
Universität für Bodenkultur, Wien

University of Natural Resources and Life Sciences, Vienna

Department für Wirtschafts- und Sozialwissenschaften

Department of Economics and Social Sciences

Evaluation of Machine Learning-Based Storage Control
Algorithms for the EEX Day-Ahead Electricity Market

Master’s Thesis

Field of Study:

Masterstudium Umwelt- und Bioressourcenmanagement
(Master’s Program Environment and Bio-Resources Management)

Supervisor:

Johannes Schmidt, Ass.Prof. Dipl.-Ing. Dr. (BOKU, Vienna)

Author:

Lukas Zwieb, BSc (1040726)

April 18, 2018

2

Statutory Declaration
I declare that I have developed and written the enclosed Master thesis titled ‘Evaluation of Machine
Learning based Storage Control Algorithms for the EEX Day-Ahead Electricity Market’ completely by
myself and have not used sources or means without declaration in the text. Any thoughts from
others or literal quotations are clearly indicated. The Master Thesis was not used in the same or in
a similar version to achieve an academic grading or has been published elsewhere.

 Vienna, February 15, 2018

Lukas Zwieb

3

Acknowledgments
I want to express my gratitude for the valuable advice and support provided by my supervisor
Dr. Johannes Schmidt during the work on this thesis. I also want to thank my family, friends and
colleagues who directly and indirectly supported me. I especially thank my girlfriend Annemarie for
all her support.

4

Abstract

In context of climate change mitigation, power supply systems around the world are changing
towards sustainable sources of power supply. This change is becoming a key challenge for managing
the electrical grid. Energy storage systems (ESS) can increase power system flexibility and efficiency
and facilitate integration of variable renewable energy. ESS deployment will remain limited if its
operation is not profitable. Automated, optimized operation of the ESS can help to increase profits
from temporal arbitrage. Machine learning algorithms (ML) are one option to provide the
operational logic behind an automated trading process.

This thesis uses a deterministic linear optimization model (LOM) with full forecast information to
determine the best possible (but in practice not achievable) trading strategy for a lithium Ion based
EES on the German day-ahead market (2010-2014). The results are used as a benchmark to train
different ML-classifiers to mimic the ‘optimal behavior’ of the LOM results. The final result is a model
to evaluate the classifiers performances under simulated market conditions for the year 2015. The
evaluation shows that Neuronal Networks, K-nearest neighbors, and random forest reach
approximately 80% of the LOM benchmark profit. Although the results of the LOM show that, due
to high investment costs, the operation of an ESS is not yet economically attainable, it also shows
that ML based applications are suited for future automated ESS control.

Abstract

Im Kontext von Klimawandelsmitigation wandeln sich Energiesysteme weltweit in Richtung
nachhaltiger Energieversorgung. Diese Veränderung entwickelt sich zu einer wesentlichen
Herausforderung für das Energienetz. Energiespeichersysteme können die Flexibilität und Effizienz
des Energiesystems erhöhen und ermöglichen die Integration variabler Anteile erneuerbarer
Energien. Die Nutzung von Energiespeichersystemen ist jedoch limitiert, solange die Systeme nicht
profitabel sind. Ein automatisierter Betrieb der Systeme kann zu einer Senkung der Betriebskosten
und so zu einer Steigerung der Profitabilität beitragen. Maschinelle Lernalgorithmen (ML) sind dabei
eine Möglichkeit, die einem automatisierten Handelsprozess zugrundeliegende operative Logik
bereitzustellen.

Diese Arbeit nutzt daher ein deterministisches lineares Optimierungsmodell mit voller Information
über zukünftige Preise, um den Handel eines Lithium-Ionen basierten Energiespeichersystems am
deutschen Energiemarkt (2010-2014) zu optimieren. Die gewonnenen Ergebnisse werden als
Benchmark verwendet, um ML-Algorithmen auf die Nachahmung des vom linearen
Optimierungsmodell vorgegebenen „optimalen Verhaltens“ zu trainieren. Das Endergebnis ist ein
Modell zur Evaluierung der Performance des Algorithmus unter den Marktbedingungen von 2015.
Die Evaluierung zeigt, dass Neuronale Netzwerke, K-Nearest Neighbors und Random Forest zu etwa
80 % den vom linearen Optimierungsmodell festgesetzten Benchmark-Profit erreichen. Obwohl die
Ergebnisse zeigen, dass der Betrieb eines Energiespeichersystems aufgrund der hohen
Investitionskosten zum jetzigen Zeitpunkt nicht profitabel ist, zeigen sie auch, dass ML-basierte
Ansätze für die Steuerung von Energiespeichersystemen zukünftig nutzbar sind.

5

Table of Content
I. LIST OF FIGURES 7

II. LIST OF TABLES 9

III. LIST OF ABBREVIATIONS 10

1 INTRODUCTION 11

2 TECHNICAL AND ECONOMIC FRAMEWORK 15
 STORING ELECTRICITY 15
 EES PHYSICAL PARAMETERS 16

 POWER 17
 STORAGE CAPACITY 17
 POWER TO ENERGY RATIO 18
 EFFICIENCY 18
 SELF-DISCHARGE RATE 18
 LOAD CYCLES 19
 LIFETIME 19

 EES OPTIONS 20
 STORAGE SELECTION 20

3 EVALUATION PROCESS 21
 DATA 22

 ADDITIONAL, DERIVED VARIABLES 26
 METHODS 27

 THE BENCHMARK MODEL AS LINEAR OPTIMIZATION MODEL 27
 MACHINE LEARNING 29

 PREPROCESSING 33
 TRAIN-TEST SPLIT 34
 SCALING 34
 FEATURE INTERACTION AND POLYNOMIALS 35
 FEATURE SELECTION AND EXTRACTION 36

 OPTIMIZATION FRAMEWORK 39
 HYPERPARAMETER TUNING HEURISTICS 39
 CROSS VALIDATION 39

 MODEL EVALUATION 41
 SCORING VALUES 41

 EVALUATION FRAMEWORK 44
 OTHER STRATEGIES 45

4 CLASSIFICATION ALGORITHMS 45
 INTRODUCTION 45
 K-NEAREST NEIGHBORS 46
 DECISION TREES 48
 RANDOM FOREST (RF) 49
 LOGISTIC REGRESSION 50
 SUPPORT VECTOR CLASSIFIER 51
 NEURONAL NETS/MULTILAYER PERCEPTRON (MLP) 53

6

5 RESULTS 56
 EVALUATION RESULTS 56
 VISUALIZATION OF THE DIFFERENT STORAGE STRATEGIES 60
 CORRELATION BETWEEN F1-SCORE AND EARNED PROFIT 62
 EFFECT OF THE FORECAST HORIZON 62
 RENTABILITY OF THE ESS 64

6 DISCUSSION AND CONCLUSION 65
 IMPROVING THE MODEL’S QUALITY 65

 TRAINING PROCESS 65
 ADDITIONAL DATA 65
 ECONOMIC PERFORMANCE 66

 SHORTCOMINGS OF THE MODEL 66
 FINAL SUMMARY 67

7 LITERATURE 68

APPENDIX I. ADDITIONAL INFORMATION 73
A. OPTIMAL HYPERPARAMTER 73
B. MODEL BASED FEATURE SELECTION 75
C. PERFORMANCE IMPROVEMENT VIA DECISION BOUNDARIES 77

APPENDIX II. CODE 78
A. DATA IMPORT & DATA CLEANING 78
B. DATA MANIPULATION 81
C. EVALUATION FRAMEWORK (STORAGE LOGIC) 85
D. LINEAR PROGRAMMING MODEL 90
E. OPTIMIZATION (GRID SEARCH) 92
F. K-NEAREST NEIGHBORS 92
G. DECISION TREE 94
H. RANDOM FOREST 95
I. LOGISTIC REGRESSION 96
I. GRID SEARCH WITHOUT PCA 96
II. WITH POLYNOMIAL FEATURE SELECTION AND PCA 96
J. SUPPORT VECTOR CLASSIFIER 99
I. WITHOUT POLYNOMIAL FEATURE ENRICHMENT 99
II. WITH POLINOMIAL FEATURE SELECTION AND PCA 100
K. NEURONAL NETWORK 101
L. TRAINING AND EVALUATION 103
M. ADDITIONAL CALCULATIONS 109
I. VISUALIZATION OF CORRELATION BETWEEN F1-SCORE AND PROFIT 109
II. EFFECT OF FORECAST HORIZON 111
III. IMPROVING THE MODEL’S QUALITY 113
IV. SOURCE CODE MODEL-BASED FEATURE SELECTION 115
V. SOURCE CODE PERFORMANCE IMPROVEMENT VIA DECISION BOUNDARIES 117

7

i. List of Figures

FIGURE 1-1: FUEL MIX IN THE GERMAN ENERGY SYSTEM FOR THE YEAR 2017 [9]. 12

FIGURE 1-2: TWO WEEKS OF A SIMULATION FOR AN 80% RENEWABLE ENERGY SCENARIO BASED ON THE
YEAR 2013 BY SCHILL AND ZERRAHN [6]. 13

FIGURE 2-1: POWER TO ENERGY RATIO IN GERMANY REALIZABLE STORAGE PROJECTS (TRANSLATED
FROM TH REGENSBURG FENES, 2013). 16

FIGURE 3-1 STRUCTURE OF THE DATASETS USED DURING THE EVALUATION PROCESS. THE RED FRAME
REPRESENTS THE POWER MARKET DATA, HOLDING TIME SERIES OF THE INPUT FEATURES. THE BLUE
FRAME REPRESENTS THE RESULTS FROM THE LPM PROVIDING OSA-LABELS TO THE
CORRESPONDING VALUES OF A TIME STEP BASED ON THE EM DATA. THE GREEN FRAME
REPRESENTS THE DATA USED TO TRAIN AND OPTIMIZE THE MLAS.THE PURPLE FRAME REPRESENTS
THE DATA USED TO EVALUATE THE CLASSIFIERS. 22

FIGURE 3-2 INSTALLED CAPACITIES AND GENERERATION FOR WIND AND SOLAR ENERGY (THE GRAPHICS
SHARE BOTH Y AXES) 24

FIGURE 3-3 ANALYSIS OF THE POWER MARKET DATA (2010-2015); OWN CALCULATIONS. 25

FIGURE 3-4 ILLUSTRATING THE DISTRIBUTION OF SIGNALS NOT 0 NEAR 0. THE X SCALE IS LIMITED TO
0.005. COMPARED TO THE CLASSES OF -1,0, 1. HERE NATURALLY INDICATES THE OPTIMAL SIGNAL
FROM THE LPM WITHOUT ANY CLASSIFICATION PROCESS. 32

FIGURE 3-5 NUMBER OF OCCURRENCES OF DISTINCT OSA -SIGNALS BY THE LPM FOR AN EES WITH AN E2P
RATIO OF 4. THE BLACK ‘X’ DENOTES VALUES THAT ARE NOT EXACTLY 1,0, -1. IT IS OBSERVABLE
THAT THERE ARE THREE DISTINCT GROUPS OF SIGNALS. 32

FIGURE 3-6 NUMBER OF OCCURRENCES OF DISTINCT OSA -SIGNALS FOR AN EES WITH AN E2P RATIO OF
10/3. THE BLACK ‘X’ DENOTES VALUES THAT ARE NOT EXACTLY PART OF ONE GROUP. THE NUMBER
OF GROUPS IS LESS OBVIOUS. ADDITIONAL GROUPS MUST BE INTRODUCED TO CAPTURE ALL
SIGNALS CORRECTLY. 32

FIGURE 3-7 SCHEMATIC PRESENTATION OF THE EFFECTS OF SCALING ON A TWO-DIMENSIONAL DUMMY
DATA SET. BASED ON [28]. 35

FIGURE 3-8 PRINCIPAL COMPONENTS OF X1 AND X2. GRAPHIC BY [29]. 37

FIGURE 3-9 TOP: RELATIVE EXPLAINED VARIANCE BY PRINCIPAL COMPONENT IN DESCENDING ORDER;
MIDDLE: CUMULATIVE RELATIVE EXPLAINED VARIANCE; BOTTOM: ABSOLUTE CUMULATIVE
VARIANCE. 38

FIGURE 3-10 ILLUSTRATION OF AN K-FOLD CROSS VALIDATION FOR K= 5. EVERY ROUND INCLUDES A
TRAINING A TESTING PROCESS. 40

FIGURE 3-11 PROCEDURE OF THE CLASSIFIER OPTIMIZATION PROCESS. 41

FIGURE 3-12 CONFUSION MATRIX FOR THE PREDICTED AND TRUE OSA. 42

FIGURE 4-1 INFLUENCE OF NUMBER OF NEGHBORS FOR AN KNN CLASSIFIER ON THE ACCURACY OF THE
CLASSIFICATION. 20PC DENOTES A FEATURE SET DETERMINED BY A PCA WITH 20 PRINCIPAL
COMPONENTS. 47

FIGURE 4-2 SIGMOID FUNCTION FOR Z[-7,7], [25]. 50

8

FIGURE 4-5 SCHEMATIC ILLUSTRATION OF A PERCEPTRON FOR AN INPUT VECTOR WITH M FEATURES [25].
 53

FIGURE 4-6 SCHEMATIC ILLUSTRATION OF AN MLP WITH AN INPUT LAYER WITH 6 NODES, ONE HIDDEN
LAYER WITH 8 NODES AND ONE OUTPUT LAYER WITH FOUR NODES [46]. 54

FIGURE 5-1 F1 -SCORES FOR ALL CLASSIFIERS, SHIFT(WEEK/DAY) AND OSA FOR THE TRAINING PERIOD
(2014) AND TEST PERIOD (2015). 58

FIGURE 5-2 RELATIVE PROFITS FOR ALL CLASSIFIERS, SHIFT(WEEK/DAY) BASED ON THE OSA AND THE
EVALUATION FRAMEWORK FOR THE TRAINING PERIOD (2014) AND TEST PERIOD (2015). 58

FIGURE 5-3 CONFUSION MATRICES OF THE THE OSA THE CLASSIFIERS AND THE SHIFT(WEEK/DAY)
METHOD. Y-AXIS ARE THE LABEL, X-AXIS ARE THE PREDICTED LABELS. THE NUMBER BENEATH THE
TITLE IS THE F1 SCORE FOR OF THE SIGNAL. 59

FIGURE 5-4 HEATMAP ILLUSTRATING THE NUMBER OF SIGNAL OCCURENCES DURING THE DAY WITHIN
THE EVALUATION PERIOD 2015 FOR THE LPM OPTIMZED STORAGE BEHAVIOUR. THE TIME IS
DISPLAYED IN GMT. 61

FIGURE 5-5 HEATMAP ILLUSTRATING THE NUMBER OF SIGNAL OCCURENCES DURING THE DAY WITHIN
THE EVALUATION PERIOD 2015 PREDICTED BY THE NEURONAL NETWORK. THE TIME IS DISPLAYED
IN GMT. 61

FIGURE 5-6 HEATMAP ILLUSTRATING THE NUMBER OF SIGNAL OCCURENCES DURING THE DAY WITHIN
THE EVALUATION PERIOD 2015 PREDICTED BY THE LOGISTIC REGRESSION. THE TIME IS DISPLAYED
IN GMT. 61

FIGURE 5-7 HEATMAP ILLUSTRATING THE NUMBER OF SIGNAL OCCURENCES DURING THE DAY WITHIN
THE EVALUATION PERIOD 2015 PREDICTED BY THE RANDOM FOREST. THE TIME IS DISPLAYED IN
GMT. 61

FIGURE 5-8 HEATMAP ILLUSTRATING THE NUMBER OF SIGNAL OCCURENCES DURING THE DAY WITHIN
THE EVALUATION PERIOD 2015 PREDICTED BY THE SVC. THE TIME IS DISPLAYED IN GMT. 61

FIGURE 5-9 THE X-AXES REPRESENTS F1 - SCORE AND THE SIMULATED RELATIVE PROFITS COMPARED TO
THE OPTIMAL SOLOUTION OF LOGISTIC REGRESIONS WITH DIFFERENT C VALUES. 62

FIGURE 5-10 TEMPORAL EFFECTS ON THE CLASSIFICATION ACCURACY. COMPARISION OF CLASSIFIER FOR
THE YEAR 2015. 64

FIGURE 7-1 GINI IMPORTANCES OF THE FEATURES FOR THE ORIGNIAL DATA. RIGHT PLOT: IMPORTANCES
OF THE SINGLE FETURES IN BULE AND THE CUMULATIVE IMPORTANCES IN RED. 76

FIGURE 7-2 GINI-IMPORTANCES OF THE FEATURES FOR THE POLYNOMIAL ENRICHED TRAINING SET.
RIGHT PLOT: IMPORTANCES OF THE SINGLE FETURES IN BULE AND THE CUMULATIVE IMPORTANCES
IN RED. 76

FIGURE 7-3 DECISION BOUNDARIES FOR THE A KNN CLASSIFIER TRAINED ON 2014'S DATA TESTED ON
2015 DATA. THE DECISION BOUNDARIES ARE BASED ON A THRESHOLD FOR CLASSIFICATION. 77

9

ii. List of Tables

TABLE 1: SUMMARY OF THE MOST IMPORTANT PHYSICAL VALUES ACCORDING TO STADLER AND STERNER
(2013). 17

TABLE 2 FEATURES OF THE CHOOSES LITHIUM-ION EES BASED ON THE FINDINGS OF THILO BOCKLISH [25];
POWER AND CAPACITY ARE CHOSEN INDEPENDENTLY. 21

TABLE 3 ORIGINAL DATA FOR THE GERMAN ENERGY MARKET OPSD [27] AND THE MOST IMPORTANT
STATSITICAL PARAMETERS (OWN CALCULATIONS). 23

TABLE 5 SUMMARY OF ALL INPUT VARIABES (FEATURES) FOR THE ML PROCESS. 27

TABLE 5 THE PARAMETER GRID USED TO OPTIMIZE THE KNN CLASSIFIER. 47

TABLE 6 THE PARAMETER GRID USED TO OPTIMIZE THE DECISION TREE. 49

TABLE 7 THE PARAMETER GRID USED TO OPTIMIZE THE RANDOM FOREST. 49

TABLE 8 THE PARAMETER GRID USED TO OPTIMIZE THE LOGISTIC REGRESSION . 51

TABLE 9 THE PARAMETER GRID USED TO OPTIMIZE THE SVC. 53

TABLE 10 TRAINING AND EVALUATION RESULTS FOR THE OSA TIME SERIES OF THE LP MODEL, THE
ALTERNATIVE BACK TO BACK STRATEGIES (SHIFT WEEK AND SHIFT DAY) AND ALL CLASSIFIERS FOR
THE TRAINING PERIOD (2010-2014) AND THE EVALUATION PERIOD (2015). 56

TABLE 12 LINEAR MODELS DECRIBING THE CORRELATION BETWEEN TEMPORAL DISTANCE AND
CLASSIFICATION QUALITY. 63

TABLE 13 GRIDSEARCH RESUTLTS K- NEAREST NEIGHBORS (SEE CHAPTER 4.2). 73

TABLE 14 GRIDSEARCH RESULTS DECISION TREE (SEE CHAPTER 4.3). 73

TABLE 15 GRIDSEARCH RESULTS RANDOM FORREST (SEE CHAPTER 4.4) 73

TABLE 16 GRIDSEARCH RESULTS LOGISTIC REGRESSION (SEE CHAPTER 4.5). 74

TABLE 17 GRIDSEARCH RESULTS SUPPORT VECTOR CLASSIFIER (SEE CHAPTER 4.6). 74

TABLE 18 RANDOM SEARCH NEURONAL NET (SEE CHAPTER 4.7). 74

10

iii. List of Abbreviations
API Application Programming Interface
CAES Compressed Air Energy Storage
COSAS Classified OSA-Signals
DSM Demand Side Management
E Energy [J]
E2P Energy to Power Ratio
EES Electrical Energy Storage
EEX European Energy Exchange
EM Electricity Market
ESS Energy Storage System
ENTSOE European Network of Transmission System

Operators for Electricity
IRR Internal Rate of Return
KNN L-Nearest Neighbors
LC Load Cycle
LC Load Cycles
Li-ion Lithium Ion Battery
LP Linear Programming
LPM Linear Programming Model
LR Logistic Regression
ML Machine Learning
MLA Machine Learning Algorithm
MLP Multilayer Perceptron
OSA Optimal Storage Action
P Power [W]
P2E Power to Energy Ratio
PCA Principal Component Analysis
PHPP Pumped Hydro Power Plant
PP Power Plant
rbf Radial Bias Function
RF Random Forest
RM Rolling Mean / Moving Average
SDR Self-Discharge Rate
SL Storage Logic
SVC Support Vector Classifier
VRE Volatile Renewable Generation

11

1 Introduction
To mitigate the effects of climate change and reduce the dependency on fossil resources, the energy
supply system must be modified profoundly. This includes transport and heat supply as well as
electricity generation. Fossil fuels must be replaced by sustainable, emission free energy sources.
This process includes the interconnection of different sectors and countries, fundamental efficiency
gains and a general flexibilization of the whole energy supply system [1]. The necessity of a
collaborative global effort found its acknowledgement during the UN Climate Change Conference1
which took place 2015 in Paris.
Germany is seen as a front runner of this transformation process, as it implemented strong policies
towards the energy transformation and has high economic potential [2]. Based on the goals of the
‘renewable energy act’ (ger.: Gesetz für den Ausbau erneuerbarer Energien (Kurztitel: Erneuerbare-

Energien-Gesetz, EEG 20172), which accurately outlines the shift from a carbon-nuclear into a wind-
solar based energy supply system, the German ‘energy transformation’ (ger.: Energiewende) is
already well underway. A more detailed view on the electricity fuel mix itself reveals the necessity
to substitute large shares of coal, lignite, and nuclear fueled generation with renewable sources like
wind and solar power, hydropower, and biomass (Figure 1-1). Other power plants (PP) like
geothermal PP, tidal PP or fusion reactors are either limited to niche applications or not yet
technically mature [3], [4]. Germany’s geological potential for hydropower plants is largely exploited
and the limits to bulk usage of biomass based energy is still controversially discussed within the
scientific community [4]–[6]. Therefore studies find the most plausible alternative for the realization
of large scale renewable energy (RE) integration in Germany within volatile solar and wind power
[4], [5], [7], [8].

1 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC).

2 Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBl. I S. 1066), zuletzt geändert durch Artikel 1 des Gesetzes vom 17. Juli 2017
(BGBl. I S. 2532).

12

Figure 1-1: Fuel mix in the German energy system for the year 2017 [9].

The German energy supply system is organized as a liberalized market and is part of the integrated
European Energy market. The electricity market (EM) in general differs from typical commodity
markets in two main aspects. First, power supply systems require a balance between supply and
demand at any point in time. A mismatch leads to reduced quality and ultimately blackouts [3], [4].
Secondly, electricity is – by its nature - difficult to store (e.g. keep in stock at customers).
Simultaneously, the demand is not (yet) controllable and volatile on sub-hourly, hourly, daily,
weekly, and seasonal levels. Consequently, the generation must meet the consumption at all times
[10]–[13].
As of today, thermal power plants characterize the European power plant fleet. Their combustion,
and therefore the power output, is adjustable. Demand fluctuations and forecasting errors can be
met by adjusting the power of multiple power plants gradually and additional capacities can be
added with short ramping times. Solar and wind power as the primary sources of renewable
electricity on the other hand are fluctuating and volatile, as are solar radiation and wind speeds [11].
At first glance this appears to be incompatible with the requirements of a balanced power grid.
However, numerous studies found no fundamental technical limitations for very high shares of
renewable energy in the gross final energy consumption under the assumption of additional
flexibility measures [4], [6], [10], [14]. Consequently, the substitution of a thermal power plant fleet
(e.g. fossil/nuclear fueled) requires additional means of reactive flexibility and load levelling.

Hydro
Power

4%

Biomass
9%

Wind
19%

Solar
7%

Uranium
13%

Brown Coal
24%

Hard Coal
15%

Oil
0%

Gas
9%

Others
0%

Generation in TWh
2017

Renewables
38%

Non-
Renewables

62%

Generation in TWh
2017

13

Figure 1-2: Two weeks of a simulation for an 80% renewable energy scenario based on the year 2013 by Schill and
Zerrahn [6].

