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Abstract 

 

Fusarium head blight (FHB) is a widespread and serious fungal disease in common wheat (Triticum 

aestivum) and other small grains caused by Fusarium graminearum and related species. A major concern 

is the production of mycotoxins harmful to humans and livestock. Exploitation of host resistance is the single 

most effective control measure. Major FHB resistance quantitative trait locus (QTL) Qfhs.ifa-5A resides in 

a recombination-poor pericentromeric region of chromosome 5A, making fine-mapping the QTL interval by 

linkage mapping unfeasible. Therefore, radiation selfing (RS) mapping, a recombination-independent 

approach relying on radiation-induced deletions, was used for high-resolution fine-mapping of this region. 

M2 plants from gamma irradiation of pollen (subpanel DP) and M2 plants from gamma irradiation of heads 

(subpanel DPS) of experimental line NIL3 (C3) that harbours the resistance-conferring Qfhs.ifa-5A allele 

were screened for deletions. Pre-screening 1503 plants of subpanel DP and 1085 plants of subpanel DPS 

with 18 5AS-specific genetic markers yielded 26 informative lines with unique deletions distributed over the 

chromosome arm. These lines represent fertile mutants with homozygous deletions and can be used for 

developing inbred deletion lines for phenotyping experiments. The 26 selected informative lines were 

genotyped with 96 5AS-specific markers and the generated marker data was used for map construction 

resulting in a map with 400.1 cR length, an overall resolution of 0.62 Mbp/cR, and a fairly consistent 

resolution across different chromosomal bins. A 384-fold increase in map resolution in comparison to a 

linkage map was obtained in the recombination-poor pericentromeric 5AS segment. Between subpanel DP 

and subpanel DPS, no differences in the proportion of informative lines could be detected. The ratio of 

interstitial to terminal deletions was higher in subpanel DPS, suggesting a possible advantage of head 

irradiation over (sole) pollen irradiation. However, when compared to the results of a previous study, neither 

pollen nor head irradiation seem to outperform the simpler approach of seed irradiation in an RS mapping 

context. 
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Deutsche Zusammenfassung 

 

Die Ährenfusariose ist eine weitverbreitete und folgenschwere Pilzerkrankung bei Weich-Weizen (Triticum 

aestivum) und anderen kleinkörnigen Getreidearten, ausgelöst durch Fusarium graminearum und 

verwandte Arten. Ein Hauptbedenken ist dabei die Produktion von Mykotoxinen, die eine Gefahr für Mensch 

und Nutztier darstellen. Die Züchtung resistenter Sorten stellt die effektivste Kontrollstrategie dar. Der 

bedeutende Q u a n t i t a t i v e  T r a i t  L o c u s  (QTL) Qfhs.ifa-5A befindet sich in einer rekombinationsarmen 

centromernahen Region des Weizenchromosoms 5A, wodurch eine Feinkartierung des QTL-Intervalls 

nicht durch Kopplungsanalyse realisierbar ist. Es wurde daher für die hochauflösende Feinkartierung der 

Region r a d i a t i o n  s e l f i n g  ( R S )  m a p p i n g , eine rekombinationsunabhängige Methode, die auf der 

Induktion von Deletionen durch Bestrahlung beruht, angewandt. 1503 M2-Pflanzen aus Gamma-

Bestrahlung von Pollen (Unterpanel DP) und 1085 M2-Pflanzen aus Gamma-Bestrahlung von Ähren 

(Unterpanel DPS) der Versuchslinie NIL3 (C3), die das resistenzbedingende Qfhs.ifa-5A-Allel trägt, wurden 

auf Deletionen hin untersucht. Eine Voruntersuchung mit 18 5AS-spezifischen genetischen Markern 

resultierte in 26 informativen Linien mit einmaligen, über den Chromosomenarm 5AS verteilten Deletionen. 

Diese Linien stellen fertile Mutanten mit homozygoten Deletionen dar, die für die Entwicklung von 

deletionstragenden Inzuchtlinien für Phänotypisierungsexperimente verwendet werden können. Die 26 

selektierten informativen Linien wurden mit 96 5AS-spezifischen Markern genotypisiert. Die dabei 

generierten Markerdaten wurden für die Erstellung einer Karte verwendet, für die sich eine Länge von 400,1 

cR, eine Gesamtauflösung von 0,62 Mbp/cR und eine einigermaßen konsistente Auflösung über 

chromosomale B i n s  hinweg ergaben. Es konnte eine im Vergleich zu einer Kopplungskarte 384-fach 

verbesserte Auflösung im rekombinationsarmen centromernahen 5AS-Abschnitt erreicht werden. Zwischen 

Unterpanel DP und Unterpanel DPS konnte kein Unterschied im Anteil informativer Linien festgestellt 

werden. Das Verhältnis zwischen interstitiellen und terminalen Deletionen war in Unterpanel DPS höher, 

was auf einen möglichen Vorteil von Ährenbestrahlung gegenüber (reiner) Pollenbestrahlung hindeutet. 

Allerdings scheinen im Kontext von R S  m a p p i n g  weder Pollen- noch Ährenbestrahlung bessere 

Ausbeuten als die in einer früheren Studie angewandte, simplere Samenbestrahlung zu bringen. 
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1. Introduction 

1.1 Fusarium head blight (FHB) – a serious wheat disease 

Fusarium head blight (FHB), also known as Fusarium ear blight (FEB) (Parry et al., 1995), scab, pink 

mold, and white head (Martin & Johnston, 1982), is an important disease of small grain cereals that 

has been reported throughout the world (Pirgozliev et al., 2003). It has become one of the most 

serious cereal grain diseases in temperate regions (Somers et al., 2003). 

FHB is caused by members of the genus Fusarium, where the Fusarium graminearum species 

complex (FGSC), comprising of several phylogenetically distinct species (O’Donnell et al., 2004),  

belongs to the most dangerous and widespread mycotoxin producing representatives (van der Lee 

et al., 2015). F. graminearum (teleomorph Gibberella zeae), F. culmorum, and F. avenaceum (G. 

avenacea) are the Fusarium species predominantly found associated with FHB in wheat all over 

Europe (Bottalico & Perrone, 2002) with F. graminearum of various chemotypes currently being the 

dominant FGSC component in Europe (Przemieniecki et al., 2014; van der Lee et al., 2015). 

Abundant natural inoculum during warm and humid weather at flowering imply a high risk of an FHB 

epidemic (H. Buerstmayr et al., 2002) and probably greater resistance is needed in warm and humid 

climates (Mesterházy, 2003). In extreme cases, FHB can cause yield losses as high as or higher 

than 50% (Martin & Johnston, 1982; Mihuta-Grimm & Forster, 1989), but it mainly reduces grain 

quality (Dean et al., 2012). For example, baking quality is reduced due to proteolytic enzymes 

(Nightingale et al., 1999), but the most serious concern is mycotoxin contamination of the crop (H. 

Buerstmayr et al., 2002). In addition, many FHB causing species can also cause seedling blight and 

foot rot (Parry et al., 1995) and FHB affected seeds give rise to low-vigour seedlings (Martin & 

Johnston, 1982). 
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1.1.1 Mycotoxin contamination as a major concern 

A wide range of mycotoxins is produced by Fusaria with the most important Fusarium toxins 

regarding human health being trichothecenes including deoxynivalenol (DON), zearalenone (ZEN) 

and its derivatives, fumonisins, moniliformin, fusarochromanones, fusaric acid, fusarins, cyclic 

peptides, and amino acid esters (beauvericin type) (D’Mello et al., 1997). DON and its derivatives 

are the most frequently encountered mycotoxins in FHB in European wheat and zearalenone (ZEN) 

is commonly associated with DON and its derivatives (Bottalico & Perrone, 2002). 

In the EU, maximum levels for several Fusarium toxins in foodstuffs exist – for DON e.g. 1250 μg/kg 

for unprocessed wheat, 500 μg/kg for bread, and 200 μg/kg for baby food (European Commission, 

2006b). For products intended for animal feed, guidance values exist, e.g. for wheat 8 mg/kg (ppm) 

DON relative to a feeding stuff with a moisture content of 12% (European Commission, 2006a). 

The Joint FAO/WHO Expert Committee on Food Additives (JECFA) defined a group provisional 

maximum tolerable daily intake (PMTDI) of 1 µg/kg body weight (bw) and a group acute reference 

dose (ARfD) of 8 μg/kg bw for DON and its acetylated derivatives 3-acetyl-deoxynivalenol (3-Ac-

DON) and 15-acetyl-deoxynivalenol (15-Ac-DON) in 2010 (WHO, 2011). A survey including three 

Austrian isolates found Central European F. graminearum isolates to belong to chemotype I (DON 

producing) with most isolates producing more 15-Ac-DON than 3-Ac-DON (suggesting they belong 

to chemotype Ib) (Tóth et al., 2005). The DON conjugate deoxynivalenol-3-glucoside (DON-3-Glc) 

formed in plants was not included into the group PMTDI due to insufficient information at that time 

(WHO, 2011) and not taken into account in the European Food Safety Authority’s 2013 exposure 

assessment due to a lack of occurrence data (EFSA, 2013). This “masked” metabolite is of a special 

interest for breeders since FHB resistance factors that significantly reduce DON have been shown 

to increase the ratio of DON-3-Glc to DON (Lemmens et al., 2016). A point stressed by D’Mello et 

al. (1997) is that risk assessments should not be based solely on pure compounds but should 

consider synergistic effects of co-occurring mycotoxins. 
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1.1.2 Mycotoxins and mycoflora 

F. graminearum is the single most dominant, widespread and destructive FHB causing pathogen 

worldwide (Miedaner, Cumagun, et al., 2008). In 2012, F. graminearum was voted fourth by fungal 

pathologists in a Top 10 list of fungal plant pathogens based on scientific/economic importance 

(Dean et al., 2012). However, species opportunistic or less pathogenic than F. graminearum can 

contribute considerably to the mycotoxin content in wheat, while high FHB severity does not 

necessarily mean high mycotoxin or DON concentrations if certain species including Microdochium 

nivale (syn: F. nivale) predominate in the FHB complex (Bottalico & Perrone, 2002). In short, 

members of the complex differ in their virulence as well as the quantity and type of mycotoxins 

produced (Przemieniecki et al., 2014). They do not only interact with one other, but may also interact 

with saprophytic species (Liggitt et al., 1997; Pirgozliev, 2002). Fungicide applications may alter the 

balance within the mycoflora and the spectrum and amount of mycotoxins (Müllenborn et al., 2008). 

Moreover, Mathis et al. (1986) presumed that powdery mildew (Erysiphe graminis) pustules allow F. 

culmorum to infect wheat leaves. Apparent shifts in pathogen populations (Miedaner, Cumagun, et 

al., 2008) may be influenced by climate change whose impact could also generally result in a 

dramatic increase of FHB and in increased DON contamination (Moretti et al., 2019). 

1.1.3 FHB control strategies 

Control measures against FHB and mycotoxins include cultural, chemical, and perhaps biological 

strategies, as well as the exploitation of host plant resistance (Pirgozliev et al., 2003). 

Cultural control includes crop-rotation and tillage (Dill-Macky & Jones, 2000). Even non-grass 

species like soybean (Broders et al., 2007; Pioli et al., 2004) and potato and sugar beet (Burlakoti et 

al., 2007) can be infected by F. graminearum and thus be a potential source of inoculum. 

An azole fungicide application at heading is the most common chemical FHB and DON control 

practice in temperate regions and was also proven to be effective in reducing various other 

mycotoxins (Scarpino et al., 2015). For organic wheat production, tannic acid and botanicals show 

potential in reducing FHB severity and mycotoxin content (Forrer et al., 2014). According to 
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Mesterházy (1995), wheat genotypes with a higher resistance level have a higher resistance stability 

while highly susceptible genotypes cannot even be protected by chemicals when heavy epidemics 

occur. 

Several promising biocontrol microorganisms have been proposed. For example, under field 

conditions, CLO-1, a formulated product of fungus Clonostachys rosea strain ACM941, reduced FHB 

index and DON by 30–46% and 22%–33%, respectively (A. G. Xue et al., 2014), while bacterium 

Bacillus subtilis strain SG6 was able to reduce FHB index by 77.5% and DON by 69.1% compared 

with an untreated control (Zhao et al., 2014). FHB index was defined as 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ÷ 100, 

with incidence being the proportion of heads infected and severity being the proportion of spikelets 

infected on infected heads (Groth et al., 1999). 

However – and while it is highly desirable to aim for an integrated, multiple-strategy control approach 

(Blandino et al., 2012; Shah et al., 2018) – the most reliable and consistent one of the single 

strategies seems to be the exploitation of genetic resistance (Pirgozliev et al., 2003). 

 

1.2 Exploitation of genetic FHB resistance in wheat 

Research in FHB resistance breeding has a tradition of about 100 years (Mesterházy et al., 2018). 

Smith (1884) gave an early description of FHB symptoms and attributed the disease to Fusisporium 

culmorum, a synonym of Fusarium culmorum (MycoBank, n.d.). Arthur (1891) observed that different 

wheat varieties were unequally affected by scab in a variety screening, but attributed differences 

mainly to differences in plant vigour due to a prior infection by another pathogen. He concluded that 

the variety of wheat holds no very important relation to the disease and found that late-sown plants 

were more diseased. In the early 20th century, it was found that large differences in resistance to 

FHB exist between varieties (Atanasoff, 1920; Christensen et al., 1929; MacInnes & Fogelman, 

1923; Scott, 1927) and several State experiment stations and Government field stations in the US 

were working on the development of resistant wheat varieties (Dickson & Mains, 1929). However, it 
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was the case that breeding programs that were started many times in the 20th century would cease 

after several years because of lack of interest or resources (Mesterházy, 2003). 

Today, however, many breeders have included selection for Fusarium resistance as a routine trait 

in their bread wheat breeding schemes (H. Buerstmayr et al., 2014). In different European countries 

FHB resistance is part of the assessments to be made in growing trials for the examination of value 

for cultivation and use (VCU) (AGES, 2019; APHA, 2019; Bundessortenamt, 2019; Rvp & CSAR, 

2017). In Germany, in the early 1980s the first targeted FHB resistance breeding programs were 

integrated into commercial wheat breeding (Spanakakis, 2003). 

The ultimate goal is productive cultivars with low disease symptoms and low mycotoxin 

contamination despite high infection pressure (H. Buerstmayr et al., 2009). While it is relatively 

simple to breed genotypes highly resistant to FHB, it is a great challenge to combine FHB resistance 

with all other desirable traits (Mesterházy, 2003). 

1.2.1 Fundamentals of pathogen virulence 

FHB resistance is horizontal and species- and race-nonspecific (Mesterházy, 2003; van Eeuwijk et 

al., 1995). Highly resistant wheat genotypes have excellent resistance all over the world, thus 

resistance is independent of the population structure of the Fusarium species/races (no highly 

specialized races exist) (Mesterházy, 2003). However, isolates differ significantly in aggressiveness 

(Mesterházy et al., 1999). Aggressiveness of F. culmorum isolates has been shown to have a 

quantitative-genetic basis (Miedaner et al., 1996) and Carter et al. (2002) found differences in 

aggressiveness between geographical groups of F. graminearum. According to van der Lee et al. 

(2015), F. graminearum should be considered as a meta-population rather than isolates around the 

world belonging to one and the same population. 

Given the fact that resistance does not seem to depend on the Fusarium species and there are no 

vertical races, selection against a highly aggressive isolate of one important species should be 

satisfactory for screening purposes in breeding (Mesterházy, 2003; van Eeuwijk et al., 1995).  

However, more than one genetically unrelated resistance source must be used in breeding to 
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minimize the risk of developing Fusarium pathogen populations showing increased aggressiveness 

and mycotoxin production (Miedaner, Cumagun, et al., 2008) and wheat varieties should in any case 

have a complex resistance to the different species, especially the leading species F. graminearum 

and F. culmorum (Mesterházy, 2003). 

Summerell & Leslie (2011) remarked that the amount of genetic variation within the genome of F. 

graminearum is quite large at around 3% – enough to separate some plants and animals into different 

genera – and outcrossing occurs frequently. The authors stressed the possible trouble for resistance 

breeding via partial resistance when facing populations of F. graminearum carrying enough 

additional multi-locus potential for aggressiveness. 

