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Abstract 
 

 

 

 

 

In this work, a feed on-demand strategy for mammalian bioprocesses, based on online oxygen uptake 

rate (OUR) determination is presented. For this, historic cultivation data from 13 fed-batch processes 

was analyzed to establish a correlation between glucose consumption and oxygen uptake. A soft 

sensor was generated for the real-time estimation of the glucose concentration in the culture broth, 

using online bioreactor data for OUR calculation as well as the initial glucose concentration of the 

medium and feed. The sensor was evaluated using historic data and showed a mean average 

percentage error (MAPE) of 13 % and a root mean square error (RMSE) of 1.2 g/L. Additionally, several 

oxygen mass transfer coefficient (kLa) determination experiments were conducted to characterize a 

pilot scale reactor (100 L) with respect to kLa. A dynamic model was adapted for the calculation of the 

OUR in this scale, depicting the coefficient at different cultivation conditions in cell culture medium. 

Subsequently, the OUR model was applied together with the glucose soft sensor in a cultivation run 

on pilot scale. The models were combined to establish a feed on-demand control strategy that allows 

for tight control of the glucose concentration in the culture broth. This advanced process control 

strategy was first tested on already existing cultivation data followed by a proof of principle via direct 

application in a lab scale experiment (15 L). 
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Zusammenfassung 
 

 

 

 

 

In dieser Arbeit wird eine Glucose Fütterungsstrategie basierend auf Echtzeit-

Sauerstoffaufnahmeraten-Berechnung für tierische Zellkultur Prozesse vorgestellt. Hierfür wurden 

dreizehn historische Fed-batch Bioprozesse ausgewertet, um die Korrelation zwischen Sauerstoff- und 

Glukoseaufnahmerate zu untersuchen. Der aus diesen Daten generierte Soft-sensor ist in der Lage die 

Glucosekonzentration in Kulturmedium während eines Prozesses zu schätzen und erreichte dabei 

einen mittleren absoluten Fehler (MAPE) von 13 % sowie einen mittleren quadratischen Gesamtfehler 

(RMSE) von 1.2 g/L. Für die Charakterisierung des Massentransferkoeffizienten (kLa) in einem 

Pilotreaktor (100L) wurden eine Reihe von Versuchen durchgeführt und aus den gewonnenen Daten 

ein Modell erstellt, welches den Koeffizienten während des gesamten Fermentationszeitraums 

beschreiben kann. Dieses wurde in die Sauerstoffratenberechnung implementiert und die Rate sowie 

der Glukosekonzentrationsverlauf für einen Bioprozess im Pilotmaßstab berechnet. Mit Hilfe der 

vorangegangenen Experimente konnte eine Fütterungsstrategie entwickelt werden, bei der Anhand 

der Sauerstoffaufnahmerate auf die Glukosekonzentration sowie den Verbrauch geschlossen wird und 

die Differenz zum Sollwert automatisch durch Zugabe von Fütterungsmedium ausgeglichen wird. Diese 

wurde danach in einem Prozess im 15 L Maßstab angewandt und der Grundsatzbeweis erbracht. 
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1. Introduction 

1.1. Bioprocesses 

The manufacturing of large molecules such as recombinant proteins or mAbs is accomplished in 

specially designed and optimized bioprocesses. In such, living organisms are used to generate or 

modify a product with desired properties. Bioprocesses are comprised of a series of unit operations, 

most commonly classified in the upstream and the downstream. They usually start with the media 

preparation, then continue with the cultivation process where the producing organism is propagated 

generating the product of interest, which is afterwards captured and purified.  

The development of a new bioprocess is time consuming and starts with the identification of the 

protein of interest. After selecting a potential candidate and proving efficacy, a high producing 

recombinant cell line is generated. Process conditions are first optimized in small-scale experiments 

(<10 L) until satisfactory results regarding growth behavior, product formation and quality as well as 

process duration are achieved. Next, pilot scale experiments are performed, proving transferability of 

the process conditions to a larger scale. Oxygen transfer rate, shear stress, constant mixing or flow 

regime can be chosen as a scale up parameter depending on the specific circumstances of the process 

(Clarke, 2013). After successful completion of the upscale to production level, the validation of the 

process and all necessary clinical trials, the bioprocess can be approved by the regulatory authorities 

(Conner et al., 2014). 

To provide an isolated and reproducible environment for the host organism, the cultivation is mainly 

carried out in stirred tank reactors (STRs) made of stainless steel. Single use equipment, also known as 

disposables, represent another option for this purpose. There are advantages and disadvantages 

regarding both strategies, e.g. disposable systems save time, because no validation, cleaning and 

sterilization is necessary. However, there are limits in their scale up, higher overhead costs may arise 

during use and there is a risk of leachable substances from the synthetic material contaminating the 

product. Stirred tank bioreactors are predominantly used in large-scale production of bio-

pharmaceuticals despite their higher investment costs. They can be produced with larger capacities 

(>25 m3) and they usually show better oxygen transfer characteristics compared to a single use reactor. 

Over the past decades, several cultivation strategies have been developed. The simplest strategy is the 

batch process, where the vessel is filled with medium and the seed culture (inoculum). There are no 

additions of nutrients during the cultivation process and the producing organism grows until all 

nutrients are depleted or the concentration of toxic byproducts becomes too high. To circumvent 

nutrient limitations, during the producing phase a so called fed-batch strategy can be applied, which 



 

Page | 2  

is the most commonly applied process type in bioreactors (Conner et al., 2014). During such a process, 

nutrients are added on a set schedule and thereby prolonging the cultivation time and production 

phase (Fan et al., 2015). Harvest material and toxic byproducts are not removed until the process is 

finished. Besides, a continuous operation strategy is also possible, e.g. during perfusion bioprocesses 

fresh medium is added continually and the culture broth is partially removed while retaining the cells 

in the reactor. Another possibility for continuous culture is the removal of culture broth including the 

cells, while supplementing the discharged volume with fresh medium. The advantage of these 

continuous-mode techniques are high cell densities as well as lower down time of the plant due to the 

long production time of up to six months for mammalian cells (Wurm, 2004). 

 

1.2. Chinese hamster ovary cells 

For the production of proteins requiring complex PTMs like glycosylation, mammalian cells are 

indispensable. Several systems are available for the manufacturing of recombinant proteins. For 

example, besides the most common Chinese hamster ovary (CHO) or baby hamster kidney (BHK) cells, 

lymphoma derived cell lines such as NS0, SP2 or YB2/0 are also applied (Ozturk & Hu, 2006). 

The protein of interest can be produced using a transient or stable expression system. The former 

introduces the DNA sequence to the cell without integrating into the host genome, resulting in protein 

expression lasting for a few days until the vector is lost. This approach is faster than the latter and 

therefore often chosen for producing small amounts of protein for various purposes such as improving 

the construct, engineering the protein or feasibility assessment. In case multiple drug candidates are 

in line for testing, transient expression systems can speed up the screening process, as they represent 

a less time consuming and more cost effective approach compared to the generation of stable cell lines 

(Gutierrez-Granados, Cervera, Kamen, & Godia, 2018; Kim, Kim, & Lee, 2012). 

For the selection of successfully transfected cells, often a second gene is additionally included in the 

genetic vector as a selection marker (Wurm, 2004). Positive selection markers such as antibiotic 

resistance genes against Zeocin, Hygromycin B and G418 are often used to eliminate not transfected 

cells. The bleomycin analog Zeocin binds and cleaves DNA, whereas the aminoglycoside analogs 

Hygromycin B and G418 inhibit translation by binding to the ribosomal components, thereby resulting 

in cell death in the absence of the resistance marker. In comparison, metabolic selection markers like 

glutamine synthetase (GS) or dihydrofolate reductase (DHFR) operate on a different principle. The host 

cell line lacking the GS or DHFR gene requires additional enrichment of the medium, e.g. upon using a 

GS deficient host cell line, glutamine addition is required to enable cell growth. Thus, cultivation in 

glutamine-free medium can be used for selection of the transfected cells. Furthermore, the addition 
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of methionine sulphoximine (MSX), a GS inhibiting enzyme, increases the selection pressure resulting 

in the amplification of the metabolic marker together with the gene of interest and in consequence 

higher levels of the protein of interest. As for DHFR deficient cell lines, the selection medium lacks 

thymidine, glycine and hypoxanthine, which cannot be produced by the cell. Selective pressure can 

then be increased using methotrexate (MTX), which acts as a DHFR inhibitor (Vishwanathan et al., 

2014).  

For large-scale production, the development of a stable producer cell line is more favorable in terms 

of process consistency and higher protein titers. To generate such a cell line, the recombinant gene 

including transcriptional regulatory elements is introduced into the cells (Hunter, Yuan, Vavilala, & Fox, 

2019). Depending on the size of the gene of interest, different DNA vectors are available. For genetic 

constructs in the range to 10 kb, plasmid vectors such as pCMV are applicable, whereas bacterial 

artificial chromosomes (BAC) have a cloning capacity of up to 300 kb (Zboray et al., 2015). The DNA 

can be introduced by electrical (electroporation), chemical (e.g. cationic lipids) or mechanical 

(microinjection) techniques into the cell, each of which has its advantages and drawbacks regarding 

delivery efficiency, toxicity and scalability (Luo & Mark, W, 2000).  

Although other cell lines are available, in industrial scale 70 % of complex glycosylated proteins are 

produced with CHO cells (Kim et al., 2012; Jayapal et al., 2007). They have been used for over 30 years 

in various processes, proving to be a safe and reliable host. Moreover, CHO cells can be adapted to 

grow in serum-free suspension cultures, thereby meeting regulatory demands regarding the use of 

chemically defined media, free from animal-derived substances. Additionally, suspension cultures 

make the scale up to process volumes of up to 10 m3 feasible, which are nowadays commonly used to 

produce therapeutic antibodies (Kim et al., 2012).  

Among the first industrial batch processes for human recombinant antibodies in CHO cells, a specific 

productivity of 10 pg/cell/day with a cell density of 2x106 cells/mL has been reported. Over the past 

years, many efforts have been made regarding improved vector design, host cell engineering, medium 

development, screening methods, process engineering and development. These advances resulted in 

an increase of specific productivity and higher achievable cell density of up to 90 pg/cell/day and 

10x106 cells/mL in fed-batch processes (Wurm, 2004).  

For recombinant protein production in CHO cells, batch, fed-batch and continuous strategies have 

been successfully implemented on industrial scale. Because of their benefits, such as a high volumetric 

output and fast separation from cultivation broth, perfusion processes are preferentially used for the 

manufacturing of proteins like blood clotting factors, which undergo proteolytic degradation under 

culture conditions. In comparison, due to their rapid development, simple format and ease of scale up, 

fed-batch processes are most often applied, when it comes to the large-scale production of stable 
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products such as antibodies (Huang et al., 2010; Kim et al., 2012). The cells´ growth profile during such 

a process can be in most cases differentiated into growth, stationary and death phases (Pan, Dalm, 

Wijffels, & Martens, 2017). The transitions are triggered by changes in the culture conditions such as 

nutrient depletion or waste accumulation and can therefore be a starting point for process 

improvement.  

