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Abstract 

In context of climate change mitigation, power supply systems around the world are changing 
towards sustainable sources of power supply. This change is becoming a key challenge for managing 
the electrical grid. Energy storage systems (ESS) can increase power system flexibility and efficiency 
and facilitate integration of variable renewable energy. ESS deployment will remain limited if its 
operation is not profitable. Automated, optimized operation of the ESS can help to increase profits 
from temporal arbitrage. Machine learning algorithms (ML) are one option to provide the 
operational logic behind an automated trading process.  

This thesis uses a deterministic linear optimization model (LOM) with full forecast information to 
determine the best possible (but in practice not achievable) trading strategy for a lithium Ion based 
EES on the German day-ahead market (2010-2014). The results are used as a benchmark to train 
different ML-classifiers to mimic the ‘optimal behavior’ of the LOM results. The final result is a model 
to evaluate the classifiers performances under simulated market conditions for the year 2015. The 
evaluation shows that Neuronal Networks, K-nearest neighbors, and random forest reach 
approximately 80% of the LOM benchmark profit. Although the results of the LOM show that, due 
to high investment costs, the operation of an ESS is not yet economically attainable, it also shows 
that ML based applications are suited for future automated ESS control.  

 

 

Abstract 

Im Kontext von Klimawandelsmitigation wandeln sich Energiesysteme weltweit in Richtung 
nachhaltiger Energieversorgung. Diese Veränderung entwickelt sich zu einer wesentlichen 
Herausforderung für das Energienetz. Energiespeichersysteme können die Flexibilität und Effizienz 
des Energiesystems erhöhen und ermöglichen die Integration variabler Anteile erneuerbarer 
Energien. Die Nutzung von Energiespeichersystemen ist jedoch limitiert, solange die Systeme nicht 
profitabel sind. Ein automatisierter Betrieb der Systeme kann zu einer Senkung der Betriebskosten 
und so zu einer Steigerung der Profitabilität beitragen. Maschinelle Lernalgorithmen (ML) sind dabei 
eine Möglichkeit, die einem automatisierten Handelsprozess zugrundeliegende operative Logik 
bereitzustellen. 

Diese Arbeit nutzt daher ein deterministisches lineares Optimierungsmodell mit voller Information 
über zukünftige Preise, um den Handel eines Lithium-Ionen basierten Energiespeichersystems am 
deutschen Energiemarkt (2010-2014) zu optimieren. Die gewonnenen Ergebnisse werden als 
Benchmark verwendet, um ML-Algorithmen auf die Nachahmung des vom linearen 
Optimierungsmodell vorgegebenen „optimalen Verhaltens“ zu trainieren. Das Endergebnis ist ein 
Modell zur Evaluierung der Performance des Algorithmus unter den Marktbedingungen von 2015. 
Die Evaluierung zeigt, dass Neuronale Netzwerke, K-Nearest Neighbors und Random Forest zu etwa 
80 % den vom linearen Optimierungsmodell festgesetzten Benchmark-Profit erreichen. Obwohl die 
Ergebnisse zeigen, dass der Betrieb eines Energiespeichersystems aufgrund der hohen 
Investitionskosten zum jetzigen Zeitpunkt nicht profitabel ist, zeigen sie auch, dass ML-basierte 
Ansätze für die Steuerung von Energiespeichersystemen zukünftig nutzbar sind. 
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1 Introduction 
To mitigate the effects of climate change and reduce the dependency on fossil resources, the energy 
supply system must be modified profoundly. This includes transport and heat supply as well as 
electricity generation. Fossil fuels must be replaced by sustainable, emission free energy sources. 
This process includes the interconnection of different sectors and countries, fundamental efficiency 
gains and a general flexibilization of the whole energy supply system [1]. The necessity of a 
collaborative global effort found its acknowledgement during the UN Climate Change Conference1 
which took place 2015 in Paris.  
Germany is seen as a front runner of this transformation process, as it implemented strong policies 
towards the energy transformation and has high economic potential [2]. Based on the goals of the 
‘renewable energy act’ (ger.: Gesetz für den Ausbau erneuerbarer Energien (Kurztitel: Erneuerbare-

Energien-Gesetz, EEG 20172), which accurately outlines the shift from a carbon-nuclear into a wind-
solar based energy supply system, the German ‘energy transformation’ (ger.: Energiewende) is 
already well underway. A more detailed view on the electricity fuel mix itself reveals the necessity 
to substitute large shares of coal, lignite, and nuclear fueled generation with renewable sources like 
wind and solar power, hydropower, and biomass (Figure 1-1). Other power plants (PP) like 
geothermal PP, tidal PP or fusion reactors are either limited to niche applications or not yet 
technically mature [3], [4]. Germany’s geological potential for hydropower plants is largely exploited 
and the limits to bulk usage of biomass based energy is still controversially discussed within the 
scientific community [4]–[6]. Therefore studies find the most plausible alternative for the realization 
of large scale renewable energy (RE) integration in Germany within volatile solar and wind power 
[4], [5], [7], [8]. 
 

                                                 

1 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC). 

2 Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBl. I S. 1066), zuletzt geändert durch Artikel 1 des Gesetzes vom 17. Juli 2017 
(BGBl. I S. 2532).  
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Figure 1-1: Fuel mix in the German energy system for the year 2017 [9]. 

The German energy supply system is organized as a liberalized market and is part of the integrated 
European Energy market. The electricity market (EM) in general differs from typical commodity 
markets in two main aspects. First, power supply systems require a balance between supply and 
demand at any point in time. A mismatch leads to reduced quality and ultimately blackouts [3], [4]. 
Secondly, electricity is – by its nature - difficult to store (e.g. keep in stock at customers). 
Simultaneously, the demand is not (yet) controllable and volatile on sub-hourly, hourly, daily, 
weekly, and seasonal levels. Consequently, the generation must meet the consumption at all times 
[10]–[13].  
As of today, thermal power plants characterize the European power plant fleet. Their combustion, 
and therefore the power output, is adjustable. Demand fluctuations and forecasting errors can be 
met by adjusting the power of multiple power plants gradually and additional capacities can be 
added with short ramping times. Solar and wind power as the primary sources of renewable 
electricity on the other hand are fluctuating and volatile, as are solar radiation and wind speeds [11]. 
At first glance this appears to be incompatible with the requirements of a balanced power grid. 
However, numerous studies found no fundamental technical limitations for very high shares of 
renewable energy in the gross final energy consumption under the assumption of additional 
flexibility measures [4], [6], [10], [14]. Consequently, the substitution of a thermal power plant fleet 
(e.g. fossil/nuclear fueled) requires additional means of reactive flexibility and load levelling.  
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Figure 1-2: Two weeks of a simulation for an 80% renewable energy scenario based on the year 2013 by Schill and 
Zerrahn [6]. 

Figure 1-2 shows the calculations of Schill and Zerrahn [6] for an 80 % renewable scenario based on 
the weather and demand data for the year 2013. The simulation illustrates the fluctuations of the 
volatile residual loads to be handled by energy supply systems. According to Sterner and Stadler, 
the technical alternatives capable of providing this flexibility are already available [4]. Sterner and 
Stadler differentiate between four different technical approaches to describe these flexibility 
measures: 

- Electrical energy storages (EES) increase temporal flexibility. During times of surplus 
generation (e.g. during night) high volatile renewable generation (VRE) energy is stored and 
later fed back into the grid during times of increased demand (e.g. windless periods). 

- Grid development is a mean of spatial flexibility. A developed integrated grid allows a better 
distribution of local fluctuations. Investments in the infrastructure and controllability 
improve the resilience of the grid and therefore reduce the demand for flexibility. However, 
the dispatchable capacities are also limited by the residual load / market situation of the 
trading partners’ power supply system. Only if conditions for a trade are met by both sides 
this capacity can be used as a flexibility option. 

- Increased flexibility of the PP-fleet and reduction of ‘must run units’ reduce temporal 
flexibility demand. Larger power gradients of the remaining thermal PP can meet 
unexpected fluctuation by quickly adjusting their power. Wind and solar farms can curtail 
their power generation to provide additional power if necessary.  

- Demand side management (DSM) is a measure of temporal load shift. In contrast to ESS 
DSM allows a reduction of the consumption during large positive flexibility demand. This 
reduction is compensated later (or earlier) during low flexibility demand. Popular 
technologies enabling DSM are heating and cooling, electric vehicles, or energy intensive 
industrial processes.  
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These measures suit different forms of flexibility demand and are not interchangeable. Also, there 
is a competition between these technologies in terms of economic performance as well as social 
and ecological acceptance. According to Nicolosi [10], this competition can be met by means of the 
liberalized market, which will lead to an optimal mixture of different flexibility options. Stadler and 
Sterner assume that there is a sequence of ‘next best’ flexibility options determined by economic 
ecologic and social aspects [4]. However, both agree that EES will play a fundamental role within the 
future EM. 
 
Although the debate about the EES’ role within the future energy supply system is still underway, 
EES are already providing a bundle of different services, such as avoiding costly interconnecting 
infrastructure and enabling emission reductions [15]. Apart from this, simulations show that there 
is a growing demand of EES as the share of VRE within the energy mix rises due to the natural 
fluctuations of RE sources [5], [7], [16]. Eventually this means that an ongoing expansion of VRE is 
pushing the demand for EES. 
A key factor for the large-scale implementation of EES is its economic performance. As EES can 
provide multiple services, multiple revenue streams must be considered while evaluating their 
profitability. The price for electricity at the EM is moving periodically, i.e. it follows daily and weekly 
cycles. This allows profitable arbitrage trading, but the optimal scheduling of charging and 
discharging processes is a difficult problem, as the exact levels of future prices are unknown. The 
optimal storage schedule for past price time series can be optimized with a deterministic linear 
program. This approach requires a complete set of price levels of the assessment period (e.g. perfect 
foresight). The result is a schedule of optimal storage decisions, yielding the maximal profit (see 
chapter 3.2.1) Such models are used to assess the economic potential and the value of EES within a 
market respectively a power supply system (i.e. micro grids). However, under realistic operation 
conditions there is only limited information about future price levels available [17], [18], which 
makes the application of deterministic linear optimization models impossible. Hence, optimizing the 
storage process during operation requires models capable of providing decisions under uncertainty.  
EES management is an interdisciplinary task at the intersection of electronic engineering, weather 
and price forecasting, and probability theory. Thus, methods from different disciplines (e.g. 
engineering, statistics) are necessary for developing algorithms operating the EES. Naive approaches 
are for example the net power balance algorithms where the storage is used as a buffer in order to 
increase self-consumption [19] or the ‘back to back’ strategy, where the optimal storage schedule 
of a bygone period is mirrored [18]. Prominent advanced techniques include approaches based on 
autoregression (AR), moving average (MA), auto regression and moving average (ARMA), fuzzy logic 
or wavetable analysis[19], [20]. While linear optimization delivers optimal solutions and so 
represents an upper boundary on the profitability of storage schedules, latter algorithms are prone 
to sub optimal decisions.  
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The patterns appearing at the EM could be recognized by data driven algorithms which could then 
trade profitably on the market independently. Additionally, special requirements of different 
storage types, such as death of discharge, can easily be implemented. This could reduce the costs 
of operation while simultaneously outperform static strategies such as ‘static and moving average 
arbitrage’ or ‘back to back arbitrage’ [15], [18]. The objective of my thesis is the evaluation of the 
feasibility of EES being operated by automated algorithms. This kind of algorithms, which are 
capable of ‘picking up’ patterns from data sets, are popularly called ‘machine learning algorithms’ 
(MLA). Machine learning (ML) in this case describes the ‘machine’ learning from a given set of data 
rather than following strict programmatic rules.3 The novel approach of using MLA to estimate 
optimal storage behavior shall help to reduce the gap between the optimal results of linear 
programmed results and realistic results under the consideration of forecast uncertainties by 
increasing the realizable revenue of arbitrage trading. To achieve this, I test different MLA for their 
ability to learn ’how to trade profitably at the EM’ and compare them with typical state of the art 
strategies of storage control. The performance of different MLAs and other trading strategies is 
evaluated within a testing framework simulating real market conditions.  
 
The second chapter (2 – Technical and Economic Framework), briefly summarizes the most 
important technical characteristics of EES, the particularities of the EM, and the data used. The third 
chapter (3 – Evaluation Process) describes and analyzes the market data and sets up the testing 
framework. It describes the formulation of the Linear Programming Model (LPM) used as reference 
scenario, the MLAs process, and the setup of the optimization framework. The fourth chapter (4 – 
Classification Algorithms) examines the inner workings of different MLAs. The fifth chapter (5 –  
Results), presents and analyzes the results of the evaluation. Chapter 6 discusses and concludes the 
results. The Appendix provides additional calculations as well as the code of the models. The 
complete code is also available at: https://github.com/zwiebo/Evaluation-of-Machine-Learning-
Based-Storage-Control-Algorithms-for-the-Electricity-Market  
 
 

2 Technical and Economic Framework 

 Storing Electricity 
An electricity storage is a technical unit to store (feed-in or charge), conserve, and withdraw (feed-
out or discharge) electricity. However, since electricity itself is not storable, this process involves the 
transformation of electricity into other forms while accepting transformation losses (e.g. electrical 
potential difference energy into gravitational potential energy). Storing and withdrawing 

                                                 
3 Machine learning is a research field at the intersection of artificial intelligence, computer science and statistics. Today MLA have various 
areas of application and are successfully used in medicine for automated diagnostics, in finance for fraud detection, as spam filer or as 
recommendation systems. See for example https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for-
machine-learning-and-ai/ (18.04.2018).  
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energy/electricity allows a temporal re-allocation of electricity supply. Thus, it can help to guarantee 
balanced electricity markets [4]. 
 

 EES Physical Parameters 
According to Stadler and Sterner and Fuchs et al. there are several important physical parameters 
of storage facilities [6], [4], [7]. These parameters vary between the different types of EES and 
determine their different economic performances under different market conditions. Consequently, 
different initial conditions will lead to different optimal EES-types. Figure 2-1 shows different types 
of EES depending on their typical discharging time and storage capacity.  
 

 

Figure 2-1: Power to energy ratio in Germany realizable storage projects (translated from TH Regensburg FENES, 2013). 

Short term storages store energy from nanoseconds up to one day. At the power market, most 
short-term storages have an energy to power ratio of ≤ 10 (see chapter 2.2.3). The main purpose of 
these storages is to assure the power quality (i.e. frequency control). The frequent use leads to 
increased requirements on load cycle efficiency and endurance. Popular examples for short term 
storages are flywheels, capacitors, and batteries [4]. 
Long term storages can store energy over several days, weeks or even years, thus temporal 
fluctuations like seasonal demand or supply oscillations can be compensated. Long term storages 
are characterized by low self-discharge rates and low power-to-energy (P2E) capacity ratios. Today 
these large PHPP are limited to mountain regions. Other storages which are based on chemical 
storage mediums such as in power-to-gas facilities depend on tanks or caverns [4].  
Different EES can be compared by using specific parameters which are summarized in Table 1. 
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Table 1: Summary of the most important physical values according to Stadler and Sterner (2013) [6]. 

Parameter Symbol Description  Unit 

Power  P Charging/discharging power per time  W 

Storage Capacity  C Usable storage capacity  J, Wh 

Power to Energy 
ratio  

P2E Ratio between Power and Energy DLU 

 

Efficiency  η Efficiency of the storing process (includes 
feed in and feed out)  

DLU4 (%)  

Self-discharge rate ρ Relative amount of over time lost energy. 
(due to self-discharge)  

% / time 

Load Cycle Lc Combination of a complete charging and 
discharging cycle 

DLU 

Lifetime L maximal deployable time Years 

 Power 
The power (P) (in Joule per second) as a physical value describes the rate of energy transfer per time 
unit. The power (demand and supply) is a crucial parameter determining supply quality. In context 
of EES the power is separated into charging power (Pin) and discharging power (Pout). Pin and Pout 

must not have the same magnitude. For example, PHPP pumps and generators often have 
differently dimensioned pumps and generators.5 This leads to diverging Pin and Pout, as shown in 
equation 3-1.  

𝑃in, 𝑃out =
𝑑𝑊in, 𝑑𝑊

𝑑𝑡
 

Eq. 2-1(Dis)charging power. 

 Storage Capacity 
The storage capacity (Emax) in Watt-hours [Wh] is the amount of electricity that can be fed in or out 
of an EES. Ein is the integral of the feed in power (Pin) over the feed in time tin. Eout is the integral of 
the feed out power (Pout) over the feed out time (tout). If P is constant, E is the product of P and t. 
EES often do not exhaust the full potential of their capacity. The amount of energy fed in or out 
during a partial (dis)charging process can be calculated accordingly. The duration of the (dis)charging 
processes can be calculated by transforming Eq. 2-2.: 

                                                 

4 Dimensionless unit.  

5 Pumps often are not directly controllable while the generators are.   
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𝐶in/out = 𝑃in/out (𝑡) ∗ 𝑑𝑡 

Eq. 2-2 Calculation of the storage capacity. 

 Power to Energy Ratio 
The relation of energy-to-power (E2P) results in specific charging and discharging times. The E2P is 
the reciprocal value of the maximum (dis)charging time. This metric is a popular mean to categorize 
EES. Although there are no explicit delimitations between the categories, it is helpful for finding the 
according EES for the deliberate use case.  

 Efficiency 
Another metric to compare EES is the efficiency. The energy conversion efficiency (η) is a 
dimensionless unit. It describes the ratio between the amount of energy [Wh] fed into the EES-
system and the amount of energy [Wh] fed out of the system, as shown in Eq. 2-3.  

𝜂 =
𝐸out

𝐸in
 

Eq. 2-3 Calculation of the efficiency. 

The efficiency of a complete load cycle (combination of charge and discharge) consists of three sub 
processes.  
 - charging efficiency (conversion efficiency) (ηin) 
 - efficiency over the storing period (storing efficiency / self-discharge rate) (ηstore / SDR) 
 - discharging efficiency (conversion efficiency) (ηout) 
Multiplied, the single efficiencies result in the total efficiency of a load cycle (ηtotal). 
The efficiency can also be described as a cost-benefit ratio. The costs are described by the electricity 
fed into the storage system times the price at the point in time. The profits are determined by the 
future electricity price. To operate an EES economically, the storing-price must be smaller than the 
withdrawing-price times the total efficiency, as shown in Eq. 2-4. 

𝑝  <=  𝑝 ∗   

Eq. 2-4 Calculation of the minimal price (pout) to trade profitably [4]. 

 Self-Discharge Rate 
The EES loses energy over time at a certain rate, which is why the storing efficiency will always be 
smaller than 1 (100 %). The self-discharge-rate (SDR) or ‘parasitic loss’ describes the proportion of 
the stored energy (Estored), which is lost to the environment over a certain period (Eloss) [3], [4], as 
shown in Eq. 2-5: 
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𝑆𝐷𝑅 =
∫(𝑃 ∗ 𝑑𝑡)

𝐸
=

𝐸

𝐸
 

Eq. 2-5 Calculation of the selfdicharge rate (SDR). 

 Load Cycles  
A load cycle (Lc) describes one cycle of full charging and discharging. Many degradation processes 
are depending on the load-cycle. The load cycle is therefore an important metric to estimate the 
lifetime of an EES under certain operating conditions. The calculation is shown in Eq. 2-6:  

𝐿 (𝑡) =
∫ 𝑃 (𝑡)

𝐶
 

Eq. 2-6 Calculation of the load cycles for the period t. 

However, in this thesis a simplified approach is used to calculate the number of load cycles. It 
neglects non-linear relations between state of charge and material fatigue. The number of load 
cycles is calculated by dividing the sum of Pin by the capacity (compare [12]). 

 Lifetime  
The lifetime of an EES represents the period where its performance satisfies certain criteria. The 
lifetime usually includes not only the temporal erosion effects on the material, but also typical usage 
forms. In general, two values determine the life time of an EES: the calendar life in years (Ly) and the 
maximum load cycles (Lc). Average lifetimes vary depending on the kind of EES and the use case. 
Batteries for example have an expected lifetime of 5 to 20 years while the lifetime of pumped 
storage power plants can reach up to 80 years and more. While some ESS like flywheels show no 
quantifiable degradation per load cycle others, such as lead acid batteries, have limited load cycles 
of about 2000.6 The specific lifetime (L(Nc)) in years is the minimum of maximal load cycles per year 
(Nc) in years and the maximal calendar life in years (Ly). The limiting factor which is reached first 
determines the maximal lifetime of the EES [21]. The respective formula is shown in Eq. 2-7: 

𝐿(𝑁 ) = min
𝐿

𝑁
, 𝐿  

Eq. 2-7 Calculation of the lifetime (LNc). 

  

                                                 

6 Depending on DOD. 
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 EES Options 
Like other flexibility options, EES have multiple functions and applications within the power supply 
system. EES can be used to trade at wholesale and control energy markets, they can be operated to 
optimize the internal consumption of private PV systems, or they can serve as backup or black start 
reserve. In this context, they provide services to the market which can be monetized.  
Fuchs et al. and Schill, Diekmann and Zerrahn describe the essential services an EES can provide 
within the wholesale energy market [6], [7]: 
 

• Ancillary services: 
Supplying operation reserve (frequency response reserve and non-spinning reserve) as well as 
frequency and voltage control to assure the continual flow of electricity. This also includes the black 
start and re-dispatch abilities of most EES. 
 

• Peak-Shaving: 
EES have the potential to reduce the peak load (e.g. the maximal power of a supply system) by 
shifting it to lower demand periods. This reduces the demand for seldomly used high demand 
generators. The peak-shaving market is a power market [kW]. 
 

• Arbitrage trade: 
Arbitrage takes advantage of temporally varying price levels on the electricity market. It provides a 
load levelling service to the energy market, i.e. buying and storing energy when electricity prices are 
low and then selling and discharging the energy back to the grid when prices are high. Contrary to 
peak-shaving, the arbitrage market is an energy market [kWh] [21]. Potentially, an EES can fulfill all 
three functions at the ‘same’ time. Nevertheless, task-optimized EES types have evolved. This means 
that different services require different characteristics (e.g. E2P ratio, maximal lifecycles) [7]. 
Stochastic valuations of EES show that a co-optimization of all of the above mentioned business 
cases yields the best performance [22], [23]. 

