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Abstract Theoretical models are often nonlinear and, thus, the popular linearity

assumption has to be relaxed. Monetary valuation of time and estimation of

nonlinear models are the core of this thesis. In the joint time-use and discrete

choice model (JTUDC, Munizaga et al., 2008), endogenous variables have a non-

linear functional form. Combined they make up a system of nonlinear equations.

The offshoot of this model is a monetary valuation of time assigned to work, leisure,

and travel. This thesis uses an innovative panel data-set, in contrast, the original

model was calibrated on the cross-sectional data. The estimation procedure was

advanced to account for the repeated observations via a normal error component

model with a latent variable in the hierarchical Bayesian framework. Additionally,

R package nmm was developed to make the estimation of the joint continuous-

discrete models available to the wider public. Previously mentioned time indicators

are widely used in the cost-benefit analysis of transport infrastructure projects.

Due to the different time assignment patterns, the originally estimated average

value of leisure for males is double the amount for females. To avoid gender-driven

bias, it was proposed to treat domestic work as official work by assigning to it the

market wage rate. After this adjustment, the gap vanishes almost completely.

Zusammenfassung Theoretische Modelle sind oft nichtlinear und daher muss die

populäre Linearitätsannahme gelockert werden. Die monetäre Bewertung der Zeit

und die Schätzung nichtlinearer Modelle bilden den Kern dieser Arbeit. Im gemein-

samen Zeitnutzungs- und diskreten Auswahlmodell (JTUDC, Munizaga et al.,

2008) haben endogene Variablen eine nichtlineare funktionale Form. Zusammen

bilden sie ein System nichtlinearer Gleichungen. Die Folge dieses Modells ist eine

monetäre Bewertung der Zeit, die für Arbeit, Freizeit und Reisen verwendet wird.

Diese Arbeit benutzt einen innovativen Paneldatensatz, im Gegensatz dazu wurde

das ursprüngliche Modell anhand der Querschnittsdaten kalibriert. Das Schätzver-

fahren wurde weiterentwickelt, um die wiederholten Beobachtungen über ein

normales Fehlerkomponentenmodell mit einer latenten Variablen im hierarchischen

Bayes’schen Rahmenkonzept zu berücksichtigen. Zusätzlich wurde das R -Paket

nmm entwickelt, um die Schätzung der gemeinsamen kontinuierlich-diskreten



Modelle einer breiteren Öffentlichkeit zugänglich zu machen. Bereits erwähnte

Zeitindikatoren werden häufig bei der Kosten-Nutzen-Analyse von Verkehrsinfras-

trukturprojekten verwendet. Aufgrund der unterschiedlichen Zeitzuweisungsmuster

ist der ursprünglich geschätzte durchschnittliche Freizeitwert für Männer doppelt

so hoch wie für Frauen. Um geschlechtsspezifische Vorurteile zu vermeiden, wurde

vorgeschlagen, Hausarbeit als offizielle Arbeit zu behandeln, indem ihr der Mark-

tlohnsatz zugewiesen wird. Nach dieser Einstellung verschwindet die Lücke fast

vollständig.
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1 Introduction

Human beings are constantly involved in the decision-making process. Even

though artificial intelligence is becoming a bigger part of our life, we choose and

will continue to choose not only what to do (go for a walk or visit a friend) but also

the magnitude (long/short walk/visit). Thus, our decisions exist not only in the

discrete choice but in the continuous space as well. Moreover, they are inter-and

intra-connected with each other. The decision on sleep consists of other choices:

to sleep or not to sleep; when to sleep; how long to sleep. If one sleeps longer, less

time is left for eating, reading, or exercising; to save time one might choose to

go to work by car. On contrary, if less time is assigned to sleeping, more time is

available for other activities. However, because of the sleep deprivation, one might

choose to use public transport this time and consume more coffee or food. All

these choices can be expressed in statistical modeling as mathematical equations.

They can be grouped into two independent systems of equations: continuous and

discrete. Moreover, it is possible to merge them into the joint continuous-discrete

choice model.

In the context of statistical modeling, continuous or discrete systems of equations

can be estimated with various techniques. Continuous systems can be assessed as

(non)linear multivariate models, i.e. seemingly unrelated regressions (SUR)(Zellner,

1962), the system of nonlinear regressions (SNR), (non)linear simultaneous equa-

tions model (SEM or NSEM). Whereas, the discrete choice models are estimated

with logit, probit, and various derivatives of them. Due to their nonlinear functional

form, these models too can be viewed as a part of the SNR family.

Linear multivariate models are widely used in research and have a strong literature

background. Whereas, the main focus of this thesis is the estimation of a sub-

sample of nonlinear multivariate models (NMM) - SNR, NSEM, logit. Moreover,
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it enables the unique joint estimation of SNR and logit in the R environment (R

Core Team, 2020).

The evolution of this work went through these stages: (i) analysis and improve-

ment upon the existing estimation method of the joint continuous-discrete model

presented in Munizaga et al. (2008); (ii) implementation in a form of statistical

package software nmm (Jokubauskaite et al., 2021) in R (R Core Team, 2020); (iii)

application in estimating the advanced joint model presented in Jokubauskaitė

et al. (2019) on the innovative Mobility-Activity-Expenditure data gathered in

2015 Austria (Aschauer et al., 2019, 2018); (iv) publication/submission of related

papers (Schmid et al., 2019; Hössinger et al., 2019; Jokubauskaitė et al., 2019;

Jokubauskaitė et al., 2021a,b).

The following Section (2) gives an overview of the theory related to the nonlinear

models. The developed statistical software is presented in Section (3). Articles

related to this thesis are introduced in Section (4). Section (5) offers an outlook of

further research questions and Section (6) summarizes this thesis.

2 Nonlinear Multivariate Models

In this section, a theory related to the estimation of nonlinear models is introduced.

It is based on the framework presented in MacKinnon and Davidson (1999) (Chapter

12). The specific method of the joint continuous-discrete model estimation is

derived and improved upon the work of Munizaga et al. (2008). For theory related

to multivariate linear models, please see Henningsen and Hamann (2007).

2.1 Systems of Nonlinear Regressions

A system of nonlinear regressions (SNR), which is as well called seemingly unrelated

regressions (SUR), is defined by such equations:

2



2.1. SYSTEMS OF NONLINEAR REGRESSIONS 3

yit = xit (β) + uit, i = 1, . . . , g, t = 1, . . . , n (1)

These notations have the following meaning: yit is the observation t of dependent

variable i, xit (β) is observation t of the regression function i, β is a k-vector of

parameters to be estimated and uit is an error term with E(u|X) = 0. Here X

stands for all explanatory variables that appear in all of the regression functions.

It is assumed that error terms are serially uncorrelated, homoscedastic within each

equation, and have contemporaneous covariance matrix Σ with elements σij:

E (uit, ujt) = σij,∀t (2)

E (uit, ujs) = 0,∀t 6= s (3)

By stacking observations together, one can rewrite Equation (1) as:

yi = xi (β) + ui, E
(
uiu
>
j

)
= σijIn, i, j = 1, . . . , g (4)

In is a n× n identity matrix. Under the normality assumption of errors, one can

formulate the log-likelihood function as:

LL (β) = log(L (β)) =− gn

2 log 2π − n

2 log |Σ|−

− 1
2 (y. − x. (β))>

(
Σ−1 ⊕ In

)
(y. − x. (β)) (5)

In the equation above, y. denotes gn-vector of yis stacked vertically, x. (β) denotes

gn-vector of xi (β)s stacked in the same way. The covariance matrix of error terms

based on the maximum likelihood estimation is given by the formula:
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Σ̂ML = 1
n
U>

(
β̂ML

)
U
(
β̂ML

)
(6)

U
(
β̂ML

)
is n× g matrix with columns equal to

(
yi − xi

(
β̂ML

))
.

2.2 Nonlinear Simultaneous Equation Model

In the case of simultaneous equations, the model is formulated in the following

way:

fit (Yt, β) = uit, i = 1, . . . , g, t = 1, . . . , n (7)

Here, fit are nonlinear functions of the predetermined endogenous variables Yt
(1× g vector) and parameters - β (k-vector). fi (Y, β) is n-vector with an element t

equal to fit (Yt, β) and Y is the n× g matrix with row t equal to Yt. We can stack

fi (Y, β) horizontally to get ht (Yt, β), which is 1 × g row vector containing the

elements f1t, . . . , fgt. Now Equation (7) with normally independently distributed

(NID) errors can be rewritten as:

ht (Yt, β) = Ut, Ut ∼ NID (0,Σ) (8)

Model presented in Equation (8) has the following concentrated (with respect to

Σ) log-likelihood functions:

− gn

2 (log 2π + 1) +
n∑

t=1
log |detJt| −

n

2 log
∣∣∣∣∣
1
n

n∑

t=1
h>t (Yt, β)ht (Yt, β)

∣∣∣∣∣ (9)

Here, Jt is the Jacobian matrix and Jt = ∂ht (β) /∂Yt is different ∀t.
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2.3 Multinomial Logit

Joint estimation of the continuous-discrete model makes up the core of this thesis.

The continuous part is represented by a system of nonlinear equations that were

discussed previously. This subsection focuses on the estimation of the discrete

model, namely logit.

The individual utility is maximized by choosing the alternative q:

Uq = Vq + εq ≥ maxm6=q {Um} (10)

Vq ≥ maxm6=q {Um} − εq = wq (11)

Utility U consists of the observable part V - indirect utility - and an error term ε.

V is a function of parameter vector θ. wq follows the logistic distribution under

the assumption that εq terms are Gumbel distributed(Domencich et al., 1975). In

this case, the distribution function is the following probability:

Pq(θ) = F (Vq(θ)) = exp(Vq(θ))
∑Q
j=1 αjexp(Vj(θ))

(12)

Here Q is a number of the possible choices, αj is a dummy variable equal to 1 if

alternative j is available and 0 otherwise. If repeated measurements are allowed

the corresponding log-likelihood function can be written as:

LL (θ) =
J∑

i=1

∑

k∈Aik

Q∑

q=1
δikqαikq log (Pikq(θ)) (13)

Here J is the number of individuals, Aik is the index set of choices that individual

i made. The latter one was introduced to allow multiple measurements per person.

δikq is equal to 1 if alternative q was selected by the person i in her/his k-th choice



6 CHAPTER 2. NONLINEAR MULTIVARIATE MODELS

situation and 0 otherwise. αikq is equal to 1 if alternative q is available for k-th

choice of person i and 0 otherwise.

2.4 Joint Continuous-Discrete Distribution

Models given by Equations (4) and (12) can be estimated separately as well as

jointly if simultaneous data is available for both frameworks. The most prominent

applications of the latter: (i) the joint time-use and mode choice model (Jara-Díaz

and Guevara, 2003; Jara-Díaz et al., 2008; Munizaga et al., 2008; Jokubauskaitė

et al., 2019); (ii) the joint vehicle type choice and miles of travel model (Spissu

et al., 2009). Derakhshan et al. (2015) offer a comprehensive summary of joint

models applied in the fields of energy and transportation.

To combine these two systems of different types, the approach proposed by Lee

(1983) was used in Munizaga et al. (2008). Following this method, a normal

quantile transformation is applied to the probabilities of logit (Equation 12). Let

wiq be an error term wq from Equation (11) for individual i and Diq be equal to

one if this individual chose alternative q and zero otherwise. Thus, it holds:

Diq = 1↔ Viq ≥ wiq (14)

wiq is transformed into a standard normal term by applying the inverse normal

function - Φ−1. Φ−1 and Fq are monotonic transformations, hence the above

inequality can be written as:

Diq = 1↔ yq = Φ−1(Fq(Vq)) ≥ Φ−1(Fq(wq)) = w∗q ∼ N (0, 1) (15)

Using this, the probability to choose mode q is:

Diq = 1↔ Pq = P (yq ≥ w∗q) = P (w∗q ≤ yq) = Fw∗
q
(yq) = Φ(yq) (16)
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Thus, the probability to choose mode q (P (U = q)) is equal to Φ(yq).

This transformation together with the definition of the mixed joint density allows

deriving the joint continuous-discrete density.

By definition of the mixed joint density, if one variable (YC) follows a continuous

distribution and another (YD) one follows a discrete one, then the joint density

has the following form:

fYC ,YD
(yC , yD) = fYC |YD

(yC |yD)P (YD = yD) = P (YD = yD|YC = yc)fYc(yC) (17)

This notation differs from the original one proposed in Lee (1983). It is based

not on the censored regression but uses the definition of the mixed joint density

directly. Under the normality assumption of YC both approaches lead to the same

expressions but the mixed joint density approach is more straightforward.

The likelihood for the joint continuous-discrete model is produced following the

steps described in the scheme below:
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u = (u1, u2, . . . ug)′,U ∼ N (0,Σ)
︸ ︷︷ ︸

continuous block

Vq ≥ maxm 6=q {Um} − εq = wq,W ∼ Logistic
︸ ︷︷ ︸

discrete block

⇓
Apply F(·) and Φ(·)−1 to the inequality above:

⇓
yq = Φ−1(F (Vq)) ≥ Φ−1(F (wq)) = w∗q︸ ︷︷ ︸

Quantile transformation

W ∗ and Y ∼ N (0, 1)

⇓ ⇓

The mixed joint density function:

fU ,U(u, q) = P (U = q|U = u)fU(u)

⇓
f(u,w∗q ≤ yq) = P (w∗q ≤ yq|u)φ(u) = Φ(yq|u)φ(u)

⇓
Get conditional moments using the "Conditional normal distribution" theorem:

⇓
E [yq|u] = µyq + ΣyquΣ−1

uu (u− µu)
Cov [yq|u] = Σyqyq |u = Σyqyq − ΣyquΣ−1

uuΣyqu

More information on conditional moments can be found in Appendix (A.2). Finally,

the log-likelihood for the joint continuous-discrete model can be expressed as:

LL(θ) =
J∑

i

∑

k∈Ak

Q∑

q

δikqαikqf(ui(θ))Φ(yikq(θ)|ui(θ)) (18)

Here θ is a vector of parameters from continuous and discrete equations. Appendix

(A.1) and Jokubauskaitė et al. (2021b) give an explicit formulation of log-likelihood

with three continuous equations.

In Jokubauskaitė et al. (2019), the advanced joint continuous-discrete model was

estimated with Mobility-Activity-Expenditure-Diary data gathered in 2015 in
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Austria. This data set includes information on continuous variables of time-use

and expenditures as well as discrete travel mode choices. Repeated observations

were gathered only for the latter. By factoring in this panel structure, the joint

continuous-discrete model was advanced. This was done in the Bayesian framework

by employing a normal error component model with a latent variable (Walker

et al., 2007). In the joint continuous-discrete choice model (Jokubauskaitė et al.,

2021b), the error term εq from Equation (11) is updated to have the following form

for alternative q and individual i:

εiq = fqζi + νq (19)

where ζi is a (ni × 1) vector of i.i.d. standard normal variables (individual

characteristics), fq are alternative-specific factor loadings, and νq is a vector of

Gumbel distributed errors (Walker et al., 2007; Toledo et al., 2007). ni is the

number of repeated observations for individual i.

The estimation of the joint continuous-discrete model is implemented as a two-

stage procedure. In the first step, coefficients θ from Equation (18) are estimated

using the Maximum Likelihood (ML) framework. In the second step, parameter

vector θ is fixed and log-likelihood (Equation 18) is maximized with respect to the

distributional parameters - variances and correlations of the error terms. Then, the

variance-covariance matrix of the parameters - θ and distributional - is estimated

using one of the methods described in the next subsections.

2.5 Estimation of Covariance matrix

Covariance matrix V̂
(
β̂ML

)
can be estimated with multiple methods. In this

work, four of them are presented: (i) inverse of Hessian, (ii) outer-product-of-

gradient, (iii) robust, (iv) robust-clustered. These methods can be applied to
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log-likelihoods given by Expressions (5), (9), (13), or (18). Calzolari and Panattoni

(1988) compared different approaches and did not find a superior one.

2.5.1 Inverse of Hessian:

V
(
β̂
)

=
[
−H

(
β̂
)]−1

= −


∂2 LL

(
β̂
)

∂β̂∂β̂′



−1

(20)

Here H is the Hessian matrix (k × k) of log-likelihood with respect to β and k is

the number of parameters. This estimator is referred to as the empirical Hessian

estimator.

2.5.2 Outer-Product-of-the-Gradient

Another option is to use the outer-product-of-the-gradient proposed in Berndt

et al. (1974a):

V
(
β̂
)

=
(

T∑

t=1
gt
(
β̂
)′
gt
(
β̂
))−1

=
(
G
(
β̂
)′
G
(
β̂
))−1

(21)

Here gt is the gradient values (1×k) of the log-likelihood function, G is the gradient

matrix (T × k) and T is the number of observations.

