

Department für Wasser-Atmosphäre und Umwelt

Institut für Bodenphysik und landeskulturelle Wasserwirtschaft

Vorstand: Univ. Prof. Dr. Christine Stumpp

Betreuer:
Ao.Univ.Prof.Dipl.-Ing.Dr.nat.techn. Andreas Klik

UNTERSUCHUNG DER AUSWIRKUNGEN VERSCHIEDENER BODENBEARBEITUNGSMETHODEN AUF BODENEROSION DURCH WASSER ANHAND VON EROSIONSVERSUCHEN

> Masterarbeit zur Erlangung des akademischen Grades Diplom Ingenieur

> > Eingereicht von Florian Wagner

Wien, September 2019

Inhaltsverzeichnis

A	bb	ilduı	ngsv	erzeichnis	. 3
T	ab	eller	nverz	zeichnis	. 5
K	urz	zfas	sung	J	. 6
A	bs	trac	t		. 7
1.	. 1	Einle	eitun	g und Abgrenzung der Fragestellung	. 9
	1.	1	Einf	ührung und Problemstellung	. 9
	1.	2	Ziel	der Arbeit	10
2.		Allg	eme	ine Grundlagen	10
	2.	1	Bod	enbearbeitung und Erosion durch Wasser	10
	2.	2	Kon	ventionelle Bodenbearbeitung	10
	2.	3	Kon	servierende Bodenbearbeitung und Direktsaat	11
	2.	4	Eins	satz von Gründecken zur Erosionsvermeidung	14
3.		Mat	erial	und Methoden	15
	3.	1	Eros	sionsmessstelle Mistelbach	15
		3.1.	1	Lage der Erosionsmessstelle	15
		3.1.	2	Klima	16
		3.1.	3	Bodenverhältnisse	18
		3.1.	4	Funktionsweise der Versuchseinrichtung	19
		3.1.	5	Probenentnahme	22
		3.1.	6	Niederschlagsmessung	23
	3.	2	Unte	ersuchte Varianten2	23
	3.	3	Vers	suchsdurchführung2	24
	3.4	4	Phy	sikalische und chemische Analysen2	27
	3.	5	Aus	wertung der Niederschlagsmessdaten2	28
4.		Erg	ebni	sse	30
	4.	1	Nie	derschlagsauswertung	30
	4.	2	Obe	erflächenabfluss	36
	4.	3	Bod	enabtrag4	40
	4.	4	Unte	ersuchungen des Bodenmaterials4	46
		4.4.	1	Texturanalyse	46
		4.4.	2	Gesamtstickstoff	48
		4.4.	3	Phosphoraustrag	50
		4.4.	4	Organischer Kohlenstoff und Kalziumcarbonat	52

	4.4.5	Elektrische Leitfähigkeit und pH-Wert	. 54	
2	1.5 Anı	merkungen zu den Ergebnissen	. 55	
5.	Verglei	ch mit Ergebnissen vergangener Messungen	. 56	
6.	Zusamı	menfassung	. 59	
7.	Literaturverzeichnis6			
8.	Anhang	J	. 63	
9.	Eidesst	attliche Erklärung	. 70	

Abbildungsverzeichnis

Abbildung 1 Lage der Erosionsmessstelle Mistelbach	15
Abbildung 2 Luftbild der Messstelle	16
Abbildung 3 Jahresniederschläge von 1994 bis 2015, Erosionsmessstelle Mistelba	ch
	17
Abbildung 4 Niederschläge während der Vegetationsperiode von 1994 bis 2015,	
Erosionsmessstelle Mistelbach	17
Abbildung 5 Ganglinie der mittleren Temperatur und Niederschläge an der	
· · · · · · · · · · · · · · · · · · ·	18
Abbildung 6 Beschreibung der Bodenform, (Quelle: Ebod - Österreichische	
Bodenkarte, Erscheinungsjahr 1999)	19
Abbildung 7 Schematische Darstellung der Messstelle	
Abbildung 8 Messhütte (links) Messrad zur Erfassung der Abflussmenge (rechts)	
Abbildung 9 Versuchsfläche Variante Direktsaat 2 (17.05.2018)	
Abbildung 10 Luftaufnahme der Messstelle, 16.08.2018, eigene Aufnahme	
Abbildung 11 Grafische Darstellung des zeitlichen Ablaufes der Maßnahmen zur	
Bodenbearbeitung. KV=konventionell MS=Mulchsaat DS=Direktsaat	25
Abbildung 12 Auffangrinne der Versuchsfläche der konventionell bearbeiteten	
Variante vor der Probenentnahme 24.07.2018 (links) und 18.07.2018 (rechts)	26
Abbildung 13 Auswahl der Output-Optionen bei der Auswertung der	
	28
Abbildung 14 Niederschlag 2018 - Monatssummen und langjährige mittlere	
•	31
Abbildung 15 Niederschläge und Summe ihrer kinetischen Energie zwischen den	
	32
Abbildung 16 Niederschläge und R-Faktoren zwischen den	
	33
Abbildung 17 Häufigkeiten der Niederschlagshöhen während des	
	34
Abbildung 18 Häufigkeiten der mittleren Niederschlagsintensitäten während des	
	34
Abbildung 19 Häufigkeiten der I30 – Niederschlagsintensität während des	
Versuchszeitraumes	35
Abbildung 20 Häufigkeiten der Niederschlagsdauer während des	
Versuchszeitraumes	35
Abbildung 21 konventionell bewirtschaftete Variante am 04.09.2018 (eigene	
Aufnahme)	37
Abbildung 22 Übersicht des gemessenen Oberflächenabflusses für den gesamten	
Versuchszeitraum	38
Abbildung 23 Reduktion des Oberflächenabflusses durch Mulch- und Direktsaat im	
Vergleich zur konventionell bearbeiteten Fläche	
Abbildung 24 Niederschläge und Bodenabtrag im Vergleich	
Abbildung 25 Oberflächenabfluss und Bodenabtrag zwischen den	
	41

Abbildung 26 Vergleich des gesamten Bodenabtrags im Versuchszeitraum	42
Abbildung 27 Reduktionen der Erosionsmengen bei Mulch- und Direktsaat	42
Abbildung 28 Oberflächenabfluss und Bodenabtrag im Messzeitraum	43
Abbildung 29 Oberflächenabfluss und Bodenabtrag von Einzelereignissen	44
Abbildung 30 R-Faktor und Bodenabtrag im Vergleich	44
Abbildung 31 Unkrautbestand zwischen den Reihen einer Maiskultur im Vergleich	
v.l.n.r.: KV, MS, DS (eigene Aufnahme, 27.08.2018)	45
Abbildung 32 Darstellung des Ausgangsbodens im Texturdreieck nach ÖNORM L	
1050	47
Abbildung 33 Darstellung des Ausgangsbodens im Texturdreieck nach ÖNORM L	
1050	47
Abbildung 34 Gesamtstickstoffaustrag im gesamten Messzeitraum	49
Abbildung 35 Reduktion Gesamtstickstoffaustrag für den gesamten Messzeitraum	49
Abbildung 36 Phosphoraustrag während des gesamten Versuchszeitraumes	51
Abbildung 37 Reduktion des Phosphoraustrags bei Mulch- und Direktsaat bezogen	
auf konventionell bewirtschaftete Fläche für den gesamten Versuchszeitraum	51
Abbildung 38 Austrag organischen Kohlenstoffs im Messzeitraum	52
Abbildung 39 Reduktion des Austrags organischen Kohlenstoffes bei Mulch- und	
Direktsaat bezogen auf konventionell bewirtschaftete Fläche für den gesamten	
Versuchszeitraum	53
Abbildung 40 Mittlerer Bodenabtrag und Abfluss bei Versuchen an Mais 1994-2016	ì
	56
Abbildung 41 Bodenabtrag in % konventioneller Bearbeitung 1994-2018	57
Abbildung 42 Mittlere Verluste von Gesamtstickstoff und Phosphor, Versuche mit	
Mais 1994-2016	57

Tabellenverzeichnis

Tabelle 1 Versuchsvarianten	23
Tabelle 2 Maßnahmen zur Bodenbearbeitung (Quelle: LAKO – Versuchsberichte).	24
Tabelle 3 Chemische Analysen	27
Tabelle 4 Niederschlagshöhe, R Faktor der Niederschläge sowie Höhe der	
Oberflächenabflüsse für die untersuchten Varianten	37
Tabelle 5 Übersicht der Bodenabtragsmengen	40
Tabelle 6 Ergebnisse der Texturanalyse	46
Tabelle 7 gemessene Gesamtstickstoffgehalte der Bodenproben, hochgerechnet a	uf
die gesamten abgetragenen Bodenmengen	48
Tabelle 8 mittlere Gesamtstickstoffgehalte	49
Tabelle 9 gemessene Phosphorgehalte der Bodenproben, hochgerechnet auf die	
gesamten abgetragenen Bodenmengen	50
Tabelle 10 Phosphorgehalte und Standardabweichung	50
Tabelle 11 Kalziumkarbonat- und Kohlenstoffgehalte der Varianten	52
Tabelle 12 mittlere pH-Werte, elektrische Leitfähigkeiten und Standardabweichung	54
Tabelle 13 mittlere pH-Werte, elektrische Leitfähigkeiten und Standardabweichung	54

Kurzfassung

Die gegenständliche Masterarbeit befasst sich mit der Auswertung von Erosionsversuchen an einer Erosionsmessstelle in Mistelbach, Niederösterreich, welche auf Flächen der landwirtschaftlichen Fachschule in Mistelbach von 17. Mai 2018 bis 6. September 2018 durchgeführt wurden. Die Untersuchungen an dieser Messstelle werden seit 1994 im Auftrag der Niederösterreichischen Landesregierung, in Zusammenarbeit der Landwirtschaftlichen Fachschule Mistelbach und der Universität für Bodenkultur Wien, durchgeführt. Ziel ist die Untersuchung der Auswirkungen unterschiedlicher Bodenbearbeitungsmethoden auf Bodenerosion durch Wasser.

Die Messungen erfolgten an vier Versuchsflächen, welche mit konventioneller Bodenbearbeitung, konservierender Bodenbearbeitung (Mulchsaat) mit Gründecke und zwei Varianten Direktsaat mit Gründecke bewirtschaftet wurden. Die Hangneigung beträgt, je nach Variante, zwischen 12% und 14%. Als Hauptfrucht wurde Mais gewählt. Ziel war die Erfassung der Menge des abgetragenen Bodens, der Oberflächenabflusshöhe sowie der Verluste von Gesamtstickstoff, Phosphor und organischem Kohlenstoff.

Während der Versuche im Jahr 2018 wurden bei der konventionell bearbeiteten Variante 9,4 Tonnen pro Hektar, bei der Mulchsaat-Variante 3,2 und bei den beiden Direktsaat-Varianten 1,2 sowie 0,8 Tonnen pro Hektar Bodenabtrag gemessen. Die Ergebnisse der Messungen der Oberflächenabflusshöhe zeigen Reduktionen um 39,3% bei Mulchsaat und 90,4% sowie 86,9% bei den Direktsaat-Varianten im Vergleich zur konventionell bearbeiteten Fläche. Die Verluste von Gesamtstickstoff, Phosphor und organischem Kohlenstoff konnten mit konservierender Bodenbearbeitung und Direktsaat im Vergleich zu konventioneller Bearbeitung erheblich verringert werden.

Die Ergebnisse dieser Arbeit bestätigen die Annahme, dass Bodenbearbeitung mit Mulchsaat- und Direktsaatverfahren zu einer Reduktion der Boden-, Wasser- und Nährstoffverluste durch Erosion beitragen kann.

Abstract

This thesis investigates the results of soil erosion experiments in Mistelbach, Lower Austria. The experiments have been ordered by the federal state government of Lower Austria and conducted since 1994, by a cooperation of the agricultural school Mistelbach with the University of natural resources and life sciences, Vienna. Basic objective of the tests is to measure the impacts of different tillage methods on soil erosion due to water.

The experiments, which are subject of this thesis, took place from 17th May 2018 to 6th September 2018 on areas of the agricultural school of Mistelbach. The tests were conducted on four slopes with gradients between 12% and 14% in three different variants: one plot with conventional tillage, one with conservation tillage and two notillage plots, all with Maize as the main culture. Aim of the tests was to measure the quantity of soil erosion, surface runoff and losses of total nitrogen, phosphor and organic carbon.

For the time span of the experiments in 2018, soil losses of 9,4 tons per hectare at the conventional tillage plot, 3,2 tons per hectare at the conservation tillage plot and 1,2 and 0,8 tons per hectare at the no-tillage plot could be measured. The results of measuring the surface runoff demonstrate a reduction of 39,3% with conservation tillage and 90,4% as well as 86,9% with no tillage compared to conventional tillage. Conservation tillage and no-tillage also led to a significant reduction of the losses of total nitrogen, phosphor and organic carbon.

The results of this thesis confirm the assumption that conservation tillage and no-tillage can lead to a significant reduction of soil erosion, surface runoff and nutrient losses.

1. Einleitung und Abgrenzung der Fragestellung

1.1 Einführung und Problemstellung

"Der Bodenabtrag durch Wasser und Wind ist ein natürlicher Vorgang, der wesentlich zur Ausformung unserer Landschaft beiträgt." (Klaghofer, 1994, S.56)

In Österreich kann eine Fläche von 450 000 Hektar als erosionsgefährdet eingestuft werden (Rosner, 2007). Erosion durch Wasser ist zwar ein natürlicher Prozess, jedoch birgt der übermäßige Verlust des fruchtbaren Oberbodens ein hohes Schadenspotential und führt langfristig zu erheblichen Verlusten von Bodensubstanz, der für den Pflanzenbau wichtigen Nährstoffe und organischem Material. Zu den möglichen indirekten Schäden (Off-Site Schäden) der Erosion durch Wasser zählt beispielsweise der Eintrag von Schwebstoffen, Pestiziden, organischem Material und Nährstoffen in Gewässer. Unmittelbare Auswirkungen davon sind die Eutrophierung der Gewässer und die damit verbundenen Veränderungen der dortigen Lebensbedingungen, die Verlandung von Stauräumen und Belastung von Wasserkraftanlagen durch höhere Schwebstoffgehalte sowie eine allgemein schlechtere Wasserqualität (Klaghofer, 1994).

Landwirtschaftlich genutzte Böden unterliegen oftmals einer intensiven Bodenbearbeitung mit schwerem Gerät. Das häufige Befahren und die dadurch begünstigte Bildung einer verdichteten Schicht im Boden, sowie die wendende Bearbeitung von Ackerböden in Hanglagen mit dem Pflug verursachen in vielen Fällen die Grundlage für Erosionsereignisse von erheblichem Ausmaß. Durch den Anbau von Reihenkulturen wie Mais wird die negative Auswirkung des Niederschlags auf die Erosion weiter verstärkt (Blum, 2012).

1.2 Ziel der Arbeit

Die gegenständliche Masterarbeit soll folgende Fragestellungen beantworten:

- Wie wirken sich konventionelle Bodenbearbeitung mit Pflugeinsatz, Mulchsaat mit Zwischengründecke und Direktsaat mit Zwischengründecke auf Bodenerosion durch Wasser aus?
- Wie unterscheiden sich die mengenmäßigen Verluste des Bodenmaterials, des Gesamtstickstoffes, des Phosphors sowie des organischen Kohlenstoffes unter den gegebenen Bedingungen?
- Welchen Einfluss hat die Bodenbearbeitung auf die Oberflächenabflussmenge?

2. Allgemeine Grundlagen

2.1 Bodenbearbeitung und Erosion durch Wasser

Je nachdem, welche Geräte und Methoden bei der Bodenbearbeitung eingesetzt werden, sind unterschiedliche Auswirkungen auf die Eigenschaften des Bodens zu erwarten. Somit ist der Methode der Bodenbearbeitung eine wesentliche Rolle als Faktor für die Entstehung und für das Ausmaß von Erosionsereignissen zuzuschreiben.

Die Bodenbearbeitung dient grundsätzlich der Beseitigung von Unkraut, der Vorbereitung des Ackerbodens für die Aussaat, der Einmischung organischer Substanz und der Verbesserung des Wasser- Luft- und Wärmehaushaltes (Estler et al., 1996, zitiert nach Wilhelm B., 2010 S.14).