Figure 1-2 shows the calculations of Schill and Zerrahn [6] for an 80 % renewable scenario based on
the weather and demand data for the year 2013. The simulation illustrates the fluctuations of the
volatile residual loads to be handled by energy supply systems. According to Sterner and Stadler,
the technical alternatives capable of providing this flexibility are already available [4]. Sterner and
Stadler differentiate between four different technical approaches to describe these flexibility
measures:

- Electrical energy storages (EES) increase temporal flexibility. During times of surplus
generation (e.g. during night) high volatile renewable generation (VRE) energy is stored and
later fed back into the grid during times of increased demand (e.g. windless periods).

- Grid development is a mean of spatial flexibility. A developed integrated grid allows a better
distribution of local fluctuations. Investments in the infrastructure and controllability
improve the resilience of the grid and therefore reduce the demand for flexibility. However,
the dispatchable capacities are also limited by the residual load / market situation of the
trading partners’ power supply system. Only if conditions for a trade are met by both sides
this capacity can be used as a flexibility option.

- Increased flexibility of the PP-fleet and reduction of ‘must run units’ reduce temporal
flexibility demand. Larger power gradients of the remaining thermal PP can meet
unexpected fluctuation by quickly adjusting their power. Wind and solar farms can curtail
their power generation to provide additional power if necessary.

- Demand side management (DSM) is a measure of temporal load shift. In contrast to ESS
DSM allows a reduction of the consumption during large positive flexibility demand. This
reduction is compensated later (or earlier) during low flexibility demand. Popular
technologies enabling DSM are heating and cooling, electric vehicles, or energy intensive
industrial processes.

14

These measures suit different forms of flexibility demand and are not interchangeable. Also, there
is a competition between these technologies in terms of economic performance as well as social
and ecological acceptance. According to Nicolosi [10], this competition can be met by means of the
liberalized market, which will lead to an optimal mixture of different flexibility options. Stadler and
Sterner assume that there is a sequence of ‘next best’ flexibility options determined by economic
ecologic and social aspects [4]. However, both agree that EES will play a fundamental role within the
future EM.

Although the debate about the EES’ role within the future energy supply system is still underway,
EES are already providing a bundle of different services, such as avoiding costly interconnecting
infrastructure and enabling emission reductions [15]. Apart from this, simulations show that there
is a growing demand of EES as the share of VRE within the energy mix rises due to the natural
fluctuations of RE sources [5], [7], [16]. Eventually this means that an ongoing expansion of VRE is
pushing the demand for EES.
A key factor for the large-scale implementation of EES is its economic performance. As EES can
provide multiple services, multiple revenue streams must be considered while evaluating their
profitability. The price for electricity at the EM is moving periodically, i.e. it follows daily and weekly
cycles. This allows profitable arbitrage trading, but the optimal scheduling of charging and
discharging processes is a difficult problem, as the exact levels of future prices are unknown. The
optimal storage schedule for past price time series can be optimized with a deterministic linear
program. This approach requires a complete set of price levels of the assessment period (e.g. perfect
foresight). The result is a schedule of optimal storage decisions, yielding the maximal profit (see
chapter 3.2.1) Such models are used to assess the economic potential and the value of EES within a
market respectively a power supply system (i.e. micro grids). However, under realistic operation
conditions there is only limited information about future price levels available [17], [18], which
makes the application of deterministic linear optimization models impossible. Hence, optimizing the
storage process during operation requires models capable of providing decisions under uncertainty.
EES management is an interdisciplinary task at the intersection of electronic engineering, weather
and price forecasting, and probability theory. Thus, methods from different disciplines (e.g.
engineering, statistics) are necessary for developing algorithms operating the EES. Naive approaches
are for example the net power balance algorithms where the storage is used as a buffer in order to
increase self-consumption [19] or the ‘back to back’ strategy, where the optimal storage schedule
of a bygone period is mirrored [18]. Prominent advanced techniques include approaches based on
autoregression (AR), moving average (MA), auto regression and moving average (ARMA), fuzzy logic
or wavetable analysis[19], [20]. While linear optimization delivers optimal solutions and so
represents an upper boundary on the profitability of storage schedules, latter algorithms are prone
to sub optimal decisions.

15

The patterns appearing at the EM could be recognized by data driven algorithms which could then
trade profitably on the market independently. Additionally, special requirements of different
storage types, such as death of discharge, can easily be implemented. This could reduce the costs
of operation while simultaneously outperform static strategies such as ‘static and moving average
arbitrage’ or ‘back to back arbitrage’ [15], [18]. The objective of my thesis is the evaluation of the
feasibility of EES being operated by automated algorithms. This kind of algorithms, which are
capable of ‘picking up’ patterns from data sets, are popularly called ‘machine learning algorithms’
(MLA). Machine learning (ML) in this case describes the ‘machine’ learning from a given set of data
rather than following strict programmatic rules.3 The novel approach of using MLA to estimate
optimal storage behavior shall help to reduce the gap between the optimal results of linear
programmed results and realistic results under the consideration of forecast uncertainties by
increasing the realizable revenue of arbitrage trading. To achieve this, I test different MLA for their
ability to learn ’how to trade profitably at the EM’ and compare them with typical state of the art
strategies of storage control. The performance of different MLAs and other trading strategies is
evaluated within a testing framework simulating real market conditions.

The second chapter (2 – Technical and Economic Framework), briefly summarizes the most
important technical characteristics of EES, the particularities of the EM, and the data used. The third
chapter (3 – Evaluation Process) describes and analyzes the market data and sets up the testing
framework. It describes the formulation of the Linear Programming Model (LPM) used as reference
scenario, the MLAs process, and the setup of the optimization framework. The fourth chapter (4 –
Classification Algorithms) examines the inner workings of different MLAs. The fifth chapter (5 –
Results), presents and analyzes the results of the evaluation. Chapter 6 discusses and concludes the
results. The Appendix provides additional calculations as well as the code of the models. The
complete code is also available at: https://github.com/zwiebo/Evaluation-of-Machine-Learning-
Based-Storage-Control-Algorithms-for-the-Electricity-Market

2 Technical and Economic Framework

 Storing Electricity
An electricity storage is a technical unit to store (feed-in or charge), conserve, and withdraw (feed-
out or discharge) electricity. However, since electricity itself is not storable, this process involves the
transformation of electricity into other forms while accepting transformation losses (e.g. electrical
potential difference energy into gravitational potential energy). Storing and withdrawing

3 Machine learning is a research field at the intersection of artificial intelligence, computer science and statistics. Today MLA have various
areas of application and are successfully used in medicine for automated diagnostics, in finance for fraud detection, as spam filer or as
recommendation systems. See for example https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for-
machine-learning-and-ai/ (18.04.2018).

16

energy/electricity allows a temporal re-allocation of electricity supply. Thus, it can help to guarantee
balanced electricity markets [4].

 EES Physical Parameters
According to Stadler and Sterner and Fuchs et al. there are several important physical parameters
of storage facilities [6], [4], [7]. These parameters vary between the different types of EES and
determine their different economic performances under different market conditions. Consequently,
different initial conditions will lead to different optimal EES-types. Figure 2-1 shows different types
of EES depending on their typical discharging time and storage capacity.

Figure 2-1: Power to energy ratio in Germany realizable storage projects (translated from TH Regensburg FENES, 2013).

Short term storages store energy from nanoseconds up to one day. At the power market, most
short-term storages have an energy to power ratio of ≤ 10 (see chapter 2.2.3). The main purpose of
these storages is to assure the power quality (i.e. frequency control). The frequent use leads to
increased requirements on load cycle efficiency and endurance. Popular examples for short term
storages are flywheels, capacitors, and batteries [4].
Long term storages can store energy over several days, weeks or even years, thus temporal
fluctuations like seasonal demand or supply oscillations can be compensated. Long term storages
are characterized by low self-discharge rates and low power-to-energy (P2E) capacity ratios. Today
these large PHPP are limited to mountain regions. Other storages which are based on chemical
storage mediums such as in power-to-gas facilities depend on tanks or caverns [4].
Different EES can be compared by using specific parameters which are summarized in Table 1.

17

Table 1: Summary of the most important physical values according to Stadler and Sterner (2013) [6].

Parameter Symbol Description Unit

Power P Charging/discharging power per time W

Storage Capacity C Usable storage capacity J, Wh

Power to Energy
ratio

P2E Ratio between Power and Energy DLU

Efficiency η Efficiency of the storing process (includes
feed in and feed out)

DLU4 (%)

Self-discharge rate ρ Relative amount of over time lost energy.
(due to self-discharge)

% / time

Load Cycle Lc Combination of a complete charging and
discharging cycle

DLU

Lifetime L maximal deployable time Years

 Power
The power (P) (in Joule per second) as a physical value describes the rate of energy transfer per time
unit. The power (demand and supply) is a crucial parameter determining supply quality. In context
of EES the power is separated into charging power (Pin) and discharging power (Pout). Pin and Pout

must not have the same magnitude. For example, PHPP pumps and generators often have
differently dimensioned pumps and generators.5 This leads to diverging Pin and Pout, as shown in
equation 3-1.

𝑃in, 𝑃out =
𝑑𝑊in, 𝑑𝑊

𝑑𝑡

Eq. 2-1(Dis)charging power.

 Storage Capacity
The storage capacity (Emax) in Watt-hours [Wh] is the amount of electricity that can be fed in or out
of an EES. Ein is the integral of the feed in power (Pin) over the feed in time tin. Eout is the integral of
the feed out power (Pout) over the feed out time (tout). If P is constant, E is the product of P and t.
EES often do not exhaust the full potential of their capacity. The amount of energy fed in or out
during a partial (dis)charging process can be calculated accordingly. The duration of the (dis)charging
processes can be calculated by transforming Eq. 2-2.:

4 Dimensionless unit.

5 Pumps often are not directly controllable while the generators are.

18

𝐶in/out = 𝑃in/out (𝑡) ∗ 𝑑𝑡

Eq. 2-2 Calculation of the storage capacity.

 Power to Energy Ratio
The relation of energy-to-power (E2P) results in specific charging and discharging times. The E2P is
the reciprocal value of the maximum (dis)charging time. This metric is a popular mean to categorize
EES. Although there are no explicit delimitations between the categories, it is helpful for finding the
according EES for the deliberate use case.

 Efficiency
Another metric to compare EES is the efficiency. The energy conversion efficiency (η) is a
dimensionless unit. It describes the ratio between the amount of energy [Wh] fed into the EES-
system and the amount of energy [Wh] fed out of the system, as shown in Eq. 2-3.

𝜂 =
𝐸out

𝐸in

Eq. 2-3 Calculation of the efficiency.

The efficiency of a complete load cycle (combination of charge and discharge) consists of three sub
processes.
 - charging efficiency (conversion efficiency) (ηin)
 - efficiency over the storing period (storing efficiency / self-discharge rate) (ηstore / SDR)
 - discharging efficiency (conversion efficiency) (ηout)
Multiplied, the single efficiencies result in the total efficiency of a load cycle (ηtotal).
The efficiency can also be described as a cost-benefit ratio. The costs are described by the electricity
fed into the storage system times the price at the point in time. The profits are determined by the
future electricity price. To operate an EES economically, the storing-price must be smaller than the
withdrawing-price times the total efficiency, as shown in Eq. 2-4.

𝑝 <= 𝑝 ∗

Eq. 2-4 Calculation of the minimal price (pout) to trade profitably [4].

 Self-Discharge Rate
The EES loses energy over time at a certain rate, which is why the storing efficiency will always be
smaller than 1 (100 %). The self-discharge-rate (SDR) or ‘parasitic loss’ describes the proportion of
the stored energy (Estored), which is lost to the environment over a certain period (Eloss) [3], [4], as
shown in Eq. 2-5:

19

𝑆𝐷𝑅 =
∫(𝑃 ∗ 𝑑𝑡)

𝐸
=

𝐸

𝐸

Eq. 2-5 Calculation of the selfdicharge rate (SDR).

 Load Cycles
A load cycle (Lc) describes one cycle of full charging and discharging. Many degradation processes
are depending on the load-cycle. The load cycle is therefore an important metric to estimate the
lifetime of an EES under certain operating conditions. The calculation is shown in Eq. 2-6:

𝐿 (𝑡) =
∫ 𝑃 (𝑡)

𝐶

Eq. 2-6 Calculation of the load cycles for the period t.

However, in this thesis a simplified approach is used to calculate the number of load cycles. It
neglects non-linear relations between state of charge and material fatigue. The number of load
cycles is calculated by dividing the sum of Pin by the capacity (compare [12]).

 Lifetime
The lifetime of an EES represents the period where its performance satisfies certain criteria. The
lifetime usually includes not only the temporal erosion effects on the material, but also typical usage
forms. In general, two values determine the life time of an EES: the calendar life in years (Ly) and the
maximum load cycles (Lc). Average lifetimes vary depending on the kind of EES and the use case.
Batteries for example have an expected lifetime of 5 to 20 years while the lifetime of pumped
storage power plants can reach up to 80 years and more. While some ESS like flywheels show no
quantifiable degradation per load cycle others, such as lead acid batteries, have limited load cycles
of about 2000.6 The specific lifetime (L(Nc)) in years is the minimum of maximal load cycles per year
(Nc) in years and the maximal calendar life in years (Ly). The limiting factor which is reached first
determines the maximal lifetime of the EES [21]. The respective formula is shown in Eq. 2-7:

𝐿(𝑁) = min
𝐿

𝑁
, 𝐿

Eq. 2-7 Calculation of the lifetime (LNc).

6 Depending on DOD.

20

 EES Options
Like other flexibility options, EES have multiple functions and applications within the power supply
system. EES can be used to trade at wholesale and control energy markets, they can be operated to
optimize the internal consumption of private PV systems, or they can serve as backup or black start
reserve. In this context, they provide services to the market which can be monetized.
Fuchs et al. and Schill, Diekmann and Zerrahn describe the essential services an EES can provide
within the wholesale energy market [6], [7]:

• Ancillary services:
Supplying operation reserve (frequency response reserve and non-spinning reserve) as well as
frequency and voltage control to assure the continual flow of electricity. This also includes the black
start and re-dispatch abilities of most EES.

• Peak-Shaving:
EES have the potential to reduce the peak load (e.g. the maximal power of a supply system) by
shifting it to lower demand periods. This reduces the demand for seldomly used high demand
generators. The peak-shaving market is a power market [kW].

• Arbitrage trade:
Arbitrage takes advantage of temporally varying price levels on the electricity market. It provides a
load levelling service to the energy market, i.e. buying and storing energy when electricity prices are
low and then selling and discharging the energy back to the grid when prices are high. Contrary to
peak-shaving, the arbitrage market is an energy market [kWh] [21]. Potentially, an EES can fulfill all
three functions at the ‘same’ time. Nevertheless, task-optimized EES types have evolved. This means
that different services require different characteristics (e.g. E2P ratio, maximal lifecycles) [7].
Stochastic valuations of EES show that a co-optimization of all of the above mentioned business
cases yields the best performance [22], [23].

 Storage Selection
Figure 2-1 emphasizes the diversity of different EES types. The arbitrage revenue of an EES depends
on the round-trip efficiency and self-discharge of the device as well as on its E2P ratio. For short-
term arbitrage trade, the optimal E2P ratio lies between 1 and 14 hours due to the diurnal
periodicity of the electric prices [4]. High roundtrip efficiencies and low SDR further increase the
profitability. However, the internal rate of return (IRR) also depends on the investment costs for the
storage. The investment costs are depending on the capacity and the power [21].
For the model constructed throughout the next chapters I chose a Lithium-Ion battery (Li-ion),
whose features are displayed in Table 2. LI-ions have high roundtrip efficiencies, low SDR and an
acceptable life time respectively number of lifecycles [4], [18], [21]. Based on increased scientific
and industrial activities, the price of Li-ion batteries is expected to drop substantially within the next
years. Additionally, technological improvements due to the development of electric cars are

21

expected for this type of EES [24]. Their modularity allows fast deployment of functional EES units
without special requirements on geology or infrastructure. Although PSPP are found to economically
outperform Li-ion due to much lower costs [15], [21], their deployment is limited topographically
and ecologically.[4] Given that the goal of this thesis is to evaluate the ability of MLAs to learn how
to trade on the EM, the technology of the simulated EES is secondary.7

Table 2 Features of the chooses Lithium-ion EES based on the findings of Thilo Bocklish [25]; power and capacity are
chosen independently.

Name Value Unit

Storage efficiency 0.825 DLU

Self-discharge-rate (SDR) 0.007 %/h

Power 250 kW

Capacity 1000 kWh

3 Evaluation Process
The goal of this thesis is the evaluation of ML-operated ESS trading on the German ‘day-ahead’
market with hourly resolution. To achieve this, the evaluation process is split into three parts. In the
first part a linear optimization model (LPM) is formulated. It maximizes the revenue of an EES trading
at the EM. Simplified, the operator can buy, store, and sell energy at different price levels. The result
of the LPM is an array of optimal storage activities (OSA) (charging, discharging, waiting) for every
hour of the years 2010 until incl. 2015. In the second part the array of OSA is used to label the market
data for the same period. Subsequently, MLAs are used to train different classifiers on this matrix
of labeled market data for the years 2010 - incl. 2014. The year 2015 is left out during the training
process and is then used to determine the performance of the algorithm. This allows to simulate
real market conditions where the agent has only the future information available that it would have
under real market conditions.8 The third part is the evaluation itself. A storage logic (SL) is used to
simulate the performance of the classifiers acting as an agent controlling an EES under real market
conditions of the year 2015. The separation of training/optimization of the MLA is necessary to avoid

7 In connection with the selection of the EES, a LP model was formulated to find the optimal EES and E2P ratios based on the data used
by [25] for 7 different technologies. Although the EES traded optimally, no EES was profitable due to the high investment costs.

8 This includes any form of explicit or implicit information transfer from the ‘unknown’ data set. An explicit information transfer would e.g.
be the information of the actual price at a future point of time. An implicit information transfer would e.g. be the calculation of the mean
based on the complete data including the ‘unknown’ parts of the data.

22

overfitting and data leakage of the classifiers. Figure 3-1 shows the structure of the different data
sets used during the process.

Figure 3-1 Structure of the datasets used during the evaluation process. The red frame represents the power market
data, holding time series of the input features. The blue frame represents the results from the LPM providing OSA-labels
to the corresponding values of a time step based on the EM data. The green frame represents the data used to train and
optimize the MLAs.The purple frame represents the data used to evaluate the classifiers.

 Data
The simulation of the EES under real market conditions requires real market data. In my thesis I use
the data from the German EM, which is provided by the European Network of Transmission System
Operators for Electricity (ENTSOE) [26]. The open source project ‘Open Power System Data’[27]
provides a respective API9. The data includes price and load levels as well as other additional
timeseries (e.g. VRE generation). This is also the data used to train the MLAs. The data is formatted
as a timeseries with an hourly resolution over the period of six years (2010-2015). The original
dataset contains values for the columns listed in
Table 3 for every time step.
Table 3 also provides the most important statistical values for the market data. Both the wind and
the solar generation show a large variance. Their median is significantly lower than the mean. This
indicates outliers for higher generation levels. At the same time the minimum generation is (close)
to zero.

9 Application programming interface.

23

Table 3 Original data for the German energy market OPSD [27] and the most important statsitical parameters (own
calculations).

 Mean Median Variance Min Max
Load
[MWh]

accumulated
load for one
hour

5 5423.76 55 278 1.04 * 108 29 201 79 884

Price
 [€/MWh]

price on the day-
ahead market

38.49 38 2.64 * 10² -222 210

Solar
generation
[MWh]

accumulated
hourly solar
generation

2 599.95 0 2.52 * 107 0 26 055

Wind
generation
[MWh]

accumulated
hourly wind
generation

6 175.69 4 379 3.21 * 107 29 3 3626

Residual
Load
[MW]

remaining load
after subtracting
VRE generation

47 303.21 46 928 1.21 * 108 8 264 7 8070

Solar
forecast
[MWh]

accumulated
hourly forecast
for solar
generation (all
four TSOs)

3 708.77 167 3.24 * 107 0 2 6976

Wind
forecast
[MWh]

accumulated
hourly forecast
for wind
generation (all
four TSOs)

6 258.44 4 499 3.06 * 107 219 3 7322

Installed
solar
capacity
[MWh]

installed solar
capacity (all four
TSOs)

2599.95 34 199 2.52 *107
10
47310

26 055

Installed
wind
capacity
[MWh]

installed wind
capacity (all four
TSOs)

32 068.15 29 932 5.27 * 107 23 093 47 238

10 Missing values neglected.

24

Figure 3-2 illustrates the installed capacities and generation levels for wind and solar power
throughout the observation period. The installed capacities of both technologies grew constantly.
The monthly average means illustrate the level of fluctuations of the VRE. Within the observation
period the load varies between 79 884 and 29 201 MW with a mean of 55 423 MW. The residual
load varies between 78 070 and 8 264 and has a mean of 45 460 MW. The maximal residual load is
by a factor of ten greater than the minimal residual load. The flexibility of the power supply system
must compensate these variations. The price is nearly normally distributed with a standard
deviation of 16 (variance 263). The maximal price within the observation period is 210 EUR/MWh
and the minimum price is -222 EUR /MWh.

Figure 3-2 Installed capacities and genereration for wind and solar energy (The graphics share both y axes).

Within the model it is assumed that the EES acts as a ‘pricetaker’11. Hence, the hourly price and the
storage parameters (Table 2) are sufficient information to formulate the LPM and the SL model
described in chapter 3.2.1 and 3.6 0without further manipulation. However, to facilitate ML
processes, it is required to transform the information into a machine-readable format [28], [29].

11 The price taker assumption says that a single (small) actor on the market does not influence the market balance and therefore the
price [15], [18], [49].

25

Figure 3-3 Analysis of the power market data (2010-2015); own calculations.

26

Figure 3-3 displays eight different graphical representations of the German EM data. The first row
shows boxplots for the load, the second boxplots of the price. In the first column the boxplots are
grouped by months, in the second by the hours of the day. During the winter months the average
load is higher than during the summer months. The effect of increased demand during the winter
months on the wholesale electricity price is moderate. However, during the winter months the
variance of the price is clearly increased. The highest maximum prices were reached in February,
the lowest minimum prices in December.
The hourly groups (second column) show two peaks during the day regarding the load. The first peak
occurs during the morning hours (7 -10 am), the second during the afternoon respectively early
evening (3-6 pm). Two corresponding price peaks reflect these load peaks. Compared to the
seasonal fluctuations, the daily fluctuations are stronger. Under real-life market conditions this
phenomena is acknowledged by the typical products traded on the EM [30].
The plots of the second row do not show the outliers in favor of a better graphical representation.
There are some extreme positive and negative price spikes ranging from -222 to 210 EUR/MWh.
Their prediction is very complex [11]. Nevertheless, the diurnal fluctuations of the load and price
are a potential possibility for profitable arbitrage trading.
The third row shows the average wind and solar generation per month and per hour. The solar
generation peaks during the summer months while the wind generation peaks during the winter
months. During the day the solar generation naturally peaks during noon 12 , while the wind
generation is evenly distributed. These values are averages of volatile generation levels. Therefore,
the observed levels for a single day can diverge substantially form the average values.
In the fourth row, the load (column 1) and the residual load (column 2) are plotted against the price.
This results in a diagram which shows a relationship between price and quantity (price-quantity
diagram). This phenomenon is amplified for the residual load. Simultaneously, the large variance
suggests that there are additional factors influencing the price.

 Additional, Derived Variables
Since the electricity price shows periodic behavior, it is important that the MLA interprets temporal
information correctly. Originally, the timestamp was formatted as: ’YYYY-MM-DD HH’ as a
‘datetime-object’. This format was replaced by dummy variables for every year, month, and hour of
the day. Additionally, a variable for the weekday was introduced, as electricity demand varies
between weekdays and weekends.
Although some MLA can pick up very complex patterns it is helpful to ‘highlight’ relations within the
dataset [28]. This is realized by adding new columns, holding metrics calculated based on
information inherent to the data set. One of those metrics containing important relations is the
‘residual load’, which is defined as the load minus VRE generation. The residual load and the day-
ahead price (price) have a positive Pearson correlation (0.87) compared to a correlation between

12 Within the model I used the UTC time model. The peak of solar generation in Germany is therefore at 11:00 Greenwich meantime.

27

actual load and price of only 0.598. Further, the RM of the price, the load, and the residual load for
24 hours (RM24) and 168 hours13 (RM168) where added to the data set as features. The RM takes
the last ‘x’ values and calculates the mean of them, so x denotes the window size of the RM. Both
RM values show a positive correlation to the price (RM24: 0.701, RM168: 0.56). Besides the
correlation, the causal justification to add RMs is to account for short term price trends.

Table 4 Summary of all input variabes (features) for the ML process.

