the effect of SCC restrictions for mastitis diagnosis in calibration set: 

Animals were considered as healthy, if Diagnosis = 0 and SCC <= 100,000; animals were considered to 

have mastitis, if Diagnosis = 1 and SCC >=400,000. Observations that did not fulfil these conditions 

were deleted. Another subset was created without SCC restrictions. This comparison was done for all 

model tests. 

Comparison of different predictor variables 

Second objective was to compare different predictor variables in the model: MIR (636 DIM corrected 

spectral data points), SCS alone and MIR plus SCS as covariate. The prediction was either done with 

636 MIR variables, with SCS as a single predictor variable or with 636 MIR variables including SCS as 

covariate. For all calibration subsets, the maximum days between diagnosis and test day were set to -

7 to +7 days, according to Soyeurt et al. (2012). 

Effect of different time windows in calibration set 

Further, we aimed to test the effect of variant time windows in calibration set. Therefore, 3 calibration 

subsets, which differed only in the number of days between diagnosis and test day date, were created: 

-7 to + 7 days, -14 to +14 days and -21 to +21 days. As predictor variables only MIR spectra (636 DIM 

corrected spectral data points) were used in the model. 
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Effect of different sample sizes for calibration set 

Last objective was to examine whether sample size of calibration set influenced accuracy of the 

prediction model. Divergent to all other model tests, splitting into calibration and validation data set 

was not only done 50 : 50 %, there were also other ratios. This was necessary to get bigger sample 

sizes for calibration data set; which in turn reduced the size of validation set. 

The proportions of calibration and validation set from complete data set with 635,588 records were as 

follows:  

 small 1: 25 % train : 75 % test (enlarged sample size in validation) 

 small 2: 25 % train : 50 % test (sample size in validation equal to previous model tests)  

 medium: 50 % train : 50 % test (sample size in validation equal to previous model tests) 

 big: 75 % train : 25 % test (reduced sample size of validation) 

The different calibration subsets were again balanced in terms of mastitis and healthy cases by using 

random down sampling. Maximum days between diagnosis and test day were set to -7 to +7 days for 

calibration set. MIR spectra (636 DIM corrected spectral data points) were used as predictor variables. 
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2.2 Methodology 

Prediction models were done with Partial Least Squares Discriminant Analysis (PLS-DA), using the R 

package ‘caret’ (Kuhn, 2008). The indicators of model fit were sensitivity (mastitis cases correctly 

assigned as mastitis), specificity (healthy cases correctly assigned as healthy) and balanced accuracy 

(mean of sensitivity and specificity).  

Preliminary tests on data treatment were run with 100 replications per setting and the number of 

latent variables was set to 100, based on initial analysis with PLS in SAS. For the comparison of different 

data treatments, the results were evaluated in pairs with a t-test 

For the final model tests in RStudio, the number of latent variables was reduced to 50, which is more 

adequate for the PLS-DA procedure in R. When just SCS was used as predictor variable, the number of 

latent variables was set to one. We chose to run 20 replications per setting for the final model tests. 

Given a standard deviation of 0.017 for replicates, that allowed to detect significance at a p-value of 

0.05 for differences of around 0.015. Sample size calculator 

(https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html) was used for finding the number of replications. 
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3 Results 

3.1 Results of preliminary tests on different pre-treatments of spectra data 

The results of the preliminary test on pre-treatments on spectra data are displayed in Table 3, which 

include the indicators of model fit (sensitivity and specificity) for each model and the p-values of the 

pairwise t-test. The sensitivities were in a range of 0.467 and 0.477, thus, differences were very small 

and mostly not significant. The differences among specificities were bigger and mostly significant, the 

range was between 0.729 and 0.770. 