 Storage Selection 
Figure 2-1 emphasizes the diversity of different EES types. The arbitrage revenue of an EES depends 
on the round-trip efficiency and self-discharge of the device as well as on its E2P ratio. For short-
term arbitrage trade, the optimal E2P ratio lies between 1 and 14 hours due to the diurnal 
periodicity of the electric prices [4]. High roundtrip efficiencies and low SDR further increase the 
profitability. However, the internal rate of return (IRR) also depends on the investment costs for the 
storage. The investment costs are depending on the capacity and the power [21]. 
For the model constructed throughout the next chapters I chose a Lithium-Ion battery (Li-ion), 
whose features are displayed in Table 2. LI-ions have high roundtrip efficiencies, low SDR and an 
acceptable life time respectively number of lifecycles [4], [18], [21]. Based on increased scientific 
and industrial activities, the price of Li-ion batteries is expected to drop substantially within the next 
years. Additionally, technological improvements due to the development of electric cars are 
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expected for this type of EES [24]. Their modularity allows fast deployment of functional EES units 
without special requirements on geology or infrastructure. Although PSPP are found to economically 
outperform Li-ion due to much lower costs [15], [21], their deployment is limited topographically 
and ecologically.[4] Given that the goal of this thesis is to evaluate the ability of MLAs to learn how 
to trade on the EM, the technology of the simulated EES is secondary.7 

Table 2 Features of the chooses Lithium-ion EES based on the findings of Thilo Bocklish [25]; power and capacity are 
chosen independently. 

Name  Value Unit 

Storage efficiency  0.825 DLU 

Self-discharge-rate (SDR)  0.007  %/h 

Power 250  kW 

Capacity 1000  kWh 

 

3 Evaluation Process 
The goal of this thesis is the evaluation of ML-operated ESS trading on the German ‘day-ahead’ 
market with hourly resolution. To achieve this, the evaluation process is split into three parts. In the 
first part a linear optimization model (LPM) is formulated. It maximizes the revenue of an EES trading 
at the EM. Simplified, the operator can buy, store, and sell energy at different price levels. The result 
of the LPM is an array of optimal storage activities (OSA) (charging, discharging, waiting) for every 
hour of the years 2010 until incl. 2015. In the second part the array of OSA is used to label the market 
data for the same period. Subsequently, MLAs are used to train different classifiers on this matrix 
of labeled market data for the years 2010 - incl. 2014. The year 2015 is left out during the training 
process and is then used to determine the performance of the algorithm. This allows to simulate 
real market conditions where the agent has only the future information available that it would have 
under real market conditions.8 The third part is the evaluation itself. A storage logic (SL) is used to 
simulate the performance of the classifiers acting as an agent controlling an EES under real market 
conditions of the year 2015. The separation of training/optimization of the MLA is necessary to avoid 

                                                 

7 In connection with the selection of the EES, a LP model was formulated to find the optimal EES and  E2P ratios based on the data used 
by [25] for 7 different technologies. Although the EES traded optimally, no EES was profitable due to the high investment costs. 

8 This includes any form of explicit or implicit information transfer from the ‘unknown’ data set. An explicit information transfer would e.g.  
be the information of the actual price at a future point of time. An implicit information transfer would e.g. be the calculation of the mean 
based on the complete data including the ‘unknown’ parts of the data.  
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overfitting and data leakage of the classifiers. Figure 3-1 shows the structure of the different data 
sets used during the process.  
 

 

Figure 3-1 Structure of the datasets used during the evaluation process. The red frame represents the power market 
data, holding time series of the input features. The blue frame represents the results from the LPM providing OSA-labels 
to the corresponding values of a time step based on the EM data. The green frame represents the data used to train and 
optimize the MLAs.The purple frame represents the data used to evaluate the classifiers. 

 

 Data 
The simulation of the EES under real market conditions requires real market data. In my thesis I use 
the data from the German EM, which is provided by the European Network of Transmission System 
Operators for Electricity (ENTSOE) [26]. The open source project ‘Open Power System Data’[27] 
provides a respective API9. The data includes price and load levels as well as other additional 
timeseries (e.g. VRE generation). This is also the data used to train the MLAs. The data is formatted 
as a timeseries with an hourly resolution over the period of six years (2010-2015). The original 
dataset contains values for the columns listed in  
Table 3 for every time step.  
Table 3 also provides the most important statistical values for the market data. Both the wind and 
the solar generation show a large variance. Their median is significantly lower than the mean. This 
indicates outliers for higher generation levels. At the same time the minimum generation is (close) 
to zero.  
 

                                                 

9 Application programming interface. 
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Table 3 Original data for the German energy market OPSD [27] and the most important statsitical parameters (own 
calculations). 

  Mean Median Variance Min Max 
Load  
[MWh] 

accumulated 
load for one 
hour 

5 5423.76 55 278 1.04 * 108 29 201 79 884 

Price 
 [€/MWh] 

price on the day-
ahead market 

38.49 38 2.64 * 10² -222 210 

Solar 
generation 
[MWh] 

accumulated 
hourly solar 
generation  

2 599.95 0 2.52 * 107 0 26 055 

Wind 
generation 
[MWh] 

accumulated 
hourly wind 
generation  

6 175.69 4 379 3.21 * 107 29 3 3626 

Residual 
Load 
[MW]  

remaining load 
after subtracting 
VRE generation  

47 303.21 46 928 1.21 * 108 8 264 7 8070 

Solar 
forecast 
[MWh] 

accumulated 
hourly forecast 
for solar 
generation (all 
four TSOs) 

3 708.77 167 3.24 * 107 0 2 6976 

Wind 
forecast 
[MWh] 

accumulated 
hourly forecast 
for wind 
generation (all 
four TSOs) 

6 258.44 4 499 3.06 * 107 219 3 7322 

Installed 
solar 
capacity 
[MWh] 

installed solar 
capacity (all four 
TSOs) 

2599.95 34 199 2.52 *107 
10 
47310 

26 055 

Installed 
wind 
capacity 
[MWh] 

installed wind 
capacity (all four 
TSOs) 

32 068.15 29 932 5.27 * 107 23 093 47 238 

 
  

                                                 

10 Missing values neglected. 
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Figure 3-2 illustrates the installed capacities and generation levels for wind and solar power 
throughout the observation period. The installed capacities of both technologies grew constantly. 
The monthly average means illustrate the level of fluctuations of the VRE. Within the observation 
period the load varies between 79 884 and 29 201 MW with a mean of 55 423 MW. The residual 
load varies between 78 070 and 8 264 and has a mean of 45 460 MW. The maximal residual load is 
by a factor of ten greater than the minimal residual load. The flexibility of the power supply system 
must compensate these variations. The price is nearly normally distributed with a standard 
deviation of 16 (variance 263). The maximal price within the observation period is 210 EUR/MWh 
and the minimum price is -222 EUR /MWh. 
 

 

Figure 3-2 Installed capacities and genereration for wind and solar energy (The graphics share both y axes).  

Within the model it is assumed that the EES acts as a ‘pricetaker’11. Hence, the hourly price and the 
storage parameters (Table 2) are sufficient information to formulate the LPM and the SL model 
described in chapter 3.2.1 and 3.6 0without further manipulation. However, to facilitate ML 
processes, it is required to transform the information into a machine-readable format [28], [29].  
  

                                                 

11 The price taker assumption says that a single (small) actor on the market does not influence the market balance and therefore the 
price [15], [18], [49]. 
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Figure 3-3 Analysis of the power market data (2010-2015); own calculations. 
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Figure 3-3 displays eight different graphical representations of the German EM data. The first row  
shows boxplots for the load, the second boxplots of the price. In the first column the boxplots are 
grouped by months, in the second by the hours of the day. During the winter months the average 
load is higher than during the summer months. The effect of increased demand during the winter 
months on the wholesale electricity price is moderate. However, during the winter months the 
variance of the price is clearly increased. The highest maximum prices were reached in February, 
the lowest minimum prices in December.  
The hourly groups (second column) show two peaks during the day regarding the load. The first peak 
occurs during the morning hours (7 -10 am), the second during the afternoon respectively early 
evening (3-6 pm). Two corresponding price peaks reflect these load peaks. Compared to the 
seasonal fluctuations, the daily fluctuations are stronger. Under real-life market conditions this 
phenomena is acknowledged by the typical products traded on the EM [30]. 
The plots of the second row do not show the outliers in favor of a better graphical representation. 
There are some extreme positive and negative price spikes ranging from -222 to 210 EUR/MWh. 
Their prediction is very complex [11]. Nevertheless, the diurnal fluctuations of the load and price 
are a potential possibility for profitable arbitrage trading.  
The third row shows the average wind and solar generation per month and per hour. The solar 
generation peaks during the summer months while the wind generation peaks during the winter 
months. During the day the solar generation naturally peaks during noon 12 , while the wind 
generation is evenly distributed. These values are averages of volatile generation levels. Therefore, 
the observed levels for a single day can diverge substantially form the average values.  
In the fourth row, the load (column 1) and the residual load (column 2) are plotted against the price. 
This results in a diagram which shows a relationship between price and quantity (price-quantity 
diagram). This phenomenon is amplified for the residual load. Simultaneously, the large variance 
suggests that there are additional factors influencing the price. 

 Additional, Derived Variables 
Since the electricity price shows periodic behavior, it is important that the MLA interprets temporal 
information correctly. Originally, the timestamp was formatted as: ’YYYY-MM-DD HH’ as a 
‘datetime-object’. This format was replaced by dummy variables for every year, month, and hour of 
the day. Additionally, a variable for the weekday was introduced, as electricity demand varies 
between weekdays and weekends.  
Although some MLA can pick up very complex patterns it is helpful to ‘highlight’ relations within the 
dataset [28]. This is realized by adding new columns, holding metrics calculated based on 
information inherent to the data set. One of those metrics containing important relations is the 
‘residual load’, which is defined as the load minus VRE generation. The residual load and the day-
ahead price (price) have a positive Pearson correlation (0.87) compared to a correlation between 

                                                 

12 Within the model I used the UTC time model. The peak of solar generation in Germany is therefore at 11:00 Greenwich meantime. 
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actual load and price of only 0.598. Further, the RM of the price, the load, and the residual load for 
24 hours (RM24) and 168 hours13 (RM168) where added to the data set as features. The RM takes 
the last ‘x’ values and calculates the mean of them, so x denotes the window size of the RM. Both 
RM values show a positive correlation to the price (RM24: 0.701, RM168: 0.56). Besides the 
correlation, the causal justification to add RMs is to account for short term price trends.   

Table 4 Summary of all input variabes (features) for the ML process. 

Name  Unit  Type  Specification  
Load  MW decimal - 
Price Day Ahead €/MWh decimal - 
Lagged Price Day Ahead  €/MWh decimal Lags: [-1…-24, -168] 
Lagged Load MW decimal Lags: [-1…-24, -168] 
Rolling Mean Load MW decimal Window size: [24h, 720h] 
Rolling Mean Price €/MWh decimal Window size: [24h, 720h] 
Residual Load MW decimal - 
Solar Capacity MW decimal - 
Wind Capacity MW decimal - 
Solar generation MWh decimal - 
Wind generation MWh decimal - 
Renewable Generation MWh decimal - 
Total Forecast Solar MWh decimal - 
Forecast Wind MWh decimal - 
Forecast Solar MWh decimal - 
Forecast Total MWh decimal - 
Dummies for Hour  

 
Boolean [0-23] 

Dummies for Month 
 

Boolean [1-12] 
Dummies for Year 

 
Boolean [2011-2016] 

Dummies for Weekday 
 

Boolean [1-7] 
Workday 

 
Boolean - 

 Methods 

 The Benchmark Model as Linear Optimization Model  
Linear optimization models are a popular method to study the different aspects of the energy 
markets [11] and are therefore a well-researched topic [12], [15], [18], [21], [31]. Linear optimization, 
respectively linear programming as a subdomain of operation research, describes the 
mathematical/analytical modeling of dimensioning-, logistic- and scheduling problems [32]. The 
underlying mathematical principle of LP is the simplex algorithm developed by George Danzig [33]. 
The simple algorithm finds either an optimal or unbounded respectively infeasible solution. LP 
models can describe storage scheduling problems. In this thesis the LP storage scheduling model is 

                                                 

13 24 hours times 7 weekdays 
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used to generate an optimal series of actions (charging, discharging, or waiting) of an EES and to 
create a series of OSA, which are then used as benchmark for the machine-learning algorithm. 
In 2014, Bradbury, Pratson, and Patiño-Echeverri [21] published a paper in which they describe a LP 
model optimizing storage deployment at seven different U.S. energy markets. They analyze 14 
different types of storage technologies to find the optimal P2E ratios. Their LP model maximizes the 
revenue of a merchant by arbitraging the spot market prices of 2008. As decision metric they used 
the internal rate of return (IRR). As a result the EES classify as profitable if the IRR is greater than 
10% [21]. 
By calculating the overnight costs of the EES, consisting of the capital cost of power [$/kW], capital 
cost of capacity [$/kW], and the present values of the future revenues, Bradbury, Pratson, and 
Patiño-Echeverri can solve the IRR for different EES-types and P2E ratios. The findings of this study 
are that PSPP, compressed air energy storage (CAES) and high temperature batteries have the 
greatest potential for arbitrage trade and that the majority of EES will be optimally sized with an 
E2P ratio of 4 or less hours of energy storage [21]. Very similar model designs can be found in [12], 
[18]. 

3.2.1.1 Model Formulation 

In this thesis I use a similar LPM as Bradbury, Pratson, and Patiño-Echeverri to optimize the storage 
revenue of an ESS under the day-ahead market conditions. The input data is a time series of hourly 
price values (πt) in Euro per MWh for six years (see Chapter3.1).  
The model simulates the storage activities of the agent maximizing the revenue by trading electricity 
at different price levels. The capacity of the agent is fixed at 1 MW to guarantee the price-taker 
assumption. The other technical parameters of the chosen battery are already described in Table 2.  
ρ describes the SDR due to parasitic losses. Pin(t) describes the charged energy in [kW] while Pout(t) 
describes the discharged energy [kW]. Pin and Pout are the controllable variables. Eq. 3-1 describes 
the objective function of the linear program, where π(t) describes the price [$/kW] at time t. η 
describes the roundtrip efficiency altering the costs of electricity to account for the losses during 
the storage process. 

max 𝑟 = 𝜋(𝑡) 𝑃 (𝑡) −
𝑝 (𝑡)

𝜂
𝛥𝑡 

Eq. 3-1 Objective function maximizing the revenue (r) of an EES modified after [21]. 

The objective function is subject to the constrains:  

𝐸(𝑡) = (1 − 𝜌) 𝐸 (𝑡 − 𝛥𝑡)[𝑃 (𝑡) − 𝑃 (𝑡)]𝛥𝑡 

Eq. 3-2 Logic describing the (dis)charging process modified after [21]. 

0 ≤ 𝑃 (𝑡), 𝑃 (𝑡) ≤ 𝑃  ∀(𝑡) 

0 ≤ 𝐸(𝑡) ≤  𝐸 ∀(𝑡) 

Eq. 3-3 Constrains limiting the maximal (dis)charging P and the capacity to the E2P corresponding ratio values.  
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The constrains are limiting the trading actives to the physical characteristics of the simulated ESS, 
where Emax is set to 1MW. Pmax denotes the maximal energy flow during the (dis)charging process.  
 

3.2.1.2 Model Realization 

The program was realized in GAMS 24.8.4 and solved with the CPLEX algorithm (Appendix ii.d). The 
maximized revenue is used to evaluate and compare the performance of the MLAs. Additional 
information is stored in the time series of Pin(t) and Pout(t). These time series contain the values, 
used as labels during the training process of the MLAs.  
During the modeling process several assumptions were made. The fundamental limitations of basic 
arbitrage analysis using LP and historical data is the assumption of perfect foresight, but there are 
also concerns regarding the technical robustness of the model due to the linearity of the problem 
[12], [18]. For example, the efficiency, SDR and the (dis)charge rates are assumed to be constant but 
under real world conditions, these values are not linear. Some ESS have nonlinear relations between 
power, efficiency and SOC or calendar age. Others (e.g. CEAS) show deployment delays [7]. 
Additionally, the maximal number of life cycles can be reduced by ignoring the recommended depth 
of discharge [4]. Combined, the assumptions in my model positively affect the ESS’s economic 
performance. Thus, the results of the LPM act as an upper bounder for ESS arbitraging at the day-
ahead market.  
The intermediate results of the LPM are the foundation of the subsequent model. Solving the LPM 
results in a maximal profit an agent can earn by arbitraging on the German EM. This maximal profit 
is a benchmark respectively upper bounder for all following processes. Additionally, the LPM 
provides solutions (i.e. the optimal (dis)charging power) for the unknown variables Pin(t) and Pout(t). 
These time series are later merged into a single time series of optimal storage activities (OSA).  

 Machine Learning 
ML is about extracting knowledge from data. There are several different algorithms available to fulfil 
this task, each one fitting best for specific questions and different dimensions of problems. 
Essentially, MLAs can be separated into three main groups: Supervised learning, unsupervised 
learning and reinforcement learning [28], [29], [34]. 

3.2.2.1 Supervised learning  

Supervised learning is a kind of MLA that automates a decision-making process. A set of input and 
output pairs is provided to an MLA which finds a way to generalize from these known examples. 
Within the learning process, the MLA develops a function that can produce the output for a given 
input. This procedure does not require any additional human interaction. After a successful 
initialization, the MLA can produce an output for an unknown input. The input is called ‘feature’ and 
the output is called ‘label’ [29].  The names for the market data and the OSA were chosen accordingly.  
Supervised learning is the simplest and most comprehensive, hence the most promising form of 
machine learning, although the correct labelling of the input data is a crucial task during the 
supervised learning. If this is not possible, supervised learning is not an option. If applicable, it is the 
primary choice for ML applications [28]. 
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3.2.2.2 Unsupervised learning 

Contrary to supervised learning, unsupervised learning does not require labelled data. Unsupervised 
learning is a process used to detect unknown structures in a data set, e.g. by segmenting customers 
into different groups based on their purchases. Unsupervised learning is often used as a pre-process 
to supervised learning [28], [29]. 

3.2.2.3 Reinforcement learning 

Reinforcement learning describes the process where an agent learns to choose correctly from a set 
of alternatives under different conditions based on a utility function. Decisions leading to a desired 
outcome (e.g. reduced costs) lead to an increase of the probability of choosing a certain alternative 
under a given situation [29]. 
Through the interaction with the environment, an agent can then use reinforcement learning to 
learn a series of actions that maximize its reward via an exploratory trial-and-error approach or 
deliberative planning. This form of learning is prominent for multi-agent based models and genetic 
algorithms [29]. 
For teaching an EES optimal storage-behavior supervised and reinforcement learning are potential 
approaches, since both can be designed to learn a profitable trading behavior. For reinforcement 
learning the reward could be trading profits. Supervised learning can be used to learn the optimal 
behavior by mimicking the results of an OSA. 

3.2.2.4 Model Formulation 

As mentioned above, supervised learning is the simplest form of machine learning, which is why it 
is used to formulate the following model14. Within the scope of supervised learning the market data 
represent the features and the LPM’s outputs (OSA signal) represent the labels.  
Depending on the question respectively the format of the label, the problem is solvable by either a 
regression or classification algorithm, so a distinction between ‘classification’ and ‘regression’ 
problems is made [28].A first examination of the OSA shows that most (85.2%) of the signals from 
the LPM are either 1 (charge with full power), 0 (wait) or -1 (discharge with full power). The 
remaining 14.8% are very close to these values, so a classification approach appears to be 
reasonable (see Figure 3-4). The small variance of the OSA is caused by the fact that the EES’ capacity 
is a multiple of its power. Only the small impact of the SDR is disturbing a ‘perfect’ load cycle. 
However, the LPM uses the free capacities arising from imperfect load cycles to perform additional 
trades.  
The OSA-signals for an EES with an E2P ration of 10/3 are illustrated in Figure 3-6. This ETP ratio 
leads to OSAs with reduced power. This effect would be further amplified if the charging and 
discharging power were not symmetric. For EES that show such kind of OSA patterns, additional 

                                                 
14 I chose to focus on supervised learning because it seemed more applicable. However, reinforcement learning also has the potential to 
deliver good results and should be investigated further in future publications [52]. 
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(intermediate) classes would be required to adequately represent the optimal behavior15. However, 
in this case a distinction between the three classes (charge, discharge, wait) for an EES with an E2P 
of 4 is reasonable.  
For the labeling-process, a simple algorithm (see below) was introduced. It classifies the OSA along 
a symmetric threshold into either charging (1), discharging (-1), or waiting (0). The optimal threshold 
was found by iterating over a list of 100 possible thresholds (𝟎, 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟐, …  𝟎. 𝟗𝟗, 𝟏)  and 
evaluating the resulting new OSA via the SL (see chapter 3.6). The optimal symmetric threshold was 
found to be within the bandwidth of equally optimal thresholds between 0.05 and 0.99. This large 
bandwidth also shows that there are no significant deviations from the classes 1, 0, and -1. 

Eq. 3-4 Pseudo code for the classification of the signals form the LPM. 

 

                                                 

15 Considering a PSPP with a natural inflow varying over time or an EES with larger SDR, the class boundaries become blurry. When 
investigating EES with such OSA patterns it might become reasonable to choose a regression approach.  

For each signal in OSA-signals: 
 if signal >= threshold: 
  class = 1   
 if signal <= threshold * (-1): 
  class = -1 
 else: 
  class = 0 
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Figure 3-4 Illustrating the distribution of signals not 0 near 0. The x scale is limited to 0.005. Compared to the classes 
of -1,0, 1. Here naturally indicates the optimal signal from the LPM without any classification process. 

 

Figure 3-5 Number of occurrences of distinct OSA -signals by the LPM for an EES with an E2P ratio of 4. The black ‘x’ 
denotes values that are not exactly 1,0, -1. It is observable that there are three distinct groups of signals.  

 

Figure 3-6 Number of occurrences of distinct OSA -signals for an EES with an E2P ratio of 10/3. The black ‘x’ denotes 
values that are not exactly part of one group. The number of groups is less obvious. Additional groups must be 
introduced to capture all signals correctly. 
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The classification includes a loss of information which inevitably reduces the performance of an 
agent trading based on this signal compared to the optimal solution of the LPM. A way to calculate 
this loss of performance is to use the SL (chapter0 3.6) simulating an EES trading based on the 
classified signal. The performance of the SL can then be compared to the LPM performance. This 
comparison allows to draw conclusions about the quality of the classification. Eq. 3-5 illustrates the 
calculation of the  quality of the classification process.  

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑂𝑆𝐴

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑆𝐴
  

Eq. 3-5 Calculation of the relative performance of the classification process. 

  
The optimal total profit calculated by the LPM was 52959.40 €. After the transformation (Eq. 3-4)  
the SL achieves a total profit of 52863.76 €. This is equivalent to 99.8% of the original profit 
calculated by the LPM. 
The merging of the classified OSA-signals (COSAS) with the EM data set concludes the labeling 
process. The rows of the resulting table represent single hours for the time span of 2010-2015. The 
columns represent the features (load, price, wind, and solar generation, etc.), a single column with 
the COSAS is representing the label. 
In this constellation, the label represents the COSAS for the timestep of the corresponding row. This 
approach does not reflect a realistic situation under real market conditions. For trading purposes, it 
is interesting to know which action should be taken next, according to the future market conditions. 
Therefore, the label is shifted one timestep into the past. This leads to a table where the features 
for t correspond with the COAS for t+1. In other words, the label is now the COAS for the following 
hour. 