Name Unit Type Specification
Load MW decimal -
Price Day Ahead €/MWh decimal -
Lagged Price Day Ahead €/MWh decimal Lags: [-1…-24, -168]
Lagged Load MW decimal Lags: [-1…-24, -168]
Rolling Mean Load MW decimal Window size: [24h, 720h]
Rolling Mean Price €/MWh decimal Window size: [24h, 720h]
Residual Load MW decimal -
Solar Capacity MW decimal -
Wind Capacity MW decimal -
Solar generation MWh decimal -
Wind generation MWh decimal -
Renewable Generation MWh decimal -
Total Forecast Solar MWh decimal -
Forecast Wind MWh decimal -
Forecast Solar MWh decimal -
Forecast Total MWh decimal -
Dummies for Hour

Boolean [0-23]

Dummies for Month

Boolean [1-12]
Dummies for Year

Boolean [2011-2016]

Dummies for Weekday

Boolean [1-7]
Workday

Boolean -

 Methods

 The Benchmark Model as Linear Optimization Model
Linear optimization models are a popular method to study the different aspects of the energy
markets [11] and are therefore a well-researched topic [12], [15], [18], [21], [31]. Linear optimization,
respectively linear programming as a subdomain of operation research, describes the
mathematical/analytical modeling of dimensioning-, logistic- and scheduling problems [32]. The
underlying mathematical principle of LP is the simplex algorithm developed by George Danzig [33].
The simple algorithm finds either an optimal or unbounded respectively infeasible solution. LP
models can describe storage scheduling problems. In this thesis the LP storage scheduling model is

13 24 hours times 7 weekdays

28

used to generate an optimal series of actions (charging, discharging, or waiting) of an EES and to
create a series of OSA, which are then used as benchmark for the machine-learning algorithm.
In 2014, Bradbury, Pratson, and Patiño-Echeverri [21] published a paper in which they describe a LP
model optimizing storage deployment at seven different U.S. energy markets. They analyze 14
different types of storage technologies to find the optimal P2E ratios. Their LP model maximizes the
revenue of a merchant by arbitraging the spot market prices of 2008. As decision metric they used
the internal rate of return (IRR). As a result the EES classify as profitable if the IRR is greater than
10% [21].
By calculating the overnight costs of the EES, consisting of the capital cost of power [$/kW], capital
cost of capacity [$/kW], and the present values of the future revenues, Bradbury, Pratson, and
Patiño-Echeverri can solve the IRR for different EES-types and P2E ratios. The findings of this study
are that PSPP, compressed air energy storage (CAES) and high temperature batteries have the
greatest potential for arbitrage trade and that the majority of EES will be optimally sized with an
E2P ratio of 4 or less hours of energy storage [21]. Very similar model designs can be found in [12],
[18].

3.2.1.1 Model Formulation

In this thesis I use a similar LPM as Bradbury, Pratson, and Patiño-Echeverri to optimize the storage
revenue of an ESS under the day-ahead market conditions. The input data is a time series of hourly
price values (πt) in Euro per MWh for six years (see Chapter3.1).
The model simulates the storage activities of the agent maximizing the revenue by trading electricity
at different price levels. The capacity of the agent is fixed at 1 MW to guarantee the price-taker
assumption. The other technical parameters of the chosen battery are already described in Table 2.
ρ describes the SDR due to parasitic losses. Pin(t) describes the charged energy in [kW] while Pout(t)
describes the discharged energy [kW]. Pin and Pout are the controllable variables. Eq. 3-1 describes
the objective function of the linear program, where π(t) describes the price [$/kW] at time t. η
describes the roundtrip efficiency altering the costs of electricity to account for the losses during
the storage process.

max 𝑟 = 𝜋(𝑡) 𝑃 (𝑡) −
𝑝 (𝑡)

𝜂
𝛥𝑡

Eq. 3-1 Objective function maximizing the revenue (r) of an EES modified after [21].

The objective function is subject to the constrains:

𝐸(𝑡) = (1 − 𝜌) 𝐸 (𝑡 − 𝛥𝑡)[𝑃 (𝑡) − 𝑃 (𝑡)]𝛥𝑡

Eq. 3-2 Logic describing the (dis)charging process modified after [21].

0 ≤ 𝑃 (𝑡), 𝑃 (𝑡) ≤ 𝑃 ∀(𝑡)

0 ≤ 𝐸(𝑡) ≤ 𝐸 ∀(𝑡)

Eq. 3-3 Constrains limiting the maximal (dis)charging P and the capacity to the E2P corresponding ratio values.

29

The constrains are limiting the trading actives to the physical characteristics of the simulated ESS,
where Emax is set to 1MW. Pmax denotes the maximal energy flow during the (dis)charging process.

3.2.1.2 Model Realization

The program was realized in GAMS 24.8.4 and solved with the CPLEX algorithm (Appendix ii.d). The
maximized revenue is used to evaluate and compare the performance of the MLAs. Additional
information is stored in the time series of Pin(t) and Pout(t). These time series contain the values,
used as labels during the training process of the MLAs.
During the modeling process several assumptions were made. The fundamental limitations of basic
arbitrage analysis using LP and historical data is the assumption of perfect foresight, but there are
also concerns regarding the technical robustness of the model due to the linearity of the problem
[12], [18]. For example, the efficiency, SDR and the (dis)charge rates are assumed to be constant but
under real world conditions, these values are not linear. Some ESS have nonlinear relations between
power, efficiency and SOC or calendar age. Others (e.g. CEAS) show deployment delays [7].
Additionally, the maximal number of life cycles can be reduced by ignoring the recommended depth
of discharge [4]. Combined, the assumptions in my model positively affect the ESS’s economic
performance. Thus, the results of the LPM act as an upper bounder for ESS arbitraging at the day-
ahead market.
The intermediate results of the LPM are the foundation of the subsequent model. Solving the LPM
results in a maximal profit an agent can earn by arbitraging on the German EM. This maximal profit
is a benchmark respectively upper bounder for all following processes. Additionally, the LPM
provides solutions (i.e. the optimal (dis)charging power) for the unknown variables Pin(t) and Pout(t).
These time series are later merged into a single time series of optimal storage activities (OSA).

 Machine Learning
ML is about extracting knowledge from data. There are several different algorithms available to fulfil
this task, each one fitting best for specific questions and different dimensions of problems.
Essentially, MLAs can be separated into three main groups: Supervised learning, unsupervised
learning and reinforcement learning [28], [29], [34].

3.2.2.1 Supervised learning

Supervised learning is a kind of MLA that automates a decision-making process. A set of input and
output pairs is provided to an MLA which finds a way to generalize from these known examples.
Within the learning process, the MLA develops a function that can produce the output for a given
input. This procedure does not require any additional human interaction. After a successful
initialization, the MLA can produce an output for an unknown input. The input is called ‘feature’ and
the output is called ‘label’ [29]. The names for the market data and the OSA were chosen accordingly.
Supervised learning is the simplest and most comprehensive, hence the most promising form of
machine learning, although the correct labelling of the input data is a crucial task during the
supervised learning. If this is not possible, supervised learning is not an option. If applicable, it is the
primary choice for ML applications [28].

30

3.2.2.2 Unsupervised learning

Contrary to supervised learning, unsupervised learning does not require labelled data. Unsupervised
learning is a process used to detect unknown structures in a data set, e.g. by segmenting customers
into different groups based on their purchases. Unsupervised learning is often used as a pre-process
to supervised learning [28], [29].

3.2.2.3 Reinforcement learning

Reinforcement learning describes the process where an agent learns to choose correctly from a set
of alternatives under different conditions based on a utility function. Decisions leading to a desired
outcome (e.g. reduced costs) lead to an increase of the probability of choosing a certain alternative
under a given situation [29].
Through the interaction with the environment, an agent can then use reinforcement learning to
learn a series of actions that maximize its reward via an exploratory trial-and-error approach or
deliberative planning. This form of learning is prominent for multi-agent based models and genetic
algorithms [29].
For teaching an EES optimal storage-behavior supervised and reinforcement learning are potential
approaches, since both can be designed to learn a profitable trading behavior. For reinforcement
learning the reward could be trading profits. Supervised learning can be used to learn the optimal
behavior by mimicking the results of an OSA.

3.2.2.4 Model Formulation

As mentioned above, supervised learning is the simplest form of machine learning, which is why it
is used to formulate the following model14. Within the scope of supervised learning the market data
represent the features and the LPM’s outputs (OSA signal) represent the labels.
Depending on the question respectively the format of the label, the problem is solvable by either a
regression or classification algorithm, so a distinction between ‘classification’ and ‘regression’
problems is made [28].A first examination of the OSA shows that most (85.2%) of the signals from
the LPM are either 1 (charge with full power), 0 (wait) or -1 (discharge with full power). The
remaining 14.8% are very close to these values, so a classification approach appears to be
reasonable (see Figure 3-4). The small variance of the OSA is caused by the fact that the EES’ capacity
is a multiple of its power. Only the small impact of the SDR is disturbing a ‘perfect’ load cycle.
However, the LPM uses the free capacities arising from imperfect load cycles to perform additional
trades.
The OSA-signals for an EES with an E2P ration of 10/3 are illustrated in Figure 3-6. This ETP ratio
leads to OSAs with reduced power. This effect would be further amplified if the charging and
discharging power were not symmetric. For EES that show such kind of OSA patterns, additional

14 I chose to focus on supervised learning because it seemed more applicable. However, reinforcement learning also has the potential to
deliver good results and should be investigated further in future publications [52].

31

(intermediate) classes would be required to adequately represent the optimal behavior15. However,
in this case a distinction between the three classes (charge, discharge, wait) for an EES with an E2P
of 4 is reasonable.
For the labeling-process, a simple algorithm (see below) was introduced. It classifies the OSA along
a symmetric threshold into either charging (1), discharging (-1), or waiting (0). The optimal threshold
was found by iterating over a list of 100 possible thresholds (𝟎, 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟐, … 𝟎. 𝟗𝟗, 𝟏) and
evaluating the resulting new OSA via the SL (see chapter 3.6). The optimal symmetric threshold was
found to be within the bandwidth of equally optimal thresholds between 0.05 and 0.99. This large
bandwidth also shows that there are no significant deviations from the classes 1, 0, and -1.

Eq. 3-4 Pseudo code for the classification of the signals form the LPM.

15 Considering a PSPP with a natural inflow varying over time or an EES with larger SDR, the class boundaries become blurry. When
investigating EES with such OSA patterns it might become reasonable to choose a regression approach.

For each signal in OSA-signals:
 if signal >= threshold:
 class = 1
 if signal <= threshold * (-1):
 class = -1
 else:
 class = 0

32

Figure 3-4 Illustrating the distribution of signals not 0 near 0. The x scale is limited to 0.005. Compared to the classes
of -1,0, 1. Here naturally indicates the optimal signal from the LPM without any classification process.

Figure 3-5 Number of occurrences of distinct OSA -signals by the LPM for an EES with an E2P ratio of 4. The black ‘x’
denotes values that are not exactly 1,0, -1. It is observable that there are three distinct groups of signals.

Figure 3-6 Number of occurrences of distinct OSA -signals for an EES with an E2P ratio of 10/3. The black ‘x’ denotes
values that are not exactly part of one group. The number of groups is less obvious. Additional groups must be
introduced to capture all signals correctly.

33

The classification includes a loss of information which inevitably reduces the performance of an
agent trading based on this signal compared to the optimal solution of the LPM. A way to calculate
this loss of performance is to use the SL (chapter0 3.6) simulating an EES trading based on the
classified signal. The performance of the SL can then be compared to the LPM performance. This
comparison allows to draw conclusions about the quality of the classification. Eq. 3-5 illustrates the
calculation of the quality of the classification process.

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑂𝑆𝐴

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑆𝐴

Eq. 3-5 Calculation of the relative performance of the classification process.

The optimal total profit calculated by the LPM was 52959.40 €. After the transformation (Eq. 3-4)
the SL achieves a total profit of 52863.76 €. This is equivalent to 99.8% of the original profit
calculated by the LPM.
The merging of the classified OSA-signals (COSAS) with the EM data set concludes the labeling
process. The rows of the resulting table represent single hours for the time span of 2010-2015. The
columns represent the features (load, price, wind, and solar generation, etc.), a single column with
the COSAS is representing the label.
In this constellation, the label represents the COSAS for the timestep of the corresponding row. This
approach does not reflect a realistic situation under real market conditions. For trading purposes, it
is interesting to know which action should be taken next, according to the future market conditions.
Therefore, the label is shifted one timestep into the past. This leads to a table where the features
for t correspond with the COAS for t+1. In other words, the label is now the COAS for the following
hour.

 Preprocessing
The last step of the data manipulation and simultaneously the first step of the MLA optimization is
the preprocessing. This describes the process where the data is manipulated to improve the
algorithms’ performance. The first step is the elimination of empty data fields. There are several
options how to deal with missing data, e.g. deleting corresponding columns or rows, replacing it
with a default value (e.g. -999999) or the mean of the column. Alternatively, the last valid value can
be repeated (i.e. forward fill) [28]. To avoid data leakage, I chose to repeat the last value16.

16 While filling empty cells with the mean value of a column, information of the whole column is necessary for this process. Filling with
last valid values means that passed values are used to fill the cells. No information is transferred from the “future”.

34

 Train-Test Split
The following steps are performed with the machine learning library ‘Sklearn’ for python17. The split
between the test and the training samples is important to avoid data leakage and overfitting. This
means that any further optimization of the learning process is performed solely on a sub set (training
set) of the parent population. This includes all typical preprocessing measures like ‘scaling’ and
assures that no information of the unknown test data is transferred [28]. The data is split into a test
set containing 20 % of the samples and a training set containing 80 % of the samples[28].
The training set is used to train the classifier and the test set is used to evaluate its performance.
The split into training and test sample is determined by randomness, and thus not able to influence
the learning process. However, it cannot be assumed that the split is unbiased, and that all
classes/labels are distributed as they are in the parent population. The frequency of labels in the
parent population is not evenly distributed. 56.5 % of the labels are ‘0’ (wait) and each 21.7 % are 1
(charge) respectively -1 (discharge). To avoid biased training sets18 , I assured that the labels are
represented with the original frequency in both the test and training sets. This process is called
‘stratification’ [35]. The actual data split is performed during the cross-validation process. This is a
form of train test split which minimizes the risk of biased training sets respectively hyperparameter
tuning (see chapter 3.4.2).

 Scaling
Many Algorithms are designed under the assumption that features have values close to 0 and are
comparable in size. This accounts particularly for metric- and gradient based classifiers such as
support vector machines and logistic regressions [28]. These classifiers expect standardized values
(mean equals zero and variance equals 1). Unscaled data degrades the performance of an MLA by
preventing or slowing down the convergence.
There are several methods of scaling data, differing by the approach on how to estimate the
parameters used to shift the data [36]. To limit the scope of this thesis only two different scaling
techniques with fundamentally different approaches are compared: the standard scaler and the
quantile transformer. The scalers are part of the ‘Sklearn preprocessing’ module.

17 Sklearn is a high-level open source framework for machine learning and data preprocessing based on the NumPy library for vector
and matrix calculations. Sklearn provides a large amount of different functions, which are highly adaptable for specific use cases [28], [29],
[37].

18 A data set is ‘biased’ if a single label is overrepresented.

35

Figure 3-7 Schematic presentation of the effects of scaling on a two-dimensional dummy data set. Based on [28].

The standard scaler performs a linear transformation of the feature set by subtracting the mean and
dividing the result by variance for every feature. The resulting feature has a mean of zero and a
variance of 1. Because of outliers, the spread of the transformed data on each feature is different
[37],[36].

𝑋
()

=
𝑥() − µ

𝜎

Eq. 3-6 Standardization [29].

During quantile transformation a nonlinear function is applied to the features. After the
transformation the probability distribution function of the features will be uniform within the range
of 0 and 1. This spreads out the most frequent values of the feature and maps outliners to the
boundaries (0,1). New data that falls below or above the fitted range will be mapped to the
boundaries? of the distribution. As a nonlinear transformation it distorts all linear correlations
between the features [37],[38].

 Feature Interaction and Polynomials
Even after the scaling process, the performance of the classifier can still be enhanced. One method
to further increase the performance is the introduction of artificial features. A common method to
enrich the feature representations of the original data is the addition of interaction- and polynomial
features. For a vector with two features (a, b) a second-degree polynomial expansion returns a
vector with 6 features (1, a, b, a², ab, b²). This method allows to represent interactions between
features as a product and quadratic relations as square of a feature [28].
Nevertheless, the length of the resulting vector increases depending on the length of the input
vector (n) and the degree of polynomial expansion. After the expansion the resulting vector has the
length ∗ 2 ∗ 𝑛 . This is not trivial. For the input data set with the shape (52824, 119), the second-

36

degree polynomial expansion results in a feature vector with a length of 7 260. Some algorithms
(e.g. K-nearest neighbor) are not designed for such high dimensional data.
Many of the original features are dummy variables representing the temporal dimensions (1 if
Monday, 0 if not Monday). The combination of two dummy variables describing the same feature
(e.g. Monday and Thursday) result in columns of constant zeros. These columns contain no
additional information and can be removed without hesitation.

 Feature Selection and Extraction
Complex models (i.e. containing many features) tend to overfit compared to more general models
[28]. Hence complexity/dimension reduction is a possibility to improve the model. After the feature
expansion, the data set is rather sparse and probably partially redundant19. This degrades both the
computational20 as well as the classification respectively generalization performance [34]. The
dataset also includes the products of the dummy variables resulting in columns of constant zeros
which must be removed. Moreover, other features (columns) of the data set could also contain no
additional information-explaining label. Thus, these feature dimensions do not improve the
classification quality of the model. During the training process indeed even random data (e.g. no
relation to the label) can be used to increase the training accuracy, but predictions based on these
features will certainly decrease the models’ prediction quality (Overfitting). These additional
dimensions also reduce the computational performance during the training process. This accounts
especially for larger data sets (see chapter 3.3.3). Firstly, the initial selection is based on ‘arbitrary’
causal connections. Usually a closer examination of the feature dimensions’ suitability helps to
improve the model’s quality. Secondly, the polynomial enriched data set exceeds the mathematical
respectively computational capabilities of some MLA [29].
I therefore used a set of different techniques to reduce the number of features (i.e. the number of
dimensions of the data). Four different approaches are examined in greater detail: the reduction of
features based on univariate statistical tests (e.g. ANOVA), the so-called ‘model-based approach’
and the principal component analysis (PCA). The fourth approach is the regulation-based feature
selection, which can be applied within the logistic regression and is discussed in chapter 4.5

3.3.4.1 Univariate Statistical Tests

The first option is the reduction of features based on univariate statistical tests (e.g. ANOVA). The
statistical significance between feature and label is computed and an arbitrary number of features
with the highest confidence is selected. This arbitrary number is often based on the p-values of the
features. This assures that only features with statistical significant influence on the label are
considered by the model and ‘useless’ features do not degrade the performance. This approach
tests features only one by one. Possible interactions with other features remain undiscovered [28].
Because of this neglecting of the interactions between features, this approach is not further pursued.

19 The data matrix contains many zeros.

20 Some MLAs are exceeding the capacities of 16 GB RAM while training on this dataset.

37

3.3.4.2 Model-Based Approach

The second approach is a so-called ‘model-based approach’. Some models (e.g. Random Forest,
Logistic Regression) can be used to estimate the importance of single features. One of them is the
‘random forest’ model (see chapter 4.3 for further details). While training the random forest model,
the importance of features is determined based on the decisions of the trees. This so called ‘Gini-
importance’ shows how much impurity/entropy reduction can be obtained by a (data) split based
on this exact feature [39]. Still, because decision trees are determined by randomness, this approach
is neglected.
Although this approach was neglected, the model-based feature selection provided some insight
into the importance of individual features as well as feature combinations. The results are therefore
elaborated in Appendix i.b

3.3.4.3 Principal Component Analysis

While the univariate statistical tests and the model-based approach where supervised heuristics to
select features based on certain criterions, the last method extracts features. The principal
components analysis (PCA) is a popular approach for deriving a low-dimensional set of features [34].
It identifies patterns within data based on the correlation between features trough finding the
directions of maximum variance in high-dimensional data. These features are projected on
hyperplanes to reduce the number of dimensions while still describing most of the variance [29],
[39]. However, during the projection information is lost. There is a trade-off between the number
of features and explained variance, which James et al. [34] (2007) describe as following:

‘Unfortunately, there is no well-
accepted objective way to decide
how many principal components are
enough. In fact, the question of how
many principal components are
enough is inherently ill-defined, and
will depend on the specific area of
application and the specific data set.
On the other hand, if we compute
principal components for use in a
supervised analysis[…], there is a
simple and objective way to
determine how many principal
components to use: we can treat the
number of principal component
score vectors to be used in the
regression as a tuning parameter to
be selected via cross-validation or a
related approach.’

Figure 3-8 displays the principal components for a two-dimensional dataset. The principal
component 1 (PC1) is the line along the greatest variance of the features x1 and x2. The principal

Figure 3-8 Principal components of x1 and x2, Graphic by [29].

38

component 2 (PC2) is the orthogonal to PC1. PC1 alone can be used to describe most of the variance
between x1 and x2, while simultaneously reducing the dimensionality by 1. PCA does consider the
labels of the data points, therefore the transformation does not improve the quality of the data
imperatively. The measure for the PCA’s quality is the explained variance [29].
The results of applying PCA on the training data are illustrated in Figure 3-9. The explained variance
(EV) per feature is a measure for the additional information by each component. To display the
results for the original features and the polynomial together, the relative values are displayed. The
middle graph illustrates the cumulative EV.
For the original market data 84 of 119 principal components are necessary to explain 99.9% of the
variance. For the polynomial data, 1208 of 7260 principal components are necessary to explain 99.9%
of the variance. These sizes allow conscientious training of the classifiers. The bottom graph
illustrates the absolute explained variance. It can be seen that the variance within the polynomial
data set is clearly greater.

Figure 3-9 Top: Relative explained variance by principal component in descending order; Middle: Cumulative relative
explained variance; Bottom: Absolute cumulative variance.

39

The goal of the feature enrichment was to add variance by introducing new combinations,
potentially explaining the label. The feature selection/feature extraction assures the quality of the
feature set and concludes the data preprocessing. The next step is the training, testing and
optimization of the classifiers.

 Optimization Framework
MLAs have parameters which are independent from the data input (penalty factors, choice of
solvers, tolerance levels, etc.). These parameters are called ‘hyperparameters’ and allow the
adaption of the algorithm to specific problems [29]. Since the goal of ML is to generalize from known
data to unknown data, the performance of a classifier is defined by its potential to predict unknown
data correctly (see chapter 3.2.2).
To test this potential, the labeled data is split into two sets - one for training and one for testing.
After a classifier is trained on the training set it is tested against the test set. The quality of its
predictions (e.g. classification accuracy) is calculated based on the results of the test set. If the
quality meets the requirements, the process ends here.
It is very unlikely that the first attempt will deliver the best results for a problem [28]. To improve
the quality of a classifier, the stepwise adaption of the hyperparameters is required. Setting the
hyperparameters correctly is a core task within any ML-process [28], [29]. Depending on the number
of adjustable parameters and conversion time of the MLA, there are two meta heuristics to find the
(semi)optimal setting for the hyperparameter, called ‘hyperparameter tuning’: grid search and
random search [28], [29].

 Hyperparameter Tuning Heuristics
The grid search uses lists of options for hyperparameters. All possible combinations within these
lists are tested. This assures that the best combination of the provided options is found. If there is a
better setting of hyperparameters but it’s combination is not in the provided lists of options
(parameters), it will not be discovered. This process is time consuming, especially if there are many
combinations of hyperparameters [40].
To reduce the computational time, a random search can be used instead of a grid search. A random
search also uses lists of options for the specific hyperparameters, but instead of testing all possible
combinations, only ‘x’ random combinations are tested, where ‘x’ represents a chosen budget of
trials. Random search is used to determine which settings are promising for further investigation
[40].

 Cross validation
As already mentioned in chapter 3.2.2, the quality of a classifier is determined by its potential to
classify ‘unseen’ data correctly. Any information transfer not available to the classifier under real-
world conditions between training and test data set must be prevented, otherwise the quality of
the classifier will be overestimated. This includes the scaling process, the feature selection, and
especially the hyperparameter tuning.