The metabolic profile of CHO cells changes with proceeding process time. During growth phase, the 

specific rates of glycolysis and glutaminolysis are elevated, resulting in enhanced lactate and ammonia 

formation (Lindskog, 2018). The shift to stationary phase determines the maximum viable cell density, 

switching the metabolism to efficient use of substrates. This results in a lower flux through glycolysis, 

a higher flux through the tricarboxylic acid cycle (TCA) and the consumption of lactate (Pan et al., 2017). 

Glucose and glutamine are the main source for carbon and nitrogen, respectively. Glucose is converted 

to pyruvate through glycolysis, a pathway conserved in prokaryotic and eukaryotic cells (Berg, 

Tymoczko, & Stryer, 2002). Depending on environmental factors and cellular needs, pyruvate is then 

either reduced to lactate or oxidized in the TCA cycle. The production of lactate can be a challenge for 

the cultivation process, as it acidifies the broth, thus leading to base addition, which changes the 

osmolality of the medium. High lactate production can also be an indicator of poor process 

performance and low product yield, but usually inhibitory concentrations are not reached. For some 

cultures, a net production can be observed during exponential growth phase, switching to lactate 

consumption upon the transition to stationary phase. Different strategies to avoid lactate production 

have been described in the literature. One of them is the limitation of glucose availability, where a 

concentration of 1-6 g/L glucose is held constant during the cultivation process. However, the target 

concentration should not be too low in order not to impair cell growth and to have a safety buffer. 

Other techniques include the use of alternative carbon sources, the metabolic engineering of the host 

or applying adapting feeding strategies, where feed is added based on real-time measurements 

(Gagnon et al., 2011; Lindskog, 2018). 
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1.3. Process control with quality by design 

Until the last decade, the production scheme for pharmaceutical substances relied on the repetition 

of processes with parameter settings in tight ranges, followed by extensive product quality testing. 

With the launch of the quality by design (QbD) and process analytical technology (PAT) initiatives, the 

U.S. Food and Drug Administration (FDA) introduced a new approach to build the quality into the 

product already during the manufacturing process. Consequently, the focus has shifted towards 

identifying the critical process parameters (CPPs) affecting the critical quality attributes (CQAs) of the 

product. This concept makes it possible to intervene during the process by adjusting the CPPs within a 

specified range and thus influence product quality without additional approval of the regulatory 

authorities. To accomplish that, a design space depicting acceptable ranges of critical and non-critical 

parameters as well as their interactions within the unit operation is specified. Besides reducing batch 

rejections, this strategy could lead to a reduced production cycle and real-time product release, 

increased automation and control, improved energy and materials use and the facilitation of 

continuous manufacturing (Paulsson, Gustavsson, & Mandenius, 2014). Monitoring CPPs can ease 

decisions regarding process performance and even enable closed loop control strategies aiming to 

keep the process in the design space (Yu et al., 2014).  

For example, it has been shown that that the glucose concentration during cultivation affects the 

charge heterogeneity of the mABs, a CQA of the product, which can be regarded as a unique fingerprint 

(Sissolak et al., 2019). Controlling the glucose in the broth, e.g. by addition of feed, a direct action could 

be taken affecting the process and the product quality. Unfortunately, the direct measurement of 

glucose in the reactor is very challenging and thus the concentration is usually determined by offline 

measurements which hampers the implementation of a control loop. Existing solutions for direct 

measurement make use of enzymatic detection via glucose oxidase, but these sensors are not steam 

sterilizable and therefore additional equipment such as a dialysis-probe transporting glucose from the 

culture broth to a sensor is used creating a contamination risk for the culture and reducing. 

Additionally, these detectors have a lifespan of 30 days, making it challenging to track glucose during 

a longer lasting process. 

To accomplish such challenges, the PAT framework encourages the use of soft sensors, which combine 

measurement signals from hardware sensors with mathematical models. Thereby not directly 

measurable process indicators and product attributes can be monitored in real-time that are usually 

quantified by offline measurements at a low sampling frequency (Paulsson et al., 2014; Sommeregger 

et al., 2017).  

Depending on their buildup, soft sensors can be data-driven or mechanistic. For the establishment of 

data-driven sensors, multivariate data analysis tools, such as partial least squares or principal 
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component analysis, are often applied. Mechanistic model-based soft sensors require knowledge of 

the relations between quality attributes and process variables and their development is regarded as 

time consuming, as an appropriate design space has to be covered (Luttmann et al., 2012; 

Sommeregger et al., 2017). Depending on the process data used for the development, a soft sensor 

will have application restrictions e.g. with regard to a certain parameter range, a specific process 

strategy, a cell line, a product or the type of medium. Hence, extended validation is necessary before 

applying it to a different process (Sommeregger et al., 2017). Although soft sensors have been 

successfully implemented in monitoring and control strategies of industrial manufacturing processes, 

their application in bioprocesses has seldom exceeded smaller scales (Mandenius & Gustavsson, 2015).  

 

1.4. Oxygen transfer rate 

Oxygen supply during cultivation of animal cells is a crucial parameter affecting cell growth and product 

formation (Wang & Zhong, 2007). Although oxygen limitation has not been considered a problem in 

mammalian cell culture, recent process developments in fed-batch and perfusion cultures enabling cell 

densities over 3x108 cells/mL make adequate aeration a challenging task operating on the limits of 

conventional bioreactors (Lindskog, 2018). Thus, for a proper scale-up to avoid oxygen limitations in 

the manufacturing process, it is necessary to understand the oxygen requirements of animal cells 

during the process. In particular, the oxygen uptake rate (OUR) of the cells has to be smaller or equal 

to the oxygen transfer rate (OTR) in the reactor. The OUR can be calculated as the product of the 

specific oxygen uptake rate (qO2) and the viable biomass (X) according to Equation 1. 

𝑂𝑈𝑅 = 𝑞𝑂2
∗ 𝑋 

Equation 1: Oxygen uptake rate 

Several parameters influence qO2 such as the cell type, the metabolic status and the concentrations of 

metabolites in the broth. Additionally, for commonly used animal cells, the specific oxygen uptake rate 

is normally in a range of 9.4x10-15 to 6.2x10-13 mol/cell/h (Vendruscolo, José Rossi, Schmidell, & Ninow, 

2012). Mammalian cells with an average cell concentration can deplete the dissolved oxygen in the 

culture broth within minutes; therefore, it is essential to ensure continuous aeration. During the 

cultivation, the concentration of dissolved oxygen (DO) is measured constantly and can be calculated 

as a percentage value according to Equation 2. 
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𝐷𝑂[%] =
𝑐𝑂2

𝑐𝐿∗
∗ 100 

Equation 2: Dissolved oxygen 

The measured oxygen concentration (cO2) is divided by the maximum solubility (cL*), which can be 

calculated according to the thermodynamic Equation 3 including the partial pressure (pO2), the 

temperature (T) and the ideal gas constant (R) (Pappenreiter et al., 2019). 

𝑐𝐿
∗ = 𝑝𝑂2

^{
0.046 ∗ 𝑇2 + 203.357 ∗ 𝑇 ∗ ln (

𝑇
298

) − (299.378 + 0.092 ∗ 𝑇) ∗ (𝑇 − 298) − 20.591 ∗ 103

𝑅 ∗ 𝑇
} 

Equation 3: Maximum oxygen solubility 

The amount of oxygen transferred from the gas stream into the culture broth can be described by the 

oxygen transfer rate according to Equation 4. 

𝑂𝑇𝑅 = 𝑘𝐿𝑎 ∗ (𝑐𝐿
∗ − 𝑐𝑂2

) 

Equation 4: Oxygen transfer rate 

The OTR is influenced by the volumetric mass transfer coefficient (kLa) and the concentration gradient 

of dissolved oxygen (cL
*-cO2) and is regarded as an important scale-up parameter depicting the transfer 

limits of the system. kLa is not constant during a process and affected by a magnitude of factors. 

Physiochemical characteristics of the medium such as temperature, viscosity, electrolytes, surfactants 

and antifoam agents have an impact on either the mass transfer (kL) or the bubble size (a) as well as 

on the configuration of the bioreactor. The gas liquid mass balance can describe timely changes in the 

concentration of dissolved oxygen according to Equation 5.  

𝑑𝐶

𝑑𝑡
= 𝑘𝐿𝑎 ∗ (𝑐𝐿

∗ − 𝑐𝑂2
) − 𝑞𝑂2

∗ 𝑋 = 𝑂𝑇𝑅 − 𝑂𝑈𝑅 

Equation 5: Gas liquid mass balance 

 

dC/dt defines the input/output of oxygen to/from the system in a defined time interval. This rate can 

be computed in case the maximum solubility of the oxygen in the liquid (cL
*), the actual oxygen 

concentration in the liquid (cO2) and the mass transfer coefficient (kLa) at the given time point in the 

system are known. The subtractive term, the oxygen uptake rate (OUR), refers to the consumption of 

oxygen by organisms in the system. It can be calculated by the specific oxygen consumption rate (qO2) 
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times the biomass (X) in the system. In a steady-state system, the dissolved oxygen concentration is 

kept constant; therefore, the dCA/dt term equals zero and thus OUR equals OTR. 

The proposed model for OUR determination (Pappenreiter et al., 2019) accounts for the changing kLa 

during the bioprocess due to operational conditions such as stirrer speed, aeration and temperature. 

In addition, a diverse maximum oxygen solubility in cell culture medium and displacement of oxygen 

by CO2 gassing during the process were considered.  

Being an important process parameter, OUR can be monitored during the process to give insight into 

the physiology and metabolism of the cells. It has also been shown that changes in metabolic activity 

of mammalian cells can be detected using a metabolic soft sensor that combines online OUR 

calculations with capacitance measurements (Pappenreiter et al., 2019). 

 

1.5. kLa 

For the correct implementation of online OUR calculation, the volumetric mass transfer coefficient has 

to be known at every time point of the bioprocess. As stated before, there are various parameters 

affecting the mass transfer, including medium composition and process related operation of the 

bioreactor. The addition of cell protecting agents such as Pluronic F68 or antifoaming agents like 

Antifoam C to the cell culture medium has been shown to significantly influence kLa (Toye et al., 2010). 