 

 Preprocessing 
The last step of the data manipulation and simultaneously the first step of the MLA optimization is 
the preprocessing. This describes the process where the data is manipulated to improve the 
algorithms’ performance. The first step is the elimination of empty data fields. There are several 
options how to deal with missing data, e.g. deleting corresponding columns or rows, replacing it 
with a default value (e.g. -999999) or the mean of the column. Alternatively, the last valid value can 
be repeated (i.e. forward fill) [28]. To avoid data leakage, I chose to repeat the last value16. 

                                                 

16 While filling empty cells with the mean value of a column, information of the whole column is necessary for this process. Filling with 
last valid values means that passed values are used to fill the cells. No information is transferred from the “future”. 
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 Train-Test Split  
The following steps are performed with the machine learning library ‘Sklearn’ for python17. The split 
between the test and the training samples is important to avoid data leakage and overfitting. This 
means that any further optimization of the learning process is performed solely on a sub set (training 
set) of the parent population. This includes all typical preprocessing measures like ‘scaling’ and 
assures that no information of the unknown test data is transferred [28]. The data is split into a test 
set containing 20 % of the samples and a training set containing 80 % of the samples[28]. 
The training set is used to train the classifier and the test set is used to evaluate its performance. 
The split into training and test sample is determined by randomness, and thus not able to influence 
the learning process. However, it cannot be assumed that the split is unbiased, and that all 
classes/labels are distributed as they are in the parent population. The frequency of labels in the 
parent population is not evenly distributed. 56.5 % of the labels are ‘0’ (wait) and each 21.7 % are 1 
(charge) respectively -1 (discharge). To avoid biased training sets18 , I assured that the labels are 
represented with the original frequency in both the test and training sets. This process is called 
‘stratification’ [35]. The actual data split is performed during the cross-validation process. This is a 
form of train test split which minimizes the risk of biased training sets respectively hyperparameter 
tuning (see chapter 3.4.2 ). 

 Scaling  
Many Algorithms are designed under the assumption that features have values close to 0 and are 
comparable in size. This accounts particularly for metric- and gradient based classifiers such as 
support vector machines and logistic regressions [28]. These classifiers expect standardized values 
(mean equals zero and variance equals 1). Unscaled data degrades the performance of an MLA by 
preventing or slowing down the convergence.  
There are several methods of scaling data, differing by the approach on how to estimate the 
parameters used to shift the data [36]. To limit the scope of this thesis only two different scaling 
techniques with fundamentally different approaches are compared: the standard scaler and the 
quantile transformer. The scalers are part of the ‘Sklearn preprocessing’ module.  

                                                 
17 Sklearn is a high-level open source framework for machine learning and data preprocessing based on the NumPy library for vector 
and matrix calculations. Sklearn provides a large amount of different functions, which are highly adaptable for specific use cases [28], [29], 
[37]. 

18 A data set is ‘biased’ if a single label is overrepresented. 
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Figure 3-7 Schematic presentation of the effects of scaling on a two-dimensional dummy data set. Based on [28]. 

The standard scaler performs a linear transformation of the feature set by subtracting the mean and 
dividing the result by variance for every feature. The resulting feature has a mean of zero and a 
variance of 1. Because of outliers, the spread of the transformed data on each feature is different  
[37],[36]. 

𝑋
( )

=
𝑥( ) − µ

𝜎
 

Eq. 3-6 Standardization [29]. 

During quantile transformation a nonlinear function is applied to the features. After the 
transformation the probability distribution function of the features will be uniform within the range 
of 0 and 1. This spreads out the most frequent values of the feature and maps outliners to the 
boundaries (0,1). New data that falls below or above the fitted range will be mapped to the 
boundaries? of the distribution. As a nonlinear transformation it distorts all linear correlations 
between the features [37],[38]. 

 Feature Interaction and Polynomials 
Even after the scaling process, the performance of the classifier can still be enhanced. One method 
to further increase the performance is the introduction of artificial features. A common method to 
enrich the feature representations of the original data is the addition of interaction- and polynomial 
features. For a vector with two features (a, b) a second-degree polynomial expansion returns a 
vector with 6 features (1, a, b, a², ab, b²). This method allows to represent interactions between 
features as a product and quadratic relations as square of a feature [28].  
Nevertheless, the length of the resulting vector increases depending on the length of the input 
vector (n) and the degree of polynomial expansion. After the expansion the resulting vector has the 
length ∗ 2 ∗ 𝑛  . This is not trivial. For the input data set with the shape (52824, 119), the second-
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degree polynomial expansion results in a feature vector with a length of 7 260. Some algorithms 
(e.g. K-nearest neighbor) are not designed for such high dimensional data.  
Many of the original features are dummy variables representing the temporal dimensions (1 if 
Monday, 0 if not Monday). The combination of two dummy variables describing the same feature 
(e.g. Monday and Thursday) result in columns of constant zeros. These columns contain no 
additional information and can be removed without hesitation. 

 Feature Selection and Extraction 
Complex models (i.e. containing many features) tend to overfit compared to more general models 
[28]. Hence complexity/dimension reduction is a possibility to improve the model. After the feature 
expansion, the data set is rather sparse and probably partially redundant19. This degrades both the 
computational20  as well as the classification respectively generalization performance [34]. The 
dataset also includes the products of the dummy variables resulting in columns of constant zeros 
which must be removed. Moreover, other features (columns) of the data set could also contain no 
additional information-explaining label. Thus, these feature dimensions do not improve the 
classification quality of the model. During the training process indeed even random data (e.g. no 
relation to the label) can be used to increase the training accuracy, but predictions based on these 
features will certainly decrease the models’ prediction quality (Overfitting). These additional 
dimensions also reduce the computational performance during the training process. This accounts 
especially for larger data sets (see chapter 3.3.3). Firstly, the initial selection is based on ‘arbitrary’ 
causal connections. Usually a closer examination of the feature dimensions’ suitability helps to 
improve the model’s quality. Secondly, the polynomial enriched data set exceeds the mathematical 
respectively computational capabilities of some MLA [29]. 
I therefore used a set of different techniques to reduce the number of features (i.e. the number of 
dimensions of the data). Four different approaches are examined in greater detail: the reduction of 
features based on univariate statistical tests (e.g. ANOVA), the so-called ‘model-based approach’ 
and the principal component analysis (PCA). The fourth approach is the regulation-based feature 
selection, which can be applied within the logistic regression and is discussed in chapter 4.5  

3.3.4.1 Univariate Statistical Tests 

The first option is the reduction of features based on univariate statistical tests (e.g. ANOVA). The 
statistical significance between feature and label is computed and an arbitrary number of features 
with the highest confidence is selected. This arbitrary number is often based on the p-values of the 
features. This assures that only features with statistical significant influence on the label are 
considered by the model and ‘useless’ features do not degrade the performance. This approach 
tests features only one by one. Possible interactions with other features remain undiscovered [28]. 
Because of this neglecting of the interactions between features, this approach is not further pursued.  

                                                 

19 The data matrix contains many zeros. 

20 Some MLAs are exceeding the capacities of 16 GB RAM while training on this dataset. 
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3.3.4.2 Model-Based Approach 

The second approach is a so-called ‘model-based approach’. Some models (e.g. Random Forest, 
Logistic Regression) can be used to estimate the importance of single features. One of them is the 
‘random forest’ model (see chapter 4.3 for further details). While training the random forest model, 
the importance of features is determined based on the decisions of the trees. This so called ‘Gini-
importance’ shows how much impurity/entropy reduction can be obtained by a (data) split based 
on this exact feature [39]. Still, because decision trees are determined by randomness, this approach 
is neglected.  
Although this approach was neglected, the model-based feature selection provided some insight 
into the importance of individual features as well as feature combinations. The results are therefore 
elaborated in Appendix i.b 

3.3.4.3 Principal Component Analysis 

While the univariate statistical tests and the model-based approach where supervised heuristics to 
select features based on certain criterions, the last method extracts features. The principal 
components analysis (PCA) is a popular approach for deriving a low-dimensional set of features [34]. 
It identifies patterns within data based on the correlation between features trough finding the 
directions of maximum variance in high-dimensional data. These features are projected on 
hyperplanes to reduce the number of dimensions while still describing most of the variance [29], 
[39]. However, during the projection information is lost. There is a trade-off between the number 
of features and explained variance, which James et al. [34] (2007) describe as following: 

‘Unfortunately, there is no well-
accepted objective way to decide 
how many principal components are 
enough. In fact, the question of how 
many principal components are 
enough is inherently ill-defined, and 
will depend on the specific area of 
application and the specific data set. 
On the other hand, if we compute 
principal components for use in a 
supervised analysis[…], there is a 
simple and objective way to 
determine how many principal 
components to use: we can treat the 
number of principal component 
score vectors to be used in the 
regression as a tuning parameter to 
be selected via cross-validation or a 
related approach.’  

Figure 3-8 displays the principal components for a two-dimensional dataset. The principal 
component 1 (PC1) is the line along the greatest variance of the features x1 and x2. The principal 

Figure 3-8 Principal components of x1 and x2, Graphic by [29]. 
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component 2 (PC2) is the orthogonal to PC1. PC1 alone can be used to describe most of the variance 
between x1 and x2, while simultaneously reducing the dimensionality by 1. PCA does consider the 
labels of the data points, therefore the transformation does not improve the quality of the data 
imperatively. The measure for the PCA’s quality is the explained variance [29].  
The results of applying PCA on the training data are illustrated in Figure 3-9. The explained variance 
(EV) per feature is a measure for the additional information by each component. To display the 
results for the original features and the polynomial together, the relative values are displayed. The 
middle graph illustrates the cumulative EV.  
For the original market data 84 of 119 principal components are necessary to explain 99.9% of the 
variance. For the polynomial data, 1208 of 7260 principal components are necessary to explain 99.9% 
of the variance. These sizes allow conscientious training of the classifiers. The bottom graph 
illustrates the absolute explained variance. It can be seen that the variance within the polynomial 
data set is clearly greater. 
 

 

Figure 3-9 Top: Relative explained variance by principal component in descending order; Middle: Cumulative relative 
explained variance; Bottom: Absolute cumulative variance. 
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The goal of the feature enrichment was to add variance by introducing new combinations, 
potentially explaining the label. The feature selection/feature extraction assures the quality of the 
feature set and concludes the data preprocessing. The next step is the training, testing and 
optimization of the classifiers. 

 Optimization Framework 
MLAs have parameters which are independent from the data input (penalty factors, choice of 
solvers, tolerance levels, etc.). These parameters are called ‘hyperparameters’ and allow the 
adaption of the algorithm to specific problems [29]. Since the goal of ML is to generalize from known 
data to unknown data, the performance of a classifier is defined by its potential to predict unknown 
data correctly (see chapter 3.2.2).  
To test this potential, the labeled data is split into two sets - one for training and one for testing. 
After a classifier is trained on the training set it is tested against the test set. The quality of its 
predictions (e.g. classification accuracy) is calculated based on the results of the test set. If the 
quality meets the requirements, the process ends here. 
It is very unlikely that the first attempt will deliver the best results for a problem [28]. To improve 
the quality of a classifier, the stepwise adaption of the hyperparameters is required. Setting the 
hyperparameters correctly is a core task within any ML-process [28], [29]. Depending on the number 
of adjustable parameters and conversion time of the MLA, there are two meta heuristics to find the 
(semi)optimal setting for the hyperparameter, called ‘hyperparameter tuning’: grid search and 
random search [28], [29]. 

 Hyperparameter Tuning Heuristics 
The grid search uses lists of options for hyperparameters. All possible combinations within these 
lists are tested. This assures that the best combination of the provided options is found. If there is a 
better setting of hyperparameters but it’s combination is not in the provided lists of options 
(parameters), it will not be discovered. This process is time consuming, especially if there are many 
combinations of hyperparameters [40]. 
To reduce the computational time, a random search can be used instead of a grid search. A random 
search also uses lists of options for the specific hyperparameters, but instead of testing all possible 
combinations, only ‘x’ random combinations are tested, where ‘x’ represents a chosen budget of 
trials. Random search is used to determine which settings are promising for further investigation 
[40]. 

 Cross validation  
As already mentioned in chapter 3.2.2, the quality of a classifier is determined by its potential to 
classify ‘unseen’ data correctly. Any information transfer not available to the classifier under real-
world conditions between training and test data set must be prevented, otherwise the quality of 
the classifier will be overestimated. This includes the scaling process, the feature selection, and 
especially the hyperparameter tuning. 
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If the hyperparameters are optimized against a single test, the results are likely to be adapted only 
to the characteristic of this specific test set. Therefore, the model loses its ability to generalize and 
a biased set of hyperparameter is selected. A common technique to avoid this biased 
hyperparameter selection is the so called ‘k-fold cross validation’, also simply referred to as ‘cross 
validation’ [28]. 
The ‘k-fold cross validation’ describes a process where the data is split into k same-sized subsets 
from which one set is selected to be the test set. The other sets get combined into a training set. 
The classifier is then trained and tested based on those two sets. In the next step the second set is 
selected to be the test set and so on. This process is repeated until all sets have been used as a test 
set (i.e. after k rounds). The quality of the classifier is the average performance over these k training 
and testing cycles. In combination with grid search (see chapter 3.4.1Fehler! Verweisquelle konnte 
nicht gefunden werden.), the set of hyperparameters with the highest average score is selected 
[29]. 
The advantage of cross validation is the reduced risk of hyperparameter selection based on random 
events. It is possible that a randomly selected test set is very similar/different to the training set if a 
set of hyperparameters is chosen or dismissed because of a single test result in a ‘miss assessment’ 
[28], [29]. The cross validation also increases the computational effort by the factor of k, which is 
only partially parallelizable  [41].  
Figure 3-10 illustrates the schematic procedure of the cross validation and the calculation of the 
resulting mean accuracy: 

 

Figure 3-10 Illustration of an k-fold cross validation for k= 5. Every round includes a training a testing process. 
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 Model Evaluation 
The conclusive part of the evaluation process is the evaluation of the MLA’s performance. The 
general process of the model evaluation is illustrated in Figure 3-11. The green frame represents the 
parts of the process optimized by grid respectively random search including the cross validation.  
 

 

Figure 3-11 Procedure of the Classifier optimization process.  

Given an MLA with two hyperparameters with each five options and two different scaling options, 
three different methods of feature selection are possible. This totals in 5 * 5 *2 *3 = 150 different 
sets of parameters. Additionally, performing a 5-fold cross validation results in 750 models trained 
and tested. This is only acceptable if the convergence time of a single model is low (e.g. several 
seconds). This is aggravated by the fact that most classifiers have more than two parameters 
including continuous variables like penalty values [28]. If the optimized classifier does not fulfill the 
classification standards, a new attempt with a new set of hyperparameters, other preprocessing 
techniques or new / additional data is necessary [29]. If the classifier fulfills the requirements, the 
process is finished.  

 Scoring Values 
As mentioned above (see chapter 3.2.2), the test score of the classifier determines its quality. The 
default score when evaluating a (multiclass) classifier is the accuracy. The accuracy represents the 
percentage of correct predictions [29].  
The accuracy is a decent and naturally comprehensible metric of evaluation, but since the classes in 
the original data (and probably in new data too) are unevenly distributed, the classifier tends to 
over-represent the most common class (55% wait, 22,5% each charge and discharge). A classifier 
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predicting ‘wait’ in 100% of the cases has an accuracy of 55% without providing any additional 
information or benefit.  

To counteract this behavior, two additional metrics are introduced: the precision and the recall. 
These metrics can be derived from the confusion matrix (Figure 3-12Fehler! Verweisquelle konnte 
nicht gefunden werden.) of true values and predicted values. The main axis of this matrix displays 
the correct classifications (i.e. the prediction is correct), all other combinations represent 
misclassifications.  
 

Figure 3-12 Confusion matrix for the predicted and true OSA. 

These metrics are derived from binary classification problems, so the standard formulas for those 
metrics must be altered by a weight factor. The first metric is the precision. The precision of the 
prediction of one class is the quotient of the number of correct predictions for one class and the 
sum prediction for that class (in ‘Trues’ of column / sum of column) [29]. For example: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐ℎ𝑎𝑟𝑔𝑒) =
(𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄ )

(𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄ ) + (𝐹𝑎𝑙𝑠𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄ )
 

Eq. 3-7 Calculation of the precision [29]. 

The total precision is the weighted mean of the three individual precisions21. The weight is based on 
the number of true values for this class. The second metric is the recall. It describes the quotient of 

                                                 

21 There are different ways to compute the total precision/recall. The weighted mean is typically used for imbalanced classes [28], [29], 
[53]. 
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correctly predicted true values for a class and the total number of true values for this class (Trues of 
row / sum of row) [29]. For example:  
 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑐ℎ𝑎𝑟𝑔𝑒) =
𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 ⁄

(𝑇𝑟𝑢𝑒 𝑐ℎ𝑎𝑟𝑔𝑒⁄ ) + (𝐹𝑎𝑙𝑠𝑒 𝑤𝑎𝑖𝑡⁄ ) + (𝐹𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒⁄ )
 

Eq. 3-8 Calculation of the recall [29]. 

The total recall is the weighted mean of the three individual recalls. Independently, both metrics 
can be optimized to be 1 (i.e. perfect). The f1 score, the weighted harmonic mean of precision and 
recall combines those two measures [42]. Therefore, the f1 score is the standard additional 
representation of the classifiers quality:  
 

𝑓1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Eq. 3-9 Calculation of the f1-score [43]. 

These scores are helpful to statistically describe the quality of the classification. Still, the correct 
classification is only a simplification of the true objective: the maximization of the profit. Although 
the confusion matrix and the score metrics provide insight in the kind of errors made, they do not 
quantize the effect of a mis-classification monetarily.  
Based on this metric, errors with little effect on the overall economic performance of the EES (e.g. 
charging at the second-best point of time instead the best) are penalized by the algorithm equally 
as major errors (e.g. discharging if charging would be the ‘correct’ option). This shows to be a 
fundamental problem during the optimization task.  
The model was optimized by the means of an error score, but the actual objective function is the 
maximization of the profit. To take this into account, I assume a correlation between correct 
classification, quality, and profit. The examination of this correlation is part of the results which are 
discussed in chapter 5.3. 
As shown, there are many options and possibilities to improve (or worsen) the quality of the 
classification within the entire process of developing a good classifier, many of them influencing 
each other. As the investigation of all those possibilities is not within the scope of this thesis, I 
applied a para-systematically approach by simply testing different settings and observing the effects.  
The second step was then the investigation of the interactions of single parameter combinations 
which resulted in two dimensional matrixes of results. Eventually this process of trial and error led 
to a set of preprocessing actions and hyperparameters small enough to be systematically examined 
via grid search as shown in chapter 5. 
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 Evaluation Framework 
The accuracy of the classification does not significantly determine the performance of an agent 
trading on the EM based on the classifier’s predictions. An incorrect classification does not 
determine how economically wrong the decision is. To test the classifier’s performance on the real 
market, I introduced a framework, written in Python (Appendix Appendix ii.c). Within this  
framework, the classifiers are used to act as an agent controlling an EES, which places the results of 
the classification into an economic framework.  
Based on the market data of the year 2015, the classifiers predict storage behavior respectively 
storage signals. These signals are then used to trigger actions of an agent trading on a simulated EM. 
If the classifier predicts ‘charge’, the agent tries to buy electricity and charge the battery if there is 
capacity left. If the classifier predicts ‘discharge’, the agent sells electricity. If the classifier predicts 
‘wait’, the agent takes no action. The following pseudocode describes to process in detail: 

Eq. 3-10 Pseduo code describing the storage logic (SL). 

This process is repeated for every hour of the evaluation period. The market conditions of the 
current hour are used as an input for the classifier. The classifier predicts the action for the 
subsequent hour (t+1), the current price is set to the price of the subsequent hour.  
If the predicted action is ‘charge’ (buy), the agent calculates the maximal amount of free capacity 
of the EES. He then buys this maximal possible amount. The maximal possible amount is limited by 
either the maximal charge speed or the remaining free capacity. The bought electricity is then added 
to the EES’s current storage level. The last step is the update of the EES’s balance. Analog to the 
calculation of the LPM (chapter 3.2.1), the costs of the bought electricity are the amount of 
electricity divided by the efficiency times the current price. Those costs are subtracted from the 
total balance. 

For (timestep) in all evaluation period: 
 current market conditions = market conditions (t)  
 signal = Classifier.predict_behavior(Current _market conditions) 
 Current price = price (t+1)  
 if signal is charge:  
  free capacity = maximum capacity – current storage level 
  buyable electricity = min(maximal charging speed , free capacity)  
  current storage level = current storage level + buyable electricity 
  balance = balance – buyable electricity / (storing efficiency) *  
  current price 
 
 if signal is discharge: 
  sellable electricity = min (maximal discharging speed, current  
  storage level) 
  current storage level = current storage level - sellable electricity 
  balance = balance + sellable electricity * current price 
 
 if signal is wait:  
  do nothing 
 
 current storage level = (1-self discharge rate) * current storage level 
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If the predicted action is ‘discharge’ (sell), the agent calculates the maximal sellable amount of 
electricity, which is either limited by the maximal discharge speed or the remaining stored energy. 
The storage level gets updated accordingly. The last action is to update the balance. The profit from 
selling energy is the maximal sellable amount times the current price.  
If the predicted action is ‘wait’, the agent takes no action. 
The last action of a timestep is always the calculation and deduction of the self-discharge according 
to the self-discharge rate. The performance of the agent is compared to the performance of an agent 
using the OSA-signal from the LP model.  

 Other Strategies 
As mentioned before, using EES for arbitrage trading is a popular strategy within the scientific 
community [15]. But since the simulation of EES’s with LP requires perfect foresight, other strategies 
for arbitrage trading have emerged, many of which are used to simulate real world storage 
strategies. This helps to compare the results of the classifiers and to put them into perspective. In a 
2016 paper Zafirakis et al. [15] examine the value of arbitrage trading of energy storage and 
introduce inter alia methods for the storage control. 
Two of those methods are used in this model to simulate state of the art storage strategies: the 
weekly and daily ‘back to back’ strategy. The back to back strategy suggests using the same charge 
and discharge pattern as it would be optimal for the previous time period. This assures that the daily, 
weekly, and seasonal patterns of the electricity price are represented accordingly by shifting the 
OSA by 24h (daily) and 168h (weekly). The resulting series can be treated like the prediction signals 
of any other classifier. 