Table 3 Effect of different pre-treatments on spectra data; t-tests applied to compare sensitivities and specificities 
of individual data sets (significance at p-value <= 0.05) 

Pre-treatment 
Sensitivity Specificity 

mean p-value mean p-value 

original full 0,474656 
0,066380 

0,742131 
< 2,2e-16 

original select 0,469967 0,770187 

1st der. full 0,477209 
0,001132 

0,729491 
< 2,2e-16 

1st der. select 0,467815 0,763123 

2nd der. full 0,470323 
0,195800 

0,731391 
< 2,2e-16 

2nd der. select 0,466948 0,765561 

original select 0,469967 
0,459500 

0,770187 
0,002393 

1st der. select 0,467815 0,763123 

original select 0,469967 
0,251500 

0,770187 
0,023980 

2nd der. select 0,466948 0,765561 

1st der. select 0,467815 
0,760500 

0,763123 
0,288200 

2nd der. select 0,466948 0,765561 

original select 0,469967 
0,006343 

0,770187 
< 2,2e-16 

1st der. full 0,477209 0,729491 

original full = untreated full spectra (1,060 wavelengths) 
original select = untreated selected spectra (212 wavelengths) 
1st der. full = 1st derivative of full spectra (1,060 wavelengths) 
1st der. select = 1st derivative selected spectra (212 wavelengths) 
2nd der. full = 2nd derivative of full spectra (1,060 wavelengths) 
1st der. select =2nd derivative of selected spectra (212 wavelengths) 

 

In a first step, the full 1,060 data points of untreated, first derivative and second derivative spectra 

data were compared with the selected spectra parts of the respective data set. These comparisons 

showed significantly higher specificities for the selected spectra of all types (original, first derivative, 
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second derivative). Sensitivities were generally higher for the full spectra, but only significantly higher 

for the first derivative. 

In a second step, all variants of the selected spectra (original select, first der. select, second der. select) 

were compared with each other. Original select and first derivative select were almost identical for 

sensitivity, but specificity was significantly higher for original select. The difference in sensitivity 

between original select and second derivate select, was also very small and not significant, but 

specificity was again significantly higher for original select. For the comparison of first derivative and 

second derivative no significant differences were found, sensitivity and specificity of both were almost 

equal. 

Finally, the data set original select, which was best in terms of specificity among all variants, was 

compared with first derivative full, which was best in terms of sensitivity among all variants. This 

comparison showed that specificity was significantly higher for original select, but sensitivity 

significantly higher for first derivative full, though the difference in specificity was bigger. 

In general, differences among specificities were stronger, compared with sensitivities, where only 

slight differences were found. 
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3.2 Results of final model tests 

3.2.1 Comparison of different predictor variables  

For comparison of different predictor variables (MIR, SCS, MIR + SCS), the number of records was on 

average 2,340 (1,170 mastitis, 1,170 healthy) for the calibration sets without SCC limits, and 1,086 (543 

mastitis, 543 healthy) for the calibration sets with SCC limits. Thus, applying SCC limits reduced the size 

of the calibration set roughly to half. The validation set counted roughly 315,000 records with a 

proportion of around 1 % mastitis cases for overall time window (-21 to +21 days) and around 0.2 % 

for smaller time windows. 

The following section presents the results of the first model test, which was to examine the effect of 

different predictor variables (MIR, SCS, MIR + SCS).  

Table 4 displays the results of PLS-DA procedure within calibration set. For the different predictor 

variables (MIR, SCS, MIR + SCS), sensitivity, specificity and balanced accuracy were higher in the 

calibration set with SCC limits. For SCS and MIR + SCS all indicators were 1, for MIR alone sensitivity 

was 0.84 and specificity 0.89. In the calibration set without SCC limits, sensitivities and specificities 

were lower for all types of models.  

Table 4 Results in calibration (train) for different predictor variables (MIR, SCS or MIR + SCS); with and without 
SCC limits in train 

Predictor 
variable 

no SCC limits in train SCC limits in train 

sens. spec. bal.acc. sens. spec. bal.acc. 

MIR 0.680 0.770 0.725 0.843 0.886 0.864 

SCS 0.617 0.849 0.733 1.000 1.000 1.000 

MIR + SCS 0.735 0.838 0.786 1.000 1.000 1.000 

sens. = sensitivity; spec. = specificity; bal.acc. = balanced accuracy 

 

Table 5 shows the results of the model testing for the validation set. All results were for the full 

validation set (-21 to +21 days). Splitting them into different shorter time windows changed the 

number of mastitis cases, but not the number of healthy cases. Therefore, specificities of different 

time windows did not differ from specificity of the overall window. Differences in balanced accuracy 

resulted from changing sensitivity. 