2.2 Konventionelle Bodenbearbeitung

Die oben erwähnten Anforderungen werden bei der konventionellen Bodenbearbeitung durch das Wenden des Bodens mit einem Pflug bis in eine Tiefe von 10-20 cm, in manchen Fällen bis zu 30 cm erfüllt. Die Saatbettbereitung vor der Aussaat der Kultur wird durch den Einsatz von Geräten wie Grubbern oder Eggen erzielt. Hierbei beschränkt sich die Bodenbearbeitung auf die oberen 10 cm des Bodens und bewirkt eine feinere Aufbereitung und Lockerung des Bodenmaterials für

die Aussaat. Neben den gewünschten Effekten der wendenden Bodenbearbeitung bringt diese Bearbeitungsform auch wesentliche Nachteile mit sich. So verursacht beispielsweise die Verdichtung des Bodens an der Pflugsohle erhebliche Auswirkungen auf das Porengefüge und die Struktur des Bodens und in weiterer Folge auch auf das Infiltrationsvermögen. Dadurch ist eine Begünstigung der Bildung von Oberflächenabfluss zu erwarten, was zu Erosion führen kann (Schlagheck, 2003). Weiters ist eine geringere Aggregatstabilität bei konventioneller Bodenbearbeitung im Vergleich zu reduzierten Bearbeitungssystemen zu erwarten. (Gaiser et al., 2008, zitiert nach Möller, 2017 S.77) Dies fördert die Gefahr der Verschlämmung der Oberfläche und in weiterer Folge die Reduktion der Infiltrationsrate.

2.3 Konservierende Bodenbearbeitung und Direktsaat

Neben der konventionellen Bodenbearbeitung mit dem Pflug besteht die Möglichkeit, den Boden durch konservierende Bearbeitungsmethoden wie Mulchsaat oder im Fall der Direktsaat, sogar zur Gänze ohne Bearbeitung vor der Aussaat, zu bewirtschaften. Die Einordnung der verschiedenen Bodenbearbeitungssysteme im amerikanischen Raum erfolgt nach Bedeckungsgrad mit Pflanzenrückständen. Der Begriff der konservierenden Bodenbearbeitung entstammt der Übersetzung der aus den USA bekannten "conservation tillage" und bezeichnet eine den Boden erhaltende Bearbeitungsmethode mit mindestens 30% Bedeckungsrate der Oberfläche durch Pflanzenreste. 1993 wurden verschiedene Bodenbearbeitungsverfahren vom Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL) erstmals im deutschsprachigen Raum detailliert definiert und bis in die Gegenwart überarbeitet und erweitert (Demmel et al., 2014). Das KTBL (2015) unterteilt die Bearbeitungs- und Bestellungsmethoden in wendende, nicht-wendende Bodenbearbeitung Direktsaat mit weiteren Unterteilungen Bearbeitungsschritten nach und Gerätekombinationen.

Mulch-belassende Bodenbearbeitung zeichnet sich durch eine nicht wendende Bodenbearbeitung und dem Belassen von Pflanzenrückständen der Vorfrucht im Ausmaß von mindestens 30% an der Bodenoberfläche aus. Unkrautbekämpfung wird durch reduzierte, nicht-wendende Bodenbearbeitung und Herbizide bewerkstelligt (Morgan, 1999).

Bei der Direktsaat wird, außer beim Ausbringen der Saat, auf die Bearbeitung des Bodens verzichtet (Morgan, 1999). Es wird somit jeglichen Eingriff zur Lockerung oder Wendung des Bodens unterlassen und lediglich zur Ausbringung des Saatgutes ein schmaler Schlitz in den Boden gefräst. Unkräuter und nicht abgefrorene Pflanzen möglicher Gründecken werden durch den Einsatz von Herbiziden kontrolliert.

Nichtwendende Bodenbearbeitungsverfahren wie Mulchsaat und die Methode der Direktsaat bringen erhebliches Potential zur Verbesserung der Bodeneigenschaften und Verhinderung von Erosion mit sich. So sind bei der Bearbeitung mit Mulch- und Direktsaat mit einer Wintergründecke positive Auswirkungen auf mikrobielle Aktivität, eine Reduktion des Bodenabtrags und höhere Gehalte an organischem Kohlenstoff zu erwarten (Klik et al., 2010). Bei einem größeren Anteil an organischem Material im Boden kann mit einer höheren Aggregatstabilität gerechnet werden. So konnte beispielsweise bei Untersuchungen der konventionell und der mit Direktsaat bearbeiteten Fläche in Mistelbach im Jahr 2016 eine höhere Aggregatstabilität bei dem mit Direktsaat bewirtschafteten Boden nachgewiesen werden, was unter anderem auf einen höheren Anteil organischer Substanz zurückgeführt wurde (Mair, 2017).

Weiters kann bei Mulchsaat und Direktsaat mit einer Erhöhung der Trockenrohdichte und des Eindringwiderstandes gerechnet werden (Möller, 2017). Letzterer wirkt sich positiv bei der Befahrung durch landwirtschaftliche Maschinen aus.

Einen erheblichen Beitrag zum Schutz vor der kinetischen Energie des Regens und des Oberflächenabflusses spielen die an der Oberfläche belassenen Pflanzenrückstände voriger Kulturen und Zwischenfrüchte bei konservierender Bodenbearbeitung und Direktsaat (Klik, 2004). Die durch den Aufprall der Regentropfen auf die Bodenoberfläche einwirkende Energie trägt einen wesentlichen Teil zum Erosionsprozess bei. Unbedeckte Böden sind der kinetischen Energie des Regens direkt ausgesetzt, wodurch Erosion begünstigt wird. Die Mulchdecke an der Bodenoberfläche reduziert außerdem die Verdunstung (Schlagheck, 2003).

Weiters wirkt sich reduzierte Bodenbearbeitung langfristig positiv auf die Makroporenkontinuität, das Wasserspeichervermögen und die Strukturstabilität aus (Bodner, 2014, zitiert nach Kaul et al., 2014 S.9).

Durch den Verzicht auf Bodenbearbeitung sind positive Auswirkungen auf den Regenwurmbestand zu erwarten. Aus Untersuchungen in Deutschland geht hervor, dass sich Direktsaat günstiger auf die Regenwurmpopulation auswirkt, als konventionell bearbeitete Flächen (Möller, 2017). Die positiven Effekte einer gesunden Regenwurmpopulation im Boden gehen damit einher.

Aufgrund zahlreicher Forschungsergebnisse kann zusammenfassend davon ausgegangen werden, dass konservierende Bodenbearbeitungssysteme und Direktsaat erhebliches Potenzial zur Förderung günstiger bodenphysikalischen Eigenschaften in Bezug auf Erosionsanfälligkeit der Böden bieten können.

Neben den bereits erwähnten möglichen positiven Auswirkungen, welche durch Mulchund Direktsaat erzielt werden können. können diese Bodenbearbeitungsmethoden auch Nachteile mit sich bringen. Höherem Unkrautdruck, welcher durch den Verzicht auf eine wendende Bodenbearbeitung hervorgerufen werden kann, muss durch den vermehrten Einsatz von Herbiziden entgegengewirkt werden. Ebenso müssen Zwischengründecken, welche nicht durch Frostwirkung abfrieren, mit Herbiziden abgetötet werden.

Der Einfluss der Mulchschicht an der Bodenoberfläche stellt weiters eine Herausforderung in Bezug auf Krankheiten und Schädlinge dar. Derpsch et al. (1988) erwähnt eine vermehrte Entwicklung von Pflanzenkrankheiten bei Direktsaat. Nicht verrottete Pflanzenrückstände an der Oberfläche können als Überträger von Fusariosen wirken (Rosner et al. 2007).

Neben den Herausforderungen, die konservierende Bearbeitungsmethoden und Direktsaat mit sich bringen, kann auch mit Vorteilen abseits der Erosionsproblematik gerechnet werden. Rosner et al. (2015) erwähnt neben den Vorteilen, die sich auf die Bodeneigenschaften beziehen, auch die geringere Befahrhäufigkeit, die Senkung der Produktionskosten und des Arbeitsaufwandes pro Fläche und die geringere Freisetzung von Kohlendioxid in die Atmosphäre als positive Effekte der Direktsaat.

Die Erträge bei Mulchsaat und Direktsaat können im Vergleich zu konventioneller Bodenbearbeitung unterschiedlich ausfallen. Möller (2017) zitiert eine Studie von Pittelkow et al. (2014), bei welcher die Erträge bei Direktsaat durchschnittlich um 5,7% geringer als bei Bearbeitung mit dem Pflug ausfielen. Versuche über acht Jahre in Tulln, Niederösterreich ergaben durchschnittliche Ertragseinbußen von 5% bei Direktsaat und 2-8% bei schonenden Bodenbearbeitungsmethoden. (Rosner et al. 2007) An den Versuchsflächen der Erosionsmessstelle in Mistelbach wurden 2018 im

Gegensatz dazu geringfügig höhere Erträge bei Mulch- und Direktsaat erzielt. (LAKO 2018) Eine generelle Aussage zu den Auswirkungen auf die Erträge ist aufgrund dieser Daten nicht möglich. Jedenfalls müssen mögliche Mindererträge in Kauf genommen werden - eine Ertragssteigerung kann jedoch unter bestimmten Umständen erzielt werden. Zeit für die Entwicklung des Bodens spielt dabei eine wesentliche Rolle.

Der Einsatz von Direktsaatverfahren eignet sich außerdem nicht an allen Standorten. Schwere, schlecht drainierte Böden bieten keine optimalen Bedingungen für den Einsatz dieser Methode. (Morgan 1999) Die erfolgreiche Umsetzung reduzierter Bodenbearbeitungsmethoden und Direktsaat erfordert jedenfalls fundiertes Fachwissen. Die Verfügbarkeit geeigneter Geräte, ausreichendes Verständnis der gegebenen Bedingungen und eine ausgereifte Strategie zur Unkraut- und Schädlingsbekämpfung zählen zu den Voraussetzungen.

2.4 Einsatz von Gründecken zur Erosionsvermeidung

Brach liegende, unbedeckte Flächen in den Zeiten zwischen den Hauptkulturen sind den erosiven Kräften des Niederschlags schutzlos ausgeliefert. Eine wirkungsvolle Möglichkeit diesem Zustand entgegenzuwirken bietet der Einsatz von Gründecken. Neben dem Schutz des Bodens durch Bedeckung bietet der Anbau auch die Möglichkeit der Gründüngung. Ein tiefreichendes Wurzelsystem zur Verbesserung der Porosität, Konkurrenzfähigkeit gegenüber Unkräutern und ein möglichst hoher Bedeckungsgrad nach kurzer Zeit sind Voraussetzungen für gut wirksame Gründecken. (Morgan 1999) Der Einsatz von Gründüngungen kann somit auch dabei helfen, die Notwendigkeit von Herbiziden zu reduzieren. (Derpsch et al. 1988)

3. Material und Methoden

3.1 Erosionsmessstelle Mistelbach

3.1.1 Lage der Erosionsmessstelle

Die Erosionsmessstelle Mistelbach wurde 1994, neben zwei weiteren Standorten in Pyhra und Pixendorf, im Auftrag der Niederösterreichischen Landesregierung erbaut. Die Versuche am Standort Mistelbach werden in Zusammenarbeit mit der Landwirtschaftlichen Fachschule Mistelbach durchgeführt.

Die Erosionsmessstelle befindet sich östlich der Stadt Mistelbach im Weinviertel, Niederösterreich (48°34'59.7"N 16°35'14.6"E) am Fuß eines Richtung Südwesten ausgerichteten Hanges. Die Hangneigungen der Versuchsflächen betragen, je nach Variante, zwischen 12% und 14%.

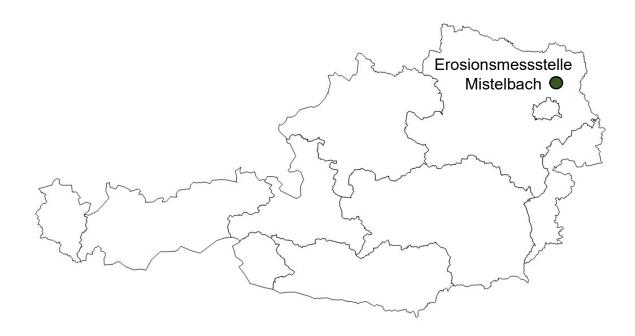


Abbildung 1 Lage der Erosionsmessstelle Mistelbach

Abbildung 2 Luftbild der Messstelle

3.1.2 Klima

Die Region ist vom pannonischen und kontinentalen Übergangsklima geprägt und zählt zu den trockensten Regionen Österreichs. Der mittlere Jahresniederschlag (langjähriges Mittel 2001-2010 an der Messtelle "Mistelbach - ZAMG") beträgt 537 mm. Der an der Erosionsmessstelle gemessene mittlere Jahresniederschlag, errechnet aus den Aufzeichnungen von 1994-2015, beträgt 621,6 mm. Der im selben Zeitraum an der Erosionsmessstelle gemessene mittlere Niederschlag in der Vegetationsperiode von Mai bis September beträgt 371,5 mm. Warme, trockene Sommer und relativ kalte, schneearme Winter kennzeichnen diese Region.

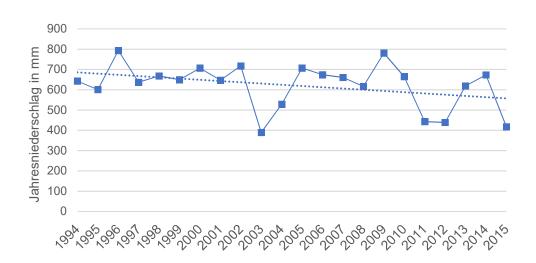


Abbildung 3 Jahresniederschläge von 1994 bis 2015, Erosionsmessstelle Mistelbach

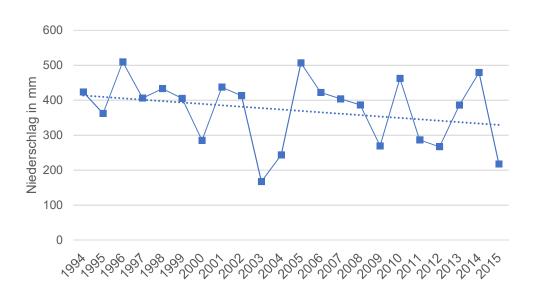


Abbildung 4 Niederschläge während der Vegetationsperiode von 1994 bis 2015, Erosionsmessstelle Mistelbach

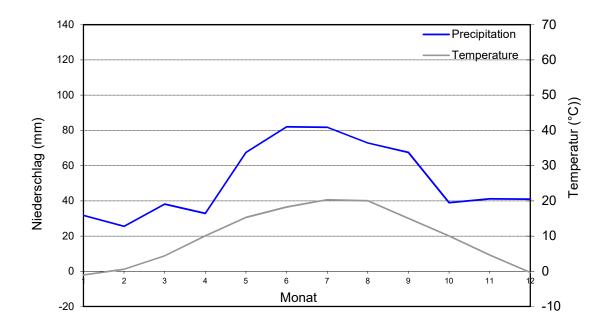


Abbildung 5 Ganglinie der mittleren Temperatur und Niederschläge an der Erosionsmessstelle Mistelbach von 1994 – 2015

3.1.3 Bodenverhältnisse

Die an der Versuchsstelle anzutreffende Bodenform ist als kalkhaltiger Kulturrohboden einzuordnen. Abbildung 6 zeigt eine detaillierte Beschreibung der Bodenform. Als Quelle wurde die digitale Bodenkarte der österreichischen Bodenkartierung herangezogen.

Nach den Ergebnissen der Texturanalyse oberflächennahe entnommener, gestörter Bodenproben des Ausgangsbodens der Versuchsflächen vom 30.04.2019, kann der Boden als lehmiger Schluff eingestuft werden. (siehe Kapitel 3 - Ergebnisse) Aufgrund des hohen Schluffgehaltes ist der Boden grundsätzlich als erosionsanfällig einzustufen.

Beschreibung der Bodenform - ID 50 | KB 157 | Bodentyp kKU

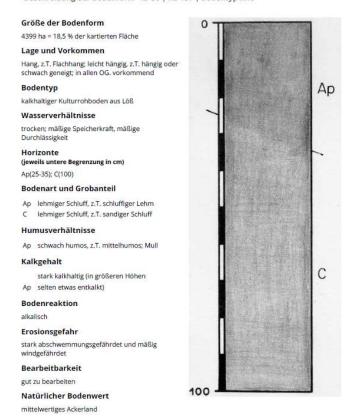


Abbildung 6 Beschreibung der Bodenform, (Quelle: Ebod - Österreichische Bodenkarte, Erscheinungsjahr 1999)

3.1.4 Funktionsweise der Versuchseinrichtung

Die Messstelle umfasst insgesamt vier Versuchseinrichtungen mit jeweils einer Messhütte. Für jeden Versuch wurde eine Fläche mit 45m² mithilfe von Blechen aus rostfreiem Stahl im bereits besäten Ackerboden eingegrenzt. Dabei wurde darauf geachtet, dass an der Oberfläche abfließendes Wasser innerhalb des begrenzten Bereiches gesammelt in Richtung der Falllinie abfließt. Am unteren Ende der Versuchsfläche befindet sich eine Auffangrinne mit einer Fläche von 0,75 m², auf welcher sich abgetragener Boden sammelt. Ebenso wird darauf der Oberflächenabfluss kanalisiert und durch einen Auslass am unteren Ende über ein Rohr hangabwärts transportiert.