1.2.2 Fundamentals of host resistance 

Two major types of FHB resistance were described by Schroeder & Christensen (1963): Resistance 

to initial infection and resistance to hyphal spread. This division into type I and type II, respectively, 

is widely accepted (M. Buerstmayr et al., 2012). Three additional types of active resistance were 

listed by Mesterházy (1995) and Mesterházy et al. (1999): Resistance to toxin accumulation, 

resistance to kernel infection, and tolerance. Morphological traits may have an influence on FHB 

resistance, too. For example, plant height and anther extrusion have been found to be associated 

with type I FHB resistance (M. Buerstmayr & Buerstmayr, 2015; Lu et al., 2013; Yan et al., 2011). 

Indirect selection for FHB resistance through selection for rapid and complete anther extrusion 

appears promising and combining this trait with type II resistance quantitative trait loci (QTLs) seems 

advisable (M. Buerstmayr & Buerstmayr, 2015). 

According to Mesterházy (2003), different resistance components are under different genetic control 

but may be highly correlated because of pseudo-pleiotropic effects or linkage of genes. According 

to Dweba et al. (2017), resistance QTLs generally confer responses to two or more resistance types, 

albeit at varying levels. 

According to Mesterházy et al. (1999), low kernel infection, yield loss, and low DON contamination 

seem to be more or less correlated. However, since the genetics of resistance traits against FHB, 
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FDK (Fusarium damaged kernel content), and DON accumulation can differ, all these traits should 

be analysed during resistance tests (Szabó-Hevér et al., 2014). 

In FHB resistance breeding, crosses with at least one moderately to highly resistant parent are 

necessary to obtain progeny with acceptable resistance levels (Steiner et al., 2017), but ideally both 

crossing partners have considerable resistance and transgressive segregation can be hoped for 

(Mesterházy, 2003). 

1.2.3 Sources of FHB resistance 

Mostly spring wheats from China, Japan, and Brazil have been existing sources of high FHB 

resistance for decades (Mesterhazy, 1996). The Chinese spring wheat cultivar 'Sumai 3' and its 

derived lines is arguably the most widely used and certainly the best characterized resistance source 

(Rudd et al., 2001). H. Buerstmayr et al. (1996) performed an extensive investigation of international 

wheat germplasm and found considerable variation for FHB resistance among both the winter wheat 

and the spring wheat germplasm, with the most resistant genotypes being spring types. However, 

they found good resistance also in some winter wheat germplasm, including some old Austrian land 

races. 

European breeders strongly prefer resistance donors from their own programs or at least from 

released European varieties over non-adapted germplasm because of the high grain yield and 

quality demands (Miedaner et al., 2011). Usually, breeders have found genetic variability for FHB 

resistance in their existing germplasm (Rudd et al., 2001) and at a low rate, even good or excellent 

resistance can be found in breeding material without exotic FHB resistance sources (Mesterházy et 

al., 2008). 

Notably, von der Ohe et al. (2010) and Salameh et al (2011) demonstrated that major “exotic” 

resistance QTLs can be introgressed into European winter wheat backgrounds to greatly increase 

FHB resistance without substantially compromising agronomic performance and quality parameters. 

With 'Jaceo', Syngenta Seeds (France) released a European winter wheat cultivar harbouring QTL 

Fhb1 in 2013 (H. Buerstmayr et al., 2014). 
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H. Buerstmayr et al. (2009) stated that while “complete” FHB resistance has not yet been found in 

cultivated wheat, some alien species probably possess resistance genes that lead to an almost 

immune phenotype. The authors pointed out that such genes would, on the one hand, facilitate 

breeding for FHB resistance in wheat but that, on the other hand, relying on major gene resistance 

bears a high risk of sudden resistance breakdown as the experience with other wheat diseases 

shows. Expanding the wheat gene pool using other species, conventionally either by 

amphiploidization or by direct backcrossing, appears in any case promising, since common wheat 

has a rather narrow genetic base (Cox, 1997). However, this stands in contrast to the demand of 

practical breeders for well-adapted resistant germplasm rather than “exotic” material. 

Increasing FHB resistance through transgenic strategies has excellent long-term prospects, but 

constraints including regulatory issues, proprietary rights, and low public acceptance have to be 

overcome (Muehlbauer & Bushnell, 2003). Recent transgenic approaches include host-induced 

silencing of Fusarium genes (Chen et al., 2016) and DON detoxification via in planta glycosylation 

(Gatti et al., 2019; Li et al., 2015; Mandalà et al., 2019). 

1.2.4 Quantitative trait loci (QTLs) and marker-assisted selection (MAS) 

Breeding for FHB resistance is difficult because the most resistant germplasm has poor agronomic 

traits, resistance is inherited oligogenically or polygenically, and screening for resistance is 

environmentally biased, tedious, and expensive (H. Buerstmayr et al., 2002). To augment 

conventional methods, molecular breeding methods, including marker-assisted selection (MAS) and 

in a more general approach genomic selection (GS) have the great potential to support and 

accelerate FHB resistance breeding (H. Buerstmayr et al., 2009; Poland & Rutkoski, 2016). GS 

appears especially promising for breeding programs deploying “native” resistance sources with 

many small-effect QTLs (Steiner et al., 2017) and may outperform MAS in an FHB breeding program 

(Arruda et al., 2016).  

The usefulness of molecular markers for FHB resistance breeding was already stressed by Van 

Sanford et al. (2001) almost two decades ago. Marker-based selection may greatly speed up the 
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breeding for FHB resistance, which cannot be estimated phenotypically on a single-plant basis 

sufficiently, and marker-based backcrossing can minimize the non-adapted genome proportion from 

a donor species (Wilde et al., 2007). Markers are particularly useful in resistance breeding, because 

selection in absence of the pathogen and resistance gene pyramiding is possible (Langridge et al., 

2001). 

Requirements for effective MAS for FHB resistance are QTLs with relatively large and stable effects 

as well as the availability of tightly linked markers (Steiner et al., 2017). In breeding programmes, 

MAS for the major QTLs in early generations combined with phenotypic selection is favourable 

(Salameh et al., 2011; Wilde et al., 2007). Agostinelli et al. (2012) proposed an initial round of 

phenotypic selection at moderate selection intensity, enriching the population with major QTL 

resistance alleles while maintaining variation at other loci, followed by genotyping for the major QTLs 

in lines of phenotypic value. 

More than 100 published QTLs for FHB resistance were reviewed by H. Buerstmayr et al. (2009), 

with 22 QTL regions having been detected in more than one mapping population. Venske et al. 

(2019) found 556 QTL in a recent review of 76 scientific papers, distributed on all sub-genomes and 

chromosomes, and generated 65 meta-QTLs. 

The two most effective QTLs identified are Qfhs.ndsu-3BS (Fhb1) and Qfhs.ifa-5A from Chinese 

spring wheat variety 'Sumai 3' and derivatives (Schweiger et al., 2013). The 3BS QTL was identified 

by Waldron et al. (1999) and assigned the designation QFhs.ndsu-3B. Later on it was named 

Qfhs.ndsu-3BS (Anderson et al., 2001) and redesignated as Fhb1 by Liu et al. (2006). Recently, 

Fhb1 was introgressed into and validated in durum wheat (Triticum durum), representing a significant 

step forward in enhancing FHB resistance in this species (Prat et al., 2017). In North America, both 

Fhb1 and Qfhs.ifa-5A are used in practical wheat breeding (Steiner et al., 2017). 

1.2.5 Chromosome 5A harbouring QTL Qfhs.ifa-5A 

As early as 1982, Yu (1982) found in a monosomic analysis that spikelet infection in 'Chinese Spring' 

× 'Soo-Mo 3' F2 populations was reduced when chromosome 5A of 'Chinese Spring' was missing. 
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Another study using monosomic analysis found a positive effect on chromosome 5A in resistant 

breeding line 'U.-136.1' with 'Sumai 3' and 'Nobeokabozu' in its background (H. Buerstmayr et al., 

1999). Ban & Suenaga (1997, 2000) suggested that the resistance of 'Sumai 3' was controlled by 

two major genes with additive effects and assumed that one of the resistance genes may be linked 

in repulsion to the dominant suppressor B1 for awnedness on the long arm of chromosome 5A 

(chromosome 5AL). The work of Xu et al. (2001) supported the result of a resistance-conferring 

genomic region on 5AL in 'Sumai 3' by finding a significant association of 5AL specific markers with 

Type I resistance. 

H. Buerstmayr et al. (2002) started a QTL mapping approach using a population with resistance from 

spring wheat line 'CM-82036-1TP10Y-OST-10Y-OM-OFC' (abbreviated 'CM-82036'), a 'Sumai 3' 

derivative, in order to identify and map markers associated with type II FHB resistance. They found 

QTLs residing on chromosomes 3B, 5A, and 1B and concluded that type II FHB resistance in this 

material was under control of a few major QTLs with additive effects and an unknown number of 

minor genes. The Xgwm293–Xgwm304 interval was found to be the most-likely position of the 5A 

QTL. In an analysis for combined type I and type II resistance in the same population, H. Buerstmayr 

et al. (2003) found a QTL on chromosome 5A that explained 20% of the phenotypic variance for 

visual phenotypic FHB severity, and seemed to be primarily associated with resistance to fungal 

penetration. The allele conferring resistance originated from 'CM-82036'; the most likely position of 

the QTL was found to be in the Xgwm293– Xgwm156 interval, a region close to the centromere. The 

QTL was designated Qfhs.ifa-5A. Somers et al. (2003) found a QTL controlling DON accumulation 

on the short arm of chromosome 5A (chromosome 5AS) with the resistance allele likely inherited 

from 'Frontana'. QTL Qfhi.nau-5A from 'Wangshuibai' associated with type I resistance (F. Lin et al., 

2006) was mapped to chromosome 5AS as Fhb5 by S. Xue et al. (2011). 

Qfhs.ifa-5A and the advantage of stacking Fhb1 and Qfhs.ifa-5A were validated by Miedaner et al. 

(2006). Also, an a posteriori approach following phenotypic selection showed the large effect of 

Qfhs.ifa-5A (Miedaner, Wilde, et al., 2008). Taken together, after the original report this QTL was 

found significant in at least eight independent mapping studies based on FHB resistant sources from 
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East Asia (Salameh et al., 2011). Interestingly, QTLs in this region have also been found in 

germplasm originating from South and North America and Europe (H. Buerstmayr et al., 2009). The 

non-species specificity of Qfhs.ifa-5A was proven by Lemmens et al. (2004). Wilde et al. (2007) 

showed that marker-based selection for Qfhs.ifa-5A from 'CM82036' was effective. 

Von der Ohe et al. (2010) evaluated Fhb1 and Qfhs.ifa-5A in two European Winter Wheat backcross 

populations and found only small negative effects on agronomic traits that should be possible to be 

further decreased. The authors additionally showed that also high-quality performance is possible 

with the non-adapted QTLs. In a similar approach, Salameh et al. (2011) found an average increase 

in plant height associated with Qfhs.ifa-5A, but no systematic yield penalty or quality reduction 

(Salameh et al., 2011). 

Steiner et al. (2009) analysed gene expression in wheat after Fusarium attack through the cDNA-

AFLP method and found five transcript-derived fragments associated with the presence or absence 

of resistance alleles at QTLs Fhb1 and Qfhs.ifa-5A (Steiner et al., 2009). Homologies to a UDP-

glucosyltransferase, phenylalanine ammonia-lyase, DnaJ-like protein, pathogenesis-related family 

protein and to one gene with unknown function were revealed. Schweiger et al. (2013) found a 

transcript corresponding to a lipid transfer protein constitutively more abundant in lines with the 

Qfhs.ifa-5A resistant allele and proposed Ta.1282.4.S1_at as a promising candidate gene. 

Research and breeding programs have often concentrated on Type II resistance and the 3BS QTL, 

but Type I as conferred by the 5A QTL has been shown to be an equally important component of 

host resistance (Mesterházy et al., 2008; Mesterházy et al., 2007). Von der Ohe et al. (2010) even 

concluded that for the European winter wheat pool Qfhs.ifa-5A should be sufficient, especially when 

introgressed into an already moderately resistant genotype. 

However, further efforts are required to resolve the Qfhs.ifa-5A locus in the centromeric region of 

chromosome 5A (Schweiger et al., 2013). In the study of Malla et al. (2012), the percentage of lines 

with resistant alleles for Qfhs.ifa-5A exhibiting susceptibility was rather high when primers Xgwm293, 

Xgwm304, and Xbarc186 were used. As H. Buerstmayr et al. (2009) pointed out, there is a need for 

diagnostic markers for other QTLs than Fhb1 and such markers with close linkage to the QTL can 
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be found by fine-mapping. Moreover, mapping of the locus is central in the cloning of a resistance 

gene (Langridge et al., 2001). 

 

1.3 Fine-mapping 

The size and structure of the wheat genome make genetic analysis particularly challenging 

(Langridge et al., 2001). Hexaploid wheat (Triticum aestivum) has a very large genome that contains 

more than 85% repetitive DNA (IWGSC et al., 2018). The nuclear DNA content is around 16 Gb/1C, 

6 times higher than the one of maize and almost 40 times higher than the one of rice (Arumuganathan 

& Earle, 1991). The minimal average size of a wheat centromere is 4.9 Mb (6.7 Mb when unassigned 

scaffolds are included) (IWGSC et al., 2018). 

Sakamura (1918) was the first to report common wheat to have 42 chromosomes. These constitute 

seven groups, each containing a set of three homoeologous chromosomes belonging to the A, B, 

and D genomes (B. S. Gill et al., 2004). This genomic formula, BBAADD, originated as a result of 

two natural amphiploidization events (Cox, 1997). The 3 sub-genomes probably were derived from 

Aegilops tauschii (DD), Triticum urartu (AuAu), and Aegilops speltoides (BB) (Petersen et al., 2006). 

Because probably Aegilops speltoides is the plasmon donor in the cultivated wheats (G.-Z. Wang et 

al., 1997), the correct designation for common wheat is BBAADD, although generally AABBDD is 

used (Jauhar, 2007). Since homoeologous chromosomes normally do not pair with one another 

during meiosis, common wheat behaves much like a diploid organism (B. S. Gill et al., 2004). 

Consequently, the 3 genomes translate to 21 linkage groups (Langridge et al., 2001). 

1.3.1 Linkage mapping 

Linkage mapping, or genetic mapping, is based on genetic recombination during meiosis. Sturtevant 

(1913) was the first to use the number of cross-overs between two genes per 100 events to measure 

genetic distances and create a chromosome map. Numerous linkage maps of wheat have been 
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published (Langridge et al., 2001). A more recent one for chromosome 5A was obtained by Gadaleta 

et al (2014). 

However, uneven recombination across chromosomes results in inaccurate estimates of genetic to 

physical distances (Kumar, Bassi, et al., 2012). It further has been shown in wheat that 

recombination is very low in proximal regions of the chromosome, increasing with distance from the 

centromere (Akhunov et al., 2003). Thus, it is not possible to determine the order of loci within 

centromeric regions merely through recombination mapping (Balcárková et al., 2017). More than 

30% of the wheat genes are in recombination-poor regions (Erayman et al., 2004). To fine-map such 

regions including the Qfhs.ifa-5A interval, consequently a recombination-independent mapping 

approach is needed. 

A possible solution to this problem is deletion mapping, i.e., using lines with deleted chromosomes 

or chromosome segments to assign markers to the deleted regions. A further benefit of deletion 

mapping is the fact that it does not require allelic variation (Endo, 1990), while linkage maps depend 

on recombination between polymorphic molecular markers (Balcárková et al., 2017). 

1.3.2 Deletion mapping 

Due to the buffering effect of polyploidy on gene deletions in young polyploid species (arising from 

functionally redundant homoeoloci), wheat shows a relatively high tolerance to high mutation 

densities (Dubcovsky & Dvorak, 2007; Fitzgerald et al., 2012). The work of Sears (1939, 1944, 1954, 

1966) on aneuploids resulted in 'Chinese Spring' wheat lines with full chromosomes missing 

(nullisomes), often with tetrasomes (chromosome present in four doses) of the same homoeologous 

group compensating for the loss. These lines have proved extremely useful in assigning markers to 

linkage groups and by using ditelosomic lines, a marker can even be assigned to a chromosome 

arm (Langridge et al., 2001). 