Solutes in the broth, which display coalescence inhibiting properties increase kLa values due to a larger 

gas hold-up. Furthermore, the increased amounts of biomass during the bioprocess has been reported 

to negatively affect the volumetric mass transfer coefficient due to increasing broth viscosity 

(Srivastava, Mishra, & Suresh, 2011). Besides, to achieve maximum oxygen transfer, parameters such 

as geometry, installations and process operations need to be considered, when designing a new 

bioreactor. The installation of baffles for example enhances the mixing properties, resulting in higher 

kLa values especially at low aeration rates. The impeller type as well as the quantity and speed 

significantly affect the oxygen transfer by breaking up large bubbles and evenly disperse them through 

the liquid. Increasing aeration rates generally raise kLa and the sparger type determines the bubble 

size, which affects gas hold-up and interfacial area. Typical kLa values in a STR can range from  

20-40 h-1 for mammalian bioprocesses up to 300-500 h-1 for high density microbial fermentations. 

There are several methods to determine the volumetric mass transfer coefficient, which can be divided 

into chemical and physical methods. Sodium sulfite oxidation or the method based on the absorption 

of CO2 are part of the chemical approach. The first technique relies on the chemical reaction of sodium 

sulfite with oxygen under presence of bivalent heavy metal ions. The reaction rate is determined by 

the mass transfer of oxygen into the solution and by assessing the sulfite concentration at different 
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time points, kLa can be calculated. The second method is also based on reaction kinetics and relies on 

the absorption of CO2 in an alkaline solution. However, chemical techniques are generally not 

recommended for the assessment of kLa in sparged bioreactors, because the addition of chemicals 

changes the physiochemical properties of the medium, especially influencing coalescence behavior. 

For this reason, physical methods are prevalently used to determine the volumetric mass transfer 

coefficient.  

The dynamic gassing out technique described by Van’t Riet is the most commonly used approach due 

to its simplicity and relative accuracy. Like most physical methods, it is based on the desorption and 

absorption of oxygen in culture medium monitored with an oxygen probe. This technique can be 

especially useful for studying different operational conditions and their effects on kLa (Garcia-Ochoa & 

Gomez, 2009). 

 

Figure 1: Dynamic gassing out method by Van't Riet (adapted from Garcia-Ochoa 2009) 

In the first step, dissolved oxygen is removed from the medium by gassing in with nitrogen. Next, the 

N2 supply is stopped and the oxygen concentration in the inlet gas is changed to the operational value. 

The change in the dissolved oxygen concentration is recorded and the volumetric mass transfer 

coefficient is calculated according to the equation indicated in Figure 1. 

To guarantee the accuracy of the measurements, it is necessary to use an oxygen probe with an 

adequate response time (τp). This critical parameter can be determined experimentally by a rapid step 

change of dissolved oxygen from 0 % to 100 %. For this, the oxygen probe is transferred from a 

degassed solution to a saturated one, while the timely change of oxygen concentration measured by 

the probe is recorded. τp equals the time it takes to reach 63.2 % of the maximum oxygen 

concentration. The response time of the probe should not exceed the reciprocal value of the mass 
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transfer coefficient (τp<1/kLa) for the accurate kLa determination with an error margin lower than 6 %, 

whereas for an error under 3 %, τp should be smaller than 0.2/kLa (Doran, 2012; Linek & Vacek, 1976; 

Van’t Riet, 1979). 
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2. Aim 

The aim of this work is to establish a feed on-demand strategy based on online OUR calculation in a 

lab- and pilot scale reactor. The following working packages were defined to accomplish the objective: 

i. Characterization of the mass transfer coefficient in a pilot scale reactor within the defined 

operation space for CHO fed-batch cultivations and development of a model depicting kLa as 

a function of PID controller output and fill volume. The model would then serve as a basis for 

online OUR calculation during a process. 

 

ii. Identification of the correlation between oxygen uptake rate and glucose consumption and 

development of a data driven soft sensor for real-time estimation of the glucose concentration 

in the cultivation broth.  

 

iii. Development of a feed on-demand strategy for a pilot scale reactor using the established 

glucose soft sensor and OUR calculations.  

 

iv. Proof of principle of the feed on-demand strategy in 15 L and 100 L scale. 
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3. Materials and methods 

3.1. kLa experiments 

3.1.1. Probe response time 

The response time of the probe (VisiFerm DO Arc 120, Hamilton, Switzerland) was determined by a 

rapid step change from 0 % to 100 % oxygen saturated water. For this experiment, two magnetically 

stirred vessels were filled with HQ water and were tempered to 25 °C. The water in the first container 

was stripped of oxygen by gassing of nitrogen into the solution. The other vessel was saturated by 

gassing with process air (PA). After reaching an equilibrium in the oxygen free solution, the probe was 

quickly transferred to the air saturated water and the change in the dissolved oxygen concentration 

was recorded. This procedure was repeated twice and a mean trend was computed. The response time 

of the probe was determined at 63.2 % dissolved oxygen saturation (Doran, 2012).  

 

3.1.2. kLa determination  

Measurements of the dissolved oxygen concentration in the bioreactor were carried out with an 

optical probe (VisiFerm DO Arc 120, Hamilton, Switzerland). Prior to the measurements, a two-point 

calibration of 0 % and 100 % saturation was performed according to the manufacturer instructions. 

During the bioprocess in the 100L pilot scale reactor, the process air and stirrer speed were coupled to 

control the dissolved oxygen level depending on the oxygen uptake by the cells. This parameter 

combination is described by the percentage of the PID controller output and is presented on Figure 2. 
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Figure 2: PID controller output pilot scale reactor 

The PID controller output rises during the bioprocess, as the demand for oxygen increases. The 

function for the process air increases linear throughout the process, whereas the slope of the stirrer 

function changes to a steeper slope after 38 % PID controller output. The investigated operational 

space for the kLa determination is shown in Figure 3. 

 

Figure 3: Operational space pilot scale reactor 

To achieve equal distances, kLa measurements were performed at 0, 20, 38, 60, 80 and 100 % PID 

controller outputs. Additionally, different fill levels of the reactor were investigated, starting from 70 L 

to 100 L in 10 L steps. To determine the error of the kLa measurement, one setting (60 % PID; 85 L) was 

measured in triplicates on different days. These experiments were carried out with a new optical probe 

calibration preceding each experiment. All measurements in the described design space were 

completed in HQ water. To conclude the results to the cell culture medium, a set of kLa determination 
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experiments in medium was performed at 70 L fill volume of the tank. A function for the correlation of 

the kLa values measured in medium and in water was established. Using this correlation kLa in the 

culture medium was calculated for the complete operational space.  

The computation of the standard error of the mean was carried out according to the Equation 6.  

𝑆𝐸𝑀 [%] = √
∑ (𝑥1 − �̅�)2𝑛

𝑖=1

𝑛(𝑛 − 1)
 

Equation 6: Standard error of the mean 

 

3.1.3. Automated kLa determination  

The experimental setup of the dynamic kLa determination method was automated and implemented 

as a separate phase in the recipe editor of the Zenon Supervisory Control and Data Acquisition (SCADA) 

system (7.6, Copa-Data, Austria). The logic of this phase is shown in Figure 4. 

 

Figure 4: Flow chart of automated kLa phase 

In the first step, nitrogen is gassed in to strip oxygen from the liquid and the stirrer speed is set to the 

maximum value, independent of the experimental setup. After reaching 15 % of absolute oxygen 

saturation, the nitrogen supply is stopped and the stirrer is turned off. The headspace is flushed with 

process air to remove the residual nitrogen gas. Next, the kLa determination starts with the specific 

process air and stirrer speed combination, according to the experimental setup. When 80 % DO is 

reached, the experiment is completed and the kLa value with the error of determination is computed.  
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3.2. Cell line 

For all bioprocesses described in this work, a recombinant CHO cell line producing an IgG1 antibody 

against tumor necrosis factor alpha (TNFα) was used. The cell line originated from the CHO-K1 (ATCC 

CCL-61) host cell line and was adapted to serum free suspension cultivation prior to transfection with 

the Rosa26 BAC harboring the transgenes (Zboray et al., 2015)) (Antibody Lab GmbH, Austria). A 

working cell bank, with vials containing 5x106 cells stored at -80 °C in liquid nitrogen, was the starting 

point of all experiments. 

 

3.3. Thawing 

A cryogenic vial containing 5x106 frozen cells was transferred from liquid nitrogen into a vessel filled 

with 70 % ethanol at room temperature for a quick increase in temperature, subsequently it was fully 

thawed in the hands under a laminar-flow work-bench. Immediately after thawing, the cell suspension 

was transferred into 8 mL, sterile, 4 °C Dynamis medium (Dynamis AGT, A26175, Thermo Fisher 

Scientific, USA) for washing and it was subsequently centrifuged (Heraeus Megafuge, 75004271, 

Thermo Fisher Scientific, USA) for 10 min at 180 g. The used medium was supplemented with 8 mM L-

glutamine (25030081, Sigma Aldrich, Germany), 3 mL/L phenol red solution (RNBD642, Sigma Aldrich, 

Germany), 1 mg/mL G418 (10131027, Thermo Fisher Scientific, USA), 1:1000 anti-clumping agent 

(0010057DG, Thermo Fisher Scientific, USA). After centrifugation, the supernatant was discarded; the 

pellet was resuspended in supplemented medium and transferred into a 125 mL Erlenmeyer flask 

(#431407, Corning, USA) with a total volume of 25 mL. The cells were incubated on a shaker platform 

(88881102, Thermo Fisher Scientific, USA) in a humidified incubator (Heracell™ VIOS 160i, Thermo 

Scientific, USA) at 37 °C with 5 % CO2 in ambient air for 4 days. 

 

3.4. Passaging and inoculum preparation 

The cells were passaged three times (every 3-4 days) prior to the start of the bioprocess batch phase. 

The start concentration of each passage was 2.5x105 cells/mL with increasing working volumes of 

supplemented medium (see section 3.3. Thawing), but without G418. The 15 L bioreactor was 

inoculated with 2.5x105 cells/mL and the start volume of the batch phase was 10 L. For the pilot scale 

bioprocess, the last passage was performed in the 15 L lab scale reactor with a working volume of 5 L.  
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3.5. Lab scale experiments 

3.5.1. Lab scale reactor  

For the lab scale cultivation experiments, a stainless steel bioreactor (LabQube, Bilfinger 

Industrietechnik Salzburg, Austria) with a maximum working volume of 15 L was used. The stirred tank 

reactor had a diameter of 0.242 m and a height of 0.484 m. For mixing, a bottom driven magnetic 

impeller shaft with two, three-bladed elephant ear impellers (d=0.1 m) was installed. Aeration was 

provided by an “i” shaped sintered frit. The inlet gases (process air and CO2) were sterile filtered by 

0.2 µm filter cartridges (5181507T8------B, Sartofluor ®, Sartorius, Germany). The gas supply was 

controlled via the built-in mass flow controllers with a maximum flow rate of 0.1 vvm. The reactor was 

automated and controlled by XAM-control software (2.2, Evon, Austria). 