Applying SCC limits in calibration did not lead to a higher balanced accuracy in validation, compared to 

prediction equations derived from calibration data sets without SCC limits (Table 4). For all models, 

specificity was higher with SCC limits, but sensitivity was lower. The differences in sensitivity (all time 

windows) and specificity were significant for MIR and MIR + SCS. Without SCC limits, sensitivity and 
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specificity were more balanced and balanced accuracy was slightly higher for all variants, except, SCS 

(-21 to +21 days), SCS (-21 to -15 days), SCS (-7 to +7 days) and MIR + SCS (-14 to -8 days).  

Table 5 The effect of different predictor variables (MIR, SCS or MIR + SCS) and SCC limits in calibration (train), 
results in validation (test) extracted for different time windows (days) 

predictor 
variables 

no SCC limits in train SCC limits in train time 
windows     

test sens. spec. bal.acc. sens. spec. bal.acc. 

MIR 0.534 0.708 0.621 0.457 0.755 0.606 
-21 to +21 
(overall) 

SCS 0.501 0.849 0.675 0.490 0.862 0.676 

MIR + SCS 0.574 0.791 0.682 0.473 0.878 0.675 

MIR 0.458 0.708 0.583 0.368 0.755 0.561 

-21 to -15 SCS 0.401 0.849 0.625 0.394 0.862 0.628 

MIR + SCS 0.474 0.791 0.633 0.373 0.878 0.626 

MIR 0.484 0.708 0.596 0.412 0.755 0.584 

-14 to -8 SCS 0.513 0.849 0.681 0.499 0.862 0.681 

MIR + SCS 0.555 0.791 0.673 0.477 0.878 0.678 

MIR 0.605 0.708 0.657 0.540 0.755 0.647 

-7 to +7 SCS 0.615 0.849 0.732 0.604 0.862 0.733 

MIR + SCS 0.678 0.791 0.735 0.586 0.878 0.732 

MIR 0.560 0.708 0.634 0.478 0.755 0.617 

+8 to +14 SCS 0.466 0.849 0.658 0.447 0.862 0.655 

MIR + SCS 0.558 0.791 0.675 0.441 0.878 0.659 

MIR 0.479 0.708 0.594 0.394 0.755 0.574 

+15 to +21 SCS 0.374 0.849 0.612 0.361 0.862 0.612 

MIR + SCS 0.475 0.791 0.633 0.347 0.878 0.612 

sens. = sensitivity; spec. = specificity; bal.acc. = balanced accuracy 

 

Comparing the different predictor variables in the models without SCC limits in calibration gave the 

following results: Overall sensitivity was significantly higher for MIR, but overall specificity was 

significantly higher for SCS. For the individual time windows (except -14 to -8 days), the highest 

balanced accuracies, were found for MIR + SCS. 

For the comparison of predictor variables with SCC limits in calibration, specificity was highest for MIR 

+ SCS (0.88) and lowest for MIR alone (0.75) for the -21 to +21 days time window. For the overall 

validation set, the highest sensitivity (0.49) was also reached with SCS alone. With regard to the 

individual time windows, sensitivity of SCS was highest (significantly) for -7 to +7 days, -14 to -8 days 
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and -21 to -15 days, but for +15 to +21 days and +8 to +14 days it was highest (significantly) for MIR 

alone. 

3.2.2 Effect of different time windows in calibration set 

For examining the effect of different time windows (-7 to +7 days, -14 to +14 days, -21 to +21 days) in 

calibration set, the average number of records in the different calibration subsets was: 

 -7 to +7 days: 2,346 (1,173 mastitis, 1,173 healthy) without SCC limits 

 1,086 (543 mastitis, 543 healthy) with SCC limits 

 -14 to +14 days: 4,320 (2,310 mastitis, 2,310 healthy) without SCC limits 

 1,814 (907 mastitis, 907 healthy) with SCC limits 

 -21 to +21 days: 6,652 (3,326 mastitis, 3,326 healthy) without SCC limits 

 2,278 (1,139 mastitis, 1,139 healthy) with SCC limits 

These numbers show that not just applying SCC limits but also smaller time windows, leads to reduced 

sample sizes in calibration set. The validation data set consisted of roughly 315,000 records the 

proportion of mastitis cases was around 1 % for overall time window (-21 to +21 days) and around 0.2 

% for shorter validation time windows. 