2.5.3 Robust

The so-called sandwich estimator is used to get the robust standard errors:

V
(
β̂
)

= H−1
(
β̂
)
G
(
β̂
)′
G
(
β̂
)
H−1

(
β̂
)

= B
(
β̂
)
M
(
β̂
)
B
(
β̂
)

(22)

HereM(β̂) = G(β̂)′G(β̂) is “meat” in the sandwich estimation and B(β̂) = H−1(β̂)

is the “bread”.



2.5.4 Robust-Clustered

If one is dealing with repeated observations, the robust-clustered covariance matrix

can be calculated by adapting the sandwich estimator. The so-called “meat”

(M(β̂)) layer is modified by first calculating the sum over the groups/clusters and

then calculating the final sum/“meat”(Mc(β̂)):

Mc(β̂) =
n(c)∑

i=1

C∑

c=1
gic(β̂)′gic(β̂) (23)

V (β̂) = B(β̂)Mc(β̂)B(β̂) (24)

Here C is the number of clusters, n(c) is the number of observations in cluster c,

gic is 1× k. Clusters can be seen as individuals with repeated observations. n(c)

is allowed to be unequal in different clusters, meaning that one cluster can have 4

observations and another 10.

3 Application as an R package - nmm

The joint estimation procedure presented in Section (2.4) was implemented as

an R (R Core Team, 2020) package - nmm (Jokubauskaite et al., 2021) (Nonlinear

Multivariate Models). Although the estimation of separate parts of this model

was already possible in R, the joint estimation was missing. nlsystemfit function

from the systemfit package (Henningsen and Hamann, 2007) can be used to

estimate a System of Nonlinear Regressions (SNR) presented in Section (2.1). The

multinomial logistic regression (logit) can be estimated with multiple R packages:

mlogit (Croissant, 2019), mnlogit (Hasan et al., 2016), MNP (Imai and van Dyk,

2017), nnet (Venables and Ripley, 2002), etc. The joint estimation of SNR and

logit is now made available with the nmm package. It has been used so far in several

published works: Jokubauskaitė et al. (2019), Hössinger et al. (2019).

11
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Both models - the SNR and logit - are treated as nonlinear systems of equations

(NSE). Thus, the nmm package can be used not only for the estimation of the

joint continuous-discrete model but also for the separate parts: either SNR or

multinomial logit. Variance-covariance matrix can be calculated using different

methods: normal, robust, robust-clustered (Section 2.5). Moreover compared to

the nlsystemfit function, nmm offers a more user-friendly summary output for the

nonlinear models. It also allows a flexible estimation of logit: individual-specific

(non-linear) indirect utility functions with or without interaction terms. More

detailed usage of the nmm package is available in Jokubauskaitė et al. (2021b).

3.1 nmm usage

Estimation of time-use and expenditure model as in Jara-Díaz and Guevara (2003)

is used for the brief demonstration of the nmm functionality. The following system

of nonlinear equations is estimated:

Tw =

(
(Φ + θw)(τ − Tc) + (1 + θw)Ec

w

)
±
√
D

2(1 + Φ + θw)

Tfi = θi
1 (τ − Tw − Tc), i={1, 2}

Efj = φj
Φ (wTw − Ec), j={1, 2, 3}

Here D =
(

(Φ + θw)(τ − Tc) + (1 + θw)Ec
w

)2
− 4(1 + Φ + θw)θw(τ − Tc)

Ec
w

Amount of work hours are given by Tw, Tfi represents the duration of leisure

activity groupi and Efj is freely spent money on expenditure group j. Tc and Ec
are exogenously given time and money spent on committed activities/goods. τ

is the total available time. {θw,Φ, θ1, φ1, φ2} are parameters that are estimated,

other parameters {θ2, φ3} are calculated based on the binding expressions given

in Jara-Díaz and Guevara (2003). Such a system of equations was used in the

works of Hössinger et al. (2019), Jokubauskaitė et al. (2019) or Jokubauskaitė



3.1. NMM USAGE 13

et al. (2021a) and originates from Jara-Díaz and Guevara (2003).

To estimate this model, data set MAEDtimeExpenditure from the nmm package is

used. It was collected in 2015 in Austria. This data set is one of this kind, as

it includes simultaneous information on time-use, expenditure, and travel mode

choice. Week cycle of 737 individuals was observed. Variables related to activities

have names starting with T and the ones representing expenditure groups - with E.

Multi-faceted analyses of MAEDtimeExpenditure are provided in Aschauer et al.

(2018), Aschauer et al. (2019), and Hössinger et al. (2019).

In the first step of the estimation procedure, equations and parameters of interest

are defined:

library(nmm)

eq_c <- c(

"Tw ~ ((((PH) + (tw)) * (ta - Tc) + Ec/w * (1 + (tw)) +

sqrt((Ec/w *(1 + (tw)) + (ta - Tc) * ((PH) + (tw)))ˆ2 -

4 * Ec/w * (ta -Tc) * (tw) * (1 + (PH) + (tw))))/(2 *

(1 + (PH) + (tw))))",

"Tf1 ~ (th1) * (ta - (Tw) - Tc)",

"Ef1 ~ (ph1)/(PH) * (w*(Tw) - Ec) ",

"Ef2 ~ (ph2)/(PH) * (w*(Tw) - Ec)")

par_c <- c("tw", "PH", "th1", "ph1", "ph2")

Then Tw is substituted into the other equations:

eq_c[-1] <- gsub("Tw", gsub(".*~", "",eq_c[1]), eq_c[-1])

Estimation is performed with the main nmm function:

r_cont <- nmm(data = MAEDtimeExpenditure, eq_c = eq_c,

par_c = par_c, eq_type = "cont")

Argument eq_type is set to “cont”, because continuous system of nonlinear

equations is estimated. Method summary provides a nice looking summary of
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the estimated model:

summary(r_cont)

--------------------------------------------

Maximum Likelihood estimation

BFGS maximization, 23 iterations

Return code 0: successful convergence

Log-Likelihood: -8820.291

free parameters

Estimates:

Estimate Std. error t value Pr(> t)

PH 0.417160 0.027616 15.106 <2e-16 ***

ph1 0.262488 0.017178 15.280 <2e-16 ***

ph2 0.085480 0.005866 14.571 <2e-16 ***

th1 0.733412 0.004206 174.381 <2e-16 ***

tw -0.617428 0.088474 -6.979 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--------------------------------------------

Using these results, one can calculate the value of leisure (VoL) using this formula

from Hössinger et al. (2019):

V oL = wT̂w − Ec
Φ̂(τ − T̂w − Tc)

This indicator shows “the valuation that the individual assigns to the liberated

time” (Jokubauskaitė et al., 2019). Data used for the estimation and estimated

parameters are combined into one data frame:

data4est <- cbind(attributes(r_cont)$data,

data.frame(t(r_cont$estimate)))



Next Tw expression is substituted into the V oL expression:

vol <- "(w * (Tw) -Ec)/(PH*(ta- (Tw)-Tc))"

vol <- gsub("Tw",gsub(".*~", "", eq_c[1]), vol)

Finally, V oL is calculated:

volest <- mean(eval(parse(text = vol), data4est))

volest

[1] 7.120091

This value shows that on average one hour of leisure is worth e7.12.

More detailed instructions on the usage of the nmm package can be found in

Jokubauskaitė et al. (2021b) and an example of the Bayesian estimation is presented

in Appendix (A.3).

4 Research articles

In 2015, an innovative Mobility-Activity-Expenditure-Diary (MAED, Aschauer

et al., 2019) was developed in Austria. It resulted in a unique data-set was gathered

(Aschauer et al., 2018), which provided information on different indicators: the

distribution of time, expenditures, travel mode choice, duration and cost of trips,

etc. It also inspired an advancement in the estimation procedure of the joint

time-use-expenditure and travel mode choice model presented in Munizaga et al.

(2008). The software developed as an R package called nmm (Jokubauskaite et al.,

2021) and used in the estimation enabled to take into account the panel structure

of the MAED data. nmm also allows specifying the individual-specific heterogeneous

number of trips and transport mode-specific functional form. It also introduced

the unique joint continuous-discrete model estimation into the R environment

(Jokubauskaitė et al., 2021b).

As a result strand of publications appeared with this unique data set or/and the
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novel nmm package. Various value of time indicators were estimated in them: the

value of leisure (VoL); the value of time assigned to work (VTAW); the value of

time assigned to travel (VTAT); and the value of travel time savings (VTTS).

These indicators can be used by the policymakers in the cost-benefit analysis of

transport-related infrastructure projects.

The estimation procedure presented in this work (2) and in Jokubauskaitė et al.

(2021b) started with the time-use model presented in Hössinger et al. (2019).

This model was treated as a system of nonlinear regressions and estimated in the

maximum likelihood framework. The main goal of that paper was to calculate the

VoL, VTAW, and VTAT. The first two indicators were reported with standard

errors, the last one without. The VTAT is calculated as a difference between the

VoL and the VTTS. The values of the VTTS came from another model presented

in Schmid et al. (2019), which followed a different estimation technique compared

to Jokubauskaitė et al. (2021b). The joint continuous-discrete model with panel

structure, which was introduced in Jokubauskaitė et al. (2019), allowed to get the

VTAT estimates with standard errors. Additionally, it was noticed that the men’s

VoL was almost double of women - 10.63€/h and 5.86€/h, respectively. After a

detailed investigation of the data, it was observed that these two groups mainly

differ in the time distribution, namely, in time spent on the official work and

housework. Women spent on average 8 hours more on household chores and about

equally less on the official work. As domestic work does not generate income, the

theoretical time-use model ignores the non-monetary value generated by this type

of work. Jokubauskaitė et al. (2021a) proposed to assess domestic work based on

the “third-person” principle (Reid, 1934) and to add it to the monetary value of

the official work. After this adjustment, the gender-specific gap in the estimated

VoL diminished - 9 €/h for both genders. What is more, Jokubauskaitė et al.

(2021a) used a new approach for the valuation of domestic work. Chore-specific

wage data was gathered from online platforms to better reflect the market wage

rate of domestic work. Following this idea, Jokubauskaitė and Schneebaum (2021)

estimated that in 2018 unpaid domestic work in Austria was additionally worth
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around 22% of the reported GDP.
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• Simona Jokubauskaitė, Reihard Hössinger, Sergio Jara-Díaz, Stefanie Peer,

Alyssa Schneebaum, Basil Schmid, Florian Aschauer, Regine Gerike, Kay

WAxhausen and Friedrich Leisch (2021). The role of unpaid domestic work

in explaining the gender gap in the (monetary) value of leisure.
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nmm R package: Estimation of Nonlinear Multivariate Models.

Software
• Simona Jokubauskaite, Reinhard Hoessinger and Friedrich Leisch (2021).

nmm: Nonlinear Multivariate Models. https://CRAN.R-project.org/packag

e=nmm

5 Outlook

The nmm package estimates the following non-linear models - a system of nonlinear

regressions (SNR), logit, and a joint continuous-discrete model - in the maximum

likelihood framework. It uniquely allows to factor in the correlations between error

terms of the SNR and logit.

Logistic regression (logit) is based on the independence of irrelevant alternatives

assumption (IIA), which sometimes might be doubtful. This package could be

further extended and include the estimation of probit, which relaxes the IIA

assumption. This would require to use the copula decomposition.

Additionally, nmm could be extended to use more complicated parameter restrictions.

Currently, it is possible to impose only equality constraints between the parameters

by explicitly adjusting the equation system. After such extension, one could apply

nmm for the estimation of the (non)linear demand systems (AIDS, QUAIDS).

What is more, nmm employs optimizers used by the maxLik package: “NR” (Newton-

Raphson), “BFGS” (Broyden-Fletcher-Goldfarb-Shanno, Broyden, 1970; Fletcher,

1970; Goldfarb, 1970; Shanno, 1970), “BHHH” (Berndt-Hall-Hall-Hausman, Berndt

et al., 1974b), “SANN” (Simulated ANNealing, Bélisle, 1992), “CG” (Conjugate

Gradient, Hestenes et al., 1952), or “NM” (Nelder-Mead, Nelder and Mead, 1965).

Most of them are local optimizers, except SANN, and thus optimization might

get stuck on a flat surface of the likelihood function. This is partially solved

in the nmm package by the usage of the evolutionary global optimization via the
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Differential Evolution algorithm (Mullen et al., 2011) as an intermediate step in

the optimization (control parameter DEoptim_run_main).

A different route could be taken by going fully away from the frequen-

tist to the Bayesian inference. Some groundwork is already laid in the

nmm package. It includes an option to form the log-likelihood functions

by setting argument bayesian_random = TRUE and estimate = FALSE.

The output from the nmm function, namely the attribute of the nmm object

(attributes(object)$functions$jfunc) then could be used with the RSGHB

package (Dumont et al., 2015), which uses the hierarchical Bayesian estimation

framework. An example of such a procedure is provided in Appendix (A.3).

6 Summary

Statistical modeling approximates and simplifies the complex reality by giving

it a form of a mathematical equation. Linear regression is a basic and the

most commonly used technique. It mirrors the real-world processes via a linear

relationship between covariates and predictors onto the real number line. Zellner

(1962) defined the seemingly unrelated regression, which enabled the simultaneous

modeling of multivariate processes. There exist numerous types of multivariate

models that can be divided into two basic categories: seemingly unrelated non-

linear regressions and non-linear simultaneous equation models. Both types include

models with either continuous or discrete dependent variables. Disjoint estimation

of these multivariate models is available with different R (R Core Team, 2020)

packages: continuous with Henningsen and Hamann (2007) or Taha (2015); discrete

with Croissant (2019); Hasan et al. (2016); Imai and van Dyk (2017); Venables and

Ripley (2002) and others. nmm (Jokubauskaite et al., 2021) package introduced in

this thesis enables the joint estimation of discrete-continuous models.

This cumulative work (i) summarized theory related to the estimation of non-linear

multivariate models (NMM); (ii) focused on the estimation of such model in R
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environment (Jokubauskaitė et al., 2021b); (iii) resulted in an R package nmm (Non-

linear Multivariate Models, Jokubauskaite et al., 2021); (iv) applied nmm to get

the value of different time indicators in several published papers (Hössinger et al.,

2019; Jokubauskaitė et al., 2019; Jokubauskaitė et al., 2021a). Using the maximum

likelihood framework, the nmm package estimates these non-linear multivariate

models: a system of non-linear regressions, multivariate logit, and the joint model

of both of them. nmm is an important step in the evolution of the NMM estimation

in the R environment and lays a foundation for future research in this field.
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A Appendix

A.1 Log-likelihood

Assume one has three continuous equations, whose error terms are denoted as ηi,

and Q discrete ones. The individual log-likelihood has the following form:

LL =
Q∑

q=1
αqδqln

(
φ(η1)φ

(
η2 − µη2|η1

ση2|η1

)
φ

(
η3 − µη3|η1η2

ση3|η1η2

)
(A.1)

Φ
(
yq − µyq |η1η2η3

σyq |η1η2η3

))
=

= ln (φ(η1)) + ln

(
φ

(
η2 − µη2|η1

ση2|η1

))
+ ln

(
φ

(
η3 − µη3|η1η2

ση3|η1η2

))
+

+
Q∑

q=1
αq δq ln

(
Φ
(
yq − µyq |η1η2η3

σyq |η1η2η3

))

Here Q is the number of alternatives, yq equals Φ−1(F (θ)) (the quantile transformed

probability) and ηi is the error term from the i-th continuous equation which

depends on the parameter vector θ. One can then rewrite the log-likelihood

function as:

LL(θ) = ln (φ(η1(θ))) + ln

(
φ

(
η2(θ)− µη2|η1(θ)

ση2|η1

))
+ (A.2)

+ ln

(
φ

(
η3(θ)− µη3|η1η2(θ)

ση3|η1η2

))
+

+
∑

q

αq δq ln

(
Φ
(

Φ−1(F (θ))− µyq |η1η2η3(θ)
σyq |η1η2η3

))
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The first three terms are easily differentiable. The problem appears only with the

part:

ln

(
Φ
(

Φ−1(F (θ))− µyq |η1η2η3(θ)
σyq |η1η2η3

))
= ln

(
Φ
(

Φ−1(F (θ))− µ(θ)
σ

))
(A.3)

Here µ(θ) = µyq |η1η2η3(θ) and σ = σyq |η1η2η3 .