 

3.5.2. Lab scale bioprocesses 

The lab scale fed-batch cultivations were seeded with 2.5x105 cells/mL in chemically defined medium 

(Dynamis AGT, A26175, Thermo Fisher Scientific, USA), supplemented with 8 mM L-glutamine 

(25030081, Sigma Aldrich, Germany) and 0.1 vol% antifoam C (A8011, Sigma Aldrich, Germany). The 

pH was kept at a value of 7 by CO2 flow, whereas the DO was regulated to 30 % by increasing stirrer 

speed and inlet gas flow, both controlled via a PID controller. The temperature during the batch phase 

was 37 °C, then it was kept constant throughout the cultivation or a shift was performed on the third 

day of the process. After 72 h of culture, feeding was started with 3.3 vol%/day of the desired end 

volume and lasted for maximum 10 days. The feed medium (CHO CD EfficientFeedTM A AGTTM Kit, 

A1442002, Thermo Fischer Scientific, USA) was enriched with 10 g/L (F1), 20 g/L (F2) or 30 g/L (F3) D-

glucose (HN06.1, Carl Roth, Germany) depending on the experiment, 7 g/L L-asparagine (101565, 

Merck; Germany) and 0.1 vol% antifoam C. Sampling was performed daily, except for the batch phase, 

where only a start and an end sample was drawn. The feed change and temperature shifts were 

performed according to the predefined design space (see section 3.7. Design of Experiments) and the 

cultivation was stopped when the cell viability dropped below 70 %.  

 

3.6. Pilot scale experiments 

3.6.1. Pilot scale reactor 

For the experiments on pilot scale, a stirred tank reactor with a working volume of 100 L (PilotQube, 

Bilfinger Industrietechnik Salzburg, Austria) was used. The vessel had a height of 0.943 m and a 

diameter of 0.48 m. For mixing, a magnetic driven impeller shaft with two, three-bladed elephant ear 
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impellers (d=0.2 m) was installed. For proper mixing, the tank was equipped with four vertical wall 

baffles. Aeration was provided by an orifice sparger located under the bottom impeller. Sterile 

filtration of the gas supply was accomplished using 0.2 µm filter cartridges (5182507T0----GA, 

Sartofluor ®, Sartorius, Germany). Flow rates of the inlet gases (PA, CO2) were controlled by mass flow 

controllers with a maximum flow rate of 0.13 vvm. System control and data acquisition was carried out 

with the Zenon Pharma edition software (7.6, Copa-Data, Austria). 

 

3.6.2. Pilot scale bioprocesses 

The pilot scale fed-batch cultivation was started with an initial cell concentration of 2.5x105 cells/mL. 

The bioprocess conditions (pH, DO, medium) in the 100 L bioreactor were identical to those of the 15 L 

lab scale experiment, with the exception of the starting volume, which was 70 L in this scale. After a 

three-day batch phase, the temperature was shifted to 34°C. The feed addition started after 72h with 

a feeding rate of 3.3 vol%/day with respect to the end volume and lasted for ten days. The feed 

medium (CHO CD EfficientFeedTM A AGTTM Kit, A1442002, Thermo Fischer Scientific, USA) was 

supplemented with 20 g/L D-glucose, 7 g/L L-asparagine and 0.1 vol% antifoam C.  

 

3.7. Design of experiments 

To investigate the effect of process parameters on the bioprocess, a design of experiments (DoE) was 

compiled. Cultivation temperature and glucose concentration in the feed were chosen as the changing 

factors, with the applied values listed in Table 1. 

Table 1: Changing cultivation parameters 

Parameter    

Temperature 31 °C 34 °C 37 °C 

Glucose +10 g/L (F1) +20 g/L (F2) +30 g/L (F3) 
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The cultivations were performed either in a static or in a dynamic approach with intra-experimental 

parameter changes. All cultivations started with a three-day batch phase. After 72 h, the feed addition 

was started and the first temperature shift was performed. In the case of a static experiment, the feed 

medium was added for maximum ten days following a constant feeding strategy. The altered 

temperature was kept constant throughout the rest of the experiment. During a dynamic fed-batch 

experiment, the temperature and/or the feed (F1-F3) were changed more than once. 

 

3.8. Lab scale feed on-demand cultivation 

For the feed on-demand experiment, the thawing procedure was the same as described before in 

section 3.3. Thawing. The passaging procedure was slightly altered, since the last passage was also 

used to inoculate the 100 L pilot scale reactor and therefore it was accomplished in the 15 L bioreactor 

with a working volume of 5 L. The pilot scale reactor was seeded and the remaining cell suspension 

was partially drained from the 15 L reactor. Thereby the start concentration was adjusted to 

2.5x105 cells/mL in a volume of 10 L Dynamis medium supplemented with 8 mM glutamine and 

0.1 vol% antifoam C. A three-day batch phase was carried out under identical conditions (pH, medium, 

temperature, DO) as described before for the 15 L experiment runs (see section 3.5.2. Lab scale 

bioprocesses). After 72 h, a temperature shift to 34 °C was performed. When the calculated glucose 

concentration dropped below 5 g/L, the feed addition (F2) was started with a feeding rate adapted 

daily to achieve a constant glucose concentration. Since no advanced process control was possible in 

the 15 L bioreactor, the online data was exported manually every 24 h, based on which the new flow 

rate of the feed was calculated. The nutrient solution was added by an external peristaltic pump. The 

process was stopped after the cell viability dropped below 80 %. 

 

3.9. Cell viability 

Cell viability was determined by applying the trypan blue dye exclusion method under a microscope 

(SN 445743 T404E, VWR, USA) directly after a sample was drawn from the cultivation. The basis of the 

assay is that viable cells with an intact membrane exclude the trypan dye, whereas cells with a defect 

membrane become stained. For the staining, 500 µL of PBS (1058.1, Carl Roth, Germany) diluted cell 

suspension were mixed with 100 µL of 0.4 % trypan blue solution (K940, Amresco, USA). The mixture 

was then transferred into a hemocytometer chip (C-Chip DHC-N01, NanoEntek, South Korea) and the 

live and dead cells were counted in four large squares. The average of living and dead cells per large 

square was computed. The cell viability was determined according to Equation 7. 
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𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [%] =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑣𝑖𝑛𝑔 𝑐𝑒𝑙𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙𝑠 
∗ 100 

Equation 7: Cell viability 

Additionally, the cell concentration of the sample was calculated from the obtained cell count 

according to Equation 8. 

[
𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
] = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑙𝑎𝑟𝑔𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 ∗ 12000

∗ 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 

Equation 8: Cell concentration microscope 

 

3.10. Cell concentration 

The cell concentration was determined with a Beckman coulter counter (Z2, Beckman Coulter, USA). 

The device is based on the principle of changing electrical resistance caused by passing particles in an 

electrolyte solution. These changes are proportional to the size and number of particles in the sample. 

For the measurement, cell suspension (V1; 1-3 mL) was transferred into a round bottom centrifuge 

tube and centrifuged for 10 minutes at 200 g (Sorvall centrifuge RC-5B, Thermo Fisher Scientific, USA). 

Afterwards, the supernatant was discarded and the pellet was resuspended in coulter counter buffer 

(V2; 1-4 mL; 0.1 M citric acid monohydrate (1.00243.1000, Merck, Germany) with 2 % Triton X-100 

(142314.1611, PanReac AppliChem, Germany)). The buffer lyses the cells leaving only the nuclei intact, 

which can be later on detected by the counting device. To achieve this, the pellet was incubated for at 

least one hour in the buffer and stored at 4°C until the measurement followed within 48 h. The sample 

(V3) was diluted in isotone buffer (V4; 9 mL; 0.9 % NaCl) prior to the measurement to obtain a particle 

count between 10000 and 20000. Each measurement was performed in duplicates. The cell 

concentration was calculated according to Equation 9.  

𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑐𝑒𝑙𝑙𝑠/𝑚𝐿] =
𝑐𝑜𝑢𝑛𝑡1 + 𝑐𝑜𝑢𝑛𝑡2

2
∗

𝑉1

𝑉2 ∗ 𝑉3
∗
𝑉3 + 𝑉4

0,1
 

Equation 9: Cell concentration coulter counter 
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3.11. Carbohydrate measurement 

High-performance liquid chromatography (HPLC) analyses were performed externally (AG Vorauer-

Uhl). Carbohydrates were separated by ion exclusion chromatography (HPX 87H, 300 x 7.8 mm, 

#1250140, 123 BioRad, USA) at 25 °C on an Agilent 1200 series (Agilent, USA) HPLC system. 5 mM 

sulfuric acid was used for the mobile phase with a flow rate of 0.45 mL/min. D-glucose was detected 

with a refractive index detector tempered to 35 °C in a calibration range between 100 mg/L and 

2000 mg/L. The evaluation of the chromatograms was accomplished with the ChemStation software 

(Revision B.04.01, Agilent, USA). 

 

3.12. Oxygen uptake rate determination  

The OUR was determined for each bioprocess in Table 4 as described in literature (Pappenreiter et al., 

2019). Therefore, the maximum solubility of the medium (cM*) was calculated as shown in Equation 10 

taking into account, the decreased oxygen solubility due to CO2 gassing. 

𝑐𝑀∗ = 𝑐𝐿
∗ ∗

[
 
 
 −0.638 ∗ (

𝑄𝐶𝑂2

𝑄𝑃𝐴 + 𝑄𝐶𝑂2

∗ 100) + 95.63

100
]
 
 
 

 

Equation 10: Maximum solubility of oxygen in cell culture medium 

The maximum solubility of water (cL*) was adapted to the cell culture medium considering the gas flow 

rates of PA and CO2 (QCO2; QPA). The recorded value (DO) was integrated in the following equation to 

account for the internal temperature correction of the DO probe. 

𝑐𝐷𝑂 = 𝑐𝑀∗ ∗ [𝐷𝑂 ∗
𝑐∗(𝑇1)

𝑐∗(𝑇2)
] 

Equation 11: Actual oxygen concentration 

The temperature corrected oxygen concentration (cDO), the maximum solubility in cell culture medium 

and the mass transfer coefficient (kLadyn.) which was characterized for the operation space in the 15 L 

bioreactor were used to calculate the OUR for the bioprocesses. If the mass transfer coefficient, the 

maximum solubility of oxygen in the medium and the actual oxygen concentration in the system are 

known, the oxygen uptake rate can be calculated at any given time point according to Equation 12. 
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𝑂𝑈𝑅 = 𝑘𝐿𝑎𝑑𝑦𝑛. ∗ (𝑐𝑀∗ − 𝑐𝐷𝑂) 

Equation 12: Oxygen uptake rate determination for the bioprocess 

The oxygen uptake rate progression was calculated for every bioprocess. The maximum solubility of 

oxygen in the cell culture medium and the mass transfer coefficient for the operational space in the 

lab scale reactor were determined previously (Pappenreiter et al., 2019). The oxygen uptake per 

volume was computed by the integration of the OUR between two time points and taking the time 

difference into account according to Equation 13. 