By the use of “aneuploids that have sub-arm aneuploidy” (Endo, 2015), an even higher resolution is 

possible. Such plants, carrying deletions induced by a gametocidal Aegilops chromosome, were 

obtained by Endo (1988). The author stressed the possible usefulness of aneuploids with deletions 
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of different lengths for physical mapping. Such deletion stocks were then used by Werner et al. 

(1992) to successfully construct cytogenetically based physical maps of RFLP loci. Physical and 

genetic maps have been compared and composite maps have been constructed (K. S. Gill & Gill, 

1994; K. S. Gill et al., 1996). Endo & Gill (1996) identified 436 deletions and produced homozygous 

lines for 347 of them, including 11 short-arm deletions on chromosome 5A. However, the authors 

found hot spots for breakage, making the distribution of breakpoints obtained by the gametocidal 

system non-random. Moreover, such lines usually have deletions only from the telomere (Langridge 

et al., 2001). The number of deletion breaks is limited and the isolation of new stocks is time 

consuming (Tiwari et al., 2016). Finally, mapping to chromosomal bins cannot provide accurate 

ordering of markers within these segments (Kalavacharla et al., 2006). 

A most elegant way of overcoming such problems is radiation hybrid (RH) mapping. RH mapping 

relies on the random formation of deletions for mapping after high dosages of radiation have been 

applied (Kumar, Bassi, et al., 2012). Independently derived RHs are assayed for the presence or 

absence of marker loci and the patterns and frequencies of marker co-retention are used to calculate 

physical proximities and to develop a map (Balcárková et al., 2017). Distances are expressed in the 

unit centiRay (cR) and depend on the radiation dosage. For example, 1 centiRay (cR5000) is equal to 

1% probability of breakage between two markers after 5000 rads of gamma rays (Womack et al., 

1997). Riera-Lizarazu et al. (2010) described a method to produce RHs for the simultaneous 

mapping of the D-genome chromosomes of wheat: Seeds of hexaploid wheat are irradiated and 

surviving plants are crossed to tetraploid (AABB) wheat. Resulting quasi-pentaploid plants are 

monosomic for the D-genome chromosomes, allowing RH mapping of these chromosomes. For a 

higher deletion rate, Tiwari et al. (2016) used irradiated pollen from a hexaploid plant to pollinate 

tetraploids. Again, D-genome markers could be mapped by their presence or absence in the resulting 

AABBD plants. Since A- and B-chromosomes were also present from the tetraploid parent, dominant 

or co-dominant markers were needed to detect deletions in the other sub-genomes. A different 

approach that has already been followed at IFA Tulln before this thesis (Schwarz, 2017; Wagner, 

2017) is selfing hexaploid wheat plants after irradiation in order for induced deletions to become 
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homozygous and thus again be easily scorable by simple presence or absence of markers. This 

way, also stable inbred deletion lines e.g. for thorough phenotyping can be obtained. This particular 

method is referred to as radiation selfing (RS) mapping. 

1.3.3 Special applications of RH mapping 

Since Goss & Harris (1975) had first published the RH approach as a new method for mapping 

human genes, RH mapping has been used for numerous studies in both humans and animal species 

(Faraut et al., 2009; International Human Genome Sequencing Consortium, 2001). RH studies in 

plants were pioneered by Riera-Lizarazu et al. (2000), using oat-maize chromosome addition lines 

(Oscar Riera-Lizarazu et al., 1996). While in animals the process is restricted to in vitro panels where 

a radiated genome is rescued by fusion with a recipient cell line, in plants in vivo panels following an 

artificial cross can be generated (Kumar et al., 2014). Somatic plant hybrids from protoplast fusion 

expand the scope of plant RH mapping to cross-incompatible species combinations with a high level 

of polymorphism between the species. For example, asymmetric somatic hybrids between wheat 

and Bupleurum scorzonerifolium, an Apiaceae species, proved feasible for mapping purposes in 

wheat (Zhou et al., 2012, 2006). In this thesis, however, only in vivo panels are further discussed. 

The general advantages of RH mapping over linkage mapping for fine-mapping low-recombinogenic 

regions have been discussed in the chapters 1.3.1 and 1.3.2. Hereafter, RH mapping in the context 

of selected applications is described. 

Positional cloning and forward/reverse genetics 

Conventional map-based cloning requires the ability to generate thousands of progeny in which to 

screen for recombinants in small genetic intervals (Remington et al., 2001). Apart from its 

recombination-dependence, positional cloning using a genetic mapping approach is time consuming: 

Developing a population from NILs that only segregate for the region of interest takes four to six 

generations (Kumar et al., 2014).  

Kumar et al. (2014) list several advantages of RH panels in this context: A high map resolution is 

possible and can be influenced through radiation dosage, a homogeneous population can be 
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obtained in only one generation, and monomorphic genes may be mapped or cloned, too. 

Furthermore, distances obtained from RH mapping provide a better estimate of physical distances 

(Kumar, Bassi, et al., 2012). 

In the study of Faris et al. (2003), radiation-induced deletion mutants of wheat aided in narrowing 

down the region for Q gene candidates. The species cytoplasm-specific gene scsae was the first 

gene in wheat to be localised using RH mapping (Hossain et al., 2004). 

Generally, plant RH populations are good candidates in forward/reverse genetic studies to associate 

changes in gene sequence with phenotypes and vice versa (Kumar et al., 2014). RS mapping seems 

to be particularly suited for forward/reverse genetics, since any genotype can be used for developing 

RS panels. 

Sequencing 

Physical maps provide a framework to anchor sequence data (Meyers et al., 2004). RH mapping is 

suitable to obtain sufficient resolution of such maps proximal to the centromere (Kumar et al., 2014). 

In wheat, the RH approach was used, for example, to help the assembly of BAC contigs from the 

wheat D-genome sequencing project (Kumar, Simons, et al., 2012). With the publication of the whole 

genome sequence of wheat (IWGSC et al., 2018), in this particular species the use of RH mapping 

to support genome sequencing has become obsolete. 

Comparative genomics 

For studying syntenic relationships among species by comparing gene-based maps of a species of 

interest with a sequence of a model species, RH maps are of great value because of their high 

resolution and the possibility of mapping monomorphic markers (Kumar et al., 2014). Michalak et al. 

(2009) used RHs to physically map rice-derived genes on chromosome 1D of wheat. In a later study, 

RH mapping combined with chromosome-wise synteny analysis led to conclusions about the 

evolution of chromosome 1D and its centromere (Michalak de Jimenez et al., 2013). 
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1.4 Deletion induction by artificial mutation 

Deletions have been induced in wheat by various types of irradiation, including X-rays (Sears, 1977) 

and ion beams (Fitzgerald et al., 2015; Yang et al., 2014), a mutagen that has gained popularity in 

plant science and breeding only rather recently (Tanaka et al., 2010). Xiao et al., (2011) described 

a deletion on chromosome arm 3BS induced by fast neutron irradiation that increased FHB 

susceptibility in Chinese landrace 'Wangshuibai'. Gamma rays are an irradiation type that has been 

widely used for deletion induction in wheat (e.g. Cheng et al., 2015; Hossain et al., 2004; Spielmeyer 

et al., 2008; Tiwari et al., 2016). In principle, deletions can also be induced chemically, e.g. by DNA 

crosslinking agents (Anai, 2015). Van Schendel et al. (2016) demonstrated that in nematode 

Caenorhabditis elegans treated with photo-activated trimethylpsoralen (UV/TMP), deletions result 

from end joining of double strand breaks (DSBs) mediated by polymerase Theta. Regarding cereals, 

Wang et al. (2004) used another chemical “deletogen”, diepoxybutane (DEB), in rice with results 

indicating deletions of only small size as opposed to large deletions induced by fast neutrons in the 

same study. DSBs can also be induced by radiomimetic substances like bleomycin (Povirk, 1996), 

an antitumor antibiotic that induces breaks at specific sites (D’Andrea & Haseltine, 1978). In plants, 

bleomycin resistance has been proposed as a selectable marker for plant cell transformation (Hille 

et al., 1986). 

An induced deletion is hemizygous in M1 plants and is expected to become homozygous in the M2 

generation in the Mendelian ratio 1 (homozygous mutant) to 3 (hemizygous or heterozygous wild-

type) (Murai et al., 2013). Homozygous mutations in the M1 generation are not expected to occur in 

a considerable frequency, but have been described for certain genes in tomato (Jain et al., 1968) 

and pepper (Honda et al., 2006) after hydrazine treatments and heavy-ion bombardment, 

respectively. M1 plants from irradiated seeds are chimaeric (Bado et al., 2015). In contrast, when 

seeds are obtained by pollination with irradiated pollen, each mutation will effect an entire plant that 

thus will be non-chimaeric for a given induced deletion (Sears, 1977; Vizir et al., 1994). The same 

can be expected after irradiation of the haploid female gamete (egg cell). In this thesis, for practical 

reasons, seeds from irradiated heads or seeds from pollination with irradiated pollen are denoted 
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“M1”, and progeny of those seeds, after one round of selfing, “M2”. Another possibility would have 

been to refer to the irradiated pollen as M1 generation (Naito et al., 2005). 

In nature, spontaneous deletions might act as a counterbalance against genome size increasements 

and genomic obesity over evolutionary time scales (Petrov, 1997). 

1.4.1 Mutations induced by gamma irradiation 

First mutation experiments with gamma irradiation where described in the 1920s by Stadler (1928) 

in barley. Gamma irradiation induces DNA single- and double-strand breaks. When there are not 

enough nucleotide pairs between two independently induced single-strand breaks in opposite 

strands, a DSB cannot be prevented (van der Schans, 1978). Achey & Duryea (1974) showed that 

hydroxyl radicals, which are produced by irradiation of water, may produce strand breaks as a 

secondary radiation damage. 

There are two basic mechanisms working together in DSB repair: homologous recombination and 

nonhomologous end joining (NHEJ), where any end can join with any end (Britt, 1999; Gorbunova & 

Levy, 1999). In higher eukaryotes, such illegitimate recombination is more frequent than homologous 

recombination (Gorbunova & Levy, 1997). Due to the unspecificity of NHEJ, chromosomal 

inversions, deletions, translocations, and partial duplications can be produced (Britt, 1999). DSBs 

may differ in their complexity: For example, Pastwa et al. (2003) showed that the repair of DSBs 

produced by gamma rays was less efficient than the repair of restriction enzyme-induced DSBs. 

Apart from inducing DSBs, by generating reactive oxygen species (ROS) (Tuteja et al., 2001), 

gamma irradiation may induce base substitution mutations, too. For example, the oxidative DNA 

damage adduct 8-hydroxy-2'-deoxyguanosine (Kasai & Nishimura, 1984; Shigenaga et al., 1989) 

has been shown to induce transversions both in vitro (Shibutani et al., 1991) and in vivo (Moriya et 

al., 1991). Morita et al. (2009) found transversions both from C/G to A/T and from T/A to A/T in 

gamma irradiated rice. 
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1.4.2 Deletion sizes 

In rice (Oryza sativa), a popular model system for grasses (Chang et al., 2016; Izawa & Shimamoto, 

1996), Morita et al. (2009) analysed mutations induced by gamma irradiation and found that 

deletions, particularly small ones (1-16 bp), were the most frequent mutations. Cecchini et al. (1998) 

had shown that conditions capable of producing deletions of at least 5 kbp without apparently 

inducing small deletions or rearrangements can be established in Arabidopsis, M2 generation. Naito 

et al. (2005) gamma irradiated Arabidopsis pollen and detected large deletions up to >60 kbp, most 

of which were not transmitted to progeny. They hypothesized that large deletions not even 

transmittable heterozygously contained a gene or genes required for the formation or viability of 

pollen and egg cells. Nontransmissibility of deletions is expected to be less of a problem in common 

wheat due to its aforementioned genomic redundancy. Functional redundancy may play a role for 

mutations in Arabidopsis, too, a plant with an estimated 17% of non-tandem duplicated loci, most of 

which are non-linked (McGrath et al., 1993). However, the genome size and structure of 

allohexaploid wheat is exceptional. Furthermore, it has been shown that large deletions that were 

eliminated in diploid Arabidopsis progeny due to dominant lethality could be rescued in triploid 

progeny (Vizir & Mulligan, 1999). 

Kirik et al. (2000) showed differences in deletion length between Arabidopsis thaliana and tobacco 

following an endonuclease-induced single DSB, indicating a putative inverse correlation between 

genome size and average length of deletions. However, only deletions of up to 2.5 kb were subject 

to this study and differences were hypothesised to be due to different exo- or endonuclease activities 

attacking the break ends or a better protection against end degradation. For the occurrence of 

interstitial deletions spanning at least several Mb, such as are required for the mapping approach of 

this thesis, a different process has to be considered. As postulated by Naito et al. (2005), large 

deletions may occur by NHEJ when two DSBs in one chromosome occur, resulting in three 

fragments, and both terminal DNA fragments are joined while the middle one is omitted (Naito et al., 

2005). Terminal deletions on a chromosome, of course, only require one break and the loss of a 
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distal fragment (Qi et al., 2003). A telomere sequence is synthesized de novo at the breakpoint 

(Tsujimoto et al., 1999). 

1.4.3 Randomness of induced deletions 

Sparsely ionizing radiations like gamma irradiation induce DSBs more or less uniformly, although 

stochastically, throughout the genome (Sachs et al., 2000). Complete randomness, however, cannot 

be assumed. Khush & Rick (1968) found surviving breaks after X-ray and fast neutron irradiation of 

tomato pollen to be more frequent in heterochromatin with the deviation from randomness being 

more pronounced in the X-ray treatment. Similarly, working with gamma irradiated tomato pollen, 

Liharska et al. (1997) found deletion breakpoints in M1 plants to be predominantly located in the 

pericentromeric heterochromatic region. Quite contrarily, using immunoFISH to directly visualise 

DSBs, Falk et al. (2008) showed that in human cells decondensed, open, genetically active 

chromatin is more sensitive to DSB induction by gamma rays. In plants, Hase et al. (2010) showed 

in an ion beam irradiation experiment with petunia (Petunia hybrida) that highly expressed genes 

might be more radiation sensitive, leading to a higher mutation frequency in those genes. However, 

ion beam irradiation causes a different mutation spectrum than gamma irradiation, as shown in 

Arabidopsis (Tanaka, 1999) and carnation (Okamura et al., 2003). Working with gamma irradiation, 

Kumar et al. (2012) observed a significant interaction between the DNA repair mechanism and the 

distribution of crossing over events in durum wheat, showing that the hypothesis of RH mapping 

being independent of meiotic recombination patterns might not be entirely true. However, the RH 

map obtained by the authors still offered a fairly consistent physical to cR conversion and a much 

higher uniformity than a comparable genetic map. 
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1.5 Aim of thesis and research questions 

The general aim of this thesis is to screen mutant wheat lines for irradiation-induced deletions in the 

pericentromeric region of chromosome 5AS presumably harbouring QTL Qfhs.ifa-5A and to use both 

the generated data and other available map data to construct a highly resolved map of this region.  

Moreover, genotyped informative lines were to be maintained (generation advancement/ 

backcrossing to eliminate background mutations) by the Institute of Biotechnology in Plant 

Production, IFA Tulln, and used for phenotyping studies. 

Two subpanels of M2 plants derived from experimental line NIL3 (C3), a line that carries the 

resistance-conferring Qfhs.ifa-5A allele, were screened. For one subpanel, M1 plants were 

generated by pollinating non-irradiated plants with irradiated pollen. For the other subpanel, seeds 

from irradiated heads gave rise to M1 plants. 

Research questions were the following: 

• Can any deletions in the Qfhs.ifa-5A interval be detected and characterized in the two M2 

subpanels where irradiation was used to induce deletions randomly in the genome? 

• Does the chosen “radiation selfing” approach prove fit to lead to a highly resolved map of the 

low-recombining region harbouring Qfhs.ifa-5A? 