Table 6 displays the results of model testing for the validation set. According to previous model tests, 

all results were for the full validation set (maximum -21 to +21 days between mastitis event and test 

day record) and additionally split into different shorter time windows. As already mentioned in section 

3.2.1., this only lead to different sensitivities while specificities remained the same for all shorter time 

windows. 

Equivalent to the results of Table 5, SCC limits in calibration lead to a higher imbalance between 

sensitivities and specificities. For the overall validation set (-21 to +21 days) and all shorter time 

windows, sensitivity was significantly higher without SCC limits and specificity was significantly higher 

with SCC limits. Yet, balanced accuracy was always higher (mostly significantly) for calibration subsets 

without SCC limits. 

The model tests without SCC limits showed that sensitivity increases with a larger time window in 

calibration and specificity decreases. For the overall time window in validation, the highest sensitivity 

(0.59) was reached by the calibration subset with -21 to +21 days. For the next shorter calibration time 

window (-14 to +14 days) sensitivity was almost equal (0.58) but dropped significantly to 0.53 for the 

shortest calibration time window (-7 to +7 days). Specificity was highest (0.71) for the calibration 

subset with -7 to +7 days and lowest (0.68) for the calibration subset with -21 to +21 days. Regarding 

the results extracted for shorter time windows in validation, a similar trend of an increasing sensitivity 



  26 

26 

for larger calibration time windows, was found. The differences were mostly significant. Balanced 

accuracies increased with a larger calibration time window and were always highest for the -21 to +21 

days calibration set. 

Table 6 The effect of different time windows (days) and SCC limits in train, results extracted for different time 
windows (days) in test (validation) 

time 
windows    

train 

no SCC limits in train SCC limits in train time 
windows    

test sens. spec. bal.acc. sens. spec. bal.acc. 

-7 to +7 0.534 0.708 0.621 0.457 0.755 0.606 
-21 to +21 
(overall) 

-14 to +14 0.576 0.682 0.629 0.475 0.754 0.614 

-21 to +21 0.588 0.677 0.632 0.480 0.757 0.618 

-7 to +7 0.458 0.708 0.583 0.368 0.755 0.561 

-21 to -15 -14 to +14 0.489 0.682 0.585 0.375 0.754 0.564 

-21 to +21 0.506 0.677 0.591 0.392 0.757 0.575 

-7 to +7 0.484 0.708 0.596 0.412 0.755 0.584 

-14 to -8 -14 to +14 0.523 0.682 0.602 0.423 0.754 0.588 

-21 to +21 0.536 0.677 0.606 0.420 0.757 0.588 

-7 to +7 0.605 0.708 0.657 0.540 0.755 0.647 

-7 to +7 -14 to +14 0.638 0.682 0.660 0.560 0.754 0.657 

-21 to +21 0.645 0.677 0.661 0.558 0.757 0.658 

-7 to +7 0.560 0.708 0.634 0.478 0.755 0.617 

+8 to +14 -14 to +14 0.619 0.682 0.650 0.498 0.754 0.626 

-21 to +21 0.634 0.677 0.655 0.507 0.757 0.632 

-7 to +7 0.479 0.708 0.594 0.394 0.755 0.574 

+15 to +21 -14 to +14 0.539 0.682 0.610 0.423 0.754 0.588 

-21 to +21 0.552 0.677 0.614 0.429 0.757 0.593 

sens. = sensitivity; spec. = specificity; bal.acc. = balanced accuracy 

 

The model tests with SCC limits showed again mostly higher sensitivities and always higher balanced 

accuracies for larger calibration time windows. Specificities were almost equal (≈0.76) for all calibration 

time windows. For the overall validation time window (-21 to +21 days), sensitivity significantly 

increased from 0.46 for the -7 to +7 days calibration set, up to 0.48 for the -21 to +21 days calibration 

set. Regarding the results extracted for shorter validation time windows, highest sensitivities (0.54 to 

0.56) were again found for the -7 to +7 validation time window. Sensitivity dropped, when distance 

between mastitis event and test day record was larger. The decline in sensitivity was stronger, when 

test day was before mastitis event (-21 to -15 and -14 to -8 days time window). 
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3.2.3 Effect of different sample sizes for calibration set 