A.1.1 The first derivative (gradient)

To derive the first derivative, we will use:

∂

∂θ
ln

(
Φ
(

Φ−1(F (θ))− µ(θ)
σ

))
= 1
σ

(
t2(θ) t4(θ)
t1(θ) t3(θ) −

t2(θ) t5(θ)
t1(θ)

)
(A.4)

y = f(x) (A.5)

f−1(y) = x, due to f−1(f(x)) = x (A.6)

∂f−1(y)
∂x

= ∂x

∂x
= 1 (A.7)

If the argument of f−1is variable y:

∂f−1(y)
∂y

∂y

∂x
= 1 (A.8)

∂f−1(y)
∂y

= 1
∂y
∂x

= 1
∂f(f−1(y))

∂x

(A.9)
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If the argument of f−1 is a function F (θ):

∂f−1(F (θ))
∂θ

chain rule= ∂f−1(F (θ))
∂F (θ)

∂F (θ)
∂θ

(A.9)= 1
∂f(f−1(F (θ)))

∂θ

∂F (θ)
∂θ

(A.10)

∂f−1(F (θ))
∂F (θ) = 1

∂f(f−1(F (θ)))
∂θ

(A.11)

Thus:

∂

∂θ
ln

(
Φ
(

Φ−1(F (θ))− µ(θ)
σ

))
= (A.12)

= 1
Φ
(

Φ−1(F (θ))−µ(θ)
σ

)

︸ ︷︷ ︸
t1

t2︷ ︸︸ ︷

φ

(
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σ

)




1
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σ
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A.1.2 The second derivative (Hessian)

∂2

∂2θ
ln
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Φ
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Φ−1(F (θ))− µ(θ)
σ
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= (A.13)
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σ
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To get the expression of the second derivative we use:

(abc)′ = a′bc+ ab′c+ abc′ (A.14)

ab

cd
= (ab)′(cd)− (cd)′(ab)

(cd)2 = a′bcd+ ab′cd− abc′d− abcd′
(cd)2 (A.15)

ag

c
= (ag)′cd− c′(ag)

c2 = a′gc+ ag′c− agc′
c2 (A.16)

A.1.2.1 T1

T1 = ∂

∂θ

(
t2(θ) t4(θ)
t1(θ) t3(θ)

)
= Ξ

(t1(θ) t3(θ))2 (A.17)

Here:

a = t2(θ), b = t4(θ), c = t1(θ), d = t3(θ) (A.18)

Ξ =t2(θ)′ t4(θ) t1(θ) t3(θ) + t2(θ) t4(θ)′ t1(θ) t3(θ)−

− t2(θ) t4(θ) t1(θ)′ t3(θ)− t2(θ) t4(θ) t1(θ) t3(θ)′ (A.19)

a′ =∂t2(θ)
∂θ

= φ

(
Φ−1(F (θ))− µ(θ)

σ

)′
= φ(arg)′ =

∂φ(arg)
∂arg

∂arg

∂θ
= ∂φ(arg)

∂arg
∆ (A.20)

b′ = ∂t4(θ)
∂θ

= ∂2F (θ)
∂2θ

(A.21)
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c′ = ∂t1(θ)
∂θ

= Φ
(

Φ−1(F (θ))− µ(θ)
σ

)
= t2(θ)∆ (A.22)

d′ = ∂t3(θ)
∂θ

= φ
(
Φ−1(F (θ))

)′
= φ(arg)′ =∂φ(arg)

∂arg

∂arg

∂θ
= (A.23)

∂φ(arg)
∂arg

t4(θ)
t3(θ)

A.1.2.2 T2

T2 = ∂

∂θ

(
t2(θ) t5(θ)
t1(θ)

)
=

t2(θ)′ t5(θ) t1(θ) + t2(θ) t5(θ)′ t1(θ) − t2(θ) t5(θ) t1(θ)′ ′
(t1(θ) )2 (A.24)

Here:

a = t2(θ), c = t1(θ), g = t5(θ) (A.25)

a′ =∂t2(θ)
∂θ

= φ

(
Φ−1(F (θ))− µ(θ)

σ

)′
= φ(arg)′ =

∂φ(arg)
∂arg

∂arg

∂θ
= ∂φ(arg)

∂arg
∆ (A.26)

g′ = ∂t5(θ)
∂θ

= ∂2µ(θ)
∂2θ

(A.27)

c′ = ∂t1(θ)
∂θ

= Φ
(

Φ−1(F (θ))− µ(θ)
σ

)
= t2(θ)∆ (A.28)
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A.2 Conditioning in the Multivariate Normal

Distribution

Define Z = (z1, z2, . . . , zk) as a vector of random variables that are jointly normally

distributed:

f (Z) = (2π)k/2 |Σ|−1/2 exp
[
−1

2(Z − µ)′Σ−1 (Z − µ)
]

(A.29)

µ is the vector of means and Σ is the contemporaneous covariance matrix. The

joint normal distribution, can be partitioned as:

f (Z) = f (z1) f (z2|z1) f (z3|z1, z2) . . . f (zk|z1, . . . , zk−1) (A.30)

The theorem of conditional normal distribution helps to find the conditional normal

distribution f (zi|z1, . . . , zi−1). Let X = (X1, . . . , Xn)′ and Y = (Y1, . . . , Ym)′ be

two multivariate normal variables of size n and m, respectively. The joint variable

- Z = (X1, . . . , Xn, Y1, . . . , Ym)′ is (n+m) dimensional normal variable. Denote

the expectations as follows:

E[X] = µX , E[Y ] = µY (A.31)

and partition the covariance matrix for Z (with ΣXY = Σ′Y X),
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Σ = Cov






X

Y


 ;



X

Y





 =




ΣXX ΣXY

ΣY X ΣY Y


 (A.32)

The conditional density of X given that (Y = y) is:

fX|Y (x, y) = fY X (y, x)
fY (y) , thus fY X (y, x) = fX|Y (x, y) fY (y) (A.33)

Theorem. (Conditional normal distribution) The conditional normal distribution

of X, given that (Y = y), is n-dimensional normal with expectation and covariance

matrix:

E[X|Y = y] = µX|Y = µX + ΣXY Σ−1
Y Y (Y − µY ) (A.34)

Cov (X|Y = y) = ΣXX|Y = ΣXX − ΣXY Σ−1
Y Y ΣXY (A.35)

Thus, X|Y ∼ N
(
µ̃, Σ̃

)
, where µ̃ = µX|Y and Σ̃ = ΣXX|Y .

A.3 Bayesian estimation

1. Define controls for doHB function:

library(RSGHB)

control <- list(

modelname = "example",

gVarNamesNormal = par_c,

gDIST = rep(1, length(par_c)),

svN = r_cont$estimate,
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gNCREP = 100,

gNEREP = 200,

gNSKIP = 1,

gINFOSKIP = 100,

verbose = FALSE,

gSeed = 1987

)

2. Use nmm function to get the log-likelihood function:

bay_f <- nmm(data = MAEDtimeExpenditure, eq_c = eq_c, par_c = par_c,

eq_type = "cont", estimate = FALSE,

bayesian_random = TRUE)

ll <- attributes(bay_f)$functions$jfunc

data <- attributes(bay_f)$data

data$ID <- paste0(data$PeID)

data <- data[order(data$ID),]

Equations and parameters come from Subsection (3.1).

3. Define log-likelihood function, which will be used with doHB function from

RSGHB package:

environment(ll) <- environment()

likelihood <- function(fc, b)

{

b <- apply(b, 2, as.numeric)

res <- ll(b) %>% rowSums

if(any(res%in%c(NaN, Inf, -Inf))){

replace(res, is.nan(res)|res%in%c(Inf, -Inf), NA)

} else {

exp(res)

}
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}

4. Check if function gives the same output:

stvr <- matrix(r_cont$estimate, ncol=length(r_cont$estimate),

nrow=nrow(data), byrow=TRUE)

ll(stvr) %>% sum

[1] -8820.291

likelihood(b=stvr) %>% log %>% sum

[1] -8820.291

r_cont$maximum

[1] -8820.291

5. Estimate:

model <- doHB(likelihood, data, control)

model$ll0

model$llf

This estimation could be used for the Bayesian estimation of the continuous model.
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a b s t r a c t 

This paper presents the joint time-use, expenditure and mode choice model, based on 

the theoretical framework of Jara-Díaz and Guevara (2003), for the first time estimated 

in panel setting while using surveyed expenditure data. This extended estimation takes 

into account multiple trips per individual, as well as mode availability. The model was es- 

timated using the novel dataset gathered in Austria in 2015. It includes individual-specific 

information on time-use, expenditures and mode choice. As a result, we calculate the value 

of leisure (VoL), travel time savings (VTTS) and time assigned to travel (VTAT), that are rel- 

evant inputs to appraisals of transport policies. We also show that, at least for the Austrian 

working population, the omission of expenditures in the model might result in a signifi- 

cant overestimation of the value of leisure (16.83%); the VoL (9.29 €/h) was estimated to 

be considerably lower than the wage rate (12.14 €/h) and the VTTS varies strongly between 

the modes (9.98 €/h for car, 3.91 €/h for public transport, 9.25 €/h for bike and 17.53 €/h for 

walk). The joint estimation framework produced positive estimates of VTAT (5.38 €/h) only 

for public transport, reflecting the favorable public transport conditions in Austria. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The integration of travel decisions into the framework of time-use and activity scheduling has received increasingly more 

attention in recent years (for a detailed summary of different approaches, see e.g. Bhat, 1998; Bradley and Vovsha, 2005; 

Bhat et al., 2013; Jara-Díaz and Rosales-Salas, 2017 ). A prominent strand of research in this context was established by 

Jara-Díaz and Guevara (2003) and expanded by Jara-Díaz et al. (2008) . They highlighted that a person who makes a travel 
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decision does not only maximize her/his utility in a particular choice situation, but also in the surrounding time-expenditure 

space. They developed a time-use framework model, which allows to estimate different aspects of time-use in monetary 

terms. A key output is the value of leisure (VoL). It represents the marginal utility of all activities with assigned time 

exceeding the necessary minimum. Following DeSerpa (1973) , the VoL permits a deeper examination of the value of travel 

time savings (VTTS) obtained from travel choice models. The VTTS equals the VoL minus the value of time assigned to travel 

(VTAT). It summarizes the value of the liberated time (opportunity cost of travel), while the VTAT represents the direct utility 

(or disutility) derived from the time spent in the travel activity. The VTAT differs between modes and specific conditions of 

travel, such as comfort, reliability, crowding or the possibility to use in-vehicle time productively. 

The VTAT is important from a transport planning perspective. For a public transport operator, it enables a comparative 

evaluation of investments in better travel conditions (supported by the VTAT) or in higher speed (justified by the VoL). 

Furthermore, the VTAT of car travel will presumably receive increasing attention in the context of autonomous driving: the 

release from the driving task enables secondary activities during the trip. As a result, time spent in a car will be perceived 

as being more useful (the VTAT will increase), and car use should become less sensitive to longer travel time, e.g. due to 

congestion. 

So far some attempts have been made to estimate the model of Jara-Díaz et al. (2008) , but the number of studies was 

limited by the large amount of required data. This model uses information about the patterns of time-use, expenditure 

allocation, and travel decisions. All of which have to be tracked over a whole work-leisure cycle ( Jara-Díaz and Rosales- 

Salas, 2015; 2017 ). Appropriate datasets that cover such broad information were not available for a long time. Therefore, 

previous studies have estimated only incomplete models, mostly without travel decisions ( Jara-Díaz et al., 2008; 2016 ), or 

considering only one trip ( Munizaga et al., 2008 ). In order to overcome these limitations, Aschauer et al. (2019) developed a 

novel survey procedure, the so-called Mobility-Activity-Expenditure Diary (MAED). In 2015 it was applied for the first time 

while collecting the data of interest from employees in Austria. 

Using the MAED data, Hössinger et al. (2019) provided the first results based on the complete modelling framework, 

including time-use and expenditure equations. The results include estimates for the VoL, VTTS and for the first time a 

mode-specific VTAT. A serious limitation, however, is that the results from the discrete choice model used in Hössinger et. 

al. (2019) come from the independent estimation done by Schmid et al. (2019) . It is worth mentioning that both studies 

used the same dataset. 1 A consequence of the separate estimation is that possible correlations between the error terms of 

continuous and discrete decisions were not considered. Also, no confidence intervals were reported for the VTAT, as it was 

computed from the estimates of separate models. 

This calls for a joint estimation procedure for both the continuous and discrete parts in order to obtain more efficient 

state-of-the-art estimates for all parameters and values of time. This is not possible in the multiple discrete-continuous 

extreme value model (MDCEV) proposed in Bhat (20 05; 20 08) . The MDCEV can only be applied to decisions regarding 

activities that generate intrinsic positive utility. Travel is well known to be a derived activity which generates negative 

utility and which people would thus prefer to avoid. The time and expenses assigned to travel could enter the MDCEV 

only as an ‘outside good’, which is externally given but not estimated endogenously. We show the gains from the additional 

information and the joint estimation by comparing models with and without inter-block correlations (between time-use and 

travel mode decisions), and models with and without expenditure equation. The starting point for this study is the work by 

Munizaga et al. (2008) , who presented a discrete-continuous model with explicit consideration of correlations between both 

types of decisions. The model was calibrated using a Chilean sample of long-distance commuters to downtown Santiago 

who completed a three days’ activity diary. The dataset includes only one mode choice for the commuting trip and no 

expenditures. The resulting model is therefore incomplete in the sense that it includes no expenditure equation and a single 

morning trip to work, which is a very limited representation of the person’s general travel behavior. 

The objective of this paper is to improve over both Munizaga et al. (2008) and Hössinger et al. (2019) with three inno- 

vations. First, based on the aforementioned MAED dataset, we provide a joint estimation of the complete model framework 

– the time-use model and the travel choice model. It includes time-use equations, expenditure equations (for the first time 

using information from the same individuals) and all mode choices made over the whole observed period. 2 Second, the 

employed modelling framework allows the calculation of the value of leisure (VoL) along with different values of travel 

time (VTTS and VTAT). Third, we develop an advanced estimation procedure, which is able to use the rich information of 

the MAED dataset in a panel setting. The unobserved individual-specific characteristics that might affect the choices are 

modelled with latent factors. The joint estimation framework can also accommodate for the large and varying number of 

mode choices (MAED survey participants reported 23 trips on average during the survey week, each of which establishes a 

separate mode choice). Also, it is able to automatically derive the equations of the conditional moments (mean and standard 

1 The mode specific VTTS was estimated in a parallel effort by Schmid et al. (2019) from a discrete choice model, which combines different data types 

(RP, SP) and experiment types (mode, route, and shopping destination choice). 
2 Habib (2013) refers to such models with separate functions for discrete and continuous choices, which require that the correlation between both types 

of decisions needs to be modeled explicitly, as ‘loosely coupled’ – as opposed to ‘tightly coupled’ models, which use common attributes and parameters to 

estimate pairs of discrete and continuous choices (as a result, the juncture between both types is implicitly addressed and no extra measure is necessary 

to address the correlation). A prominent example of the latter is the multiple discrete-continuous extreme value model (MDCEV, see Bhat, 2005; Castro 

et al., 2012 ), which estimates the discrete choice, if a non-zero amount of time is assigned to a particular activity, and (if so), the continuous choice of the 

amount of time assigned to that activity. 
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deviation) of the normal distribution for a large number of variables. The complexity of these equations increases dispro- 

portionately to the number of variables, thus doing it manually might become a huge burden. The estimation solution was 

developed using the statistical computing language R ( R Core Team, 2013 ). 3 

This paper is organized as follows. In Section 2 , the theoretical joint model is introduced. The MAED data-set is dis- 

cussed in Section 3 . Section 4 contains the estimation results of the four models (with/without expenditure modelling 

with/whithout panel structure), as well as an a-priori segmentation analysis according to socioeconomic characteristics. 

Section 5 reviews the central findings of this study and discusses future research. 

2. Modelling framework 

DeSerpa (1971) proposed a sophisticated theoretical model, which treated utility as a function of commodities and time, 

and considered budget, total time, and minimal required time constraints. This model laid the foundation for the micro- 

economic model developed in Jara-Díaz and Guevara (2003) . The authors combined travel mode choice and time allocation 

systems, and showed that “estimating both types of models from the same population makes it possible to obtain all com- 

ponents of the subjective value of travel time savings empirically” (pp. 29). Although Jara-Díaz et al. (2008) generalized the 

theoretical framework and presented a time-use-expenditure model, expenditures directly obtained from the same individ- 

uals were not used until Hössinger et al. (2019) . 4 In our paper we further refine the modelling structure while using the 

methodology proposed by Jara-Díaz et al. (2008) and Munizaga et al. (2008) . This approach takes into account not only 

the intra-continuous-block, but also the inter-block correlations (between time-use and travel mode decisions). We extend 

it with panel structure and the incorporation of the expenditure equation proposed in Jara-Díaz et al. (2008) and used in 

Jara-Díaz and Astroza (2013) , as well as in Hössinger et al. (2019) . 