• Can any differences regarding marker retention be detected between the two subpanels? 
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2. Material and methods 

2.1 Plant material 

2.1.1 Deletion panel 

QTL Qfhs.ifa-5A was first detected in the 'Sumai 3' derivative 'CM-82036-1TP10Y-OST-10Y-OM-

OFC', abbreviated 'CM-82036' (H. Buerstmayr et al., 2002, 2003). As described by Schweiger et al. 

(2013), near-isogenic lines (NILs) were developed by crossing susceptible 'Remus' and resistant 

'CM-82036': During backcrossing, marker assisted selection was applied to confirm the transfer of 

Fhb1 and Qfhs.ifa-5A alleles to the next generation. BC5F1 plants were selfed and BC5F2 were 

screened for the genotypic status at Fhb1 and Qfhs-ifa-5A. Selected line NIL3 harbours the Qfhs.ifa-

5A resistance allele in a 'Remus' background and carries the susceptible allele at the Fhb1 QTL. 

'Remus' is a spring wheat cultivar developed at the Bavarian State Institute for Agronomy in Freising, 

Germany, that is highly susceptible to Fusarium ear infection but otherwise well-adapted for 

cultivation in central Europe (H. Buerstmayr et al., 2002). 

Prior to this thesis, NIL3 (= C3) had been used for the generation of a radiation-induced deletion 

panel: At anthesis, heads were detached and gamma irradiated at a dose of 1 Kilorad [krd] (10 Gray 

[Gy]) at the IAEA laboratories at Seibersdorf, Austria. Radiation doses must ensure a sufficient 

number of deletions without causing damage that is not tolerated by the plant during its development 

or reproduction (Kumar, Simons, et al., 2012). Moreover, radiation dose/mean fragment size must 

reflect the desired map resolution/number of markers to be scored (Jones, 1996). Obtained irradiated 

pollen was used for pollination of non-irradiated plants, giving rise to the first of two subpanels 

(subpanel DP). The detached heads were kept for maturing of their seeds, giving rise to the second 

subpanel (subpanel DPS). The subsequent generation (M1) was self-pollinated for induced deletions 

to become homozygous. Following a Mendelian inheritance pattern, a hemizygous deletion is 

generally expected to become homozygous in every forth plant after one selfing step. This of course 

only applies when a deletion is transmittable homozygously and viable seeds are produced. 
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For subpanel DP, 1536 M2 (= RS1) seeds (for 16 96-well extraction plates) were sown, numbered 

consecutively from 1 to 384 with sister lines a to d. For subpanel DPS, 1152 M2 seeds (for 12 96-

well extraction plates) were sown, numbered consecutively from 1 to 240 with sister lines a to d, and 

from 241 to 336 with sister lines a and b. Sister lines in this context are M2 plants descending from 

the same M1 plant: DP and DPS M2 plants traced back to 384 and 336 M1 plants, respectively.  

Since not all seeds had produced sufficient leaf material for genotyping in time (seeds not 

germinated, plants dead or too small), eventually 1503 M2 lines from subpanel DP (tracing back to 

all 384 M1 plants) and 1085 M2 lines from subpanel DPS (tracing back to 334 of the 336 M1 plants) 

were screened. 

2.1.2 Control lines 

“Pre-screening” for deletions on subpanels DP and DPS with few markers was done with control 

lines C3 and d393 for comparison. d393 misses the whole 5AS chromosome, but not the 5AL 

chromosome (Wagner, 2017), while C3 would yield PCR amplicons for all markers.  

For further screening of selected deletion lines, nullisomic5A-tetrasomic5B line CS-N5AT5B derived 

from ‘Chinese Spring’ with chromosome pair 5A replaced by an additional 5B pair (Sears, 1966) and 

'Remus' were used as controls in addition to C3 and d393. 
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2.2 Experimental methods 

2.2.1 Leaf sampling and DNA extraction 

DNA was extracted following a modified Saghai-Maroof et al. (1984) protocol.  

Disposable 8-tube extraction strips (1.2 ml wells) were labelled by hand with permanent markers and 

filled with three glass grinding beads per tube. Henceforth, the strips were kept in labelled 96-well 

racks.  

In the greenhouse, leaf pieces of each plant were directly cut into the tubes: Material of one plant 

per tube. The scissors used were wiped down with paper towels to avoid contamination between 

genotypes. Per plant, three fresh leaf pieces short enough to not impede the closing of the tube were 

used as a rough guide for the suitable amount per tube. The DNA extraction protocol had been 

elaborated for up to 40 µg dry leaf material per tube.  

The leaf samples were put in a drying oven at 36 °C for up to three days. When leaves were 

completely dry, i.e. had become crisp, the tubes were closed tightly with plug strips, the plug strips 

were labelled, and the samples were moved to a cold storage room at 4 °C until further use. 

A buffer containing CTAB (cetyltrimethylammonium bromide) was prepared in the morning of each 

day of DNA extraction. Since 700 µl CTAB extraction buffer were needed for each well, 280 ml were 

prepared for four 96-well racks. Amounts of all ingredients are listed in Table 1. 

Table 1: CTAB extraction buffer mixture 

Reagent stock Final concentration Amount to add for 280 ml 

dH2O  182 ml 

Tris 1 M, pH 7.5 100 mM 28 ml 

NaCl 5 M 700 mM 39.2 ml 

EDTA 0.5 M, pH 8.0 50 mM 28 ml 

CTAB powder 1 % 2.8 g 

BME 14 M 140 mM 2.8 g 
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After having mixed Tris (tris(hydroxymethyl)aminomethane), NaCl, EDTA 

(ethylenediaminetetraacetic acid), and dH2O in a glass bottle, the liquid was warmed in a water bath 

to 60–65 °C. The bottle then was transferred to a heated magnetic stirrer hotplate under a fume hood 

and loaded with a magnetic stir bar. Only after that, CTAB powder was added and dissolved by 

stirring. Then, BME (β-mercaptoethanol) was added and the now complete buffer was mixed by 

stirring. 

Already during the heating of the liquid for the CTAB extraction buffer, the leaf samples were 

homogenized, i.e. the leaf material was physically disrupted for a high DNA yield. A Retsch ball mill 

in combination with the glass beads already inside the tubes was used for grinding. Always two 96-

well racks at a time were worked with. Milling took place for 10 min at a vibrational frequency of 300 

min-1 with a change of rack orientation after 5 min. 

The tube strips were centrifuged at the low relative centrifugal force (RCF) of 330 for approximately 

one minute. This was done in order to carefully get leaf powder off the plugs without compressing it 

at the bottom of the tubes. 

Under the fume hood, the plug strips were removed carefully to not contaminate any tubes with leaf 

powder of a different genotype. Open tube strips were kept covered by a paper sheet during the 

process and used plug strips were discarded. Then, 700 µl of 65°C warm CTAB extraction buffer 

were added to each tube. The tube strips were closed again tightly with new, labelled plug strips. 

The racks were put into fasteners, shaken by inversion and placed into a gently swirling water bath 

outside the fume hood at 65 °C for 60–90 min. After a few minutes in the water bath, the screws of 

the fasteners were checked and tightened as necessary. 

After the heating step, cooling down to room temperature was accelerated by a cool water bath in a 

sink. The racks were removed from the fasteners, followed by a short centrifugation with tissues 

underneath the racks to remove adhesive water. 

Again under the fume hood, the tube strips were opened and 350 µl – half the amount of CTAB 

extraction buffer – of chloroform:isoamyl alcohol 25:1 were added to each tube. The tube strips were 
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closed again using the same plug strips and the racks were put into the fasteners one more time. 

For 15 min, they were gently shaken by inversion mechanically. 

After centrifuging for 10 min at an RCF of 4000, 300 µl of each tube’s top aqueous phase 

(supernatant) that had formed were pipetted into new labelled tube strips with new labelled plug 

strips. The new strips usually had been prepared and labelled in the 60–90 min span during which 

the samples were in the water bath after the adding of the CTAB extraction buffer. The order of the 

samples within one 96-well rack was kept. No RNase was applied. 

300 µl of isopropyl alcohol (propan-2-ol) were added to each well under the fume hood and the tubes 

were closed with new labelled plug strips. The liquids were mixed by gently shaking and inverting 

the tubes and DNA precipitation could be observed. 

After centrifuging for 8 min at an RCF of 1000, a DNA pellet would stick to the bottom of each tube. 

The plug strips were removed and one rack at a time was inverted quickly over the sink. That way, 

the liquid would be poured off while the DNA pellet would still stick to the bottom of the tube. In order 

to not lose a tube strip, the strips were held back in the rack against gravity using a laboratory spatula. 

100 µl of Wash 1 (see Table 2) were added to each tube. Where the pellet would still stick to the 

tube after having added the wash, the tube was flicked until the pellet was loose within the wash. 

The racks then were transferred to a shaker where they were gently shaken for 30 min. 

Centrifuging and pouring off the liquid were performed again as described above. 100 µl of Wash 2 

(see Table 2) were added to each well. The strips were inverted gently for 5 min and flicked where 

necessary to ensure that pellets were loose within the wash. 

Again, centrifuging and pouring off the liquid was performed as described above. The tubes were 

kept open at room temperature overnight in order to let the pellets dry. In the next morning, 100 µl 

0.05× TE buffer (see Table 2) were added to each well. To ensure good dissolution, the racks were 

again put on a shaker and gently rocked for several hours and finally stored at 4 °C for further use. 
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Table 2: Composition of wash 1, wash 2, and TE buffer 

Wash 1  Wash 2 TE buffer 

76% EtOH 76% EtOH 10 mM Tris-8.0 

25 mM NaOAc 10 mM NH4OAc 1 mM EDTA-8.0 

  

2.2.2 DNA quality and concentration measurement 

Concentration and purity of at least four samples per rack were measured on a micro-volume 

spectrophotometer (Shimadzu BioSpec-nano micro-volume UV-Vis Spectrophotometer) after 

shaking the plates two times for 30 sec at 1250 rpm with an Eppendorf MixMate®. With 

concentrations below 500 ng/µl, samples were not further diluted at this step. Purity was measured 

by using the ratio of absorbance at 260 and 280 nm (A260/280; desired value 1.8–2.0) and at 260 and 

230 nm (A260/230; desired value 2.0–2.2). 

Concentration of each sample was then measured with a TECAN Multichannel Photometer: 

Extraction racks were shaken (10–15 sec at 1000-1400 rpm) and centrifuged (some seconds at 3000 

rpm). Photometer plates were loaded with 90 µl DNA solution per well (90 µl 0.05× TE buffer for 

blanks) and again shaken and spun down before the measurement. The plates were sealed with a 

foil until and after the measurement was performed and their bottom was cleaned with a Kimtech 

wipe just prior to measuring. 

2.2.3 DNA normalisation, dilution, and aliquoting for PCR 

DNA content was equilibrated to 200 µl/ng by adding 0.05× TE buffer. Normalisation was done either 

manually or with a TECAN liquid handling robot. 

The samples were transferred from the photometer plates into stock plates (master plates) which 

were labelled with date, concentration and a bar code. 

Working plates with 120 µl DNA solution of 50 ng/µl concentration were prepared. For diluting, dH2O 

was used. Pre-defined wells were filled with DNA solution of control lines.  



Material and methods 

Klaus BRUGGER page 28 

384-well PCR plates were prepared with 2 µl (50 ng/µl) DNA solution per well. Pipetting was done 

either manually or with a TECAN liquid handling robot. 

2.2.4 Multiplex PCR 

Eighteen 5AS-specific primer pairs were used for pre-screening the 2588 mutant lines and overall 

101 5AS-specific primer pairs were used for screening thirty-three lines with deletions or possible 

deletions that were selected during pre-screening (see Appendix 1 for the list of primers). Two 

additional 5AL-specific primer pairs did not yield positive results and so are not discussed in this 

thesis. 

A multiplex PCR, where different sequences are amplified simultaneously (Chamberlain et al., 1988), 

was used for time and cost efficiency reasons. An optimized multiplex PCR (Henegariu et al., 1997) 

protocol with maximum three primer pairs per well was followed. Good primer combinations (different 

size of PCR products and preferably at least one additional, 5AS-nonspecfic amplicon to recognise 

false positives due to PCR failures) had already been established at the institute (Schwarz, 2017; 

Wagner, 2017). 

Master mix was prepared on ice and 8 µl were added to each well of the 384-well-plates already 

containing 2 µl DNA solution (see 2.2.3). Composition of the master mix for a PCR with three primer 

pairs is given in Table 3. For an economic way of fluorescently labelling PCR products, sequence-

specific forward primers 5′-tailed with an M13 sequence (CCAGTCACGACGTT) were used in 

combination with a fluorescently labelled (FAM or Cy5 dye) universal M13 primer (Schuelke, 2000). 

After aliquoting the master mix, the plates were immediately subjected to a hot-start touchdown PCR 

(cycler pre-heated to 95 °C). The exact PCR program is shown in Table 4. 
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Table 3: PCR master mix composition (three primer pairs) 
 

volume 
for one 
plate* 

volume 
per 
reaction 

stock 
concentration 

final 
concentration 

DNA solution 840 µl 2 µl 50 ng/µl 10 ng/µl 

PCR buffer (incl. 1,5 mM MgCl2) 420 µl 1 µl 10 × 1 × 

dNTP mix (equal amounts of dNTPs) 420 µl 1 µl 2 mM 0.2 nmol/µl 

1st reverse primer 84 µl 0.2 µl 10 µM 0.2 pmol/µl 

1st forward primer 8.4 µl 0.02 µl 10 µM 0.02 pmol/µl 

2nd reverse primer 84 µl 0.2 µl 10 µM 0.2 pmol/µl 

2nd forward primer 8.4 µl 0.02 µl 10 µM 0.02 pmol/µl 

3rd reverse primer 84 µl 0.2 µl 10 µM 0.2 pmol/µl 

3rd forward primer 8.4 µl 0.02 µl 10 µM 0.02 pmol/µl 

M13 primer 126 µl 0.3 µl 10 µM 0.3 pmol/µl 

H2O (PCR grade) 2074.8 µl 4.94 µl -  - 

TAQ 42 µl 0.1 µl 5 U/µl 0.05 U/µl 

Sum 4200 µl 10 µl *calculated for 420 reactions 

 

Table 4: Steps during hot-start touchdown PCR 

Step Temperature [°C] Time [min:sec] Cycles 

Pre-denaturation 95 04:00 - 

Denaturation 95 00:50 

7 Annealing with touch-down (-2 °C/cycle)  starting at 65 01:00 

Elongation 72 01:00 

Denaturation 95 00:30 

25 Annealing 51 00:30 

Elongation 72 00:30 

Final post-elongation step 72 05:00 - 

Storage 14 Infinite - 
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2.2.5 Gel electrophoresis 

For separation of the PCR amplicons by electrophoresis, 12% polyacrylamide gels were casted. 2.5 

µl loading dye (Glycerol + dH20, 3:10) containing bromophenol blue were added to each well of the 

PCR plates and gels were loaded with 2 µl aliquots of PCR product/loading dye mixture. Wells of the 

first or last lanes were loaded with molecular-weight size markers (DNA ladders): Primer-specific 

amplicons that had been obtained by PCRs of non-irradiated C3 (Schwarz, 2017). Gels were run in 

a vertical electrophoresis unit (C.B.S. Scientific Co. Inc.) for 2 hours at 400 V and 10 °C with 1× TBE 

as running buffer. After a few minutes of running, the program could be paused and PCR products 

with different fluorescent labelling could be loaded. 

Gels were scanned on a Typhoon Trio imager (GE Healthcare) in fluorescence mode at 520 nm and 

670 nm, visualising FAM-labelled and Cy5-labelled products, respectively. After scanning, gels were 

run unloaded and then re-used, if gel and image quality were still suitable for doing so. 
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2.2.6 Image analysis 

Images were checked for deletions (scored) in Adobe Photoshop (Figure 1). The following characters 

were used in scoring:  

1 – band/marker present (no deletion)  

d  – band/marker absent (deletion) 

?  – band faint (possible deletion) 

s – band faint (probably no deletion)  

e  – empty (negative control) 

m – band missing probably due to PCR failure 

x – not scorable for other reasons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1: Example of an image scan (cropped) after scoring deletions 

Green ( ) marks lanes of DNA ladders for markers gpg1294 (M39), gpg2123 (M56), and gpg2126 (M57) 

Pink ( ) marks lanes of control lines C3 (non-irradiated) and d393 (5AS missing) 

Orange ( ) marks a lane where no PCR products were loaded (negative control) 

Yellow ( ) marks lanes where deletions (missing bands) could be detected 



Material and methods 

Klaus BRUGGER page 32 

2.2.7 Map calculation and visualisation 

Using the generated genotypic data of both subpanels, an optimal map with estimated marker 

distances (in cR) was built by CarthaGène (de Givry et al., 2005), version 1.2, a free program for 

genetic and radiation hybrid mapping, available for download at 

http://www7.inra.fr/mia/T/CarthaGene/. 