Das Rohr führt zu einer Hütte, in welcher sich die Messeinrichtung zur Ermittlung der Menge des Oberflächenabflusses befindet. Der zuvor in der Rinne gesammelte und durch das Rohr abgeleitete Oberflächenabfluss gelangt in ein Messrad mit vier radial angeordneten Behältern. Bei Vollfüllung des zum betrachteten Zeitpunkt an der Oberseite befindlichen Behälters, kippt das Messrad durch die Gewichtskraft des Wassers und dreht sich um eine Viertelumdrehung. Das durch das Rohr eintreffende Wasser gelangt nun in den nächsten Behälter, während die Umdrehung des Messrades mithilfe einer Schnur und eines Datenloggers aufgezeichnet wird. So lässt sich zum Zeitpunkt der Auswertung die abgeflossene Wassermenge ablesen.

Bei jedem Kippvorgang des Messrads wird das Wasser, welches zuvor im vollgefüllten Behälter war, aufgefangen. Ein eingebautes Zwischenstück mit wabenförmigen Öffnungen dient zur Teilung der Abflussmenge und leitet einen Teil der durchfließenden Menge in einen Sammelbehälter, aus welchem die Proben zur weiteren Analyse des Oberflächenabflusses entnommen werden können. Das restliche Wasser aus dem Teiler fließt ab und versickert im Boden.

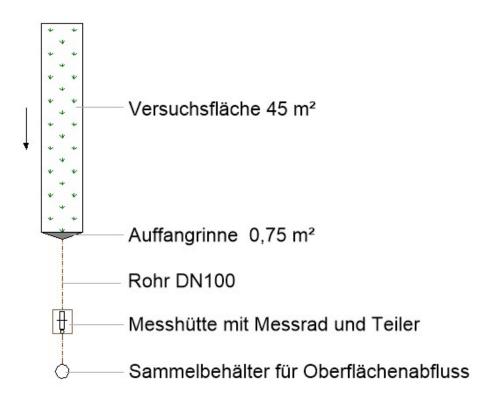


Abbildung 7 Schematische Darstellung der Messstelle

Abbildung 8 Messhütte (links) Messrad zur Erfassung der Abflussmenge (rechts)

Abbildung 9 Versuchsfläche Variante Direktsaat 2 (17.05.2018)

Die Aufnahme in Abbildung 9 vom 17.05.2018 zeigt die mit Blechen eingegrenzte Versuchsfläche der Variante Direktsaat 2, die Auffangrinne am unteren Ende sowie das Rohr, mit welchem der Oberflächenabfluss zur Messhütte weitergeleitet wird.

Abbildung 10 Luftaufnahme der Messstelle, 16.08.2018, eigene Aufnahme

3.1.5 Probenentnahme

Die Entnahme der Proben, welche auf der Rinne am unteren Ende des begrenzten Versuchsbereichs gesammelt werden, erfolgt, je nach Zustand der Proben, mit geeignetem Werkzeug (Spachtel, Schaufel, Besen).

Im Anschluss werden die Proben in einem geeigneten Behältnis (z.B. Plastikbeutel) gesammelt und für den Transport ins Labor verwahrt, welcher möglichst zeitnah zu erfolgen hat.

Nach der Entnahme von den Metallflächen muss der Übergangsbereich an der Kante zwischen Boden und Auffangfläche so naturnah wie möglich wiederhergestellt werden. Es ist darauf zu achten, dass Boden und Metallfläche auf gleichem Niveau liegen, dabei darf der Boden jedoch keinesfalls verdichtet werden.

Die Entnahme der Proben des Oberflächenabflusses wird durch Umfüllen des Sammelbehälters in geeignete Gefäße gehandhabt. Vor dem Umfüllen ist darauf zu achten, dass bereits am Boden des Behälters abgesetztes Sediment im Vorfeld durch Rühren mit einem geeigneten Hilfsmittel bei der Probenentnahme in der Suspension enthalten ist.

3.1.6 Niederschlagsmessung

Für die Messung der Niederschläge stehen am Versuchsstandort verschiedene Messeinrichtungen zur Verfügung. Ein im nahen Umfeld der zweiten Messhütte installierter digitaler Niederschlagsmesser (HOBO Tipping Bucket) gewährleistet die permanente Aufzeichnung mithilfe einer Wippe, welche die Niederschlagsmenge in 0,1 mm – Schritten dokumentiert. Weiters befindet sich direkt daneben ein Distrometer sowie ein Keil zur Regenmessung.

3.2 Untersuchte Varianten

Die Versuche wurden insgesamt an vier Flächen, welche mit drei unterschiedlichen Bodenbearbeitungsverfahren bearbeitet wurden, durchgeführt. An jeder der vier Versuchsflächen wurde Mais der Sorte "Arno" angebaut.

In der folgenden Tabelle sind die Varianten mit der jeweiligen Bodenbearbeitung dargestellt:

Tabelle 1 Versuchsvarianten

Variante 1	Konventionelle Bodenbearbeitung
Variante 5	Konservierende Bodenbearbeitung mit Gründecke - Mulchsaat
Variante 6	Direktsaat 1 mit Gründecke
Variante 7	Direktsaat 2 mit Gründecke

(Anmerkung: Die Bezeichnungen – Variante 1, 5, 6, 7 waren aufgrund einer Vielzahl weiterer Versuche des Forschungsprogrammes vorgegeben. Aus Gründen der Übersicht beim Vergleich mit Ergebnissen vergangener Messungen wurden die Nummerierungen beibehalten. Durch die Verfügbarkeit einer vierten Messeinrichtung

konnten die Versuche der Direktsaat-Variante an zwei Einrichtungen nebeneinander durchgeführt werden. Für Variante 1 und 5 stand jeweils eine Messeinrichtung zur Verfügung)

3.3 Versuchsdurchführung

In der folgenden Tabelle sind die Maßnahmen der Bodenbearbeitung für den Zeitraum nach der Ernte der Vorfrucht im Jahr 2017 bis zur Aussaat der Hauptfrucht 2018 gelistet.

Tabelle 2 Maßnahmen zur Bodenbearbeitung (Quelle: LAKO – Versuchsberichte)

Variante	01.08.2017	08.08.2017	16.11.2017	10.08.2017	05.04.2018	17.04.2018
Konventionell	Scheibenegge		Pflug		Kreiselegge	Aussaat
Konservierend mit Gründecke	Scheibenegge	Grubber		Aussaat Gründecke		Aussaat
Direktsaat mit Gründecke				Aussaat Gründecke		Aussaat

Die konventionell bewirtschaftete Variante, wurde mit Scheibenegge, Pflug und Kreiselegge bearbeitet. Die Mulchsaat-Variante wurde 2017 mit der Scheibenegge sowie mit dem Grubber bearbeitet. Bei den beiden Direktsaat-Varianten wurde zur Gänze auf Bodenbearbeitung verzichtet. Als Gründecke wurde folgende Gründüngungsmischung bei einer Saatmenge von 50 kg/ha eingesetzt: Platterbse, Sommerwicke, Buchweizen, Alexandriner, Persischer Klee und Senf.

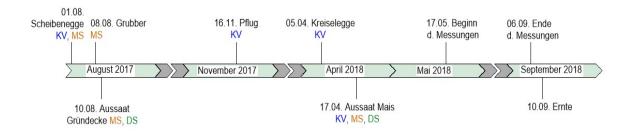


Abbildung 11 Grafische Darstellung des zeitlichen Ablaufes der Maßnahmen zur Bodenbearbeitung. KV=konventionell MS=Mulchsaat DS=Direktsaat

Ab 05.04.2018 wurde mit den Vorbereitungsarbeiten der vier Messtellen begonnen. Die Messhütte der Variante Direktsaat 2 wurde neu eingerichtet und die bereits bestehenden Messhütten wurden gereinigt, aufbereitet und die Rohrverbindungen zu den Auffangflächen vorbereitet. Ein Teil der Bleche konnte bereits eingebaut werden bei der Auffangrinne eingerichteten Variante der neu Nachbesserungsarbeiten vorgenommen werden. Die Aussaat erfolgte am 17.04.2018 und die Fertigstellung der Einbauarbeiten am 17.05.2018. Ab diesem Zeitpunkt wurde mit den Beobachtungen und Messungen begonnen. Am 06.09.2018 wurden die Messstellen abgebaut und die Flächen für die Ernte der Kultur am 10.09.2018 geräumt.

Die Zeitpunkte der Kontrollen und Probenentnahmen an der Messstelle wurden auf Basis der im Internet abrufbaren Ergebnisse der Niederschlagsmessstelle "Mistelbach (ZAMG)" festgelegt. Ein regelmäßiges Kontrollintervall von circa zwei Wochen wurde auch bei ausbleibendem Niederschlag eingehalten, um etwaige Schäden und Unregelmäßigkeiten an der Messeinrichtung rechtzeitig erkennen und geeignete Maßnahmen treffen zu können.

Abbildung 12 Auffangrinne der Versuchsfläche der konventionell bearbeiteten Variante vor der Probenentnahme 24.07.2018 (links) und 18.07.2018 (rechts)

Die entnommenen Bodenroben wurden luftdicht in Kunststoffbeuteln und der gesammelte Oberflächenabfluss in Probenflaschen verwahrt und unmittelbar nach der Entnahme ins Labor transportiert. Die Umdrehungen des Messrades und die Niederschlagsmenge im Regenmesser, sowie allgemeine Beschreibungen zu Wetter, Bodenfeuchte und Pflanzenhöhe wurden per Messprotokoll festgehalten. Die Auffangrinne und das Messrad wurde nach der Probenentnahme gereinigt und die Rohrleitungen auf Funktionstüchtigkeit kontrolliert.

3.4 Physikalische und chemische Analysen

Die entnommenen Proben des Oberflächenabflusses wurden mit Faltenfiltern "MN 619 G 1/4" filtriert und das dadurch erhaltene Sediment gemeinsam mit den Proben des Bodenabtrags im Trockenschrank bei 105°C bis zur Massenkonstanz getrocknet.

Im Anschluss wurden die Massen der einzelnen Proben durch Wägung ermittelt. Mit der bekannten gesamten Abflussmenge jeder Variante und der ermittelten Sedimentkonzentration im Abfluss der Teilproben konnten die Sedimentmengen zur Ermittlung des gesamten Bodenabtrags hochgerechnet werden. Die errechneten Daten wurden jeweils für den gesamten Zeitraum zwischen den Entnahmezeitpunkten zusammengefasst analysiert und betrachtet. Fanden mehrere Erosionsereignisse statt, so wurden diese als ein Ereignis betrachtet, da eine Zuordnung der Mengen zum jeweiligen Niederschlagsevent im Nachhinein nicht möglich war.

Folgende chemische Analysen wurden vom abgetragenen Bodenmaterial durchgeführt:

Tabelle 3 Chemische Analysen

Kennwerte:	Messverfahren:		
pH-Wert	ÖNORM L 1083		
elektrische Leitfähigkeit	ÖNORM L 1083		
Gesamtstickstoff	C/N – Elementaranalyser vom Typ Vario MAX		
Gesamtphosphor	Königswasseraufschluss ÖNORM L1085		
Kalziumkarbonat	Scheibler–Apparatur ÖNORM L 1083		
Gesamtkohlenstoff	C/N – Elementaranalyser vom Typ Vario MAX		
Organischer Kohlenstoff	Errechnet aus Differenz von Gesamtkohlenstoff und CaCO ₃		

Die Auswertungen der chemischen Analysen sind in Kapitel 4 – "Ergebnisse" angeführt.

Für ausgewählte Proben des Bodenabtrags wurden Texturanalysen durchgeführt. Die Ergebnisse sind in Kapitel 3 – "Ergebnisse" angeführt.

3.5 Auswertung der Niederschlagsmessdaten

Für die Analyse der Niederschlagsdaten wurden die Messergebnisse der Wippe "HOBO Tipping Bucket" herangezogen, da die Messungen der vergangenen Jahre ebenso mit diesem Messgerät erfolgt waren.

Die Auswertung der gemessenen Niederschlagsdaten erfolgte mit dem Windowsbasierten Programm "RIST (Rainfall Intensity Summarization Tool)" des United States Department of Agriculture. Es wurde vom National Sedimentation Laboratory Oxford, Mississippi entwickelt und ermöglicht die Auswertung von Messdaten, je nach Anforderungen, mittels unterschiedlicher Berechnungsmodellen und Einstellungen. Für die Auswertung der Niederschläge der hier behandelten Versuche wurde das RUSLE-Modell verwendet. Die gemessenen Niederschlagsmengen werden bei der gewählten Auswertungsmethode als zusammengehöriges Ereignis gewertet, sofern die Niederschlagsmenge 1,27 Millimeter in sechs Stunden nicht unterschreitet. Eine Unterschreitung führt zur Unterbrechung und Annahme eines neuen Niederschlagsereignisses.

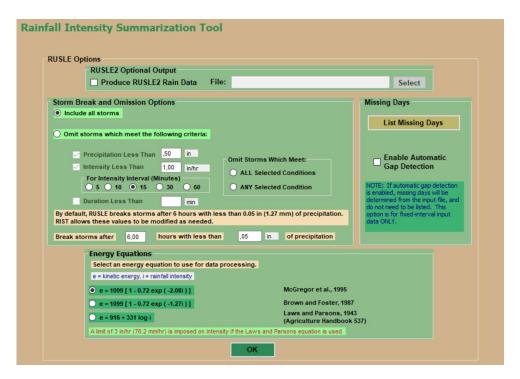


Abbildung 13 Auswahl der Output-Optionen bei der Auswertung der Niederschlagsdaten mit dem Programm "RIST"

Die gemessenen Niederschlagsdaten wurden wie folgt analysiert:

- Anzahl und Dauer der Niederschläge, Anzahl der Niederschläge größer 1,5 mm
- Mittlere Niederschlagsintensität der Ereignisse (mm/h)
- Maximale Intensitäten für 5, 10, 15, 30 und 60 Minuten
- Kinetische Energie (kJ/m²)
- EI30 (kJ*mm/ha*h)

Der El30-Wert ergibt sich aus der maximalen 30-minütigen Intensität, multipliziert mit der errechneten kinetischen Energie des Niederschlages dieses Ereignisses. Da bei der Auswertung dieser Versuche die Niederschläge für den gesamten Zeitraum zwischen den Zeitpunkten der Probeentnahmen zusammengefasst als ein Niederschlagsereignis betrachtet werden, wurden die von RIST ermittelten El30-Werte für diese Zeiträume summiert. Diese summierten Werte ergeben den R-Faktor für das betrachtete Einzelereignis. bildet Der R-Faktor als "Regenund Oberflächenabflussfaktor" einen Faktor der "Universal Soil Loss Equation" (Wischmeier & Smith, 1978). Dieses empirische Modell ermöglicht es, den langjährigen mittleren Bodenabtrag eines Einzelhanges zu prognostizieren. Der R-Faktor wird als Maß für die gebietsspezifische Erosivität des Niederschlages herangezogen.

4. Ergebnisse

4.1 Niederschlagsauswertung

Die Jahresübersicht der Niederschlagsdaten für das Versuchsgebiet wurde aus den Daten der Messstelle "Mistelbach ZAMG" ermittelt. Diese Messstelle befindet sich südlich der Erosionsmessstelle. Die circa 2.2 Kilometer Daten dieser Niederschlagsmessstelle unterscheiden sich teilweise von den Daten, welche direkt an der Erosionsmessstelle ermittelt wurden, was auf die örtlich unterschiedliche Entwicklung lokaler Niederschlagsereignisse differierende und Niederschlagsintensitäten zurückzuführen ist. Diese Unterschiede machten sich auch direkt im Lauf des Messzeitraumes bemerkbar, da die abrufbaren Daten zeitweise nicht den Niederschlagshöhen entsprachen, welche vor Ort bei der Probenentnahme festgestellt werden konnten. Da die Niederschlagsmessung an der Erosionsmessstelle jedoch nicht für das gesamte Jahr in Betrieb war, wird für die Betrachtung der Niederschläge auf Jahresbasis für das Jahr 2018 auf die Daten der Messstelle "Mistelbach ZAMG" zurückgegriffen.

Der an der Messstelle "ZAMG Mistelbach" für 2018 gemessene Jahresniederschlag weicht mit 535 Millimeter nur 2 Millimeter vom langjährigen Mittel (2001-2010) dieser Messstelle mit 537 Millimeter ab, wobei es große Unterschiede in der zeitlichen Verteilung gibt.

In Abbildung 14 sind die Monatssummen des Niederschlages im Jahr 2018 und die mittleren Monatssummen abgebildet. Die Darstellung zeigt für den Zeitraum der Erosionsmessungen eine deutliche Überschreitung des langjährigen Mittels im Juli und September und eine Unterschreitung im August.