2.1. Time-use decision 

2.1.1. Model formulation 

Following the framework developed in Jara-Díaz and Guevara (2003) and Jara-Díaz et al. (2008) , the agent’s utility is 

assumed to have a Cobb-Douglas form: 

U = T θw 
w 

n ∏ 

i =1 

T θi 

i 

m ∏ 

j=1 

E 
φ j 

j 
(1) 

In Eq. (1) utility U is a function of T w 

- the amount of time assigned to work, T i - the time assigned to activity i , and E j 
- the expenditure assigned to good j . The exponents θw 

, θ i , φj are the baseline utilities of time assigned to work, activities, 

and expenditures respectively. They also represent the elasticity of utility with respect to a corresponding input. The utility 

maximization problem can be expressed as: 

arg max 
θw ,θA ,φG 

U = arg max ln (U) 
θw ,θA ,φG 

= arg max 
θw ,θA ,φG 

( 

θw 

ln (T w 

) + 

n ∑ 

i =1 

θi ln (T i ) + 

m ∑ 

j=1 

φ j ln (E j ) 

) 

(2) 

subject to: 

τ − T w 

−
n ∑ 

i =1 

T i = 0 (μ) (time constraint) (3) 

wT w 

+ I −
m ∑ 

j=1 

E j ≥ 0 (λ) (budget constraint) (4) 

T i − T Min 
i ≥ 0 (κi ) (technical constraints on activities) (5) 

E j − E Min 
j ≥ 0 (η j ) (technical constraints on goods) (6) 

Here A and G are sets of activities and expenditures. θA and φG are vectors of time and expenditure exponents. Goods 

and activities are divided into two groups, freely chosen and committed. The latter ones restrict their freely chosen coun- 

terparts. Constraints (3) –(4) also include w - the wage rate, I - income not related to work, τ - total available time (in 

our study it will be 168 h). One can solve the presented maximization problem by applying the Lagrange method. The 

Lagrange multipliers are given on the right side of each constraint ( μ, λ, κ i , ηj ). They show the marginal utility/cost of 

relaxing/strengthening the constraints. The technical constraints ( Eqs. (5) and (6) ) on those committed activities and goods 

3 A long-term objective is to provide the estimation procedure established for this paper as an R package for the estimation of discrete-continuous 

equation systems, because no package is available so far for this purpose. 
4 Expenditure equations were indeed used by Jara-Díaz and Astroza (2013) imputing expenses taken from other complementary sources. 
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that are necessary for personal and household maintenance (travel, rental cost etc.) are not explicitly estimated. They are 

inferred from the observations and introduced in the time and budget constraints as T c and E c ( Hössinger et al., 2019 ). For 

these activities/goods consumers are left with no other choice but to stick to the technical minimum ( T Min 
i 

/E Min 
j 

). The ana- 

lytic solution of the constrained maximization problem defined by Eqs. (2)–(4) yields the following expressions of optimal 

amount allocated to labor, freely chosen activities, and expenditure groups (for more details, see Hössinger et al., 2019 ): 

T ∗w 

= 

(
(� + θw 

)(τ − T c ) + (	 + θw 

) E c 
w 

)
+ 

√ 

D 

2(	 + � + θw 

) 
(7) 

here D = 

(
(� + θw 

)(τ − T c ) + (	 + θw 

) 
E c 

w 

)2 

− 4(	 + � + θw 

) θw 

(τ − T c ) 
E c 

w 

T ∗i = 

θi 

	
(τ − T ∗w 

− T c ) (8) 

E ∗j = 

φ j 

�
(wT ∗w 

− E c ) (9) 

where 	 = 

∑ 

i ∈ A f θi , � = 

∑ 

j∈ G f φ j with A f and G f being the index sets of freely chosen activities and goods. A 

c 
f 

and G 

c 
f 

are sets of committed activities and goods. T c = 

∑ 

i ∈ A c 
f 

T min 
i 

and E c = 

∑ 

j∈ G c 
f 

E min 
j 

correspond to total committed time and 

expenditures, respectively. 

2.1.2. Likelihood formulation 

Under the assumption of normality, one can rewrite the system of Eqs. (7)–(9) as: 

Y i = g i (β) + ηi , i ∈ { 1 , . . . , 3 } (10) 

where g i is a function of parameter vector β and ηi ∼ N ( μi , σ i ) is error component. The estimation procedure takes into 

account the possible correlations between equations. Later, this dependency is referred to as intra-block correlation. The 

joint density can be partitioned as: 

f (η) = f (η1 ) f (η2 | η1 ) f (η3 | η1 η2 ) (11) 

The log-likelihood function for sample of size J is: 

LL (η) = 

J ∑ 

i =1 

ln ( f (η1 ) f (η2 | η1 ) f (η3 | η1 η2 ) ) (12) 

Under the normality assumption of { η1 , η2 , η3 }, the conditional distributions as well as the conditional moments ( μη2 | η1 
, 

μη3 | η1 η2 
, �η2 | η1 

, �η3 | η1 η2 
) can be found by applying the “Conditional Normal Distribution” Theorem. 

2.1.3. Indicators 

The maximum likelihood (ML) estimation for the given log-likelihood function ( Eq. (12) ) yields estimates of the param- 

eters from Eqs. (7)–(9) . Then using these values and the first order conditions from Oort (1969) or Jara-Díaz and Gue- 

vara (2003) the VoL and VTAW can be calculated as follows: 

V oL = 

∂ U\ ∂ T i 
∂ U\ ∂ E j = 

μ

λ
= 

	(wT w 

− E c ) 

�(τ − T w 

− T c ) 
(13) 

V T AW = V oL − w (14) 

where T w 

is the fitted value of work time. 

2.2. Discrete choice model 

2.2.1. Model formulation 

In the mode choice dimension, an individual again maximizes her/his personal utility and chooses transportation mode 

q if: 

U q = V q + εq ≥ max m � = q { U m 

} (15) 

V q ≥ max m � = q { U m 

} − εq = ω q (16) 
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Utility U consists of the observable part V (the indirect utility) and an error term ε. The indirect utility V q is assumed 

to be a function of duration ( time q ), price ( cost q ) and other mode specific variables. Following Munizaga et al. (2008) we 

assume that ε are Gumbel distributed and thus the new error term ( ω) distributes logistically ( Domencich et al., 1975 ). As 

not all transportation modes might be available for all observations, dummy variable αikq is introduced to control for this. 

The probability that the person i chooses mode q for her/his k -th trip is: 

P ikq = F (V ikq ) = 

exp(V ikq ) ∑ Q 
j 
αik j exp(V ik j ) 

(17) 

where Q is the number of alternatives, and dummy variable αikq is equal to zero, if alternative q is not available for the trip 

k , and one otherwise. 

2.2.2. Likelihood formulation 

Under the assumption of Gumbel distributed errors, the log-likelihood is defined as follows: 

LL (θ ) = 

J ∑ 

i =1 

n i ∑ 

k =1 

Q ∑ 

q =1 

δiq αikq ln P ikq (18) 

where J is the number of people, n i is the total number of trips that person i has conducted. 

2.2.3. Indicators 

Using the results from Bates (1987) and Jara-Díaz and Guevara (2003) , one can calculate the VTTS and the VTAT: 

V T T S q = 

∂ V q \ ∂ time q 

∂ V q \ ∂ cost q 
(19) 

V T AT q = V oL − V T T S q (20) 

2.3. Joint estimation 

Conceptually, the value of travel time savings (VTTS) estimated from travel choice models represents the willingness- 

to-pay to diminish travel time by one unit. As originally shown by DeSerpa (1971) , the VTTS has two components: the 

opportunity cost regarding other activities (leisure or work) and the value of a reduction of the travel activity by itself. The 

first component is the value of leisure (VoL); the second, called the value of time assigned to travel (VTAT), depends on travel 

conditions. The analytical formula is given in Eq. (20) . Here VTTS q is the (mode-specific) value of travel time saving, VoL the 

(individual-specific) value of leisure, and VTAT q the value of time assigned to travel, driven by mode-specific characteristics, 

such as comfort, and how productively in-vehicle time can be used for secondary activities (for a general derivation, see 

Jara-Díaz (2007) , Chapter 2). The equation shows that unless one has an estimate of both, i.e. VoL and VTTS q , the VTAT q 
simply cannot be estimated. This is exactly the reason why a joint model of time-use and mode choice is needed. 

The joint estimation of the full model framework with all types of decisions (time-use, expenditures, and mode choice 

for all weekly trips) is the key innovation presented in this paper. The estimation advancements were partly forced, partly 

matured by the usage of the rich MAED dataset and the necessity to transform the available information into the continuous- 

discrete model variables. We advance the relevant literature along the following lines. Firstly, the expenditure ( Eq. (9) ) was 

included into the modelling framework, secondly the assumption of one trip per individual was given up. Thirdly, the deriva- 

tion of the conditional moments was automated with a computer algebra system (Maxima) and R. This flexible procedure 

simplifies the inclusion of more than three equations into the continuous block, as well as the modelling of a high and 

variable number of discrete choices, and the usage of extended utility functions with interaction terms. 

The previously defined systems of equations ( Eq. (7) –(9) ) and indirect utilities from Eq. (17) remain the same in this 

joint model; only the estimation procedure changes. As Munizaga et al. (2008) pointed out, the error terms from both 

system blocks, Section 2.1 and 2.2 , may be correlated due to common parameters/variables or hidden relationships between 

the variables (e.g. the duration of trip influences how much free time is left). Because of this, it is desirable to jointly 

estimate both systems of equations and account for possible inter-block correlations. What is more, mode choice utility 

is a conditional indirect utility function that can be derived from a activity-consumption consumer behavior model ( Jara- 

Díaz and Guevara, 2003; Jara-Díaz, 2007 ). So direct utility and the so-called modal utility have to be compatible, but they 

belong to different levels (one is derived from the other). The error term ( η) from the continuous block is assumed to 

follow a trivariate normal distribution and ω from the discrete block distributes logistically. To find the joint distribution, 

the transformation proposed by Lee (1983) was applied to the discrete choice part ( Eq. (17) ): 

y q = �−1 (F (V q )) ≥ �−1 (F (ω q )) = ω 

∗
q ∼ N (0 , 1) (21) 

After this modification, the components from both blocks of the system are normally distributed and thus one can apply 

the “Conditional normal distribution” Theorem. These steps produce the following log-likelihood formula: 

LL = 

∑ 

i 

∑ 

k 

∑ 

q 

αikq δikq ln 

( 

φ( η1 i ) 
W 1 i φ

(
η2 i − μη2 i | η1 i 

ση2 | η1 

)W 2 i 

φ

(
η3 i − μη3 i | η1 i η2 i 

ση3 | η1 η2 

)W 3 i 

�

(
y ikq − μ y ikq | η1 i η2 i η3 i 

σy q | η1 η2 η3 

)) 

(22) 
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where i indicates the person, k - the trip and q - the transport mode. αikq - is equal to zero if alternative q is not available 

for person i on trip k . and one otherwise. δikq - is equal to zero if alternative q is not chosen for trip k of person i , and 

one otherwise. φ(.) and �(.) correspond to the density and distribution functions of the standard normal distribution. ηmi is 

the error term from the m -th continuous equation ( Eq. (7)–(9) ) for individual i. μy | x and σ y | x denote conditional mean and 

standard deviation. y ikq is the Lee transformed probability ( Eq. (17) ) of mode q chosen by person i for trip k . Additionally, 

W 1 i , W 2 i , W 3 i are weights applied only to the continuous equations. This might be used to balance the log-likelihood, if for 

one observation in the continuous block ( { T w,i , T f 1 ,i , E f 1 ,i , ... } ) multiple choices/trips are available. The weights can be chosen 

to be proportional to the number of trips ( n i ) made by each individual i. 

The multinomial logit assumes “independence of irrelevant alternatives” (IIA) property, which in some cases might be 

doubtful. 5 Also, if a panel structure is present, choices across time might be correlated ( Bhat and Gossen, 2004 ) or an 

unobserved individual-specific characteristic might affect the choice of travel mode ( Toledo et al., 2007 ). To take the latter 

possibility into account, the formulation of the discrete model is updated. For this purpose, a normal error component 

model with latent variables ( Walker et al., 2007 ) is used. This implies that the alternatives are correlated through the factor 

loadings ( f q ) and the latent individual traits are expressed as factor ζ i . The error term εq from Eq. (15) has the following 

form for alternative q and individual i : 

εqi = f q ζi + νq (23) 

where ζ i is a ( n i × 1) vector of i.i.d. standard normal variables (individual characteristics), f q are mode-specific factor load- 

ings, and νq is a vector of Gumbel distributed errors ( Walker et al., 2007; Toledo et al., 2007 ). 

2.3.1. Estimation 

Coefficients belonging to the system of equations ( Eqs. (7) –(9) ) were divided by 	. To estimate the joint continuous- 

discrete model accounting for the observed panel data structure, we employ hierarchical Bayesian (HB) estimation. In the 

first step, starting values for the Bayesian estimation were found by ML estimation. This was needed for faster and more sta- 

ble convergence. To maximize the log-likelihood defined in Eq. (22) , the R package maxLik ( Henningsen and Toomet, 2011 ) 

was used. Optimisers from this package search for the local minima/maxima and use by default the numerical approxi- 

mations of the gradient and the Hessian. With default settings, no convergence for our model was reached. Due to the 

complicated functional form (the likelihood function includes quantiles), the analytical gradient and the Hessian had to be 

computed by hand and later programmed into R. This improvement led to stable results. The initial starting values for ML 

estimation were defined for each block separately. The continuous block was estimated with ML and non-linear least squares 

were applied to the discrete one. Afterwards, both parts were optimized together using a combination of local optimizers 

(“BFGS” Fletcher, 1987 , “NM” Nelder and Mead, 1965 ) and the evolutionary global optimization ( Mullen et al., 2011 ) for fine 

tuning. 6 

After the starting values were found, hierarchical Bayesian estimation was employed using the R package RSGHB. The R 

code implementation for HB is based on Train and Sonnier (2005) and Train (2009) . In the HB framework, all coefficients can 

be randomly distributed, but this is not always feasable. As Train (2009) points out, (i) random alternative-specific constants 

might be unidentifiable empirically; (ii) indicators (such as the VTTS) are ratios with more complex distributions than their 

elements and might result in economically unreasonable values (e.g. negative VTTS); (iii) the distribution of parameters 

might not be the main interest of the research. In our paper, we decided to keep all the coefficients fixed except for the 

individual-specific error components ( ζ i , Eq. (23) ). In this setting, an individual makes multiple choices, which are assumed 

to be affected by unobservable personal characteristics ( ζ i ) ( Walker et al., 2007; Toledo et al., 2007 ). This accounts for 

the panel structure. The HB estimation was performed with 20,0 0 0 burn-ins and 40,0 0 0 iterations for averaging after the 

convergence has been reached. For more details on the estimation procedure, see Chapter 12.7.3 in Train (2009) . 

To sum up, the estimation proposed in Munizaga et al. (2008) was extended with three additions. First, an availabil- 

ity dummy was included to allow situations where not all alternatives are available. Second, multiple trips per individual 

were incorporated into the estimation by replicating the continuous part to match the number of trips and balancing the 

likelihood with individual-specific weights. Finally, the panel structure was modelled with the individual-specific error com- 

ponents. 

5 An alternative for this would be the usage of a multinomial probit model, but it would complicate the estimation procedure significantly, as multinomial 

probit does not have a closed solution with more than two alternatives. Another option would be to estimate mixed multinomial logit (MMNL) models. 

Schmid et al. (2019) has estimated a variety of logit modifications including the MMNL. Indeed, the MMNL improved the model fit, but the parameters did 

not change significantly. One could also apply the Copula method, which disassembles the joint multivariate density into a product of univariate densities 

and their Copula combinations. Bhat and Eluru (2009) presented a nice collection of bivariate Copulas and a good example of multivariate application is 

Sener et al. (2010) . 
6 Although both algorithms, “BFGS” and “NM”, are local optimisers, we found that the first tended to get stuck more often in local maxima, than the 

second one. To diminish the risk of staying in the local maximum, the estimation was fine tuned in three stages. First “BFGS” was used, than “NM” was 

applied with starting values from the previous step and finally the evolutionary global optimization was enforced. 
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3. Survey methods and data 

In this paper, we use a novel data-set that distinguishes between 10 different activity types, 14 expenditure groups and 4 

transport modes (walk, bike, car, public) over a period of one week, all of which were collected simultaneously, i.e., from the 

same individuals at the same time. The data was gathered using the newly developed Mobility-Activity-Expenditure Diary 

(MAED). It was conducted in the form of self-administered mail-back questionnaires with telephone support and incentives. 