The data was pre-formatted in Microsoft Excel and loaded in CarthaGène. A diploid radiation hybrid 

model was selected. Since all markers were 5A-specific, they were taken to represent a single 

linkage group. 

The problem of ordering markers in RH mapping is connected to the travelling salesman problem 

(TPS) (Ben-Dor et al., 2000) and CarthaGène relies on this connection (de Givry et al., 2005). A 

correct solution to the TPS would have a salesman visit each given city exactly once and return to 

his starting point while using the overall shortest route (Larrañaga et al., 1999). Similarly, for 

mapping, an optimal order of markers (minimal map length and distances between markers) has to 

be found. This was computed using the Lin-Kernighan heuristic (Helsgaun, 2000; S. Lin & Kernighan, 

1973) by running the commands lkh, lkhd, lkhl, and lkhn. To improve the best map, the 

commands polish (“polishing”) and flips (“flipping”) were run. 

For the graphical presentation of the map, MapChart (Voorrips, 2002), version 2.32, was used. This 

program and a free license can be downloaded at https://www.wur.nl/en/show/Mapchart.htm. 

2.2.8 Characterisation of the panels 

Using genotypic data and the output of CarthaGène, several characteristics of the analysed panel 

were calculated. Most values were calculated for the whole panel, while some values were calculated 

separately for the two subpanels. 

The unit of the distances calculated by CarthaGène is cR. Physical distances in Mbp were taken 

from the reference sequence IWGSC RefSeq v1.0 (IWGSC et al., 2018). To calculate map resolution 

[Mbp/cR] across the chromosome arm, 5AS was separated into bins C-5AS1-0.40, 5AS1-0.40-0.75, 

and 5AS3-0.75-0.97 representing 40%, 35%, and 22% of the chromosome arm length, respectively. 

http://www7.inra.fr/mia/T/CarthaGene/
https://www.wur.nl/en/show/Mapchart.htm
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Based on a length of 255 Mbp for the whole chromosome arm (IWGSC et al., 2018), bin sizes in 

Mbp and an estimated map resolution [Mbp/cR] for each bin were calculated. The attribution of 

markers to bins obtained by this simplified approach is not necessarily in agreement with bin 

attribution according to available literature (see Appendix 1 for marker/primer publications). 

The number of informative lines was counted as the number of lines with at least one detected 

deletion. While deletions of only a single marker or spanning all markers do no give information on 

marker order, every break influences map length. Furthermore, also lines with such deletions might 

prove useful in further research. They were thus included in the number of informative lines. Sister 

lines (descending from the same M1 seed) with the same deletion/retention pattern were treated as 

one informative line. All further calculations were carried out using only informative lines. 

For the number of deletions (interstitial and terminal), a row of deleted adjacent markers was 

counted as one deletion. A deletion was assumed to be terminal when the most distal marker (gpg2 

or IWB11440) had been deleted. 

The number of obligate breaks is the number of breaks observable between a retained marker and 

a lost one (Jones, 1997). Informative obligate breaks and mapped loci were counted. 

Deletion lengths were calculated as minimum and maximum deletion lengths and the means 

thereof. The minimum length of a deletion is the distance between the most proximal and the most 

distal deleted marker and the maximum length of a deletion is the distance between the two flanking 

retained markers. For deletions not spanning more than one locus or concerning all markers, only 

one deletion length could be calculated. For the calculation of mean deletion lengths, the minimum 

deletion length of one-locus deletions was set to be 0. Even though a deletion including the most 

distal markers on the chromosome arm (gpg2 and IWB11440) is assumed to be terminal, the 

remaining 3% of chromosome arm length were not considered in the calculations. 

Retention per line was calculated both as proportion of retained markers per line and proportion of 

retained Mbp per line. For the calculation of retained Mbp per line, mean deletion lengths (see 
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above) were used. Retention frequency per marker was calculated as the proportion of lines 

having retained a certain marker. 

Mapped loci and markers per locus were counted. 

2.2.9 Correlation analysis with reference sequence 

Correlation between the generated data (in cR) and the Mbp according to reference sequence 

IWGSC RefSeq v1.0 (IWGSC et al., 2018) was calculated. Correlation coefficients were computed 

by R (version 3.5.1) via RStudio (version 1.1.463).  

Both Pearson's product-moment correlation (R function cor.test(X, 

Y,method="pearson")) and Spearman's rank correlation (R function cor.test 

(X,Y,method="spearman")) were used (X and Y being variables for the data formatted as 

numeric vectors of the same length; therefore, only shared markers were used). 
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3. Results 

3.1 Panel and map characteristics 

During pre-screening 2588 mutant lines (1503 from subpanel DP and 1085 from subpanel DPS) with 

18 primer pairs, 32 lines with clear or possible deletions on chromosome arm 5AS were selected for 

fine-mapping with 101 primer pairs. Six primer pairs did not yield reasonably scorable bands while 

one primer pair (wmc150) yielded two distinct 5AS-specific banding patterns, denoted wmc150a and 

wmc150b. Therefore, effectively 96 markers could be used for map construction (see Table 7). On 

two of the 32 selected lines, DP336_c and DPS24_b, no deletion could be confirmed. Eight selected 

lines were “sister” to another selected line (descending from four M1 plants). Individual sister pairs 

had the same markers deleted, and were thus further treated as four informative lines. Thus, fine-

mapping the 32 preselected lines resulted in 26 informative lines. 

A map length of 400.1 cR was calculated by CarthaGène. The 255 Mbp physical length of 

chromosome arm 5AS was partitioned into segments representing 40% (bin C-5AS1-0.40), 35% (bin 

5AS1-0.40-0.75) and 22% (bin 5AS3-0.75-0.97) of the chromosome arm, respectively. Calculated 

map resolution was 0.54 Mbp/cR in the most centromere-proximal bin and 1.00 Mbp/cR in the most 

distal bin. Table 5 gives a summary of bin sizes and map resolution. 

Several markers had identical retention/deletion patterns and were mapped to the same loci (up to 

8 markers per locus). 34 informative obligate breaks could be detected, translating to 35 mapped 

loci. Within loci, marker order could not be determined. In Table 7, marker order and distances as 

well as deletion patterns are shown. Figure 2 is a graphical presentation of the map created in 

MapChart, including marker order and distances. 

Of 28 deletions, 20 were interstitial and 8 were terminal. One line, DP250_a, showed 3 deletions, 

while all other informative lines only had one single deletion. (Although, when markers were ordered 

according to the reference sequence, DP361_c|F3/DP361_d did show two deletions).  
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Distances between loci ranged from 5.7 cR to 48.7 cR. The mean deletion length was 105.7 cR (65.1 

Mbp). The lowest calculable deletion length was 6.4 cR (3.3 Mbp). Minimum lengths of deletions not 

spanning more than one marker or locus (and, of course, deletions too small to be detected by the 

used markers) remain unknown. The largest deletion spanned all markers and therefore 400.1 cR 

(246.7 Mbp). Possibly, the whole chromosome arm was deleted in this line. Accordingly, no Mbp 

were retained in this line, while the line with the smallest deletion had at least 98.3% of Mbp retained. 

Table 8 gives a summary of deletions lengths, obligate breaks, retained markers, and retained Mbp 

per line. A compact summary of panel and map characteristics is given in Table 6. Marker retention 

and distribution of obligate breaks across the chromosome arm are shown in Figure 3 and Figure 4, 

respectively.   

In Table 9, selected characteristics of pollen-irradiation subpanel DP and head-irradiation subpanel 

DPS are compared. Eight of 17 deletions in subpanel DP were terminal while all eleven deletions in 

subpanel DPS were interstitial. In subpanel DP, one line had all 96 markers deleted. The largest 

deletion in subpanel DPS spanned 77 markers. Two lines in subpanel DPS had only one marker 

(gpg2326 and IWB62899, respectively) deleted. In subpanel DP, the smallest deletions spanned five 

markers. Mean deletion length was 105.8 cR (70.6 Mbp) in subpanel DP and 105.5 cR (55.9 Mbp) 

in subpanel DPS. Median deletion length in subpanels DP and DPS, calculated from mean deletion 

lengths of lines (see Table 8), was 71.3 cR (51.9 Mbp) and 59.5 cR (32.8 Mbp), respectively. The 

proportion of informative lines (based on seeds sown) was 1.0% in both subpanels. 
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Table 5: Summary of bin characteristics 

 

 

Table 6: Compact summary of panel and map characteristics 

Lines with deletions 30 Deletions 

Informative lines 26 Interstitial 20 

Markers 96 Terminal 8 

Mapped loci 35 Sum 28 

Distances between loci [cR] Deletion lengths [cR] [Mbp] 

Minimum 5.7 Minimum1 6.4 3.3 

Maximum 48.7 Maximum 400.1 246.7 

Mean 11.8 Mean 105.7 65.1 

Markers per locus Retention frequency per marker  

Minimum 1 Minimum 53.8% 

Maximum 8 Maximum 96.2% 

Mean 2.7 Mean 73.0% 

Retained markers per line Retained Mbp per line 

Minimum 0.0% Minimum 0.0% 

Maximum 99.0% Maximum ≥98.3%2 

Mean 73.0% Mean 70.6% 

Obligate breaks Map length 

Overall 48 [cR] 400.1 

Informative 34 [Mbp] 246.7 
1where at least two neighbouring loci are deleted 
2calculated from maximum deletion length of smallest deletion 

 
  

Bin  Length [Mbp]  Length [cR] Map resolution [Mbp/cR] Markers 

5AS3-0.75-0.97 54.4 54.6 1.00 16 

5AS1-0.40-0.75 86.6 162.8 0.53 28 

C-5AS1-0.40 98.9 182.7 0.54 52 

All 3 bins 247.4 400.1 0.62 96 
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Table 7: Marker order and deletion pattern of lines 
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[cR] [cR] [Mbp] 

5AS3-0.75-0.97 IWB11440  - 0 9.8 A H H H H H H A A H H A A H H A A A H H H - H H H H H H H H H H 

5AS3-0.75-0.97 gpg2 0 10.2 A H H H H H H - A H H A A H H A A A H H H H H H H H H H H H H H 

5AS3-0.75-0.97 gwm443 

6.3 

6.3 11.3 A H H H H H H A A H H A A H A A A A H H H H - H H H H H H H H H 

5AS3-0.75-0.97 cwem44c 6.3 18.9 A H H H H H H A A H H A A H A A A A H H H H H H H H H H H H H H 

5AS3-0.75-0.97 wmc654 6.3 27.8 A H H H H H H A A H H A A H A A A A H H H H H H H H H H H H H H 

5AS3-0.75-0.97 gpg537 6.1 12.4 29.2 A H H H H H H A A H H A A A A A A A H H H H H H H H H H H H H H 

5AS3-0.75-0.97 IWB4146 

5.9 

18.3 36.5 - H H H H H H - - H H A A A A A A A H H H H H H H H H A H H H H 

5AS3-0.75-0.97 gpg2328 18.3 37.2 A H H H H H H A A H H A A A A A A A H H H H H H H H H A H H H H 

5AS3-0.75-0.97 IWB29780 18.3 41.5 A H H H H H H A A H H A A A A A A A H H H H H H H H H A H H H H 

5AS3-0.75-0.97 gpg2326 5.7 24 37.9 A H H H H H H A A H H A A A A A A A H H H H H H H H H A H A H H 

5AS3-0.75-0.97 IWB62899 11.7 35.7 33.0 A H H H H H H A A H H A A A A A A A H H H H H H H H H A A H H H 

5AS3-0.75-0.97 IWB68241 

18.9 

54.6 46.0 A H H H H H - A A H H A A A A A A H A H H H H H H - H A H H H H 

5AS3-0.75-0.97 barc186 54.6 46.6 A H H H H H H A A H H A A A A A A H A H H H H H H H H A H H H H 

5AS3-0.75-0.97 ldk243 54.6 47.5 A H H H H H H A A H H A A A A A A H A H H H H H H H H A H H H H 

5AS3-0.75-0.97 IWB51518 54.6 48.2 A H H H H H H A A H H A A A A A A H A H H H H H H H H A H H H H 

5AS3-0.75-0.97 ldk267 54.6 48.7 A H H H H H H A A H H A A A A A A H A H H H H H H H H A H H H H 

5AS1-0.40-0.75 barc56 6.1 60.7 70.7 A H H H H H H A A H H A A A A A H H A H H H H H H H H A H H H H 

5AS1-0.40-0.75 ldk284 21.2 81.9 77.1 A H H H H H H A A H H A A - H H H H A A H H H H H H H A H H H H 

5AS1-0.40-0.75 gpg2162 
6.7 

88.6 79.2 A H H H H H H A A H H H A A H H H H A A H H - H H H H A H H H H 

5AS1-0.40-0.75 gpg2163 88.6 79.1 A H H H H H H A A H H H A A H H H H A A H H H H H H H A H H H H 

5AS1-0.40-0.75 gpg1438 13.3 101.9 82.2 A H H H H H H A A A A H A A H H H H A A H H H H H H H A H H H H 

5AS1-0.40-0.75 barc117 6.2 108.1 85.3 A H H H H H H A A A A H A H H H H H A A H H H H H H H A H H H H 

5AS1-0.40-0.75 gpg2038 

14.1 

122.2 96.6 - H H H H H H - - A A H H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 IWB75561 122.2 98.0 A H H H H H H A A A A H H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 IWB8393 122.2 109.3 A H H H H H H A - A A H H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 gpg2049 
6.9 

129.1 115.5 A H H H H H H A A A A A H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 gpg2060 129.1 117.2 A H H H H H H A A A A A H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 IWB33435 6.8 135.9 133.0 A H H H H H H A A A A A H H H H H H A A H H H H H H A H H H H H 

5AS1-0.40-0.75 IWB58275 

6.6 

142.5 128.4 A H H H H H H A A A A H H H H H H H A A H H H H H H A H H H H H 

5AS1-0.40-0.75 ldk217 142.5 130.2 A H H H H H H A A A A H H H H H H H A A H H H H H H A H H H H H 

C-5AS1-0.40 gpg574 142.5 141.3 A H H H H H H A A A A H H H H H H H A A H H H H H H A H H H H H 

C-5AS1-0.40 gpg2126 142.5 144.7 A H H H H H H A - A A H H H H H H H - A H H H H H H A H H H H H 

C-5AS1-0.40 gpg277 142.5 147.4 A H H H H H H A A A A H H H H H H H A A H H H H H H A H H H H H 

C-5AS1-0.40 ldk218 142.5 147.7 A H H H H H H A A A A H H H H H H H A A H H H H H H A H H H H H 

5AS1-0.40-0.75 gpg1763 

13.3 

155.8 124.0 - H H H H H H - - A A H H H H H H H A A H H H H A A A H H H H H 

5AS1-0.40-0.75 gpg2092 155.8 125.1 A H H H H H H A A A A H H H H H H H A A H H H H A A A H H H H H 

5AS1-0.40-0.75 gpg2072 155.8 125.4 - H H H H H H A A A A H H H H H H H - A H H H H A A A H H H H H 

5AS1-0.40-0.75 IWB10809 

12.9 – 13.0 

168.8 118.7 A H H H H H H A A A A A H H H H H H A A H H H H A A H H H H H H 

5AS1-0.40-0.75 BE498768 168.8 118.8 A H H H H H H A A A A A H H H H H H A A H H H H A A H H H H H H 

5AS1-0.40-0.75 ldk2 168.7 119.9 A H H H H H H A A A A A H H H - H H A A H H H H A A H H H H H H 

5AS1-0.40-0.75 ldk49 168.7 119.9 A H H H H H H A A A A A H H H H H H A A H H H H A A H H H H H H 

5AS1-0.40-0.75 gpg2233 168.7 120.1 A H H H H H H A A A A A H H H H H H A A H H H H A A H H H H H H 

5AS1-0.40-0.75 wmc150b 168.7 NA A H H H H H H A A A A A H H H H H H A A H H H H A A H H H H H H 

5AS1-0.40-0.75 wmc150a 

48.5 – 48.7 

217.3 NA A H H H H H H A A H H H H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 gpg1440 217.4 NA A H H H H H H A - H H H H H H H H H A A H H H H H H H H H H H H 