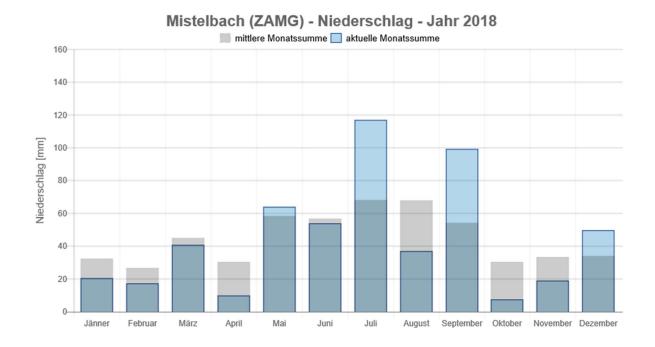


Abbildung 14 Niederschlag 2018 - Monatssummen und langjährige mittlere Monatssummen (Quelle: NÖ-Wasserstandsnachrichten)

Im Zeitraum der Erosionsmessungen, welcher sich vom 17.05.2018 bis 04.09.2018 erstreckte, wurden im Bereich der Erosionsmessstelle mittels HOBO-Messwippe Niederschläge in der Höhe von 428 Millimeter gemessen. Die Menge überschreitet den Mittelwert der langjährigen Aufzeichnungen für Mai bis September an der Erosionsmessstelle. Dieser ergibt von 1994 bis 2015 eine mittlere Niederschlagshöhe von 410 mm. (Anm.: Es ist zu beachten, dass der Zeitraum der Erosionsmessungen die Monate Mai und September nicht zur Gänze beinhaltet) Die Messungen an der Erosionsmessstelle bestätigen mit einer Niederschlagshöhe von 184,1 mm einen deutlich niederschlagsreicheren Juli und einen mit lediglich 16,8 mm gemessenen Niederschlag weitaus trockeneren August im Vergleich zu den langjährigen die Aufzeichnungen. Insgesamt ergab Auswertung der Messdaten 38 Niederschlagsereignisse, wobei 19 davon höher als 1,5 Millimeter ausfielen.

In Abbildung 15 sind die Niederschlagssummen zwischen den Zeitpunkten der Probenentnahmen und die Summe der in diesen Zeiträumen aufgetretenen kinetische Energie dargestellt. Die höchste für einen Beobachtungszeitraum der Erosionsmessung berechnete kinetische Energie von 2,278 kJ/m² wurde zwischen 27.08.2018 und 04.09.2018 bei einer Niederschlagssumme von 116 Millimetern

gemessen. Dieser Zeitraum ist auch jener mit der höchsten gemessenen Niederschlagssumme. Den geringsten Wert der berechneten kinetischen Energie weist der Zeitraum vor der Entnahme der Proben am 27.08.2018 mit 0,184 kJ/m² bei einem Niederschlag von 15 mm auf.

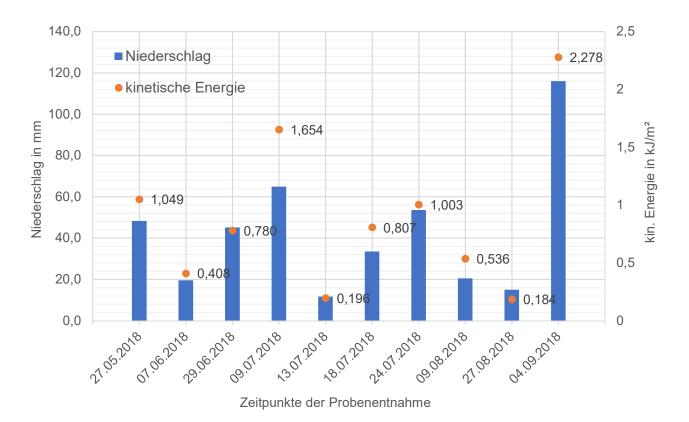


Abbildung 15 Niederschläge und Summe ihrer kinetischen Energie zwischen den Probenentnahmezeitpunkten

In Abbildung 16 sind die Niederschläge zwischen den Zeitpunkten der Probenentnahmen mit dem jeweils für diese Zeitspannen errechneten R-Faktor angeführt. Den höchsten Wert lieferte das Ereignis zwischen 27.08.2018 und 04.09.2018 mit 70,244 kJ*mm/m²*h, den geringsten Wert das Ereignis zwischen 09.08.2018 und 27.08.2018 mit 0,373 kJ*mm/m²*h. Das Ereignis vor der Probenentnahme am 09.07.2018 wies bei einer Niederschlagsmenge von 64,9 mm einen R-Faktor von 58,280 kJ*mm/m²*h auf. Für dieses Ereignis wurde auch die höchste 30-minütige Intensität von 37,75 mm/h gemessen.

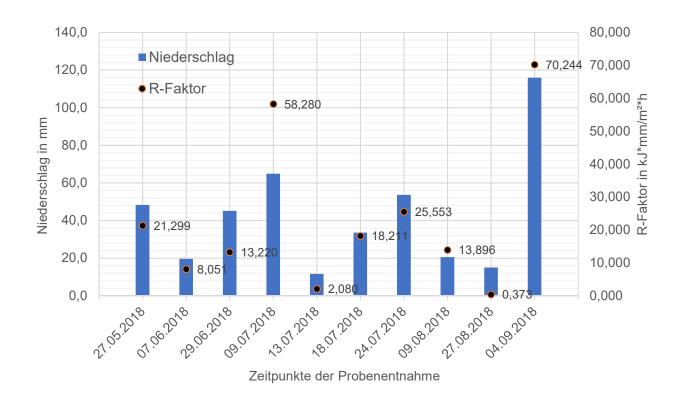


Abbildung 16 Niederschläge und R-Faktoren zwischen den Probenentnahmezeitpunkten

In Abbildung 17 sind die Häufigkeiten der Niederschlagshöhen während des gesamten Versuchszeitraumes ersichtlich. Die analysierten Daten beziehen sich, im Gegensatz zu Abbildung 15 und 16 nicht auf die Summen zwischen den Entnahmezeitpunkten, sondern auf die gemessenen Einzelereignisse. 76,3% der gemessenen Niederschläge im Versuchszeitraum fielen geringer als 10 mm aus. Nur ein Ereignis wies einen höheren Niederschlag als 60 mm auf. 65,8% der Ereignisse verliefen mit einer geringeren 30-minütigen Intensität als 5 mm/h. 68,4% erreichten nur geringere Werte als 10 mm/h. (siehe Abbildung 19) Auch bei Auswertung der mittleren Niederschlagsintensitäten (Abbildung 18) wird deutlich, dass ein hoher Anteil von 78,9% der Niederschläge geringere Intensitäten als 10 mm/h aufwies. Insgesamt überschritten nur 7,9% der Niederschläge eine mittlere Intensität von 10 mm/h. Die Häufigkeiten der Niederschlagsdauer sind in Abbildung 20 dargestellt. Hier wird sichtbar, dass 47,4% der Niederschläge länger als zwei Stunden andauerten. 28,9% endeten bereits nach maximal 15 min.

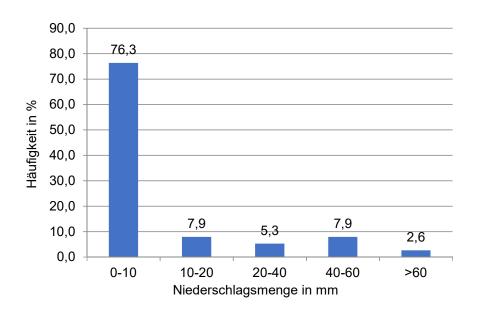


Abbildung 17 Häufigkeiten der Niederschlagshöhen während des Versuchszeitraumes

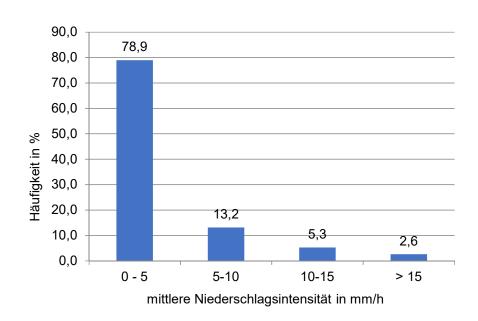


Abbildung 18 Häufigkeiten der mittleren Niederschlagsintensitäten während des Versuchszeitraumes

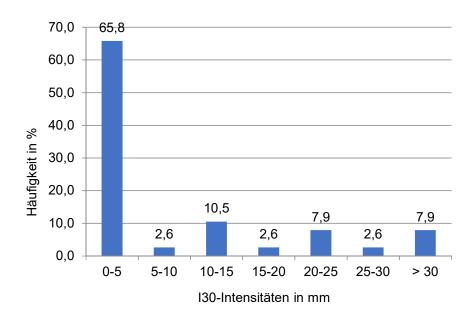


Abbildung 19 Häufigkeiten der I30 – Niederschlagsintensität während des Versuchszeitraumes

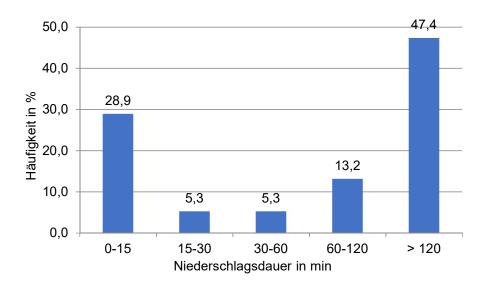


Abbildung 20 Häufigkeiten der Niederschlagsdauer während des Versuchszeitraumes Die Ergebnisse der Niederschlagsauswertung für den Versuchszeitraum zeigen einen hohen Anteil an Ereignissen mit geringerer Intensität und Niederschlagshöhe. Nur eine überschaubare Menge der gesamten Niederschlagsereignisse kann als erosionsauslösend eingestuft werden.

4.2 Oberflächenabfluss

Die erhobenen Messdaten zeigen trotz einiger Ausfälle und Fehlmessungen der Messstelle klare Unterschiede in der Höhe des Oberflächenabflusses konventioneller und konservierender Bodenbearbeitung, sowie Direktsaat. Der zwischen deutlichste Unterschied ist der Variante mit konventioneller Bodenbearbeitung und den Varianten mit Direktsaat zu erkennen. Am 18.07.2018 für eine Niederschlagsmenge von beispielsweise 31,3 Oberflächenabfluss von rund 9,2 mm bei Variante 1 und rund 1,9 mm bei Variante 7 gemessen. Dies ergibt bei diesem Ereignis einen rund fünf Mal höheren Oberflächenabfluss bei der Variante mit konventionell bearbeitetem Boden im Vergleich zur Variante, welche mit Direktsaat bewirtschaftet wurde.

Am 27.08. traten bei einem Niederschlagsereignis von 16,7 mm bei keiner der vier Messstellen messbare Mengen auf. Dies kann auf die geringe mittlere Niederschlagsintensität von maximal 1,3 mm/h und maximale 30-minütige Intensität von 2,9 mm/h in diesem Zeitraum, sowie auf die Dichte der Pflanzendecke zu diesem Zeitpunkt zurückgeführt werden. (siehe Abb. 22)

Bei der Messung am 04.09. wurde ein für den mit 117 mm höchsten Niederschlag pro Messabschnitt im betrachteten Jahr eine, im Vergleich zu den anderen Ereignissen des Messzeitraumes, ebenfalls relativ geringe Abflusshöhe mit 6,06 mm für Variante 1 und 2,65 mm sowie 0,06 mm für Variante 5 und 7 gemessen. Auch hier kann die dichte Pflanzendecke als möglicher Grund angenommen werden.

Die folgende Tabelle veranschaulicht den gemessenen Oberflächenabfluss in Millimeter der vier Varianten für den gesamten Versuchszeitraum.

Tabelle 4 Niederschlagshöhe, R Faktor der Niederschläge sowie Höhe der Oberflächenabflüsse für die untersuchten Varianten

	Oberflächenabfluss								
Zei	traum	NS	R-Faktor	KV	MS	DS1	DS2		
von	bis	mm	kJ* mm/m²*h mm mm mm		mm	mm			
17.05.2018	27.05.2018	48,3	21,299	k.M.	0,00	0,00	0,00		
27.05.2018	07.06.2018	19,6	8,051	0,00	0,00	0,00	k.M.		
07.06.2018	29.06.2018	45,2	13,220	k.M.	0,00	0,00	k.M.		
29.06.2018	09.07.2018	64,9	58,280	k.M.	4,91	0,33	k.M.		
09.07.2018	13.07.2018	11,6	2,080	0,00	0,00	0,00	0,00		
13.07.2018	18.07.2018	33,5	18,211	9,16	1,82	k.M.	1,93		
18.07.2018	24.07.2018	53,6	25,553	2,94	>0,12	0,00	0,00		
24.07.2018	09.08.2018	20,5	13,896	4,67	4,37	1,86	0,99		
09.08.2018	27.08.2018	15,0	0,373	0,00	0,00	0,00	0,00		
27.08.2018	04.09.2018	116,0	70,244	6,06	2,65	>0,00	0,06		
	Summen	428,0		22,83	13,87	2,19	2,98		

> ... höhere Werte zu erwarten, k. M. ... keine Messung

Abbildung 21 konventionell bewirtschaftete Variante am 04.09.2018 (eigene Aufnahme)

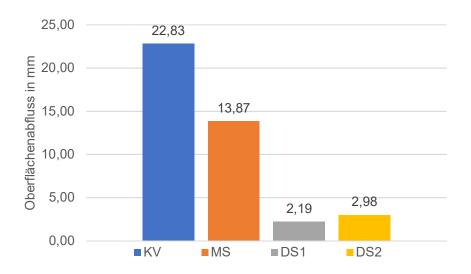


Abbildung 22 Übersicht des gemessenen Oberflächenabflusses für den gesamten Versuchszeitraum

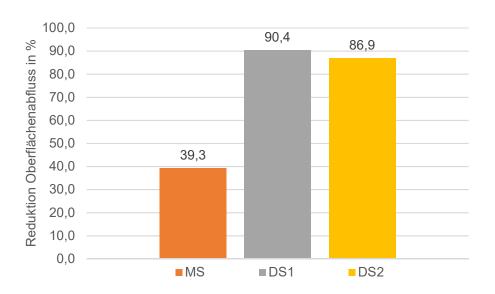


Abbildung 23 Reduktion des Oberflächenabflusses durch Mulch- und Direktsaat im Vergleich zur konventionell bearbeiteten Fläche.

In Abbildung 23 sind die Reduktionen des Oberflächenabflusses bei Mulchsaat und Direktsaat für den gesamten Messzeitraum im Vergleich zur konventionell Bearbeiteten Fläche angeführt. Durch den Einsatz von Mulchsaat konnte der Oberflächenabfluss um 39,3%, durch Direktsaat um 90,4% sowie 86,9% reduziert werden. Der große Einfluss der Bodenbearbeitung auf die Entstehung von Oberflächenabfluss unter den hier vorliegenden Bedingungen wird dadurch deutlich.

Diese Ergebnisse können auf die Annahme zurückgeführt werden, dass der Boden der konventionell bearbeiteten Fläche geringere Infiltrationsraten aufweist. Die Verschlämmung der Oberfläche durch geringere Aggregatstabilität, eine verdichtete Schicht durch häufigeres Befahren mit landwirtschaftlichen Maschinen sowie die negative Beeinflussung der Bodenstruktur durch die intensive Bodenbearbeitung sind mögliche Gründe dafür.

4.3 Bodenabtrag

In Tabelle 6 sind die Mengen des Bodenabtrags für jedes Ereignis, hochgerechnet in Tonnen pro Hektar, dargestellt.

Bei konventioneller Bearbeitung wurde für den Versuchszeitraum ein Bodenabtrag von 9,38 Tonnen pro Hektar gemessen. Mulchsaat und die beiden Direktsaat-Varianten weisen mit 3,19 t/ha, 1,24 t/ha und 0,78 t/ha eine deutlich geringere Menge erodierten Boden auf.

Tabelle 5 Übersicht der Bodenabtragsmengen

Bodenabtrag								
Zeitra	aum	NS	R-Faktor	KV	MS	DS1	DS2	
von	bis	mm	kJ* mm/m²*h	t/ha	t/ha	t/ha	t/ha	
17.05.2018	27.05.2018	48,3	21,299	>0,21	0,01	0,01	0,34	
27.05.2018	07.06.2018	19,6	8,051	0,01	0,00	0,00	>0,02	
07.06.2018	29.06.2018	45,2	13,220	>0,01	0,00	0,01	>0,01	
29.06.2018	09.07.2018	64,9	64,9 58,280		0,52	0,22	>0,02	
09.07.2018	13.07.2018	11,6	2,080	0,00	0,00	0,00	0,00	
13.07.2018	18.07.2018	33,5	18,211	2,20	0,19	>0,22	0,08	
18.07.2018	24.07.2018	53,6	25,553	1,19	>0,04	0,19	0,04	
24.07.2018	09.08.2018	20,5	13,896	3,40	2,04	0,57	0,23	
09.08.2018	27.08.2018	15,0	15,0 0,373		0,00	0,00	0,00	
27.08.2018	04.09.2018	116,0	70,244	0,97	0,39	>0,01	0,05	
	Summen	428,0		9,38	3,19	1,24	0,78	

> ... höhere Werte zu erwarten

In Abbildung 24 sind die Werte des Bodenabtrags zwischen den Zeitpunkten der Probenentnahmen, gemeinsam mit den in dieser Zeit aufgetretenen Niederschlagsmengen, dargestellt. Es sind deutlich höhere Erosionsraten bei konventioneller Bodenbearbeitung, im Vergleich zu Mulchsaat und Direktsaat erkennbar.