𝑠ℎ𝑖𝑓𝑡 (𝑤𝑒𝑒𝑘) = 𝑂𝑆𝐴  
𝑠ℎ𝑖𝑓𝑡 (𝑑𝑎𝑦) = 𝑂𝑆𝐴   

Eq. 3-11 Calculation of the back-to-back strategies. 

 

4 Classification Algorithms 

 Introduction 
The classification algorithm is the centerpiece of every machine learning process. Within the Sklearn 
library the algorithms are organized in python classes [37]. The architecture of these classes is 
uniform as inheritance is used, which makes it easy to switch between different algorithms. The 
classification algorithms themselves have distinctive inner workings and requirements on the data 
preparation. This especially accounts for scaling and data size. The following chapters introduces six 
different kinds of classification algorithms and their implications for the problem tackled in this 
thesis.  
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 K-nearest Neighbors  
The K-nearest Neighbor (KNN) algorithm is a classification algorithm. Strictly speaking, the KNN does 
not really ‘learn’ and therefore is often referred to as ‘lazy learner’ [28]. During the training process 
the classifier stores all feature-label pairs of the training data set. During the prediction the distance 
between the feature vector and all known samples is calculated. The k training samples with the 
shortest distance to the new sample are chosen to determine the class of the unknown data. The 
most frequent class within these k nearest samples is the predicted class. Parameter k, the number 
of neighbors, is the main hyperparameter of the KNN algorithm. It determines the number of 
samples used to predict a new data point and is the key parameter to reduce the effect of overfitting. 
A small k leads to complex models with volatile decision boundaries that tend to overfit on the 
training data. A classification based on too many neighbors reduces the ability to correctly classify 
the data, because the distance to the farthermost considered neighbors gets too large [28].  
Two additional parameters, the calculation metric, and the weight of the distance, can be used to 
optimize the KNN-algorithm. The calculation metric for the distance influences the selection of the 
neighbors. There are two basic options for calculating the distance: the Manhattan distance and the 
Euclidian distance. 
The Manhattan distance is the sum of the absolute distances in every dimension:  

𝑑 =  |𝑥 − 𝑦| 

Eq. 4-1 Calculation of the Manhattan distance [44]. 

The Euclidian distance is the length of the straight line between the two points:  

𝑑 =  (𝑥 − 𝑦)  

Eq. 4-2 Claculation of the euclidian distance [44]. 

The second parameter (weight of distance) is the weight of the votes of each nearest neighbor. By 
default, the weight of the votes is uniform (i.e. independent from the distance to the new data). 
Alternatively, the weight of the neighbor can be set inverse to its distance to the new data point. 
This reduces the influence of distant points but is still within the closest k neighbors (distance) [44]. 
An effect often observed in context of KNN is the ‘curse of dimensionality’, which describes the 
phenomena of feature spaces becoming increasingly sparse for an increased number of dimensions 
and a fixed number of observations [29]. Also, the KNN does not scale very well. The computational 
effort (O) of the standard (brute force) KNN classifier grows in O [DN²], where N are the samples 
and D are the features [45]. The KNN is therefore not suited for a large set of input data with 
polynomial features. However, by limiting the training data to a fixed number of observations (i.e. 
8 760 for one year of training data) and dispensing the option for polynomial features, the 
computational effort is manageable. 
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Figure 4-1 displays the effect the 
number of neighbors has on the 
classification quality. The blue line 
describes the score based on the 
training set, the red line describes the 
score based on the test set. A visual 
inspection of the plot shows the 
maximal score for the test set lies 
within the range of ~5 to ~30 
neighbors.  
For a decreasing number of neighbors, 
the test score drops, and the training 
score raises rapidly. This is a sign of 
overfitting (i.e. a model with high 
complexity) [28]. With increasing numbers 
of neighbors, the classification quality slightly decreases. 
Additionally, the same number of neighbors were tested after a PCA extracted 20 principal 
components (see chapter 3.3.4.3). The negative effect of the dimension reduction is small (compare  
Figure 4-1 pale lines). Based on these findings a grid search for a narrower hyperparameter space 
was performed to find the optimal hyper-parameter composition. Table 5 lists the hyperparameters 
and preprocessing steps used during the optimization process of the KNN-classifier. 

Table 5 The parameter grid used to optimize the KNN classifier. 

Parameter Values 
Polynomial Features [No] 

Scaler [Standard, Quantile 
Transformer] 

PCA (components)  [20,40,50,100,119] 

Number of neighbors (k) [5, 10, 11, 13, 16, 20, 25, 30] 

Distance metric (p) [‘Manhattan’, ‘Euclidian’] 

Weights [‘uniform’, ‘distance’] 

 

  

Figure 4-1 Influence of number of neghbors for an KNN classifier on the 
accuracy of the classification. 20pc denotes a feature set determined by 
a PCA with 20 principal components. 
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 Decision Trees 
Decision Trees are a series of ‘if-else’ decisions ultimately leading to a classification. Every question 
splits the samples into one node (‘parent’) and two subgroups (‘children’) with reduced impurity. 
This split is orthogonal to one feature axis. This process is repeated until all samples in the 
last/terminal nodes are from a single class. In other words, the terminal nodes are ‘pure’. Repeating 
the same series of questions for a new data point leads to a predicted classification [28], [39]. 
The underlying objective function aims to maximize the information gain (IG) at each (binary) split 
where Dp is the parent node, Dleft and Dright are the children:  

𝐼𝐺 𝐷 , 𝑎 = 𝐼 𝐷 −
𝑁

𝑁
∗ 𝐼 𝐷 −

𝑁

𝑁
∗ 𝐼 𝐷  

Eq. 4-3 calculation of the information gain [29]. 

N represents the number of samples in the respective node, I stands for an impurity function. The 
information gain is the difference between the impurity of the parent and the sum of the impurities 
of the children. The impurity or splitting criteria is a metric of the difference within the sample 
classes [29].  

Two different metrics can be compared: The entropy and the Gini-coefficient. The entropy is a 
metric measuring the impurity of a group. The node’s entropy is 1 if the distribution is uniform. The 
entropy for a pure node is 0. The entropy criterion must therefore be minimized while building a 
tree. The entropy (IH) for the node (t) is calculated in Eq. 4-4, where i is the number of samples 
belonging to a class and c is the total number of classes. 𝑝(𝑖|𝑡) is the relative proportion of samples 
of a class in the node t.  

𝐼 (𝑡) =  − 𝑝(𝑖|𝑡) log 2(𝑝(𝑖|𝑡) 

Eq. 4-4 calculation of the entropy [29]. 

The second metric is the Gini-coefficient. This coefficient is a measure of impurity, which is why it 
must be minimized like the entropy during the trees construction. The Gini coefficient (IG) is 
calculated in Eq. 4-5. 

𝐼 =  1 − 𝑝(𝑖|𝑡)  

Eq. 4-5 calculation of the Gini coefficient [29]. 

The decision-tree-algorithm, in its basic version, continues until all terminal nodes are pure and 
every sample of the training set is classified correctly [28]. This is a prime example of an overfitted 
classifier. To reduce this effect, the construction of the tree is usually constrained [39]. There are 
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multiple ways of constraining the growth of a tree. Two of them – the maximal depth parameter 
and the minimal number of samples in a terminal node – are examined in greater detail. 
The maximal depth parameter limits the size of the tree by constraining the length of the series of 
splits. The minimal number of samples in a terminal node reduces the effect of outliers. Based on 
their algorithm, decision trees do not require scaled input data [28]. Table 6 lists the 
hyperparameters and preprocessing steps used during the optimization process of the decision tree.  

Table 6 The parameter grid used to optimize the decision tree. 

Parameter Values 

Polynomial Features  
[No] 

PCA (components)  
[No] 

Maximal depth  
[100,50,25,10] 

Minimal samples for an additional split 
[2,50,100,200] 

Minimal samples in terminal node 
[1,20,40,60,100] 

Impurity metric  
[‘Gini’, ‘Entropy’] 

 Random Forest (RF) 
Another method to improve the prediction quality of a decision tree is to train multiple decision 
trees on a slightly different data set (e.g. a bootstrapped data set). The predicted class is the result 
of voting by each single tree. This technique is called ‘random forest’. A random forest is more robust 
against outliers and increases the generalization quality of a classifier [28], [29]. 
There are three additional hyperparameters examined for random forest. One is the number of 
trees deployed, the other two determine the randomness of the single trees. At every split only a 
randomly chosen fraction of features is selected (maximal features). A low number of features leads 
to decreased impurity reduction, simultaneously increasing the randomness, and consequently 
reducing overfitting. The last hyperparameter is impurity metric. The single trees of a random forest 
do not have to be limited in their growth, since the forest itself is quite robust against the noise of 
the single trees [29]. Table 7 lists the hyperparameters used during the optimization process of the 
RF. 

Table 7 The parameter grid used to optimize the random forest. 

Parameter Values 

Impurity metric  
[‘Gini’, ‘Entropy’] 

Number of trees  
[10, 20 ,50, 100, 500, 1000] 

Maximal Features 
[10,30,60,90] 
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Figure 4-2 Sigmoid function for z[-7,7], [25]. 

 Logistic Regression 
The logistic regression (LR) is a binary classification model for linear separable classes. The formula 
used to make predictions resembles the formula for the common linear regression (see chapter 
3.2.1). While linear regression estimates a value for a given set of features, logistic regression 

estimates the odd ratio of a set of features being part of a certain class [ ]. The logistic function 

(logit) is the logarithm of the odds function. The logit function takes input values within the range 
of 0 to 1 and transforms them into values over the entire space of real numbers, which can then be 
used to express a linear relationship between feature values and the log-odds [29].  

This means that the reverse function of the logit function (the sigmoid function Φ(z) =  ) can 

be used to transform every number (i.e. the weighted sum of the features) into a number between 
0 and 1 (i.e. the odd ratio of the binary classification): 

 𝑙𝑜𝑔𝑖𝑡 𝑝(𝑦 = 1|𝑥) < 𝑤 ∗ 𝑥 + 𝑤 ∗ 𝑥 + ⋯ + 𝑤 ∗ 𝑤 ∗ 𝑏 

Eq. 4-6 Calculation of the probability of a features set (x) being part of class y. w are the weights for the respective 
features and b is the intercept [29]. 

The outcome of the sigmoid function – the predicted probability – can then be converted into a 
binary outcome via a step function: 

𝑦 =
1 𝑖𝑓 Φ(z) ≥ 0.5  

0 𝑖𝑓 Φ(z) < 0.5  
=

1 𝑖𝑓 z ≥ 0  
0 𝑖𝑓 z < 0  

 

Eq. 4-7 Step function for binary classification. Compare Figure 4-2 z and 𝚽(z). 

Within the logistic regression, a gradient descend based algorithm is used to minimize the costs, i.e. 
the difference between predicted probability and true class. Because of this, the model does not 
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only penalize wrong predictions, but also the certainty of the wrong classification respectively the 
uncertainty of true classifications [29]. 
The LR model in its basic form can be used for binary classification, whereas the more sophisticated 
‘One vs Rest’ (OvR) technique allows to use LR for multi-classification tasks. In this case the 
classification process is split into c sub classifications, where c is the number of classes. Every class 
has its ‘own’ model predicting the probability whether a new data point is within the class or not. 
The model predicting the highest probability for the new data point determines its class [29]. 
Linear models generally tend to overfit in high dimensions. This is expressed in two ways. Firstly, the 
model is not able to generalize well, i.e. predict unknown data correctly, although good training 
results are obtained. Secondly, the model becomes complex and difficult to interpret. The reason 
for this overfitting lies within the potential/power of LR to find the correct set of weights to even 
classify outliers and noise correctly. The chance of overfitting increases with the number of 
dimensions [28]. 
These effects can be controlled via a regulating term within the loss function. The regulation adds a 
penalty term to the cost function for each weight. This adds a tradeoff between correct classification 
of a training point and the length of the weights vector (‘L2’-regulation) [29]. This leads to smaller 
weights and consequently to a simpler model with better generalization quality, although there is a 
trade-off between model simplicity and generalization potential. The size of the penalty (is set 
via the parameter c, which is the reciprocal value of [29]. Table 8 lists the hyperparameters and 
preprocessing steps used during the optimization process of the LR. 

Table 8 The parameter grid used to optimize the logistic regression .

Parameter Values 

Polynomial Features  
[Yes, No] 

PCA (components)  
(normal/poly) 

[10,20,30,40,50,60,70,80,90,100,119] 
[10,100,500,1000,2000] 

penalty 
[L1, L2] 

C 
[10-4,…, 104] 

 

 Support Vector Classifier 
Support Vector Machines (SVM) are another linear model used for classification. In contrast to LR, 
where the objective function is to minimize the cost function, the SVM aims to maximize the margin 
[29]. The margin is defined as the distance between the separating line respectively hyperplane (i.e. 
decision boundary) and the closest training samples [46]. These training samples are the so-called 
support vectors. The calibration of the decision boundary is based only on those support vectors. 
Samples that are further away from the boundary do not influence the slope or position of the 
hyperplane. The underlying assumption is that a maximal separating hyperplane is a good method 
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of generalization and the chance of overfitting and the negative effect of outliers is thereby reduced 
[29]. 
An important concept for the SVM is the slack variable  introduced by Vladimir Vapnik [46]. The 
slack variable allows convergence of linear algorithms, although the data is not linearly separable. 
Misclassified training samples are penalized accordingly. This penalty resembles the function of the 
L2 classification used during the logistic regression (4.5) and is also adjusted via the parameter C.  
Large values for C lead to a high penalty for the misclassified samples and therefore increase the 
chance of overfitting. Small values increase the weight of the maximal margin in the objective 
function. The first part of Eq. 4-8 expresses the maximum margin w, the second the sum of all slack 
variables for every misclassified samples times C [29]. 

min =
1

2
|𝑤| + 𝐶 ∗ ( ) 

Eq. 4-8 Objective function for SVM [29]. 

The training data is not perfectly linearly separable. Thus, the prediction quality for the linear models 
is reduced. SVM can solve nonlinear problems by kernelizing the data. The idea behind kernel 
methods is to create nonlinear combinations of the original features to project them onto a higher 
dimensional space via a mapping function (Eq. 4-9), where the data becomes linearly separable [29]. 
 

𝐹(𝑥 , 𝑥 ) = (𝑥 , 𝑥 , 𝑥 + 𝑥 ) 

Eq. 4-9 Example of a simplified mapping function to transform a two-dimensional feature set into a three-dimensional 
feature set [29]. 

This mapping function be an additional preprocessing step that is semi-automatically performed by 
the SVC. It is called ‘kernel trick’ [28], [29], [46]. There are two common ways to map the input data 
into a higher dimension: the polynomial kernel and the radial bias function. The polynomial kernel 
computes all polynomials of the features up to a threshold. Radial bias function (rbf) is also known 
as the ‘Gaussian kernel’. Guido and Müller (2016) [28]summarize the functional principle as 
following: 

‘One way to explain the Gaussian kernel is that it considers all possible 
polynomials of all degrees, but the importance of the features decreases for each 
additional dimension.’  

One big disadvantage of SVM is its reduced scalability in terms of sample size. The Sklearn 
documentation for SVC mentions an upper limit of 105 samples, compared to the training data set 
which includes 4.3 *105 samples. Within the constructed model, one approach to the solution of 
this problem is to trim the data and to only use the last 8 760 values corresponding to the year 2014.  
While optimizing an SVC there are three specific parameters to optimize. C, the kernel type, and a 
kernel specific parameter. Within my model I investigated three different kernels: ‘linear’-kernel 
limits the SVC to a linear separation and has no additional parameters. ‘Polynomial’ (poly) 
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introduces polynomials of the features as kernel function. The controlling parameter (degree) sets 
the threshold for the degrees. A high value for the controlling parameter increases the potential to 
correctly learn nonlinear relations and simultaneously increases the complexity, computational 
expense, and the chance of overfitting.  
The regulating parameter for the rbf is called ‘gamma’. It controls the width of the gaussian kernel 
and therefore the number of samples considered. A high value for gamma increases the chance to 
overfit [29]. Table 9 lists the hyperparameters and preprocessing steps used during the optimization 
process of the SVC: 

 Table 9 The parameter grid used to optimize the SVC. 

Parameter Values 

Polynomial Features  
[Yes, No] 

PCA (components)  
(normal/poly) 

[10,20,30,40,50,60,70,80,90,100,119] 
[10,100,500,1000,2000] 

C 
[10-4,...,104] 

Kernel 
[‘linear’, ‘ploy’, ‘rbf’] 

Degree(poly) 
[2,3,4,5] 

Gamma(rbf) 
[10-5,…,10] 

 

 Neuronal Nets/Multilayer Perceptron (MLP) 
Neuronal nets (also known as ‘deep learning’) is a group of MLAs based on the concept of perceptron 
which was developed 1957 by Frank Rosenblatt. The underlying motivation was the attempt to 
recreate the functionality of the neuron in the brain in order improve the understanding of the 
biological learning process. The perceptron, the building block of a neuronal network, resembles the 
biological neuron. Today it is known that the functionality of biological neurons is way more complex, 
nevertheless the perceptron as a method of automated classification is still used.  
 

 

Figure 4-3 schematic illustration of a perceptron for an input vector with m features [25]. 
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The process can be described as follows: A signal (feature) enters a node. Within the node the signal 
is multiplied by a factor (weights) and an activation function (originally a step function) is applied to 
transform the result to a binary value. If the classification is correct the weights remain unchanged. 
Otherwise the weights get updated. If the data is linearly separable, the perceptron will converge 
[29]. During the last ~70 years the design of the perceptron got improved in various ways (e.g. 
selection of the activation function). 
A modern neuronal net can be described as a multiple parallelly and serially connected perceptron. 
In its basic form, the feed forward neuronal network is also referred to as ‘multilayer perceptron’ 
[28]. Typically, the step function as activation function is replaced by a sigmoid or rectified linear 
unit (ReLU).  
 

 

Figure 4-4 schematic illustration of an MLP with an input layer with 6 nodes, one hidden layer with 8 nodes and one 
output layer with four nodes [46]. 

Figure 4-4 Illustrates an arbitrary ‘fully connected’ feed forward neuronal network. The network 
consists of three layers: one input layer, one hidden layer and one output layer. ‘Fully connected’ 
signifies that all nodes i of a layer k are ‘connected’ to all nodes j of the subsequent layer via the 
weights vector wij. This systematic is propagated until the last layer is connected [29]. 
The prediction process of an MLP is also analog to the algorithm of the perceptron. The output of a 
node is calculated by applying an activation function on the weighted sums of its input nodes. 
Typically, a constant value (bias) is added for every node. This process is called ‘forward propagation’. 
The values in the output layer can then be used for the classification. For classification purposes this 
is typically realized by an ‘one-hot’ array. During the learning process the weights and biases get 
updated according to a cost function starting from the output layer. Eventually, the model finds a 
set of weights and biases able to classify correctly. This process is computationally expensive. 
Therefore, an appropriate cross-validation becomes impossible. Additionally, MLPs have many 



 

55 

parameters to tune [29], [47]. A random search approach was chosen to find a suitable initial set of 
parameters. The resulting model was then further optimized gradually by hand. 
 
The dimensions of the input and output layer are predefined by the presentation of the problem: 
the number of input nodes equals the number of features and the number of output nodes equals 
the number of classes. Numbers and dimensions of the hidden layers are independent, the 
dimensions can be optimized, and an adequate activation function must be chosen. A parameter 
can adjust the learning behavior while the learning rate defines the size of the adjustments of the 
weights and biases. Large learning rates may overshoot the optimal value, small learning rates may 
converge to local minima.  
Within the current model a dynamic approach was chosen to avoid overshooting or converging 
behavior. The initial learning rate is set to a large value. If the improvement of the model stagnates 
the learning rate is decreased. The MLP was realized with the ‘keras’ framework 
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5 Results 
The optimal hyper parameters for all tested MLA found during the optimization process are shown 
in Appendix i.a. 

 Evaluation Results 

Table 10 Training and Evaluation results for the OSA time series of the LP model, the alternative back to back strategies 
(shift week and shift day) and all classifiers for the training period (2010-2014) and the evaluation period (2015). 
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Unit    [EUR]  [n] [EUR] 

Relevant year  2014 2015 2010-14 2015 2015 2015 

LP - Optimized (OSA) - 1.00 1.00 7735.04 1.00 519.00 14.90 
Shift Week - 0.70 0.67 5421.21 0.70 519.00 10.45 
Shift Day - 0.68 0.65 4880.65 0.63 519.00 9.40 
K- Nearest Neighbor22 0.77 1.00 0.75 5664.58 0.73 400.61 14.14 
Decision Tree 0.75 0.85 0.70 5030.10 0.65 451.94 11.13 
Random Forest 0.82 1.00 0.77 5302.65 0.69 336.47 15.76 
Logistic Regression 0.79 0.83 0.77 6038.16 0.78 444.37 13.59 
SCV - Linear23 0.78 0.80 0.75 5118.63 0.66 437.87 11.69 
SVC - RBF24 0.81 0.73 0.74 5110.04 0.66 370.78 13.78 
Neuronal Network 0.8325 0.88 0.79 6116.14 0.79 449.62 13.60 

 
The classifiers are trained on the whole training data set (2010-2014) and are adjusted according to 
the results of the hyperparameter optimization (Appendix i.a). The scoring results differ slightly from 
the results of the hyperparameter optimization process. This is partly due to the different data 
availability in the evaluation processes. During cross-validation, test and training samples are chosen 
randomly and therefore may lie between two training samples. While training on the data 2010-
2014 to predict the 2015 labels, this effect stays out. Table 10 summarizes the results. 
‘LP-optimized’ (OSA) represents the results of the LP model. The OSA set provides the labels for the 
classification process for the whole period. Therefore, the f1 scores are 1 (or 100%) for the training 
as well as the testing period.  