For the last model test, the sample sizes for the different calibration subsets (small 1, small 2, medium, 

big) were as follows: 

 small 1: 1,172 (586 mastitis; 586 healthy) without SCC limits 

 546 (273 mastitis; 273 healthy) with SCC limits 

 small 2: 1,168 (584 mastitis; 584 healthy) without SCC limits 

 542 (271 mastitis; 271 healthy) with SCC limits 

 medium: 2,346 (1,173 mastitis; 1,173 healthy) without SCC limits 

 1,104 (552 mastitis; 552 healthy) with SCC limits 

 big: 3,552 (1,776 mastitis; 1,776 healthy) without SCC limits 

 1,646 (823 mastitis; 823 healthy) with SCC limits 

The subsets small 1 and small 2 had an equal sample size in calibration, they differed only in the 

associated validation set. The respective validation sets had on average 476,713 (small 1), 317,702 

(small 2), 319,143 (medium) and 158,868 (big) records. The proportion of mastitis cases was again 

around 1 % for overall validation time window (-21 to +21 days) and around 0,2 % for shorter time 

windows.  

Table 7 displays the results in validation for the four different calibration sample sizes (small 1, small 

2, medium, big). Adding SCC limits to the calibration sets, lead again to a higher imbalance between 

sensitivities and specificities. Moreover, balanced accuracies were lower with SCC limits in calibration. 

Without SCC limits, sensitivities were quite similar for the overall time window: 0.53 for small 1 and 

medium, 0.54 for small 2 and big. Specificity slightly increased from 0.67 for the small calibration set, 

up to 0.71 for the big calibration set. The sensitivities extracted for shorter time windows in validation, 

showed differences up to 0.02, but there was no regular up- or down trend evident. Sensitivities were 

again highest for the -7 to +7 days time window in validation. Regarding balanced accuracy, the big 

calibration set performed best for all time windows (including overall validation set). 

With SCC limits, specificity was 0.71 for both small calibration sets and increased up to 0.76 for medium 

and big. For the overall time window, sensitivities in the range of 0.46 to 0.47 were found. For shorter 

time windows, the differences in sensitivity were higher (up to 0.03), but again no regular up- or down 

trend was visible. The balanced accuracy increased with a higher sample size. 
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Table 7 Effect of different sample sizes and SCC limits in train (calibration), results extracted for different time 
windows (days) in test (validation) 

sample size 
train 

no SCC limits in train SCC limits in train time 
windows     

test sens. spec. bal.acc. sens. spec. bal.acc. 

small 1 0.525 0.679 0.602 0.475 0.711 0.593 

-21 to +21 
(overall) 

small 2 0.539 0.674 0.606 0.476 0.712 0.594 

medium 0.534 0.708 0.621 0.457 0.755 0.606 

big 0.538 0.714 0.626 0.470 0.762 0.616 

small 1 0.459 0.679 0.569 0.400 0.711 0.556 

-21 to -15 
small 2 0.478 0.674 0.576 0.404 0.712 0.558 

medium 0.458 0.708 0.583 0.368 0.755 0.561 

big 0.462 0.714 0.588 0.371 0.762 0.567 

small 1 0.477 0.679 0.578 0.437 0.711 0.574 

-14 to -8 
small 2 0.496 0.674 0.585 0.444 0.712 0.578 

medium 0.484 0.708 0.596 0.412 0.755 0.584 

big 0.480 0.714 0.597 0.416 0.762 0.589 

small 1 0.588 0.679 0.633 0.540 0.711 0.626 

-7 to +7 
small 2 0.600 0.674 0.637 0.543 0.712 0.628 

medium 0.605 0.708 0.657 0.540 0.755 0.647 

big 0.611 0.714 0.663 0.557 0.762 0.659 

small 1 0.546 0.679 0.612 0.490 0.711 0.601 

+8 to +14 
small 2 0.558 0.674 0.616 0.488 0.712 0.600 

medium 0.560 0.708 0.634 0.478 0.755 0.617 

big 0.563 0.714 0.639 0.496 0.762 0.629 

small 1 0.483 0.679 0.581 0.431 0.711 0.571 

+15 to +21 
small 2 0.493 0.674 0.583 0.422 0.712 0.567 

medium 0.479 0.708 0.594 0.394 0.755 0.574 

big 0.484 0.714 0.599 0.413 0.762 0.588 

sens. = sensitivity; spec. = specificity; bal.acc. = balanced accuracy 
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4 Discussion 