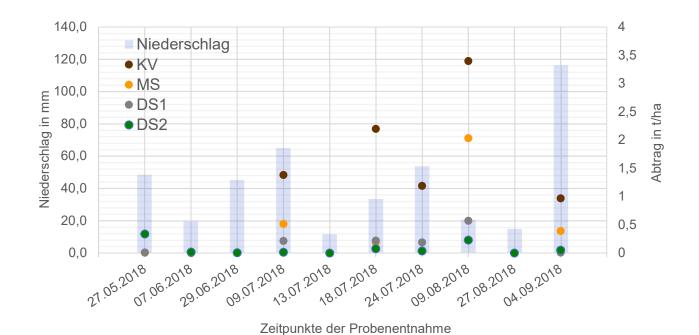


Abbildung 24 Niederschläge und Bodenabtrag im Vergleich

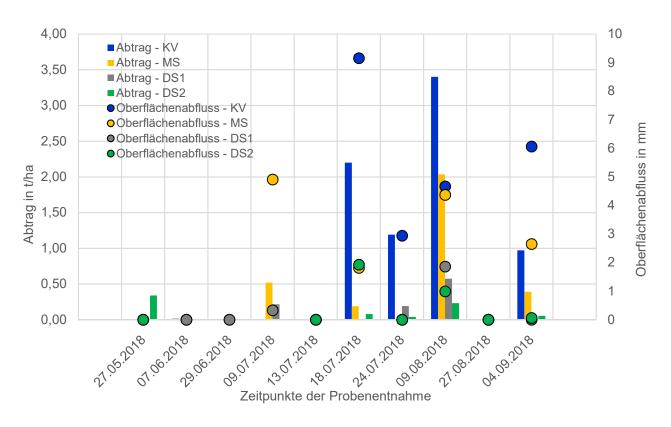


Abbildung 25 Oberflächenabfluss und Bodenabtrag zwischen den Entnahmezeitpunkten

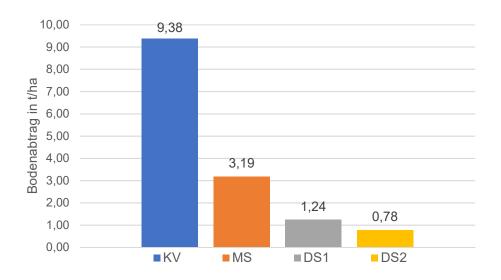


Abbildung 26 Vergleich des gesamten Bodenabtrags im Versuchszeitraum

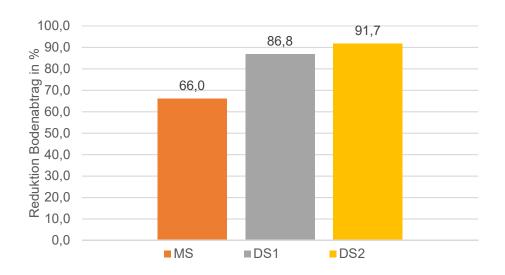


Abbildung 27 Reduktionen der Erosionsmengen bei Mulch- und Direktsaat

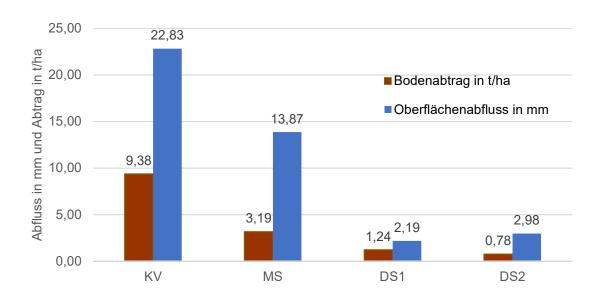


Abbildung 28 Oberflächenabfluss und Bodenabtrag im Messzeitraum

In Abbildung 28 sind die Summen der Oberflächenabflusshöhen und des Bodenabtrags für den gesamten Messzeitraum grafisch dargestellt. Es ist eine deutliche Reduktion beider Werte bei Mulchsaat und Direktsaat im Vergleich zur konventionell bearbeiteten Fläche erkennbar. Der Bodenabtrag bei Mulchsaat ist, im Vergleich zum aufgetretenen Oberflächenabfluss, deutlich geringer als bei der konventionellen Variante. Selbiges wird in Abbildung 29 deutlich. Bei ähnlicher Höhe des Oberflächenabflusses fallen die Bodenabtragsmengen bei der konventionell bewirtschafteten Variante im Vergleich zur Mulchsaat und Direktsaat meist höher aus. Dies kann auf die Annahme zurückgeführt werden, dass sich eine höhere Aggregatstabilität sowie die Mulchschicht an der Oberfläche bei Mulchsaat positiv auf eine Reduktion des Bodenabtrags auswirken.

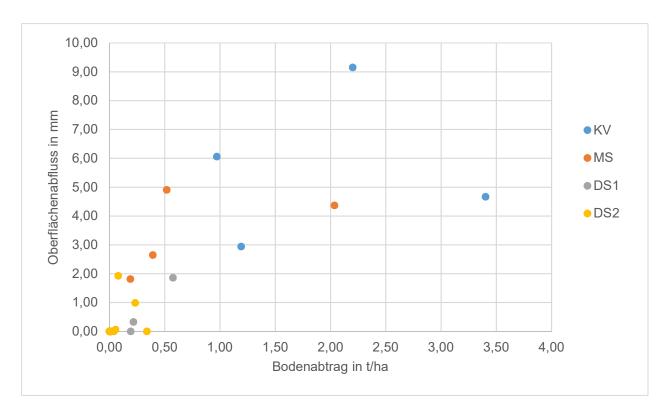


Abbildung 29 Oberflächenabfluss und Bodenabtrag von Einzelereignissen

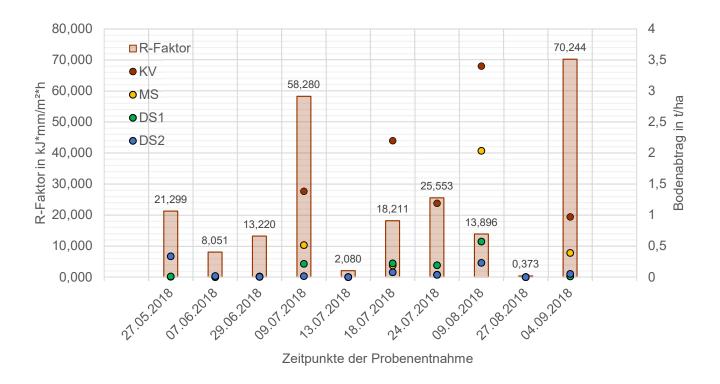


Abbildung 30 R-Faktor und Bodenabtrag im Vergleich

Der Vergleich des R-Faktors der Ereignisse mit dem Bodenabtrag der vier Varianten zeigt, dass ein hoher R-Faktor nicht uneingeschränkt als Indiz für ein Erosionsereignis mit hoher Erosionsrate herangezogen werden kann. Das Ereignis am 09.08.2018 weist im Vergleich zum Ereignis am 04.09.2018 eine wesentlich höhere Erosionsmenge bei allen vier Varianten auf. Beim Ereignis im September wurde jedoch einen deutlich höherer R-Faktor errechnet. Hier müssen weitere Faktoren miteinbezogen werden. Hohe Niederschlagsintensitäten in kurzer Zeit, sowie der Zustand der Böden vor dem Ereignis und die fortgeschrittene Entwicklung der Pflanzendecke können beispielsweise Gründe für diese Ergebnisse darstellen.

In Abbildung 31 ist der Unterschied des Unkrautbestandes bei konventioneller Bodenbearbeitung (links), konservierender Bodenbearbeitung – Mulchsaat (Mitte) und Direktsaat (rechts) deutlich erkennbar. Bei Direktsaat ist eindeutig der stärkste Unkrautbestand zu erkennen. Im Vergleich dazu weist die konventionell bearbeitete Fläche kaum Bestand auf.

Abbildung 31 Unkrautbestand zwischen den Reihen einer Maiskultur im Vergleich v.l.n.r.: KV, MS, DS (Eigene Aufnahme, 27.08.2018)

Die vorliegenden Ergebnisse der Messungen des Bodenabtrags zeigen, dass konventionelle Bodenbearbeitung im Vergleich zu konservierender Bodenbearbeitung und Verfahren der Direktsaat unter den Umständen der hier durchgeführten Versuche zu deutlich höheren Erosionsraten führt. Die Reduktionen der Erosionsmengen ergaben bei Mulchsaat 66% und Direktsaat 86,8% sowie 91,7% im Vergleich zur konventionell bearbeiteten Fläche.

4.4 Untersuchungen des Bodenmaterials

4.4.1 Texturanalyse

Für die Texturanalyse des Bodenmaterials wurden am 30.04.2019 gestörte Bodenproben an der Oberfläche entnommen. Für die Analyse des Erosionsmaterials wurden vier Einzelereignisse herangezogen.

Tabelle 6 Ergebnisse der Texturanalyse

Anteile Feinboden - Erosionsmaterial in %							
09.08.2018 KV 09.08.2018 MS 09.08.2018 DS 18.07.2							
Grobsand:	0,8	1,4	0,9	1,5			
Mittelsand:	2,5	2,7	2,7	3,1			
Feinsand:	9,0	7,5	8,3	7,5			
Schluff:	69,6	67,3	71,5	68,3			
Ton:	18,1	21,1	16,5	19,6			

Anteile Feinboden - Ausgangsboden in %								
KV MS DS 1 DS 2								
Grobsand:	1,6	1,5	1,0	1,1				
Mittelsand:	3,8	3,7	2,5	2,7				
Feinsand:	7,9	9,2	7,2	7,9				
Schluff:	64,6	63,5	68,2	67,1				
Ton:	22,1	22,1	21,1	21,2				

Der höchste Sandgehalt des Bodenmaterials an der Oberfläche innerhalb der Versuchsflächen wurde mit 14,4 % bei der Mulchsaat-Variante gemessen. Diese weist den geringsten Schluffanteil mit 63,5 % auf. Den höchsten Schluffanteil mit 68,2% und den geringsten Sandanteil mit 10,7 % ergab die Analyse der Direktsaat 1-Variante. Die Tongehalte der vier Varianten unterscheiden sich im Maximum um 1,1%. Der Vergleich der Ergebnisse des Bodenmaterials mit jenen des erodierten Sedimentes zeigt bei allen vier Varianten einen Anstieg des Schluffgehaltes im Erosionsmaterial. Der Anteil der Ton-Fraktion hingegen ist bei allen Varianten im Erosionsmaterial geringer als im Ausgangsmaterial. Mit Ausnahme der Direktsaat 1-Variante, bei

welcher ein nahezu gleichbleibender Sandgehalt festgestellt wurde, ergaben die Analysen geringere Sandgehalte im Sediment als im Ausgangsboden.

Der geringere Tongehalt im Sediment kann auf die hohen Bindungskräfte der Tonpartikel im Boden zurückgeführt werden. Der bei allen vier Varianten erhöhte Schluffanteil im Sediment bestätigt die Annahme, dass Schluff die bei Wassererosion bevorzugt ausgetragene Fraktion darstellt.

In Abbildung 32 und 33 sind die Ergebnisse der Texturanalysen im Texturdreieck dargestellt. Das Bodenmaterial und die Sedimentproben aller Varianten sind als lehmiger Schluff einzustufen.

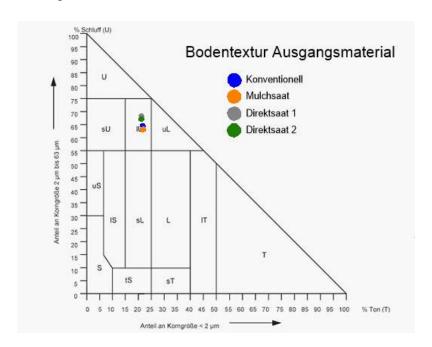


Abbildung 32 Darstellung des Ausgangsbodens im Texturdreieck nach ÖNORM L 1050

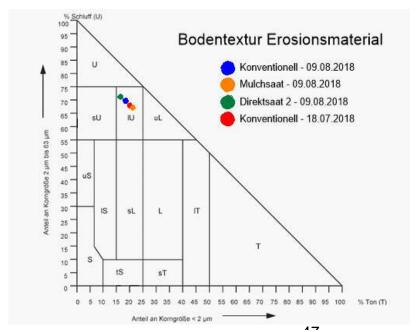


Abbildung 33 Darstellung des Ausgangsbodens im Texturdreieck nach ÖNORM L 1050

4.4.2 Gesamtstickstoff

Die im Versuchszeitraum gesammelten Proben des Bodenabtrags wurden hinsichtlich ihres Gesamtstickstoffgehaltes untersucht. Die konventionell bewirtschaftete Variante weist mit 0,23% im Mittel den geringsten Gehalt an Gesamtstickstoff auf. Bei Mulchsaat und Direktsaat wurden mittlere Gehalte von 0,25% und 0,24% gemessen. Der höhere Gehalt kann auf das Belassen von Pflanzenresten der Vorkulturen und die somit erhöhte Nährstoffzufuhr zurückgeführt werden.

Die Summe der Verluste des Gesamtstickstoffes für den gesamten Beobachtungszeitraum ergibt 21,23 kg/ha bei der konventionellen, 6,5 kg/ha bei Mulchsaat- und 2,89 sowie 1,82 kg/ha bei der Direktsaat-Variante. Die erzielten Reduktionen durch Mulchund Direktsaat wurden mit der Bodenabtragsmenge auf kg/ha hochgerechnet, wodurch sich ähnliche Werte der Reduktion im Vergleich zum Abtrag ergeben und eine deutliche Verringerung der Verluste zu verzeichnen ist.

Tabelle 7 gemessene Gesamtstickstoffgehalte der Bodenproben, hochgerechnet auf die gesamten abgetragenen Bodenmengen.

Gesamtstickstoffaustrag in kg/ha							
Zeitra	aum	NS	R-Faktor	KV	MS	DS1	DS2
von	bis	mm	kJ* mm/m²*h	kg/ha	kg/ha	kg/ha	kg/ha
17.05.2018	27.05.2018	48,3	21,299	>0,47	0,02	0,03	0,82
27.05.2018	07.06.2018	19,6	8,051	0,03	0,00	0,00	>0,05
07.06.2018	29.06.2018	45,2	13,220	>0,03	0,02	0,04	>0,02
29.06.2018	09.07.2018	64,9	58,280	>2,88	1,31	0,62	>0,04
09.07.2018	13.07.2018	11,6	2,080	0,00	0,00	0,00	0,00
13.07.2018	18.07.2018	33,5	18,211	5,48	0,48	>0,61	0,22
18.07.2018	24.07.2018	53,6	25,553	2,60	>0,10	0,50	0,09
24.07.2018	09.08.2018	20,5	13,896	7,86	3,70	1,07	0,48
09.08.2018	27.08.2018	15,0	0,373	0,00	0,00	0,00	0,00
27.08.2018	04.09.2018	116,0	70,244	1,88	0,87	>0,02	0,11
	Summen	428,0		21,23	6,50	2,89	1,82

> ... höhere Werte zu erwarten

Die Analyse der einzelnen Bodenproben nach ihrem Gesamtstickstoffgehalt ergab folgende Stickstoffgehalte, gemittelt über den gesamten Versuchszeitraum:

Tabelle 8 mittlere Gesamtstickstoffgehalte

Mittlere Stickstoffgehalte und Standardabweichung der Proben						
KV = 0,23%	MS = 0,25%	DS1 = 0,24%	DS2 = 0,24%			
SD = 0,04%	SD = 0,06%	SD = 0,05%	SD = 0,02%			

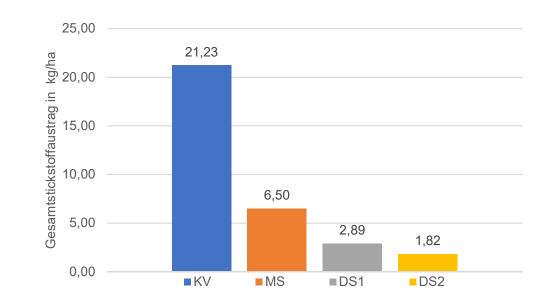


Abbildung 34 Gesamtstickstoffaustrag im gesamten Messzeitraum

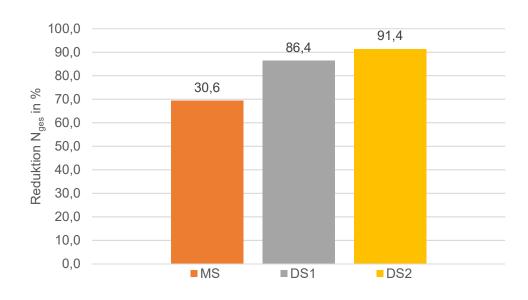


Abbildung 35 Reduktion Gesamtstickstoffaustrag für den gesamten Messzeitraum

4.4.3 Phosphoraustrag

Die auf Basis der Ergebnisse des Bodenabtrags und der Einzelanalysen des Phosphorgehaltes hochgerechneten Gesamtverluste betragen für den gesamten Versuchszeitraum bei konventioneller Bodenbearbeitung 4,31 kg/ha, bei Mulchsaat 1,4 kg/ha und bei Direktsaat 0,58 sowie 0,35 kg/ha. Die mittleren Phosphorgehalte der Einzelproben betragen bei konventioneller Bearbeitung 0,04%, Mulchsaat 0,05% und Direktsaat 0,05% sowie 0,04%. Durch die reduzierten Bodenbearbeitungsmethoden konnten Reduktionen 32,5% bei Mulchsaat und bis zu 91,8% bei Direktsaat erzielt werden.