40

If the hyperparameters are optimized against a single test, the results are likely to be adapted only
to the characteristic of this specific test set. Therefore, the model loses its ability to generalize and
a biased set of hyperparameter is selected. A common technique to avoid this biased
hyperparameter selection is the so called ‘k-fold cross validation’, also simply referred to as ‘cross
validation’ [28].
The ‘k-fold cross validation’ describes a process where the data is split into k same-sized subsets
from which one set is selected to be the test set. The other sets get combined into a training set.
The classifier is then trained and tested based on those two sets. In the next step the second set is
selected to be the test set and so on. This process is repeated until all sets have been used as a test
set (i.e. after k rounds). The quality of the classifier is the average performance over these k training
and testing cycles. In combination with grid search (see chapter 3.4.1Fehler! Verweisquelle konnte
nicht gefunden werden.), the set of hyperparameters with the highest average score is selected
[29].
The advantage of cross validation is the reduced risk of hyperparameter selection based on random
events. It is possible that a randomly selected test set is very similar/different to the training set if a
set of hyperparameters is chosen or dismissed because of a single test result in a ‘miss assessment’
[28], [29]. The cross validation also increases the computational effort by the factor of k, which is
only partially parallelizable [41].
Figure 3-10 illustrates the schematic procedure of the cross validation and the calculation of the
resulting mean accuracy:

Figure 3-10 Illustration of an k-fold cross validation for k= 5. Every round includes a training a testing process.

41

 Model Evaluation
The conclusive part of the evaluation process is the evaluation of the MLA’s performance. The
general process of the model evaluation is illustrated in Figure 3-11. The green frame represents the
parts of the process optimized by grid respectively random search including the cross validation.

Figure 3-11 Procedure of the Classifier optimization process.

Given an MLA with two hyperparameters with each five options and two different scaling options,
three different methods of feature selection are possible. This totals in 5 * 5 *2 *3 = 150 different
sets of parameters. Additionally, performing a 5-fold cross validation results in 750 models trained
and tested. This is only acceptable if the convergence time of a single model is low (e.g. several
seconds). This is aggravated by the fact that most classifiers have more than two parameters
including continuous variables like penalty values [28]. If the optimized classifier does not fulfill the
classification standards, a new attempt with a new set of hyperparameters, other preprocessing
techniques or new / additional data is necessary [29]. If the classifier fulfills the requirements, the
process is finished.

 Scoring Values
As mentioned above (see chapter 3.2.2), the test score of the classifier determines its quality. The
default score when evaluating a (multiclass) classifier is the accuracy. The accuracy represents the
percentage of correct predictions [29].
The accuracy is a decent and naturally comprehensible metric of evaluation, but since the classes in
the original data (and probably in new data too) are unevenly distributed, the classifier tends to
over-represent the most common class (55% wait, 22,5% each charge and discharge). A classifier

42

predicting ‘wait’ in 100% of the cases has an accuracy of 55% without providing any additional
information or benefit.

To counteract this behavior, two additional metrics are introduced: the precision and the recall.
These metrics can be derived from the confusion matrix (Figure 3-12Fehler! Verweisquelle konnte
nicht gefunden werden.) of true values and predicted values. The main axis of this matrix displays
the correct classifications (i.e. the prediction is correct), all other combinations represent
misclassifications.

Figure 3-12 Confusion matrix for the predicted and true OSA.

These metrics are derived from binary classification problems, so the standard formulas for those
metrics must be altered by a weight factor. The first metric is the precision. The precision of the
prediction of one class is the quotient of the number of correct predictions for one class and the
sum prediction for that class (in ‘Trues’ of column / sum of column) [29]. For example:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐ℎ𝑎𝑟𝑔𝑒) =
(𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄)

(𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄) + (𝐹𝑎𝑙𝑠𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄)

Eq. 3-7 Calculation of the precision [29].

The total precision is the weighted mean of the three individual precisions21. The weight is based on
the number of true values for this class. The second metric is the recall. It describes the quotient of

21 There are different ways to compute the total precision/recall. The weighted mean is typically used for imbalanced classes [28], [29],
[53].

43

correctly predicted true values for a class and the total number of true values for this class (Trues of
row / sum of row) [29]. For example:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑐ℎ𝑎𝑟𝑔𝑒) =
𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 ⁄

(𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄) + (𝐹𝑎𝑙𝑠𝑒 𝑤𝑎𝑖𝑡⁄) + (𝐹𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒⁄)

Eq. 3-8 Calculation of the recall [29].

The total recall is the weighted mean of the three individual recalls. Independently, both metrics
can be optimized to be 1 (i.e. perfect). The f1 score, the weighted harmonic mean of precision and
recall combines those two measures [42]. Therefore, the f1 score is the standard additional
representation of the classifiers quality:

𝑓1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Eq. 3-9 Calculation of the f1-score [43].

These scores are helpful to statistically describe the quality of the classification. Still, the correct
classification is only a simplification of the true objective: the maximization of the profit. Although
the confusion matrix and the score metrics provide insight in the kind of errors made, they do not
quantize the effect of a mis-classification monetarily.
Based on this metric, errors with little effect on the overall economic performance of the EES (e.g.
charging at the second-best point of time instead the best) are penalized by the algorithm equally
as major errors (e.g. discharging if charging would be the ‘correct’ option). This shows to be a
fundamental problem during the optimization task.
The model was optimized by the means of an error score, but the actual objective function is the
maximization of the profit. To take this into account, I assume a correlation between correct
classification, quality, and profit. The examination of this correlation is part of the results which are
discussed in chapter 5.3.
As shown, there are many options and possibilities to improve (or worsen) the quality of the
classification within the entire process of developing a good classifier, many of them influencing
each other. As the investigation of all those possibilities is not within the scope of this thesis, I
applied a para-systematically approach by simply testing different settings and observing the effects.
The second step was then the investigation of the interactions of single parameter combinations
which resulted in two dimensional matrixes of results. Eventually this process of trial and error led
to a set of preprocessing actions and hyperparameters small enough to be systematically examined
via grid search as shown in chapter 5.

44

 Evaluation Framework
The accuracy of the classification does not significantly determine the performance of an agent
trading on the EM based on the classifier’s predictions. An incorrect classification does not
determine how economically wrong the decision is. To test the classifier’s performance on the real
market, I introduced a framework, written in Python (Appendix Appendix ii.c). Within this
framework, the classifiers are used to act as an agent controlling an EES, which places the results of
the classification into an economic framework.
Based on the market data of the year 2015, the classifiers predict storage behavior respectively
storage signals. These signals are then used to trigger actions of an agent trading on a simulated EM.
If the classifier predicts ‘charge’, the agent tries to buy electricity and charge the battery if there is
capacity left. If the classifier predicts ‘discharge’, the agent sells electricity. If the classifier predicts
‘wait’, the agent takes no action. The following pseudocode describes to process in detail:

Eq. 3-10 Pseduo code describing the storage logic (SL).

This process is repeated for every hour of the evaluation period. The market conditions of the
current hour are used as an input for the classifier. The classifier predicts the action for the
subsequent hour (t+1), the current price is set to the price of the subsequent hour.
If the predicted action is ‘charge’ (buy), the agent calculates the maximal amount of free capacity
of the EES. He then buys this maximal possible amount. The maximal possible amount is limited by
either the maximal charge speed or the remaining free capacity. The bought electricity is then added
to the EES’s current storage level. The last step is the update of the EES’s balance. Analog to the
calculation of the LPM (chapter 3.2.1), the costs of the bought electricity are the amount of
electricity divided by the efficiency times the current price. Those costs are subtracted from the
total balance.

For (timestep) in all evaluation period:
 current market conditions = market conditions (t)
 signal = Classifier.predict_behavior(Current _market conditions)
 Current price = price (t+1)
 if signal is charge:
 free capacity = maximum capacity – current storage level
 buyable electricity = min(maximal charging speed , free capacity)
 current storage level = current storage level + buyable electricity
 balance = balance – buyable electricity / (storing efficiency) *
 current price

 if signal is discharge:
 sellable electricity = min (maximal discharging speed, current
 storage level)
 current storage level = current storage level - sellable electricity
 balance = balance + sellable electricity * current price

 if signal is wait:
 do nothing

 current storage level = (1-self discharge rate) * current storage level

45

If the predicted action is ‘discharge’ (sell), the agent calculates the maximal sellable amount of
electricity, which is either limited by the maximal discharge speed or the remaining stored energy.
The storage level gets updated accordingly. The last action is to update the balance. The profit from
selling energy is the maximal sellable amount times the current price.
If the predicted action is ‘wait’, the agent takes no action.
The last action of a timestep is always the calculation and deduction of the self-discharge according
to the self-discharge rate. The performance of the agent is compared to the performance of an agent
using the OSA-signal from the LP model.

 Other Strategies
As mentioned before, using EES for arbitrage trading is a popular strategy within the scientific
community [15]. But since the simulation of EES’s with LP requires perfect foresight, other strategies
for arbitrage trading have emerged, many of which are used to simulate real world storage
strategies. This helps to compare the results of the classifiers and to put them into perspective. In a
2016 paper Zafirakis et al. [15] examine the value of arbitrage trading of energy storage and
introduce inter alia methods for the storage control.
Two of those methods are used in this model to simulate state of the art storage strategies: the
weekly and daily ‘back to back’ strategy. The back to back strategy suggests using the same charge
and discharge pattern as it would be optimal for the previous time period. This assures that the daily,
weekly, and seasonal patterns of the electricity price are represented accordingly by shifting the
OSA by 24h (daily) and 168h (weekly). The resulting series can be treated like the prediction signals
of any other classifier.

𝑠ℎ𝑖𝑓𝑡 (𝑤𝑒𝑒𝑘) = 𝑂𝑆𝐴
𝑠ℎ𝑖𝑓𝑡 (𝑑𝑎𝑦) = 𝑂𝑆𝐴

Eq. 3-11 Calculation of the back-to-back strategies.

4 Classification Algorithms

 Introduction
The classification algorithm is the centerpiece of every machine learning process. Within the Sklearn
library the algorithms are organized in python classes [37]. The architecture of these classes is
uniform as inheritance is used, which makes it easy to switch between different algorithms. The
classification algorithms themselves have distinctive inner workings and requirements on the data
preparation. This especially accounts for scaling and data size. The following chapters introduces six
different kinds of classification algorithms and their implications for the problem tackled in this
thesis.

46

 K-nearest Neighbors
The K-nearest Neighbor (KNN) algorithm is a classification algorithm. Strictly speaking, the KNN does
not really ‘learn’ and therefore is often referred to as ‘lazy learner’ [28]. During the training process
the classifier stores all feature-label pairs of the training data set. During the prediction the distance
between the feature vector and all known samples is calculated. The k training samples with the
shortest distance to the new sample are chosen to determine the class of the unknown data. The
most frequent class within these k nearest samples is the predicted class. Parameter k, the number
of neighbors, is the main hyperparameter of the KNN algorithm. It determines the number of
samples used to predict a new data point and is the key parameter to reduce the effect of overfitting.
A small k leads to complex models with volatile decision boundaries that tend to overfit on the
training data. A classification based on too many neighbors reduces the ability to correctly classify
the data, because the distance to the farthermost considered neighbors gets too large [28].
Two additional parameters, the calculation metric, and the weight of the distance, can be used to
optimize the KNN-algorithm. The calculation metric for the distance influences the selection of the
neighbors. There are two basic options for calculating the distance: the Manhattan distance and the
Euclidian distance.
The Manhattan distance is the sum of the absolute distances in every dimension:

𝑑 = |𝑥 − 𝑦|

Eq. 4-1 Calculation of the Manhattan distance [44].

The Euclidian distance is the length of the straight line between the two points:

𝑑 = (𝑥 − 𝑦)

Eq. 4-2 Claculation of the euclidian distance [44].

The second parameter (weight of distance) is the weight of the votes of each nearest neighbor. By
default, the weight of the votes is uniform (i.e. independent from the distance to the new data).
Alternatively, the weight of the neighbor can be set inverse to its distance to the new data point.
This reduces the influence of distant points but is still within the closest k neighbors (distance) [44].
An effect often observed in context of KNN is the ‘curse of dimensionality’, which describes the
phenomena of feature spaces becoming increasingly sparse for an increased number of dimensions
and a fixed number of observations [29]. Also, the KNN does not scale very well. The computational
effort (O) of the standard (brute force) KNN classifier grows in O [DN²], where N are the samples
and D are the features [45]. The KNN is therefore not suited for a large set of input data with
polynomial features. However, by limiting the training data to a fixed number of observations (i.e.
8 760 for one year of training data) and dispensing the option for polynomial features, the
computational effort is manageable.

47

Figure 4-1 displays the effect the
number of neighbors has on the
classification quality. The blue line
describes the score based on the
training set, the red line describes the
score based on the test set. A visual
inspection of the plot shows the
maximal score for the test set lies
within the range of ~5 to ~30
neighbors.
For a decreasing number of neighbors,
the test score drops, and the training
score raises rapidly. This is a sign of
overfitting (i.e. a model with high
complexity) [28]. With increasing numbers
of neighbors, the classification quality slightly decreases.
Additionally, the same number of neighbors were tested after a PCA extracted 20 principal
components (see chapter 3.3.4.3). The negative effect of the dimension reduction is small (compare
Figure 4-1 pale lines). Based on these findings a grid search for a narrower hyperparameter space
was performed to find the optimal hyper-parameter composition. Table 5 lists the hyperparameters
and preprocessing steps used during the optimization process of the KNN-classifier.

Table 5 The parameter grid used to optimize the KNN classifier.

Parameter Values
Polynomial Features [No]

Scaler [Standard, Quantile
Transformer]

PCA (components) [20,40,50,100,119]

Number of neighbors (k) [5, 10, 11, 13, 16, 20, 25, 30]

Distance metric (p) [‘Manhattan’, ‘Euclidian’]

Weights [‘uniform’, ‘distance’]

Figure 4-1 Influence of number of neghbors for an KNN classifier on the
accuracy of the classification. 20pc denotes a feature set determined by
a PCA with 20 principal components.

48

 Decision Trees
Decision Trees are a series of ‘if-else’ decisions ultimately leading to a classification. Every question
splits the samples into one node (‘parent’) and two subgroups (‘children’) with reduced impurity.
This split is orthogonal to one feature axis. This process is repeated until all samples in the
last/terminal nodes are from a single class. In other words, the terminal nodes are ‘pure’. Repeating
the same series of questions for a new data point leads to a predicted classification [28], [39].
The underlying objective function aims to maximize the information gain (IG) at each (binary) split
where Dp is the parent node, Dleft and Dright are the children:

𝐼𝐺 𝐷 , 𝑎 = 𝐼 𝐷 −
𝑁

𝑁
∗ 𝐼 𝐷 −

𝑁

𝑁
∗ 𝐼 𝐷

Eq. 4-3 calculation of the information gain [29].

N represents the number of samples in the respective node, I stands for an impurity function. The
information gain is the difference between the impurity of the parent and the sum of the impurities
of the children. The impurity or splitting criteria is a metric of the difference within the sample
classes [29].

Two different metrics can be compared: The entropy and the Gini-coefficient. The entropy is a
metric measuring the impurity of a group. The node’s entropy is 1 if the distribution is uniform. The
entropy for a pure node is 0. The entropy criterion must therefore be minimized while building a
tree. The entropy (IH) for the node (t) is calculated in Eq. 4-4, where i is the number of samples
belonging to a class and c is the total number of classes. 𝑝(𝑖|𝑡) is the relative proportion of samples
of a class in the node t.

𝐼 (𝑡) = − 𝑝(𝑖|𝑡) log 2(𝑝(𝑖|𝑡)

Eq. 4-4 calculation of the entropy [29].

The second metric is the Gini-coefficient. This coefficient is a measure of impurity, which is why it
must be minimized like the entropy during the trees construction. The Gini coefficient (IG) is
calculated in Eq. 4-5.

𝐼 = 1 − 𝑝(𝑖|𝑡)

Eq. 4-5 calculation of the Gini coefficient [29].

The decision-tree-algorithm, in its basic version, continues until all terminal nodes are pure and
every sample of the training set is classified correctly [28]. This is a prime example of an overfitted
classifier. To reduce this effect, the construction of the tree is usually constrained [39]. There are

49

multiple ways of constraining the growth of a tree. Two of them – the maximal depth parameter
and the minimal number of samples in a terminal node – are examined in greater detail.
The maximal depth parameter limits the size of the tree by constraining the length of the series of
splits. The minimal number of samples in a terminal node reduces the effect of outliers. Based on
their algorithm, decision trees do not require scaled input data [28]. Table 6 lists the
hyperparameters and preprocessing steps used during the optimization process of the decision tree.

Table 6 The parameter grid used to optimize the decision tree.

Parameter Values

Polynomial Features
[No]

PCA (components)
[No]

Maximal depth
[100,50,25,10]

Minimal samples for an additional split
[2,50,100,200]

Minimal samples in terminal node
[1,20,40,60,100]

Impurity metric
[‘Gini’, ‘Entropy’]

 Random Forest (RF)
Another method to improve the prediction quality of a decision tree is to train multiple decision
trees on a slightly different data set (e.g. a bootstrapped data set). The predicted class is the result
of voting by each single tree. This technique is called ‘random forest’. A random forest is more robust
against outliers and increases the generalization quality of a classifier [28], [29].
There are three additional hyperparameters examined for random forest. One is the number of
trees deployed, the other two determine the randomness of the single trees. At every split only a
randomly chosen fraction of features is selected (maximal features). A low number of features leads
to decreased impurity reduction, simultaneously increasing the randomness, and consequently
reducing overfitting. The last hyperparameter is impurity metric. The single trees of a random forest
do not have to be limited in their growth, since the forest itself is quite robust against the noise of
the single trees [29]. Table 7 lists the hyperparameters used during the optimization process of the
RF.

Table 7 The parameter grid used to optimize the random forest.

Parameter Values

Impurity metric
[‘Gini’, ‘Entropy’]

Number of trees
[10, 20 ,50, 100, 500, 1000]

Maximal Features
[10,30,60,90]

50

Figure 4-2 Sigmoid function for z[-7,7], [25].

 Logistic Regression
The logistic regression (LR) is a binary classification model for linear separable classes. The formula
used to make predictions resembles the formula for the common linear regression (see chapter
3.2.1). While linear regression estimates a value for a given set of features, logistic regression

estimates the odd ratio of a set of features being part of a certain class []. The logistic function

(logit) is the logarithm of the odds function. The logit function takes input values within the range
of 0 to 1 and transforms them into values over the entire space of real numbers, which can then be
used to express a linear relationship between feature values and the log-odds [29].

This means that the reverse function of the logit function (the sigmoid function Φ(z) =) can

be used to transform every number (i.e. the weighted sum of the features) into a number between
0 and 1 (i.e. the odd ratio of the binary classification):

 𝑙𝑜𝑔𝑖𝑡 𝑝(𝑦 = 1|𝑥) < 𝑤 ∗ 𝑥 + 𝑤 ∗ 𝑥 + ⋯ + 𝑤 ∗ 𝑤 ∗ 𝑏

Eq. 4-6 Calculation of the probability of a features set (x) being part of class y. w are the weights for the respective
features and b is the intercept [29].

The outcome of the sigmoid function – the predicted probability – can then be converted into a
binary outcome via a step function:

𝑦 =
1 𝑖𝑓 Φ(z) ≥ 0.5

0 𝑖𝑓 Φ(z) < 0.5
=

1 𝑖𝑓 z ≥ 0
0 𝑖𝑓 z < 0

Eq. 4-7 Step function for binary classification. Compare Figure 4-2 z and 𝚽(z).

Within the logistic regression, a gradient descend based algorithm is used to minimize the costs, i.e.
the difference between predicted probability and true class. Because of this, the model does not

51

only penalize wrong predictions, but also the certainty of the wrong classification respectively the
uncertainty of true classifications [29].
The LR model in its basic form can be used for binary classification, whereas the more sophisticated
‘One vs Rest’ (OvR) technique allows to use LR for multi-classification tasks. In this case the
classification process is split into c sub classifications, where c is the number of classes. Every class
has its ‘own’ model predicting the probability whether a new data point is within the class or not.
The model predicting the highest probability for the new data point determines its class [29].
Linear models generally tend to overfit in high dimensions. This is expressed in two ways. Firstly, the
model is not able to generalize well, i.e. predict unknown data correctly, although good training
results are obtained. Secondly, the model becomes complex and difficult to interpret. The reason
for this overfitting lies within the potential/power of LR to find the correct set of weights to even
classify outliers and noise correctly. The chance of overfitting increases with the number of
dimensions [28].
These effects can be controlled via a regulating term within the loss function. The regulation adds a
penalty term to the cost function for each weight. This adds a tradeoff between correct classification
of a training point and the length of the weights vector (‘L2’-regulation) [29]. This leads to smaller
weights and consequently to a simpler model with better generalization quality, although there is a
trade-off between model simplicity and generalization potential. The size of the penalty (is set
via the parameter c, which is the reciprocal value of [29]. Table 8 lists the hyperparameters and
preprocessing steps used during the optimization process of the LR.

Table 8 The parameter grid used to optimize the logistic regression .

Parameter Values

Polynomial Features
[Yes, No]

PCA (components)
(normal/poly)

[10,20,30,40,50,60,70,80,90,100,119]
[10,100,500,1000,2000]

penalty
[L1, L2]

C
[10-4,…, 104]

 Support Vector Classifier
Support Vector Machines (SVM) are another linear model used for classification. In contrast to LR,
where the objective function is to minimize the cost function, the SVM aims to maximize the margin
[29]. The margin is defined as the distance between the separating line respectively hyperplane (i.e.
decision boundary) and the closest training samples [46]. These training samples are the so-called
support vectors. The calibration of the decision boundary is based only on those support vectors.
Samples that are further away from the boundary do not influence the slope or position of the
hyperplane. The underlying assumption is that a maximal separating hyperplane is a good method

52

of generalization and the chance of overfitting and the negative effect of outliers is thereby reduced
[29].
An important concept for the SVM is the slack variable introduced by Vladimir Vapnik [46]. The
slack variable allows convergence of linear algorithms, although the data is not linearly separable.
Misclassified training samples are penalized accordingly. This penalty resembles the function of the
L2 classification used during the logistic regression (4.5) and is also adjusted via the parameter C.
Large values for C lead to a high penalty for the misclassified samples and therefore increase the
chance of overfitting. Small values increase the weight of the maximal margin in the objective
function. The first part of Eq. 4-8 expresses the maximum margin w, the second the sum of all slack
variables for every misclassified samples times C [29].

min =
1

2
|𝑤| + 𝐶 ∗ ()

Eq. 4-8 Objective function for SVM [29].

The training data is not perfectly linearly separable. Thus, the prediction quality for the linear models
is reduced. SVM can solve nonlinear problems by kernelizing the data. The idea behind kernel
methods is to create nonlinear combinations of the original features to project them onto a higher
dimensional space via a mapping function (Eq. 4-9), where the data becomes linearly separable [29].

𝐹(𝑥 , 𝑥) = (𝑥 , 𝑥 , 𝑥 + 𝑥)

Eq. 4-9 Example of a simplified mapping function to transform a two-dimensional feature set into a three-dimensional
feature set [29].

This mapping function be an additional preprocessing step that is semi-automatically performed by
the SVC. It is called ‘kernel trick’ [28], [29], [46]. There are two common ways to map the input data
into a higher dimension: the polynomial kernel and the radial bias function. The polynomial kernel
computes all polynomials of the features up to a threshold. Radial bias function (rbf) is also known
as the ‘Gaussian kernel’. Guido and Müller (2016) [28]summarize the functional principle as
following:

‘One way to explain the Gaussian kernel is that it considers all possible
polynomials of all degrees, but the importance of the features decreases for each
additional dimension.’

One big disadvantage of SVM is its reduced scalability in terms of sample size. The Sklearn
documentation for SVC mentions an upper limit of 105 samples, compared to the training data set
which includes 4.3 *105 samples. Within the constructed model, one approach to the solution of
this problem is to trim the data and to only use the last 8 760 values corresponding to the year 2014.
While optimizing an SVC there are three specific parameters to optimize. C, the kernel type, and a
kernel specific parameter. Within my model I investigated three different kernels: ‘linear’-kernel
limits the SVC to a linear separation and has no additional parameters. ‘Polynomial’ (poly)

53

introduces polynomials of the features as kernel function. The controlling parameter (degree) sets
the threshold for the degrees. A high value for the controlling parameter increases the potential to
correctly learn nonlinear relations and simultaneously increases the complexity, computational
expense, and the chance of overfitting.
The regulating parameter for the rbf is called ‘gamma’. It controls the width of the gaussian kernel
and therefore the number of samples considered. A high value for gamma increases the chance to
overfit [29]. Table 9 lists the hyperparameters and preprocessing steps used during the optimization
process of the SVC:

 Table 9 The parameter grid used to optimize the SVC.