The survey consisted of a diary and a household questionnaire. The diary had three sections: trip, activity and expenditure. 

In addition, infrequent long-term and regularly recurring payments were reported in the household questionnaire. As stated 

in Aschauer et al. (2019) , this type of procedure is similar to consumer expenditure surveys, which gather retrospective in- 

formation on long-term cost for one year. The survey took place in spring and autumn of 2015. The net sample included 748 

representatively selected Austrian workers. The reporting period of one week was a compromise between response burden 

and accurate representation of the individuals’ long-term equilibrium. Aside from the usual plausibility checks and error cor- 

rections, time-use and expenditure data were adjusted in order to reduce the incidental and unsystematic variation in the 

diary data and to better reflect the long-term equilibrium of individuals ( Hössinger et al., 2019 ). To merge daily and long- 

term expenditure data, Hössinger et al. (2019) developed a three step procedure leading to reasonable results. The adjusted 

data is comparable with the Austrian Time Use Survey (ATU’S) 2008/09 and the Austrian Consumer Expenditure Survey 

(ACES) 2009/10 ( Hössinger et al., 2019 ). The focus of this section is to give an overview of the model variables used in the 

estimation procedure. For a more detailed description of data, we refer to Aschauer et al. (2019) , Aschauer et al. (2018) and 

Hössinger et al. (2019) . 

3.1. Time-use and expenditure data 

The model defined by Eq. (7) –(9) requires the recorded data to be assigned to groups of freely chosen and committed 

activities/expenditures. Our time-use and expenditure categories are very broadly defined, so that everyone engages in each 

activity (no zeros in data). Thus, there is no need to accommodate for corner solutions that might arise with more detailed 

categorization. Table 1 shows the classification and shares of reported activity and expenditure categories into the model 

variables. 

Although the influence of the classification on the results cannot be negated, the allocation is subjective as it cannot be 

validated. The used representation of committed activities ( T c 
7 ) is based on Jara-Díaz et al. (2016) . The underlying logic is 

that most of the individuals do not want to spend more time than needed on domestic work, personal care, commuting or 

Table 1 

Shares and correlations of total expenditure and time-use data. 

Activities Expenditure 

Var. % Var. % 

T w 36.77 E f 1 17.26 

T f 1 14.06 E f 2 5.73 

T f 2 5.51 E c 77.01 

T c 42.84 

Work T w 36.77 Leisure E f 1 7.70 

Leisure T f 1 14.06 Accomm E f 1 5.95 

Eating T f 2 4.52 Electronic E f 1 3.61 

Shopping T f 2 1.00 Clothes E f 2 5.73 

Sleep T c 26.76 Housing E c 22.74 

Domestic T c 6.93 Food E c 17.46 

Personal T c 4.64 Mobility E c 12.47 

Travel T c 4.51 Insurance E c 7.83 

Education T c 0.63 Other E c 4.97 

Miscellaneous T c 0.20 Service E c 3.24 

Health E c 2.55 

Furniture E c 2.41 

Education E c 2.06 

Financing E c 1.29 

Correlations: 

T w T f 1 T f 2 T c E f 1 E f 2 
T f 1 −0.22 ∗∗∗

T f 2 −0.18 ∗∗∗ −0.19 ∗∗∗

T c −0.60 ∗∗∗ −0.58 ∗∗∗ −0.04 

E f 1 0.39 ∗∗∗ −0.12 ∗∗∗ 0.11 ∗∗ −0.26 ∗∗∗

E f 2 0.26 ∗∗∗ −0.03 0.12 ∗∗ −0.23 ∗∗∗ 0.31 ∗∗∗

E c 0.57 ∗∗∗ −0.17 ∗∗∗ −0.05 −0.33 ∗∗∗ 0.56 ∗∗∗ 0.36 ∗∗∗

Signif. codes: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05. 
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Fig. 1. Segmentation by the trip distance. 

education. In contrast to Jara-Díaz et al. (2016) sleeping is considered to be a committed activity, as the individual minimum 

for biologically staying alive exists. The activity “Eating” was classified as an unrestricted one ( T f 2 
7 ), as it includes eating in 

a restaurant and thus the necessary minimum time needed for food consumption may be exceeded. 

The grouping of committed expenditures ( E c 
7 ) adopts the argumentation presented in Aschauer et al. (2019) as well as 

Mokhtarian and Chen (2004) . Most importantly, people need to satisfy their basic needs (food, health, housing, education). 

Also, they do not want to spend too much money on household maintenance ( Gronau and Hamermesh, 2006; Ahn et al., 

2004 ) and transportation ( Mokhtarian and Chen, 2004 ). Finally, some tasks simply have to be taken care of (mortgages, 

insurance). Due to their relaxed nature, expenditures on accommodation, leisure and recreational goods, as well as on elec- 

tronics and communication devices were identified as freely chosen ones and grouped into E f 1 
7 . Although clothing can be 

considered as necessity, expenses on it constituted a significant share of total spending ( Table 1 ), evidently exceeding the 

“technical minimum” (for detailed information, see Hössinger et al., 2019 ). 7 

The observed individuals spend on average about 36.77% of their time working, and devote 77.01% of their income to 

committed activities ( Table 1 ). All model variables are connected through time and budget constraints and thus changes 

in one variable will be reflected in the shift of another. The intra-continuous-block correlations are also presented in 

Table 1 and most of them are statistically significant. The joint estimation presented in Section 2.3 will take this into con- 

sideration. 

3.2. Mobility 

Due to the lack of mode choice data description in the previous studies ( Hössinger et al., 2019; Schmid et al., 2019 ), a 

more thorough descriptive analysis of this part is presented here. The used data-set comprises 17,127 trips. In contrast to 

Jara-Díaz and Guevara (2003) and Munizaga et al. (2008) , each individual had more than one trip and on average 23.24 

trips were made per individual in the reporting week. The average length of a trip is 9.80 km and the average duration is 

19.90 min. Fig. 1 shows the travel mode distribution in different segments of travel distance. In general, with the increase 

of travel distance, usage of car increases, reaching its peak in the segment “13 − 25 km”. The only segment where the usage 

of cars drops drastically is “ ≤ 2 km” (but even then it still is used in 44.60% of the trips). This shortest distance segment 

corresponds to 30.22% of the total sample. In this segment people walked at least 10 times more often than in the other 

segments. What is more, the usage of public transport is highest in the segments “3 − 4 km” and “ > 25 km”. These are 

typical cases of intra-urban and inter-urban mobility. 

7 T f 1 = { Leisure}, T f 2 = { Eating, Shopping, Unspecified}, T c = { Travel, Sleep, Education, Personal, Domestic, Other}, E f 1 = { Leisure, Accommodation, Elec- 

tronic}, E f 2 = { Clothes}, E c = { Housing, Food, Furniture, Health, Mobility, Education, Service, Financing, Insurance, Other} 
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In the discrete choice part ( Eq. (17) ), we have added the availability dummy αq . Mode “Walk” is always available; mode 

“Public transport” is available if a public transportation route from the start to the end point exists; modes “Car” and “Bike”

are considered unavailable if the individual does not own it. Mode “Bike” was available in 88.98% of the trips, “Car” in 91.95% 

and “Public transport” in 62.75%. Switching between the modes seems to not be that common, as 82.35% of the trips were 

done with the same mode as the previous one. The stickiest mode is “Car”, because in 91.50% ( Table 2 ) of cases it remains 

the chosen mode. Also, the observed individuals usually switch to car, if they switch at all. If the previous trip was done 

with public transport, participants were more likely to walk than to use a car on the following trip. 

Thus, even for the short distances individuals choose to go by car more often than to walk. This decision might be driven 

to a large extent by the duration of the trip. In 59.63% of cases, going by car was the quickest travel mode ( Table 3 ). Only 

35.29% of observed trips were carried out with a slower mode. The car was chosen even if walking would have been faster 

(74.68% of cases). Also, the socio-economic factors might influence mode choice. Respondents living in rural areas use the 

car twice as often as their urban counterparts (Appendix Fig. B.3 ). Persons without high school education and people with 

children tend to use a car more often and travel with public transport less often, compared to their counterparts. From 

this analysis, one can conclude that the trip duration is not the only factor influencing the travel mode choice. Thus, pre- 

commitments to modes via vehicle ownership, lifestyle, socio-economic status or comfort perception also play a role in the 

decision making. 

Correlations between continuous variables and mode choice probabilities can be seen in Table 4 . The individual prob- 

ability of choosing a specific mode was defined as ratio between the frequency of choosing a specific mode and the total 

number of trips made. Although intra-block (within discrete/continuous block) correlations are high, inter-block (between 

mode choice and activities/expenditures) correlations are low. Munizaga et al. (2008) had estimated inter-correlations of up 

to 0.7, but in the MAED data-set the observed ones are only close to 0.1. 

To estimate the probability of choosing a specific mode, one needs to specify the indirect utility function V q ( Eq. (15) ). 

In this study, the following linear functional forms were assumed: 

V q = αq + βtq time q + ω q I q + γL,q L q time q + αL,q L q + γW,q W q time q + αW,q W q + O q (24) 

Table 2 

Percentage of mode switching between successive trips, %. 

− > Walk Bike Car Public 

Walk 57.76 3.37 23.89 14.98 

Bike 8.22 71.54 15.53 4.71 

Car 4.78 1.30 91.50 2.42 

Public 20.03 2.48 16.99 60.50 

Table 3 

Distribution of slower chosen mode, in %. 

Mode Fastest 

Not chosen, 

when fastest Substituted by: 

Walk Bike Car Public 

Total 35.29 17.63 16.39 54.19 11.79 

Walk 8.30 22.53 23.70 74.68 1.62 

Bike 0.63 78.85 60.98 24.39 14.63 

Car 59.63 14.20 25.54 26.54 47.92 

Public 31.43 77.79 15.35 12.65 72.00 

Table 4 

Observed correlations between mode choice and time-use. 

P(Walk) P(Bike) P(Car) P(Public) 

P(Bike) −0.01 

P(Car) −0.63 ∗∗∗ −0.41 ∗∗∗

P(Public) 0.16 ∗∗∗ −0.06 −0.72 ∗∗∗

T w −0.08 ∗ 0.03 0.04 −0.01 

T f 1 −0.07 −0.05 0.05 0.01 

T f 2 0.08 ∗ 0.03 −0.03 −0.04 

T c 0.10 ∗∗ 0.01 −0.07 0.02 

E f 1 0.07 0.08 ∗ −0.10 ∗∗ 0.04 

E f 2 −0.05 0.03 0.04 −0.04 

E c −0.06 0.02 0.06 −0.07 

Signif. codes: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05. 
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O q = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−αq − αL,q − αW,q , if q = 1 (Walk) 
∅ , if q = 2 (Bike) 
βcost cost 3 + βPH HhP ark 3 + βJP JobP ark 3 + βMGP MgPark 3 , if q = 3 (Car) 
βcost cost 4 + βt2 b t2 bus 4 + βs v I serv Int 4 + βst p stops 4 , if q = 4 (Public Transport) 

(25) 

The index set {1, 2, 3, 4} corresponds to mode set {Walk, Bike, Car, Public transport}. Variable time q represents the duration 

of a trip with mode q , and cost q is the cost of a trip with mode q . To incorporate “stickiness” to a particular mode, as shown 

in Table 2 , the inertia variable I q was created. Following the approach from Börjesson et al. (2013) , Cherchi et al. (2013) , and 

Schmid et al. (2019) the inertia variable is a dummy, which is equal to one if the mode chosen by a person for a trip at the 

start of the current tour is the same as the one chosen in the previous tour made for the same purpose, and zero otherwise. 

To account for different trip purposes, variables L q (leisure) and W q (work/education) were incorporated into the estimation 

framework. They were created using effect coding and their effects ( γ L,q , γ W,q ) can thus be interpreted as deviations from 

the average. HhPark 3 is a dummy for parking availability at home, JobPark 3 - a dummy for parking availability at work place, 

MgPark 3 - a dummy for parking management in-force of the destination of the trip, t 2 bus 4 - the access time (time from 

start to the first station; time to destination from the last station), servInt 4 - public transport service interval in minutes, 

stops 4 - the necessary number of changes to reach the destination with public transport. The latter variable is equal to zero 

for trips outside Vienna. 

4. Results 

Four models were estimated with the estimation procedure described in Section 2 . The first model (“w/o corr”) corre- 

sponds to the model without inter continuous-discrete block correlations, while the second model includes them (“w/ corr”). 

The third model (“w/o E f 1 ”) was estimated without expenditure equation ( Eq. (9) ), but with inter-block correlations. The last 

model (“w/o Panel”) was estimated with inter continuous-discrete block correlations, but does not account for the panel 

structure. As mentioned before, there is a disbalance between the number of observations in continuous and discrete data: 

individual i has only one set of { T w 

, T f 1 , E f 1 , …} and multiple trips ( n i ). To merge these parts, { T w 

, T f 1 , E f 1 , …} observations 

were replicated n i times for individual i . This could cause a bias in the likelihood and the estimation results. To correct for 

these potential distortions, the weights ( W 1 = W 2 = W 3 ) were applied to the continuous equations. They were chosen to be 

indirectly proportional to the number of trips made by individual i ( W i 1 = 1 /n i ). 

The estimation results are shown in Table 5 . All models are unique to this study as they present for the first time out- 

comes from the joint time-use and mode choice model, while accounting for the panel structure of the underlying data (ex- 

cept model “w/o Panel”), and including an expenditure equation (except model “w/o E f 1 ”). The third model (“w/o E f 1 ”) serves 

as a reference for comparability with the earlier works, as it is similar to the one used in Jara-Díaz and Guevara (2003) and 

Munizaga et al. (2008) , both of which do not include an exogenous expenditure modelling procedure. 

The analysis begins with a comparison of the models without inter-continuous-discrete block correlations (“w/o corr”) 

and with (“w/ corr”). There is a considerable likelihood improvement and the McFadden R 2 ( ρ2 ) is higher, if inter-block 

correlations are considered. This is caused by the estimation of possible correlations, as well as the changes in the values 

of parameters. As noted in Munizaga et al. (2008) , these correlations have to be interpreted with the opposite sign. Thus, 

the negative value of ρT w & car is an indicator of unobservable factors that make people assign more time to work and, simul- 

taneously, have a higher propensity to use the car. Also, ρEf1&car is negative, reflecting the possibly higher expenditures of 

car drivers. The lowest absolute correlations are between work time ( T w 

) and three transportation modes: public transport, 

walk, and bike. In general, work time and uncommitted expenditures (group E f 1 ) have mostly negative correlations with all 

transport modes and free time activity (group T f 1 ) has positive correlations. Also, car made has the highest absolute corre- 

lations with the continuous equations. This might be due to the fact that the MAED sample is strongly dominated by car 

users since about 70% of all trips were made by car. The exclusion of these relationships (inter-block correlations) results in 

a 17.04% underestimation of the VoL. 

In previous studies, the joint time-use and activity model was estimated without an expenditure equation. To investigate 

the effect of incorporating expenditures, we have estimated a model without expenditure equation (Column “w/o E f 1 ”). The 

likelihoods of the “w/o E f 1 ” and of the other models are not comparable, as this model includes fewer data points to be 

estimated and thus produces fewer errors. The biggest difference in the estimates appears to be the value of elasticity of 

utility with respect to work time ( θw ). It seems that the “w/o E f 1 ” model transfers some baseline utility from goods to work, 

as � becomes smaller and θw 

increases, but remains negative. From Equation (13) from Jara-Díaz et al. (2008) ( (θw 

U) / (T w 

) + 

λw − μ = 0 ) it is clear that, if θw 

→ 0, then V oL = μ/λ = w . Thus, the value of leisure equals the wage rate ( w ) and one falls 

back to the assumption made in Train and McFadden (1978) and Becker (1965) . This can be seen in the VoL from the “w/o 

E F 1 ” model. If expenditures are ignored, the difference between the wage rate and the VoL diminishes to around 1 €/h and 

the VoL is overestimated by 16.83%. What is more, consideration of the panel structure according to Eq. (23) plays a role. It 

improves the overall model fit from 0.608 (“w/o Panel”) to 0.634 (“w/” corr) and represents the observed situation (repeated 

observations) better. We conclude that the model with expenditures and panel structure better reflects the real preferences 

of the individuals and thus we use it for further analysis. 

In the final model, 57 parameters were estimated, of which 10 belong to the continuous block. Parameter θw 

is negative, 

indicating that work generates disutility. This is also confirmed by the negative value of VTAW. On average, the disutility of 
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Table 5 

Estimation results. 

w/o corr w/ corr w/o E f 1 w/o Panel 

Par [s.d.] Par [s.d.] Par [s.d.] Par‘ [s.d.] 