Tabelle 9 gemessene Phosphorgehalte der Bodenproben, hochgerechnet auf die gesamten abgetragenen Bodenmengen.

Phosphoraustrag in kg/ha								
Zeitra	aum	NS	R-Faktor	KV	MS	DS1	DS2	
von	bis	mm	kJ* mm/m²*h kg/ha k		kg/ha	kg/ha	kg/ha	
17.05.2018	27.05.2018	48,3	21,299	>0,10	0,00	0,01	0,14	
27.05.2018	07.06.2018	19,6	8,051	0,00	0,00	0,00	>0,01	
07.06.2018	29.06.2018	45,2	2 13,220 >0		0,00	0,01	>0,00	
29.06.2018	09.07.2018	64,9	,9 58,280		0,23	0,10	>0,01	
09.07.2018	13.07.2018	11,6	2,080	0,00	0,00	0,00	0,00	
13.07.2018	18.07.2018	33,5	18,211	0,96	0,01	>0,10	0,04	
18.07.2018	24.07.2018	53,6	25,553	0,56	>0,00	0,09	0,02	
24.07.2018	09.08.2018	20,5	13,896	1,57	0,98	0,27	0,11	
09.08.2018	27.08.2018	15,0	0,373	0,00	0,00	0,00	0,00	
27.08.2018	04.09.2018	116,0	70,244	0,51	0,18	>0,01	0,03	
	Summen	428,0		4,31	1,40	0,58	0,35	

> ... höhere Werte zu erwarten

Tabelle 10 Phosphorgehalte und Standardabweichung

Mittlere Phosphorgehalte und Standardabweichung der Proben						
KV = 0,04%						
SD = 0,006%	SD = 0,003%	SD = 0,003%	SD = 0,004%			

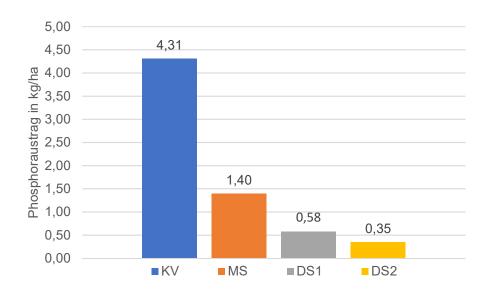


Abbildung 36 Phosphoraustrag während des gesamten Versuchszeitraumes

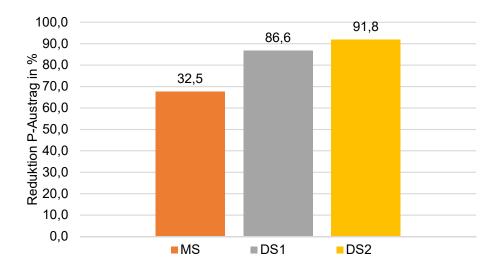


Abbildung 37 Reduktion des Phosphoraustrags bei Mulch- und Direktsaat bezogen auf konventionell bewirtschaftete Fläche für den gesamten Versuchszeitraum

4.4.4 Organischer Kohlenstoff und Kalziumcarbonat

Für die Kohlenstoffes Bestimmung des organischen wurde der Gesamtkohlenstoffgehalt im Erosionsmaterial für sämtliche Einzelereignisse, bei welchen eine für die Analyse ausreichende Menge an Bodenmaterial vorhanden war, durchgeführt. Weiters wurde der Gehalt an Kalziumkarbonat mittels Scheibler-Apparatur bestimmt. Aus der Differenz dieser beiden Werte wurde der Gehalt an Kohlenstoff errechnet. Hierfür organischem wurden die mittleren Gesamtkohlenstoffgehalte der jeweiligen Varianten, sowie der mittlere Gehalt an Kalziumkarbonat aller Proben, bei welchen dieser ausgewertet wurde, herangezogen.

Tabelle 11 Kalziumkarbonat- und Kohlenstoffgehalte der Varianten

Variante	C _{ges} / %	C _{org} / %	CaCO ₃ /%	
KV	3,23	1,21		
MS	3,41	1,40	2.01	
DS1	3,29	1,27	2,01	
DS2	3,06	1,05		

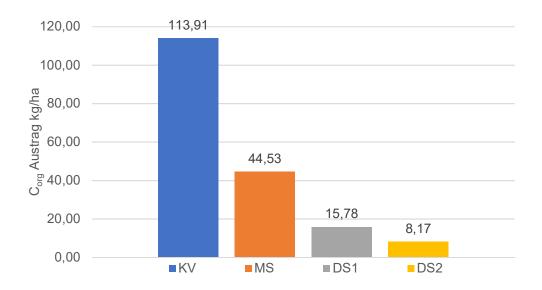


Abbildung 38 Austrag organischen Kohlenstoffs im Messzeitraum

Die Hochrechnung der Gehalte organischen Kohlenstoffes für den gesamten Messzeitraum ergeben einen Verlust von 113,91 kg bei der konventionell bearbeiteten Variante, 44,53 kg bei Mulchsaat und lediglich 15,78 kg bei Direktsaat 1, sowie 8,17 kg bei Direktsaat 2. Durch die alternativen Bearbeitungsformen konnten die Austräge bei Mulchsaat um knapp 61 % und bei den beiden Direktsaatvarianten um rund 86 %, sowie 93 %, im Vergleich zur konventionell bearbeiteten Fläche, reduziert werden.

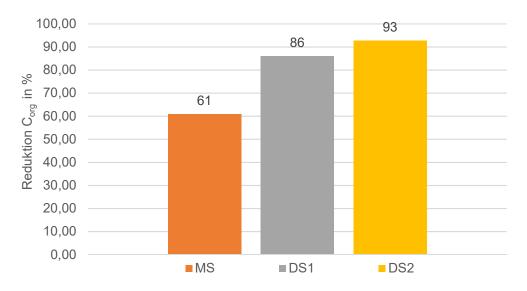


Abbildung 39 Reduktion des Austrags organischen Kohlenstoffes bei Mulch- und Direktsaat bezogen auf konventionell bewirtschaftete Fläche für den gesamten Versuchszeitraum

4.4.5 Elektrische Leitfähigkeit und pH-Wert

Für folgende, in Tabelle 13 angeführte Bodenproben, wurde der pH-Wert und die elektrische Leitfähigkeit ermittelt. Sämtliche Proben sind als alkalisch einzustufen.

Tabelle 12 mittlere pH-Werte, elektrische Leitfähigkeiten und Standardabweichung

Datum		ΚV		MS)S1	С)S2
Datum	рН	el. Lf.						
27.05.2018	7,68	222	7,59	244,0	7,56	247,5	7,61	243,5
07.06.2018	7,72	232,5	k.M.	k.M.	k.M.	k.M.	7,72	249,5
29.06.2018	7,24	344,5	k.M.	k.M.	7,20	410,5	k.M.	k.M.
09.07.2018	7,57	k.M.	7,42	318,0	7,38	334,0	7,41	319,0
18.07.2018	7,45	289,5	7,43	312,0	7,43	326,0	7,43	326,0
24.07.2018	7,46	311,0	7,29	334,0	7,32	372,0	7,38	319,5
09.08.2018	7,49	274,5	7,42	319,0	7,40	323,5	7,47	280,5
04.09.2018	7,53	308,0	7,57	268,5	7,56	231,5	7,53	269,5

k.M. = keine Messung

Tabelle 13 mittlere pH-Werte, elektrische Leitfähigkeiten und Standardabweichung

Variante	pH-Wert	SD	el. Leitfähigkeit in µS/cm	SD
KV	7,52	0,14	,	
MS	7,45	0,1	285,63	34,96
DS1	7,41	0,13	312,17	63,54
DS2	7,5	0,11	286,79	34,76

4.5 Anmerkungen zu den Ergebnissen

Während des Betriebes der Messstelle kam es aufgrund technischer Probleme mehrmals zu Ausfällen der Messung des Oberflächenabflusses oder zu Messergebnissen, welche auf geringere Werte als die tatsächlichen schließen lassen. Gründe für diese Ausfälle und Abweichungen waren zum Teil undichte Stellen an den Rohrverbindungen und am Messrad, sowie Setzungen der Auffangrinnen mit der Konsequenz der Veränderung des Gefälles zur Ableitung. Ebenso führten zeitweise Verstopfungen der Rohre durch Sediment zur Unterbrechung der Zuleitung des Abflusses zum Sammelgefäß.

Ergebnisse, welche mit ">" versehen sind, müssen als geringere Werte, als tatsächlich vorliegend, betrachtet werden, da bei der Hochrechnung aufgrund von fehlerhaften Messungen nicht die gesamte Menge des Austrages bzw. Abflusses ermittelt werden konnte. Felder, welche mit der Bemerkung "k. M." versehen sind, weisen auf einen Ausfall der Messung hin.

Bei der Messstelle der konventionell bewirtschafteten Variante konnten am 27.5., 29.6., und 9.7. aufgrund eines defekten Rohres keine repräsentativen Messungen des Oberflächenabflusses durchgeführt werden. Bei der Messeinrichtung der Mulchsaat - Variante wurde bei der Probenentnahme am 24.7. eine undichte Stelle am Zuleitungsrohr festgestellt, wodurch das Ergebnis möglicherweise eine geringere Höhe als die tatsächliche des Oberflächenabflusses zeigt. Bei der Messeinrichtung von Variante Direktsaat 1 führte am 18.7. und 4.9. eine undichte Stelle an der Verbindung zwischen Auffangfläche und Rohr zu Verlusten bei der Messung des Oberflächenabflusses. Bei Variante Direktsaat 2 führte eine undichte Fuge im Messrad am 7.6 und am 9.7. zum Ausfall der Abflussmessung. Am 29.6. wurde eine Setzung der Auffangfläche festgestellt, weshalb angenommen werden kann, dass der Oberflächenabfluss nicht zum Rohr weitergeleitet wurde, sondern zuvor seitlich von der Fläche entwichen ist.

Diese Umstände müssen bei der Betrachtung und Interpretation der Ergebnisse berücksichtigt werden. Aufgrund der oben angeführten Ungenauigkeiten muss beim Betrachten der summierten Ergebnisse für den gesamten Versuchszeitraum bei jeder Variante von größeren Abflussmengen, als in den Messergebnissen sichtbar, ausgegangen werden.

5. Vergleich mit Ergebnissen vergangener Messungen

Von 1994 bis 2016 wurden an der Erosionsmessstelle Mistelbach zwölf Versuchsreihen an Mais durchgeführt. Die Ergebnisse der vergangenen Untersuchungen wurden zur Verfügung gestellt und werden in diesem Kapitel für Vergleiche mit den 2018 ermittelten Ergebnissen herangezogen.

Die mittleren Bodenverluste bei 12 Messungen an Mais seit 1994 betragen 49,44 t/ha für konventionelle Bodenbearbeitung, 4,82 t/ha bei Mulchsaat und 2,99 t/ha bei Direktsaat. Die mittleren Abflusshöhen für diesen Zeitraum betragen 27,8 mm, 11,7 mm und 14,5 mm (in derselben Reihenfolge). Die Ergebnisse der Versuche 2018 weisen geringere Werte als die langjährigen Mittelwerte bei Bodenabtrag sowie Oberflächenabfluss auf. Im Schnitt konnten im langjährigen Mittel Reduktionen der Bodenverluste in einer Höhe von 90% und 94% bei Mulch- und Direktsaat erzielt werden. 2018 wurden Reduktionen von 66% und 92% erzielt. Die Auswirkung der Mulchsaat-Variante auf die Reduktion des Bodenabtrags fiel damit geringer aus, als bei den Versuchen aus der Vergangenheit. Die mittleren Verringerungen der Abflusshöhe betragen für die Messungen vor 2018 im Mittel bei Mulchsaat 58,0% und bei Direktsaat 47,7%. 2018 wurden Reduktionen in der Höhe von 39% und 90% (Mulchsaat, Direktsaat) erzielt. Beim Oberflächenabfluss konnten somit bei Mulchsaat geringere, bei Direktsaat jedoch deutliche höhere Reduktionen erzielt werden.

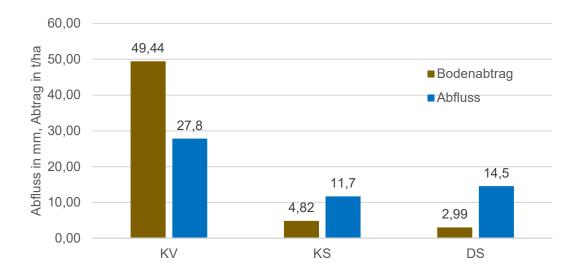


Abbildung 40 Mittlerer Bodenabtrag und Abfluss bei Versuchen an Mais 1994-2016

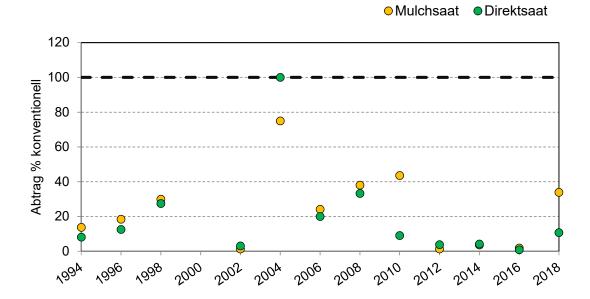


Abbildung 41 Bodenabtrag in % konventioneller Bearbeitung 1994-2018

In Abbildung 41 sind die Werte des Bodenverlustes aller Messungen an Mais seit 1994 in Prozent der Verluste der konventionell bearbeiteten Fläche dargestellt. Beim Großteil der Messungen wurde, wie auch im Jahr 2018, die größte Reduktion mit Direktsaat erzielt.

Die Verluste von Gesamtstickstoff und Phosphor im Jahr 2018 weisen deutlich geringere Werte auf, als die mittleren langjährigen Austräge, was auf die geringeren Bodenabtragsmengen zurückgeführt werden kann.

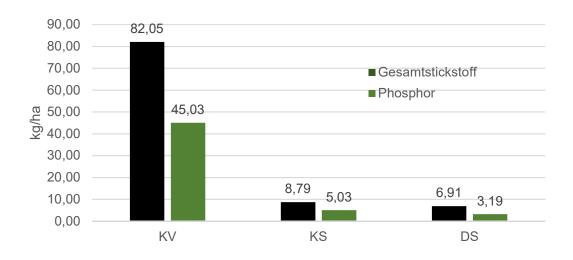


Abbildung 42 Mittlere Verluste von Gesamtstickstoff und Phosphor, Versuche mit Mais 1994-2016

Beim Vergleich mit den Ergebnissen vorheriger Messungen an dieser Erosionsmessstelle ist festzustellen, dass die Verluste im Jahr 2018 insgesamt geringer ausfielen, als die mittleren Verluste der Messungen seit 1994. Die größten Reduktionen bei Bodenabtrag, Oberflächenabfluss, Gesamtstickstoff und Phosphor wurden bei Direktsaat erzielt. Aber auch bei Mulchsaat wurde eine deutliche Verringerung der Verluste gemessen. Die Ergebnisse der in dieser Arbeit behandelten Messungen bestätigen die Ergebnisse der vergangenen Jahre. Das Potential reduzierter Bodenbearbeitungsvarianten zur Erosionsvermeidung wird durch die erlangten Daten deutlich.

6. Zusammenfassung

Von 17.05.2018 bis 04.09.2018 wurden an der Erosionsmessstelle Mistelbach, Niederösterreich Erosionsversuche an Versuchsflächen, welche mit unterschiedlichen Bodenbearbeitungssystemen bewirtschaftet wurden, durchgeführt. Es wurde eine Variante konventionell mit Pflugeinsatz, eine Variante mit Mulchsaat und zwei Varianten mit Direktsaat bewirtschaftet.