5AS1-0.40-0.75 jfio7 217.4 101.0 A H H H H H H A A H H H H H H H H H A A H - H H H H H H H H H H 

5AS1-0.40-0.75 gwm293 217.4 104.2 A H H H H H H A A H H H H H H H H H A A H H H H H H H - H H H H 

5AS1-0.40-0.75 gwm304 217.4 105.4 A H H H H H H A A H H H H H H H H H A A H H H H H H H - H H H H 

  

A / -  Marker deleted / Missing value, marker presumably deleted  
 

       

H / -  Marker retained / Missing value, marker presumably retained  

        

    Obligate break (in at least one line)    
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Table 7: continued 

C-5AS1-0.40 gpg1139  217.4 161.9 A H H H H H H A A H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 gpg1789 217.4 168.4 A H H H H H H A A H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 jfio4 16.6 234 173.5 A H H H H H H A A H H H H H H H H H A A A H A H H H H H H H H H 

C-5AS1-0.40 gpg1994 

14.7 

248.7 177.3 A H H H A A H A A H H H H H H H H H A A A H A H H H H H H H H H 

C-5AS1-0.40 gpg2250 248.7 179.2 A H H H A A H A A H H H H H H H H H A A A H A H H H H H H H H H 

C-5AS1-0.40 ldk50 248.7 182.2 A H H - A A H - - H H H H H H - H H A - A H A H H H H H H H H H 

C-5AS1-0.40 gpg2244 6.4 255.1 188.0 A H H H A A H A A H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 gpg2313 

6.4 – 6.5 

261.5 193.2 A H H H A A H A H H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 ldk16 261.6 193.3 A H H H A A H A H H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 ldk14 261.5 195.3 A H H H A A H A H H H H H H H H H H A A - H A - H H H H H H H H 

C-5AS1-0.40 gpg2019 261.6 200.6 A H H H A A H A H H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 gpg2108 261.6 200.6 A H H H A A H A H H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 gpg2231 261.6 209.5 A H H - A A H - - H H H H H H - H H A - A H A A H H H H H H H H 

C-5AS1-0.40 gpg1383 

6.4 

268 204.0 A H H H A A A A H H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 ldk242 268 204.3 A H H H A A A A - H H H H H H H H H A A A H A A H H H H H H H H 

C-5AS1-0.40 gwm129 268 205.2 A H H H A A A A H H H H H H H H H H A A A H A A H H H - H H H H 

C-5AS1-0.40 jfio2 
6.4 

274.4 207.7 A H H H A A A H H H H H H H H H H H A A A H A A H - H H H H H H 

C-5AS1-0.40 ldk289 274.4 208.1 A H H H A A A H H H H H H H H H H H A A - H A A H H H H H H H H 

C-5AS1-0.40 gpg2232 6.8 281.2 209.5 A H H H A A H H - H H H H H H H H H A A A H A A H - H H H H H H 

C-5AS1-0.40 gpg2075 6.7 287.9 211.8 A H H H A A H H H H H H H H H H H H A A A A A A H H H H H H H H 

C-5AS1-0.40 gpg2083 
6.7 

294.6 212.1 A H H H A A H H H H H H H H H H H H A A A A A H H H H H H - H H 

C-5AS1-0.40 gpg2097 294.6 212.4 A H H H A A H H H H H H H H H H H H A A A A A H H H H H H H H H 

C-5AS1-0.40 gpg2121 

22.5 

317.1 215.1 - H A A A A H H H H H H H H H H H H - A A A H H H H H H H H H H 

C-5AS1-0.40 gpg119 317.1 215.3 A H A A A A H H H H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg35 317.1 216.3 A H A A A A H H H H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg2336 317.1 218.0 A H A A A A H H H H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg743 317.1 218.1 A H A A A A H H - H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg1294 317.1 218.3 A H A A A A H H - H H H H H H H H H - A A A H H H H H H H H H H 

C-5AS1-0.40 gpg2117 317.1 219.7 A H A A A A H H H H H H H H H H H H A A - A H H H H H H H H H H 

C-5AS1-0.40 ldk113 317.1 221.7 A H A A A A H H H H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg214 
14.4 

331.5 226.1 A H A A H H H H H H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg2020 331.5 226.5 A H A A H H H H H H H H H H H H H H A A A A H H H H H H H H H H 

C-5AS1-0.40 gpg2147 

25 

356.5 231.1 A A A A H H H H H H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 gpg2123 356.5 232.2 A A A A H H H H - H H H H H H H H H - A H H H H H H H H H H H H 

C-5AS1-0.40 gpg2102 356.5 232.2 A A A A H H H H H H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 gpg1395 356.5 233.0 A A A A H H H H H H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 gpg2158 16.8 373.3 234.4 A A H H H H H H H H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 gpg1321 
8.5 

381.8 NA A H H H H H H H H H H H H H H H H H A A H H H H H H H H H H H H 

C-5AS1-0.40 ldk215 381.8 236.3 A H H H H H H H H H H H H H H H H H A A H H H H H H H - H H H H 

C-5AS1-0.40 gpg1777 8.9 390.7 240.5 A H H H H H H H H H H H H H H H H H A H H H H H H H H H H H H H 

C-5AS1-0.40 gpg158 

9.4 

400.1 242.0 A H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

C-5AS1-0.40 gpg2034 400.1 242.3 A H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

C-5AS1-0.40 gpg2255 400.1 242.9 A H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

C-5AS1-0.40 gpg2011 400.1 244.2 A H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

C-5AS1-0.40 BE425161 400.1 244.5 A H H H H H H H H H H H H H H H H H H H H H H H H H H - H H H H 

C-5AS1-0.40 gpg542 400.1 244.5 A H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

C-5AS1-0.40 cfa2250 400.1 245.9 A H H H H H H H - H H H H H H H H H H H H H H H H - H H H H H H 

C-5AS1-0.40 jfio6 400.1 246.7 A H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 
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Figure 2: Map visualisation 

Numbers on the left are marker positions 
in cR. Different colours correspond to 
different bins (markers gpg574, 
gpg2126, gpg277, ldk218 not 
considered). 
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Table 8: Summary of deletion characteristics of lines 

line 

Deletion 
length 
[cR] 

  
Deletion 
length 
[Mbp] 

  

O
b
lig

a
te

 b
re

a
k
s
 

R
e
ta

in
e
d
 m

a
rk

e
rs

 

R
e
ta

in
e
d
 M

b
p
  

Min Max Mean Min Max Mean 

DP199_b|G12 400.1 - (400.1) 246.7 - (246.7) 1 0.0% 0.0% 

DP156_b 16.8 50.3 33.6 3.3 9.8 6.6 2 94.8% 97.3% 

DP267_a+c|G5 39.4 78.7 59.1 17.9 22.0 20.0 2 85.4% 91.9% 

DP260_a+d 68.4 97.5 83 44.5 52.6 48.5 2 71.9% 80.3% 

DP55_a 6.4 19.7 13.1 4.1 8.9 6.5 2 94.8% 97.4% 

DP316_d|H11 268 274.4 271.2 205.2 207.7 206.4 1 33.3% 16.3% 

DP129_d|A7 255.1 261.6 258.4 188.0 193.2 190.6 1 42.7% 22.7% 

DP361_c|F3+d 66.9 128.8 97.9 
38.4 56.5 47.5 

2 76.0% 73.1% 
15.8 21.8 18.8 

DP250_a 

- 61.6 (30.8) - 11.0 (5.5) 

5 71.9% 62.2% 6.8 20.3 13.6 4.5 14.6 9.6 

81.9 88.6 85.3 77.1 79.1 78.1 

DP264_b 108.1 122.2 115.2 85.3 96.6 90.9 1 77.1% 63.1% 

DP346_a 89.5 101.8 95.7 53.0 57.5 55.3 2 83.3% 77.6% 

DP293_a 54.4 81.9 68.2 59.4 66.9 63.2 2 84.4% 74.4% 

DP81_c|F5 60.7 81.9 71.3 70.7 77.1 73.9 1 82.3% 70.0% 

DP69_b 54.6 60.7 57.7 48.7 70.7 59.7 1 83.3% 75.8% 

DP369_c 35.7 54.6 45.2 41.5 46.0 43.7 1 88.5% 82.3% 

DPS41_c 336.1 364.4 350.3 194.5 200.5 197.5 2 19.8% 20.0% 

DPS335_b 299.9 330 315 159.2 169.8 164.5 2 27.1% 33.3% 

DPS220_c 97.5 139.2 118.4 53.0 62.7 57.8 2 68.8% 76.6% 

DPS326_b 43.6 75.3 59.5 14.8 21.6 18.2 2 85.4% 92.6% 

DPS315_b 60.6 99.8 80.2 38.9 46.7 42.8 2 79.2% 82.7% 

DPS214_d 32.8 45.9 39.4 23.8 29.9 26.8 2 85.4% 89.1% 

DPS209_a+b 13 74.9 44 6.7 11.3 9.0 2 90.6% 96.4% 

DPS180_c 19.9 39.7 29.8 23.8 41.9 32.8 2 89.6% 86.7% 

DPS147_b 89.8 109.8 99.8 52.3 67.4 59.8 2 83.3% 75.8% 

DPS215_a - 30.6 (15.3) - 7.3 (3.6) 2 99.0% 98.5% 

DPS217_b - 17.4 (8.7) - 4.3 (2.1) 2 99.0% 99.1% 

 

Table 9: Comparison of selected characteristics of panels DP and DPS 

  Subpanel DP Subpanel DPS 

Informative lines 15 11 

  relative to seeds sown 1.0% 1.0% 

  relative to plants analysed 1.0% 1.0% 

  relative to all M1 plants 3.9% 3.3% 

Deletions 17 11 

 relative to seeds sown 1.1% 1.0% 

 relative to plants analysed 1.1% 1.0% 

 relative to all M1 plants 4.4% 3.3% 

Interstitial deletions 9 11 

Terminal deletions 8 0 

Obligate breaks 26 22 

  relative to seeds sown 1.7% 1.9% 

  relative to plants analysed 1.7% 2.0% 

  relative to all M1 plants 6.8% 6.5% 

  Min Max Mean Min Max Mean 

Number of deleted markers per line 5 96 28 1 77 24 

  [cR] [Mbp] [cR] [Mbp] 

Minimum deletion length1 6.4 3.3 13 9.5 

Maximum deletion length 400.1 246.7 364.4 264.7 

Mean deletion length 105.8 70.6 105.5 55.9 

Median deletion length2 71.3 51.9 59.5 32.8 
1where at least two neighbouring loci are deleted 
2calculated from mean deletion lengths of lines 
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Figure 3: Retention frequency per marker (%) across the chromosome arm 

Telomeric region is on the left, centromere towards the right. 

 

 

Figure 4: Distribution of obligate breaks across the chromosome arm 

Telomeric region is on the left, centromere towards the right. 
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3.2 Correlation with reference sequence 

For the correlation analysis between cR calculated in this thesis and Mbp according to reference 

sequence IWGSC RefSeq v1.0 (IWGSC et al., 2018), 92 shared markers were used.  

A Pearson product-moment correlation coefficient (PPMCC) of 0.973 and a Spearman's rank 

correlation coefficient (SRCC) of 0.981 were computed. Outputs of R/RStudio including p-values are 

shown in Table 10. In Figure 5, cR and Mbp are plotted against each other. 

 

Table 10: R output for correlation analysis 

PPMCC (cR of this thesis and Mbp of reference sequence) SRCC (cR of this thesis and Mbp of reference sequence) 

> cor.test(thesis_cR,Mbp,method="pearson") 

 

 Pearson's product-moment correlation 

 

data:  thesis_cR and Mbp 

t = 40.244, df = 90, p-value < 2.2e-16 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.9598544 0.9823121 

sample estimates: 

      cor  

0.9733218  

 

> cor.test(thesis_cR,Mbp,method="spearman") 

 

 Spearman's rank correlation rho 

 

data:  thesis_cR and Mbp 

S = 2478.3, p-value < 2.2e-16 

alternative hypothesis: true rho is not equal to 0 

sample estimates: 

      rho  

0.9809018 

 

  

 

Figure 5: Correlation between cR and Mbp 

Telomeric region is on the left, centromere towards the right. 

Linear trendline (purple) calculated by Microsoft Excel 2016. 
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4. Discussion 

4.1 Map resolution 

Overall map resolution – a function of the number of chromosome breaks, marker distribution, 

retention patterns, and number of lines used (Tiwari et al., 2016) – was 0.62 Mbp/cR. Resolution 

was consistent across centromeric and interstitial bin (0.54 and 0.53 Mbp/cR, respectively) and only 

considerably lower in the telomeric bin (1.00 Mbp/cR) where only seven loci could be mapped. This 

is in some agreement with Wagner (2017) who, similarly to this thesis, used 102 5A-specific markers 

on 28 informative lines and found map resolution across bins to increase towards the centromere, 

with an overall map resolution of 0.72 Mbp/cR. Looking at the distribution of obligate breaks (Figure 

4) and marker retention patterns (Figure 3), one can see that while breaks were relatively evenly 

distributed across the chromosome arm, marker retention increased with proximity to the 

centromere. This general trend was also observed by Wagner (2017), Schwarz (2017), and Blažek 

(2019) at the institute. A possible explanation to this is that (i) markers closer to the telomere are 

more likely to be affected by terminal deletions and (ii) centromere-proximal deletions are more likely 

to span across the centromere and become lethal. 

A preferential loss of markers due to unevenly distributed DSBs cannot be concluded from this data. 

On the contrary, the radiation mapping approach proved useful for achieving a comparatively high 

map resolution in the centromeric region. A linkage mapping approach with 3650 F2 plants resulted 

in a distance of 0.9 cM between markers barc186 and cfa2250 (M. Buerstmayr et al., 2018). 

Comparing this to the 345.5 cR obtained in the same interval in this thesis, a 384-fold increase of 

map resolution was reached with the radiation mapping approach used. Twenty-nine loci mapped to 

this region in the radiation map. Figure 6 visualises the radiation map and the linkage map with 

markers shared between both maps (maps drawn in MapChart, see 2.2.7).  

Still, the 96 used markers only allowed for a separation of chromosome 5AS into 35 loci, with the 

majority of markers showing identical retention/deletion patterns to at least one other marker. 
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Figure 6: RS map vs. linkage map 

Numbers on the radiation map (left) are marker positions in cR. Numbers on the linkage map (right) are marker 
positions in cM. Only shared markers are shown. Segments between markers barc186 and cfa2250 are coloured 
in green. 
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Therefore, for an even better separation of genetically linked markers, a higher number of informative 

lines would be needed, assuming that inducing more obligate breaks per line by increasing radiation 

dosage is not feasible. This is especially true for the marker clusters 

IWB10809/BE498768/ldk2/ldk49/gpg2233/wmc150b and wmc150a/gpg1440/jfio7/gwm293/ 

gwm304/gpg1139/gpg1789 that constitute two neighbouring loci separated by 48.7 cR. 

According to Jones (1996), the optimal marker retention frequency is a function of the distribution of 

the size of fragments and density of markers to be mapped. In this thesis, an average of 73% retained 

markers per line was observed. This is comparable to or slightly lower than average retention 

frequencies in plant RH panels (Kalavacharla et al., 2006; Kumar, Simons, et al., 2012; O Riera-

Lizarazu et al., 2010, 2000; Tiwari et al., 2016). Marker retention in an in vivo plant RH panel cannot 

be as low as in human or animal RH panels developed by cell fusion (Kumar, Simons, et al., 2012), 

and this is even truer for a plant RS panel that has undergone selfing steps like in the approach of 

this thesis: Nuclei with highly fragmented chromosomes that do not survive subsequent cell divisions 

will be eliminated (Kumar et al., 2014). It has to be stressed that these 73% are the average retention 

frequency of only the informative panel. An even much higher percentage would result if one was to 

calculate the average retention frequency for the whole panel, adjusted to take account of sister 

lines. 