Activities models parameters 

θw −0.504 [0.040] −0.256 [0.053] −0.072 [0.016] −0.318 [0.021] 

� 0.391 [0.015] 0.296 [0.019] 0.255 [0.009] 0.319 [0.012] 

θ 1 0.732 [0.004] 0.744 [0.007] 0.738 [0.005] 0.745 [0.004] 

φ1 0.242 [0.009] 0.174 [0.012] 0.182 [0.006] 

Mode constants 

αbike −3.350 [0.040] −3.200 [0.035] −3.170 [0.034] −3.070 [0.029] 

αcar −1.950 [0.046] −1.980 [0.034] −1.970 [0.029] −2.030 [0.017] 

αPT −2.120 [0.059] −2.190 [0.098] −2.000 [0.020] −2.020 [0.020] 

Time parameters 

βwalk −0.171 [0.005] −0.171 [0.008] −0.168 [0.005] −0.164 [0.004] 

βbike −0.091 [0.005] −0.090 [0.007] −0.087 [0.005] −0.064 [0.003] 

βcar −0.096 [0.008] −0.098 [0.014] −0.086 [0.008] −0.082 [0.006] 

βPT −0.041 [0.005] −0.038 [0.007] −0.040 [0.006] −0.034 [0.004] 

Mode choice taste parameters 

β t2bus −0.059 [0.008] −0.058 [0.013] −0.060 [0.008] −0.051 [0.006] 

βcost −0.653 [0.036] −0.591 [0.057] −0.602 [0.013] −0.484 [0.020] 

β servInt −0.028 [0.003] −0.028 [0.005] −0.028 [0.004] −0.026 [0.003] 

β stops −0.243 [0.040] −0.423 [0.063] −0.154 [0.021] −0.227 [0.018] 

βHhPark 0.538 [0.035] 0.586 [0.056] 0.386 [0.022] 0.474 [0.037] 

β JobPark 0.612 [0.016] 0.630 [0.032] 0.605 [0.034] 0.503 [0.037] 

βMgPark −1.170 [0.064] −1.200 [0.098] −0.955 [0.043] −0.941 [0.029] 

Inertia 

ω walk 2.590 [0.030] 2.680 [0.028] 2.650 [0.016] 2.780 [0.030] 

ω bike 4.140 [0.092] 4.190 [0.032] 4.360 [0.020] 4.240 [0.030] 

ω car 2.450 [0.049] 2.260 [0.029] 2.340 [0.037] 2.170 [0.021] 

ω PT 1.820 [0.031] 1.890 [0.022] 1.740 [0.017] 1.870 [0.021] 

Trip purpose: leisure x time 

γ L, walk 0.060 [0.007] 0.059 [0.011] 0.055 [0.007] 0.060 [0.005] 

γ L,bike −0.008 [0.006] 0.001 [0.009] −0.006 [0.006] 0.004 [0.006] 

γ L,car 0.001 [0.011] 0.011 [0.015] 0.010 [0.012] 0.018 [0.010] 

γ L,PT −0.014 [0.009] −0.007 [0.012] −0.015 [0.010] −0.005 [0.008] 

Trip purpose: leisure 

αL,bike 0.709 [0.035] 0.433 [0.027] 0.602 [0.022] 0.479 [0.039] 

αL,car 0.621 [0.027] 0.469 [0.031] 0.404 [0.032] 0.421 [0.020] 

αL,PT 0.699 [0.029] 0.638 [0.036] 0.728 [0.024] 0.732 [0.024] 

Trip purpose: work x time 

γ W, walk −0.086 [0.008] −0.089 [0.014] −0.077 [0.008] −0.085 [0.008] 

γ W,bike 0.008 [0.005] 0.004 [0.007] 0.009 [0.007] −0.002 [0.005] 

γ W,car 0.014 [0.009] 0.000 [0.016] −0.001 [0.012] −0.002 [0.010] 

γ W,PT 0.010 [0.007] 0.001 [0.011] 0.008 [0.009] 0.002 [0.007] 

Trip purpose: work 

αW,bike −1.060 [0.026] −1.050 [0.052] −1.040 [0.058] −0.923 [0.029] 

αW,car −1.370 [0.073] −1.190 [0.051] −1.020 [0.023] −1.160 [0.036] 

αW,PT −1.060 [0.031] −0.973 [0.025] −0.976 [0.020] −1.010 [0.065] 

Factor loadings 

f bike −1.030 [0.078] −0.916 [0.034] −0.798 [0.018] 

f PT −0.365 [0.050] −0.411 [0.028] −0.239 [0.024] 

f car 1.160 [0.064] 1.200 [0.067] 1.260 [0.018] 

Standard deviations 

ˆ σTw 63.000 [0.505] 61.500 [0.361] 58.700 [0.345] 60.900 [0.389] 

ˆ σT f 1 67.500 [0.847] 64.700 [0.193] 66.900 [0.208] 64.700 [0.153] 

ˆ σE f 1 42.200 [0.726] 36.500 [0.626] 35.500 [0.436] 

Correlations (activities) 

ρTw & T f 1 −0.695 [0.016] −0.702 [0.015] −0.697 [0.016] −0.708 [0.014] 

ρTw & E f 1 0.350 [0.031] 0.405 [0.029] 0.421 [0.025] 

ρT f 1& E f 1 −0.462 [0.027] −0.435 [0.027] −0.411 [0.028] 

Correlations (discrete/continuous) 

ρTw & walk −0.065 [0.025] −0.044 [0.024] −0.071 [0.022] 

ρTw & bike −0.104 [0.030] −0.082 [0.027] −0.086 [0.024] 

ρTw & PT 0.028 [0.031] 0.081 [0.030] 0.053 [0.028] 

ρTw & car −0.181 [0.038] −0.077 [0.030] −0.150 [0.032] 

ρT f 1& walk 0.223 [0.024] 0.217 [0.023] 0.220 [0.022] 

ρT f 1& bike 0.207 [0.028] 0.193 [0.027] 0.201 [0.025] 

ρT f 1& PT 0.151 [0.031] 0.135 [0.031] 0.121 [0.028] 

ρT f 1& car 0.275 [0.035] 0.310 [0.027] 0.207 [0.031] 

( continued on next page ) 
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Table 5 ( continued ) 

w/o corr w/ corr w/o E f 1 w/o Panel 

Par [s.d.] Par [s.d.] Par [s.d.] Par‘ [s.d.] 

ρE f 1& walk −0.327 [0.021] −0.354 [0.019] 

ρE f 1& bike −0.408 [0.024] −0.394 [0.020] 

ρE f 1& PT −0.470 [0.025] −0.465 [0.022] 

ρE f 1& car −0.585 [0.021] −0.560 [0.020] 

Value of time 

wage 12.14 

VoL 7.708 [3.278] 9.291 [3.896] 11.172 [4.639] 8.799 [3.681] 

VTAW −4.428 [2.552] −2.845 [1.829] −0.964 [0.664] −3.337 [2.027] 

VTTS walk : Total 15.738 [0.852] 17.525 [1.612] 16.723 [0.690] 20.342 [0.997] 

work 23.611 [1.240] 26.552 [2.484] 24.435 [1.471] 30.861 [2.101] 

leisure 10.222 [0.972] 11.478 [1.613] 11.192 [0.753] 12.854 [0.780] 

other 13.381 [0.798] 14.546 [1.460] 14.543 [0.591] 17.312 [0.801] 

VTTS bike : Total 8.380 [0.447] 9.245 [0.785] 8.697 [0.523] 7.918 [0.429] 

work 7.642 [0.563] 8.794 [1.058] 7.854 [0.970] 8.165 [0.852] 

leisure 9.162 [0.863] 9.180 [1.285] 9.271 [0.865] 7.440 [0.768] 

other 8.335 [0.482] 9.762 [0.899] 8.966 [0.526] 8.150 [0.505] 

VTTS car : Total 8.837 [0.769] 9.978 [1.352] 8.616 [0.844] 10.153 [0.809] 

work 7.499 [1.134] 9.956 [2.359] 8.773 [1.642] 10.363 [1.736] 

leisure 8.792 [1.467] 8.866 [1.850] 7.593 [1.474] 7.868 [1.342] 

other 10.219 [0.804] 11.112 [1.294] 9.481 [0.962] 12.229 [1.057] 

VTTS PT : Total 3.775 [0.502] 3.908 [0.748] 3.978 [0.587] 4.225 [0.470] 

work 2.808 [0.733] 3.766 [1.457] 3.233 [1.154] 3.952 [1.006] 

leisure 5.038 [1.177] 4.703 [1.430] 5.454 [1.235] 4.818 [1.114] 

other 3.479 [0.490] 3.254 [0.770] 3.247 [0.621] 3.906 [0.562] 

VTAT walk : Total −8.030 [3.364] −8.234 [4.080] −5.552 [4.678] −11.543 [3.817] 

work −15.902 [3.485] −17.260 [4.481] −13.263 [4.836] −22.062 [4.253] 

leisure −2.514 [3.391] −2.187 [4.083] −0.020 [4.700] −4.054 [3.761] 

other −5.673 [3.355] −5.255 [4.037] −3.371 [4.671] −8.513 [3.764] 

VTAT bike : Total −0.672 [3.301] 0.046 [3.918] 2.474 [4.660] 0.881 [3.707] 

work 0.066 [3.328] 0.497 [4.012] 3.318 [4.718] 0.634 [3.788] 

leisure −1.454 [3.374] 0.111 [4.012] 1.900 [4.717] 1.359 [3.754] 

other −0.627 [3.306] −0.470 [3.949] 2.205 [4.667] 0.649 [3.716] 

VTAT car : Total −1.129 [3.357] −0.687 [4.070] 2.556 [4.702] −1.354 [3.776] 

work 0.209 [3.460] −0.665 [4.547] 2.398 [4.881] −1.563 [4.098] 

leisure −1.084 [3.568] 0.426 [4.215] 3.578 [4.871] 0.931 [3.913] 

other −2.511 [3.379] −1.821 [4.052] 1.691 [4.735] −3.429 [3.825] 

VTAT PT : Total 3.933 [3.309] 5.384 [3.937] 7.194 [4.670] 4.574 [3.710] 

work 4.900 [3.360] 5.525 [4.181] 7.938 [4.752] 4.848 [3.829] 

leisure 2.670 [3.460] 4.588 [4.056] 5.718 [4.809] 3.981 [3.833] 

other 4.229 [3.316] 6.038 [3.958] 7.925 [4.682] 4.894 [3.721] 

Goodness of fit 

LL null −35129.857 −36315.319 −31826.792 −36315.319 

LL model −14065.252 −13284.852 −10862.591 −14250.575 

ρ2 0.600 0.634 0.659 0.608 

AIC 29678.505 28117.704 23271.182 30049.150 

# parameters 45 57 49 54 

work is estimated to be around 2.8 €/h. Parameters � (sum of all exponents of freely chosen goods), φ1 (the first group of 

freely chosen goods) and θ1 (the first group of freely chosen activities) positively effect utility. As not all modes are always 

available, the four mode constants do not represent the market shares in the sample. Time and cost parameters represent 

the negative marginal utility of having to pay or to spend time on travelling. Public transport parameters β t 2 bus , βservInt 

and βstops depict the displeasure in having to walk to/from a station, to wait more for the next bus, and to change transport 

more often, respectively. Having parking place near home ( βHhPark ) or work ( β JobPark ) has a positive effect on choosing car as 

transport mode, and, conversely, the presence of parking pricing scheme ( βMgPark ) has a negative effect. As it was expected, 

all inertia effects have positive signs, indicating positive effects of preferences in previous tours on the current one with the 

same trip purpose. 

In comparison to the other models with panel structure, the cost coefficient ( βcost ) from the Model “w/ corr” is smaller 

in absolute terms, but still negative. This results in higher estimates of the VTTS for all modes. All models display the same 

ordering (from high to low) of the VTTS: walk, car, bike, public transport. This finding is consistent with Schmid et al. (2019) . 

Interestingly, car exhibits a higher VTTS than public transport. The latter has the highest VTTS for leisure trips, whereas 

the VTTS of “Car” is highest for the “other” purpose trips. Overall, the highest VTTS is observed for work-related trips by 

mode “Walk” (26 €/h, which is double the average wage rate), indicating unwillingness to walk to work. The binding link 

between VTTS and VTAT predetermines the negative relationship between them. The low VTTS of public transport is caused 

by the positive and significant VTAT, which captures the good public transport conditions in Austria, and might explain 
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the different ordering of alternatives in comparison to studies from other countries. The VTAT for car is smaller than for 

PT and negative, which contradicts the general belief, that travelling by car is more pleasant. Better travel conditions of 

public transport might be caused by the possibility to engage in secondary activities (listen to music, read, surf the web, 

etc.) or by the lifted burden of driving and spending less time in traffic jams. To conclude the final model (with inter- 

block correlations and panel structure) is the most informative, as it allows to take into account most of the available 

information. Therefore, it is used in the following segmentation analysis of the value of time indicators, VoL, VTTS and 

VTAT. 

4.1. Segmentation 

For the sake of comparability with the previous studies based on the same dataset ( Schmid et al., 2019; Hössinger 

et al., 2019 ), the sample was divided by urbanity, gender, age, education, parenthood, number of workers in the house- 

hold and personal income, all of which are expressed as dummy variables representing a “lower” and “upper” group. 

A priori segmentation was applied to the data and afterwards the model proposed in Eq. (22) was estimated. The 

results of the 14 different models are presented in Fig. 2 . There are considerable differences between some of the 

segments. 

The largest absolute intra-segment VoL differences are observed for the following partitions: “Pers. income” (9.82 €/h), 

“No. of workers” (6.32 €/h), “Gender” (4.76 €/h) and “Age” (4.05 €/h). Hössinger et al. (2019) discuss the possible reasons 

for that. The study tries to explain the potential relationship between � (used in the VoL calculation) and the variance 

of T w 

, arguing that “a high variance causes a low VoL and vice versa”. As an example, the segmentation by gender. Male 

respondents have high values of observed T w 

with a low variance in working time and females have lower values of T w 

with a higher variance in working time (mainly due to part-time work being more common for females). The same can 

be said about single workers, who are working mainly full time and thus have low variance in T w 

. An additional reason 

for these disparities are the considerable differences in working time and time assigned to domestic work. In the MAED 

sample, women spend close to 9 h/week less in the paid work and around the same amount more in the domestic work. 

Another crucial part for the derivation of the VTAT is the VTTS. Despite the similarity in the mode-specific VTTS ranking 

to other recent valuation studies ( Schmid et al., 2019; Börjesson and Eliasson, 2014; Kouwenhoven et al., 2014; Axhausen 

et al., 2014; Fröhlich et al., 2012; Weis et al., 2012 ), it is more profoundly expressed in the current study. Fig. 3 gives an 

overview of all time indicators in different segments. Participants selecting transport modes “Bike” and “Car” exhibit similar 

willingness to pay for additional unit of leisure and reduction of travel time, whereas the VTTS and VoL for both “Walk” and 

“PT” differ considerably. 

Fig. 2. VoL analysis, grey area represents 95% credible region. 
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Fig. 3. Mode specific indicators. 

Further analysis concentrates on the differences between car and public transport (PT), as the Austrian infrastructure 

expenditure on these modes make up a substantially larger share than on walking or cycling. Differences between VTTS for 

car and public transport can be seen in Table 6 . The average difference in the VTTS is estimated to be around 6.07 €/h and 

in the study of Schmid et al. (2019) 8 - around 4 €/h. To explain the disparity in the willingness to pay to reduce travel time, 

8 Schmid et al. (2019) use stated and revealed preference data to estimate the models. This partly explains why the estimated VTTS of public transport 

differs considerably from the current study, which used only the revealed preference data. 
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Table 6 

Mode and user type effects. Here M E = M E car−PT and U E = U E 1 −0 . 