                                                 

22 These classifiers were solely trained on the data of 2014. 

23 These classifiers were solely trained on the data of 2014. 

24 These classifiers were solely trained on the data of 2014. 

25 Random Search. 
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The column ‘profit 2015’ represents the profit that an agent trading based on the signal (e.g. 
classifier prediction) earns. The relative profit puts the profit into relation of the optimal profit 
earned by the OSA.  
The number of load cycles (LC) is calculated according to Eq. 2-6 and the profit per load cycle is the 
quotient of the profit and LC. As expected, the OSA has the best performance. With 519 LC it triggers 
the most complete LC, although the profit per LC is only the second highest.  
The quality signal of the back-to-back strategies ‘shift (day)’ and ‘shift week’ can also be expressed 
by the f1 -score metric. This reveals that both the train and the test scores of ‘shift day’ and ‘shift-
week’ (i.e. the back to back strategies) are the worst of the tested methods.  
With a relative profit of 70% the shift (week) method outperforms the shift (day) method clearly. 
The number of LC is naturally similar to the number of LC of the OSA. The profit for LC drops 
accordingly.  
The KNN classifier’s f1 test score is 0.75. Due to the nature of the algorithm, KNN with distance-
based voting weights naturally have a f1-score of 1. However, the relative profit of 2015 shows that 
this classifier outperforms the back- to- back strategies. 
The decision tree shows the worst performance of all MLA classifiers tested but still outperforms 
the shift (day) method. For the ensemble of decision trees, the random forest, two remarkable 
phenomena are manifesting. A large difference between test f1 score and train f1 score normally 
indicates an overfit classifier. Usually random forests are more resilient against overfitting than 
decision trees [28]. However, the hyperparameters were selected based on the best results for f1 
determined by a grid search 26. Interestingly, the random forest shows the lowest number of LCs 
and the highest profit per LC.  
The LR reaches the second-best result. Both support vector machine-based algorithms, although 
reaching promising qualities of classification, cannot outperform the shift (week) method. The 
neuronal net (Multilayer Perceptron) reaches the best results while also reaching the highest f1 test 
score. An agent trading based on the signals of this classifier earns 79% of the optimal profit. The 
neuronal network also had the highest f1 score during the hyper-parameter optimization. However, 
the correlation between f1 score and earned profit is not complete.  
Figure 5-1 and Figure 5-2 are visualizing the results of the evaluation by the storage logic and the 
respective relative profits per LC. 

                                                 

26 The analysis of the cross validated grid search log showed, that the maximal f1 test score was reached by an overfitting random forest, 
see chapter3.4.2  
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Figure 5-1 F1 -scores for all classifiers, shift(week/day) and OSA for the training period (2014) and test period (2015). 

Figure 5-2 relative profits  for all classifiers, shift(week/day) based on the OSA and the evaluation framework for the 
training  period (2014) and test period (2015). 
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Figure 5-3 Confusion matrices of the the OSA the cLassifiers and the shift(week/day) method. y-axis are the label, x-axis 
are the predicted labels. The number beneath the title is the f1 score for of the signal. 

The calculation of the f1-score is based on the confusion matrix. Confusion matrices for all signals 
are illustrated in Figure 5-3. Each subplot shows the three by three confusion matrix for one classifier 
where the y-axis represents the true labels and the x-axis the predicted labels. The numbers in the 
boxes represent the number of occurrences of a combination, the number below the title is the 
corresponding f1-score. 
At first glance all nine sub figures look very similar but still allow to draw conclusions on closer 
examination. For example, comparing the results for the RF (2,2) and the LR (2,3): Both have similar 
f1-scores but completely different profits. The random forest more often correctly predicts ‘wait’ 
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and has clearly less capital errors (predicting the opposite of the true label). The logistic regression 
however more often classifies the charging and discharging correctly. Overall the logistic regression 
is more profitable. It can be deducted that the f1-score does not completely correlate with the profit 
of an agent. 
 

 Visualization of the Different Storage Strategies 
The optimal trading strategy calculated by the LPM (the OSA) is based on the diurnal price 
fluctuations. Throughout the day the average storage pattern shows two charging periods, where 
electricity is (usually) bought from the market. The first period occurs during the night hours, the 
second at noon. The discharging periods are usually during the morning hours and afternoon. This 
pattern resembles typical load profiles. Figure 5-4 illustrates the distribution of the OSA throughout 
the day. The annotated number represents the count of times the LPM calculated27 a signal at the 
corresponding hour. The conditional coloring shows this distinctive pattern and reveals that there 
are hardly any combinations of a signal and hours with zero occurrences. Additionally, most hours 
show an occurrence of two signals. This indicates that rigid storage operation models which are 
solely based on the diurnal pattern are not suitable. It also underlines that the electricity price is 
influenced by other factors than season or hour of day.  
 
Figure 5-5 to Figure 5-8 display the same figure for the predicted signals by four selected classifiers. 
It can be seen that all four can reproduce the diurnal trading pattern of the OSA. A closer 
examination reveals that the patterns of the MLA diverge from the patterns of LPM. While the 
results of the LPM are less ridged, the MLAs have more hour-signal combinations with zero 
occurrences. This may indicate prohibitive ‘rules’ that the model extracts from the training data. 
(e.g. if it is 18:00: under no circumstances buy electricity). An EES operated by such strict rules loses 
the ability to gain profit in diverging extreme situations, as the LPM would calculate. However, the 
existence of strict rules doesn’t necessarily mean reduced economic performance compared to a 
more dynamic classifiers’ approach. It appears that the RF classifier developed a rather static 
method of predicting the storage activity based on the time. ‘wait’ is more common compared to 
other classifiers and at many points during the day the classifier never predicts a certain option. 
Between 20:00 and 22:00 it only predicted ‘wait’. Compared to the more dynamic strategy of the 
linear SVC, which predicted more signal-hour combinations and performed worse in means of f1- 
score and profit than the RF classifier. A deeper analysis of the single strategies developed by the 
classifier, their particularities, similarities, and the resulting effects on the decision process would 
lead to a deeper understanding of the decision process and could reveal additional potential for 
model improvement.  

                                                 

27 “Predicted“ in the case of classifiers. 
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Figure 5-4 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015 for the 
LPM optimzed storage behaviour. The time is displayed in GMT. 

 
Figure 5-5 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015 
predicted by the Neuronal Network. The time is displayed in GMT. 

 
Figure 5-6 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015 
predicted by the Logistic Regression. The time is displayed in GMT. 

 
Figure 5-7 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015 
predicted by the Random Forest. The time is displayed in GMT. 

 
Figure 5-8 Heatmap illustrating the number of signal occurences during the day within the evaluation period 2015 
predicted by the SVC. The time is displayed in GMT. 
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 Correlation between 
F1-Score and Earned 
Profit 

The correlation between the maximal 
profit and the scoring metric during the 
optimization process cannot be 
assumed automatically (compare 
Figure 5-3). A limited correlation 
hinders the deployment of a classifier 
with optimal hyperparameters and 
therefore the maximal profit. The 
classifier is not capable of learning how 
bad an error is in economic terms 
because the metric accounts only for 
misclassifications. A fictive operator’s 
additional cost of a misclassification 
cannot be described by the difference 
in the performance of a single action. The OSA as an agent executes every possible profitable trade.  
These trades however differ by their profit margin. The development of a specialized metric, 
calculating the exact costs of misclassification based on complete trades instead of the f1-score, 
requires a stepwise chronological correct evaluation during the training process. Figure 5-9 shows 
the correlation of profit and the f1-score for a logistic regression for different values for the c 
parameter trained on the 2014 dataset and evaluated on the 2015 data set. Both the profit and the 
f1-score are calculated based on the testing set. The maximal f1-score is reached for c = 10 000 while 
the maximal profit is reached for c = -0.01. This example shows that the maxima are indeed not 
congruent, but the difference is rather small. Therefore, the f1-score be a good approximation of 
the profit.  At the same time, it also shows that the f1-score is not the perfect score metric to 
maximize the profit. Future research might investigate the effects of other customized score metrics 
during the optimization process.  

 Effect of the Forecast Horizon 
A second potential effect on the classification quality is the increasing temporal distance between 
the training and the test set over the evaluation year. In other words: if one trains a classifier based 
only on the data of the years 2010-2014, the prediction quality for January 2015 may be better than 
for December 2015. The hypothesis is that temporal developments and trends are changing the 
optimal behavior pattern. Consequently, the temporal distance between training period and 
prediction period should have a negative influence on the quality of the classification. To display 

Figure 5-9 The x-axes represents  F1 - Score and the simulated relative 
profits compared to the optimal soloution of  logistic regresions with 
different C values. 
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potential quality losses over time, a moving average with a window size of four weeks of the 
accuracy is calculated as an indicator of short-term prediction quality for all classifiers28. 
A linear model was fit to estimate the intercept and slope for all classifiers. A negative slope would 
indicate a decrease in the model’s prediction quality with increased temporal distance to the 
training period. The results show that there are no considerable negative slopes. The intercept’s 
slopes, p-values, and R² are displayed in Table 11:  

Table 11 linear models decribing the correlation between temporal distance and classification quality. 

Name Intercept Slope P-Value R² 

Decision Tree 0.71 -0 0.3306 0.0001 

KNN 0.76 -0 <10-5 0.0549 

Logistic 
Regression  

0.78 -0 <10-5 0.0046 

Neuronal 
Network 

0.79 -0 <10-5 0.0151 

Random Forest  0.76 0 <10-5 0.056 

SVC -RBF 0.73 0 <10-5 0.32 

SVC Linear 0.73 0 <10-5 0.32 

 
Although there are temporal oscillations observable, neither the results from the linear model nor 
the plot of Figure 5-10 suggest significant signs of erosion of the classification quality within a one-
year period. However, this is only valid if the economic framework remains unchanged. Disruptive 
effects (e.g. policy changes, introduction of new technologies) within the market, leading to 
different optimal storage behavior, will require a retraining of the classifier.  

                                                 

28 The results show that the moving average of the accuracy is smoother compared to the actual Boolean values of the correctness of a 
classification (true or false) for every step 
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Figure 5-10 Temporal effects on the classification accuracy. Comparision of classifier for the year 2015. 

Additionally, Figure 5-10  reveals correlating oscillations within the classification quality. Around the 
1 000st hour all classifiers (except the decision tree) are performing better than at the 2 000st hour. 
These homogenous oscillations indicate that there may be additional influencing factors to consider. 

 Rentability of the ESS  
The economic rentability is a central precondition for the large-scale market-based deployment of 
EESs. A mean of calculating this rentability is the net present value (NPV) [4]. Assuming investment 
costs [CO] of 300-800 EUR/kWh, a typical lifetime [Ly] for Li-ion accumulators of 5-15 years [25] and 
a typical discount rate [r] of 10% [4] for investments in the energy sector the NPV of an ESS operated 
by the algorithm can be calculated according to Eq.  5-1, where Ct represents the annual revenue 
minus the annual cost for operation and maintenance. 

𝑁𝑃𝑉 =  
𝐶

(1 − 𝑟)
− 𝐶

 

 

Eq.  5-1 Calculation of the net present value of an investment. 

To facilitate the calculation, the annual costs for operation and maintenance are neglected and the 
annual revenue is assumed to be constant (based on the simulated results for the year 2015). An 
ESS operated by the predictions of the best performing MLA, the NN, yields a profit of 6 116 EUR 
per year. Under the most optimistic assumptions of 15 years lifetime and investment costs of 300 
EUR/kWh the resulting NPV is -253 480 EUR. To be profitable, the investment costs must be reduced 
below the threshold of 46.51 EUR/kWh. Considering the optimal solution of the LPM similar results 
apply. An ESS operated by the LPM yields a profit of 7 735 EUR per year. Resulting in an NPV of  
-241 166. To be profitable, the investment costs have to be reduced below the threshold of 58.1 
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EUR/kWh. This shows that the investment costs are yet too high, respectively the annual profits are 
too low to profitably arbitrage at the German power market with Li-ion batteries.  
 

6 Discussion and Conclusion  

 Improving the Model’s Quality 
The results of the evaluation process show that basic machine learning algorithms can outperform 
standard strategies like the back to back algorithm. However, compared to typical results for 
machine learning based classification (accuracy >90% ), an accuracy of +/- 80% is tenuous [29], [46]. 
To increase the classification quality and therefore the economic performance, there are several 
paths to take. All of them represent different starting points for future research.  
 

 Training Process 
6.1.1.1 Scaling 

In this thesis the possible scaling options are limited to two methods (see chapter 3.3.2). The 
standard scaling method (mean zero and standard deviation 1) is a minimum requirement for many 
machine algorithms. However, it is prone to outliers.  
The quantile transformer on the other hand maps all values uniformly distributed between -1 and 1 
and is therefore robust against outliers. However, the actual set of scaling options to choose from 
is larger. While many MLAs are designed for feature values with a mean close to zero and a standard 
deviation close to 1, the method of transformation is arbitrary. Including other scaling techniques 
(like Normalizing, Robust Scalers) into the hyperparameter tuning process could lead to better 
results.  

6.1.1.2 Feature Selection 

Same accounts for feature selection and feature enrichment. In this thesis, the feature enrichment 
option was limited to a second-degree polynomial feature combination and principal component 
analysis’ number of components. Analog to the scaling step, there are additional techniques like 
Linear Discriminant Analysis or Kernelized PCA to be considered during the optimization process 
[29].  
 

 Additional Data 
Another typical method of increasing a model’s performance is the gathering of additional data. In 
general, this includes additional samples as well as the addition of feature dimensions. Since the 
economic conditions for energy storage vary over time, additional samples with increased temporal 
distance to the prediction period won’t necessarily increase the classification potential of the model. 
An additional feature, representing factors like weather conditions, holidays or daylight-saving time 
could improve the classification quality [48]. 
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 Economic Performance 
A method to increase the economic performance of the model rather than the classification quality 
is based on the decision boundaries. All classifiers classify based on a probability value (e.g. the 
percentage of votes per class). This value is a continuous number. By default, the category with the 
highest probability value gets predicted. Tuning these values can improve the performance of the 
agent.  
Within the prediction process a trained KNN classifier returns an array of values. Each value 
represents the percentage of votes a certain class gets. By default, the class with the most votes and 
therefore the highest value determines the class. Yet, this decision process can be modified. With 
the three classes of the EES in mind (charge, discharge, wait), an alternative strategy determining 
the prediction process could be as following: at least 90% of the neighbors must vote either charge 
or discharge for the ESS to take action. This would represent a conservative strategy, avoiding false 
actions, while accepting more downtime. An analysis based on a simple algorithm that shows that 
further improvements of the classifiers results are realizable can be found in Appendix i.c 
 

 Shortcomings of the Model 
The model in its current state, regarding extension, prediction quality and flexibility, shows the basic 
feasibility of EES operation based on MLAs. At the same time, it illustrates some of the shortcomings, 
that must be overcome to successfully implement MLAs as operation algorithms. The forecast 
horizon is currently limited to one hour which reduces the applicability of the model dramatically. 
Especially as the trading rules of the EM hinder live/online trading. Principally the model could also 
learn to predict arbitrary time steps into the future (i.e. +12 hours). Since the lagged variables seem 
to play an important role for the prediction process (see ’back to back’ and 0) the prediction quality 
should remain acceptable. A series of models, each predicting an hour in the future (i.e.+1, +2 ...,+24 
hours), can be used jointly for more complex predictions for every timestep. 
 
Secondly, the model in its current state makes use of only one possible revenue stream (arbitrage 
trading). As already elaborated in chapter 2, an EES potentially offers multiple services (i.e. 
regulating energy, intraday market) to the EM. Under real market conditions a profit orientated EES 
operator wants to provide a mix of services to gain maximum profit for her facility. The linear 
optimization of a storage problem for several markets respectively services is not trivial. 
Simultaneously, the approach I chose requires an optimal (or at least very good) solution to classify 
by in order to obtain satisfying results. Additionally, the current model has only three classes 
(alternatives) to ’choose’ from and therefore a rather simple task to learn. For more complex models 
the underlying decisions to be made by the operator, may exceed the MLAs ‘learning’ capacities . 
Anyway, the problem regarding the evaluation of classification (second best to worst alternative, 
see chapter 3.5.1) exaggerates because of the additional classes/alternatives.  
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Thirdly, a large-scale deployment of EESs with same or similar trading algorithms increases the 
impact of the trading process on the price building process. Consequently, the ‘pricetaker’ 
assumption during the linear optimization process becomes obsolete. This limits the maximal profits 
of the EES and may lead to unexpected price deviations. However, even for large scale deployments, 
EESs still provide balancing services for the market. This may lead to a shift in in the weighting of 
the single input features of the model(s) (e.g. a strategy change). A constant evaluation of the model, 
its features, and its profitability is therefore necessary.  

 

 Final Summary 
To evaluate the potential of machine learning based algorithms for electricity storage control 
(MLAES) a programming framework was introduced. Within this framework, the potential 
performance of different algorithms was compared. The results show that MLAES can outperform 
simple storage strategies and reduce the gap to the mathematically optimal solution. There is 
potential for further improvement of the model quality and the potential profit. This proves that 
MLAES are feasible for storage operation and should be investigated further. As the assumptions 
made in this thesis lead to a simplification, the results can’t be transferred one-to-one to real-world 
conditions. 
Although MLAES are shown to outperform other strategies such as back to back trading, the 
deployment of EES for arbitraging a single EM is not profitable now. The high investment costs 
prohibit the profit-oriented deployment, which also includes the mathematically optimal results of 
the linear model. 
Decreasing investment costs and increased political efforts to introduce EES into the market might 
change this. At the current market situation, it cannot be expected that EES are deployed solely for 
arbitraging on electricity wholesale markets. Similar results can be found in other publications [49], 
[50]. 
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 Additional Information 

a. Optimal Hyperparamter 

The following tables (Table 12 to Table 17) summarize the optimal parameter selection for each 
classifier based on their mean f1 score during the 5-fold cross validation for the years 2010 -2014. 
These values represent the optimal settings for the hyperparameters.  

Table 12  Gridsearch resutlts k- nearest neighbors (see chapter 4.2). 

Pre-processing/hyperparameter Value 

Scaler Quantile transformation 
Number of neighbors 11 
Weights uniform 
Mean CV score (f1) 0.775 
Standard deviation of CV score 0.004 

Table 13  Gridsearch results decision tree (see chapter 4.3). 

Preprocessing/hyperparameter Value 

Impurity metric “Entropy” 

Maximal depth 50 

Minimal samples for an additional split 2 

Minimal samples in terminal node 1 
Mean CV score (f1) 0.746 
Standard deviation of CV score 0.005 

Table 14 Gridsearch results random forrest (see chapter 4.4). 

Preprocessing/hyperparameter Value 

Impurity metric “Entropy” 

Number of trees 100 

Maximal Features 90 

Mean CV score (f1) 0.821 
Standard deviation of CV score 0.005 

 

  



74 

Table 15 Gridsearch results logistic regression (see chapter 4.5). 

Preprocessing/hyperparameter Value 

Scaler Quantile Transformer 
Polynomial Features Yes 
PCA 1000 
penalty type L2 
penalty (C) 0.1 
Mean CV score (f1) 0.795 
Standard deviation of CV score 0.007 

Table 16 Gridsearch results support vector classifier (see chapter 4.6). 

Preprocessing/hyperparameter Value 

Scaler Standard Scaler 
Polynomial Features No 
Kernel type RBF 
Penalty (C) 100 
Gamma 0.001 
Mean CV score (f1) 0.810 
Standard deviation of CV score 0.006 

Table 17 random search neuronal net (see chapter 4.7). 

Preprocessing/hyperparameter Value 

Polynomial Features No 
Scaler Quantile Transformer 
input layer 119 
input layer activation function Sigmoid 
Number of hidden layer 3 
Nodes hidden layer 119 
Dropout during Training 10% after each layer 
Activation function hidden layer hard sigmoid (steeper version of sigmoid) 
Output nodes 3 
Output layer activation function softmax 
Batch size 50 
Epochs 50 
Optimizer RMSprop 
Initial leaning rate 0.01 
Loss function categorical cross entropy 
Test Score 0.83 
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b. Model based feature selection  

Some models (e.g. Random Forest, Logistic Regressions) can be used to estimate the importance of 
single features. One of them is the random forest model (chapter 4.3). While training the model, 
the importance of features is determined based on the decisions of the trees. This importance, also 
called ‘Gini-importance’ (based on the Gini coefficient) is the normalized total reduction of the Gini 
coefficient of a population while splitting the population based on this certain feature [39]. In other 
words, the Gini coefficient shows how much impurity/entropy reduction can be obtained by a (data) 
split based on this exact feature. Thus, features carrying useful information could be pushed out by 
chance [29]. This effect can be reduced by repeating the process several times [29], [51]. Figure 7-1. 
displays the Gini-importance and the potential thresholds for feature selection for the original 
training data. 
 
Figure 7-2 does the same for the polynomial expanded data (see chapter 3.3.2). It is important to 
acknowledge that, although the selection is based on 1 000 unique decision trees, the order and 
therefore the constellation of the selected features varies slightly between each draw. 
The table on the left side shows the 10 ‘most important’ features according to the RF model. On the 
right side all Gini-importances are displayed in descending order. The top 80 features are 
responsible for 90% of the entropy reduction. Around the 80th feature the additional information 
gain becomes very small. Features after the 80th are considerable to be dropped. A manual 
examination of these features shows that these features are without exception containing dummy 
variables for the hour, weekday, and month. 
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Figure 7-1 Gini importances of the features for the orignial data. Right plot: importances of the single fetures in bule and 
the cumulative importances in red.  

 
 

Figure 7-2 Gini-importances of the features for the polynomial enriched training set. Right plot: importances of the single 
fetures in bule and the cumulative importances in red.  

A closer look at the features respectively their combinations reveals interesting results. In this 
(pseudo random) draw, the installed capacity of wind and solar and the price of T-168 are the 
dominant features. These combinations and their causal relations are surprising since the installed 
capacities are rather constant over time. However, these top features are probably highly correlated 
and therefore the ability to make predictions solely based on them is low.  
On the right side all importances are displayed in a descending order. In blue (left axis) the values 
for each single feature and in red (right axis) the cumulative importance. Note the difference in the 
scale of the axis between the original and the polynomial dataset.  
The Gini-importance is a relative value and therefore decreasing with the total number of features. 
Two phenomena are visible. Firstly, the last ~500 features add no additional information. These are 
the columns of zeros. Secondly, the main drop of importance occurs at 3 000 features. For most 
MLAs datasets containing 3000 dimensions and ~3 0000 rows are too large, considering the 
computational limitations of an ordinary PC and the standards of conscientious training and test 
regimes. 
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c. Performance Improvement via Decision Boundaries  

The artificial optimization of the decision boundaries can be achieved by simply iterating over the 
different thresholds for the decision boundary. In this example, the algorithm is tested for 100 
uniformly distributed thresholds between 0 and 1. This results in a new array of predicted storage 
activities. For every prediction: either the predicted value for charge or discharge greater than the 
threshold. If yes, predict the higher of those two else predict wait. This results in 100 different 
classifications to be evaluated. For the same KNN classifier as used during the evaluation the optimal 
threshold of 0.33 results in 79.5% of the maximal profit for the year 2015. The default setting results 
in 73%. This means that if either the predicted probability for charge or discharge is greater than 33% 
the one with the highest probability should be taken or if not, then wait. While optimizing this 
threshold for the maximal profit for the year 2015 represents an illegal information transfer, the 
same can be done for the year 2014. Optimizing the decision boundaries for 2014 results with an 
optimal threshold of 0.30. Appling this threshold (optimized on the year 2014) on the year 2015 the 
profit still is 79% of the maximal profit. This is only 0.5% less than the optimal result for 2015 from 
neuronal networks. This example shows that the tuning of the decision boundaries further improves 
the performance substantially without any additional information. Same applies for all other 
classifiers.  
However, the description of an optimal algorithm, in combination with metrics to determine the 
best setting of the decision boundaries requires additional research. Figure 7-3 illustrates the effect 
of the threshold on the profit of the EES. It is visible that the profit in dependency of the threshold 
correlates for both sets. 