 

4.2 Marker order and correlation with reference sequence 

The created map contains up to eight markers per locus and marker order within loci cannot be 

resolved. However, even considering this factor, the calculated marker order is not in perfect 

agreement with the reference sequence IWGSC RefSeq v1.0 (IWGSC et al., 2018). The correlation 

coefficient was 0.973 or 0.981, depending on the measure (PPMCC or SRCC). While this does prove 

a very high positive correlation, discrepancies can easily be seen in Table 11: Marker order of the 

reference sequence is compared with positions in cR calculated in this thesis that have been 

coloured according to their value. Lower numbers are more red/orange while higher numbers are 

more yellow/green. This was done by applying “conditional formatting” in Microsoft Excel 2016. 
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Especially noticeable are markers jfio7, gwm293, and gwm304 that cluster together in both maps 

but do so at a much more distal position according to the reference sequence. 

According to Jones (1996), mapping power in RH studies appears to be a function of radiation 

dose/fragment size, retention frequency, distribution of the loci to be mapped, and the number of 

hybrids. It can be expected that a higher number of lines would increase the probability of finding the 

correct marker order just as it would increase map resolution. When the dataset of this thesis is 

merged with the data of 120 lines from subpanels RS-NIL3 and RH-CS from the publication of M. 

Buerstmayr et al. (2018), the resulting consensus map is in almost perfect correlation with the 

reference sequence (SRCC ρ=0.9998; analysis performed as described in 2.2.9). This can also be 

seen in Table 11. Figure 7 shows visualisations of both the map from data created in this thesis and 

the consensus map (with shared markers only), making marker rearrangements easily visible. Map 

calculation and map visualisation were performed as described in 2.2.7. 
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Table 11: Comparison of marker order in different maps 

Only shared markers. Different varieties of blue correspond to different bins (see 2.2.8). 

Marker order according to this thesis  

with distances calculated in this thesis [cR] 

Marker order according to consensus map 

with distances calculated in this thesis [cR] 

Marker order according to reference sequence1 

with distances calculated in this thesis [cR] 
Marker order according to reference sequence1 
with distances from reference sequence1 [Mbp] 

IWB11440 0 IWB11440 0 IWB11440 0 IWB11440 9.8 

gpg2 0 gpg2 0 gpg2 0 gpg2 10.2 

gwm443 6.3 gwm443 6.3 gwm443 6.3 gwm443 11.3 

cwem44c 6.3 cwem44c 6.3 cwem44c 6.3 cwem44c 18.9 

wmc654 6.3 wmc654 6.3 wmc654 6.3 wmc654 27.8 

gpg537 12.4 gpg537 12.4 gpg537 12.4 gpg537 29.2 

IWB4146 18.3 IWB62899 35.7 IWB62899 35.7 IWB62899 33.0 

gpg2328 18.3 IWB4146 18.3 IWB4146 18.3 IWB4146 36.5 

IWB29780 18.3 gpg2328 18.3 gpg2328 18.3 gpg2328 37.2 

gpg2326 24 gpg2326 24 gpg2326 24 gpg2326 37.9 

IWB62899 35.7 IWB29780 18.3 IWB29780 18.3 IWB29780 41.5 

IWB68241 54.6 IWB68241 54.6 IWB68241 54.6 IWB68241 46.0 

barc186 54.6 barc186 54.6 barc186 54.6 barc186 46.6 

ldk243 54.6 ldk243 54.6 ldk243 54.6 ldk243 47.5 

IWB51518 54.6 IWB51518 54.6 IWB51518 54.6 IWB51518 48.2 

ldk267 54.6 ldk267 54.6 ldk267 54.6 ldk267 48.7 

barc56 60.7 barc56 60.7 barc56 60.7 barc56 70.7 

ldk284 81.9 ldk284 81.9 ldk284 81.9 ldk284 77.1 

gpg2162 88.6 gpg2162 88.6 gpg2162 88.6 gpg2162 79.1 

gpg2163 88.6 gpg2163 88.6 gpg2163 88.6 gpg2163 79.2 

gpg1438 101.9 gpg1438 101.9 gpg1438 101.9 gpg1438 82.2 

barc117 108.1 barc117 108.1 barc117 108.1 barc117 85.3 

gpg2038 122.2 gpg2038 122.2 gpg2038 122.2 gpg2038 96.6 

IWB75561 122.2 IWB75561 122.2 IWB75561 122.2 IWB75561 98.0 

IWB8393 122.2 jfio7 217.4 jfio7 217.4 jfio7 101.0 

gpg2049 129.1 gwm293 217.4 gwm293 217.4 gwm293 104.2 

gpg2060 129.1 gwm304 217.4 gwm304 217.4 gwm304 105.4 

IWB33435 135.9 IWB8393 122.2 IWB8393 122.2 IWB8393 109.3 

IWB58275 142.5 gpg2049 129.1 gpg2049 129.1 gpg2049 115.5 

ldk217 142.5 gpg2060 129.1 gpg2060 129.1 gpg2060 117.2 

gpg574 142.5 IWB10809 168.8 IWB10809 168.8 IWB10809 118.7 

gpg2126 142.5 BE498768 168.8 BE498768 168.8 BE498768 118.8 

gpg277 142.5 ldk2 168.7 ldk2 168.7 ldk2 119.9 

ldk218 142.5 ldk49 168.7 ldk49 168.7 ldk49 119.9 

gpg1763 155.8 gpg2233 168.7 gpg2233 168.7 gpg2233 120.1 

gpg2092 155.8 gpg1763 155.8 gpg1763 155.8 gpg1763 124.0 

gpg2072 155.8 gpg2092 155.8 gpg2092 155.8 gpg2092 125.1 

IWB10809 168.8 gpg2072 155.8 gpg2072 155.8 gpg2072 125.4 

BE498768 168.8 IWB58275 142.5 IWB58275 142.5 IWB58275 128.4 

ldk2 168.7 gpg2126 142.5 ldk217 142.5 ldk217 130.2 

ldk49 168.7 ldk217 142.5 IWB33435 135.9 IWB33435 133.0 

gpg2233 168.7 IWB33435 135.9 gpg574 142.5 gpg574 141.3 

jfio7 217.4 gpg574 142.5 gpg2126 142.5 gpg2126 144.7 

gwm293 217.4 gpg277 142.5 gpg277 142.5 gpg277 147.4 

gwm304 217.4 ldk218 142.5 ldk218 142.5 ldk218 147.7 

gpg1139 217.4 gpg1139 217.4 gpg1139 217.4 gpg1139 161.9 

gpg1789 217.4 gpg1789 217.4 gpg1789 217.4 gpg1789 168.4 

jfio4 234 jfio4 234 jfio4 234 jfio4 173.5 

gpg1994 248.7 gpg1994 248.7 gpg1994 248.7 gpg1994 177.3 

gpg2250 248.7 gpg2250 248.7 gpg2250 248.7 gpg2250 179.2 

ldk50 248.7 ldk50 248.7 ldk50 248.7 ldk50 182.2 

gpg2244 255.1 gpg2244 255.1 gpg2244 255.1 gpg2244 188.0 

gpg2313 261.5 gpg2313 261.5 gpg2313 261.5 gpg2313 193.2 

ldk16 261.6 ldk16 261.6 ldk16 261.6 ldk16 193.3 

ldk14 261.5 ldk14 261.5 ldk14 261.5 ldk14 195.3 

gpg2019 261.6 gpg2019 261.6 gpg2019 261.6 gpg2019 200.6 

gpg2108 261.6 gpg2108 261.6 gpg2108 261.6 gpg2108 200.6 

gpg2231 261.6 gpg1383 268 gpg1383 268 gpg1383 204.0 

gpg1383 268 ldk242 268 ldk242 268 ldk242 204.3 

ldk242 268 gwm129 268 gwm129 268 gwm129 205.2 

gwm129 268 jfio2 274.4 jfio2 274.4 jfio2 207.7 

jfio2 274.4 ldk289 274.4 ldk289 274.4 ldk289 208.1 

ldk289 274.4 gpg2231 261.6 gpg2231 261.6 gpg2231 209.5 

gpg2232 281.2 gpg2232 281.2 gpg2232 281.2 gpg2232 209.5 

gpg2075 287.9 gpg2075 287.9 gpg2075 287.9 gpg2075 211.8 

gpg2083 294.6 gpg2083 294.6 gpg2083 294.6 gpg2083 212.1 

gpg2097 294.6 gpg2097 294.6 gpg2097 294.6 gpg2097 212.4 

gpg2121 317.1 gpg2121 317.1 gpg2121 317.1 gpg2121 215.1 

gpg119 317.1 gpg119 317.1 gpg119 317.1 gpg119 215.3 

gpg35 317.1 gpg35 317.1 gpg35 317.1 gpg35 216.3 

gpg2336 317.1 gpg2336 317.1 gpg2336 317.1 gpg2336 218.0 

gpg743 317.1 gpg743 317.1 gpg743 317.1 gpg743 218.1 

gpg1294 317.1 gpg1294 317.1 gpg1294 317.1 gpg1294 218.3 

gpg2117 317.1 gpg2117 317.1 gpg2117 317.1 gpg2117 219.7 

ldk113 317.1 ldk113 317.1 ldk113 317.1 ldk113 221.7 

gpg214 331.5 gpg214 331.5 gpg214 331.5 gpg214 226.1 

gpg2020 331.5 gpg2020 331.5 gpg2020 331.5 gpg2020 226.5 

gpg2147 356.5 gpg2147 356.5 gpg2147 356.5 gpg2147 231.1 

gpg2123 356.5 gpg2123 356.5 gpg2123 356.5 gpg2123 232.2 

gpg2102 356.5 gpg2102 356.5 gpg2102 356.5 gpg2102 232.2 

gpg1395 356.5 gpg1395 356.5 gpg1395 356.5 gpg1395 233.0 

gpg2158 373.3 gpg2158 373.3 gpg2158 373.3 gpg2158 234.4 

ldk215 381.8 ldk215 381.8 ldk215 381.8 ldk215 236.3 

gpg1777 390.7 gpg1777 390.7 gpg1777 390.7 gpg1777 240.5 

gpg158 400.1 gpg158 400.1 gpg158 400.1 gpg158 242.0 

gpg2034 400.1 gpg2034 400.1 gpg2034 400.1 gpg2034 242.3 

gpg2255 400.1 gpg2255 400.1 gpg2255 400.1 gpg2255 242.9 

gpg2011 400.1 gpg2011 400.1 gpg2011 400.1 gpg2011 244.2 

BE425161 400.1 BE425161 400.1 BE425161 400.1 BE425161 244.5 

gpg542 400.1 gpg542 400.1 gpg542 400.1 gpg542 244.5 

cfa2250 400.1 cfa2250 400.1 cfa2250 400.1 cfa2250 245.9 

jfio6 400.1 jfio6 400.1 jfio6 400.1 jfio6 246.7 
1IWGSC RefSeq v1.0 (IWGSC et al., 2018) 
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Figure 7: Comparison of RS map and consensus map 
visualisations 

Map from data created in this thesis is on the left. Consensus 
map is on the right. Numbers are marker positions in cR. 
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4.3 Comparison of subpanels DP and DPS 

1503 M2 lines from pollen-irradiation subpanel DP and 1085 M2 lines from head-irradiation subpanel 

DPS were screened. In ca. 1% of lines of each subpanel (15 and 11 lines, respectively), deletions 

could be detected (sister lines with the same deletion/retention pattern were treated as one 

informative line). The ratio of obligate breaks to M2 plants analysed was 0.017 in subpanel DP and 

0.020 in subpanel DPS.  Based on M1 plants, the proportion of informative M2 plants was 3.9% and 

3.3%, respectively. However, in subpanel DP, slightly more M2 plants per M1 plant were analysed 

than in subpanel DPS. 

Tiwari et al. (2012) noted the advantage of radiation-induced chromosome damage post-meiosis 

when irradiating pollen, minimizing selection against chromosomal aberrations and allowing for a 

maximum recovery of deletions. Since all three nuclei mutate independently, quite deleterious 

mutants can be transmitted by one sperm, if the function of the other sperm and the tube nucleus 

are not affected (Coe et al., 1988). In the “radiation selfing” approach of this thesis, however, this 

advantage is sacrificed in favour of establishing stable or “immortal” inbred deletion lines. A possible 

disadvantage of irradiating pollen rather than zygotes or seeds could be a reduced competitiveness 

of pollen with deletions, resulting in a reduced proportion of M1 plants with deletions in the region of 

interest. However, a competition disadvantage of irradiated pollen is expected to be due to zygotic 

lethality after fertilization rather than fertilization as such being affected by irradiation (Pfahler, 1967). 

Moreover, chimaeric M1 plants from irradiated seeds cannot be screened and have to undergo 

gametogenesis after all. In any case, the data generated in this thesis does not suggest an 

advantage of pollen irradiation over irradiation of entire wheat heads or vice versa regarding the 

number of lines with deletions in a radiation selfing approach. It shall be noted here that irradiating 

heads at anthesis is not be equated with irradiating mature seeds. It further cannot be determined if 

chromosome damage during head irradiation took place pre or post fertilization. 

Subpanel DP included one line where all markers (and presumably the whole 5AS chromosome) 

were missing, while subpanel DPS had two lines where only one marker was deleted. Mean deletion 
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length (71.8 Mbp in subpanel DP and 77.0 Mbp in subpanel DPS) and median deletion length (46.0 

Mbp in subpanel DP and 46.3 in subpanel DPS), however, were similar between the two subpanels. 

An interesting difference between the subpanels was the ratio between interstitial and terminal 

deletions. In subpanel DP, 8 of 17 deletions were terminal. Thus, more than half of the 15 informative 

lines had a terminal deletion. In contrast, all deletions in subpanel DPS were interstitial, with no line 

showing a terminal deletion. This is in some disagreement with Vizir & Mulligan (1999) and Tiwari et 

al. (2012), who suggested that interstitial deletions may predominate in their pollen-irradiation 

experiments in Arabidopsis and wheat, respectively. Schwarz (2017) found a higher proportion of 

interstitial deletions in an RS panel from seed irradiation than in an RH panel from pollen irradiation. 

While Schwarz’ result is in general agreement to the findings of this thesis, the complete absence of 

terminal deletions in subpanel DPS is difficult to explain since results from subpanel DP show that 

such deletions are generally transmittable. One can speculate that the DSB repair mechanism in 

haploid cells works differently, leading to the different deletion pattern observed after pollen 

irradiation. Since a higher proportion of interstitial deletions is a consequence of a higher number of 

obligate breaks, a higher map resolution can be expected. This could point towards a possible 

advantage of head irradiation over (sole) pollen irradiation. 

More importantly, however, neither subpanel DP nor subpanel DPS showed a higher proportion of 

obligate breaks or a higher proportion of informative lines than a comparable RS panel derived from 

irradiated mature seeds: Wagner (2017) obtained 51 breaks on 1764 lines (0.029 breaks per line) 

with 28 lines being informative (1.6%). The RH mapping approach by Schwarz (2017) using 

irradiated pollen resulted in a proportion of informative lines one order of magnitude higher than 

obtained in this thesis. Deletions in the hemizygous RH1 (from pollinating line CS-N5AT5B with 

irradiated pollen) could immediately be screened. In RS mapping, however, deletions are lost by 

natural selection and genetic drift. Furthermore, hemizygous deletions remain undetected. From the 

results of the present thesis, it can be concluded that pollen irradiation offers no advantage over 

irradiation of mature seeds in a RS mapping context. 
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5. Conclusion and outlook 

Fusarium head blight (FHB) is a widespread and serious disease in wheat with mycotoxin 

contamination of the crop being a major concern. Exploitation of host resistance is the single most 

effective control measure. Major resistance QTL Qfhs.ifa-5A resides in a recombination-poor 

pericentromeric region of chromosome 5A, making fine-mapping the QTL interval by linkage 

mapping unfeasible. In this thesis, radiation selfing (RS) mapping, a recombination-independent 

approach, was used to fine-map this region: Mutant lines with gamma-irradiation-induced deletions 

were genotypically characterized and a map was built. 