Purpose �VTTS ME UE UE VoL UE VTAT � VTAT car � VTAT PT AIC 

Global Total 6.07 28117.70 

Urbanity Total 5.12 −1.04 0.85 1.89 1.88 2.00 28585.56 

Gender Total 5.20 1.02 −4.76 −5.79 −5.86 −5.32 28277.70 

Age Total 4.57 3.66 4.05 0.40 0.04 2.70 28029.54 

Education Total 5.34 −1.55 0.73 2.28 2.39 1.59 28344.98 

Children Total 5.13 1.78 −1.56 −3.34 −3.64 −1.46 28114.69 

No. of workers Total 4.64 0.27 −6.32 −6.59 −6.51 −7.11 28034.97 

Pers. income Total 5.29 1.60 9.82 8.22 8.30 7.67 27786.66 

Global Work 6.19 28117.70 

Urbanity Work 4.83 4.04 0.85 −3.19 −3.53 −1.00 28585.56 

Gender Work 5.98 2.40 −4.76 −7.16 −7.55 −4.65 28277.70 

Age Work 4.77 3.28 4.05 0.78 0.28 3.96 28029.54 

Education Work 5.34 −2.55 0.73 3.28 3.69 0.70 28344.98 

Children Work 5.74 6.80 −1.56 −8.36 −8.91 −4.82 28114.69 

No. of workers Work 4.85 −1.59 −6.32 −4.73 −4.64 −5.32 28034.97 

Pers. income Work 5.24 −0.30 9.82 10.13 10.30 9.01 27786.66 

Global Leisure 4.16 28117.70 

Urbanity Leisure 2.24 −9.47 0.85 10.32 11.17 4.84 28585.56 

Gender Leisure 1.50 −0.14 −4.76 −4.62 −4.27 −6.87 28277.70 

Age Leisure 2.31 6.06 4.05 −2.01 −2.36 0.25 28029.54 

Education Leisure 3.23 −0.83 0.73 1.56 1.41 2.53 28344.98 

Children Leisure 1.76 −6.75 −1.56 5.18 5.48 3.26 28114.69 

No. of workers Leisure 2.00 −1.19 −6.32 −5.13 −4.64 −8.30 28034.97 

Pers. income Leisure 3.12 3.34 9.82 6.48 6.39 7.10 27786.66 

Global Other 7.86 28117.70 

Urbanity Other 8.31 2.30 0.85 −1.45 −2.01 2.16 28585.56 

Gender Other 8.11 0.81 −4.76 −5.58 −5.76 −4.43 28277.70 

Age Other 6.64 1.63 4.05 2.42 2.19 3.89 28029.54 

Education Other 7.45 −1.26 0.73 1.99 2.06 1.53 28344.98 

Children Other 7.91 5.29 −1.56 −6.85 −7.48 −2.82 28114.69 

No. of workers Other 7.08 3.58 −6.32 −9.90 −10.25 −7.71 28034.97 

Pers. income Other 7.52 1.78 9.82 8.05 8.22 6.91 27786.66 

Schmid et al. (2019) followed the approach proposed by Flügel (2014) , which divides the VTTS into two parts: the mode 

effect (ME) and the user-type effect (UE). The pure average ME is based on the weighted average of the differences in the 

VTTS between car and PT within each user group. It can also be expressed as the weighted average of differences in the 

VTAT: 

M E = M E car−PT = 

N 0 (V T T S car, 0 − V T T S PT, 0 ) + N 1 (V T T S car, 1 − V T T S PT, 1 ) 

N 0 + N 1 

= 

N 0 (V T AT PT, 0 − V T AT Car, 0 ) + N 1 (V T AT PT, 1 − V T AT Car, 1 ) 

N 0 + N 1 

(26) 

Here, the first user group is denoted by 0 and the second by 1. N 0 is the number of users in group 0 and N 1 in group 1. 

If a user type is controlled by some variable (e.g. by including the interaction term), lower values of ME car−PT will indicate 

higher explanatory power of the grouping variable in explaining �VTTS . 

The user type effect ( UE 1 −0 ) is defined as the VTTS differences between the two user-groups within each mode and 

weighted according to the number of observed choices of PT( N PT ) and car( N car ). The joint estimation framework allows for 

further decomposition of UE. Using the relationship V T T S = V T AT − V oL, the UE can be additionally disentangled into UE VoL 

and UE VTAT . This enables to explain the UE through the differences in perception of leisure and time assigned to travel. 

U E = U E 1 −0 = 

N car (V T T S car, 1 − V T T S car, 0 ) + N PT (V T T S PT, 1 − V T T S PT, 0 ) 

N car + N PT 

= 

N car (V oL 1 − V T AT car, 1 − V oL 0 + V T AT car, 0 ) + N PT (V oL 1 − V T AT PT, 1 − V oL 0 + V T AT PT, 0 ) 

N car + N PT 

= 

= (V oL 1 − V oL 0 ) ︸ ︷︷ ︸ 
UE VoL 

− N car (V T AT car, 1 − V T AT car, 0 ) + N PT (V T AT PT, 1 − V T AT PT, 0 ) 

N car + N PT ︸ ︷︷ ︸ 
UE V TAT 

(27) 

Here, the UE 1 −0 is decomposed into the UE VoL (differences in leisure perception within each segment) and the differ- 

ences between the weighted averages of user-type-specific VTAT (value of time spent while travelling). This new decom- 
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position can be calculated due to the joint modelling framework presented in this study, with simultaneous computa- 

tion of VoL and VTAT. As mentioned before, the difference in the VTTS between car and public transport for the average 

trip is estimated to be 6.07 €/h. The proposed decomposition into user and mode type effect was used to disentangle this 

difference. 

If the UE 1 −0 is 0, the UE of VoL and VTAT are equal (segments: “No. of workers” Table 6 ). In other words, the UE of both 

activities, leisure or travel, is the same. If it is positive and both UE VoL and UE VTAT are positive, there are bigger dissimilarities 

between the groups in the perception of leisure than in travel time (“Age”, “Pers. income”). If UE 1 −0 > 0 and both UE VoL 

and UE VTAT are negative, bigger dissimilarities between groups in the perception of travel time than of leisure are present 

(segment: “Gender”, “Children”). If UE 1 −0 < 0 and both UE VoL < 0 and UE VTAT < 0, groups are more heterogeneous in the 

valuation of leisure than towards travel time. If UE 1 −0 < 0 and both UE VoL > 0 and UE VTAT > 0, groups are more heterogeneous 

in the attitude towards travel time than towards leisure (segment: “Urbanity”, “Education”). The MAED sample is strongly 

dominated by car travelers, as 69.54% of all trips were made by car and only 10.83% by public transport. Thus if car travelers 

of both segments perceive the travel time similarly ( �VTAT Car is small, segment “Age”), the UE is dominated by differences 

in leisure preferences 

All segment-specific ME and UE values can be found in Table 6 . In most of the segments and trip purposes, the mode 

effect is more profound than the user type effect and close to the global difference in the VTTS associated with car and 

public transport. Only for leisure-related trips, the user effect becomes dominant (segments: “Urbanity”, “Age”, “Children”) 

with more profound or negative differences in the perception of travel time ( UE VTAT ). 

The results indicate that the difference of 6.07 €/h in the VTTS between car and public transport can be marginally re- 

duced if the user effect is taken into account. In contrast to most of the other European studies on the VTTS, the user effect 

was found to be much smaller than the mode effect. Segmentation by “Age” exhibits the strongest power to disentangle 

the average VTTS difference between car and PT. This segmentation is also associated with the highest heterogeneity in the 

average VTTS independent of the mode ( UE ), which is driven by the differences in the perception of leisure ( UE VoL ). All in all, 

the mode effect almost always dominates the user type effect. Higher values of the user effect are caused by more profound 

differences in the VoL than in the VTAT. 

5. Synthesis and conclusions 

The main objective of this study was to develop an advanced estimation procedure which facilitates the joint esti- 

mation of the discrete-continuous model framework with all its components (including time-use, expenditures, and each 

of the weekly travel choices) as proposed by Jara-Díaz and Guevara (2003) , allowing individuals to make multiple trips 

and to estimate the parameters of this model framework with the MAED dataset in order to obtain the value of leisure, 

travel time savings, and time assigned to travel. Expenditures were obtained from the same individuals (not imputed) 

and all travel choices were considered simultaneously. The original framework was extended to incorporate multiple trips 

per individual, transport mode availability, weighting of likelihood, and to take into account the observed panel data 

structure. 

The estimated values of time show that the average VoL is 9.29 €/h and that the VTTS varies strongly between the 

modes (9.98 €/h for car, 3.91 €/h for public transport, 9.25 €/h for bike and 17.53 €/h for walk). These results are close 

to those obtained by Hössinger et al. (2019) and Schmid et al. (2019) in their independently estimated models (both 

of which are based on the same dataset). Nonetheless, the joint estimation should be preferred. It is indeed supe- 

rior over the independent estimation, as it permits the calculation of standard deviations for the VTAT, which is cal- 

culated from both types of choices. Also, it results in better model fit. Additionally, the joint estimation framework al- 

lows to better understand the user effect (according to Flügel (2014) ) by a deeper decomposition into a VoL-related 

and VTAT-related parts. Although, the mode effect dominates in the VTTS differences, it might be partially reduced by 

means of segmentation according to age and trip purpose, which indicates that leisure trips reveal the lowest mode 

effect. 

Moreover, for the first time we show the importance of the endogenous expenditure modelling, which has a considerable 

effect on VoL (decrease of 16.83%). Leaving out the expenditure equation would result in biased estimates of base line utility 

of work ( θw 

), and total freely chosen expenses ( �). We thus recommend using activity duration and expenditures in the 

model, both of which should be observed from the same individuals. In methodological terms, we have presented several 

innovations in this paper: We (i) estimated for the first time the full theoretical model of Jara-Díaz and Guevara (2003) , (ii) 

extended the empirical framework of Munizaga et al. (2008) to incorporate the expenditure estimation, (iii) multiple trips 

per individual were allowed, and (iv) the panel structure of the underlying data is taken into account. The development of 

the procedure comes with its costs (as discussed below), but the solution is robust and runs on a conventional computer in 

reasonable time. Furthermore, it allows for a flexible definition of the number of equations (both continuous and discrete), 

varying number of alternatives in the choice sets, non-linearity of indirect utilities, inclusion of interaction terms, and usage 

of the produced likelihood function with other R packages. 9 

9 We plan to present the finalized estimation procedure as an R package. 
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Some possible advances are left for future work. Instead of using the likelihood formulated in Munizaga et al. (2008) , 

one could estimate the joint model in a full Bayesian framework. Also, the benefits of using probit instead of logit could 

be tested. Another problem is associated with the theoretical treatment of domestic work in the modelling framework; 

its classification as committed activity should be rethought. The nature of domestic (unpaid) work is arguably more sim- 

ilar to paid work than to eating or sleeping, in a sense that it can be outsourced to other persons. Although it is ev- 

ident from our data that individuals responsible for more domestic chores work less and have a lower disposable in- 

come, the causality is up for discussion - work less because of more chores or more chores because of less work. 

Mostly, those engaging in more domestic chores are females, who work on average 9 h less per week in their official 

(paid) work and 8 h more in their unofficial domestic work than men ( Hössinger et al., 2019 ). Mainly due to this, the 

value of leisure of females is worth 60% of males (5.86 €/h vs 10.63 €/h). It would be desirable to account for the mon- 

etary value of domestic work in one way or another. For the valuation, several possibilities exist: including the wage 

rate ( Luxton, 1997 , opportunity cost method), the market value of such domestic work ( Folbre, 2006 , market replace- 

ment cost method), the calculation of the monetary value of the goods/services produced ( Luxton, 1997 , input/output cost 

method) or the recent incorporation of domestic work in the time-use framework by Rosales-Salas and Jara-Díaz (2017) . 

All options have their specifics but the consideration of unpaid work is likely to close the gender gap in the value of 

leisure. 

Acknowledgements 

The authors gratefully thank to the Austrian Science Fund (FWF) for funding the research project Valuing (Travel) Time 

(Award Number I 1491-G11 ), from which this article arises. Sergio Jara-Díaz would like to thank financial support from 

Fondecyt-Chile, Grant 1160410, and CONICYT PIA/BASAL AFB180 0 03. We thank the constructive comments made by three 

referees and by the Editor, which certainly improved the presentation of our model and results. Remaining errors are of 

course ours. 

Appendix. Segmentation 

Fig. B.1. Distribution of activities in different segments, hours. 
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Fig. B.2. Distribution of expenditures in different segments, %. 

Fig. B.3. Distribution of transport modes in different segments, %. 
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Table B.1 

Mean values and standard deviation (in brackets) of the model variables across different population segments (time-use variables: h/week; expenditures 

and wage: € /week). 

Segmentation Obs. w T w T f 1 T c E f 1 E c T w + T c wT w − E c 

Global 737 12.14 37.84 89.78 28.94 79.99 332.44 127.62 127.49 

[5.09] [11.28] [13.41] [11.09] [49.95] [161.73] [11.19] [110.82] 

Urbanity = urban 178 12.53 39.16 90.07 26.98 95.44 343.18 129.23 147.35 

[5.00] [11.97] [12.60] [11.64] [54.86] [148.01] [11.79] [114.76] 

= nonurban 559 12.01 37.42 89.69 29.56 75.07 329.02 127.11 121.16 

[5.12] [11.04] [13.66] [10.84] [47.29] [165.84] [10.95] [108.88] 

Gender = male 368 12.76 42.34 84.60 29.78 93.53 394.74 126.94 148.06 

[5.79] [9.28] [11.64] [11.58] [53.94] [175.37] [11.56] [123.33] 

= female 369 11.51 33.35 94.95 28.09 66.49 270.32 128.30 106.97 

[4.20] [11.33] [13.06] [10.52] [41.51] [117.86] [10.77] [92.45] 

Age < 46 years 358 11.42 35.90 91.64 28.95 70.73 298.17 127.53 107.82 

[4.63] [12.11] [14.16] [11.63] [44.89] [144.32] [11.83] [97.14] 

> = 46 years 379 12.82 39.67 88.03 28.92 88.74 364.82 127.70 146.06 

[5.41] [10.12] [12.42] [10.57] [52.89] [170.57] [10.56] [119.53] 

Education < HS degree 288 10.35 37.65 88.90 30.40 62.87 285.99 126.55 102.23 

[3.39] [10.68] [13.40] [10.56] [34.00] [120.83] [11.00] [80.06] 

> = HS degree 449 13.28 37.96 90.35 28.00 90.98 362.24 128.31 143.69 

[5.65] [11.67] [13.39] [11.32] [55.23] [177.04] [11.26] [124.08] 

Children = no 467 11.80 39.26 87.92 29.63 81.80 324.69 127.19 142.65 

[5.04] [10.18] [12.33] [11.06] [49.04] [157.57] [11.05] [109.98] 

= yes 270 12.72 35.37 92.99 27.74 76.87 345.85 128.37 101.26 

[5.15] [12.62] [14.56] [11.05] [51.45] [168.14] [11.40] [107.51] 

No. 

of 

workers 

= 1 157 12.05 40.92 87.12 28.76 89.89 364.15 128.04 127.19 

[4.95] [9.30] [12.27] [11.26] [50.33] [150.22] [11.71] [106.15] 

> = 2 580 12.16 37.00 90.50 28.98 77.31 323.86 127.50 127.57 

[5.14] [11.63] [13.62] [11.05] [49.56] [163.78] [11.05] [112.14] 

Pers. 

income 

< 432 eur/wk 374 9.46 32.78 93.83 29.73 52.61 233.86 126.61 62.01 

[2.83] [11.86] [14.19] [10.95] [26.17] [95.89] [11.27] [57.17] 

> = 432 eur/wk 363 14.89 43.05 85.61 28.12 108.21 434.02 128.66 194.95 

[5.43] [7.75] [11.11] [11.19] [52.87] [152.70] [11.01] [112.29] 

Table B.2 

Trip purpose: Total. Indicators for different segments, value [s.d.]. 