4.1 Discussion of preliminary tests on different pre-treatments of spectra data 

Due to the results of preliminary tests (section 3.1), the use of selected spectra areas was more 

appropriate for this study, compared to the use of the full spectra with 1,060 wavelengths. While the 

full spectra data set performed better in sensitivity, the differences were very small or rather not 

significant. With regard to specificity, the selected spectra data set was doing better, effects were 

stronger and significant for all types (original, first derivative, second derivative). Thus, overall there 

was an advantage for the selected spectra areas, which were in further consequence used for the final 

model tests. 

The results within the selected spectra data sets were very similar for all types (original, first derivative, 

second derivative). Only the original selected spectra data set had a significantly higher specificity, 

however, the difference was less than 0.005. For this reason, the first derivative of the spectra was 

taken for the final model tests, according to other studies by Soyeurt et al. (2011; 2012), Grelet et al. 

(2016), Dale & Werner (2017), Lainé et al. (2017) and Ho et al. (2019). 
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4.2 Discussion of final model tests 

Comparison of different predictor variables  

Considering the results within calibration data sets (Table 4), the sensitivity and the specificity of 1.00 

for predictor variables SCS and MIR + SCS, and also high values for MIR alone, when using SCC limits, 

are due to overfitting of the model. Applying the particular model to the realistic validation set (Table 

5) did not show an advantage of using SCC limits in calibration. It resulted in a higher imbalance of 

sensitivity and specificity and a lower balanced accuracy, compared to the model without SCC limits in 

the calibration set. This imbalance of sensitivity and specificity was also found in the study of Soyeurt 

et al. (2012), where MIR predicted lactoferrin was used as an indicator for mastitis. In Figure 4, the 

higher imbalance of sensitivity and specificity when applying SCC limits, is visualized for predictor MIR 

+SCS. 

 

 

Figure 4 Sensitivity and specificity of MIR + SCS with or without SCC limits, for overall (-21 to +21 days) and 
shortest (-7 to +7 days) time window in validation 

 

According to the results, the predictor model without SCC limits in calibration, was more adequate. 

Therefore, the discussion of further effects focusses on that model. Table 5 clearly demonstrates that 

the prediction of mastitis cases works better with a shorter distance between diagnosis and test day 

in the validation dataset. The time window of -7 to +7 days in validation was also applied in the study 
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of Soyeurt et al. (2012). When comparing the time windows with larger distance between diagnosis 

and test day record, predictions with MIR + SCS were very similar for test days before and after the 

occurrence of mastitis events. Yet, considering SCS and MIR as predictors separately, results seem to 

indicate that MIR predicted mastitis better, when test days were after mastitis diagnosis, while SCS 

predicted mastitis events better, when test days were before diagnosis. Prediction equations 

combining SCS and MIR were overall best. Figure 5 shows the course of sensitivity of MIR, SCC and 

MIR+SCS for the different time windows before and after diagnosis is displayed. The stronger drop in 

sensitivity for SCS may be explained by Figure 2, which shows, that the average somatic cell count is 

lower short after the mastitis event, than short before. A reason for that could be antibiotic treatment. 

 

 

Figure 5 Course of sensitivity of the predictor variables MIR, SCS and MIR + SCS with different time windows 
before/after diagnosis; without SCC limits in train 

 

Effect of different time windows in calibration set 

The results in validation (Table 6) show that the use of a larger time window in the calibration set 

improves the accuracy of the prediction model. Whether with or without SCC limits in calibration, 

balanced accuracy was overall best (for all validation time windows) for the calibration set with 

maximum -21 to +21 days and lowest for the calibration set with -7 to + 7 days between test day and 

mastitis event. Figure 6 displays the balanced accuracies for different calibration sets without SCC 
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limits. Even when just considering the results of the validation time window of -7 to +7 days, balanced 

accuracies were higher when the calibration set with -21 to +21 days was used. 