 

Figure 7-3 Decision Boundaries for the a KNN classifier trained on 2014's data tested on 2015 data.  The decision 
boundaries are based on a threshold for classification. 
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 Code 

The complete code is also available at: https://github.com/zwiebo/Evaluation-of-Machine-
Learning-Based-Storage-Control-Algorithms-for-the-Electricity-Market  

a. Data import & Data Cleaning  

""" 
# This Script manages the data import from Open-Power-System-Data (OPSD) 
# the source file is downloaded manually and from the OPSD homepage 
 
# The tasks of the script are: 
#   - load the data from a .csv file into a "pandas" DataFrame 
#   - transform the time stamp string to a time object 
#   - delete unnecessary columns 
#   - delete columns with to many empty values 
#   - calculate some values of interest 
        - residual load 
        - combined forecasts 
        - combined renewable generations 
#   - save the DataFrame to a ‘.xls’ -> OPSD_OWN_table.xls 
#   - save a pickle for the next run 
 
""" 
 
from datetime import datetime 
import pandas as pd 
import warnings 
 
# --------- 
# VARIABLES 
# --------- 
 
# file import 
original_file = "time_series_60min_singleindex_filtered.csv" 
df = pd.DataFrame() 
 
# --------- 
# Functions 
# --------- 
 
def transform_date(time_stamp_str): 
    """ 
    ---------- 
    # convert the time stamp string from the file to a machine readable object 
    ---------- 
    """ 
    return datetime.strptime(time_stamp_str, "%Y-%m-%dT%H:%M:%SZ") 
 
def format_workday(value): 
    """ 
    Classify a variable as either workday or weekend-day 
    :param value: number of day 
    :return: 1 : workday, 
            0 : weekendday 
    """ 
    if value <= 5: 
        return 1 
    else: 
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        return 0 
 
def init_time_stamps(): 
    """ 
    format the timestamp and make variables for every component of the timestamp 
    """ 
    df["absolute_hour"] = df.index 
    df["Time"] = list(map(transform_date, df["utc_timestamp"])) 
    df["hour"] = pd.DatetimeIndex(df["Time"]).hour 
    df["day"] = pd.DatetimeIndex(df["Time"]).day 
    df["month"] = pd.DatetimeIndex(df["Time"]).month 
    df["year"] = pd.DatetimeIndex(df["Time"]).year 
    df["weekday"] = pd.DatetimeIndex(df["Time"]).weekday 
    df["workday"] = list(map(format_workday, df["weekday"])) 
 
 
def create_header_overview(DataFrame=df, Filename="00_Headers.txt"): 
    """ 
    create a file with all headers of the DataFrame for a better overview 
    """ 
 
    with open(Filename, "w") as f: 
        for i in list(DataFrame): 
            f.write("'{}',\n".format(i)) 
 
 
if __name__ == "__main__": 
    # load Dataframe 
    df = pd.read_csv(original_file, index_col=1, parse_dates=True) 
    init_time_stamps() 
    # drop columns with lots of NAN 
    df.drop('interpolated_values', axis=1, inplace=True) 
    df.drop("DE_wind_offshore_generation", axis=1, inplace=True) 
    df.drop("DE_wind_onshore_generation", axis=1, inplace=True) 
    df.drop("DE_50hertz_wind_offshore_forecast", axis=1, inplace=True) 
    df.drop("DE_50hertz_wind_onshore_forecast", axis=1, inplace=True) 
    df.drop("DE_50hertz_wind_offshore_generation", axis=1, inplace=True) 
    df.drop("DE_50hertz_wind_onshore_generation", axis=1, inplace=True) 
 
    # calculate the residual load 
    # take all time steps with wind and solar generation  
    # subtract the Solar and PV generation from the total load 
    df["DE_solar_generation"] = df["DE_solar_generation"].fillna(value=0) 
    warnings.warn("Fill na in 'DE_solar_generation' with '0' !") 
 
    # calculate the total renewable generation 
    df["renewable_generation"] = df["DE_wind_generation"] + 
df["DE_solar_generation"] 
    df["DE_residual_load"] = df["DE_load_"] - df["renewable_generation"] 
 
    # calculate the total wind forecast 
    df["forecast_wind"] = df["DE_50hertz_wind_forecast"] + \ 
                          df["DE_amprion_wind_forecast"] + \ 
                          df["DE_tennet_wind_forecast"] + \ 
                          df["DE_transnetbw_wind_forecast"] 
 
    # calculate the total solar forecast 
    df["forecast_solar"] = df["DE_50hertz_solar_forecast"] + \ 
                           df["DE_amprion_solar_forecast"] + \ 
                           df["DE_tennet_solar_forecast"] + \ 
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                           df["DE_transnetbw_solar_forecast"] 
 
    # calculate the total forecast 
    df["forecast_total"] = df["forecast_wind"] + df["forecast_wind"] 
 
    # a list of the individual TSO's forecast and generation reports ... 
    drop_list = ["DE_50hertz_wind_forecast", 
                 "DE_amprion_wind_forecast", 
                 "DE_tennet_wind_forecast", 
                 "DE_transnetbw_wind_forecast", 
                 "DE_50hertz_solar_forecast", 
                 "DE_amprion_solar_forecast", 
                 "DE_tennet_solar_forecast", 
                 "DE_transnetbw_solar_forecast", 
                 'DE_50hertz_solar_generation', 
                 'DE_50hertz_wind_generation', 
                 'DE_amprion_solar_generation', 
                 'DE_amprion_wind_generation', 
                 'DE_amprion_wind_onshore_generation', 
                 'DE_tennet_solar_generation', 
                 'DE_tennet_wind_generation', 
                 'DE_tennet_wind_offshore_generation', 
                 'DE_tennet_wind_onshore_generation', 
                 'DE_transnetbw_solar_generation', 
                 'DE_transnetbw_wind_generation', 
                 'DE_transnetbw_wind_onshore_generation'] 
 
    # ...is used to drop these columns 
    for element in drop_list: 
        df.drop(element, axis=1, inplace=True) 
 
    # generate dummy variables for hour, month and weekday 
    dummy_list = ['hour', 
                  'month', 
                  'weekday'] 
    for element in dummy_list: 
        dummy_table = pd.get_dummies(df[element], prefix=element, 
prefix_sep="_") 
        df = pd.concat([df, dummy_table], axis=1) 
 
    # save the resulting df 
    df.to_pickle("00_OPSD_downsized.pickle") 
    create_header_overview(df, "00_Headers_downsized.txt") 
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b. Data Manipulation 

""" 
Task:   Preparing of the input dataFrames 

 The ‘get_dict’ function returns a dictionary with all necessary  

 This reduces the necessary amount of code at the following points 

  of the model. 

 There are three different time frames for every topic of interest: 

  2010 – 2014:  for classifiers capable of large input data sets 

 2014:  for classifiers requiring smaller input data sets 

 2015:  for the evaluation 

 time series within the dictionary: 

  -  "df_10_14" -> complete df with all columns for 2010-2014 
               -   "df_15” -> complete df with all columns for 2015 
               -   "X": X -> features 2010-2015  
               -   "y": y -> labels 2010-2015 
               -   "X_14" -> features 2014 
               -   "y_14" -> labels 2014 
               -   "X_eval” -> features 2015 
               -   "y_eval" -> labels 2015 
               -   "prices_eval_10_14" -> timeseries of prices 2010-2014 
               -   "prices_eval_14" -> timeseries of prices 2014 
               -   "prices_eval_15” -> timeseries of prices 2015 
               -   "GAMS_result_10_14" -> balance of the LP for 2010-2014 
               -   "GAMS_result_14": balance of the LP for 2014 
               -   "GAMS_result_15" balance of the LP for 2015 

  

The script performs the following steps 
        - adding lag variables 
        - importing and labeling the data (linear programming results) 
        - replace Nan – values  

 - train/test/evaluation - Split 
""" 
import pandas as pd 
from StorageLogic import runLogic 

 
################################################## 

#               >>  Functions  <<                # 

################################################## 
 
def get_dict(): 
    """ 
    This function performs steps. to be called from other scripts 



82 

    :return: dictionary with all necessary values 
    """ 
    def make_label(val, threshold=0.1): 
        # label the results from the LP (Classification) 
        if val > threshold: 
            return 1 
        else: 
            return 0 
    # load the processed OPSD Dataframe 
    dataFrame = pd.read_pickle("00_OPSD_downsized.pickle") 
 
    # a list of elements with non-numeric values 
    # including the absolute day variable 
    del_list = ["absolute_hour", 
                'utc_timestamp', 
                'Time', 
                'day'] 
 
    for element in del_list: 
            dataFrame.drop(element, axis=1, inplace=True) 
 
    # add lag variables for load and day ahead price 
    for shift in range(1, 25): 
        dataFrame["DE_price_day_ahead_T-{}".format(shift)] = 
dataFrame["DE_price_day_ahead"].shift(shift) 
        dataFrame["DE_load__T-{}".format(shift)] = 
dataFrame["DE_load_"].shift(shift) 
        # shift for value of last same time last week 
    dataFrame["DE_price_day_ahead_T-{}".format("last week")] = 
dataFrame["DE_price_day_ahead"].shift(168) 
    dataFrame["DE_load__T-{}".format("last_week")] = 
dataFrame["DE_load_"].shift(168) 
 
    # make moving average 
    rolling_means = [4, 24, 168] 
    for RM in rolling_means: 
        dataFrame["DE_price_day_ahead_RM-{}".format(RM)] = \ 
            dataFrame["DE_price_day_ahead"] \ 
                .rolling(window=RM, min_periods=1).mean() 
 
        dataFrame["DE_load__RM-{}".format(RM)] = \ 
            dataFrame["DE_load_"]. \ 
                rolling(window=RM, min_periods=1).mean() 
 
        dataFrame["DE_residual_load__RM-{}".format(RM)] = \ 
            dataFrame["DE_residual_load"]. \ 
                rolling(window=RM, min_periods=1).mean() 
 
    # set timeframe 
    dataFrame = dataFrame[dataFrame.year >= 2010] 
    dataFrame = dataFrame[dataFrame.year <= 2015] 
 
    # shift the forecast columns, so that they are in the correct row 
    dataFrame["forecast_wind"] = dataFrame["forecast_wind"].shift(-1) 
    dataFrame["forecast_solar"] = dataFrame["forecast_solar"].shift(-1) 
    dataFrame["forecast_total"] = dataFrame["forecast_total"].shift(-1) 
 
    # load the results file from the LP and shift it 
    GAMS_df = pd.read_csv("GAMS\\results_GAMS_10-15_TOTAL_single_wo_INFO_.csv", 
sep=";") 
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    GAMS_df = GAMS_df[["Feed_in", "Feed_out"]] 
    GAMS_df = GAMS_df.shift(-1) 
 
    # combine features and labels 
    dataFrame = pd.DataFrame.join(dataFrame.reset_index(), GAMS_df) 
    dataFrame.drop('cet_cest_timestamp', axis=1, inplace=True) 
 
    # transform the label into categorical data 
    dataFrame["Feed_in"] = list(map(make_label, dataFrame.loc[:, "Feed_in"])) 
    dataFrame["Feed_out"] = list(map(make_label, dataFrame.loc[:, "Feed_out"])) 
    # correct setting of labels 
    dataFrame.loc[:, "behave"] = dataFrame.Feed_in - dataFrame.Feed_out 
    dataFrame.drop("Feed_in", axis=1, inplace=True) 
    dataFrame.drop("Feed_out", axis=1, inplace=True) 
 
    # replace "nan"  values with last valid value 
    # replace remaining "nan" with 0 
    dataFrame.fillna(method="ffill", inplace=True) 
    dataFrame.fillna(0, inplace=True) 
 
    # slice the Data frames into train/test sets and evaluation sets 
    df_10_14 = dataFrame[dataFrame["year"] <= 2014].copy() 
    df_14 = dataFrame[dataFrame["year"] == 2014].copy() 
    df_15 = dataFrame[dataFrame["year"] == 2015].copy() 
 
    # make split features and labels for... 
    # ...optimization (2010- 2014) 
    X = df_10_14.drop("behave", axis=1) 
    y = df_10_14["behave"] 
 
    # ...optimization (2014) 
    X_14 = df_14.drop("behave", axis=1) 
    y_14 = df_14["behave"] 
 
    # ..evaluation 
    X_eval = df_15.drop("behave", axis=1) 
    y_eval = df_15["behave"] 
 
    # shift the prices, to match the features 
    prices_eval_10_14 = df_10_14["DE_price_day_ahead"].shift(-1) 
    prices_eval_15 = df_15["DE_price_day_ahead"].shift(-1) 
    prices_eval_14 = df_14["DE_price_day_ahead"].shift(-1) 
 
    # calculate the the profit according the the storage logic 
    GAMS_result_10_14 = runLogic("GAMS", 
                                 price_series=prices_eval_10_14, 
                                 signals=y, 
                                 signal_format="1").balance 
    GAMS_result_14 = runLogic("GAMS", 
                                 price_series=prices_eval_14, 
                                 signals=y_14, 
                                 signal_format="1").balance 
    GAMS_result_15 = runLogic("GAMS", 
                              price_series=prices_eval_15, 
                              signals=y_eval, 
                              signal_format="1").balance 
 
    # populate the dictionary to return 
    return_dict = {"df_10_14": df_10_14, 
                   "df_15": df_15, 
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                   "X": X, 
                   "y": y, 
                   "X_14": X_14, 
                   "y_14": y_14, 
                   "X_eval": X_eval, 
                   "y_eval": y_eval, 
                   "prices_eval_10_14": prices_eval_10_14, 
                   "prices_eval_14": prices_eval_14, 
                   "prices_eval_15": prices_eval_15, 
                   "GAMS_result_10_14":GAMS_result_10_14, 
                   "GAMS_result_14":GAMS_result_14, 
                   "GAMS_result_15":GAMS_result_15 
                   } 
    return return_dict 
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c. Evaluation Framework (Storage Logic) 

""" 
Name: StorageLogic 
Task: initialize a battery with and providing a function taking a signal and a 
price timeseries to simulate a trading process 
 
the battery object allows to simulate a trading process, 
while honoring the physical limitations of the EES 
simultaneously the objects keeps record of all actions (self.history) 
""" 
 
import datetime 
import pandas as pd 
import numpy as np 
 
################################################## 
#                >>  Objects  <<                 # 
################################################## 
 
 
class battery: 
    def __init__(self, 
                 self_discharge=0.007, 
                 volume=1, 
                 efficiency=0.825, 
                 storage_speed=0.25, 
                 balance=0, 
                 storage_level=0, 
                 signal_modificator=0, 
                 initializer="Annon", 
                 max_load_cycles = 7000, 
                 investment_cost=700000, 
                 ): 
 
        self.investment_cost = investment_cost 
        self.max_load_cycles = max_load_cycles 
        self.minimal_gain_per_load_cycle = investment_cost/max_load_cycles 
        self.efficiency = efficiency 
        self.signal_modificator = signal_modificator 
        self.balance = balance 
        self.storage_level = storage_level 
        self.volume = volume 
        self.storage_speed = storage_speed 
        self.self_discharge = self_discharge 
        self.initializer = initializer  # Todo implement 
 
        self.history = {  # todo behavouirtracker 
            "storagelevel": [], 
            "delta_storage_level": [], 
            "balance": [], 
            "performance": [], 
            "price": [], 
            "signal": [], 
            "activity": []} 

################################################## 
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#               >>  Functions  <<                # 

################################################## 
 

 

 def mk_report_dataFrame(self, suffix=False, Path="BAT_History", 
filename=False, date=False): 
        """ 
        this function transforms the .self.history to a pandas' DataFrame 
        :param suffix: append a name specifying the algorithm. 
        :param Path: Path to the output file. default "BAT_History" 
        :param filename: if true save as BAT_History_{}.csv 
        :param date: adds the date to the file name 
        :return: df with history 
        """ 
 
        if not suffix: 
            suffix = self.initializer 
        return_df = pd.DataFrame(self.history) 
        return_df = return_df.add_suffix(("___"+suffix)) 
        if filename: 
            filename = "{}\\BAT_History_{}".format(Path, filename) 
            if date: 
                filename += "_" + str(datetime.date.today()) 
            filename += ".csv" 
            return_df.to_csv(filename, sep=";") 
 
        return return_df 
 
    def store_energy(self, current_price, signal): 
        """ 
        calculate the storing process 
        document the storing process 
        :param current_price: input price of bat.behave 
        :param signal: signal 
        :return: 
        """ 
        storable_energy = min(signal, self.volume - self.storage_level) 
 
        # calculate the performance 
        performance = storable_energy/self.efficiency * current_price * -1 
        self.balance += performance 
        # physical storing 
        self.storage_level += storable_energy 
 
        # update history 
        self.history["performance"].append(performance) 
        self.history["balance"].append(self.balance) 
        self.history["delta_storage_level"].append(storable_energy) 
 
        # plausibility check 
        if self.storage_level > self.volume: 
            print("LogicalError") 
            quit() 
 
    def sell_energy(self, current_price, signal): 
        """ 
        Calculate the selling process 
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        document the selling process 
        :param current_price: input price of bat.behave 
        :param signal: signal 
        :return: 
        """ 
        sellable_energy = min(signal * -1, self.storage_level) 
 
        # calculate the performance 
        performance = sellable_energy * current_price 
        self.balance += performance 
 
        # physical storing 
        self.storage_level -= sellable_energy 
 
        # update history 
        self.history["performance"].append(performance) 
        self.history["balance"].append(self.balance) 
        self.history["delta_storage_level"].append(sellable_energy * -1) 
 
        # plausibility check 
        if self.storage_level < 0: 
            print("Error1") 
 
    def behave(self, signal, current_price): 
 
        self.history["price"].append(current_price) 
        self.history["signal"].append(signal) 
 
        if signal > 0 and self.storage_level < self.volume: 
            self.store_energy(current_price, signal) 
            self.history["activity"].append("storing..") 
            # store 
 
        elif signal < 0 and self.storage_level > 0: 
            self.sell_energy(current_price, signal) 
            self.history["activity"].append("selling..") 
            # sell 
 
        elif signal == 0: 
            # wait 
            self.history["performance"].append(0) 
            self.history["balance"].append(self.balance) 
            self.history["delta_storage_level"].append(0) 
            self.history["activity"].append("waiting..") 
        else: 
            # storage cap reached 
            self.history["performance"].append(0) 
            self.history["balance"].append(self.balance) 
            self.history["delta_storage_level"].append(0) 
            if self.storage_level == 1: 
                self.history["activity"].append("I'm full") 
                # "will never happen" 
 
            if self.storage_level == 0: 
                self.history["activity"].append("I'm empty") 
 
        if (signal < -1) or (signal > 1): 
            # Error 
            print("Error, signal is ", signal) 
            exit() 
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        self.history["storagelevel"].append(self.storage_level) 
        ## self-discharge is in % 
        self.storage_level *= (1 - self.self_discharge/100) 
 
################################################## 
#               >>  Functions  <<                # 
################################################## 
 
def simple_signal(price_series, sell_price=40, buy_price=40, maxStorageSpeed=1): 
    """ 
    This function evaluates the price series and produces simple storage signals 
    :param price_series: a times series of prices (pd.Series,list etc) 
    :param sell_price: lower threshold for selling energy 
    :param buy_price: upperthreshold for buying energy 
    :return:list of signals for Storagelogic.py 
    """ 
 
    signal = [] 
    for price in price_series: 
        if price < buy_price: 
            signal.append(maxStorageSpeed) 
        elif price > sell_price: 
            signal.append(maxStorageSpeed * -1) 
        else: 
            signal.append(0) 
    return signal 
 
def runSimpleLogic(price_series, initializer="SimpleLogic", buy_price=35, 
sell_price=38): 
    """ 
    Start a run with a price series 
    Compute the signal by itself, depending on given parameters of buy-price and 
sell_price 
    :param initializer: name of the initializer of the Battery 
    :param price_series: 
    :param buy_price: 
    :param sell_price: 
    :return: A Battery, which already performed a cycle run through the 
priceseries 
    """ 
 
    simple = simple_signal(price_series=price_series, buy_price=buy_price, 
sell_price=sell_price) 
    bat = battery(initializer=initializer) 
    for signal, price in zip(simple, price_series): 
 
        bat.behave(signal, price) 
    return bat 
 
def runLogic(initializer, price_series, signals, signal_format): 
    """ 
    Run the storage logic with given a price_series and signals 
    :param initializer: name of the initializer of the Battery 
    :param price_series: 
    :param signals: 
    :param signal_format:to format the input signal to a consistent value 
    :return: A Battery, which already performed a cycle run through the price 
series 
    """ 
    bat = battery(initializer=initializer) 
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    signals = np.array(signals) 
    price_series = np.array(price_series) 
    if signal_format == "0.1": 
        for signal, price in zip(signals, price_series): 
            bat.behave(signal, price) 
    if signal_format == "1": 
        price_series[-1] = 0 
        assert len(signals) == len(price_series) 
 
        for signal, price in zip(signals, price_series): 
            bat.behave(signal*bat.storage_speed, price) 
    else: 
        raise TypeError("Signaltype is not correct!") 
    return bat 
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d. Linear Programming Model 

$ontext 
#################### 
storage optimization 
#################### 
 This model solves the optimal storage behavior for X years 
$offtext 
 
Option threads=-1; 
Option Reslim=10000; 
 
         sets t/t0*t52583/ 
*         sets t/t1*t24/ 
; 
         parameter        price / 
$include C:\Python\Masterarbeit2.0\GAMS\GAMS_import_1d_2010-2015.txt 
*$include test_t24.txt 
/; 
 