𝑚𝑜𝑙 𝑂2

𝐿
=

𝑂𝑈𝑅1+𝑂𝑈𝑅2

2
∗ ∆𝑡 

Equation 13: Integrated oxygen uptake rate over time 

The oxygen uptake rate was calculated between every offline measurement (every 1 to 15 minutes, 

depending on the online recordings) while considering the filling volume of the reactor. Next, the data 

was smoothed using a moving average function with a time window of 1h (equaling an averaging 

window of n=4-60). The oxygen uptake was then calculated between the two aligning offline glucose 

measurements. This data was finally used to establish a correlation between the oxygen uptake and 

glucose consumption.  

 

3.13. Data processing  

3.13.1. Cubic smoothing spline function  

The offline glucose data was processed using the cubic smoothing spline function described in 

literature (Bayer et al., 2019). The function provides a value for each time point of the process and has 

one degree of freedom, the p-value. The fitting/smoothing is adjusted by this value ranging from 0 to 

1. If p is set to zero, the spline function does not smooth resulting in a linear function through the data. 

A p-value of 1 produces overfitting leading to a function going through all data points. The smoothing 

function csaps(x,y,z) was applied to the data with MATLAB (2016b, MathWorks, United States of 

America). 
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3.13.2. Evaluation of glucose soft sensor  

To evaluate the performance of the glucose soft sensor, the root mean square error (RMSE) and the 

mean average percentage error (MAPE) were calculated according to Equation 14 Equation 15, 

respectively. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦)

2𝑛
𝑖=1

𝑛
 

Equation 14: Calculation of the root mean square error 

𝑀𝐴𝑃𝐸 [%] =
1

𝑛
∗ ∑

|𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦|

𝑦

𝑛

𝑖=1

∗ 100 

Equation 15: Calculation of the mean average percentage error 
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4. Results 

4.1. kLa determination pilot scale reactor 

4.1.1. Probe response time 

The measurement of the probe response time was carried out in triplicates. The dissolved oxygen 

trends gathered during the measurements and the observed τp values are shown in Figure 5 and Table 

2, respectively. 

Figure 5: DO trend of probe response time measurements 

Table 2: τp of response time 
measurements 

 

Measurement τp [s-1] 

1 63.7 

2 62.7 

3 57.8 

Average 61.4 

The experiments were performed in HQ water tempered to 25 °C. The dissolved oxygen concentration 

rises right from the start of the measurement as the probe equilibrates to the concentration of 100 %. 

An average response time of 61.4 s was measured at the step change of 63.2 % dissolved oxygen, which 

is consistent with the previously reported values (Pappenreiter et al., 2019). According to the results, 

kLa values of up to 58.6 h-1 or 11.7 h-1 can be determined with 6 % and 3 % error, respectively (Doran, 

2012). Thus, the applied steam sterilizable probe is suitable for the determination of kLa with the 

dynamic gassing out method for mammalian fed-batch processes, where the kLa is usually in a range 

between 20-40 h-1.  
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4.1.2. Precision of kLa measurement 

The precision of the kLa measurement for the 100 L bioreactor was determined by conducting three 

center point measurements in the operational space (60 % PID; 85 L) in triplicates. The experiments 

were carried out on different days with a newly installed probe and filled reactor. Additionally, the 

sensor was calibrated prior to each measurement series by a two-point calibration (0 % and 100 % 

saturation). The obtained results are listed in Table 3. 

Table 3: Results of kLa precision measurements 

Measurement 
PID 
[%] 

Volume 
[L] 

kLa  
[h-1] 

Average SD 
RSD 
[%] 

Average SD 
RSD 
[%] 

1 60 85 8.491 
8.946 0.468 5.2 

9.024 0.389 4.3 

2 60 85 8.922 
3 60 85 9.426 
4 60 85 8.848 

9.265 0.484 5.2 5 60 85 9.151 
6 60 85 9.796 
7 60 85 8.745 

8.861 0.123 1.4 8 60 85 8.847 
9 60 85 8.990 

The determined kLa values range from 8.491 h-1 to 9.796 h-1 with an intra-experimental relative 

standard deviation (RSD) of 1.4-5.2 %. The obtained results for the single experiments fit together and 

could also be reproduced on various days. To estimate the accuracy of the measurement, an overall 

relative standard deviation was calculated for all measurements. The obtained value of 4.3 % is in good 

agreement with the previously reported values, as an error smaller than 3 % was observed in literature 

for kLa values in this range with respect to the determined probe response time (Doran, 2012).  
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4.1.3. kLa model for water 

The kLa model for the cultivation settings (see section 3.1.2kLa determination) was first established 

using HQ water as the liquid medium. The measurements were performed for each fill volume in one 

measurement series using the automated kLa phase to achieve maximum reproducibility. After 

exporting and evaluating the raw data manually, a comparison was done to the automatically 

generated results. Figure 6 shows the kLa values obtained in HQ water. 

According to the results, the mass transfer coefficient rises with increasing PID controller output and 

decreases with increasing fill volume of the reactor. The results of increasing stirrer speed and aeration 

rate are in agreement with the expected outcome, as both parameters have a major impact on the 

mass transfer coefficient. Although, the volume dependence was unexpected, it could be explained by 

the changing ratio of surface area to headspace volume. The impact of volume on kLa is rather small 

compared to that of the PID controller output, nevertheless it was investigated in detail to obtain an 

accurate model for the applied cultivation settings. Additionally, the possible effect of temperature on 

the mass transfer coefficient was previously investigated in a 15 L bioreactor (Pappenreiter et al., 

2019). In the examined temperature range of 31 °C to 37 °C, a minor impact on kLa was observed. The 

variation of the highest and the lowest temperatures for the same experiment was in the range of the 

previously determined deviation of the kLa measurement. Thus, the temperature dependence of was 

not considered in the kLa model for the 100 L bioreactor.  

 

 

Figure 6: kLa results obtained in HQ water 
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4.1.4. Volume dependence of kLa 

As described in the previous section (4.1.3 kLa model for water), the reactor fill volume influences the 

kLa measurements, since a lower mass transfer coefficient was observed with increasing volumes. 

Although, the impact is rather small compared to that of the PID controller output, it was investigated 

more in detail and described by the following computations. First, a null hypothesis was formulated 

stating that the volume has no influence on the mass transfer coefficient, which would conclude that 

measurements performed with a specific PID controller setting can be grouped together regardless of 

the reactor fill volume. To test this, six groups were created for 0, 20, 38, 60, 80 and 100 % PID 

controller output and an average kLa value was determined for each output group. In the next step, 

the deviation between every measurement and the corresponding average error was calculated. The 

results in percent were arranged according to the fill volume of the reactor and for each group an 

average value including the standard error of the mean (SEM) was calculated. The results are 

presented on Figure 7. 

 

Figure 7: Average errors sorted by fill volumes 

Figure 7 shows the average errors sorted by the fill volume with error bars representing the SEM, 

calculated according to Equation 6. The average error changes with the fill volume of the reactor from 

+15 % at 70 L to -13 % at 100 L. According to Figure 7 the kLa values determined at 70 L fill volume 

deviate +15% from the corresponding average of the PID group throughout all measurements. In 

comparison, results of kLa determination carried out with 100 L HQ water are 13 % lower than the 

average of the respective PID group. 
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In conclusion, the performed kLa measurements in the 100 L pilot scale reactor depend on the fill 

volume, which could be proved by Figure 7. Therefore, the null hypothesis can be rejected and the 

influence of volume has to be taken into account in the kLa model. 

 

4.1.5. kLa model for water 

Next, the kLa values measured in HQ water (see 4.1.3 kLa model for water) were evaluated using the 

tablecurve software (TableCurve 3D v3, Systat Software GmbH, Germany) with the PID controller 

output and the fill volume of the reactor being two independent variables. A two-plane fit was chosen 

to depict the model as shown in Figure 8. 

 

 

Figure 8: kLa model for water 

The kLa is described by two square planes, the first ranging from 0 % to 38 % PID controller output and 

the second from >38 % to 100 %. The reason for this approach was the steeper increase of the stirrer 

speed above 38 % PID controller output, which also reflects in the increasing kLa values in this plane. 

Both planes have a rather good fit with a coefficient of determination over 0.9. The kLa ranges from 

1.29 h-1 (0 % PID; 100L) to a maximum value of 25 h-1 (100 % PID; 70L). The error of determination for 

the fitted planes is 0.94 and 0.943, respectively.  
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4.1.6. kLa model for medium 

To adapt the results obtained previously in HQ water, a series of kLa experiments were replicated in 

cell culture medium. The chosen conditions were a fill volume of 70 L and varying PID controller output 

from 0 % to 100 %. The obtained results are shown in Figure 9.  

 

Figure 9: kLa measurements in water and cell culture medium from 0 to 100 % PID with a fill volume of 70L 

The mass transfer coefficient measured in cell culture medium was higher compared to that of in HQ 

water. A maximum kLa measured of 25 h-1 was recorded in water, whereas a maximum value of about 

40 h-1 was determined in the cell culture medium. The increase of kLa is not constant with increasing 

PID controller output for both fluids. The difference between the mass transfer coefficients 

determined in HQ water and in culture medium (ΔkLa) is negligible at 0 % PID, then it is steadily 

increasing until 100 % PID controller output. Therefore, two linear functions describing the change in 

kLa between 0-38 % and 38-100 % PID controller output were created by plotting ΔkLa against the PID 

controller output as shown in Figure 10. 
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Figure 10: ΔkLa vs. PID controller output 

Next, the kLa water model was recalculated using both equations indicated on Figure 10 to adapt the 

previously obtained results to the applied cell culture medium and cultivation conditions. The thus 

generated kLa model for cell culture medium is presented on Figure 11. 

 

Figure 11: kLa model for cell culture medium 

The model uses two input parameters to describe the mass transfer coefficient at operating cultivation 

conditions, the fill volume and the PID controller output. Similarly to the water model, it is compiled 

of two square planes, which account for the change of the stirrer speed to aeration ratio after 38 % 

PID controller output. The mass transfer coefficient increases in a linear manner with rising PID 

controller output throughout the whole range, showing a steeper increase after 38 %. This behavior is 

most probably the result of the increasing stirrer speed, as it reflects the agitator setting displayed in 
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section 3.1.2. kLa determination. In comparison, kLa decreases with increasing fill volume due to the 

changing headspace to surface area ratio. At the initial cultivation settings (70 L fill volume; 0 % PID 

controller output), the mass transfer coefficient has a value of 3 h-1. During the bioprocess, the PID 

controller output and the fill volume increase due to the added feed medium. At the maximum working 

volume of the reactor (100 L), assuming a dense cell growth with close to the maximum PID controller 

output, a mass transfer coefficient of approximately 40 h-1 can be reached.  

The characterization of kLa in this work focused mainly on the given process operation space and thus 

the described model is only valid for the previously stated stirrer speed to aeration ratios and for the 

used cell culture medium supplemented with 0.1 vol% antifoam C. For a general characterization of 

kLa in the reactor, additional experiments including the uncoupling of the agitator and aeration volume 

should be conducted. 