 

 

Figure 6 Balanced accuracies of different calibration time windows (-7 to +7, -14 to +14 and -21 to +21 days); 
without SCC limits in train, results extracted for different time windows in validation 

 

It is important to note that enlarging the time window also increased the sample size of the calibration 

set. Starting with the same data set, the calibration set with -21 to +21 days contained around three 

times more records than the calibration set with -7 to +7 days. Thus, the positive effect of a larger time 

window in calibration may have also been influenced by a bigger sample size. For further analysis it 

would be appropriate to work with a larger calibration window, differing from the studies of Soyeurt 

et al. (2012) and (Dale & Werner, 2017), where shorter time windows (-7 to +7 or -7 to 0 days) were 

applied. In order to be able to distinguish the effect of time window from the effect of sample size, the 

model test needs to be repeated with a non-changing sample size in calibration. 
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Effect of different sample sizes for calibration set 

The last objective of this thesis was to test the effect of different sample sizes of the calibration set. 

While PLS-DA is one of the most commonly used methods for classification purposes and biomarker 

selection in metabolomics (Szymańska et al., 2012), the paper of Saccenti & Timmerman (2016) is one 

of the very rare references on sample size determination for PLS-DA. Therefore, the results of this 

model test will be discussed and compared only with that study. 

Saccenti & Timmerman (2016) built a series of PLS-DA models using an increasing number of samples 

(from 25 controls + 25 cases to 500 controls + 500 cases). The experimental data used was from 

nuclear-magnetic-resonance (NMR)spectra of serum blood metabolites (D.1 and D.2) and of urine (D.3 

and D.4). The results of Saccenti & Timmerman (2016) showed that sensitivity and specificity increase 

(Figure 7 and Figure 8) with the sample size, and variability decreases. 

 

 
Figure 7 Sensitivity (A) of a PLS-DA model as a function of the total sample size for the discrimination between 

two group in a case-control design (Saccenti & Timmerman, 2016) 
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Figure 8 Specificity (B) of a PLS-DA model as a function of the total sample size for the discrimination between 

two group in a case-control design (Saccenti & Timmerman, 2016) 

 

In this thesis, the examined sample sizes where much bigger, starting from 1,165 (586 mastitis + 586 

healthy) to 3,552 (1,776 mastitis + 1,776 healthy) for calibration set without SCC limits, and from 542 

(273 mastitis + 273 healthy) to 1,646 (823 mastitis + 823 healthy), than in the study of Saccenti & 

Timmerman (2016). Also, the differences in sensitivity and specificity between the individual sample 

sizes (Table 7) where smaller. A regular increase with sample size was found for specificity (Figure 10), 

but not for sensitivity (Figure 9). When no SCC limits were applied, the pattern was not clear, highest 

and lowest sensitivities were found for the two small sample sizes in calibration (small 1 and small 2). 

When SCC limits were applied, sensitivity was highest for these small sample sizes.  

For a clear indication on how sample size affects the prediction accuracy of mastitis from MIR spectra, 

and what the minimum sample size should be, further analysis according to Saccenti & Timmerman 

(2016) should be done. However, as there were only small differences in the results, the sample sizes 

used for this thesis seem to be appropriate. 
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Figure 9 Sensitivities for different sample sizes in calibration; with or without SCC limits in train; results of 
overall validation set 

 

 

Figure 10 Specificities for different sample sizes in calibration; with or without SCC limits in train; results of 
overall validation set 
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In general, all the results presented in this thesis were hard to compare with the few other studies on 

MIR predicted mastitis, such as Soyeurt et al. (2012) and Dale & Werner (2017), because types of 

validation were very different. 
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5 Conclusion 

This study explored the potential of milk MIR spectral data for prediction of mastitis cases. We 

investigated the utility of combining information of MIR and SCS, which were both available for every 

test day record. Results indicate that mastitis diagnoses may be predicted reasonably accurate, with 

balanced accuracies of 0.62 to 0.68 for time windows of +/- 21 days between mastitis diagnosis and 

test day and up to 0.74 for shorter time windows. The information is potentially valuable for improved 

genetic evaluation of udder health, which is currently an index of SCS and clinical mastitis. Future 

studies on heritability and genetic correlations of clinical mastitis, SCS and MIR predicted mastitis will 

provide guidance in this direction. 

Additional studies are planned to further improve the prediction model, through adjustments in 

methodology and by including the effects of milk yield, lactose, breed and parity. 
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