Out of 2588 M2 plants, 26 informative lines with unique deletions distributed over chromosome arm 

5AS could be genotyped. Thus, detection and characterization of deletions in the Qfhs.ifa-5A interval 

in this thesis was successful. An advantage of RS over traditional RH mapping is the fact that fertile 

mutant lines with homozygous deletions can be established: The selected lines have been used for 

further research at the Institute of Biotechnology in Plant Production, Department of 

Agrobiotechnology, IFA-Tulln. 

The map constructed, using the genotypic data of the informative lines, has a fairly consistent 

resolution across the chromosome arm and a 384 times higher resolution in a recombination-poor 

segment than a comparable linkage map. Thus, the RS approach chosen in this thesis proved fit to 

fine-map a low-recombining region not accessible by linkage mapping. More informative lines would 

help to further improve map resolution and marker order. By merging the data generated in this 

thesis with data from 120 other mutant lines that has been generated at the institute, a very highly 

resolved deletion map of the Qfhs.ifa-5A interval could be obtained. Tightly linked markers will aid 

the utilization of Qfhs.ifa-5A in wheat breeding programs.   

No differences in the proportion of informative lines could be detected between the pollen-irradiation 

subpanel and the head-irradiation subpanel. However, the proportion of interstitial deletions was 

higher after head irradiation, suggesting a possible advantage of head irradiation over (sole) pollen 

irradiation. Neither of the subpanels showed an advantage of the respective irradiation mode over 
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the irradiation of mature seeds that was examined in a previous study. Since it is much easier to 

perform, seed irradiation thus appears to be the most advisable method for RS mapping. 

Very recently, Steiner et al. (2019) were able to separate Qfhs.ifa-5A into a major QTL, Qfhs.ifa-5Ac, 

mapping across the centromere, and a minor effect QTL, Qfhs.ifa-5AS, positioned at the distal half 

of 5AS. The authors explained that for practical breeding, still introgression of the complete 

resistance locus is reasonable. In the same study, anther extrusion was shown to be a major 

resistance component of Qfhs.ifa-5A. This knowledge will help in future attempts to identify candidate 

genes underlying FHB resistance QTL Qfhs.ifa-5A. 
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7. Appendix 

Appendix 1: List of primers used 

COS … conserved ortholog set (Fulton et al., 2002) 

eSSR … EST-derived microsatellite/simple sequence repeat 

EST … expressed sequence tag 

ISBP … insertion site-based polymorphism 

SNP … single nucleotide polymorphism 

SSR … microsatellite/simple sequence repeat 

RJM … repeat junction marker 

  marker also used in pre-screening 

 

Marker Marker type Left/forward primer (5'-3') Right/reverse primer (5'-3') Reference Bin 

barc117 SSR TCATGCGTGCTAAGTGCTAA GAGGGCAGGAAAAAGTGACT 
Song et al. (2005) 
(Supplementary material 3) 

5AS3-0.75-0.98 
(https://wheat.pw.usda.gov; 
Somers et al., 2004) 

barc186 SSR GGAGTGTCGAGATGATGTGGAAAC CGCAGACGTCAGCAGCTCGAGAGG 
Song et al. (2005) 
(Supplementary material 3) 

5AS3-0.75-0.97 
(Schwarz, 2017) 

barc56 SSR GCGGGAATTTACGGGAAGTCAAGAA GCGAGTGGTTCAAATTTATGTCTGT 
Song et al. (2005) 
(Supplementary material 3) 

5AS3-0.75-0.98 
(https://wheat.pw.usda.gov; 
Somers et al., 2004) 

BE425161 SNP/COS 
GGATGGTTCTGACCCAATATG 
(BE425161A_F1) 

ATCATGCCGACAAACAGCTT 
(BE425161_cpR1) 

Akhunov et al. (2010); 
http://probes.pw.usda.gov:8080/snpworld/Search  

C-5AS1-0.40 

BE498768 SNP/COS 
CTGCCCCTAGAAGTTTCTCGT 
(BE498768A_F1) 

CAGCGAGTGACAATTCCAGA 
(BE498768_cpR1) 

Akhunov et al. (2010); 
http://probes.pw.usda.gov:8080/snpworld/Search 

5AS1-0.40-0.75 

cfa2250 SSR AGCCATAGATGGCCCTACCT CACTCAATGGCAGGTCCTTT 
Sourdille et al. (2001) (as cited on https://wheat.pw.usda.gov); 
Somers et al. (2004) (Supplementary material) 

C-5AS1-0.40 

cwem44c eSSR AGTGCACTGCAAACACAGAG AGCCGTACACCTTCATAGGC Peng & Lapitan (2005)  
(Appendix 1) 

5AS3-0.75-0.97 
(Barabaschi et al., 2015, 
Supplemental Table 3) 

gpg1139 ISBP ACCCGTAAGTTGCCGTTATG CACTCATGTTGAACACACCCA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg119 ISBP CACGTCACTGTCAAGTGGCT CACACATGTATTACGGTTTCCG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1293 ISBP GCAGCAGGAAAAATCAGCAT GGTTCGGCCTGAGATCATT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1294 ISBP CCTCGAGAGTTTTGGTCGAG GCACCAACCAGGAGTAAAGG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1321 ISBP CCATCGATCTTAGACGCACA ATTGCTCTACGTGGTGCATG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1383 ISBP CCTCTAAGTCGTGCCTCGAC AGTCCATCCGAGGTGAATTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1395 ISBP CTTCGGCCAATCAGAATTGT GGGCGACCAAGGATTCTATT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1438 ISBP GCGGTTGGATGAAGATCCTA TCCGTATTGCCTAGCTTGCT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1440 ISBP ACAGGCCTGATCTGGTATGG TGCTTGCTACGTCTCCAATG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg158 ISBP ACGCACACCAACTTTTACCC GTGGTGCATGAAGGAACAGA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1763 ISBP CCAACACAACATGAGCAACC AATTTTTCCTGCATTGGTCG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1777 ISBP TTCCTCAAGGAGCGTAGCAT ACCAATCCATTGCCTACGAG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1789 ISBP GGATGAGATCCACCTCCTGA CCATCTCTTCGCCGAACTAG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg1994 ISBP GGTGGAGGAATGTTCACAGG CACCGTTTGCGATTATTGTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 
(Schwarz, 2017) 

gpg2 ISBP CGGTTGTGCCATTATTTGTG CACCGGTCCTTCGATAAAAA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

 

gpg2011 ISBP GTCTATCCACCCATCCATGG GAACGCCGACAGTCATCAC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2019 ISBP TCCCCACTTGCAACTAAACC AAGTGGCATCAGCTGAAGGT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2020 ISBP GAGATGACCGACGGATTCAT AACAGAACCATATGCCCTGC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2034 ISBP CCTCCTGGCGAGCAGATAT TTATCCACCATTGGTCCGTT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40  

gpg2038 ISBP GAGTCCAAAACATGGGCAAT TGGTGTGCTCACGTCAGATT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2049 ISBP GGCCAAAGAAAGCTTATCCC CCAGTGAACCGTCTGCTGTA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2060 ISBP CCGACAGGAACTTCCACTGT CTCAATTCGGTTCTTCCCAA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2072 ISBP TCCGAGTGACCTGTATGCTG AATCCATGCTTCCCTCTGTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2075 ISBP ATAAGGCGCACTACCAGTGG CCCTAGCCCATTATGCTCAA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 
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gpg2083 ISBP TTAGTTCAATGGCAGGTCGA CCATCTCTTCGCCGAACTAG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2092 ISBP GGTCCGCATTGTTAACAGGT TTGGCTTGAAGCTATGCATG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2097 ISBP TTGTGATTGCTGCTCACCTC TTCCTCCAAAGGCACTGTCT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2102 ISBP TCCTTTGAAGTCCTCGCACT TGTACCTGTGAACGGAACCA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2108 ISBP GCAACCGAAGAGATCCTAAGG TTCCCAAGATGGGAGAGTTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2117 ISBP GCAAGGTGTACGTCCTTCGT CATGCTTGAACTTGCTCCAA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2121 ISBP TGCTTGTTCTTGCTCCAATG GGCCACCTTGCTACACATCT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2123 ISBP CTCTCGGAGTTGGTTTAGCG GGAAGTTCCTTGGACATAACC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2126 ISBP TGACCAAGTGATGGGAATCA CCGAAGAAGGACGAGAGATG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg214 ISBP TAGCCCATCACAAGCATTCA TCCCTTGTGGATTCAAGACC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2147 ISBP TTGACATGCTTGTGGTGGTT ACCTTAGCAATGCAGCCAGT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2158 ISBP GGCTGTCATTAATCGTCCGT CGTGCATCACAGAAGTGCTT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2162 ISBP AAGATCAAATGGCCCTTCCT GGCTATGCATGGTCCAATCT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS3-0.75-0.97 

gpg2163 ISBP AGGTCGCGCACTGTTAGATT CATGTACTCGGCGTTCACAT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS3-0.75-0.97 

gpg2168 ISBP TGTCCCCTGCCTTCTGTTAC GTCCACCGTCAGGTCATCTT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2231 ISBP CCTATCGGCCACACTCACTT TTGGCTGCTCTTGACCATTA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2232 ISBP CGATTAAGAGCGATAATCAACCA TAAGAGACCGTTTTGGCCTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2233 ISBP GTCGACGTTCACATGACACC TGGTCTTCCACCACTTGTCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2244 ISBP GCCTGGATCATGCGATAACT GGTACGAGGGACTTGCATGT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2250 ISBP AGCATCAGTGTTGTTGCAATG GTATGAAACCCGTTTGGGTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg2255 ISBP CGACCAGATAGGCTGGTAGC GTTTCCATTAGGACCCCGTT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2309 ISBP GACCACCTTCGGATTAGTGC CACCGTCAATAGGTCACGAA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2313 ISBP CTCACCGCCATGAGTGAGTA TCCAACTGCCAGAATTCTCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2326 ISBP CAGCGTCAGTCCGGATTAGT TCTAATTCTTCGGCGACGAT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS3-0.75-0.97 
(Schwarz, 2017) 

gpg2328 ISBP GACGACACAAGTGCCATGTT CGTTTGTTCCACAAATCACG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg2336 ISBP TGAAAGAGACACGACGCAAC TCTTCCTCTGTGGTCCAACC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg277 ISBP AGGAGCTGTCAGACGTCCAT TCGTCCTCGAGATTTCTGCT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg35 ISBP TTAACACGTCAGGTTGCGAG GAGCCGACTGAACTGTCTCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg5 ISBP TGATTGGGTAATCCTCACCAA CCGTGTAAGGAACGCAAAAT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg537 ISBP ATCTCGTCGCGAGAAACCTA CGGCTACACGTAAGGGGTAA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg542 ISBP CAAATACCGAGGGGTTGCTA TGACACTGAGGACATCTGCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gpg574 ISBP TGCTCCAAAACTCTCAACCA ACACCAAACTTGCCTTCCAC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

gpg743 ISBP CTATGTACGCACACAATGCG GAACGTAAGAAGGCAGGCAC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

gwm129 SSR TCAGTGGGCAAGCTACACAG AAAACTTAGTAGCCGCGT 
Röder et al. (1998) 
(Appendix) 

C-5AS1-0.40 
(https://wheat.pw.usda.gov; 
Somers et al., 2004) 

gwm293 SSR TACTGGTTCACATTGGTGCG TCGCCATCACTCGTTCAAG 
Röder et al. (1998)  
(Appendix) 

5AS1-0.40-0.75 
(https://wheat.pw.usda.gov; 
Somers et al., 2004) 

gwm304 SSR AGGAAACAGAAATATCGCGG AGGACTGTGGGGAATGAATG 
Röder et al. (1998) 
(Appendix) 

5AS1-0.40-0.75 
(Schwarz, 2017) 

gwm415 SSR GATCTCCCATGTCCGCC CGACAGTCGTCACTTGCCTA 
Röder et al. (1998) 
(Appendix) 

C-5AS1-0.40 
(https://wheat.pw.usda.gov; 
Somers et al., 2004) 

gwm443 SSR GGGTCTTCATCCGGAACTCT CCATGATTTATAAATTCCACC 
Röder et al. (1998) (Appendix); 
Paillard et al. (2003) 

5AS3-0.75-0.97 
(Barabaschi et al., 2015, 
Supplemental Table 3) 

IWB10809 SNP   
Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

 

IWB11440 SNP   
Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

5AS3-0.75-0.97 
(Schwarz, 2017) 

IWB29780 SNP   
Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

 

IWB33435 SNP   
Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

 

IWB4146 SNP   
Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 
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IWB51518 SNP   Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

 

IWB58275 SNP   Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

5AS1-0.40-0.75 
(Schwarz, 2017) 

IWB62899 SNP   Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

5AS3-0.75-0.97 
(Schwarz, 2017) 

IWB68241 SNP   Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

 

IWB75561 SNP   Ramirez-Gonzalez et al. (2015) 
5AS1-0.40-0.75 
(Schwarz, 2017) 

IWB8393 SNP   Wang et al. (2014) (Supplementary Table S6); 
Ramirez-Gonzalez et al. (2015) 

5AS1-0.40-0.75 
(Schwarz, 2017) 

jfio2 RJM ACGCTGGAGACGTATCACTGT GGTGTCCTTCCTGATCTCCA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

jfio4 RJM CGCAAGGTGATATGAGGTGTT TACGTACATACGGGCGGGT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

jfio6 RJM CAGTCCCTTATTCAGCACCG TGCGTCGGTAACATCATCAT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

jfio7 RJM CTCCTGTGGCAGAACAGAGG ATCGTGGGCGTCACACTATA 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

ldk113 SSR CACTGCTCCACCACAGC GCGAAGGGTTAAACCGTAAAC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

ldk14 SSR TTTCTGTTTTGCCTCTGGAAA GGGCCTTTCCCTTTTGTTTT 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 
(Schwarz, 2017) 

ldk16 SSR CTCTTGGGCTGATGGTGATG ATCGAATCAGTGGGTGATCG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

ldk2 SSR ATCAGGTCCACACACCACAC AATCCACGAAGACGCTATCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

ldk215 SSR CTGAGCTGAAGCAAGACAcg CGGGCATCTTCTCTACATCG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

ldk217 SSR TGGACTCCGAATAGGACTGG ACCAACTTCATCGCTGtTGC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

ldk218 SSR GTTGAAGATGTCGCTCATGG CTTcACAAGGtCCGcTTcC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

 

ldk241 SSR AATCAGTCTTGATGAAGCAACG CATGAAGCGTCAGCAGTAGG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

 

ldk242 SSR CCTACAAACCTCTGCACTTGG CGGAGGGAATATTGAACACG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

ldk243 SSR GGTTTCACCTCTAGCCTACCC CACCTTGTGTGGGAGTTTCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

ldk267 SSR AATTAGCAGACCGCATGTACG TCCAAGTTGAGAGCTGATGG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS3-0.75-0.97 
(Schwarz, 2017) 

ldk284 SSR TCTCATTGGTCAGGGTCAGG TTCTCCTCCAGGTAGCTCTCC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS3-0.75-0.97 

ldk289 SSR GCACATACCTTCATAGTGG TGATGATGTGGCAAAGAAGC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

ldk49 SSR TCCACACACCACACACACAC  AGACGCTATCCGATCCTCTG 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

5AS1-0.40-0.75 

ldk50 SSR ACCGTGTGTGATGCTTCTTG  GGTGCATGTGTGTGTGCTC 
Barabaschi et al. (2015) 
(Supplemental Table 3) 

C-5AS1-0.40 

wmc150 SSR CATTGATTGAACAGTTGAAGAA CTCAAAGCAACAGAAAAGTAAA 
Somers et al. (2003) 
Somers et al. (2004) (Supplementary data) 

5AS1-0.40-0.75 
(Schwarz, 2017) 

wmc654 SSR CTGTGATGAACTGAAATAACCA TATTCTACTTTTCTCTTCCCCC 
Somers et al. (2004) (Supplementary data) 
https://wheat.pw.usda.gov 

5AS3-0.75-0.97 
(Barabaschi et al., 2015, 
Supplemental Table 3) 
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