Parameter Values

Polynomial Features
[Yes, No]

PCA (components)
(normal/poly)

[10,20,30,40,50,60,70,80,90,100,119]
[10,100,500,1000,2000]

C
[10-4,...,104]

Kernel
[‘linear’, ‘ploy’, ‘rbf’]

Degree(poly)
[2,3,4,5]

Gamma(rbf)
[10-5,…,10]

 Neuronal Nets/Multilayer Perceptron (MLP)
Neuronal nets (also known as ‘deep learning’) is a group of MLAs based on the concept of perceptron
which was developed 1957 by Frank Rosenblatt. The underlying motivation was the attempt to
recreate the functionality of the neuron in the brain in order improve the understanding of the
biological learning process. The perceptron, the building block of a neuronal network, resembles the
biological neuron. Today it is known that the functionality of biological neurons is way more complex,
nevertheless the perceptron as a method of automated classification is still used.

Figure 4-3 schematic illustration of a perceptron for an input vector with m features [25].

54

The process can be described as follows: A signal (feature) enters a node. Within the node the signal
is multiplied by a factor (weights) and an activation function (originally a step function) is applied to
transform the result to a binary value. If the classification is correct the weights remain unchanged.
Otherwise the weights get updated. If the data is linearly separable, the perceptron will converge
[29]. During the last ~70 years the design of the perceptron got improved in various ways (e.g.
selection of the activation function).
A modern neuronal net can be described as a multiple parallelly and serially connected perceptron.
In its basic form, the feed forward neuronal network is also referred to as ‘multilayer perceptron’
[28]. Typically, the step function as activation function is replaced by a sigmoid or rectified linear
unit (ReLU).

Figure 4-4 schematic illustration of an MLP with an input layer with 6 nodes, one hidden layer with 8 nodes and one
output layer with four nodes [46].

Figure 4-4 Illustrates an arbitrary ‘fully connected’ feed forward neuronal network. The network
consists of three layers: one input layer, one hidden layer and one output layer. ‘Fully connected’
signifies that all nodes i of a layer k are ‘connected’ to all nodes j of the subsequent layer via the
weights vector wij. This systematic is propagated until the last layer is connected [29].
The prediction process of an MLP is also analog to the algorithm of the perceptron. The output of a
node is calculated by applying an activation function on the weighted sums of its input nodes.
Typically, a constant value (bias) is added for every node. This process is called ‘forward propagation’.
The values in the output layer can then be used for the classification. For classification purposes this
is typically realized by an ‘one-hot’ array. During the learning process the weights and biases get
updated according to a cost function starting from the output layer. Eventually, the model finds a
set of weights and biases able to classify correctly. This process is computationally expensive.
Therefore, an appropriate cross-validation becomes impossible. Additionally, MLPs have many

55

parameters to tune [29], [47]. A random search approach was chosen to find a suitable initial set of
parameters. The resulting model was then further optimized gradually by hand.

The dimensions of the input and output layer are predefined by the presentation of the problem:
the number of input nodes equals the number of features and the number of output nodes equals
the number of classes. Numbers and dimensions of the hidden layers are independent, the
dimensions can be optimized, and an adequate activation function must be chosen. A parameter
can adjust the learning behavior while the learning rate defines the size of the adjustments of the
weights and biases. Large learning rates may overshoot the optimal value, small learning rates may
converge to local minima.
Within the current model a dynamic approach was chosen to avoid overshooting or converging
behavior. The initial learning rate is set to a large value. If the improvement of the model stagnates
the learning rate is decreased. The MLP was realized with the ‘keras’ framework

56

5 Results
The optimal hyper parameters for all tested MLA found during the optimization process are shown
in Appendix i.a.

 Evaluation Results

Table 10 Training and Evaluation results for the OSA time series of the LP model, the alternative back to back strategies
(shift week and shift day) and all classifiers for the training period (2010-2014) and the evaluation period (2015).

Classifier

G
rid

 s
ea

rc
h

CV
-r

es
ul

ts

 F1
-s

co
re

(t

ra
in

)
 F1

-s
co

re

(t
es

t)

 pr
of

it
(t

es
t)

 re

la
tiv

e
pr

of
it

(2
01

5)

 nu
m

be
r o

f
lo

ad

cy
cl

es

 Pr
of

it
pe

r l
oa

d
cy

cl
e

Unit [EUR] [n] [EUR]

Relevant year 2014 2015 2010-14 2015 2015 2015

LP - Optimized (OSA) - 1.00 1.00 7735.04 1.00 519.00 14.90
Shift Week - 0.70 0.67 5421.21 0.70 519.00 10.45
Shift Day - 0.68 0.65 4880.65 0.63 519.00 9.40
K- Nearest Neighbor22 0.77 1.00 0.75 5664.58 0.73 400.61 14.14
Decision Tree 0.75 0.85 0.70 5030.10 0.65 451.94 11.13
Random Forest 0.82 1.00 0.77 5302.65 0.69 336.47 15.76
Logistic Regression 0.79 0.83 0.77 6038.16 0.78 444.37 13.59
SCV - Linear23 0.78 0.80 0.75 5118.63 0.66 437.87 11.69
SVC - RBF24 0.81 0.73 0.74 5110.04 0.66 370.78 13.78
Neuronal Network 0.8325 0.88 0.79 6116.14 0.79 449.62 13.60

The classifiers are trained on the whole training data set (2010-2014) and are adjusted according to
the results of the hyperparameter optimization (Appendix i.a). The scoring results differ slightly from
the results of the hyperparameter optimization process. This is partly due to the different data
availability in the evaluation processes. During cross-validation, test and training samples are chosen
randomly and therefore may lie between two training samples. While training on the data 2010-
2014 to predict the 2015 labels, this effect stays out. Table 10 summarizes the results.
‘LP-optimized’ (OSA) represents the results of the LP model. The OSA set provides the labels for the
classification process for the whole period. Therefore, the f1 scores are 1 (or 100%) for the training
as well as the testing period.

22 These classifiers were solely trained on the data of 2014.

23 These classifiers were solely trained on the data of 2014.

24 These classifiers were solely trained on the data of 2014.

25 Random Search.

57

The column ‘profit 2015’ represents the profit that an agent trading based on the signal (e.g.
classifier prediction) earns. The relative profit puts the profit into relation of the optimal profit
earned by the OSA.
The number of load cycles (LC) is calculated according to Eq. 2-6 and the profit per load cycle is the
quotient of the profit and LC. As expected, the OSA has the best performance. With 519 LC it triggers
the most complete LC, although the profit per LC is only the second highest.
The quality signal of the back-to-back strategies ‘shift (day)’ and ‘shift week’ can also be expressed
by the f1 -score metric. This reveals that both the train and the test scores of ‘shift day’ and ‘shift-
week’ (i.e. the back to back strategies) are the worst of the tested methods.
With a relative profit of 70% the shift (week) method outperforms the shift (day) method clearly.
The number of LC is naturally similar to the number of LC of the OSA. The profit for LC drops
accordingly.
The KNN classifier’s f1 test score is 0.75. Due to the nature of the algorithm, KNN with distance-
based voting weights naturally have a f1-score of 1. However, the relative profit of 2015 shows that
this classifier outperforms the back- to- back strategies.
The decision tree shows the worst performance of all MLA classifiers tested but still outperforms
the shift (day) method. For the ensemble of decision trees, the random forest, two remarkable
phenomena are manifesting. A large difference between test f1 score and train f1 score normally
indicates an overfit classifier. Usually random forests are more resilient against overfitting than
decision trees [28]. However, the hyperparameters were selected based on the best results for f1
determined by a grid search 26. Interestingly, the random forest shows the lowest number of LCs
and the highest profit per LC.
The LR reaches the second-best result. Both support vector machine-based algorithms, although
reaching promising qualities of classification, cannot outperform the shift (week) method. The
neuronal net (Multilayer Perceptron) reaches the best results while also reaching the highest f1 test
score. An agent trading based on the signals of this classifier earns 79% of the optimal profit. The
neuronal network also had the highest f1 score during the hyper-parameter optimization. However,
the correlation between f1 score and earned profit is not complete.
Figure 5-1 and Figure 5-2 are visualizing the results of the evaluation by the storage logic and the
respective relative profits per LC.

26 The analysis of the cross validated grid search log showed, that the maximal f1 test score was reached by an overfitting random forest,
see chapter3.4.2

58

Figure 5-1 F1 -scores for all classifiers, shift(week/day) and OSA for the training period (2014) and test period (2015).

Figure 5-2 relative profits for all classifiers, shift(week/day) based on the OSA and the evaluation framework for the
training period (2014) and test period (2015).

LP -
Optimized

Neuronal
Network

Logistic
Reg-

ression

K- Nearest
Neighbor

Shift Week Random
Forest

SCV -
Linear

SVC - RBF Decision
Tree

Shift Day

profit (train) 1,00 0,84 0,86 1,00 0,75 1,00 0,78 0,78 0,83 0,68

profit (test) 1,00 0,79 0,78 0,73 0,70 0,69 0,66 0,66 0,65 0,63

50%
60%
70%
80%
90%

100%

Relative Profit

profit (train) profit (test)

LP -
Optimized

Neuronal
Network

Logistic
Reg-

ression

K- Nearest
Neighbor

Shift
Week

Random
Forest

SCV -
Linear

SVC - RBF
Decision

Tree
Shift Day

F1 - score (train) 1,00 0,88 0,83 1,00 0,70 1,00 0,80 0,73 0,85 0,68

F1 - score (test) 1,00 0,79 0,77 0,75 0,67 0,77 0,75 0,74 0,70 0,65

0%
20%
40%
60%
80%

100%

F1 -Score

F1 - score (train) F1 - score (test)

59

Figure 5-3 Confusion matrices of the the OSA the cLassifiers and the shift(week/day) method. y-axis are the label, x-axis
are the predicted labels. The number beneath the title is the f1 score for of the signal.

The calculation of the f1-score is based on the confusion matrix. Confusion matrices for all signals
are illustrated in Figure 5-3. Each subplot shows the three by three confusion matrix for one classifier
where the y-axis represents the true labels and the x-axis the predicted labels. The numbers in the
boxes represent the number of occurrences of a combination, the number below the title is the
corresponding f1-score.
At first glance all nine sub figures look very similar but still allow to draw conclusions on closer
examination. For example, comparing the results for the RF (2,2) and the LR (2,3): Both have similar
f1-scores but completely different profits. The random forest more often correctly predicts ‘wait’

60

and has clearly less capital errors (predicting the opposite of the true label). The logistic regression
however more often classifies the charging and discharging correctly. Overall the logistic regression
is more profitable. It can be deducted that the f1-score does not completely correlate with the profit
of an agent.

 Visualization of the Different Storage Strategies
The optimal trading strategy calculated by the LPM (the OSA) is based on the diurnal price
fluctuations. Throughout the day the average storage pattern shows two charging periods, where
electricity is (usually) bought from the market. The first period occurs during the night hours, the
second at noon. The discharging periods are usually during the morning hours and afternoon. This
pattern resembles typical load profiles. Figure 5-4 illustrates the distribution of the OSA throughout
the day. The annotated number represents the count of times the LPM calculated27 a signal at the
corresponding hour. The conditional coloring shows this distinctive pattern and reveals that there
are hardly any combinations of a signal and hours with zero occurrences. Additionally, most hours
show an occurrence of two signals. This indicates that rigid storage operation models which are
solely based on the diurnal pattern are not suitable. It also underlines that the electricity price is
influenced by other factors than season or hour of day.

Figure 5-5 to Figure 5-8 display the same figure for the predicted signals by four selected classifiers.
It can be seen that all four can reproduce the diurnal trading pattern of the OSA. A closer
examination reveals that the patterns of the MLA diverge from the patterns of LPM. While the
results of the LPM are less ridged, the MLAs have more hour-signal combinations with zero
occurrences. This may indicate prohibitive ‘rules’ that the model extracts from the training data.
(e.g. if it is 18:00: under no circumstances buy electricity). An EES operated by such strict rules loses
the ability to gain profit in diverging extreme situations, as the LPM would calculate. However, the
existence of strict rules doesn’t necessarily mean reduced economic performance compared to a
more dynamic classifiers’ approach. It appears that the RF classifier developed a rather static
method of predicting the storage activity based on the time. ‘wait’ is more common compared to
other classifiers and at many points during the day the classifier never predicts a certain option.
Between 20:00 and 22:00 it only predicted ‘wait’. Compared to the more dynamic strategy of the
linear SVC, which predicted more signal-hour combinations and performed worse in means of f1-
score and profit than the RF classifier. A deeper analysis of the single strategies developed by the
classifier, their particularities, similarities, and the resulting effects on the decision process would
lead to a deeper understanding of the decision process and could reveal additional potential for
model improvement.

27 “Predicted“ in the case of classifiers.

61

Figure 5-4 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015 for the
LPM optimzed storage behaviour. The time is displayed in GMT.

Figure 5-5 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015
predicted by the Neuronal Network. The time is displayed in GMT.

Figure 5-6 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015
predicted by the Logistic Regression. The time is displayed in GMT.

Figure 5-7 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015
predicted by the Random Forest. The time is displayed in GMT.

Figure 5-8 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015
predicted by the SVC. The time is displayed in GMT.

62

 Correlation between
F1-Score and Earned
Profit

The correlation between the maximal
profit and the scoring metric during the
optimization process cannot be
assumed automatically (compare
Figure 5-3). A limited correlation
hinders the deployment of a classifier
with optimal hyperparameters and
therefore the maximal profit. The
classifier is not capable of learning how
bad an error is in economic terms
because the metric accounts only for
misclassifications. A fictive operator’s
additional cost of a misclassification
cannot be described by the difference
in the performance of a single action. The OSA as an agent executes every possible profitable trade.
These trades however differ by their profit margin. The development of a specialized metric,
calculating the exact costs of misclassification based on complete trades instead of the f1-score,
requires a stepwise chronological correct evaluation during the training process. Figure 5-9 shows
the correlation of profit and the f1-score for a logistic regression for different values for the c
parameter trained on the 2014 dataset and evaluated on the 2015 data set. Both the profit and the
f1-score are calculated based on the testing set. The maximal f1-score is reached for c = 10 000 while
the maximal profit is reached for c = -0.01. This example shows that the maxima are indeed not
congruent, but the difference is rather small. Therefore, the f1-score be a good approximation of
the profit. At the same time, it also shows that the f1-score is not the perfect score metric to
maximize the profit. Future research might investigate the effects of other customized score metrics
during the optimization process.

 Effect of the Forecast Horizon
A second potential effect on the classification quality is the increasing temporal distance between
the training and the test set over the evaluation year. In other words: if one trains a classifier based
only on the data of the years 2010-2014, the prediction quality for January 2015 may be better than
for December 2015. The hypothesis is that temporal developments and trends are changing the
optimal behavior pattern. Consequently, the temporal distance between training period and
prediction period should have a negative influence on the quality of the classification. To display

Figure 5-9 The x-axes represents F1 - Score and the simulated relative
profits compared to the optimal soloution of logistic regresions with
different C values.

63

potential quality losses over time, a moving average with a window size of four weeks of the
accuracy is calculated as an indicator of short-term prediction quality for all classifiers28.
A linear model was fit to estimate the intercept and slope for all classifiers. A negative slope would
indicate a decrease in the model’s prediction quality with increased temporal distance to the
training period. The results show that there are no considerable negative slopes. The intercept’s
slopes, p-values, and R² are displayed in Table 11:

Table 11 linear models decribing the correlation between temporal distance and classification quality.

Name Intercept Slope P-Value R²

Decision Tree 0.71 -0 0.3306 0.0001

KNN 0.76 -0 <10-5 0.0549

Logistic
Regression

0.78 -0 <10-5 0.0046

Neuronal
Network

0.79 -0 <10-5 0.0151

Random Forest 0.76 0 <10-5 0.056

SVC -RBF 0.73 0 <10-5 0.32

SVC Linear 0.73 0 <10-5 0.32

Although there are temporal oscillations observable, neither the results from the linear model nor
the plot of Figure 5-10 suggest significant signs of erosion of the classification quality within a one-
year period. However, this is only valid if the economic framework remains unchanged. Disruptive
effects (e.g. policy changes, introduction of new technologies) within the market, leading to
different optimal storage behavior, will require a retraining of the classifier.

28 The results show that the moving average of the accuracy is smoother compared to the actual Boolean values of the correctness of a
classification (true or false) for every step

64

Figure 5-10 Temporal effects on the classification accuracy. Comparision of classifier for the year 2015.

Additionally, Figure 5-10 reveals correlating oscillations within the classification quality. Around the
1 000st hour all classifiers (except the decision tree) are performing better than at the 2 000st hour.
These homogenous oscillations indicate that there may be additional influencing factors to consider.

 Rentability of the ESS
The economic rentability is a central precondition for the large-scale market-based deployment of
EESs. A mean of calculating this rentability is the net present value (NPV) [4]. Assuming investment
costs [CO] of 300-800 EUR/kWh, a typical lifetime [Ly] for Li-ion accumulators of 5-15 years [25] and
a typical discount rate [r] of 10% [4] for investments in the energy sector the NPV of an ESS operated
by the algorithm can be calculated according to Eq. 5-1, where Ct represents the annual revenue
minus the annual cost for operation and maintenance.

𝑁𝑃𝑉 =
𝐶

(1 − 𝑟)
− 𝐶

Eq. 5-1 Calculation of the net present value of an investment.

To facilitate the calculation, the annual costs for operation and maintenance are neglected and the
annual revenue is assumed to be constant (based on the simulated results for the year 2015). An
ESS operated by the predictions of the best performing MLA, the NN, yields a profit of 6 116 EUR
per year. Under the most optimistic assumptions of 15 years lifetime and investment costs of 300
EUR/kWh the resulting NPV is -253 480 EUR. To be profitable, the investment costs must be reduced
below the threshold of 46.51 EUR/kWh. Considering the optimal solution of the LPM similar results
apply. An ESS operated by the LPM yields a profit of 7 735 EUR per year. Resulting in an NPV of
-241 166. To be profitable, the investment costs have to be reduced below the threshold of 58.1

65

EUR/kWh. This shows that the investment costs are yet too high, respectively the annual profits are
too low to profitably arbitrage at the German power market with Li-ion batteries.

6 Discussion and Conclusion

 Improving the Model’s Quality
The results of the evaluation process show that basic machine learning algorithms can outperform
standard strategies like the back to back algorithm. However, compared to typical results for
machine learning based classification (accuracy >90%), an accuracy of +/- 80% is tenuous [29], [46].
To increase the classification quality and therefore the economic performance, there are several
paths to take. All of them represent different starting points for future research.

 Training Process
6.1.1.1 Scaling

In this thesis the possible scaling options are limited to two methods (see chapter 3.3.2). The
standard scaling method (mean zero and standard deviation 1) is a minimum requirement for many
machine algorithms. However, it is prone to outliers.
The quantile transformer on the other hand maps all values uniformly distributed between -1 and 1
and is therefore robust against outliers. However, the actual set of scaling options to choose from
is larger. While many MLAs are designed for feature values with a mean close to zero and a standard
deviation close to 1, the method of transformation is arbitrary. Including other scaling techniques
(like Normalizing, Robust Scalers) into the hyperparameter tuning process could lead to better
results.

6.1.1.2 Feature Selection

Same accounts for feature selection and feature enrichment. In this thesis, the feature enrichment
option was limited to a second-degree polynomial feature combination and principal component
analysis’ number of components. Analog to the scaling step, there are additional techniques like
Linear Discriminant Analysis or Kernelized PCA to be considered during the optimization process
[29].

 Additional Data
Another typical method of increasing a model’s performance is the gathering of additional data. In
general, this includes additional samples as well as the addition of feature dimensions. Since the
economic conditions for energy storage vary over time, additional samples with increased temporal
distance to the prediction period won’t necessarily increase the classification potential of the model.
An additional feature, representing factors like weather conditions, holidays or daylight-saving time
could improve the classification quality [48].

66

 Economic Performance
A method to increase the economic performance of the model rather than the classification quality
is based on the decision boundaries. All classifiers classify based on a probability value (e.g. the
percentage of votes per class). This value is a continuous number. By default, the category with the
highest probability value gets predicted. Tuning these values can improve the performance of the
agent.
Within the prediction process a trained KNN classifier returns an array of values. Each value
represents the percentage of votes a certain class gets. By default, the class with the most votes and
therefore the highest value determines the class. Yet, this decision process can be modified. With
the three classes of the EES in mind (charge, discharge, wait), an alternative strategy determining
the prediction process could be as following: at least 90% of the neighbors must vote either charge
or discharge for the ESS to take action. This would represent a conservative strategy, avoiding false
actions, while accepting more downtime. An analysis based on a simple algorithm that shows that
further improvements of the classifiers results are realizable can be found in Appendix i.c

 Shortcomings of the Model
The model in its current state, regarding extension, prediction quality and flexibility, shows the basic
feasibility of EES operation based on MLAs. At the same time, it illustrates some of the shortcomings,
that must be overcome to successfully implement MLAs as operation algorithms. The forecast
horizon is currently limited to one hour which reduces the applicability of the model dramatically.
Especially as the trading rules of the EM hinder live/online trading. Principally the model could also
learn to predict arbitrary time steps into the future (i.e. +12 hours). Since the lagged variables seem
to play an important role for the prediction process (see ’back to back’ and 0) the prediction quality
should remain acceptable. A series of models, each predicting an hour in the future (i.e.+1, +2 ...,+24
hours), can be used jointly for more complex predictions for every timestep.

Secondly, the model in its current state makes use of only one possible revenue stream (arbitrage
trading). As already elaborated in chapter 2, an EES potentially offers multiple services (i.e.
regulating energy, intraday market) to the EM. Under real market conditions a profit orientated EES
operator wants to provide a mix of services to gain maximum profit for her facility. The linear
optimization of a storage problem for several markets respectively services is not trivial.
Simultaneously, the approach I chose requires an optimal (or at least very good) solution to classify
by in order to obtain satisfying results. Additionally, the current model has only three classes
(alternatives) to ’choose’ from and therefore a rather simple task to learn. For more complex models
the underlying decisions to be made by the operator, may exceed the MLAs ‘learning’ capacities .
Anyway, the problem regarding the evaluation of classification (second best to worst alternative,
see chapter 3.5.1) exaggerates because of the additional classes/alternatives.

67

Thirdly, a large-scale deployment of EESs with same or similar trading algorithms increases the
impact of the trading process on the price building process. Consequently, the ‘pricetaker’
assumption during the linear optimization process becomes obsolete. This limits the maximal profits
of the EES and may lead to unexpected price deviations. However, even for large scale deployments,
EESs still provide balancing services for the market. This may lead to a shift in in the weighting of
the single input features of the model(s) (e.g. a strategy change). A constant evaluation of the model,
its features, and its profitability is therefore necessary.

 Final Summary
To evaluate the potential of machine learning based algorithms for electricity storage control
(MLAES) a programming framework was introduced. Within this framework, the potential
performance of different algorithms was compared. The results show that MLAES can outperform
simple storage strategies and reduce the gap to the mathematically optimal solution. There is
potential for further improvement of the model quality and the potential profit. This proves that
MLAES are feasible for storage operation and should be investigated further. As the assumptions
made in this thesis lead to a simplification, the results can’t be transferred one-to-one to real-world
conditions.
Although MLAES are shown to outperform other strategies such as back to back trading, the
deployment of EES for arbitraging a single EM is not profitable now. The high investment costs
prohibit the profit-oriented deployment, which also includes the mathematically optimal results of
the linear model.
Decreasing investment costs and increased political efforts to introduce EES into the market might
change this. At the current market situation, it cannot be expected that EES are deployed solely for
arbitraging on electricity wholesale markets. Similar results can be found in other publications [49],
[50].

68

7 Literature

[1] UNFCCC, “Paris Agreement,” Conf. Parties its twenty-first Sess., vol. 21932, no. December,
p. 32, 2015.

[2] J. Rockström, O. Gaffney, J. Rogelj, M. Meinshausen, N. Nakicenovic, and H. J. Schellnhuber,
“A roadmap for rapid decarbonization,” Science (80-.)., vol. 355, no. 6331, pp. 1269–1271,
2017.

[3] A. J. Schwab, Elektroenergiesysteme, vol. 53, no. 9. 2012.

[4] M. Sterner and I. Stadler, Energie Speicher, vol. 53. 2013.

[5] Joachim Nitsch et al., “Langfristszenarien und Strategien für den Ausbau der Erneuerbaren
Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global.
Schlussbericht BMU - FKZ 03MAP146,” Bonn, 2012.