 

4.2. Fed-batch cultivations 

The working group accomplished a series of fed-batch cultivations, which are listed in Table 4. 

Table 4: Fed-batch cultivations in the 15 L bioreactor 

Bioprocess 
Shift after 72 h Shift after 120 h Shift after 192 h Shift after 240 h 

Temperature Feed Temperature Feed Temperature Feed Temperature Feed 

I 37 F3 - - - - - - 

II 37 F3 - - - - - - 

III 34 F1 - - - - - - 

IV 37 F3 - - - F1 - - 

V 34 F2 37 - 34 F1 31 - 

VI 31 F2 34 - 37 F3 34 - 

VII 34 F1 31 - - F2 34 - 

VIII  34 F2 - F3 - F2 - F1 

IX  34 F3 37 F2 31 - 37 F3 

X 34 F2 - - - - - - 

XI 34 F2 - - - - - - 

XII 34 F2 - - - - - - 

XIII 34 F2 - - - - - - 

In overall, 13 bioprocesses were conducted using the CHO Anti-TNFα-IgG1 producing model cell line at 

15L scale with varying temperature set points and glucose feed concentrations. Each cultivation 

started with a three-day batch phase at 37°C after which feed addition was initiated. Bioprocesses V 

to IX were carried out in a dynamic approach, i.e. with intra-experimental changes in temperature and 

feed during the cultivations. The remaining processes were performed in a static approach with one 

temperature/feed shift after 72 h. The online and offline data of these cultivations were used for the 
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OUR calculation, for the establishment of a correlation between the oxygen and glucose consumptions 

and for the development of the glucose soft sensor. 

 

4.3. Calculation of offline glucose data 

The glucose concentration in the cultivation broth at each sampling time point was determined by 

HPLC (see section 3.11. Carbohydrate measurement) for every bioprocess listed in Table 4. To unify 

the variable sampling times, only one sampling point per day was taken into account for the data 

processing. The total amount of glucose in the reactor was calculated by multiplying the online reactor 

volume (Vt) with the determined glucose concentration (cglucose, reactor) at the given sampling time point. 

Next, taking into account the amount of glucose, which was added to the system by the feed (cglucose, 

feed*Vfeed∆t), the glucose depletion in mol was calculated between the sampling time points according 

to Equation 16. 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑐𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑡2 ∗ 𝑉𝑡2 − 𝑐𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑡1 ∗ 𝑉𝑡1 + 𝑐𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑓𝑒𝑒𝑑 ∗ 𝑉𝑓𝑒𝑒𝑑 ∆𝑡 

Equation 16: Calculation of the glucose consumption between two sampling time points 

After computing the glucose consumption for each run, the data was analyzed visually, revealing 

outliers in the cultivation trend. To compensate for errors during sample preparation or the analysis, 

the cubic smoothing spline function was used. First, an appropriate p-value had to be selected which 

was accomplished by applying the smoothing spline function to several bioprocesses with a changing 

p-value from 0.4 to 0.7 in 0.1 steps. The results showed that the curve fit with increasing degree of 

freedom was improving. In comparison, a p-value of 0.4 showed negative values for the first data 

points in some processes.  

To avoid overfitting of the data and the generation of artificial errors like negative glucose 

consumption, a p-value of 0.5 was chosen. The glucose consumption for bioprocess I is presented 

before and after applying the smoothing spline function on Figure 12 and Figure 13, respectively. 
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Figure 12: Glucose consumption of bioprocess I before 
application of the smoothing spline function 

 

Figure 13: Glucose consumption of bioprocess I after 
recalculation with the smoothing spline function 

The glucose consumption during bioprocess I is increasing throughout the process to a maximum of 

0.2 mol. The sixth data point in Figure 12 is considered an outlier. In the absence of major changes in 

the process parameters such as temperature shifts or feed addition, it is unlikely that the cells change 

their glucose consumption in such an abrupt manner as can be seen on Figure 12, where a sudden 

jump is followed by a steep drop in the glucose consumption at samples 6 and 7, respectively. 

Therefore, most likely an error occurred during sample preparation or measurement. Figure 13 shows 

the outcome of applying the smoothing function to this data. Comparing the data points 6 and 7 of the 

non-smoothed data on Figure 12 to those of the smoothed data on Figure 13, the benefit of this 

procedure becomes clear. Thus, the smoothing function was applied to all bioprocesses listed in Table 

4 and the corrected datasets were used for the further computations. 

 

4.4. OUR determination for 15 L fed-batch bioprocesses 

The oxygen uptake rates for all 15L scale bioprocesses listed in Table 4 were calculated according to 

the OUR model described by Pappenreiter (Pappenreiter et al., 2019). Depending on the sampling rate 

of the DO probe, the computed data had an interval of 1-15 minutes. The OUR data was smoothed 

using a moving average filter with a data frame of 1 h. An exemplary OUR trend for bioprocess XI before 

and after smoothing is shown in Figure 14and Figure 15, respectively. 
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As shown in Figure 14, the OUR increased during the bioprocess and reached a maximum of approx. 

0.06 mol/L/d. This is true for all accomplished bioprocesses, where a maximum OUR of 0.05-

0.07 mol/L/d was reached. The noise of the data can be filtered satisfactorily by the applied filter 

technique. 

In the next step, the consumed oxygen was computed for the same sampling intervals as described in 

4.3. Therefore, the OUR was integrated for the respective time interval taking into account the current 

reactor volume according to Equation 13. 

 

4.5. Correlation of glucose and oxygen consumption 

To investigate their correlation, the calculated oxygen uptake and glucose consumption of all 13 fed-

batch processes were plotted against each other as shown on Figure 16. 

 

 

Figure 16: Correlation of glucose and oxygen consumption 

Figure 14: Calculated oxygen uptake rate for bioprocess XI Figure 15: Smoothed oxygen uptake rate for bioprocess XI  
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To establish a correlation, the data was processed as described in the previous sections. Additionally, 

data points with a cell viability below 80 % were excluded. As shown in the graph, a linear trend with 

a slope of 0.218 can be fitted through the data with a coefficient of determination of approx. 0.7. The 

line was fitted through zero, since aerobe organisms such as CHO cells do not consume glucose, if no 

oxygen is dissipated. The trend shows a ratio of approx. 1:5 mol glucose to oxygen. 

 

4.6. Glucose soft sensor 

To be able to assess the current glucose concentration in a cultivation without offline measurements, 

a glucose soft sensor was established based on the correlation described in the previous section (4.5. 

Correlation of glucose and oxygen consumption). To accomplish this, the online data from the reactor 

and the offline data from the sample analyses of all bioprocesses were used. The glucose concentration 

was computed for each run in a 1 h interval using the OUR. The calculation can be broken down into 

three main parts, which are elucidated by Equation 17, Equation 18 and Equation 19, respectively. 

𝑔𝑙𝑢𝑐.𝑑𝑒𝑝𝑙.  (∆𝑡𝑛)  =
𝑂𝑈𝑅𝑡𝑛

+ 𝑂𝑈𝑅𝑡𝑛−1

2
∗ ∆𝑡𝑛 ∗ 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∗ 0.218 ∗ 180.156 

Equation 17: Glucose depletion calculated for time interval Δt based on OUR 

∑𝑔𝑙𝑢𝑐.𝑑𝑒𝑝𝑙. = ∑ 𝑔𝑙𝑢𝑐.𝑑𝑒𝑝𝑙.  (∆𝑡1)…+ 𝑔𝑙𝑢𝑐.𝑑𝑒𝑝𝑙.  (∆𝑡𝑛)

𝑛

𝑖=1

 

Equation 18: Accumulated glucose depletion during bioprocess 

𝑐𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑟𝑒𝑎𝑐𝑡𝑜𝑟(𝑡𝑦) =
𝑐𝑖𝑛𝑖𝑡. ∗ 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑖𝑡. + 𝑐𝑓𝑒𝑒𝑑 ∗ 𝑉𝑓𝑒𝑒𝑑 − ∑𝑔𝑙𝑢𝑐.𝑑𝑒𝑝𝑙. 

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟,𝑡𝑦

 

Equation 19: Online glucose concentration at ty 

First, the oxygen consumption is calculated according to Equation 17 by integrating the OUR over a 

chosen time interval (Δtn). This value is then multiplied with the reactor volume (Vreactor) and converted 

into depleted glucose (gluc.depl.) according to the equation describing the correlation between the 

oxygen and glucose consumptions (see Figure 16). Second, the oxygen consumption is summed up as 

stated in Equation 18 to track the glucose consumed by the cells for the entire bioprocess. In the third 

step, the current glucose concentration in the bioreactor is calculated with respect to the initial glucose 

concentration (cinit), the starting volume (Vreactor,init.) and the glucose added with the feed (cfeed*Vfeed) as 

described in Equation 19.  
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As a next step, the glucose trend was calculated for each bioprocess listed in Table 4 by applying 

Equations 17-19 to the historic datasets. The computed online values closest to the offline sample time 

points were chosen for calculating the prediction errors, which were later on used to determine the 

RMSE and MAPE according to Equation 14 and Equation 15, respectively. Also, the estimated glucose 

concentration was plotted against the offline measured values as shown in Figure 17. 

 

 

Figure 17: Estimated vs. measured glucose concentration calculated with the glucose soft sensor 

Figure 17 displays the estimated glucose concentration plotted against the offline measured values by 

HPLC. The values cover a range of <2 g/L to above 14 g/L, where most data points are between 5-

10 g/L. In general, the calculated concentrations are evenly distributed between over- and under-

predicted values in the observed range. Furthermore, a mean average percentage error of 13 % was 

achieved and a value of 1.2 g/L was calculated as the root mean square error, indicating the glucose 

concentration determination accuracy of the soft sensor as part of a control loop in a bioprocess. Thus, 

the glucose set point should be chosen high enough to compensate for an eventual calculation failure 

and therefore a target above 2 g/L would be recommended. An exemplary glucose profile for 

bioprocess V is presented in Figure 18. 
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Figure 18 displays the calculated glucose concentration trend for the entire cultivation time of 

bioprocess V. The glucose level drops during the batch phase to approximately 5 g/L, which is tracked 

correctly by the soft sensor. With the feed addition starting on day 3, the glucose concentration in the 

bioreactor increases until day 7, where a peak value of >9 g/L is reached. The forecast for this phase is 

also in agreement with the offline data. In the following days, the glucose level drops continuously 

until the last day of the cultivation. At first, the glucose estimation is able to follow the offline data 

points precisely, but as the viability drops during the process, the deviation between the computed 

and measured concentrations increases. An explanation for this behavior could be that only training 

data was used for the model development, where the viability of the cells was always above 80 %. 

However, the viability drops below 80 % in bioprocess V on day 12. 