*Variables to define the properties of the storage technology 
*        stor_eff                ..the loss during the feed in AND feed out 
*                                  process 
*        selfdischarge           ..percentual loss due to self discharge 
*        max_charge_speed        ..maximum charge speed in dependency of the 
*                                  installed capacity 
 
scalar   stor_eff, 
         selfdischarge, 
         max_feed_speed; 
         stor_eff = 0.825; 
         selfdischarge = 0.007; 
         max_feed_speed = 0.25; 
 
positive variable 
         feed_in(t), 
         feed_out(t), 
         stor_lvl(t); 
                 feed_in.up(t)   = max_feed_speed; 
                 feed_out.up(t)  = max_feed_speed; 
                 stor_lvl.up(t)     = 1 
 
variables 
         hourly_profit(t), 
         profit_acc(t); 
 
free variable 
         balance; 
 
equations 
         stor_lvl_eq(t), 
*only for results file 
         accumulate_profit(t), 
         calc_hourly_profit(t), 
*objective function 
         calculate_balance; 
 
stor_lvl_eq(t)..         stor_lvl(t) =e= 
                                 stor_lvl(t-1) 
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                                 *(1-selfdischarge/100) 
                                 + feed_in(t) 
                                 - feed_out(t); 
 
calc_hourly_profit(t)..     hourly_profit(t) =e= feed_out(t) 
                                                 * price(t) 
                                                 -(feed_in(t) 
                                                 * price(t) 
                                                 /stor_eff); 
 
accumulate_profit(t)..      profit_acc(t)    =e= profit_acc(t-1) 
                                                 + hourly_profit(t); 
 
calculate_balance..         balance          =e= sum(t,  feed_out(t) 
                                                         * price(t)) 
                                                 -sum(t, feed_in(t) 
                                                          * price(t)/stor_eff); 
 
 
model storOpt /all/; 
solve storOpt using LP maximize balance; 
 
File output/ 
"results_GAMS_10-15_TOTAL_single.csv" 
 
/; 
File output1/ 
"results_GAMS_10-15_TOTAL_single_wo_INFO_.csv" 
/; 
 
output.nd=5; 
output1.nd=5; 
PUT output; 
 
Put 'RUNTIME;',system.time";"/; 
Put 'RUNDATE;',system.date";"/; 
Put 'balance;',balance.l";"/; 
Put 'stor_eff;',stor_eff";"/; 
Put 'selfdischarge;',selfdischarge";"/; 
Put 'max_feed_speed;',max_feed_speed";"/; 
Put 'Timesstep;Price;Storage_Level;Feed_in;Feed_out;Balance;'/; 
 
Loop(t,PUT  t.TL";"price(t)";" 
stor_lvl.l(t)";"feed_in.l(t)";"feed_out.l(t)";"hourly_profit.l(t)";"profit_acc.l
(t)";"/) 
putclose 
 
put output1; 
Put "price;Storage_Level;Feed_in;Feed_out;hourly_profit;profit_acc;"/; 
Loop(t,PUT 
price(t)";"stor_lvl.l(t)";"feed_in.l(t)";"feed_out.l(t)";"hourly_profit.l(t)";"p
rofit_acc.l(t)";"/) 
putclose 
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e. Optimization (Grid Search) 

The following scripts perform the grid search for the different classifiers, resulting in the optimal set 
of hyperparameters for the training set (2010-2014/2014) for the respective classifier. The results 
including the hyperparameters are stored in a csv file 

f.  K-Nearest Neighbors 

from sklearn.neighbors import KNeighborsClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from sklearn.model_selection import GridSearchCV 
from sklearn.decomposition import PCA 
import pandas as pd 
 
from Datenaufbereitung import get_dict 
from StorageLogic import runLogic 
 
output = [] 
INFOS = get_dict() 
 

# import 2014’ Dataframes 

X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 

# Scorer calculates the score 

f1_score = make_scorer(f1_score, average="weighted") 
 

# loop over scaler-type and number of components for (PCA) 
for scaler_ in [StandardScaler, QuantileTransformer]: 
    scaler = scaler_() 
    X_train_sc = scaler.fit_transform(X_14) 
    for components in [20, 40, 50, 100, 119]: 
        cv_results_table_name = "KNN\\KNN_{}_{}.xls".format(scaler_.__name__, 
components)         
         
        pca = PCA(components) 
        X_train_pca = pca.fit_transform(X_train_sc) 
        params = {"n_neighbors": [10, 11, 13, 16, 20], 
                  "n_jobs": [-1], 
                  "weights": ["uniform", "distance"], 
                  "p": [1, 2]} 
 
        clf = GridSearchCV(KNeighborsClassifier(), params, cv=5, 
scoring="f1_weighted", verbose=1) 
        clf.fit(X_train_pca, y_14) 
         
        # populate output Datatframe 
        cv_result_df = pd.DataFrame(clf.cv_results_) 
        cv_result_df = cv_result_df[['mean_test_score', 
                                     'std_test_score', 
                                     'mean_train_score', 
                                     'std_train_score', 
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                                     'param_n_neighbors', 
                                     'param_p', 
                                     'param_weights', 
                                     'rank_test_score', ]] 
        # save output 
        cv_result_df = cv_result_df.sort_values("rank_test_score") 
        cv_result_df.to_excel(cv_results_table_name) 
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g. Decision Tree 

from sklearn.model_selection import train_test_split 
from sklearn.pipeline import make_pipeline 
from sklearn.model_selection import GridSearchCV 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import make_scorer 
from sklearn.metrics import f1_score 
import pandas as pd 
from Datenaufbereitung import get_dict 
 
# import DataFrames 
INFOS = get_dict() 
X = INFOS["X"] 
y = INFOS["y"] 
 
# Scorer calculates the score 

f1_score = make_scorer(f1_score, average="weighted") 
 
# set up classifier 
pipe = make_pipeline(DecisionTreeClassifier()) 
param_grid = {'decisiontreeclassifier__min_samples_leaf':[1,20,40,60,100], 
              'decisiontreeclassifier__min_samples_split':[2,50,100,200], 
              'decisiontreeclassifier__max_depth':[100,50,25,10], 
              'decisiontreeclassifier__criterion':["gini", "entropy"], 
              'decisiontreeclassifier__class_weight':["balanced"] 
             } 
 
# set up gridsearch parameter 
gs = GridSearchCV(pipe, 
                  param_grid=param_grid, 
                  cv=5, 
                  n_jobs=-1, 
                 verbose=3) 
 
# fit classifier 
gs.fit(X_train, y_train) 
 
# save result 
pd.DataFrame(gs.cv_results_).to_excel("DT\\DecisionTree.xls") 
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h. Random Forest 

 

from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.pipeline import make_pipeline 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import make_scorer 
from sklearn.metrics import f1_score 
import pandas as pd 
from Datenaufbereitung import get_dict 
 
# import input DataFrames 
INFOS = get_dict() 
X = INFOS["X"] 
y = INFOS["y"] 
 
# scorer calculates the score 

f1_score = make_scorer(f1_score, average="weighted") 
 
# set up classifier 
pipe = make_pipeline(RandomForestClassifier()) 
param_grid = {'randomforestclassifier__n_estimators':[10,20,50,100], 
              'randomforestclassifier__max_features':[10,30,60,90,"auto"], 
              'randomforestclassifier__criterion':["gini", "entropy"], 
              'randomforestclassifier__class_weight':["balanced"] 
 
             } 
# set up grid search 
gs = GridSearchCV(pipe, 
                  param_grid=param_grid, 
                  cv=5, 
                  n_jobs=-1, 
                 verbose=3) 
 
# fit classifier 
gs.fit(X, y) 
 
# save result 
pd.DataFrame(gs.cv_results_).to_excel("RF\\RandomForest.xls") 
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i. Logistic Regression 

For the logistic regression two versions were examined: one with a PCA and one without a PCA. 

i. Grid Search without PCA 

 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.pipeline import make_pipeline 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import make_scorer 
from sklearn.metrics import f1_score 
import pandas as pd 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from Datenaufbereitung import get_dict 
 
# import DataFrames 
INFOS = get_dict() 
X = INFOS["X"] 
y = INFOS["y"] 
 
# scorer calculates the score 
f1_score = make_scorer(f1_score, average="weighted") 
 
# loop over different scalers 
for scaler in [StandardScaler, QuantileTransformer]: 
     
    # scale the input data 
    scaler = scaler() 
    X_train = scaler.fit_transform(X) 
     
    # set up classifier 
    pipe = make_pipeline(LogisticRegression()) 
    param_grid = {'logisticregression__penalty':["l1","l2"], 
              'logisticregression__C':[0.0001,0.001,0.01,0.1,1,10,100], 
              'logisticregression__solver':["saga"], 
              'logisticregression__class_weight':["balanced"], 
              'logisticregression__max_iter':[1000] 
             } 
     
    # set up grid search  
    gs = GridSearchCV(pipe, 
                  param_grid=param_grid, 
                  cv=5, 
                  n_jobs=-1, 
                 verbose=3, 
                 scoring = f1_score) 
    # fit classifiers 
    gs.fit(X_train, y) 
 
    # save output 
    
pd.DataFrame(gs.cv_results_).to_excel("JuPyter\\LogReg\\ohne_PCA_{}.xls".format(
scaler.__name__)) 
  

ii. With Polynomial Feature Selection and PCA  
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from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression  
from sklearn.pipeline import make_pipeline 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import make_scorer 
from sklearn.metrics import f1_score 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from sklearn.decomposition import PCA 
import pandas as pd 
from Datenaufbereitung import get_dict 
 
 
# import DataFrames 
 
INFOS = get_dict() 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
# scorer calculates the score  
f1_score = make_scorer(f1_score, average="weighted") 
 
# loop over scalers and PCA components 
for scaler_ in [StandardScaler, QuantileTransformer]: 
    for com in [10,100,500,1000]: 
                 
        # set up scaler and scale the features 
        scaler_name = scaler_.__name__ 
        scaler = scaler() 
        X_train = scaler.fit_transform(X_14) 
         
        # set up polinomalizer 
        poly = PolynomialFeatures() 
        X_train = poly.fit_transform(X_train) 
         
        # set up PCA 
        pca = PCA(com) 
        X_train = pca.fit_transform(X_train) 
 
        # set up classifier 
        pipe = make_pipeline(LogisticRegression()) 
        param_grid = {'logisticregression__penalty':["l2"], 
                      'logisticregression__C':[0.01,0.1,1,10,100], 
                      'logisticregression__solver':["saga"], 
                      'logisticregression__class_weight':["balanced"], 
                      'logisticregression__max_iter':[50000] 
                     } 
        # set up grid search  
        gs = GridSearchCV(pipe, 
                          param_grid=param_grid, 
                          cv=5, 
                          n_jobs=-1, 
                          verbose=3, 
                          scoring = "f1_weighted") 
         
        # train classifier 
        gs.fit(X_train, y_14) 
         
        # save output  
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pd.DataFrame(gs.cv_results_).to_excel("LogReg\\Poly_{}_PCA_{}.xls".format(com, 
scaler_name)) 
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j. Support Vector Classifier 

i. Without Polynomial Feature Enrichment 

from sklearn.svm import SVC 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import f1_score 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from sklearn.decomposition import PCA 
 
from sklearn.metrics import make_scorer 
import pandas as pd 
 
from Datenaufbereitung import get_dict 
 
# import DataFrames 
INFOS = get_dict() 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
# loop over the scalers 
for scaler_ in [StandardScaler, QuantileTransformer]: 
    for components in [10,20,30,40,50,60,70,80,90,100,119]: 
 
        # scores calculates the score 
        f1_score = make_scorer(f1_score, average="weighted") 
 
        scaler = scaler_() 
        X_train = scaler.fit_transform(X_14) 
 
        pca = PCA(components) 
        X_train = scaler.fit_transform(X_train) 
 
        cs = [0.01,0.1,1,10,100,1000,10000,100000] 
        gammas = [0.00001,0.0001,0.001,0.01] 
        tuned_parameters = [{'kernel': ['rbf'], 'gamma': gammas,'C': cs}, 
                    {'kernel': ['linear'], 'C': cs}] 
 
        gs = GridSearchCV(SVC(max_iter=100000), 
                      param_grid=tuned_parameters, 
                      cv=5, 
                      n_jobs=-1, 
                      verbose=3, 
                      scoring = f1_score) 
        gs.fit(X_train, y_14) 
 
        pd.DataFrame(gs.cv_results_).sort_values("rank_test_score").\ 
            to_excel("JuPyter\\SVC\\{}_PCA_{}.xls".format(components, 
            scaler.__name__)) 
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ii. With Polinomial Feature Selection and PCA 

from sklearn.model_selection import train_test_split 
from sklearn.svm import SVC  
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import make_scorer 
from sklearn.metrics import f1_score 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from sklearn.decomposition import PCA 
 
import pandas as pd 
from Datenaufbereitung import get_dict() 
 
# Import Dataframe 
INFOS = get_dict() 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
# loop over scalers 
for scaler_ in [StandardScaler, QuantileTransformer]: 
    # loop over comonents for PCA 
    for components in [10,100,500,1000,2000]: 
        # calculates the score  
        f1_score = make_scorer(f1_score, average="weighted") 
         
        # scale the features 
        scaler_name = scaler_.__name__ 
        scaler = scaler_() 
        X_train = scaler.fit_transform(X_14) 
         
        # polinomial enrichment 
        poly = PolynomialFeatures() 
        X_train = poly.fit_transform(X_train) 
         
        # decomposition  
        pca = PCA(components) 
        X_train = pca.fit_transform(X_train) 
        X_test = pca.transform(X_test)  
 
        cs = [0.01,0.1,1,10,100,1000,10000,100000] 
        gammas = [0.00001,0.0001,0.001,0.01] 
        tuned_parameters = [{'kernel': ['rbf'], 'gamma': gammas,'C': cs}, 
                    {'kernel': ['linear'], 'C': cs}] 
 
        gs = GridSearchCV(SVC(max_iter = 2000), 
                      param_grid=tuned_parameters, 
                      cv=5, 
                      n_jobs=-1, 
                      verbose=3, 
                      scoring = "f1_weighted") 
        gs.fit(X_train, y_14) 
 
        pd.DataFrame(gs.cv_results_).sort_values("rank_test_score").\ 
            to_excel("JuPyter\\SVC\\Poly_{}_PCA_{}.xls".format(components, 
scaler_name)) 
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k. Neuronal Network 

import os 
# reduce log entries 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 
import keras 
from keras.models import Sequential 
from keras.layers import Dense, Dropout 
from keras.optimizers import RMSprop, SGD 
from keras.callbacks import EarlyStopping, ReduceLROnPlateau 
from sklearn.preprocessing import QuantileTransformer 
from sklearn.utils import class_weight 
import numpy as np 
 
from Datenaufbereitung import get_dict 
INFOS = get_dict() 
 
def create_and_train(INFOS): 
    """ callable function of the Neuronal Net""" 
    X = INFOS["X"] 
    y = INFOS["y"] 
 
    # for evaluation 
    X_15 =  INFOS["X_15"] 
    X_14 =  INFOS["X_14"] 
 
    # reformat the label into a vector with three dimensions 
    y = keras.utils.to_categorical(y, num_classes=3) 
 
    scaler = QuantileTransformer() 
    X = scaler.fit_transform(X) 
    X_14 = scaler.fit_transform(X_14) 
    X_15 = scaler.fit_transform(X_15) 
 
    # compute the weight of the classes) 
    classweight = class_weight.compute_class_weight('balanced', 
np.unique(INFOS["y"]),INFOS["y"]) 
 
    # Model Parameter 
    my_optimizer = RMSprop(lr=0.01) 
    loss_func = "categorical_crossentropy" 
 
    input_layer = "sigmoid" 
    output_layer = "softmax" 
    activation_func = "hard_sigmoid" 
    nr_hidden_layer = 2 
 
    layer_size = X.shape[1] 
    nr_hidden_layer_nodes = X.shape[1] 
 
    epochs = 100 
    batch_size = 1000 
 
    ## Callbacks 
    # methodes to influence the learning process 
    # stop if loss function dose not improve 4 times in a row 
    early_stopping_mentor = EarlyStopping(monitor="categorical_crossentropy", 
patience=4, mode="auto") 
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    # reduce lr if loss function stagnates 
    reduce_lr = ReduceLROnPlateau(monitor='categorical_crossentropy', 
factor=0.5, 
                              patience=1, min_lr=0.0001) 
 
    # set up model and add layers 
    model = Sequential() 
 
    # add inupt layer 
    model.add(Dense(nr_hidden_layer_nodes, input_dim=layer_size, 
activation=input_layer)) 
 
    for _ in range(nr_hidden_layer): 
        # add an arbitrary number of layers 
        model.add(Dense(int(nr_hidden_layer_nodes), 
activation=activation_func)) 
        # add a Dropout layer that mutes random x percents of the nodes 
        model.add(Dropout(0.1)) 
 
    # add specific outputlayer 
    model.add(Dense(3, activation=output_layer)) 
    model.compile(loss=loss_func, optimizer=my_optimizer, 
                  metrics=["categorical_crossentropy", "categorical_accuracy"]) 
 
    ## Fit the model 
    model.fit(X, 
              y, 
              callbacks=[early_stopping_mentor, reduce_lr], 
              epochs=epochs, 
              batch_size=batch_size, 
              verbose=1, 
              class_weight=classweight, 
          ) 
 
    def mk_output(output): 
        """ construction of the return dictionary""" 
        signal = [] 
        for step in output: 
            step = list(step) 
            one_hot = max(step) 
 
            if step.index(one_hot) == 0: 
                signal.append(0) 
            elif step.index(one_hot) == 1: 
                signal.append(1) 
            elif step.index(one_hot) == 2: 
                signal.append(-1) 
            else: 
                print("error", one_hot, np.where(output == one_hot)) 
        return signal 
    predictions = {"X" : mk_output(model.predict(X)), 
                   "X_14": mk_output(model.predict(X_14)), 
                   "X_15": mk_output(model.predict(X_15))} 
 
 
    return predictions 
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l. Training and Evaluation 

import datetime 
import Datenaufbereitung 
import pickle 
import numpy as np 

import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from sklearn.decomposition import PCA 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.pipeline import make_pipeline 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import f1_score,accuracy_score 
from StorageLogic import runLogic, simple_signal 
 

 
def calculate_load_cyles(bat): 
    """ 
    This function estimates the load cycles by adding all the storage input 
together """ 
    a_ray = np.array(bat.history["delta_storage_level"]) 
    feed_ins = a_ray[a_ray > 0] 
 
    return feed_ins.sum() 
 
 
def heatmap(values, xlabel, ylabel, xticklabels, yticklabels, cmap=None, 
            vmin=None, vmax=None, ax=None, fmt="%0.2f"): 
    """ 
    returns the a fig used to generate the confusion matrix 
    """ 
    if ax is None: 
        ax = plt.gca() 
    font = {'family': 'monospace', 
            'size': 15} 
    import matplotlib 
    matplotlib.rc('font', **font) 
    # plot the mean cross-validation scores 
    img = ax.pcolor(values, cmap=cmap, vmin=vmin, vmax=vmax) 
    img.update_scalarmappable() 
    ax.set_xlabel(xlabel) 
    ax.set_ylabel(ylabel) 
    ax.set_xticks(np.arange(len(xticklabels)) + .5) 
    ax.set_yticks(np.arange(len(yticklabels)) + .5) 
    ax.set_xticklabels(xticklabels, rotation=0) 

""" 
This script performs the actual training of the classifiers based on the data of 
2010-2014 respectively only 2014 and the optimal hyperparameters found during 
the optimization. Then the classifiers predict the optimal signals for the 2015. 
The resulting signals are used to evaluate the economic performance of the 
classifier. 
Additionally the alternative strategies are evaluated. 
""" 

################################################## 
#               >>  Functions  <<                # 
################################################## 
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    ax.set_yticklabels(yticklabels) 
    ax.set_aspect(1) 
 
    for p, color, value in zip(img.get_paths(), img.get_facecolors(), 
                               img.get_array()): 
        x, y = p.vertices[:-2, :].mean(0) 
        if np.mean(color[:3]) > 0.5: 
            c = 'k' 
        else: 
            c = 'w' 
        ax.text(x, y, fmt % value, color=c, ha="center", va="center") 
 
    return img 
 
################################################## 
#             >>  OUTPUT SET UP  <<              # 
################################################## 
 
with open("summary_table_{}.csv".format(datetime.date.today()), "w") as file: 
    """ 
    Create a table/header for the output file 
    """ 
    columns = ["name", 
               "Accuracy (Train)", 
               "Accuracy (Test)", 
               "F1 (Train)", 
               "F1 (Test)", 
               "profit 2014", 
               "rel profit 2014", 
               "profit 2015", 
               "rel profit 2015", 
               "load cycles", 
               "profit per load cycle", 
               "LCOE"] 
    for column in columns: 
        file.write(column) 
        file.write(";") 
    file.write("\n") 
 
 
def write_infos_in_table(name, clf, Mode=None): 
    """ 
    writes the results into the table 
    :param name: Name of the classifier 
    :param clf: classifier 
    :param Mode: different calculations depending on the caller of ther function 
    """ 
    if Mode == "NN": 
        pred_14 = clf["X_14"] 
        pred_15 = clf["X_15"] 
 
    elif Mode == "back2back": 
        pred_14 = list(y_14)[clf:] + list(y_14)[:clf] 
        pred_15 = list(y_15)[clf:] + list(y_15)[:clf] 
 
    elif Mode == "simple": 
        pred_14 = simple_signal(prices_14) 
        pred_15 = simple_signal(prices_15) 
 
    elif Mode == "GAMS": 



 

105 

        pred_14 = y_14 
        pred_15 = y_15 
 
    else: 
        pred_14 = clf.predict(X_14) 
        pred_15 = clf.predict(X_15) 
 
    # calculate the performance for the year 2014 / train 
    report_14 = runLogic(name + "_14", 
                         price_series=prices_14, 
                         signals=pred_14, 
                         signal_format="1") 
 
    # calculate the performance for the year 2015 / test 
    report_15 = runLogic(name + "_15", 
                         price_series=prices_15, 
                         signals=pred_15, 
                         signal_format="1") 
 
    lc = calculate_load_cyles(report_15) 
 
    # calculate metrics 
    name = name 
    acc_train = accuracy_score(pred_14, y_14) 
    acc_test = accuracy_score(pred_15, y_15) 
    f1_train = f1_score(pred_14, y_14, average="weighted") 
    f1_test = f1_score(pred_15, y_15, average="weighted") 
    profit_14 = report_14.balance 
    rel_profit_14 = report_14.balance / GAMS_14 
    profit_15 = report_15.balance 
    rel_profit_15 = report_15.balance / GAMS_15 
    load_cycles_15 = lc 
    profit_per_loadcycle = profit_15 / lc 
 
    report_15.mk_report_dataFrame(suffix=name, filename=name, date=True) 
    output = [name, 
              acc_train, 
              acc_test, 
              f1_train, 
              f1_test, 
              profit_14, 
              rel_profit_14, 
              profit_15, 
              rel_profit_15, 
              load_cycles_15, 
              profit_per_loadcycle] 
 
    # save results 
    with open("summary_table_{}.csv".format(datetime.date.today()), "a") as 
file: 
        for cell in output: 
            file.write(str(cell)) 
            file.write(";") 
        file.write("\n") 
 
    scores_image = heatmap(confusion_matrix(y_15, pred_15), 
                           xlabel='Predicted label', 
                           ylabel='True label', 
                           xticklabels=["discharge", "wait", "charge"], 
                           yticklabels=["discharge", "wait", "charge"], 
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                           cmap=plt.cm.gray_r, fmt="%d") 
 
    plt.title("{}\n{}".format(name.replace("_","").title(),f1_test)) 
    plt.gca().invert_yaxis() 
    plt.tight_layout() 
    # plt.subplots_adjust(left=0.0, right=0.75, top=0.92, bottom=0.09) 
    # plt.show() 
    plt.savefig("pictures\\Confusion Martix\\{}".format(name)) 
    plt.clf() 
 