[6] B. W. Schill, J. Diekmann, and A. Zerrahn, “Power Storage: An Important Option for the
German Energy Transition,” vol. 3, no. 3, pp. 137–147, 2015.

[7] G. Fuchs, B. Lunz, M. Leuthold, and D. U. Sauer, “Technology Overview on Electricity
Storage - Overview on the potential and on the deployment perpectives of electric storage
technologies,” Inst. Power Electron. Electr. Drives (ISEA), RWTH Aachen Univ., no. June, p.
66, 2012.

[8] VDE Association of Electrical Electronic and Information Technologies, “The German
Roadmap: Smart Grid, Standardization, Status, Trends and Prospects,” 2013.

[9] Frauenhoferinstitut, “Net generation of power plants for public power supply.,” 2018. [Online].
Available: https://www.energy-charts.de/energy_pie.htm?year=2017. [Accessed: 10-Mar-
2018].

[10] M. Nicolosi, “Leitstudie Strommarkt 2015,” no. final report, pp. 1–99, 2015.

[11] D. R. Graeber, Handel mit Strom aus erneuerbaren Energien. wiesbaden: springer, 2014.

[12] D. McConnell, T. Forcey, and M. Sandiford, “Estimating the value of electricity storage in an
energy-only wholesale market,” Appl. Energy, vol. 159, pp. 422–432, 2015.

[13] B. Zakeri and S. Syri, “Electrical energy storage systems: A comparative life cycle cost
analysis,” Renew. Sustain. Energy Rev., vol. 42, pp. 569–596, 2015.

[14] W.-P. Schill, “Integration von Wind- und Solarenergie: Flexibles Stromsystem verringert
Überschüsse,” DIW-Wochenbericht, vol. 80, no. 34, pp. 3–14, 2013.

[15] D. Zafirakis, K. J. Chalvatzis, G. Baiocchi, and G. Daskalakis, “The value of arbitrage for
energy storage: Evidence from European electricity markets,” Appl. Energy, vol. 184, pp. 971–
986, 2016.

[16] W. P. Schill, “Residual load, renewable surplus generation and storage requirements in
Germany,” Energy Policy, vol. 73, pp. 65–79, 2014.

69

[17] M. B. C. Salles, M. J. Aziz, and W. W. Hogan, “Potential arbitrage revenue of energy storage
systems in PJM during 2014,” IEEE Power Energy Soc. Gen. Meet., vol. 2016–Novem, 2016.

[18] R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss, “Estimating the value of electricity storage
in PJM: Arbitrage and some welfare effects,” Energy Econ., vol. 31, no. 2, pp. 269–277, 2009.

[19] Y. Yoon and Y. H. Kim, “Charge scheduling of an energy storage system under time-of-use
pricing and a demand charge,” Sci. World J., vol. 2014, 2014.

[20] J. Ma and X. Ma, “State-of-the-art forecasting algorithms for microgrids,” ICAC 2017 - 2017
23rd IEEE Int. Conf. Autom. Comput. Addressing Glob. Challenges through Autom. Comput.,
no. September, pp. 7–8, 2017.

[21] K. Bradbury, L. Pratson, and D. Patiño-Echeverri, “Economic viability of energy storage
systems based on price arbitrage potential in real-time U.S. electricity markets,” Appl. Energy,
vol. 114, pp. 512–519, 2014.

[22] N. Yu and B. Foggo, “Stochastic valuation of energy storage in wholesale power markets,”
Energy Econ., vol. 64, pp. 177–185, 2017.

[23] V. Krishnan and T. Das, “Optimal allocation of energy storage in a co-optimized electricity
market: Benefits assessment and deriving indicators for economic storage ventures,” Energy,
vol. 81, pp. 175–188, 2015.

[24] Bloomberg, “New Energy Finance,” 2016. [Online]. Available:
https://www.bnef.com/dataview/new-energy-outlook-2016/index.html.

[25] T. Bocklisch, “Hybrid energy storage systems for renewable energy applications,” Energy
Procedia, vol. 73, pp. 103–111, 2015.

[26] ENTSOE, “European Network of Transmission System Operators for Electricity.” [Online].
Available: https://www.entsoe.eu. [Accessed: 01-Dec-2017].

[27] Open Power Data System, “Time Series,” 2017. [Online]. Available: https://open-power-
system-data.org.

[28] S. Guido and A. C. Müller, introduction to Machine Learning with Python. O’Reilly Media,
2016.

[29] S. Raschka, Python Machine Learning. BIRMINGHAM: Packt Publishing, 2015.

[30] Austrian Power Grid, “apg.at.” [Online]. Available: www.apg.at. [Accessed: 11-Oct-2017].

[31] D. I. Chatzigiannis, G. A. Dourbois, P. N. Biskas, and A. G. Bakirtzis, “European day-ahead
electricity market clearing model,” Electr. Power Syst. Res., vol. 140, pp. 225–239, 2016.

[32] R. M. Karp R, “Deorg Danzigs impact on the theory of computation discrete optimization,”
Discret. Optim., vol. 5, pp. 174–185, 2008.

[33] C. Lewis, “Linear Programming : Theory and Applications,” p. 65, 2008.

[34] G. James, D. Witen, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with

70

Applications in R, vol. 64, no. 9–12. New York: Springer, 2007.

[35] G. Varoquaux, O. Grisel, and R. RV, “sklearn.model_selection.train_test_split,” sklearn, 2017.
[Online]. Available: https://github.com/scikit-learn/scikit-
learn/blob/a24c8b46/sklearn/model_selection/_split.py#L1920. [Accessed: 20-Dec-2017].

[36] R. RV, G. Lemaitre, and T. Unterthiner, “SKLearn - Compare the effect of different scalers on
data with outliers.” [Online]. Available: http://scikit-
learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html. [Accessed: 23-Nov-
2017].

[37] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, 2012.

[38] A. Gramfort et al., “sklearn.preprocessing.quantile_transform,” sk learn. [Online]. Available:
https://github.com/scikit-learn/scikit-
learn/blob/a24c8b46/sklearn/preprocessing/data.py#L2450. [Accessed: 23-Nov-2017].

[39] G. Louppe et al., “sklearn.tree.DecisionTreeClassifier.” [Online]. Available: http://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.Dec
isionTreeClassifier. [Accessed: 30-Nov-2017].

[40] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” J. Mach.
Learn. Res., vol. 13, pp. 281–305, 2012.

[41] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning,” Math. Intell.,
vol. 27, no. 2, pp. 83–85, 2001.

[42] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for
classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, 2009.

[43] P. Flach and M. Kull, “Precision-Recall-Gain Curves: PR Analysis Done Right,” Adv. Neural
Inf. Process. Syst. 28, vol. 1, pp. 838–846, 2015.

[44] J. Vanderplas, “sklearn.neighbors.DistanceMetric,” 2013. [Online]. Available: http://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html. [Accessed: 29-
Nov-2017].

[45] J. Vanderplas, F. Pedregosa, and A. Gramfort, “sklearn.neighbors.KNeighborsClassifier,”
sklearn, 2017. [Online]. Available: https://github.com/scikit-learn/scikit-
learn/blob/a24c8b46/sklearn/neighbors/classification.py#L23. [Accessed: 20-Dec-2017].

[46] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support Vector Classification,”
BJU Int., vol. 101, no. 1, pp. 1396–400, 2008.

[47] F. Chollet and others, “Keras,” 2015. [Online]. Available: https://github.com/fchollet/keras.

[48] G. Angenendt, S. Zurmühlen, R. Mir-Montazeri, D. Magnor, and D. U. Sauer, “Enhancing
Battery Lifetime in PV Battery Home Storage System Using Forecast Based Operating
Strategies,” Energy Procedia, vol. 99, no. March, pp. 80–88, 2016.

[49] A. Belderbos, E. Delarue, K. Kessels, and D. William, “The Levelized Cost of Storage

71

critically analyzed and its intricacies clearly explained The Levelized Cost of Storage critically
analyzed and its intricacies clearly explained,” no. december, p. 28, 2016.

[50] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look into the
future,” Int. J. Forecast., vol. 30, no. 4, pp. 1030–1081, 2014.

[51] L. Breiman and C. Adele, “Random Forests.” [Online]. Available:
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. [Accessed: 24-Nov-
2017].

[52] D. Magnor and D. U. Sauer, “Optimization of PV Battery Systems Using Genetic Algorithms,”
Energy Procedia, vol. 99, no. March, pp. 332–340, 2016.

[53] J. Weniger, T. Tjaden, J. Bergner, and V. Quaschning, “Sizing of Battery Converters for
Residential PV Storage Systems,” Energy Procedia, vol. 99, pp. 3–10, 2016.

72

73

 Additional Information

a. Optimal Hyperparamter

The following tables (Table 12 to Table 17) summarize the optimal parameter selection for each
classifier based on their mean f1 score during the 5-fold cross validation for the years 2010 -2014.
These values represent the optimal settings for the hyperparameters.

Table 12 Gridsearch resutlts k- nearest neighbors (see chapter 4.2).

Pre-processing/hyperparameter Value

Scaler Quantile transformation
Number of neighbors 11
Weights uniform
Mean CV score (f1) 0.775
Standard deviation of CV score 0.004

Table 13 Gridsearch results decision tree (see chapter 4.3).

Preprocessing/hyperparameter Value

Impurity metric “Entropy”

Maximal depth 50

Minimal samples for an additional split 2

Minimal samples in terminal node 1
Mean CV score (f1) 0.746
Standard deviation of CV score 0.005

Table 14 Gridsearch results random forrest (see chapter 4.4).

Preprocessing/hyperparameter Value

Impurity metric “Entropy”

Number of trees 100

Maximal Features 90

Mean CV score (f1) 0.821
Standard deviation of CV score 0.005

74

Table 15 Gridsearch results logistic regression (see chapter 4.5).

Preprocessing/hyperparameter Value

Scaler Quantile Transformer
Polynomial Features Yes
PCA 1000
penalty type L2
penalty (C) 0.1
Mean CV score (f1) 0.795
Standard deviation of CV score 0.007

Table 16 Gridsearch results support vector classifier (see chapter 4.6).

Preprocessing/hyperparameter Value

Scaler Standard Scaler
Polynomial Features No
Kernel type RBF
Penalty (C) 100
Gamma 0.001
Mean CV score (f1) 0.810
Standard deviation of CV score 0.006

Table 17 random search neuronal net (see chapter 4.7).

Preprocessing/hyperparameter Value

Polynomial Features No
Scaler Quantile Transformer
input layer 119
input layer activation function Sigmoid
Number of hidden layer 3
Nodes hidden layer 119
Dropout during Training 10% after each layer
Activation function hidden layer hard sigmoid (steeper version of sigmoid)
Output nodes 3
Output layer activation function softmax
Batch size 50
Epochs 50
Optimizer RMSprop
Initial leaning rate 0.01
Loss function categorical cross entropy
Test Score 0.83

75

b. Model based feature selection

Some models (e.g. Random Forest, Logistic Regressions) can be used to estimate the importance of
single features. One of them is the random forest model (chapter 4.3). While training the model,
the importance of features is determined based on the decisions of the trees. This importance, also
called ‘Gini-importance’ (based on the Gini coefficient) is the normalized total reduction of the Gini
coefficient of a population while splitting the population based on this certain feature [39]. In other
words, the Gini coefficient shows how much impurity/entropy reduction can be obtained by a (data)
split based on this exact feature. Thus, features carrying useful information could be pushed out by
chance [29]. This effect can be reduced by repeating the process several times [29], [51]. Figure 7-1.
displays the Gini-importance and the potential thresholds for feature selection for the original
training data.

Figure 7-2 does the same for the polynomial expanded data (see chapter 3.3.2). It is important to
acknowledge that, although the selection is based on 1 000 unique decision trees, the order and
therefore the constellation of the selected features varies slightly between each draw.
The table on the left side shows the 10 ‘most important’ features according to the RF model. On the
right side all Gini-importances are displayed in descending order. The top 80 features are
responsible for 90% of the entropy reduction. Around the 80th feature the additional information
gain becomes very small. Features after the 80th are considerable to be dropped. A manual
examination of these features shows that these features are without exception containing dummy
variables for the hour, weekday, and month.

76

Figure 7-1 Gini importances of the features for the orignial data. Right plot: importances of the single fetures in bule and
the cumulative importances in red.

Figure 7-2 Gini-importances of the features for the polynomial enriched training set. Right plot: importances of the single
fetures in bule and the cumulative importances in red.

A closer look at the features respectively their combinations reveals interesting results. In this
(pseudo random) draw, the installed capacity of wind and solar and the price of T-168 are the
dominant features. These combinations and their causal relations are surprising since the installed
capacities are rather constant over time. However, these top features are probably highly correlated
and therefore the ability to make predictions solely based on them is low.
On the right side all importances are displayed in a descending order. In blue (left axis) the values
for each single feature and in red (right axis) the cumulative importance. Note the difference in the
scale of the axis between the original and the polynomial dataset.
The Gini-importance is a relative value and therefore decreasing with the total number of features.
Two phenomena are visible. Firstly, the last ~500 features add no additional information. These are
the columns of zeros. Secondly, the main drop of importance occurs at 3 000 features. For most
MLAs datasets containing 3000 dimensions and ~3 0000 rows are too large, considering the
computational limitations of an ordinary PC and the standards of conscientious training and test
regimes.

77

c. Performance Improvement via Decision Boundaries

The artificial optimization of the decision boundaries can be achieved by simply iterating over the
different thresholds for the decision boundary. In this example, the algorithm is tested for 100
uniformly distributed thresholds between 0 and 1. This results in a new array of predicted storage
activities. For every prediction: either the predicted value for charge or discharge greater than the
threshold. If yes, predict the higher of those two else predict wait. This results in 100 different
classifications to be evaluated. For the same KNN classifier as used during the evaluation the optimal
threshold of 0.33 results in 79.5% of the maximal profit for the year 2015. The default setting results
in 73%. This means that if either the predicted probability for charge or discharge is greater than 33%
the one with the highest probability should be taken or if not, then wait. While optimizing this
threshold for the maximal profit for the year 2015 represents an illegal information transfer, the
same can be done for the year 2014. Optimizing the decision boundaries for 2014 results with an
optimal threshold of 0.30. Appling this threshold (optimized on the year 2014) on the year 2015 the
profit still is 79% of the maximal profit. This is only 0.5% less than the optimal result for 2015 from
neuronal networks. This example shows that the tuning of the decision boundaries further improves
the performance substantially without any additional information. Same applies for all other
classifiers.
However, the description of an optimal algorithm, in combination with metrics to determine the
best setting of the decision boundaries requires additional research. Figure 7-3 illustrates the effect
of the threshold on the profit of the EES. It is visible that the profit in dependency of the threshold
correlates for both sets.

Figure 7-3 Decision Boundaries for the a KNN classifier trained on 2014's data tested on 2015 data. The decision
boundaries are based on a threshold for classification.

78

 Code

The complete code is also available at: https://github.com/zwiebo/Evaluation-of-Machine-
Learning-Based-Storage-Control-Algorithms-for-the-Electricity-Market

a. Data import & Data Cleaning

"""
This Script manages the data import from Open-Power-System-Data (OPSD)
the source file is downloaded manually and from the OPSD homepage

The tasks of the script are:
- load the data from a .csv file into a "pandas" DataFrame
- transform the time stamp string to a time object
- delete unnecessary columns
- delete columns with to many empty values
- calculate some values of interest
 - residual load
 - combined forecasts
 - combined renewable generations
- save the DataFrame to a ‘.xls’ -> OPSD_OWN_table.xls
- save a pickle for the next run

"""

from datetime import datetime
import pandas as pd
import warnings

VARIABLES

file import
original_file = "time_series_60min_singleindex_filtered.csv"
df = pd.DataFrame()

Functions

def transform_date(time_stamp_str):
 """

 # convert the time stamp string from the file to a machine readable object

 """
 return datetime.strptime(time_stamp_str, "%Y-%m-%dT%H:%M:%SZ")

def format_workday(value):
 """
 Classify a variable as either workday or weekend-day
 :param value: number of day
 :return: 1 : workday,
 0 : weekendday
 """
 if value <= 5:
 return 1
 else:

79

 return 0

def init_time_stamps():
 """
 format the timestamp and make variables for every component of the timestamp
 """
 df["absolute_hour"] = df.index
 df["Time"] = list(map(transform_date, df["utc_timestamp"]))
 df["hour"] = pd.DatetimeIndex(df["Time"]).hour
 df["day"] = pd.DatetimeIndex(df["Time"]).day
 df["month"] = pd.DatetimeIndex(df["Time"]).month
 df["year"] = pd.DatetimeIndex(df["Time"]).year
 df["weekday"] = pd.DatetimeIndex(df["Time"]).weekday
 df["workday"] = list(map(format_workday, df["weekday"]))

def create_header_overview(DataFrame=df, Filename="00_Headers.txt"):
 """
 create a file with all headers of the DataFrame for a better overview
 """

 with open(Filename, "w") as f:
 for i in list(DataFrame):
 f.write("'{}',\n".format(i))

if __name__ == "__main__":
 # load Dataframe
 df = pd.read_csv(original_file, index_col=1, parse_dates=True)
 init_time_stamps()
 # drop columns with lots of NAN
 df.drop('interpolated_values', axis=1, inplace=True)
 df.drop("DE_wind_offshore_generation", axis=1, inplace=True)
 df.drop("DE_wind_onshore_generation", axis=1, inplace=True)
 df.drop("DE_50hertz_wind_offshore_forecast", axis=1, inplace=True)
 df.drop("DE_50hertz_wind_onshore_forecast", axis=1, inplace=True)
 df.drop("DE_50hertz_wind_offshore_generation", axis=1, inplace=True)
 df.drop("DE_50hertz_wind_onshore_generation", axis=1, inplace=True)

 # calculate the residual load
 # take all time steps with wind and solar generation
 # subtract the Solar and PV generation from the total load
 df["DE_solar_generation"] = df["DE_solar_generation"].fillna(value=0)
 warnings.warn("Fill na in 'DE_solar_generation' with '0' !")

 # calculate the total renewable generation
 df["renewable_generation"] = df["DE_wind_generation"] +
df["DE_solar_generation"]
 df["DE_residual_load"] = df["DE_load_"] - df["renewable_generation"]

 # calculate the total wind forecast
 df["forecast_wind"] = df["DE_50hertz_wind_forecast"] + \
 df["DE_amprion_wind_forecast"] + \
 df["DE_tennet_wind_forecast"] + \
 df["DE_transnetbw_wind_forecast"]

 # calculate the total solar forecast
 df["forecast_solar"] = df["DE_50hertz_solar_forecast"] + \
 df["DE_amprion_solar_forecast"] + \
 df["DE_tennet_solar_forecast"] + \

80

 df["DE_transnetbw_solar_forecast"]

 # calculate the total forecast
 df["forecast_total"] = df["forecast_wind"] + df["forecast_wind"]

 # a list of the individual TSO's forecast and generation reports ...
 drop_list = ["DE_50hertz_wind_forecast",
 "DE_amprion_wind_forecast",
 "DE_tennet_wind_forecast",
 "DE_transnetbw_wind_forecast",
 "DE_50hertz_solar_forecast",
 "DE_amprion_solar_forecast",
 "DE_tennet_solar_forecast",
 "DE_transnetbw_solar_forecast",
 'DE_50hertz_solar_generation',
 'DE_50hertz_wind_generation',
 'DE_amprion_solar_generation',
 'DE_amprion_wind_generation',
 'DE_amprion_wind_onshore_generation',
 'DE_tennet_solar_generation',
 'DE_tennet_wind_generation',
 'DE_tennet_wind_offshore_generation',
 'DE_tennet_wind_onshore_generation',
 'DE_transnetbw_solar_generation',
 'DE_transnetbw_wind_generation',
 'DE_transnetbw_wind_onshore_generation']

 # ...is used to drop these columns
 for element in drop_list:
 df.drop(element, axis=1, inplace=True)

 # generate dummy variables for hour, month and weekday
 dummy_list = ['hour',
 'month',
 'weekday']
 for element in dummy_list:
 dummy_table = pd.get_dummies(df[element], prefix=element,
prefix_sep="_")
 df = pd.concat([df, dummy_table], axis=1)

 # save the resulting df
 df.to_pickle("00_OPSD_downsized.pickle")
 create_header_overview(df, "00_Headers_downsized.txt")

81

b. Data Manipulation

"""
Task: Preparing of the input dataFrames

 The ‘get_dict’ function returns a dictionary with all necessary

 This reduces the necessary amount of code at the following points

 of the model.

 There are three different time frames for every topic of interest:

 2010 – 2014: for classifiers capable of large input data sets

 2014: for classifiers requiring smaller input data sets

 2015: for the evaluation

 time series within the dictionary:

 - "df_10_14" -> complete df with all columns for 2010-2014
 - "df_15” -> complete df with all columns for 2015
 - "X": X -> features 2010-2015
 - "y": y -> labels 2010-2015
 - "X_14" -> features 2014
 - "y_14" -> labels 2014
 - "X_eval” -> features 2015
 - "y_eval" -> labels 2015
 - "prices_eval_10_14" -> timeseries of prices 2010-2014
 - "prices_eval_14" -> timeseries of prices 2014
 - "prices_eval_15” -> timeseries of prices 2015
 - "GAMS_result_10_14" -> balance of the LP for 2010-2014
 - "GAMS_result_14": balance of the LP for 2014
 - "GAMS_result_15" balance of the LP for 2015

The script performs the following steps
 - adding lag variables
 - importing and labeling the data (linear programming results)
 - replace Nan – values

 - train/test/evaluation - Split
"""
import pandas as pd
from StorageLogic import runLogic

>> Functions << #

def get_dict():
 """
 This function performs steps. to be called from other scripts

82

 :return: dictionary with all necessary values
 """
 def make_label(val, threshold=0.1):
 # label the results from the LP (Classification)
 if val > threshold:
 return 1
 else:
 return 0
 # load the processed OPSD Dataframe
 dataFrame = pd.read_pickle("00_OPSD_downsized.pickle")

 # a list of elements with non-numeric values
 # including the absolute day variable
 del_list = ["absolute_hour",
 'utc_timestamp',
 'Time',
 'day']

 for element in del_list:
 dataFrame.drop(element, axis=1, inplace=True)

 # add lag variables for load and day ahead price
 for shift in range(1, 25):
 dataFrame["DE_price_day_ahead_T-{}".format(shift)] =
dataFrame["DE_price_day_ahead"].shift(shift)
 dataFrame["DE_load__T-{}".format(shift)] =
dataFrame["DE_load_"].shift(shift)
 # shift for value of last same time last week
 dataFrame["DE_price_day_ahead_T-{}".format("last week")] =
dataFrame["DE_price_day_ahead"].shift(168)
 dataFrame["DE_load__T-{}".format("last_week")] =
dataFrame["DE_load_"].shift(168)

 # make moving average
 rolling_means = [4, 24, 168]
 for RM in rolling_means:
 dataFrame["DE_price_day_ahead_RM-{}".format(RM)] = \
 dataFrame["DE_price_day_ahead"] \
 .rolling(window=RM, min_periods=1).mean()

 dataFrame["DE_load__RM-{}".format(RM)] = \
 dataFrame["DE_load_"]. \
 rolling(window=RM, min_periods=1).mean()

 dataFrame["DE_residual_load__RM-{}".format(RM)] = \
 dataFrame["DE_residual_load"]. \
 rolling(window=RM, min_periods=1).mean()

 # set timeframe
 dataFrame = dataFrame[dataFrame.year >= 2010]
 dataFrame = dataFrame[dataFrame.year <= 2015]

 # shift the forecast columns, so that they are in the correct row
 dataFrame["forecast_wind"] = dataFrame["forecast_wind"].shift(-1)
 dataFrame["forecast_solar"] = dataFrame["forecast_solar"].shift(-1)
 dataFrame["forecast_total"] = dataFrame["forecast_total"].shift(-1)

 # load the results file from the LP and shift it
 GAMS_df = pd.read_csv("GAMS\\results_GAMS_10-15_TOTAL_single_wo_INFO_.csv",
sep=";")

83

 GAMS_df = GAMS_df[["Feed_in", "Feed_out"]]
 GAMS_df = GAMS_df.shift(-1)

 # combine features and labels
 dataFrame = pd.DataFrame.join(dataFrame.reset_index(), GAMS_df)
 dataFrame.drop('cet_cest_timestamp', axis=1, inplace=True)