Während des Beobachtungszeitraumes wurden Niederschläge in einer Höhe von 428 mm aufgezeichnet. Die Analysen der Niederschlagsmessdaten zeigten, dass es sich von 38 aufgezeichneten Einzelereignissen bei 19 um Niederschläge mit einer Regenmenge geringer als 1,5 mm handelte. Rund 79% der Niederschläge wiesen Intensitäten unter 5 mm/h auf. Bei 24% der Ereignisse wurde eine Niederschlagshöhe von 10 mm überschritten.

Die Messungen an den Versuchsflächen ergaben eine Reduktion des Bodenabtrags von rd. 66% bei Mulchsaat und bis zu rd. 92% bei Direktsaat. Beim Oberflächenabfluss konnte ebenfalls eine erhebliche Verringerung bei Mulchsaat von rd. 39% und bis zu rd. 90% bei Direktsaat erreicht werden. Die Verluste des im Bodenmaterial enthaltenen Gesamtstickstoffes, Phosphors und organischen Kohlenstoffes konnten in weiterer Folge im Vergleich zur konventionellen Variante deutlich reduziert werden.

Als Gründe für diese Ergebnisse können beispielsweise eine höhere Aggregatstabilität aufgrund des höheren Gehaltes organischen Materials und die schützende Wirkung der Mulchschicht an der Oberfläche bei Mulch- und Direktsaat angenommen werden. Der deutlich höhere Unkrautbestand zwischen den Reihen der Maiskultur bei Mulch- und Direktsaat bietet eine zusätzliche Bodenbedeckung und trägt möglicherweise ebenso zum Schutz vor Erosion bei. Weiters kann davon ausgegangen werden, dass die in zahlreicher Literatur beschriebenen negativen Auswirkungen der konventionellen Bodenbearbeitung auf die Bodenstruktur und die Aggregatstabilität, sowie das Infiltrationsvermögen einen erheblichen Beitrag zur Entstehung der Verluste bei diesen Versuchen leisteten.

Es ist festzuhalten, dass die Versuchsflächen seit 1994 mit den untersuchten Bodenbearbeitungsmethoden bestellt werden, was als eine, auf die Zeitskala der landwirtschaftlichen Praxis bezogen, relativ lange Zeit anzusehen ist. Dadurch kann

von guten Voraussetzungen für die Entfaltung des gesamten Spektrums der Vorteile dieser Bearbeitungsmethoden ausgegangen werden. Unter diesen Umständen bietet der Einsatz von Mulchsaat und Direktsaat eine wirkungsvolle Maßnahme, um Verluste durch Erosion bei Maisanbau in Hanglagen zu vermeiden.

Die Ergebnisse der an der Erosionsmessstelle in Mistelbach, Niederösterreich durchgeführten Versuche bestätigten die Annahme, dass konservierende Bodenbearbeitung und Direktsaat zu einer Reduktion der Verluste des Bodens und des Oberflächenabflusses, sowie in weiterer Folge auch zu einer Reduktion der Austragsmenge von organischem Material, Stickstoff und Phosphor führen kann.

7. Literaturverzeichnis

Blum W.E.H.: Bodenkunde in Stichworten – 7., neu bearbeitete und ergänzte Auflage – ISBN 987-3-443-03120-6, S.137

Demmel H., Kirchmeier H., Brandhuber R.: Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften Band 26, Technik in der Pflanzenproduktion - Tagung der Gesellschaft für Pflanzenbauwissenschaften e. V. mit der Max-Eyth-Gesellschaft Agrartechnik VDI-MEG, Konservierende Bodenbearbeitung –Potenzial für Trockenstandorte Hans-Peter Kaul & Gernot Bodner S.12

Derpsch R., Roth C.H., Sidiras N., Köpke U. (1988). Erosionsbekämpfung in Parana, Brasilien, Mulchsysteme, Direktsaat und konservierende Bodenbearbeitung S.196, S.213

Ebod – Digitale Bodenkarte https://bodenkarte.at/#/center/16.5884,48.5851/zoom/16/bm/o letzter Zugriff: 03.06.2019

Kaul H., Bodner G.: Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften Band 26, Technik in der Pflanzenproduktion - Tagung der Gesellschaft für Pflanzenbauwissenschaften e. V. mit der Max-Eyth-Gesellschaft Agrartechnik VDI-MEG, Konservierende Bodenbearbeitung –Potenzial für Trockenstandorte Hans-Peter Kaul & Gernot Bodner S.9

Klaghofer E. Wiener Mitteilungen Band 119 – Wien 1994 "Landeskulturelle Wasserwirtschaft; Festschrift anlässlich der Emeritierung von o. univ. Prof. Dipl.-Ing. Dr. H. Supersperg S.56-57

Klik, A, G. Trümper, U. Baatar, S. Strohmeier, P. Liebhard, F. Deim, G. Moitzi, M. Schüller, N. Rampazzo, A. Mentler, G. Rampazzo-Todorovic, E. Brauner, W. Blum, G. Köllensperger, S. Hann, G. Breuer, B. Stürmer, S. Frank, J. Blatt, J. Rosner, E. Zwatz-Walter, R. Bruckner, J. Gruber, R. Spieß, H. Sanitzer, T.M. Haile, S. Selim, B. Grillitsch, D. Altmann, C. Guseck, W. Bursch und M. Fürhacker. 2010. Einfluss unterschiedlicher Bodenbearbeitungssysteme auf Kohlenstoffdynamik, CO2-Emissionen und das Verhalten von Glyphosat und AMPA im Boden, Abschlussbericht 2010, Forschungsprojekt Nr.: 100069, GZ BMLFUW-LE.1.3.2/0130-II/1/2006.im Auftrag des BMLFUW in Kooperation mit den Bundesländern Niederösterreich und Steiermark.

Klik A.: Ländlicher Raum 6/2004, Bundesministerium für Nachhaltigkeit und Tourismus,https://www.bmnt.gv.at/land/laendl_entwicklung/zukunftsraum_land_mast erplan/Online-Fachzeitschrift-Laendlicher-Raum/archiv/2004/Klik.html S.4

KTBL 2015: Übersicht Bodenbearbeitung, https://www.ktbl.de/fileadmin/user_upload/ Artikel/Pflanzenbau/Bodenbearbeitung/ Bodenbearbeitung_Uebersicht_2015.pdf Stand 02.06.2019 LAKO - Landwirtschaftliche Koordinationsstelle – Versuchsberichte https://lako.at/de/versuche/inc/modules/lako_versuche/pdf/pflanzenbau/boden/erosio n mistelb 2018.pdf, letzter Zugriff 04.06.2019

MAIR S.: Vergleich der Aggregatstabilität von Böden mit unterschiedlicher Bodenbearbeitung - Masterarbeit Dezember 2017, S.59

Möller K.: Pflanzenbauliche und bodenökologische Auswirkungen von Pflug-, Mulchund Direktsaat "Systemvergleich Bodenbearbeitung" Abschlussbericht 2017 S.65, S69, S.74, S.77

NÖ Wasserstandsnachrichten und Hochwasserprognosen https://www.noel.gv.at/wasserstand/#/de/Messstellen/Details/99116541

ÖNORM L 1050 Österreichisches Bodenartendreieck Ausgabe: 2016-03-15

Rosner et. at. 2016 Krankheits- und Schädlingsauftreten bei Konservierender Bodenbearbeitung

http://www.landimpulse.at/agroinnovation/downloads/Dolni%20Dunajovice%20Rosne r%20%20SHORT%202016.pdf, letzter Zugriff: 06.06.2019

Rosner J und K., Deix , Klik, Birr: Minimalbodenbearbeitung und Erosiosschutz 2015 http://www.landimpulse.at/agroinnovation/downloads/warth_2015/BoBea%20Warth% 202015%20Rosner.pdf

Rosner J., Konservierende Bodenbearbeitungssysteme - Versuche in Niederösterreich, https://www.lako.at/de/versuche/inc/modules/lako_versuche/pdf/pflanzenbau/boden/konserv_bodenb_rosner_04_2007.pdf - Letzter Zugriff 03.06.2019, S.1, S.4,

R.P.C. Morgan 1999, Bodenerosion und Bodenerhaltung ISBN 3-13-118321-7 S.139,S.156,S.166,

Schlagheck H.: Bodenschutz und Nachhaltigkeit aus Sicht des BMVEL 2003, Nachhaltige Bodennutzung - aus technischer, pflanzenbaulicher, ökologischer und ökonomischer Sicht : Tagungsband zum Symposium am 16. Oktober 2003 im Forum der FAL, herausgegeben von Artmann R. und Bockisch F. S.10, S.8

Wilhelm B.: Konservierende Bodenbearbeitung im Ökolandbau - Analyse einer Verfahrenstechnik im Kontext der Bodenfruchtbarkeit, Dissertation 2010, S.14

Wischmeier, W. H., and Smith, D.D. 1978. Predicting rainfall erosion losses - a guide to conservation planning. U.S. Department of Agriculture, Agriculture

8. Anhang

Anhang 1 - Niederschlagsauswertung

RIST 3.99.06 RUSLE Storm Output Table for Period of Data Processed.

ETZO	ENERGY	MAY CO	MAX 30	MAY 15	MAY 10	MAX 5	DUBATTON	DRECTR	Data
EI30 MJ*mm/ha*hr	ENERGY M7 /ba	MAX_60 mm/hr	mm/hr	MAX_15 mm/hr	MAX_10 mm/hr	mm/hr	DURATION	PRECIP	Date MO/DA/YR
mJ~mm/na~nr.	MJ/ha	mm/ nr.	mm/nr.	mm/nr	mm/nr	mm/nr	hrs	mm	MO/DA/TK
3.400	0.809	2.937	4.200	6.308	7.004	8.732	2.68	5.32	04/13/2018
0.015	0.040	0.189	0.379	0.640	0.600	1.200	5.01	0.43	04/16/2018
0.088	0.079	0.556	1.113	1.847	2.074	2.580	1.29	0.76	04/23/2018
0.090	0.078	0.580	1.160	2.089	3.000	5.040	0.30	0.58	04/24/2018
0.569	0.260	1.154	2.188	3.007	3.284	3.536	5.28	2.20	04/26/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	05/02/2018
3.418	0.635	2.780	5.379	10.471	15.165	22.575	0.77	2.78	05/02/2018
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.08	0.00	05/03/2018
EI30	ENERGY	MAX_60	MAX_30	MAX 15	MAX 10	MAX_5	DURATION	PRECIP	Date
MJ*mm/ha*hr	MJ/ha	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr	hrs	mm	MO/DA/YR
0.005	0.012	0.200	0.400	0.800	1.200	2.400	0.04	0.20	05/08/2018
0.011	0.020	0.270	0.540	0.689	0.840	1.200	0.44	0.27	05/09/2018
0.002	0.010	0.180	0.200	0.400	0.600	1.200	0.92	0.18	05/10/2018
4.577	1.187	2.552	3.856	5.665	7.065	8.838	22.30	9.31	05/15/2018
17.014	1.519	5.600	11.200	20.342	24.045	28.652	3.62	6.88	05/16/2018
0.089	0.130	0.422	0.680	0.757	0.840	1.200	7.74	1.15	05/17/2018
0.007	0.020	0.181	0.361	0.400	0.600	1.200	4.05	0.26	05/18/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	05/22/2018
13.555	1.284	5.580	10.554	18.786	24.140	30.866	0.73	5.58	05/23/2018
0.142	0.097	0.836	1.471	2.000	2.142	2.148	1.41	0.93	05/24/2018
199.204	8.959	16.007	22.235	28.739	30.360	40.671	3.63	40.18	05/25/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	05/26/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	05/29/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	05/30/2018
80.497	4.082	13.826	19.722	24.505	30.279	36.771	3.39	19.35	06/06/2018
1.669	0.556	2.212	3.000	3.317	3.660	3.973	3.96	4.53	06/12/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	06/14/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	06/26/2018
0.650	0.208	1.580	3.132	4.315	4.480	4.798	0.51	1.58	06/26/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	06/27/2018
115.507	5.668	10.767	20.379	35.523	48.649	62.700	15.76	31.86	06/27/2018
13.962	1.343	6.706	10.400	14.871	18.311	23.689	1.36	6.88	06/28/2018
14.114	1.407	6.853	10.028	14.271	16.035	17.970	1.45	7.57	07/06/2018
568.644	15.062	33.908	37.753	52.165	63.167	77.200	2.83	56.64	07/06/2018
0.000	0.000	0.100	0.200	0.400	0.600	1.200	0.08	0.10	07/09/2018
0.053	0.066	0.400	0.800	1.600	2.400	3.654	1.96	0.56	07/09/2018
20.788	1.949	5.870	10.668	16.781	22.081	28.437	11.57	11.42	
									07/10/2018
0.004	0.010	0.190	0.380	0.400	0.600	1.200	0.38	0.19	07/11/2018
0.000	0.000 0.029	0.100 0.200	0.400	0.800	0.600 1.200	1.200 2.160	0.08 0.30	0.10	07/14/2018 07/16/2018
0.012	0.023	0.200	0.400		1.200	2.100		0.20	07/10/2018
EI30	ENERGY	MAX 60	MAX 30	MAX 15	MAX 10	MAX 5	DURATION	PRECIP	Date
MJ*mm/ha*hr	MJ/ha	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr	hrs	mm	MO/DA/YR
181.537	7.770	15.290	23.365	29.401	24 292	50.400	4.06	31.30	07/16/2018
					34.383				
0.555	0.267	1.100	2.074	2.823	3.000	3.600	10.24	1.90	07/18/2018
255.525	10.032	14.500	25.471	40.432	49.745	61.800	37.44	53.60	07/21/2018
0.002	0.011	0.100	0.200	0.400	0.600	1.200	0.14	0.10	07/25/2018
130.740	4.329	15.464	30.200	58.800	67.920	78.800	1.09	15.50	07/26/2018
8.228	1.024	4.400	8.032	13.958	19.147	23.978	6.43	4.90	07/27/2018

Date	PRECIP	DURATION	MAX_5	MAX_10	MAX_15	MAX_30	MAX_60	ENERGY	EI30
MO/DA/YR	mm	hrs	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr	MJ/ha	MJ*mm/ha*hr
08/10/2018	0.91	11.56	1.200	0.600	0.400	0.200	0.181	0.124	0.025
08/24/2018	6.51	22.67	5.280	3.000	2.296	1.324	1.063	0.819	1.085
08/25/2018	7.43	13.61	3.704	3.098	2.976	2.915	2.750	0.899	2.620
08/27/2018	0.10	0.08	1.200	0.600	0.400	0.200	0.100	0.000	0.000
08/30/2018	1.84	5.18	3.775	3.212	3.003	2.207	1.283	0.214	0.473
09/01/2018	113.46	67.80	97.540	69.051	49.780	31.252	17.464	22.459	701.903
09/04/2018	0.65	2.53	4.356	2.178	1.452	0.726	0.363	0.106	0.077
09/14/2018	0.19	0.36	1.200	0.600	0.400	0.380	0.190	0.010	0.004
09/21/2018	18.83	8.19	15.029	12.174	11.220	10.205	7.978	3.156	32.210
09/23/2018	2.65	17.27	3.278	2.566	1.889	1.278	0.798	0.324	0.414
09/24/2018	1.88	5.59	15.022	8.346	5.567	2.926	1.540	0.372	1.089
09/25/2018	0.10	0.08	1.200	0.600	0.400	0.200	0.100	0.000	0.000
10/03/2018	0.51	1.08	1.200	0.600	0.777	0.547	0.432	0.050	0.027
10/07/2018	0.10	0.08	1.200	0.600	0.400	0.200	0.100	0.000	0.000
10/09/2018	0.00	0.08	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Anhang 2 - chemische Analysen