 
################################################## 
#                 >>  IMPORT  <<                 # 
################################################## 
 
 
INFOS = Datenaufbereitung.get_dict() 
pickle.dump(INFOS, open("INFOS.p", "wb")) 
 
X = INFOS["X"] 
y = INFOS["y"] 
 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
X_15 = INFOS["X_eval"] 
y_15 = INFOS["y_eval"] 
 
GAMS_14 = INFOS["GAMS_result_14"] 
GAMS_15 = INFOS["GAMS_result_15"] 
 
prices_14 = INFOS["prices_eval_14"] 
prices_15 = INFOS["prices_eval_15"] 
 
################################################## 
#            >>  CLASSIFIER SETUP  <<            # 
################################################## 
 
print(">>> KNN <<<") 
from sklearn.neighbors import KNeighborsClassifier 
 
pipe = make_pipeline(QuantileTransformer(), 
                     PCA(100), 
                     KNeighborsClassifier(n_neighbors=11, 
                                          weights="distance", 
                                          p=1, 
                                          n_jobs=-1 
                                          )) 
 
pipe.fit(X_14, y_14) 
write_infos_in_table("KNN", pipe) 
 
print(">>> DT <<<") 
from sklearn.tree import DecisionTreeClassifier 
 
pipe = make_pipeline(DecisionTreeClassifier(class_weight="balanced", 
                                            criterion="entropy", 
                                            max_depth=50, 
                                            min_samples_leaf=1, 
                                            min_samples_split=50)) 
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pipe.fit(X, y) 
write_infos_in_table("Decision Tree", pipe) 
 
 
print(">>> Random Forest <<<") 
from sklearn.ensemble import RandomForestClassifier 
pipe = make_pipeline(RandomForestClassifier(class_weight="balanced", 
                                            n_estimators=1000, 
                                            criterion="entropy", 
                                            # max_features=90, 
                                            n_jobs=-1)) 
 
pipe.fit(X, y) 
write_infos_in_table("Random Forest", pipe) 
 
 
print(">>> LogReg <<<") 
from sklearn.linear_model import LogisticRegression 
 
pipe = make_pipeline(QuantileTransformer(), 
                     PolynomialFeatures(2), 
                     PCA(1000), 
                     LogisticRegression(class_weight="balanced", 
                                        solver="saga", 
                                        penalty="L2", 
                                        C=0.1, 
                                        max_iter=100000)) 
 
pipe.fit(X_14, y_14) 
print("LOG still 14") 
write_infos_in_table("Logistic Regression", pipe) 
 
print(">>> SVM - RBF <<<") 
from sklearn.svm import SVC 
 
pipe = make_pipeline(StandardScaler(), 
                     SVC(class_weight="balanced", 
                         C=10, 
                         gamma = 0.0001, 
                         kernel= "rbf", 
                         max_iter=100000)) 
 
pipe.fit(X_14, y_14) 
write_infos_in_table("SVC - RBF", pipe) 
 
print(">>> SVM - Linear <<<") 
from sklearn.svm import SVC 
 
pipe = make_pipeline(QuantileTransformer(), 
                     SVC(kernel="linear", 
                         C = 10, 
                         max_iter=1000000)) 
 
pipe.fit(X_14, y_14) 
write_infos_in_table("SVC - Linear", pipe) 
 
print(">>> NN <<<") 
import FF_simple 
pred = FF_simple.create_and_train(INFOS) 
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write_infos_in_table("Neuronal_Network", clf = pred, Mode="NN") 
 
################################################## 
#             >>  TRAIN DUMMIES  <<              # 
################################################## 
 
pred = -168 
write_infos_in_table("Shift Week", clf =pred , Mode="back2back") 
pred = -24 
write_infos_in_table("Shift Day", clf =pred, Mode="back2back") 
write_infos_in_table("Simple_signal", clf=pred, Mode="simple") 
write_infos_in_table("GAMS", clf=None, Mode="GAMS") 
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m. Additional Calculations 

i. Visualization of Correlation between f1-Score and Profit  

""" 
arbitrary model to visualize the correlation between profit and f1-score 
""" 

import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler 
from sklearn.pipeline import make_pipeline 
from sklearn.metrics import f1_score 
from StorageLogic import runLogic 
from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn.feature_selection import SelectKBest 
import numpy as np 
import Datenaufbereitung 
 
# import DataFrames 
INFOS = Datenaufbereitung.get_dict() 
 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
X_15 = INFOS["X_eval"] 
y_15 = INFOS["y_eval"] 
 
GAMS_14 = INFOS["GAMS_result_14"] 
GAMS_15 = INFOS["GAMS_result_15"] 
 
prices_14 = INFOS["prices_eval_14"] 
prices_15 = INFOS["prices_eval_15"] 
 
################################################## 
#            >>  CLASSIFIER SETUP  <<            # 
################################################## 
 
print(">>> LogReg <<<") 
cs = np.logspace(-5,6,12) 
f1_evals = [] 
f1_trains = [] 
profits = [] 
 
# loop over differnt cs values in order to obtain different results profits and 
f1-scores  
for c in cs: 
    # Train/Test - split   
    X_train, X_test, y_train, y_test = train_test_split(X_14,y_14,test_size=0.2) 
     
    # make a pipeline out of scaler feature selection and logistic regression  
    pipe = make_pipeline(StandardScaler(), 
                         SelectKBest(k = 25), 
                        LogisticRegression(class_weight="balanced", 
                                        solver="saga", 
                                        penalty="L2", 
                                        C=c, 
                                        max_iter=10000)) 
    pipe.fit(X_train, y_train) 
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    # calculate metrics with fitted time series  
    pred_eval = pipe.predict(X_15) 
    f1_eval = f1_score(y_true=y_15, y_pred=pred_eval, average="weighted") 
    profit = runLogic(initializer="LR", 
                      price_series=prices_15, 
                      signals=pred_eval, 
                      signal_format="1").balance/GAMS_15 
 
    f1_evals.append(f1_eval) 
    profits.append(profit) 
 
# plot the results 
plt.plot(cs, f1_evals, label="F1 - Score", color="#428bca") 
plt.plot(cs, profits, label="Profits", color="#d9534f") 
 
# decorate the plots 
plt.title("Correlation Between F1 - Score and Profit") 
plt.ylabel("F1 - Score / Relative Performance") 
plt.xlabel("Cs") 
plt.ylim([0.5, 1]) 
plt.xscale("log") 
plt.legend() 
plt.grid() 
plt.show() 
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ii. Effect of Forecast Horizon 

import pandas as pd 
import scipy.stats 
import matplotlib.pyplot as plt 
plt.style.use("seaborn-whitegrid") 
import glob 
 
# import all History tables 
df1 = pd.read_csv("C:\Python\Masterarbeit2.2\BAT_History\BAT_History_GAMS_2017-
12-10.csv",sep=";") 
history_liste = glob.glob("C:\Python\Masterarbeit2.2\BAT_History\*2017-12-
10.csv") 
 
# set up DataFrame to store all time series 
ensamble = pd.DataFrame() 
 
# prepare output header 
print("{:20}\t{:>10}\t{:>10}\t{:>10}\t{:>10}".format("Name", "Intercept", 
"Slope", "p_value", "R^2")) 
 
# loop over all histories 
for df in history_liste: 
    # extract the name of the history of by the name of the file 
    name = df.split("_")[-2] 
 
    # exception handling 
    # only considering well train MLA 
    if name in ["signal", "GAMS", "Shift Day", "Shift Week"]: 
        continue 
    if name == "Network": 
        name = "Neuronal_Network" 
    if "SVC" in name: 
        continue 
    # load history and combine it with LP results (GAMS) 
    df2 = pd.read_csv(df, sep=";") 
    df3 = pd.DataFrame({"GAMS": df1["signal___GAMS"], "NN": 
df2["signal___"+name]}) 
 
    # # calculate squared error between profit for predicted action and optimal 
action 
    # df3.loc[:, "diff"] = (df3.NN - df3.GAMS)**2 
    # df3["mean"] = df3["diff"].rolling(window = 720, center=True).sum() 
 
    # calculate the moving average of the accuracy 
    df3["acc"] = df3.NN == df3.GAMS 
    df3["roll acc"] = df3["acc"].rolling(window = 720, center=True).mean() 
    plt.plot(df3["roll acc"],label=name) 
 
    y = df3["roll acc"].dropna() 
    y = y.values 
     

""" 
Testing the effects of the time horizon on the quality of predictions 
""" 
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    # performe a linear regression on the accuracy 
    slope, intercept, r_value, p_value, std_err = 
scipy.stats.linregress(range(len(y)), y) 
    # print("slope", slope, "intercept", intercept, "r", r_value, "p", p_value, 
"std_err", std_err) 
    print("{:20}\t{:10.4f}\t{:10.4f}\t{:10.4f}\t{:10.4f}".format(name, 
intercept, slope, p_value, r_value**2)) 
 
plt.ylim([0,1]) 
 
# decorate the plot 
plt.title("Temporal Effects\n2015") 
plt.ylabel("Accuracy") 
plt.xlabel("hours") 
plt.legend() 
plt.show() 
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iii. Improving the Model’s Quality 

# loop over different threshold levels 
for threshold in range(0, 101): 
    threshold /= 100 
    signal15 = [] 
    signal14 = [] 
 
    z = proba15.copy() 
    for x in z: 
    # classify based on threshold 
        if x[0] < threshold and x[2] < threshold: 
            x[1] = 1 

""" 
Test the effects of different decision boundaries on the economic performance of 
the model 
""" 
import Datenaufbereitung 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import  QuantileTransformer 
from sklearn.decomposition import PCA 
from sklearn.pipeline import make_pipeline 
from sklearn.metrics import f1_score,accuracy_score,precision_score,recall_score 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.model_selection import train_test_split 
import numpy as np 
from StorageLogic import runLogic 
 
def map(x): 
    if x == 2: 
        return 1 
    elif x == 1: 
        return 0 
    elif x == 0: 
        return -1 
 
INFOS = Datenaufbereitung.get_dict() 
 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
X_15 = INFOS["X_eval"] 
y_15 = INFOS["y_eval"] 
 
GAMS_14 = INFOS["GAMS_result_14"] 
GAMS_15 = INFOS["GAMS_result_15"] 
 
prices_14 = INFOS["prices_eval_14"] 
prices_15 = INFOS["prices_eval_15"] 
 
################################################## 
#            >>  CLASSIFIER SETUP  <<            # 
################################################## 
 
 
pipe = make_pipeline(QuantileTransformer(), 
                     PCA(100), 
                     KNeighborsClassifier(n_neighbors=11, 
                                          weights="distance", 
                                          p=1, 
                                          n_jobs=-1 
                                          )) 
 
pipe.fit(X_14, y_14) 
 
proba15 = pipe.predict_proba(X_15) 
proba14 = pipe.predict_proba(X_14) 
 
profits_15 = [] 
profits_14 = [] 
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        else : 
            if x[0] > x [2]: 
                x[0] = 1 
            else: 
                x[2] = 1 
        signal15.append(map(np.argmax(x))) 
    # calculate new profit for 2015 / test 
    profit15 = runLogic(initializer="KNN", 
                      price_series=prices_15, 
                      signals=signal15, 
                      signal_format="1").balance / GAMS_15 
 
    z = proba14.copy() 
    for x in z: 
        # classify based on threshold 
        if x[0] < threshold and x[2] < threshold: 
            x[1] = 1 
        else: 
            if x[0] > x[2]: 
                x[0] = 1 
            else: 
                x[2] = 1 
        signal14.append(map(np.argmax(x))) 
 
    # calculate profit for 2014 / train 
    profit14 = runLogic(initializer="KNN", 
                            price_series=prices_14, 
                            signals=signal14, 
                            signal_format="1").balance / GAMS_14 
 
    profits_15.append(profit15) 
    profits_14.append(profit14) 
 
# plot and decorate 
plt.plot(profits_14, color= "#d9534f", label="2014 (Train)") 
plt.plot(profits_15, color= "#428bca", label="2015 (Test)") 
 
# marke the maiximum and default values for every year 
plt.scatter(np.argmax(profits_15),max(profits_15),color= "#428bca", label="max 
2015_({})".format(np.argmax(profits_15)/100)) 
plt.scatter(np.argmax(profits_14),max(profits_14),color= "#d9534f", label="max 
2014_({})".format(np.argmax(profits_14)/100) ) 
plt.scatter(50,profits_15[50],color= "k", label="default 2015_(0.5)" ) 
plt.xlabel("threshold") 
plt.title("Decision Boundaries") 
plt.yticks(np.arange(0,1,0.05)) 
plt.xticks(np.arange(0,100,10)) 
plt.grid() 
plt.ylabel("profit [EUR/a]") 
 
plt.legend() 
plt.show() 
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iv. Source Code Model-Based Feature Selection 

 

# model based feature selection (normal features) 
from sklearn.ensemble import RandomForestClassifier 
forest = RandomForestClassifier(n_estimators=1000, 
                                random_state = 42, 
                                n_jobs=-1) 
forest.fit(X_train, y_train) 
 
importances = forest.feature_importances_ 
indices = np.argsort(importances)[::-1] 
feat_labels = X.columns 
 
top10 = indices[:10] 
top10_names = feat_labels[top10] 
 
 
top10_names = [x.replace("DE", "").replace("_"," ").title() for x in 
top10_names] 
plt.grid("off") 
plt.barh(range(1,11), 
        sorted(importances[top10]), 
        color=blue, 
        align='center') 
plt.yticks(range(1,11), 
        reversed(top10_names),) 
plt.xticks([0.01,0.02,0.03,0.04,0.05]) 
 
plt.ylim([0, 11]) 
plt.show() 
 
 
sorted_importences = sorted(list(importances),reverse=True) 
 
fig, ax1 = plt.subplots() 
 
ax1.plot(sorted_importences, label = "importance of feature", color = blue) 
ax1.set_ylabel("single") 
ax1.set_yticks([0.01,0.02,0.03,0.04,0.05]) 
ax2 = ax1.twinx() 
ax2.set_ylabel("cumulative") 
ax2.plot(np.array(sorted_importences).cumsum(), label = "cumulative", color = 
red) 
ax2.set_yticks([0.2,0.4,0.6,0.8,1]) 
ax2.set_ylim([0,1]) 
# fig.suptitle('Importance of Features\n Random Forrest n=1000') 
 
ax1.set_xlabel('Features') 
 
 
ax1.grid() 
plt.show() 
 
 
# model based feature selection (normal features) 
from sklearn.ensemble import RandomForestClassifier 
forest = RandomForestClassifier(n_estimators=100, 
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                                random_state=42, 
                                n_jobs=-1) 
forest.fit(X_trans, y_train) 
importances = forest.feature_importances_ 
indices = np.argsort(importances)[::-1] 
 
feat_labels = [(poly_name_dict[_]) for _ in ploy2.get_feature_names()] 
top10 = indices[:10] 
top10_names = [feat_labels[_] for _ in top10] 
 
importances = forest.feature_importances_ 
indices = np.argsort(importances)[::-1] 
 
feat_labels = [(poly_name_dict[_]) for _ in ploy2.get_feature_names()]  
top10 = indices[:10] 
top10_names = [feat_labels[_] for _ in top10] 
 
top10_names = [x.replace("DE", "").replace("_"," ").replace("*"," *").title() 
for x in top10_names] 
 
top10_names = reversed(top10_names) 
 
plt.barh(range(1,11), 
        sorted(importances[top10]), 
        color=blue, 
        align='center') 
plt.yticks(range(1,11),top10_names) 
plt.ylim([0, 11]) 
 
plt.show() 
 
sorted_importences = sorted(list(importances),reverse=True) 
 
fig, ax1 = plt.subplots() 
 
ax1.plot(sorted_importences, label = "importance of feature", color = blue) 
ax1.set_ylabel("single") 
ax1.set_yticks([0,0.0001,0.0002,0.0003,0.0004,0.0005]) 
ax2 = ax1.twinx() 
ax2.set_ylabel("cumulative") 
ax2.plot(np.array(sorted_importences).cumsum(), label = "cumulative", color = 
red) 
ax2.set_yticks([0,0.2,0.4,0.6,0.8,1]) 
ax2.set_ylim([0,1]) 
ax1.set_ylim([0,0.0005]) 
# fig.suptitle('Importance of Features\n Random Forrest n=1000') 
 
ax1.set_xlabel('Features') 
 
 
ax1.grid() 
plt.show() 
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v. Source Code Performance improvement via Decision 

Boundaries  

import Datenaufbereitung 
import pickle 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler, QuantileTransformer 
from sklearn.decomposition import PCA 
from sklearn.pipeline import make_pipeline 
from sklearn.metrics import f1_score,accuracy_score,precision_score,recall_score 
import numpy as np 
from StorageLogic import runLogic, simple_signal 
 
 
def map(x): 
    if x == 2: 
        return 1 
    elif x == 1: 
        return 0 
    elif x == 0: 
        return -1 
 
INFOS = Datenaufbereitung.get_dict() 
 
 
X = INFOS["X"] 
y = INFOS["y"] 
 
X_14 = INFOS["X_14"] 
y_14 = INFOS["y_14"] 
 
X_15 = INFOS["X_eval"] 
y_15 = INFOS["y_eval"] 
 
GAMS_14 = INFOS["GAMS_result_14"] 
GAMS_15 = INFOS["GAMS_result_15"] 
 
prices_14 = INFOS["prices_eval_14"] 
prices_15 = INFOS["prices_eval_15"] 
 
print(">>> KNN _dec <<<") 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.feature_selection import SelectKBest 
import numpy as np 
 
 
 
X_train, X_test, y_train, y_test = train_test_split(X_14,y_14,test_size=0.2) 
from sklearn.svm import SVC 
 
 
pipe = make_pipeline(QuantileTransformer(), 
                     PCA(100), 
                     KNeighborsClassifier(n_neighbors=11, 
                                          weights="distance", 
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                                          p=1, 
                                          n_jobs=-1 
                                          )) 
 
pipe.fit(X_train, y_train) 
 
 
pred_test = pipe.predict(X_test) 
pred_eval = pipe.predict(X_15) 
pred_train = pipe.predict(X_train) 
 
profit = runLogic(initializer="KNN", 
                  price_series=prices_15, 
                  signals=pred_eval, 
                  signal_format="1").balance/GAMS_15 
 
 
 
proba15 = pipe.predict_proba(X_15) 
proba14 = pipe.predict_proba(X_14) 
 
accuracy_15 = [] 
accuracy_14 = [] 
f1score_15 = [] 
f1score_14 =[] 
profits_15 = [] 
profits_14 = [] 
precision = [] 
recall = [] 
 
for threshold in range (0, 101): 
    threshold /= 100 
    signal15 = [] 
    signal14 = [] 
 
    z = proba15.copy() 
    for x in z: 
        # apply the threshold 
        if x[0] < threshold and x[2] < threshold: 
            x[1] = 1 
        else : 
            if x[0] > x [2]: 
                x[0] = 1 
            else: 
                x[2] = 1 
        signal15.append(map(np.argmax(x))) 
 
 
    score_f1_15 = f1_score(signal15,y_15, average="weighted") 
    score_acc_15 = accuracy_score(signal15,y_15) 
    profit15 = runLogic(initializer="KNN", 
                      price_series=prices_15, 
                      signals=signal15, 
                      signal_format="1").balance / GAMS_15 
 
 
    z = proba14.copy() 
    for x in z: 
 
        if x[0] < threshold and x[2] < threshold: 
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            x[1] = 1 
        else: 
            if x[0] > x[2]: 
                x[0] = 1 
            else: 
                x[2] = 1 
        signal14.append(map(np.argmax(x))) 
 
    score_f1_14 = f1_score(signal14,y_14, average="weighted") 
    score_acc_14 = accuracy_score(signal14,y_14) 
 
    profit14 = runLogic(initializer="KNN", 
                            price_series=prices_14, 
                            signals=signal14, 
                            signal_format="1").balance / GAMS_14 
 
    print("{} ; profit 15 {:10.4f}; profit 14 {:10.4f}; acc: {:10.4f} ;f1: 
{:10.4f}".format(threshold, profit15, profit14, score_acc_15, score_f1_15)) 
 
    accuracy_15.append(score_acc_15) 
    accuracy_14.append(score_acc_14) 
    f1score_15.append(score_f1_15) 
    f1score_14.append(score_acc_14) 
    profits_15.append(profit15) 
    profits_14.append(profit14) 
    precision.append(precision_score(signal15,y_15, average="weighted")) 
    recall.append(recall_score(signal15,y_15, average="weighted")) 
 
 
 
print("max acc train", np.argmax(accuracy_14)) 
print("max acc test", np.argmax(accuracy_15)) 
print("max f1 train", np.argmax(f1score_14)) 
print("max f1 test", np.argmax(accuracy_15)) 
print("max profit train", np.argmax(profits_14), max(profits_14)) 
best_thresh = np.argmax(profits_14)/100 
print("max profit test", np.argmax(profits_15),max(profits_15)) 
 
plt.plot(profits_14, color= "#d9534f", label="2014 (Train)") 
plt.plot(profits_15, color= "#428bca", label="2015 (Test)") 
plt.scatter(np.argmax(profits_15),max(profits_15),color= "#428bca", label="max 
2015_({})".format(np.argmax(profits_15)/100)) 
plt.scatter(np.argmax(profits_14),max(profits_14),color= "#d9534f", label="max 
2014_({})".format(np.argmax(profits_14)/100) ) 
plt.scatter(50,profits_15[50],color= "k", label="default 2015_(0.5)" ) 
plt.xlabel("threshold") 
plt.title("Decision Boundaries") 
plt.yticks(np.arange(0,1,0.05)) 
plt.xticks(np.arange(0,100,10)) 
plt.grid() 
plt.ylabel("profit [EUR/a]") 
 
plt.legend() 
plt.show() 
pipe.fit(X_14, y_14) 
signal=[] 
for x in pipe.predict_proba(X_15): 
    if x[0] < best_thresh and x[2] < best_thresh : 
        x[1] = 1 
 



120 

    else: 
        if x[0] > x[2]: 
            x[0] = 1 
        else: 
            x[2] = 1 
    signal.append(map(np.argmax(x))) 
 
profit = runLogic(initializer="KNN", 
                    price_series=prices_15, 
                    signals=signal, 
                    signal_format="1").balance / GAMS_15 
 
print("XX:",profit) 

 