 # transform the label into categorical data
 dataFrame["Feed_in"] = list(map(make_label, dataFrame.loc[:, "Feed_in"]))
 dataFrame["Feed_out"] = list(map(make_label, dataFrame.loc[:, "Feed_out"]))
 # correct setting of labels
 dataFrame.loc[:, "behave"] = dataFrame.Feed_in - dataFrame.Feed_out
 dataFrame.drop("Feed_in", axis=1, inplace=True)
 dataFrame.drop("Feed_out", axis=1, inplace=True)

 # replace "nan" values with last valid value
 # replace remaining "nan" with 0
 dataFrame.fillna(method="ffill", inplace=True)
 dataFrame.fillna(0, inplace=True)

 # slice the Data frames into train/test sets and evaluation sets
 df_10_14 = dataFrame[dataFrame["year"] <= 2014].copy()
 df_14 = dataFrame[dataFrame["year"] == 2014].copy()
 df_15 = dataFrame[dataFrame["year"] == 2015].copy()

 # make split features and labels for...
 # ...optimization (2010- 2014)
 X = df_10_14.drop("behave", axis=1)
 y = df_10_14["behave"]

 # ...optimization (2014)
 X_14 = df_14.drop("behave", axis=1)
 y_14 = df_14["behave"]

 # ..evaluation
 X_eval = df_15.drop("behave", axis=1)
 y_eval = df_15["behave"]

 # shift the prices, to match the features
 prices_eval_10_14 = df_10_14["DE_price_day_ahead"].shift(-1)
 prices_eval_15 = df_15["DE_price_day_ahead"].shift(-1)
 prices_eval_14 = df_14["DE_price_day_ahead"].shift(-1)

 # calculate the the profit according the the storage logic
 GAMS_result_10_14 = runLogic("GAMS",
 price_series=prices_eval_10_14,
 signals=y,
 signal_format="1").balance
 GAMS_result_14 = runLogic("GAMS",
 price_series=prices_eval_14,
 signals=y_14,
 signal_format="1").balance
 GAMS_result_15 = runLogic("GAMS",
 price_series=prices_eval_15,
 signals=y_eval,
 signal_format="1").balance

 # populate the dictionary to return
 return_dict = {"df_10_14": df_10_14,
 "df_15": df_15,

84

 "X": X,
 "y": y,
 "X_14": X_14,
 "y_14": y_14,
 "X_eval": X_eval,
 "y_eval": y_eval,
 "prices_eval_10_14": prices_eval_10_14,
 "prices_eval_14": prices_eval_14,
 "prices_eval_15": prices_eval_15,
 "GAMS_result_10_14":GAMS_result_10_14,
 "GAMS_result_14":GAMS_result_14,
 "GAMS_result_15":GAMS_result_15
 }
 return return_dict

85

c. Evaluation Framework (Storage Logic)

"""
Name: StorageLogic
Task: initialize a battery with and providing a function taking a signal and a
price timeseries to simulate a trading process

the battery object allows to simulate a trading process,
while honoring the physical limitations of the EES
simultaneously the objects keeps record of all actions (self.history)
"""

import datetime
import pandas as pd
import numpy as np

>> Objects << #

class battery:
 def __init__(self,
 self_discharge=0.007,
 volume=1,
 efficiency=0.825,
 storage_speed=0.25,
 balance=0,
 storage_level=0,
 signal_modificator=0,
 initializer="Annon",
 max_load_cycles = 7000,
 investment_cost=700000,
):

 self.investment_cost = investment_cost
 self.max_load_cycles = max_load_cycles
 self.minimal_gain_per_load_cycle = investment_cost/max_load_cycles
 self.efficiency = efficiency
 self.signal_modificator = signal_modificator
 self.balance = balance
 self.storage_level = storage_level
 self.volume = volume
 self.storage_speed = storage_speed
 self.self_discharge = self_discharge
 self.initializer = initializer # Todo implement

 self.history = { # todo behavouirtracker
 "storagelevel": [],
 "delta_storage_level": [],
 "balance": [],
 "performance": [],
 "price": [],
 "signal": [],
 "activity": []}

86

>> Functions << #

 def mk_report_dataFrame(self, suffix=False, Path="BAT_History",
filename=False, date=False):
 """
 this function transforms the .self.history to a pandas' DataFrame
 :param suffix: append a name specifying the algorithm.
 :param Path: Path to the output file. default "BAT_History"
 :param filename: if true save as BAT_History_{}.csv
 :param date: adds the date to the file name
 :return: df with history
 """

 if not suffix:
 suffix = self.initializer
 return_df = pd.DataFrame(self.history)
 return_df = return_df.add_suffix(("___"+suffix))
 if filename:
 filename = "{}\\BAT_History_{}".format(Path, filename)
 if date:
 filename += "_" + str(datetime.date.today())
 filename += ".csv"
 return_df.to_csv(filename, sep=";")

 return return_df

 def store_energy(self, current_price, signal):
 """
 calculate the storing process
 document the storing process
 :param current_price: input price of bat.behave
 :param signal: signal
 :return:
 """
 storable_energy = min(signal, self.volume - self.storage_level)

 # calculate the performance
 performance = storable_energy/self.efficiency * current_price * -1
 self.balance += performance
 # physical storing
 self.storage_level += storable_energy

 # update history
 self.history["performance"].append(performance)
 self.history["balance"].append(self.balance)
 self.history["delta_storage_level"].append(storable_energy)

 # plausibility check
 if self.storage_level > self.volume:
 print("LogicalError")
 quit()

 def sell_energy(self, current_price, signal):
 """
 Calculate the selling process

87

 document the selling process
 :param current_price: input price of bat.behave
 :param signal: signal
 :return:
 """
 sellable_energy = min(signal * -1, self.storage_level)

 # calculate the performance
 performance = sellable_energy * current_price
 self.balance += performance

 # physical storing
 self.storage_level -= sellable_energy

 # update history
 self.history["performance"].append(performance)
 self.history["balance"].append(self.balance)
 self.history["delta_storage_level"].append(sellable_energy * -1)

 # plausibility check
 if self.storage_level < 0:
 print("Error1")

 def behave(self, signal, current_price):

 self.history["price"].append(current_price)
 self.history["signal"].append(signal)

 if signal > 0 and self.storage_level < self.volume:
 self.store_energy(current_price, signal)
 self.history["activity"].append("storing..")
 # store

 elif signal < 0 and self.storage_level > 0:
 self.sell_energy(current_price, signal)
 self.history["activity"].append("selling..")
 # sell

 elif signal == 0:
 # wait
 self.history["performance"].append(0)
 self.history["balance"].append(self.balance)
 self.history["delta_storage_level"].append(0)
 self.history["activity"].append("waiting..")
 else:
 # storage cap reached
 self.history["performance"].append(0)
 self.history["balance"].append(self.balance)
 self.history["delta_storage_level"].append(0)
 if self.storage_level == 1:
 self.history["activity"].append("I'm full")
 # "will never happen"

 if self.storage_level == 0:
 self.history["activity"].append("I'm empty")

 if (signal < -1) or (signal > 1):
 # Error
 print("Error, signal is ", signal)
 exit()

88

 self.history["storagelevel"].append(self.storage_level)
 ## self-discharge is in %
 self.storage_level *= (1 - self.self_discharge/100)

>> Functions << #

def simple_signal(price_series, sell_price=40, buy_price=40, maxStorageSpeed=1):
 """
 This function evaluates the price series and produces simple storage signals
 :param price_series: a times series of prices (pd.Series,list etc)
 :param sell_price: lower threshold for selling energy
 :param buy_price: upperthreshold for buying energy
 :return:list of signals for Storagelogic.py
 """

 signal = []
 for price in price_series:
 if price < buy_price:
 signal.append(maxStorageSpeed)
 elif price > sell_price:
 signal.append(maxStorageSpeed * -1)
 else:
 signal.append(0)
 return signal

def runSimpleLogic(price_series, initializer="SimpleLogic", buy_price=35,
sell_price=38):
 """
 Start a run with a price series
 Compute the signal by itself, depending on given parameters of buy-price and
sell_price
 :param initializer: name of the initializer of the Battery
 :param price_series:
 :param buy_price:
 :param sell_price:
 :return: A Battery, which already performed a cycle run through the
priceseries
 """

 simple = simple_signal(price_series=price_series, buy_price=buy_price,
sell_price=sell_price)
 bat = battery(initializer=initializer)
 for signal, price in zip(simple, price_series):

 bat.behave(signal, price)
 return bat

def runLogic(initializer, price_series, signals, signal_format):
 """
 Run the storage logic with given a price_series and signals
 :param initializer: name of the initializer of the Battery
 :param price_series:
 :param signals:
 :param signal_format:to format the input signal to a consistent value
 :return: A Battery, which already performed a cycle run through the price
series
 """
 bat = battery(initializer=initializer)

89

 signals = np.array(signals)
 price_series = np.array(price_series)
 if signal_format == "0.1":
 for signal, price in zip(signals, price_series):
 bat.behave(signal, price)
 if signal_format == "1":
 price_series[-1] = 0
 assert len(signals) == len(price_series)

 for signal, price in zip(signals, price_series):
 bat.behave(signal*bat.storage_speed, price)
 else:
 raise TypeError("Signaltype is not correct!")
 return bat

90

d. Linear Programming Model

$ontext
####################
storage optimization
####################
 This model solves the optimal storage behavior for X years
$offtext

Option threads=-1;
Option Reslim=10000;

 sets t/t0*t52583/
* sets t/t1*t24/
;
 parameter price /
$include C:\Python\Masterarbeit2.0\GAMS\GAMS_import_1d_2010-2015.txt
*$include test_t24.txt
/;

*Variables to define the properties of the storage technology
* stor_eff ..the loss during the feed in AND feed out
* process
* selfdischarge ..percentual loss due to self discharge
* max_charge_speed ..maximum charge speed in dependency of the
* installed capacity

scalar stor_eff,
 selfdischarge,
 max_feed_speed;
 stor_eff = 0.825;
 selfdischarge = 0.007;
 max_feed_speed = 0.25;

positive variable
 feed_in(t),
 feed_out(t),
 stor_lvl(t);
 feed_in.up(t) = max_feed_speed;
 feed_out.up(t) = max_feed_speed;
 stor_lvl.up(t) = 1

variables
 hourly_profit(t),
 profit_acc(t);

free variable
 balance;

equations
 stor_lvl_eq(t),
*only for results file
 accumulate_profit(t),
 calc_hourly_profit(t),
*objective function
 calculate_balance;

stor_lvl_eq(t).. stor_lvl(t) =e=
 stor_lvl(t-1)

91

 *(1-selfdischarge/100)
 + feed_in(t)
 - feed_out(t);

calc_hourly_profit(t).. hourly_profit(t) =e= feed_out(t)
 * price(t)
 -(feed_in(t)
 * price(t)
 /stor_eff);

accumulate_profit(t).. profit_acc(t) =e= profit_acc(t-1)
 + hourly_profit(t);

calculate_balance.. balance =e= sum(t, feed_out(t)
 * price(t))
 -sum(t, feed_in(t)
 * price(t)/stor_eff);

model storOpt /all/;
solve storOpt using LP maximize balance;

File output/
"results_GAMS_10-15_TOTAL_single.csv"

/;
File output1/
"results_GAMS_10-15_TOTAL_single_wo_INFO_.csv"
/;

output.nd=5;
output1.nd=5;
PUT output;

Put 'RUNTIME;',system.time";"/;
Put 'RUNDATE;',system.date";"/;
Put 'balance;',balance.l";"/;
Put 'stor_eff;',stor_eff";"/;
Put 'selfdischarge;',selfdischarge";"/;
Put 'max_feed_speed;',max_feed_speed";"/;
Put 'Timesstep;Price;Storage_Level;Feed_in;Feed_out;Balance;'/;

Loop(t,PUT t.TL";"price(t)";"
stor_lvl.l(t)";"feed_in.l(t)";"feed_out.l(t)";"hourly_profit.l(t)";"profit_acc.l
(t)";"/)
putclose

put output1;
Put "price;Storage_Level;Feed_in;Feed_out;hourly_profit;profit_acc;"/;
Loop(t,PUT
price(t)";"stor_lvl.l(t)";"feed_in.l(t)";"feed_out.l(t)";"hourly_profit.l(t)";"p
rofit_acc.l(t)";"/)
putclose

92

e. Optimization (Grid Search)

The following scripts perform the grid search for the different classifiers, resulting in the optimal set
of hyperparameters for the training set (2010-2014/2014) for the respective classifier. The results
including the hyperparameters are stored in a csv file

f. K-Nearest Neighbors

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.model_selection import GridSearchCV
from sklearn.decomposition import PCA
import pandas as pd

from Datenaufbereitung import get_dict
from StorageLogic import runLogic

output = []
INFOS = get_dict()

import 2014’ Dataframes

X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

Scorer calculates the score

f1_score = make_scorer(f1_score, average="weighted")

loop over scaler-type and number of components for (PCA)
for scaler_ in [StandardScaler, QuantileTransformer]:
 scaler = scaler_()
 X_train_sc = scaler.fit_transform(X_14)
 for components in [20, 40, 50, 100, 119]:
 cv_results_table_name = "KNN\\KNN_{}_{}.xls".format(scaler_.__name__,
components)

 pca = PCA(components)
 X_train_pca = pca.fit_transform(X_train_sc)
 params = {"n_neighbors": [10, 11, 13, 16, 20],
 "n_jobs": [-1],
 "weights": ["uniform", "distance"],
 "p": [1, 2]}

 clf = GridSearchCV(KNeighborsClassifier(), params, cv=5,
scoring="f1_weighted", verbose=1)
 clf.fit(X_train_pca, y_14)

 # populate output Datatframe
 cv_result_df = pd.DataFrame(clf.cv_results_)
 cv_result_df = cv_result_df[['mean_test_score',
 'std_test_score',
 'mean_train_score',
 'std_train_score',

93

 'param_n_neighbors',
 'param_p',
 'param_weights',
 'rank_test_score',]]
 # save output
 cv_result_df = cv_result_df.sort_values("rank_test_score")
 cv_result_df.to_excel(cv_results_table_name)

94

g. Decision Tree

from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import make_scorer
from sklearn.metrics import f1_score
import pandas as pd
from Datenaufbereitung import get_dict

import DataFrames
INFOS = get_dict()
X = INFOS["X"]
y = INFOS["y"]

Scorer calculates the score

f1_score = make_scorer(f1_score, average="weighted")

set up classifier
pipe = make_pipeline(DecisionTreeClassifier())
param_grid = {'decisiontreeclassifier__min_samples_leaf':[1,20,40,60,100],
 'decisiontreeclassifier__min_samples_split':[2,50,100,200],
 'decisiontreeclassifier__max_depth':[100,50,25,10],
 'decisiontreeclassifier__criterion':["gini", "entropy"],
 'decisiontreeclassifier__class_weight':["balanced"]
 }

set up gridsearch parameter
gs = GridSearchCV(pipe,
 param_grid=param_grid,
 cv=5,
 n_jobs=-1,
 verbose=3)

fit classifier
gs.fit(X_train, y_train)

save result
pd.DataFrame(gs.cv_results_).to_excel("DT\\DecisionTree.xls")

95

h. Random Forest

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import f1_score
import pandas as pd
from Datenaufbereitung import get_dict

import input DataFrames
INFOS = get_dict()
X = INFOS["X"]
y = INFOS["y"]

scorer calculates the score

f1_score = make_scorer(f1_score, average="weighted")

set up classifier
pipe = make_pipeline(RandomForestClassifier())
param_grid = {'randomforestclassifier__n_estimators':[10,20,50,100],
 'randomforestclassifier__max_features':[10,30,60,90,"auto"],
 'randomforestclassifier__criterion':["gini", "entropy"],
 'randomforestclassifier__class_weight':["balanced"]

 }
set up grid search
gs = GridSearchCV(pipe,
 param_grid=param_grid,
 cv=5,
 n_jobs=-1,
 verbose=3)

fit classifier
gs.fit(X, y)

save result
pd.DataFrame(gs.cv_results_).to_excel("RF\\RandomForest.xls")

96

i. Logistic Regression

For the logistic regression two versions were examined: one with a PCA and one without a PCA.

i. Grid Search without PCA

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import f1_score
import pandas as pd
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from Datenaufbereitung import get_dict

import DataFrames
INFOS = get_dict()
X = INFOS["X"]
y = INFOS["y"]

scorer calculates the score
f1_score = make_scorer(f1_score, average="weighted")

loop over different scalers
for scaler in [StandardScaler, QuantileTransformer]:

 # scale the input data
 scaler = scaler()
 X_train = scaler.fit_transform(X)

 # set up classifier
 pipe = make_pipeline(LogisticRegression())
 param_grid = {'logisticregression__penalty':["l1","l2"],
 'logisticregression__C':[0.0001,0.001,0.01,0.1,1,10,100],
 'logisticregression__solver':["saga"],
 'logisticregression__class_weight':["balanced"],
 'logisticregression__max_iter':[1000]
 }

 # set up grid search
 gs = GridSearchCV(pipe,
 param_grid=param_grid,
 cv=5,
 n_jobs=-1,
 verbose=3,
 scoring = f1_score)
 # fit classifiers
 gs.fit(X_train, y)

 # save output

pd.DataFrame(gs.cv_results_).to_excel("JuPyter\\LogReg\\ohne_PCA_{}.xls".format(
scaler.__name__))

ii. With Polynomial Feature Selection and PCA

97

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import f1_score
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.decomposition import PCA
import pandas as pd
from Datenaufbereitung import get_dict

import DataFrames

INFOS = get_dict()
X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

scorer calculates the score
f1_score = make_scorer(f1_score, average="weighted")

loop over scalers and PCA components
for scaler_ in [StandardScaler, QuantileTransformer]:
 for com in [10,100,500,1000]:

 # set up scaler and scale the features
 scaler_name = scaler_.__name__
 scaler = scaler()
 X_train = scaler.fit_transform(X_14)

 # set up polinomalizer
 poly = PolynomialFeatures()
 X_train = poly.fit_transform(X_train)

 # set up PCA
 pca = PCA(com)
 X_train = pca.fit_transform(X_train)

 # set up classifier
 pipe = make_pipeline(LogisticRegression())
 param_grid = {'logisticregression__penalty':["l2"],
 'logisticregression__C':[0.01,0.1,1,10,100],
 'logisticregression__solver':["saga"],
 'logisticregression__class_weight':["balanced"],
 'logisticregression__max_iter':[50000]
 }
 # set up grid search
 gs = GridSearchCV(pipe,
 param_grid=param_grid,
 cv=5,
 n_jobs=-1,
 verbose=3,
 scoring = "f1_weighted")

 # train classifier
 gs.fit(X_train, y_14)

 # save output

98

pd.DataFrame(gs.cv_results_).to_excel("LogReg\\Poly_{}_PCA_{}.xls".format(com,
scaler_name))

99

j. Support Vector Classifier

i. Without Polynomial Feature Enrichment

from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import f1_score
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.decomposition import PCA

from sklearn.metrics import make_scorer
import pandas as pd

from Datenaufbereitung import get_dict

import DataFrames
INFOS = get_dict()
X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

loop over the scalers
for scaler_ in [StandardScaler, QuantileTransformer]:
 for components in [10,20,30,40,50,60,70,80,90,100,119]:

 # scores calculates the score
 f1_score = make_scorer(f1_score, average="weighted")

 scaler = scaler_()
 X_train = scaler.fit_transform(X_14)

 pca = PCA(components)
 X_train = scaler.fit_transform(X_train)

 cs = [0.01,0.1,1,10,100,1000,10000,100000]
 gammas = [0.00001,0.0001,0.001,0.01]
 tuned_parameters = [{'kernel': ['rbf'], 'gamma': gammas,'C': cs},
 {'kernel': ['linear'], 'C': cs}]

 gs = GridSearchCV(SVC(max_iter=100000),
 param_grid=tuned_parameters,
 cv=5,
 n_jobs=-1,
 verbose=3,
 scoring = f1_score)
 gs.fit(X_train, y_14)

 pd.DataFrame(gs.cv_results_).sort_values("rank_test_score").\
 to_excel("JuPyter\\SVC\\{}_PCA_{}.xls".format(components,
 scaler.__name__))

100

ii. With Polinomial Feature Selection and PCA

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import f1_score
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.decomposition import PCA

import pandas as pd
from Datenaufbereitung import get_dict()

Import Dataframe
INFOS = get_dict()
X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

loop over scalers
for scaler_ in [StandardScaler, QuantileTransformer]:
 # loop over comonents for PCA
 for components in [10,100,500,1000,2000]:
 # calculates the score
 f1_score = make_scorer(f1_score, average="weighted")

 # scale the features
 scaler_name = scaler_.__name__
 scaler = scaler_()
 X_train = scaler.fit_transform(X_14)

 # polinomial enrichment
 poly = PolynomialFeatures()
 X_train = poly.fit_transform(X_train)

 # decomposition
 pca = PCA(components)
 X_train = pca.fit_transform(X_train)
 X_test = pca.transform(X_test)

 cs = [0.01,0.1,1,10,100,1000,10000,100000]
 gammas = [0.00001,0.0001,0.001,0.01]
 tuned_parameters = [{'kernel': ['rbf'], 'gamma': gammas,'C': cs},
 {'kernel': ['linear'], 'C': cs}]

 gs = GridSearchCV(SVC(max_iter = 2000),
 param_grid=tuned_parameters,
 cv=5,
 n_jobs=-1,
 verbose=3,
 scoring = "f1_weighted")
 gs.fit(X_train, y_14)

 pd.DataFrame(gs.cv_results_).sort_values("rank_test_score").\
 to_excel("JuPyter\\SVC\\Poly_{}_PCA_{}.xls".format(components,
scaler_name))

101

k. Neuronal Network

import os
reduce log entries
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, SGD
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from sklearn.preprocessing import QuantileTransformer
from sklearn.utils import class_weight
import numpy as np

from Datenaufbereitung import get_dict
INFOS = get_dict()

def create_and_train(INFOS):
 """ callable function of the Neuronal Net"""
 X = INFOS["X"]
 y = INFOS["y"]

 # for evaluation
 X_15 = INFOS["X_15"]
 X_14 = INFOS["X_14"]

 # reformat the label into a vector with three dimensions
 y = keras.utils.to_categorical(y, num_classes=3)

 scaler = QuantileTransformer()
 X = scaler.fit_transform(X)
 X_14 = scaler.fit_transform(X_14)
 X_15 = scaler.fit_transform(X_15)

 # compute the weight of the classes)
 classweight = class_weight.compute_class_weight('balanced',
np.unique(INFOS["y"]),INFOS["y"])

 # Model Parameter
 my_optimizer = RMSprop(lr=0.01)
 loss_func = "categorical_crossentropy"

 input_layer = "sigmoid"
 output_layer = "softmax"
 activation_func = "hard_sigmoid"
 nr_hidden_layer = 2

 layer_size = X.shape[1]
 nr_hidden_layer_nodes = X.shape[1]

 epochs = 100
 batch_size = 1000

 ## Callbacks
 # methodes to influence the learning process
 # stop if loss function dose not improve 4 times in a row
 early_stopping_mentor = EarlyStopping(monitor="categorical_crossentropy",
patience=4, mode="auto")

102

 # reduce lr if loss function stagnates
 reduce_lr = ReduceLROnPlateau(monitor='categorical_crossentropy',
factor=0.5,
 patience=1, min_lr=0.0001)

 # set up model and add layers
 model = Sequential()

 # add inupt layer
 model.add(Dense(nr_hidden_layer_nodes, input_dim=layer_size,
activation=input_layer))

 for _ in range(nr_hidden_layer):
 # add an arbitrary number of layers
 model.add(Dense(int(nr_hidden_layer_nodes),
activation=activation_func))
 # add a Dropout layer that mutes random x percents of the nodes
 model.add(Dropout(0.1))

 # add specific outputlayer
 model.add(Dense(3, activation=output_layer))
 model.compile(loss=loss_func, optimizer=my_optimizer,
 metrics=["categorical_crossentropy", "categorical_accuracy"])