 

4.7. Feed on demand control strategy 

One of the objectives of this master thesis was to establish a feed on-demand control strategy for the 

pilot scale reactor and thus making it possible to keep the glucose concentration constant during a 

cultivation. A constant glucose level can be beneficial in several aspects; e.g. it has been shown that 

the concentration of glucose during the cultivation has an influence on the glycosylation pattern of 

mAbs (Sissolak 2019). The basis of the control strategy is the correlation between consumed oxygen 

and glucose, which was identified by the evaluation of historic fed-batch bioprocess data sets. This 

enables the establishment of a soft sensor based on OUR calculation which is able to assess the glucose 

concentration in the bioreactor. Additionally, a control loop can be established making it possible to 

add the depleted carbon source and keep it at a constant level without any additional measurements.  

 

Figure 18: Glucose concentration profile for bioprocess V computed with the soft sensor 
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Figure 19 presents the interconnections of the models that serve as a basis for the control strategy 

along with the necessary input variables used for the calculations. First, the kLa model is computed and 

used as an input for the OUR calculation. The thus obtained rate is then used to determine the 

consumed oxygen, which is subsequently converted into the amount of consumed glucose. This value 

is further applied for the computation of the actual glucose concentration in the reactor. The nutrient 

can be then added automatically depending on the desired set point to keep the concentration in the 

reactor at a constant level. 

 

Figure 19: Feed on-demand control strategy 

To accomplish this, the pilot scale reactor was characterized in the operational space with respect to 

the mass transfer coefficient. A dependence on fill volume, agitator speed and PA gas flow was 

identified. The established kLa model was implemented to the OUR calculation to account for the 

changing coefficient during the cultivation. Apart from the kLa model, the determination of OUR 

requires additional input variables of the bioreactor such as volume, DO, temperature and the gas flow 

rate of PA and CO2. The determined correlation between consumed oxygen and glucose was 

implemented to the glucose concentration estimation. The depleted glucose can be calculated 

knowing its initial concentration in the medium and the amount of feed added during the cultivation. 

Subsequently, a feed rate can be determined to compensate the declining glucose concentration and 

to hold it at a given level during the bioprocess without the requirement of any additional installations 

or measurements.  

A few aspects should be considered when implementing the feed on-demand strategy. The used filter 

techniques for data smoothing such as the moving average are intended for an application on offline 

data. Using this filter for online estimation would result in time-wise shifted data with a shift depending 

on the averaging window. For such purposes an online applicable filter e.g. the Kalman filter can be 

implemented (Simutis et al., 2014). Furthermore, another point to be considered is the update 

frequency of the computed feed rate. On the one hand, the background noise from the online 
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measurements becomes more prominent with a shorter time frame. On the other hand, when the 

feed addition is computed over a longer period (e.g. 24 h), the actual glucose concentration deviates 

from the target due to increasing cell concentration and higher carbon source demand, as described 

in the following section 4.8 Lab scale feed on-demand experiment. 

 

4.8. Lab scale feed on-demand experiment 

To prove the concept of the feed on-demand strategy, a laboratory scale experiment was carried out. 

A static fed-batch process at 34 °C in the 15 L bioreactor was performed with nutrient feeding (feed 

F2) to keep the glucose concentration at 5 g/L in the culture. The glucose consumption was calculated 

every 24 h and the feed rate was adjusted to replace the depleted carbon source.  

The cultivation lasted for 14 days, during which the nutrient addition was initiated on day 5, after the 

threshold of 5 g/L glucose was reached. Samples were drawn every 24 h and the online data were 

exported in the same frequency. Figure 20 presents the glucose concentration during the cultivation. 

 

Figure 20: Glucose concentration profile of the feed on-demand experiment 

The carbon source concentration in the culture supernatant was analyzed by HPLC. The glucose profile 

shows a decline throughout the process in a range of 5.5 g/L initial to 2.5 g/L final concentration. The 

set point of 5 g/L could not be kept constant during the run due to two different issues. First, the design 

of the experiment was not optimally chosen as the feed rate was calculated only every 24 h for the 

past day and thus the missing glucose was added with one day delay. During this time, the consumption 

increased due to the growing number of cells causing a discrepancy between the actual concentration 

and the set point. The second and more severe issue is illustrated on Figure 21. 
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Figure 21: Calculated feed rate vs. actually added for feed on-demand experiment 

The feed rate calculated by the feed on-demand model in order to keep the set point concentration at 

5g/L is displayed as a continuous line. The model initiates the feed addition on day 5 with a flow rate 

of approximately 3 mL/h, which rises continuously throughout the process until it reaches 10 mL/h on 

day 14. The black horizontal lines indicate the amount of nutrient actually added to the culture. The 

feed rate was manually adjusted with a peristaltic pump in steps of 1 mL to the value closest to the 

model output within the possibilities of the pump. However, due to issues with the calibration, the 

predicted feed rate was never reached throughout the process resulting in a strong deviation in 

comparison to the target concentration. To evaluate the soft sensor performance, the glucose 

concentration was recalculated with the amount of feed actually added to the culture, as displayed in 

Figure 22. 
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Figure 22: Calculated glucose concentration trend of lab scale experiment with corrected feed 

Figure 22 shows the computed glucose profile with the corrected feed data. The prediction follows the 

offline HPLC measurement points in a satisfactory manner. The deviations between the prediction and 

the analyzed samples are minor and resulted in a calculated RMSE of 0.16 g/L and a MAPE 11 % for the 

whole bioprocess. It can be concluded that the soft sensor performed properly and the issue of the 

decreasing concentration was due to the faulty pump setup.  

Nevertheless, a demonstration of the corrected manual adjusted flow rates and the resulting 

theoretical outcome of the experiment are shown in Figure 23 and Figure 24, respectively. 

 

Figure 23: Calculated, actually added and ideal experiment 
feed profile for the experiment run 

 

Figure 24: Computed and ideally achievable glucose profile 
for the experiment run 
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Figure 23 presents the predicted feed rate determined by the model (feed predicted), the feed that 

was actually added during the experiment (feed added) and the rate which should have been applied 

by the peristaltic pump (feed ideal). Figure 24 shows the theoretical glucose concentration (dotted 

line) in the culture that would have been achieved during the bioprocess, if the ideal amount of feed 

was added to the culture. The glucose concentration would have been kept constant until day 9, after 

which the increasing cell concentration would have led to an increasing discrepancy between set point 

and actual concentration, as described previously.  

Therefore, a fully automated feed addition with a scale would be recommended for future 

experiments, as it would be more precise and better verifiable during the process.  

In conclusion, the glucose soft sensor predicted the concentration duly in the reactor with an RMSE of 

0.16 g/L and a MAPE 11 %. The major issue of the declining carbon source concentration can be 

explained by the insufficient manual addition of nutrient medium.  

 

4.9. Fed-batch pilot scale reactor 

4.9.1. OUR determination 

A fed-batch cultivation with a temperature shift and feed start (F2) on day 3 was performed in the 

100 L pilot scale reactor. The process lasted for approximately 12 days and reached a cell concentration 

of 5x106 cells/mL. The OUR was calculated for the run according to Pappenreiter et al. (Pappenreiter 

et al., 2019), by applying a dynamic kLa model for the pilot scale reactor in cell culture medium (see 

section 4.1.kLa determination pilot scale reactor). The OUR trend for the complete bioprocess is 

presented on Figure 25. 

 

 

Figure 25: OUR trend for the bioprocess in pilot scale 
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The OUR is steadily increasing throughout the bioprocess. The fluctuations around day 4 and 5 are due 

to an unsatisfactory setting of the dissolved oxygen control loop, which reacted with step changes in 

agitator speed and aeration rate to the depletion of oxygen in the culture broth. After correction of 

the aggressive response to DO changes, the PID controller output was increasing without the rapid 

fluctuations seen previously. The OUR reached a maximum value of about 0.06 mol/L/d, which is in 

the right range compared to the previously collected data, thus proving the plausibility of the applied 

OUR determination method as well as the correct implementation of the kLa model. However, the 

process performance was not satisfactory, since the viable cell density reached a maximum of only 

5x106 cells/mL during the 12 days of culture time, which is quite low in comparison to a previous 

cultivation reaching a viable cell concentration of above 2x107 cells/mL. A possible reason behind this 

could be that the inoculum culture in the seed reactor reached a too high cell density causing 

irreversible metabolic changes in the cells. Another explanation could be the altered geometry of the 

reactor due to the vertical baffles or the different sparger producing bigger bubbles compared to that 

of in the 15 L lab scale reactor. 

 

4.9.2. Online glucose calculation  

The glucose soft sensor was applied to the pilot scale bioprocess and the glucose concentration was 

calculated for the whole cultivation time. The obtained results are presented on Figure 26. 

The calculations for the online glucose concentration are in good agreement with the offline HPLC 

measurements until day 7. The jump in the glucose prediction on the same day can be explained by a 

 

Figure 26: Calculated glucose profile for pilot scale run 



 

Page | 43  

bolus addition of feed as the pump had a malfunction for 24 h. However, as the cell viability drops 

below 80 %, a deviation can be observed between the glucose prediction and the offline data. The 

reason behind this could be that the soft sensor was developed using a cultivation dataset with cell 

viabilities above 80 %, since bioprocesses are usually stopped when a certain viability threshold is 

reached. The product purification in the downstream process is more challenging and cost intensive, 

if lysed cell material is present in higher concentrations in the cultivation broth, which is the case when 

the viability drops.  
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5. Discussion and Outlook 

The PAT initiative laid the groundwork for the establishment of next generation bioprocesses based 

on model predictive control. With the goal of reducing batch rejections through the better 

understanding of bioprocesses, nowadays the focus during the development phase shifts towards the 

identification of CPPs and their interconnections with CQAs. For such an approach, large datasets e.g. 

the one used in this thesis are essential to enable the investigation of the different parameters 

influencing the process performance. The main objective of this thesis was the establishment of a feed 

on-demand strategy based on OUR determination to keep the glucose level constant during a 

bioprocess. Such a strategy can be beneficial in many aspects, as the glucose concentration during the 

cultivation has an impact on the CQAs of a product, e.g. on the glycosylation pattern of a mABs.  

The development of the feed strategy consisted of several steps. One main point was the 

establishment of a correlation between the OUR and the glucose concentration, which represents a 

cornerstone of the thesis. Therefore, historic cultivation data consisting of 13 fed-batch processes was 

investigated from different aspects. Ultimately, a linear correlation was established by calculating the 

consumed oxygen through integration of the OUR over a given time frame and then plotting it against 

the amount of consumed glucose in the same time window. However, the coefficient of determination 

was not satisfactory and the data in the plot was rather clouded. Therefore, in the next step, the 

outliers were eliminated from the dataset to improve the coefficient by smoothing the OUR data with 

a moving average filter over a time window of one hour. Additionally, all data points corresponding to 

a cell viability beneath 80 % was excluded. In the last step, the glucose data was processed. Due to 

unlikely consumption rates observed during certain cultivations, the cubic smoothing spline function 

was applied to the data set. The thus obtained linear correlation between oxygen and glucose 

consumptions showed a coefficient of determination of 0.7. Although, this value is not very high, it 

was still possible to develop a soft sensor for the prediction of glucose concentration during a 

bioprocess based on OUR determination.  