Analysedaten Stickstoff und Gesamtkohlenstoff

04	Mana	Danasu44 N	D+0.0
Stored	Name	Percent1 N	Percent2 C
14.12.2018	Blank	17470,8496	17432,2598
14.12.2018	Einlauf	0,33471939	1,00514555
14.12.2018	Einlauf	0,26132601	1,05296493
14.12.2018	Glutamin	9,52000046	40,7799988
14.12.2018	Glutamin	9,52000046	40,7799988
14.12.2018	Glutamin	9,52000141	40,7799988
14.12.2018	9.8. R 1 a	0,23348781	3,04240966
14.12.2018	9.8. R 5 a	0,20075504	2,86074519
14.12.2018	9.8. R 6 a	0,17679252	2,63775659
14.12.2018	9.8. R 7 a	0,21361035	2,8190999
14.12.2018	9.8. R 1 b	0,2284964	3,18345928
14.12.2018	9.8. R 5 b	0,16232619	2,838521
14.12.2018	9.8. R 6 b	0,19720797	2,58602405
14.12.2018	9.8. R 7 b	0,20374171	2,7641952
14.12.2018	4.9. R 1 a	0,16824818	3,04639769
14.12.2018	4.9. R 5 a	0,23866919	2,81229901
14.12.2018	4.9. R 6 a	0,16778788	2,59727907
14.12.2018	4.9. R 7 a	0,18905382	2,7834928
14.12.2018	4.9. R 1 b	0,21958275	3,07989311
14.12.2018	4.9. R 5 b	0,20774952	2,78665853
14.12.2018	4.9. R 6 b	0,15506881	2,63482833
14.12.2018	4.9. R 7 b	0,21864897	2,72387099
14.12.2018	24.7. R 1 a	0,22021306	3,11886048
14.12.2018	24.7. R 1 b	0,21631363	3,06635475
14.12.2018	24.7. R 5 a	0,26262283	3,30642939
14.12.2018	24.7. R 5 b	0,25322112	3,36755848
14.12.2018	24.7. R 6 a	0,23429543	3,44439745
14.12.2018	24.7. R 6 b	0,28801125	3,49055123
14.12.2018	24.7. R 7 a	0,23518349	3,00092506
14.12.2018	24.7. R 7 b	0,21602875	2,97747016
14.12.2018	18.7. R 1 a	0,24780533	3,29802513
14.12.2018	18.7. R 1 b	0,23606859	3,23216057
14.12.2018	18.7. R 5 a	0,19822381	3,33887839
14.12.2018	18.7. R 5 b	0,27734154	3,33212614
14.12.2018	18.7. R 6 a	0,2690793	3,49380159
14.12.2018	18.7. R 6 b	0,25852808	3,55078745
14.12.2018	18.7. R 7 a	0,25846928	3,0146966
14.12.2018	18.7. R 7 b	0,24303304	3,06744027
14.12.2018	9.7. R 1 a	0,18402566	3,01532531
14.12.2018	9.7. R 1 b	0,23175594	2,99596119
14.12.2018	9.7. R 5 a	0,27007702	3,41378379
14.12.2018	9.7. R 5 b	0,23524171	3,28914571
14.12.2018	9.7. R 6 a	0,30943775	3,63403821
14.12.2018	9.7. R 6 b	0,26784167	3,53384137
14.12.2018	9.7. R 7 a	0,23540547	2,97494888
14.12.2018	9.7. R 7 b	0,25513539	2,95597982
14.12.2018	29.6. R 1 a	0,31548911	4,15741348
	1	65	

14.12.2018	29.6. R 1 b	0,32119322	4,21969843
14.12.2018	29.6. R 5 a	0,36039305	4,71352625
14.12.2018	29.6. R 5 b	0,35826644	4,78965473
14.12.2018	29.6. R 6 a	0,31442803	3,95767856
14.12.2018	29.6. R 6 b	0,31423149	3,98256087
14.12.2018	29.6. R 7 a	0,29529855	3,83708024
14.12.2018	29.6. R 7 b	0,26330575	3,83670712
14.12.2018	7.6. R 1 a	0,23533401	2,87534642
14.12.2018	7.6. R 1 b	0,23111987	2,86045909
14.12.2018	7.6. R 7 a	0,23409715	2,98197699
14.12.2018	7.6. R 7 b	0,27341959	2,99445605
17.12.2018	Blank	6509,44482	2928,14868
17.12.2018	Einlauf	0,35975975	1,28528476
17.12.2018	Einlauf	0,24343401	1,18067646
17.12.2018	Glutamin	9,52000046	40,7799988
17.12.2018	Glutamin	9,52000046	40,7800026
17.12.2018	Glutamin	9,52000046	40,7799988
17.12.2018	27.5. R1 a	0,02132462	0,31261912
17.12.2018	27.5. R1 b	0,23035893	3,2187891
17.12.2018	27.5. R5 a	0,2103395	3,02156281
17.12.2018	27.5. R5 b	0,23020349	3,03956366
17.12.2018	27.5. R6 a	0,24572289	3,1720655
17.12.2018	27.5. R6 b	0,20742737	3,31060529
17.12.2018	27.5. R7 a	0,24050616	3,10526967
17.12.2018	27.5. R7 b	0,24220642	3,11037946
17.12.2018	27.5. S7 a	0,27046585	4,74491215
17.12.2018	27.5. S7 b	0,35345897	4,65622377
17.12.2018	9.7. S5 a	0,3452296	4,34921646
17.12.2018	9.7. S5 b	0,32653531	4,29545641
17.12.2018	18.7. S1 a 18.7. S1 b	0,27942577	3,53828931
17.12.2018		0,28125867	3,559587
17.12.2018 17.12.2018	18.7. S7 a 18.7. S7 b	0,39350832 0,41586998	4,82648039
			4,81376123
17.12.2018	18.7. S5 a 18.7. S5 b	0,36214986 0,32190567	4,30265951
17.12.2018 17.12.2018	24.7. S1 a	0,2898244	4,16709089 3,60817504
17.12.2018	24.7. S1 b	0,30225495	3,65618396
17.12.2018	24.7. S5 a	0,40299731	4,74207401
17.12.2018	24.7. S5 b	0,48804015	5,16657782
17.12.2018	9.8. S1 a	0,25306842	3,16613412
17.12.2018	9.8. S1 b	0,23599668	3,1213522
17.12.2018	9.8. S5 a	0,33574137	3,44086671
17.12.2018	9.8. S5 b	0,31133401	3,40308905
17.12.2018	9.8. S6 a	0,53393304	5,5411191
17.12.2018	9.8. S6 b	0,57673585	5,58958483
17.12.2018	9.8. S7 a	0,48723438	4,8510437
17.12.2018	9.8. S7 b	0,46391621	4,85293484
17.12.2018	4.9. S1 a	0,31463197	3,62871909
17.12.2018	4.9. S1 b	0,28892273	3,71968007
17.12.2018	4.9. S5 a	0,35540244	4,04703474
17.12.2018	4.9. S5 b	0,37828562	4,06101131

Analysedaten Phosphor

		Messwert		504	Umrechnungsfaktor	504 65	
	Einwaage	Photometer (mg PO4	Einwaage (g Bod. /	PO4 mg/100 g	PO4 auf P2O5	PO4 auf P	MW
	(g)	(IIIg FO4 /L)	(g Bou. / L)	Bod.	0,663	0,326	
29.6. V7	2,0085	24,880	20,085	123,871048	82,12650485		
20.0	2,0000	24,905	20,085	123,995519	82,20902913	•	40,4022504
	2,0085	25,239	20,085	125,6584516	83,3115534	40,9646552	.0, .0==00 .
	_,,,,,,	25,204	20,085	125,4841922	83,19601942	40,9078467	40,9362509
7.6. V1	1,9947	22,534	19,947	112,9668622	74,89702963	36,8271971	,
	,	22,507	19,947	112,8315035	74,80728681	36,7830701	36,8051336
	1,9947	16,660	19,947	83,51882489	55,3729809	27,2271369	•
	,	16,673	19,947	83,58399759	55,4161904		27,2377601
V7	1,9916	26,567	19,916	133,3927495	88,43939295	43,4860364	
		26,531	19,916	133,2119904	88,31954961	43,4271089	43,4565726
	1,9916	26,058	19,916	130,8370155	86,74494125	42,652867	
		25,953	19,916	130,3098012	86,39539817	42,4809952	42,5669311
27.5. V1	1,9934	24,481	19,934	122,8077656	81,42154861	40,0353316	
		24,467	19,934	122,7375339	81,37498495	40,012436	40,0238838
	1,9934	35,337	19,934	177,2674827	117,528341	57,7891994	
		35,290	19,934	177,0317046	117,3720202	57,7123357	57,7507675
V5	2,0043	24,982	20,043	124,639525	82,63600509	40,6324852	
		24,971	20,043	124,584643	82,59961832	40,6145936	40,6235394
	2,0043	24,335	20,043	121,4114653	80,49580153	39,5801377	
		24,278	20,043	121,1270768	80,30725191	39,487427	39,5337824
V6	2,0052	25,898	20,052	129,1517056	85,62758079	42,103456	
		25,853	20,052	128,927289	85,47879264	42,0302962	42,0668761
	2,0052	24,819	20,052	123,7706962	82,05997157	40,349247	
		24,719	20,052	123,2719928	81,72933124	40,1866697	40,2679583
V7	2,0082	25,145	20,082	125,2091425	83,01366149	40,8181805	
		25,083	20,082	124,9004083	82,80897072	40,7175331	40,7678568
	2,0082	24,755	20,082	123,2671049	81,72609053	40,1850762	
		24,716	20,082	123,0729011	81,59733343	40,1217658	40,153421
24.7.V5	2,0024	39,591	20,024	197,7152417	131,0852053	64,4551688	
		39,564		197,5804035	130,9958075		64,4331902
	2,0024	38,242	20,024	190,978326	126,6186301	•	
		38,202	20,024		126,4861891		62,2263734
18.7 V5	2,0183	25,526		126,4702968	83,84980677		
		25,498	20,183	126,3315662	83,75782837		41,2067037
	2,0183	25,565	20,183	126,6635287	83,97791954	,	
		25,551	20,183	126,5941634	83,93193034	41,2696973	41,2810038

		Messwert			Umrechnungsfaktor		
	Einwaage	Photometer	Einwaage	PO4	PO4 auf P2O5	PO4 auf P	MW
		(mg PO4	(g Bod, /	mg/100 g			
	(g)	/L)	L)	Bod,	0,663	0,326	
4.9. V1	2,0023	32,6790	20,023	163,2073116	108,2064476	53,2055836	
		32,6020	20,023	162,8227538	107,9514858	53,0802177	53,1429007
	2,0023	32,0940	20,023	160,2856715	106,2694002	52,2531289	
		32,0950	20,023	160,2906657	106,2727114	52,254757	52,253943
V5	1,9942	25,1810	19,942	126,2711864	83,71779661	41,1644068	44 4404554
	4 00 40	25,1550	19,942	126,1408083	83,63135593	41,1219035	41,1431551
	1,9942	29,8840	19,942	149,8545783	99,3535854	48,8525925	40.0754700
VC	2 0022	29,9120	19,942	149,9949855	99,44667536	48,8983653	48,8754789
V6	2,0032	33,3680	20,032	166,5734824	110,4382188	54,3029553	54 2021000
	2 0022	33,3560	20,032	166,5135783	110,3985024	54,2834265	54,2931909
	2,0032	31,3150	20,032	156,3248802	103,6433956	50,9619109	E0 03E0E00
\/7	2 0000	31,2820	20,032	156,1601438	103,5341753 107,7082243	50,9082069 52,960605	50,9350589
V7	2,0099	32,6520	20,099	162,4558436	,	,	E2 0411414
	2 0000	32,6280	20,099	162,3364346	107,6290562	52,9216777	52,9411414
	2,0099	29,9480 29,8990	20,099	149,0024379	98,78861635	48,5747948 48,4953182	10 5250565
9.8. V1	2 0002	29,0990	20,099 20,092	148,7586447 145,1075055	98,62698144 96,20627613	47,3050468	48,5350565
9.0. V I	2,0092	29,1330	20,092	144,9283297	96,08748258	47,3030466	47,2758411
	2,0092	27,9030	20,092	138,8761696	92,07490046	45,2736313	47,2730411
	2,0092	27,9030	20,092	138,9259407	92,10789867	45,2898567	45,281744
V5	2,0468	30,2100	20,092	147,5962478	97,85631229	48,1163768	45,201744
٧٥	2,0400	30,2340	20,468	147,713504	97,93405316	48,1546023	48,1354895
	2,0468	30,2860	20,468	147,9675591	98,10249169	48,2374243	40,1334093
	2,0400	30,2000	20,468	148,0261872	98,14136213	48,256537	48,2469807
V6	2,0044	28,7740	20,400	143,5541808	95,17642187	46,7986629	40,2403007
VO	2,0044	28,7610	20,044	143,4893235	95,13342147	46,7775195	46,7880912
	2,0044	28,5190	20,044	142,2819796	94,3329525	46,3839254	40,7000312
	2,0044	28,5570	20,044	142,4715626	94,45864598	46,4457294	46,4148274
V7	2,0019	28,1840	20,019	140,7862531	93,34128578	45,8963185	70,7170217
• .	2,00.0	28,1650	20,019	140,6913432	93,27836056	45,8653779	45,8808482
	2,0019	29,8870	20,019	149,2931715	98,9813727	48,6695739	.0,0000.02
	_,00.0	29,8520	20,019	149,1183376	98,86545782	48,6125781	48,641076
24.7. V1	2,0011	30,2110	20,011	150,9719654	100,0944131	,	,
	,	30,1390		150,6121633	99,85586427		49,158213
	2,0011	27,1830	20,011		90,06211084		,
	,	27,2130	20,011	135,9902054	90,16150617	44,332807	44,3083704
V6	1,9954	28,5960	19,954	,	95,01427283		,
		28,5430	19,954	143,0440012	94,8381728	46,6323444	46,675639
	1,9954	29,2850	19,954	146,7625539	97,30357322	47,8445926	
		29,2950	19,954	146,8126691	97,33679964	47,8609301	47,8527614
V7	1,9937	26,6600	19,937	133,7212218	88,65717009	43,5931183	
		26,6670	19,937	133,7563324	88,68044841	43,6045644	43,5988414
	1,9937	26,2150	19,937	131,489191	87,1773336	42,8654763	
		26,1990	19,937	131,4089382	87,124126	42,8393138	42,852395
18.7. V1	2,0039	26,3610	20,039	131,5484805	87,21664255	42,8848046	
		26,3720	20,039	131,6033734	87,25303658	42,9026997	42,8937522
	2,0039	25,9160	20,039	129,3278108	85,74433854	42,1608663	
		25,9280	20,039	129,387694	85,78404112	42,1803882	42,1706273
V6	2,0017	27,3490	20,017	136,6288655	90,5849378	44,5410101	
		27,3340	20,017	136,5539292	90,53525503	44,5165809	44,5287955
	2,0017	27,3510	20,017	136,638857	90,59156217		
		27,2780	20,017	136,274167	90,34977269	44,4253784	44,4848229
V7	1,9995	29,9750	19,995	149,9124781	99,39197299	48,8714679	
		29,9590	19,995	149,8324581	99,33891973	48,8453813	48,8584246

	1,9995	29,8190	19,995	149,1322831	98,87470368	48,6171243	
		29,7940	19,995	149,0072518	98,79180795	48,5763641	48,5967442
9.7. V1	1,9950	26,6130	19,95	133,3984962	88,44320301	43,4879098	
		26,6470	19,95	133,5689223	88,55619549	43,5434687	43,5156892
	1,9950	26,4290	19,95	132,4761905	87,83171429	43,1872381	
		26,4460	19,95	132,5614035	87,88821053	43,2150175	43,2011278
V5	1,9968	28,0100	19,968	140,2744391	93,00195313	45,7294671	
		27,9660	19,968	140,0540865	92,85585938	45,6576322	45,6935497
	1,9968	27,1410	19,968	135,922476	90,11660156	44,3107272	
		27,1140	19,968	135,7872596	90,02695313	44,2666466	44,2886869
V6	1,9941	27,6970	19,941	138,8947395	92,08721228	45,2796851	
		27,6820	19,941	138,8195176	92,03734015	45,2551627	45,2674239
	1,9941	28,3160	19,941	141,9988967	94,14526854	46,2916403	
		28,3130	19,941	141,9838524	94,13529412	46,2867359	46,2891881
V7	1,9979	28,1160	19,979	140,7277642	93,30250763	45,8772511	
		28,0790	19,979	140,5425697	93,17972371	45,8168777	45,8470644
	1,9979	28,0470	19,979	140,3824015	93,07353221	45,7646629	
		28,0380	19,979	140,3373542	93,04366585	45,7499775	45,7573202
29.6. V1	1,9990	27,6510	19,99	138,3241621	91,70891946	45,0936768	
		27,5940	19,99	138,0390195	91,51986993	45,0007204	45,0471986
	1,9990	23,5860	19,99	117,9889945	78,22670335	38,4644122	
		23,5220	19,99	117,6688344	78,01443722	38,36004	38,4122261
V5	1,9971	30,5220	19,971	152,8316058	101,3273547	49,8231035	
		30,4940	19,971	152,6914025	101,2343999	,	49,8002504
	1,9971	28,6700	19,971	143,5581593	95,17905964	46,7999599	
		28,7110	19,971	143,763457	95,315172	46,866887	46,8334235
V6	2,0013	28,7410	20,013	143,6116524	95,21452556	46,8173987	
		28,7110	20,013	143,4617499	95,11514016	46,7685305	46,7929646
	2,0013	27,6940	20,013	138,380053	91,74597512	45,1118973	
		27,6470	20,013	138,1452056	91,59027132	45,035337	45,0736171

9. Eidesstattliche Erklärung

Ich erkläre eidesstattlich, dass ich die Arbeit selbständig angefertigt habe. Es wurden keine anderen als die angegebenen Hilfsmittel benutzt. Die aus fremden Quellen direkt oder indirekt übernommenen Formulierungen und Gedanken sind als solche kenntlich gemacht. Diese schriftliche Arbeit wurde noch an keiner Stelle vorgelegt.

Ort, Datum, Vorname Nachname, Unterschrift