 ## Fit the model
 model.fit(X,
 y,
 callbacks=[early_stopping_mentor, reduce_lr],
 epochs=epochs,
 batch_size=batch_size,
 verbose=1,
 class_weight=classweight,
)

 def mk_output(output):
 """ construction of the return dictionary"""
 signal = []
 for step in output:
 step = list(step)
 one_hot = max(step)

 if step.index(one_hot) == 0:
 signal.append(0)
 elif step.index(one_hot) == 1:
 signal.append(1)
 elif step.index(one_hot) == 2:
 signal.append(-1)
 else:
 print("error", one_hot, np.where(output == one_hot))
 return signal
 predictions = {"X" : mk_output(model.predict(X)),
 "X_14": mk_output(model.predict(X_14)),
 "X_15": mk_output(model.predict(X_15))}

 return predictions

103

l. Training and Evaluation

import datetime
import Datenaufbereitung
import pickle
import numpy as np

import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.decomposition import PCA
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score,accuracy_score
from StorageLogic import runLogic, simple_signal

def calculate_load_cyles(bat):
 """
 This function estimates the load cycles by adding all the storage input
together """
 a_ray = np.array(bat.history["delta_storage_level"])
 feed_ins = a_ray[a_ray > 0]

 return feed_ins.sum()

def heatmap(values, xlabel, ylabel, xticklabels, yticklabels, cmap=None,
 vmin=None, vmax=None, ax=None, fmt="%0.2f"):
 """
 returns the a fig used to generate the confusion matrix
 """
 if ax is None:
 ax = plt.gca()
 font = {'family': 'monospace',
 'size': 15}
 import matplotlib
 matplotlib.rc('font', **font)
 # plot the mean cross-validation scores
 img = ax.pcolor(values, cmap=cmap, vmin=vmin, vmax=vmax)
 img.update_scalarmappable()
 ax.set_xlabel(xlabel)
 ax.set_ylabel(ylabel)
 ax.set_xticks(np.arange(len(xticklabels)) + .5)
 ax.set_yticks(np.arange(len(yticklabels)) + .5)
 ax.set_xticklabels(xticklabels, rotation=0)

"""
This script performs the actual training of the classifiers based on the data of
2010-2014 respectively only 2014 and the optimal hyperparameters found during
the optimization. Then the classifiers predict the optimal signals for the 2015.
The resulting signals are used to evaluate the economic performance of the
classifier.
Additionally the alternative strategies are evaluated.
"""

>> Functions << #

104

 ax.set_yticklabels(yticklabels)
 ax.set_aspect(1)

 for p, color, value in zip(img.get_paths(), img.get_facecolors(),
 img.get_array()):
 x, y = p.vertices[:-2, :].mean(0)
 if np.mean(color[:3]) > 0.5:
 c = 'k'
 else:
 c = 'w'
 ax.text(x, y, fmt % value, color=c, ha="center", va="center")

 return img

>> OUTPUT SET UP << #

with open("summary_table_{}.csv".format(datetime.date.today()), "w") as file:
 """
 Create a table/header for the output file
 """
 columns = ["name",
 "Accuracy (Train)",
 "Accuracy (Test)",
 "F1 (Train)",
 "F1 (Test)",
 "profit 2014",
 "rel profit 2014",
 "profit 2015",
 "rel profit 2015",
 "load cycles",
 "profit per load cycle",
 "LCOE"]
 for column in columns:
 file.write(column)
 file.write(";")
 file.write("\n")

def write_infos_in_table(name, clf, Mode=None):
 """
 writes the results into the table
 :param name: Name of the classifier
 :param clf: classifier
 :param Mode: different calculations depending on the caller of ther function
 """
 if Mode == "NN":
 pred_14 = clf["X_14"]
 pred_15 = clf["X_15"]

 elif Mode == "back2back":
 pred_14 = list(y_14)[clf:] + list(y_14)[:clf]
 pred_15 = list(y_15)[clf:] + list(y_15)[:clf]

 elif Mode == "simple":
 pred_14 = simple_signal(prices_14)
 pred_15 = simple_signal(prices_15)

 elif Mode == "GAMS":

105

 pred_14 = y_14
 pred_15 = y_15

 else:
 pred_14 = clf.predict(X_14)
 pred_15 = clf.predict(X_15)

 # calculate the performance for the year 2014 / train
 report_14 = runLogic(name + "_14",
 price_series=prices_14,
 signals=pred_14,
 signal_format="1")

 # calculate the performance for the year 2015 / test
 report_15 = runLogic(name + "_15",
 price_series=prices_15,
 signals=pred_15,
 signal_format="1")

 lc = calculate_load_cyles(report_15)

 # calculate metrics
 name = name
 acc_train = accuracy_score(pred_14, y_14)
 acc_test = accuracy_score(pred_15, y_15)
 f1_train = f1_score(pred_14, y_14, average="weighted")
 f1_test = f1_score(pred_15, y_15, average="weighted")
 profit_14 = report_14.balance
 rel_profit_14 = report_14.balance / GAMS_14
 profit_15 = report_15.balance
 rel_profit_15 = report_15.balance / GAMS_15
 load_cycles_15 = lc
 profit_per_loadcycle = profit_15 / lc

 report_15.mk_report_dataFrame(suffix=name, filename=name, date=True)
 output = [name,
 acc_train,
 acc_test,
 f1_train,
 f1_test,
 profit_14,
 rel_profit_14,
 profit_15,
 rel_profit_15,
 load_cycles_15,
 profit_per_loadcycle]

 # save results
 with open("summary_table_{}.csv".format(datetime.date.today()), "a") as
file:
 for cell in output:
 file.write(str(cell))
 file.write(";")
 file.write("\n")

 scores_image = heatmap(confusion_matrix(y_15, pred_15),
 xlabel='Predicted label',
 ylabel='True label',
 xticklabels=["discharge", "wait", "charge"],
 yticklabels=["discharge", "wait", "charge"],

106

 cmap=plt.cm.gray_r, fmt="%d")

 plt.title("{}\n{}".format(name.replace("_","").title(),f1_test))
 plt.gca().invert_yaxis()
 plt.tight_layout()
 # plt.subplots_adjust(left=0.0, right=0.75, top=0.92, bottom=0.09)
 # plt.show()
 plt.savefig("pictures\\Confusion Martix\\{}".format(name))
 plt.clf()

>> IMPORT << #

INFOS = Datenaufbereitung.get_dict()
pickle.dump(INFOS, open("INFOS.p", "wb"))

X = INFOS["X"]
y = INFOS["y"]

X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

X_15 = INFOS["X_eval"]
y_15 = INFOS["y_eval"]

GAMS_14 = INFOS["GAMS_result_14"]
GAMS_15 = INFOS["GAMS_result_15"]

prices_14 = INFOS["prices_eval_14"]
prices_15 = INFOS["prices_eval_15"]

>> CLASSIFIER SETUP << #

print(">>> KNN <<<")
from sklearn.neighbors import KNeighborsClassifier

pipe = make_pipeline(QuantileTransformer(),
 PCA(100),
 KNeighborsClassifier(n_neighbors=11,
 weights="distance",
 p=1,
 n_jobs=-1
))

pipe.fit(X_14, y_14)
write_infos_in_table("KNN", pipe)

print(">>> DT <<<")
from sklearn.tree import DecisionTreeClassifier

pipe = make_pipeline(DecisionTreeClassifier(class_weight="balanced",
 criterion="entropy",
 max_depth=50,
 min_samples_leaf=1,
 min_samples_split=50))

107

pipe.fit(X, y)
write_infos_in_table("Decision Tree", pipe)

print(">>> Random Forest <<<")
from sklearn.ensemble import RandomForestClassifier
pipe = make_pipeline(RandomForestClassifier(class_weight="balanced",
 n_estimators=1000,
 criterion="entropy",
 # max_features=90,
 n_jobs=-1))

pipe.fit(X, y)
write_infos_in_table("Random Forest", pipe)

print(">>> LogReg <<<")
from sklearn.linear_model import LogisticRegression

pipe = make_pipeline(QuantileTransformer(),
 PolynomialFeatures(2),
 PCA(1000),
 LogisticRegression(class_weight="balanced",
 solver="saga",
 penalty="L2",
 C=0.1,
 max_iter=100000))

pipe.fit(X_14, y_14)
print("LOG still 14")
write_infos_in_table("Logistic Regression", pipe)

print(">>> SVM - RBF <<<")
from sklearn.svm import SVC

pipe = make_pipeline(StandardScaler(),
 SVC(class_weight="balanced",
 C=10,
 gamma = 0.0001,
 kernel= "rbf",
 max_iter=100000))

pipe.fit(X_14, y_14)
write_infos_in_table("SVC - RBF", pipe)

print(">>> SVM - Linear <<<")
from sklearn.svm import SVC

pipe = make_pipeline(QuantileTransformer(),
 SVC(kernel="linear",
 C = 10,
 max_iter=1000000))

pipe.fit(X_14, y_14)
write_infos_in_table("SVC - Linear", pipe)

print(">>> NN <<<")
import FF_simple
pred = FF_simple.create_and_train(INFOS)

108

write_infos_in_table("Neuronal_Network", clf = pred, Mode="NN")

>> TRAIN DUMMIES << #

pred = -168
write_infos_in_table("Shift Week", clf =pred , Mode="back2back")
pred = -24
write_infos_in_table("Shift Day", clf =pred, Mode="back2back")
write_infos_in_table("Simple_signal", clf=pred, Mode="simple")
write_infos_in_table("GAMS", clf=None, Mode="GAMS")

109

m. Additional Calculations

i. Visualization of Correlation between f1-Score and Profit

"""
arbitrary model to visualize the correlation between profit and f1-score
"""

import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.metrics import f1_score
from StorageLogic import runLogic
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest
import numpy as np
import Datenaufbereitung

import DataFrames
INFOS = Datenaufbereitung.get_dict()

X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

X_15 = INFOS["X_eval"]
y_15 = INFOS["y_eval"]

GAMS_14 = INFOS["GAMS_result_14"]
GAMS_15 = INFOS["GAMS_result_15"]

prices_14 = INFOS["prices_eval_14"]
prices_15 = INFOS["prices_eval_15"]

>> CLASSIFIER SETUP << #

print(">>> LogReg <<<")
cs = np.logspace(-5,6,12)
f1_evals = []
f1_trains = []
profits = []

loop over differnt cs values in order to obtain different results profits and
f1-scores
for c in cs:
 # Train/Test - split
 X_train, X_test, y_train, y_test = train_test_split(X_14,y_14,test_size=0.2)

 # make a pipeline out of scaler feature selection and logistic regression
 pipe = make_pipeline(StandardScaler(),
 SelectKBest(k = 25),
 LogisticRegression(class_weight="balanced",
 solver="saga",
 penalty="L2",
 C=c,
 max_iter=10000))
 pipe.fit(X_train, y_train)

110

 # calculate metrics with fitted time series
 pred_eval = pipe.predict(X_15)
 f1_eval = f1_score(y_true=y_15, y_pred=pred_eval, average="weighted")
 profit = runLogic(initializer="LR",
 price_series=prices_15,
 signals=pred_eval,
 signal_format="1").balance/GAMS_15

 f1_evals.append(f1_eval)
 profits.append(profit)

plot the results
plt.plot(cs, f1_evals, label="F1 - Score", color="#428bca")
plt.plot(cs, profits, label="Profits", color="#d9534f")

decorate the plots
plt.title("Correlation Between F1 - Score and Profit")
plt.ylabel("F1 - Score / Relative Performance")
plt.xlabel("Cs")
plt.ylim([0.5, 1])
plt.xscale("log")
plt.legend()
plt.grid()
plt.show()

111

ii. Effect of Forecast Horizon

import pandas as pd
import scipy.stats
import matplotlib.pyplot as plt
plt.style.use("seaborn-whitegrid")
import glob

import all History tables
df1 = pd.read_csv("C:\Python\Masterarbeit2.2\BAT_History\BAT_History_GAMS_2017-
12-10.csv",sep=";")
history_liste = glob.glob("C:\Python\Masterarbeit2.2\BAT_History*2017-12-
10.csv")

set up DataFrame to store all time series
ensamble = pd.DataFrame()

prepare output header
print("{:20}\t{:>10}\t{:>10}\t{:>10}\t{:>10}".format("Name", "Intercept",
"Slope", "p_value", "R^2"))

loop over all histories
for df in history_liste:
 # extract the name of the history of by the name of the file
 name = df.split("_")[-2]

 # exception handling
 # only considering well train MLA
 if name in ["signal", "GAMS", "Shift Day", "Shift Week"]:
 continue
 if name == "Network":
 name = "Neuronal_Network"
 if "SVC" in name:
 continue
 # load history and combine it with LP results (GAMS)
 df2 = pd.read_csv(df, sep=";")
 df3 = pd.DataFrame({"GAMS": df1["signal___GAMS"], "NN":
df2["signal___"+name]})

 # # calculate squared error between profit for predicted action and optimal
action
 # df3.loc[:, "diff"] = (df3.NN - df3.GAMS)**2
 # df3["mean"] = df3["diff"].rolling(window = 720, center=True).sum()

 # calculate the moving average of the accuracy
 df3["acc"] = df3.NN == df3.GAMS
 df3["roll acc"] = df3["acc"].rolling(window = 720, center=True).mean()
 plt.plot(df3["roll acc"],label=name)

 y = df3["roll acc"].dropna()
 y = y.values

"""
Testing the effects of the time horizon on the quality of predictions
"""

112

 # performe a linear regression on the accuracy
 slope, intercept, r_value, p_value, std_err =
scipy.stats.linregress(range(len(y)), y)
 # print("slope", slope, "intercept", intercept, "r", r_value, "p", p_value,
"std_err", std_err)
 print("{:20}\t{:10.4f}\t{:10.4f}\t{:10.4f}\t{:10.4f}".format(name,
intercept, slope, p_value, r_value**2))

plt.ylim([0,1])

decorate the plot
plt.title("Temporal Effects\n2015")
plt.ylabel("Accuracy")
plt.xlabel("hours")
plt.legend()
plt.show()

113

iii. Improving the Model’s Quality

loop over different threshold levels
for threshold in range(0, 101):
 threshold /= 100
 signal15 = []
 signal14 = []

 z = proba15.copy()
 for x in z:
 # classify based on threshold
 if x[0] < threshold and x[2] < threshold:
 x[1] = 1

"""
Test the effects of different decision boundaries on the economic performance of
the model
"""
import Datenaufbereitung
import matplotlib.pyplot as plt
from sklearn.preprocessing import QuantileTransformer
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.metrics import f1_score,accuracy_score,precision_score,recall_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from StorageLogic import runLogic

def map(x):
 if x == 2:
 return 1
 elif x == 1:
 return 0
 elif x == 0:
 return -1

INFOS = Datenaufbereitung.get_dict()

X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

X_15 = INFOS["X_eval"]
y_15 = INFOS["y_eval"]

GAMS_14 = INFOS["GAMS_result_14"]
GAMS_15 = INFOS["GAMS_result_15"]

prices_14 = INFOS["prices_eval_14"]
prices_15 = INFOS["prices_eval_15"]

>> CLASSIFIER SETUP << #

pipe = make_pipeline(QuantileTransformer(),
 PCA(100),
 KNeighborsClassifier(n_neighbors=11,
 weights="distance",
 p=1,
 n_jobs=-1
))

pipe.fit(X_14, y_14)

proba15 = pipe.predict_proba(X_15)
proba14 = pipe.predict_proba(X_14)

profits_15 = []
profits_14 = []

114

 else :
 if x[0] > x [2]:
 x[0] = 1
 else:
 x[2] = 1
 signal15.append(map(np.argmax(x)))
 # calculate new profit for 2015 / test
 profit15 = runLogic(initializer="KNN",
 price_series=prices_15,
 signals=signal15,
 signal_format="1").balance / GAMS_15

 z = proba14.copy()
 for x in z:
 # classify based on threshold
 if x[0] < threshold and x[2] < threshold:
 x[1] = 1
 else:
 if x[0] > x[2]:
 x[0] = 1
 else:
 x[2] = 1
 signal14.append(map(np.argmax(x)))

 # calculate profit for 2014 / train
 profit14 = runLogic(initializer="KNN",
 price_series=prices_14,
 signals=signal14,
 signal_format="1").balance / GAMS_14

 profits_15.append(profit15)
 profits_14.append(profit14)

plot and decorate
plt.plot(profits_14, color= "#d9534f", label="2014 (Train)")
plt.plot(profits_15, color= "#428bca", label="2015 (Test)")

marke the maiximum and default values for every year
plt.scatter(np.argmax(profits_15),max(profits_15),color= "#428bca", label="max
2015_({})".format(np.argmax(profits_15)/100))
plt.scatter(np.argmax(profits_14),max(profits_14),color= "#d9534f", label="max
2014_({})".format(np.argmax(profits_14)/100))
plt.scatter(50,profits_15[50],color= "k", label="default 2015_(0.5)")
plt.xlabel("threshold")
plt.title("Decision Boundaries")
plt.yticks(np.arange(0,1,0.05))
plt.xticks(np.arange(0,100,10))
plt.grid()
plt.ylabel("profit [EUR/a]")

plt.legend()
plt.show()

115

iv. Source Code Model-Based Feature Selection

model based feature selection (normal features)
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(n_estimators=1000,
 random_state = 42,
 n_jobs=-1)
forest.fit(X_train, y_train)

importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]
feat_labels = X.columns

top10 = indices[:10]
top10_names = feat_labels[top10]

top10_names = [x.replace("DE", "").replace("_"," ").title() for x in
top10_names]
plt.grid("off")
plt.barh(range(1,11),
 sorted(importances[top10]),
 color=blue,
 align='center')
plt.yticks(range(1,11),
 reversed(top10_names),)
plt.xticks([0.01,0.02,0.03,0.04,0.05])

plt.ylim([0, 11])
plt.show()

sorted_importences = sorted(list(importances),reverse=True)

fig, ax1 = plt.subplots()

ax1.plot(sorted_importences, label = "importance of feature", color = blue)
ax1.set_ylabel("single")
ax1.set_yticks([0.01,0.02,0.03,0.04,0.05])
ax2 = ax1.twinx()
ax2.set_ylabel("cumulative")
ax2.plot(np.array(sorted_importences).cumsum(), label = "cumulative", color =
red)
ax2.set_yticks([0.2,0.4,0.6,0.8,1])
ax2.set_ylim([0,1])
fig.suptitle('Importance of Features\n Random Forrest n=1000')

ax1.set_xlabel('Features')

ax1.grid()
plt.show()

model based feature selection (normal features)
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(n_estimators=100,

116

 random_state=42,
 n_jobs=-1)
forest.fit(X_trans, y_train)
importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]

feat_labels = [(poly_name_dict[_]) for _ in ploy2.get_feature_names()]
top10 = indices[:10]
top10_names = [feat_labels[_] for _ in top10]

importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]

feat_labels = [(poly_name_dict[_]) for _ in ploy2.get_feature_names()]
top10 = indices[:10]
top10_names = [feat_labels[_] for _ in top10]

top10_names = [x.replace("DE", "").replace("_"," ").replace("*"," *").title()
for x in top10_names]

top10_names = reversed(top10_names)

plt.barh(range(1,11),
 sorted(importances[top10]),
 color=blue,
 align='center')
plt.yticks(range(1,11),top10_names)
plt.ylim([0, 11])

plt.show()

sorted_importences = sorted(list(importances),reverse=True)

fig, ax1 = plt.subplots()

ax1.plot(sorted_importences, label = "importance of feature", color = blue)
ax1.set_ylabel("single")
ax1.set_yticks([0,0.0001,0.0002,0.0003,0.0004,0.0005])
ax2 = ax1.twinx()
ax2.set_ylabel("cumulative")
ax2.plot(np.array(sorted_importences).cumsum(), label = "cumulative", color =
red)
ax2.set_yticks([0,0.2,0.4,0.6,0.8,1])
ax2.set_ylim([0,1])
ax1.set_ylim([0,0.0005])
fig.suptitle('Importance of Features\n Random Forrest n=1000')

ax1.set_xlabel('Features')

ax1.grid()
plt.show()

117

v. Source Code Performance improvement via Decision

Boundaries

import Datenaufbereitung
import pickle
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.metrics import f1_score,accuracy_score,precision_score,recall_score
import numpy as np
from StorageLogic import runLogic, simple_signal

def map(x):
 if x == 2:
 return 1
 elif x == 1:
 return 0
 elif x == 0:
 return -1

INFOS = Datenaufbereitung.get_dict()

X = INFOS["X"]
y = INFOS["y"]

X_14 = INFOS["X_14"]
y_14 = INFOS["y_14"]

X_15 = INFOS["X_eval"]
y_15 = INFOS["y_eval"]

GAMS_14 = INFOS["GAMS_result_14"]
GAMS_15 = INFOS["GAMS_result_15"]

prices_14 = INFOS["prices_eval_14"]
prices_15 = INFOS["prices_eval_15"]

print(">>> KNN _dec <<<")
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectKBest
import numpy as np

X_train, X_test, y_train, y_test = train_test_split(X_14,y_14,test_size=0.2)
from sklearn.svm import SVC

pipe = make_pipeline(QuantileTransformer(),
 PCA(100),
 KNeighborsClassifier(n_neighbors=11,
 weights="distance",

118

 p=1,
 n_jobs=-1
))

pipe.fit(X_train, y_train)

pred_test = pipe.predict(X_test)
pred_eval = pipe.predict(X_15)
pred_train = pipe.predict(X_train)

profit = runLogic(initializer="KNN",
 price_series=prices_15,
 signals=pred_eval,
 signal_format="1").balance/GAMS_15

proba15 = pipe.predict_proba(X_15)
proba14 = pipe.predict_proba(X_14)

accuracy_15 = []
accuracy_14 = []
f1score_15 = []
f1score_14 =[]
profits_15 = []
profits_14 = []
precision = []
recall = []

for threshold in range (0, 101):
 threshold /= 100
 signal15 = []
 signal14 = []

 z = proba15.copy()
 for x in z:
 # apply the threshold
 if x[0] < threshold and x[2] < threshold:
 x[1] = 1
 else :
 if x[0] > x [2]:
 x[0] = 1
 else:
 x[2] = 1
 signal15.append(map(np.argmax(x)))

 score_f1_15 = f1_score(signal15,y_15, average="weighted")
 score_acc_15 = accuracy_score(signal15,y_15)
 profit15 = runLogic(initializer="KNN",
 price_series=prices_15,
 signals=signal15,
 signal_format="1").balance / GAMS_15

 z = proba14.copy()
 for x in z:

 if x[0] < threshold and x[2] < threshold:

119

 x[1] = 1
 else:
 if x[0] > x[2]:
 x[0] = 1
 else:
 x[2] = 1
 signal14.append(map(np.argmax(x)))

 score_f1_14 = f1_score(signal14,y_14, average="weighted")
 score_acc_14 = accuracy_score(signal14,y_14)

 profit14 = runLogic(initializer="KNN",
 price_series=prices_14,
 signals=signal14,
 signal_format="1").balance / GAMS_14

 print("{} ; profit 15 {:10.4f}; profit 14 {:10.4f}; acc: {:10.4f} ;f1:
{:10.4f}".format(threshold, profit15, profit14, score_acc_15, score_f1_15))

 accuracy_15.append(score_acc_15)
 accuracy_14.append(score_acc_14)
 f1score_15.append(score_f1_15)
 f1score_14.append(score_acc_14)
 profits_15.append(profit15)
 profits_14.append(profit14)
 precision.append(precision_score(signal15,y_15, average="weighted"))
 recall.append(recall_score(signal15,y_15, average="weighted"))

print("max acc train", np.argmax(accuracy_14))
print("max acc test", np.argmax(accuracy_15))
print("max f1 train", np.argmax(f1score_14))
print("max f1 test", np.argmax(accuracy_15))
print("max profit train", np.argmax(profits_14), max(profits_14))
best_thresh = np.argmax(profits_14)/100
print("max profit test", np.argmax(profits_15),max(profits_15))

plt.plot(profits_14, color= "#d9534f", label="2014 (Train)")
plt.plot(profits_15, color= "#428bca", label="2015 (Test)")
plt.scatter(np.argmax(profits_15),max(profits_15),color= "#428bca", label="max
2015_({})".format(np.argmax(profits_15)/100))
plt.scatter(np.argmax(profits_14),max(profits_14),color= "#d9534f", label="max
2014_({})".format(np.argmax(profits_14)/100))
plt.scatter(50,profits_15[50],color= "k", label="default 2015_(0.5)")
plt.xlabel("threshold")
plt.title("Decision Boundaries")
plt.yticks(np.arange(0,1,0.05))
plt.xticks(np.arange(0,100,10))
plt.grid()
plt.ylabel("profit [EUR/a]")

plt.legend()
plt.show()
pipe.fit(X_14, y_14)
signal=[]
for x in pipe.predict_proba(X_15):
 if x[0] < best_thresh and x[2] < best_thresh :
 x[1] = 1

120

 else:
 if x[0] > x[2]:
 x[0] = 1
 else:
 x[2] = 1
 signal.append(map(np.argmax(x)))

profit = runLogic(initializer="KNN",
 price_series=prices_15,
 signals=signal,
 signal_format="1").balance / GAMS_15

print("XX:",profit)