The soft sensor was evaluated by calculating the glucose profiles for a set of historic fed-batch data. 

Comparing the actual concentrations determined by HPLC measurement to the predicted values, a 

RMSE of 1.2 g/L and a MAPE of 13 % could be achieved. These performance indicators are worse 

compared to established PLS-models based on spectroscopy measurements (e.g. Raman 

spectroscopy), where errors of ±0.18 g/L could be achieved (Abu-Absi et al., 2011). However, such 

advanced sensors are rather expensive, especially in comparison to a standard dissolved oxygen probe, 

which is nowadays a basic element in a bioprocess. This makes the proposed soft sensor economically 

very interesting, in particular when operating bioreactors in parallel. Apart from CHO cells, the here 
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established correlation is applicable for other industrially relevant cell lines as well. However, as a 

starting point for further studies, the correlation would first need to be verified and adjusted using 

additional process data. 

Another aim of this thesis was the implementation of the OUR model (Pappenreiter et al., 2019) to the 

pilot scale reactor. The model not only incorporates a dynamic mass transfer coefficient that changes 

throughout the bioprocess, but it also accounts for other process parameters, e.g. the temperature 

dependent maximum oxygen solubility in the cell culture medium and the oxygen displacement caused 

by CO2 gassing during the bioprocess. For the model implementation, the characterization of the pilot 

scale reactor with respect to the mass transfer coefficient in the complete operation space was 

necessary. The determination of kLa was conducted according to the dynamic method described by 

Van´t Riet (Van’t Riet, 1979), in which oxygen is first displaced in the system by nitrogen sparging, then 

it is reintroduced by gassing in PA. The increase in DO is recorded and the mass transfer coefficient is 

calculated from the slope.  

A prerequisite for the accurate determination of kLa is that the probe response time τP has to be smaller 

than the reciprocal value of the measured coefficient. Hence, the response time of the applied 

dissolved oxygen probe was determined, resulting in an average τP value of 61 s (triplicate 

measurement). According to this, an accurate measurement is possible up to a kLa value of 59 h-1, 

which enables the application of the dissolved oxygen probe in mammalian cell culture, where 

normally a mass transfer coefficient of 20-40 h-1 is achieved (Betts et al., 2014). For the 

characterization of a microbial fermenter this range would not be sufficient, as mass transfer 

coefficients of up to 500 h-1 can be reached in high density E.coli processes (Meusel et al., 2016). 

After verifying the response time for the applied probe, the accuracy of the kLa measurements was 

determined. Therefore, after freshly installing and calibrating the probe, an experiment with the same 

temperature, fill volume, stirrer speed and PA gassing conditions was repeated on three different days 

and in triplicates. A relative standard deviation of 4.3 % was computed for the measured kLa values in 

the range of 9 h-1, which is in good agreement with the < 3 % error values reported in literature(Doran, 

2012). 

Furthermore, an automated recipe for the determination of the kLa was established for the pilot scale 

reactor as part of this thesis. The operator can specify the experiment conditions in the settings such 

as temperature, stirrer speed and PA gassing. After completion of the measurement, the obtained 

mass transfer coefficient, the error of determination and the applied process parameters are 

displayed. The automated determination has several advantages, e.g. reduction of operator input 

resulting in an improved reproducibility of the measurement. Additionally, the characterization of a 

bioreactor becomes less cumbersome, since the experiments are carried out automatically. 
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Subsequently, the determined kLa values can be used to compare the reactor performance between 

runs or can be applied in calculations and models as presented in this work. 

Next, the pilot scale reactor was characterized with regard to the mass transfer coefficient and the 

applied cultivation conditions. Therefore, several experiments in HQ water were carried out 

investigating parameters influencing the mass transfer in the bioreactor, e.g. the temperature of the 

solution, the fill volume of the tank, the stirrer speed and PA gas flow rate (the latter two coupled in 

the PID controller output for dissolved oxygen). HQ water was chosen as liquid medium for the initial 

measurements due to cost-saving reasons. The obtained results revealed that the temperature had 

only a minor impact on kLa in the magnitude of the measurement variation. Therefore, this parameter 

was not considered during the model establishment. In comparison, both the fill volume and the PID 

controller output greatly impacted the kLa. Based on these observations, a kLa model for HQ water was 

compiled with two process variables, the PID controller output and the fill volume. The model consists 

of two square planes for the 0- 38 % and >38 % PID controller output ranges, depicting the mass 

transfer coefficient at every possible fill volume and PID controller output combination with a fit of 

0.94 and 0.9, respectively. The unusual choice of two squares can be attributed to the settings of the 

PID controller. The PA is increasing in a linear manner throughout the operation space, whereas the 

stirrer speed has two slopes, one for the range of 0-38 % PID controller output and a steeper for the 

output above 38 %. This trend is also visible in the measured kLa data. 

To be able to calculate the mass transfer in cell culture medium, the model had to be converted. To 

accomplish this, a previously performed experiment series in HQ water was carried out in cell culture 

medium. From the obtained results two functions were established for the two PID controller output 

ranges (0-38 % and >38 %) describing the differences in the mass transfer between the media. The 

primary kLa model was transformed applying those calculations to create a new version, which can 

describe the mass transfer coefficient in cell culture medium in the pilot scale reactor. This proposed 

model is only valid for the investigated operation conditions (70-100 L; 0-100 % PID) and the used cell 

culture medium supplemented with 0.1 Vol% Antifoam C.  

As a proof of concept for the feed on-demand strategy, an experiment in the lab scale reactor was 

performed. During this bioprocess, the established soft sensor tracked the glucose concentration and 

feed was added based on daily calculations to hold a constant glucose level. The process lasted for 

14 days with a viability of above 90 % until day 10, but due to issues with the nutrient addition, the 

carbon source level could not be held constant during the run. Nevertheless, after recalculating with 

the corrected feeding, the soft sensor determined the glucose concentration in a satisfactory manner 

with a calculated RMSE of 0.16 g/L and a MAPE of 11 %. One drawback of the used experiment design 

was that the feed and the glucose were coupled and thus, the addition of feed containing various 
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amino acids and other nutrients was depending on the glucose depletion. The process design varied 

from what is normally applied for this cell line, where feed starts on the third day with a linear addition 

over the time. This leads to an overshoot of amino acids, nutrients and glucose thus introducing a more 

than favorable environment for the cells to grow. In the case of this experiment, feed started only on 

the fifth day with a much lower feeding rate of 3 mL/h compared to the 3.3 vol%/day of the end 

volume. Because of this, the cell growth was rather low compared to the processes carried out 

previously. A solution for this problem might be the uncoupling of glucose from the feed and its 

addition in a highly concentrated solution separately. The nutrient could be added independently 

starting at day 3 and the glucose could be added depending on its concentration in the reactor.  

Next, a fed-batch process performed in the pilot scale reactor was examined to check the OUR 

calculation and evaluate the glucose soft sensor performance. The process lasted for 12 days and 

reached a maximum viable cell concentration of 5x106 cells /mL with a viability above 80 % until day 

7. The OUR was steadily increasing throughout the process and reached am maximum of 0.06 mol/L/d. 

This result is in the correct range, although the computed rate is quite high compared to the previously 

obtained data.  

To confirm the correctness of the OUR determination, a comparison with an off-gas analyzer would be 

beneficial. Although, the computed trend is plausible, the absolute values may be too high. A reason 

for this could be an overestimated kLa leading to a false OUR outcome. 

As for the soft sensor, it was able to track the glucose concentration in the culture in a correct manner 

until the drop in viability at day 7. The reason for this could be that the sensor was developed with 

data, which excluded low cell viabilities to evade the deterioration of the correlation between oxygen 

uptake and glucose consumption.  

The performance of the examined process was rather unsatisfactory compared to previous 

bioprocesses on this scale. While the reason for this poor performance remains uncertain, one 

explanation could be the seed culture used for inoculation. Unfortunately, the cells reached a quite 

high cell concentration in the seed reactor. This could have triggered metabolic changes leading to the 

slow cell growth. This could also have affected the feed on-demand experiment as the same seed 

culture was used for both processes. According to the previously generated data in the 15 L scale, the 

cells should have grown faster in the batch phase of the process, which is independent of the nutrient 

addition. 

The presented feed on-demand strategy for the pilot scale reactor combines both focus areas 

demonstrated in this work. Real-time calculation of the oxygen uptake rate makes it possible to follow 

glucose depletion in the reactor, enabling an on-demand feed addition keeping the concentration at a 
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certain set point. Unfortunately, due to lack of time the feed on-demand control strategy could not be 

tested in a pilot scale process. Nevertheless, first applications on historic process data have shown that 

a time frame of 4-6 h would be a reasonable compromise between background noise and 

concentration deviation and thus such a time window would be recommended for a bioprocess 

performed in the 100 L pilot scale reactor. Such a mode of operation could be beneficial as the glucose 

level has an impact on CQAs such as the glycosylation pattern of the produced antibody, which is a 

very important and well-studied quality attribute of an IgG1 antibody. 
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7. Appendix 

 

The following figures (Appendix 1-13) display the calculated OUR for the respective bioprocess.  

 

 

Appendix 1: Bioprocess I 

 

Appendix 2: Bioprocess II 

 

Appendix 3: Bioprocess III 

 

Appendix 4: Bioprocess IV 

 

  



 

Page | 54  

 

Appendix 5: Bioprocess V 

 

Appendix 6: Bioprocess VI 

 

Appendix 7: Bioprocess VII 

 

Appendix 8: Bioprocess VIII 

 

Appendix 9: Bioprocess IX 

 

Appendix 10: Bioprocess X 
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Appendix 11: Bioprocess XI 

 

Appendix 12: Bioprocess XII 

 

Appendix 13: Bioprocess XIII 

 

 

The following figures (Appendix 14-27) display the predicted glucose trend and the measured 

concentration for the respective bioprocess. 
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Appendix 14: Glucose profile of bioprocess I 

 

Appendix 15: Glucose profile of bioprocess II 

 

Appendix 16: Glucose profile of bioprocess III 

 

Appendix 17: Glucose profile of bioprocess IV 

 

Appendix 18: Glucose profile of bioprocess V 

 

Appendix 19: Glucose profile of bioprocess VI 
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Appendix 20: Glucose profile of bioprocess VII 

 

Appendix 21: Glucose profile of bioprocess VIII 

 

Appendix 22: Glucose profile of bioprocess IX 

 

Appendix 23: Glucose profile of bioprocess X 

 

Appendix 24: Glucose profile of bioprocess XI 

 

Appendix 25: Glucose profile of bioprocess XII 
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Appendix 26: Glucose profile of bioprocess XIII 

 

 

 