Segmentation VoL VTAW VTTS VTAT 

Walk Bike Car Public Walk Bike Car Public 

Global 9.29 −2.84 17.53 9.25 9.98 3.91 −8.23 0.05 −0.69 5.38 

[3.90] [1.83] [1.61] [0.78] [1.35] [0.75] [4.08] [3.92] [4.07] [3.94] 

Urbanity = urban 6.76 −5.77 16.79 9.52 9.47 4.44 −10.04 −2.77 −2.71 2.32 

[2.61] [3.10] [0.31] [0.18] [0.17] [0.48] [2.63] [2.62] [2.62] [2.66] 

= nonurban 7.61 −4.40 18.89 8.80 8.44 3.29 −11.28 −1.19 −0.83 4.32 

[3.33] [2.55] [1.51] [1.04] [1.76] [1.01] [3.66] [3.49] [3.78] [3.48] 

Gender = male 10.63 −2.13 16.47 9.75 8.77 3.84 −5.84 0.88 1.86 6.79 

[4.71] [1.32] [0.28] [0.37] [0.56] [0.42] [4.72] [4.72] [4.75] [4.73] 

= female 5.86 −5.64 21.55 8.56 9.86 4.39 −15.69 −2.70 −4.00 1.47 

[2.29] [2.98] [1.88] [0.92] [1.61] [1.03] [3.00] [2.47] [2.84] [2.53] 

Age < 46 years 6.83 −4.58 17.20 7.34 5.49 2.29 −10.36 −0.50 1.34 4.54 

[2.83] [2.73] [0.74] [0.47] [0.62] [0.49] [2.94] [2.88] [2.91] [2.88] 

> = 46 years 10.89 −1.93 13.78 8.33 9.51 3.64 −2.90 2.56 1.38 7.24 

[4.62] [1.44] [0.94] [0.83] [1.25] [0.79] [4.75] [4.70] [4.79] [4.67] 

Education < HS degree 7.32 −3.04 20.70 9.56 10.72 4.89 −13.38 −2.24 −3.40 2.42 

[2.52] [1.47] [1.99] [0.94] [1.44] [0.98] [3.20] [2.68] [2.89] [2.70] 

> = HS degree 8.05 −5.23 17.75 9.27 9.07 4.04 −9.71 −1.22 −1.02 4.01 

[3.44] [3.04] [0.56] [0.50] [0.49] [0.40] [3.49] [3.48] [3.47] [3.46] 

Children = no 8.94 −2.86 15.39 9.21 8.76 4.42 −6.45 −0.28 0.18 4.52 

[3.80] [1.64] [0.69] [0.57] [1.09] [0.70] [3.88] [3.85] [3.99] [3.88] 

= yes 7.37 −5.35 24.20 9.95 10.83 4.31 −16.83 −2.57 −3.46 3.06 

[3.07] [3.19] [1.19] [0.86] [0.73] [0.84] [3.30] [3.20] [3.15] [3.16] 

No. of workers = 1 12.32 0.26 15.63 8.38 7.97 2.86 −3.31 3.94 4.34 9.46 

[5.08] [0.35] [1.18] [0.88] [1.18] [0.69] [5.21] [5.16] [5.22] [5.14] 

> = 2 5.99 −6.17 16.14 8.61 8.16 3.64 −10.15 −2.62 −2.17 2.35 

[2.72] [3.28] [1.36] [0.79] [1.48] [0.79] [2.99] [2.80] [3.04] [2.81] 

Pers. income < 432 eur/wk 4.37 −5.09 17.28 7.53 8.73 3.12 −12.91 −3.16 −4.36 1.25 

[1.64] [2.48] [1.45] [0.83] [1.44] [0.97] [2.18] [1.83] [2.17] [1.90] 

> = 432 eur/wk 14.19 −0.70 18.47 10.37 10.24 5.27 −4.27 3.82 3.95 8.92 

[5.10] [0.50] [1.17] [1.02] [1.28] [0.85] [5.28] [5.24] [5.30] [5.19] 
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Table B.3 

Trip purpose: Work. Indicators for different segments, value [s.d.]. 

Segmentation VoL VTAW VTTS VTAT 

Walk Bike Car Public Walk Bike Car Public 

Global 9.29 −2.84 26.55 8.79 9.96 3.77 −17.26 0.50 −0.66 5.52 

[3.90] [1.83] [2.48] [1.06] [2.36] [1.46] [4.48] [4.01] [4.55] [4.18] 

Urbanity = urban 6.76 −5.77 21.20 7.15 4.11 1.20 −14.44 −0.39 2.65 5.56 

[2.61] [3.10] [0.37] [0.28] [0.10] [0.52] [2.64] [2.63] [2.62] [2.67] 

= nonurban 7.61 −4.40 32.64 8.19 8.49 3.05 −25.03 −0.58 −0.88 4.55 

[3.33] [2.55] [2.94] [1.19] [2.58] [1.57] [4.45] [3.54] [4.25] [3.70] 

Gender = male 10.63 −2.13 23.70 9.86 8.43 3.91 −13.07 0.77 2.20 6.72 

[4.71] [1.32] [0.32] [0.46] [0.70] [0.68] [4.72] [4.74] [4.77] [4.76] 

= female 5.86 −5.64 34.04 7.90 11.22 3.79 −28.17 −2.03 −5.36 2.07 

[2.29] [2.98] [4.13] [1.38] [2.71] [1.90] [4.74] [2.62] [3.49] [2.91] 

Age < 46 years 6.83 −4.58 28.90 6.41 5.01 2.12 −22.07 0.42 1.82 4.71 

[2.83] [2.73] [1.71] [0.71] [1.41] [1.04] [3.33] [2.93] [3.18] [3.02] 

> = 46 years 10.89 −1.93 18.30 7.34 8.78 2.22 −7.41 3.55 2.11 8.66 

[4.62] [1.44] [1.36] [1.03] [1.74] [1.15] [4.86] [4.74] [4.92] [4.74] 

Education < HS degree 7.32 −3.04 38.06 8.75 9.87 2.72 −30.74 −1.43 −2.56 4.60 

[2.52] [1.47] [3.42] [1.34] [2.25] [1.40] [4.24] [2.83] [3.34] [2.86] 

> = HS degree 8.05 −5.23 24.67 8.21 6.92 2.75 −16.62 −0.17 1.13 5.30 

[3.44] [3.04] [0.99] [0.59] [0.85] [0.77] [3.58] [3.50] [3.55] [3.53] 

Children = no 8.94 −2.86 22.92 7.87 7.12 2.88 −13.99 1.07 1.82 6.05 

[3.80] [1.64] [1.43] [0.72] [1.37] [0.96] [4.08] [3.86] [4.03] [3.91] 

= yes 7.37 −5.35 35.45 10.82 14.47 6.14 −28.07 −3.45 −7.09 1.24 

[3.07] [3.19] [1.95] [0.95] [1.31] [1.16] [3.66] [3.23] [3.33] [3.26] 

No. of workers = 1 12.32 0.26 24.50 7.42 8.92 3.53 −12.18 4.90 3.40 8.79 

[5.08] [0.35] [2.02] [0.83] [1.41] [1.04] [5.46] [5.13] [5.24] [5.16] 

> = 2 5.99 −6.17 23.42 8.61 7.23 2.52 −17.43 −2.62 −1.24 3.47 

[2.72] [3.28] [2.10] [0.94] [2.06] [1.22] [3.37] [2.86] [3.35] [2.94] 

Pers. income < 432 eur/wk 4.37 −5.09 28.36 6.78 8.02 2.14 −23.99 −2.41 −3.65 2.23 

[1.64] [2.48] [2.79] [1.05] [1.80] [1.26] [3.22] [1.95] [2.42] [2.06] 

> = 432 eur/wk 14.19 −0.70 25.05 8.49 7.54 2.96 −10.86 5.70 6.65 11.23 

[5.10] [0.50] [2.76] [1.23] [2.28] [1.61] [5.85] [5.27] [5.62] [5.37] 

Table B.4 

Trip purpose: Leisure. Indicators for different segments, value [s.d.]. 

Segmentation VoL VTAW VTTS VTAT 

Walk Bike Car Public Walk Bike Car Public 

Global 9.29 −2.84 11.48 9.18 8.87 4.70 −2.19 0.11 0.43 4.59 

[3.90] [1.83] [1.61] [1.28] [1.85] [1.43] [4.08] [4.01] [4.22] [4.06] 

Urbanity = urban 6.76 −5.77 12.80 11.11 14.07 7.04 −6.04 −4.35 −7.32 −0.28 

[2.61] [3.10] [0.40] [0.30] [0.33] [0.66] [2.64] [2.63] [2.63] [2.70] 

= nonurban 7.61 −4.40 10.72 8.44 3.75 3.04 −3.11 −0.84 3.86 4.56 

[3.33] [2.55] [1.47] [1.84] [2.62] [1.81] [3.63] [3.78] [4.24] [3.78] 

Gender = male 10.63 −2.13 10.41 8.95 5.97 3.16 0.22 1.68 4.66 7.47 

[4.71] [1.32] [0.68] [0.51] [1.07] [0.61] [4.77] [4.73] [4.84] [4.75] 

= female 5.86 −5.64 14.31 9.00 5.47 5.27 −8.44 −3.13 0.39 0.59 

[2.29] [2.98] [1.85] [1.88] [3.02] [2.37] [2.99] [2.98] [3.82] [3.32] 

Age < 46 years 6.83 −4.58 8.82 7.70 2.89 1.92 −1.99 −0.86 3.94 4.91 

[2.83] [2.73] [0.69] [0.92] [1.13] [0.85] [2.92] [2.97] [3.03] [2.95] 

>= 46 years 10.89 −1.93 11.21 8.15 9.30 5.73 −0.33 2.74 1.58 5.16 

[4.62] [1.44] [1.33] [1.48] [2.47] [1.85] [4.80] [4.84] [5.18] [4.89] 

Education < HS degree 7.32 −3.04 10.12 11.10 10.01 7.46 −2.80 −3.78 −2.69 −0.14 

[2.52] [1.47] [1.72] [2.14] [3.15] [2.65] [3.05] [3.30] [4.04] [3.65] 

> = HS degree 8.05 −5.23 13.36 10.08 9.33 5.66 −5.31 −2.03 −1.28 2.39 

[3.44] [3.04] [0.86] [1.13] [0.86] [0.67] [3.56] [3.64] [3.55] [3.51] 

Children = no 8.94 −2.86 10.10 10.05 9.58 7.01 −1.16 −1.12 −0.64 1.93 

[3.80] [1.64] [0.82] [1.06] [1.74] [1.14] [3.90] [3.95] [4.25] [4.00] 

= yes 7.37 −5.35 15.37 8.36 2.53 2.18 −8.00 −0.98 4.84 5.19 

[3.07] [3.19] [0.99] [1.10] [1.81] [1.60] [3.20] [3.27] [3.52] [3.42] 

No. of workers = 1 12.32 0.26 11.73 9.79 7.50 2.61 0.58 2.52 4.82 9.70 

[5.08] [0.35] [1.73] [1.80] [2.24] [1.91] [5.36] [5.40] [5.59] [5.46] 

> = 2 5.99 −6.17 10.53 8.70 5.81 4.59 −4.54 −2.71 0.18 1.40 

[2.72] [3.28] [1.24] [1.28] [2.06] [1.30] [2.95] [2.97] [3.36] [2.99] 

Pers. income < 432 eur/wk 4.37 −5.09 10.26 8.18 7.55 4.78 −5.89 −3.81 −3.18 −0.40 

[1.64] [2.48] [1.47] [1.64] [2.92] [2.11] [2.21] [2.32] [3.35] [2.69] 

> = 432 eur/wk 14.19 −0.70 14.10 11.58 10.98 7.50 0.09 2.61 3.21 6.69 

[5.10] [0.50] [1.24] [1.85] [2.07] [1.57] [5.28] [5.48] [5.54] [5.36] 
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Table B.5 

Trip purpose: Other. Indicators for different segments, value [s.d.]. 

Segmentation VoL VTAW VTTS VTAT 

Walk Bike Car Public Walk Bike Car Public 

Global 9.29 −2.84 14.55 9.76 11.11 3.25 −5.25 −0.47 −1.82 6.04 

[3.90] [1.83] [1.46] [0.90] [1.29] [0.77] [4.04] [3.95] [4.05] [3.96] 

Urbanity = urban 6.76 −5.77 16.38 10.31 10.22 5.07 −9.62 −3.56 −3.46 1.68 

[2.61] [3.10] [0.38] [0.21] [0.29] [0.38] [2.64] [2.62] [2.63] [2.64] 

= nonurban 7.61 −4.40 13.31 9.76 13.08 3.76 −5.70 −2.15 −5.48 3.84 

[3.33] [2.55] [1.16] [1.20] [1.85] [1.07] [3.53] [3.55] [3.81] [3.50] 

Gender = male 10.63 −2.13 15.30 10.45 11.90 4.45 −4.67 0.18 −1.27 6.18 

[4.71] [1.32] [0.45] [0.51] [0.33] [0.30] [4.73] [4.73] [4.72] [4.72] 

= female 5.86 −5.64 16.32 8.79 12.89 4.11 −10.46 −2.93 −7.03 1.75 

[2.29] [2.98] [1.43] [1.13] [2.23] [1.38] [2.72] [2.59] [3.32] [2.75] 

Age < 46 years 6.83 −4.58 13.87 7.90 8.58 2.81 −7.04 −1.06 −1.75 4.02 

[2.83] [2.73] [0.75] [0.63] [1.21] [0.78] [2.95] [2.92] [3.12] [2.96] 

> = 46 years 10.89 −1.93 11.84 9.51 10.44 2.97 −0.95 1.38 0.45 7.91 

[4.62] [1.44] [0.94] [0.92] [1.41] [0.91] [4.77] [4.74] [4.91] [4.77] 

Education < HS degree 7.32 −3.04 13.92 8.82 12.28 4.50 −6.60 −1.50 −4.96 2.81 

[2.52] [1.47] [1.58] [1.10] [1.77] [1.12] [2.97] [2.75] [3.09] [2.76] 

> = HS degree 8.05 −5.23 15.23 9.51 10.95 3.70 −7.18 −1.46 −2.90 4.35 

[3.44] [3.04] [0.55] [0.47] [1.09] [0.77] [3.48] [3.47] [3.59] [3.51] 

Children = no 8.94 −2.86 13.14 9.72 9.57 3.37 −4.21 −0.78 −0.64 5.57 

[3.80] [1.64] [0.59] [0.68] [1.12] [0.80] [3.85] [3.87] [4.00] [3.90] 

= yes 7.37 −5.35 21.78 10.67 15.49 4.63 −14.40 −3.29 −8.11 2.75 

[3.07] [3.19] [1.67] [1.21] [1.82] [0.81] [3.52] [3.33] [3.60] [3.18] 

No. of workers = 1 12.32 0.26 10.65 7.93 7.51 2.43 1.67 4.39 4.81 9.89 

[5.08] [0.35] [0.85] [0.84] [1.45] [0.91] [5.14] [5.15] [5.29] [5.17] 

> = 2 5.99 −6.17 14.48 8.51 11.43 3.82 −8.48 −2.52 −5.44 2.18 

[2.72] [3.28] [1.34] [0.85] [1.33] [0.84] [2.99] [2.83] [3.00] [2.83] 

Pers. income < 432 eur/wk 4.37 −5.09 13.23 7.63 10.61 2.44 −8.85 −3.25 −6.24 1.93 

[1.64] [2.48] [1.27] [0.98] [1.59] [1.00] [2.06] [1.90] [2.27] [1.91] 

> = 432 eur/wk 14.19 −0.70 16.25 11.04 12.21 5.36 −2.05 3.16 1.98 8.84 

[5.10] [0.50] [1.10] [1.00] [1.50] [0.97] [5.25] [5.23] [5.36] [5.21] 

Table B.6 

Estimation results for different segments, estimate [s.d.]. 

Segmentation � φ1 θ1 θw βcost βwalk βbike βcar βPT 

Global 0.30 0.17 0.74 −0.26 −0.59 −0.17 −0.09 −0.10 −0.04 

[0.02] [0.01] [0.01] [0.05] [0.06] [0.01] [0.01] [0.01] [0.01] 

Urbanity = urban 0.51 0.34 0.73 −0.80 −0.60 −0.17 −0.10 −0.10 −0.04 

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

= nonurban 0.37 0.21 0.74 −0.49 −0.55 −0.17 −0.08 −0.08 −0.03 

[0.02] [0.01] [0.01] [0.04] [0.03] [0.01] [0.01] [0.02] [0.01] 

Gender = male 0.31 0.19 0.74 −0.20 −0.55 −0.15 −0.09 −0.08 −0.04 

[0.01] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.00] [0.00] 

= female 0.42 0.24 0.74 −0.73 −0.55 −0.20 −0.08 −0.09 −0.04 

[0.03] [0.02] [0.01] [0.09] [0.04] [0.01] [0.01] [0.02] [0.01] 

Age < 46 years 0.38 0.22 0.75 −0.55 −0.68 −0.20 −0.08 −0.06 −0.03 

[0.01] [0.01] [0.01] [0.03] [0.02] [0.01] [0.01] [0.01] [0.01] 

> = 46 years 0.27 0.16 0.74 −0.16 −0.65 −0.15 −0.09 −0.10 −0.04 

[0.02] [0.02] [0.01] [0.08] [0.04] [0.01] [0.01] [0.01] [0.01] 

Education < HS degree 0.32 0.19 0.76 −0.35 −0.69 −0.24 −0.11 −0.12 −0.06 

[0.02] [0.01] [0.01] [0.02] [0.06] [0.01] [0.01] [0.01] [0.01] 

> = HS degree 0.39 0.24 0.72 −0.56 −0.54 −0.16 −0.08 −0.08 −0.04 

[0.01] [0.01] [0.01] [0.02] [0.01] [0.00] [0.00] [0.00] [0.00] 

Children = no 0.34 0.19 0.75 −0.28 −0.55 −0.14 −0.08 −0.08 −0.04 

[0.01] [0.01] [0.01] [0.03] [0.01] [0.01] [0.01] [0.01] [0.01] 

= yes 0.32 0.22 0.72 −0.58 −0.49 −0.20 −0.08 −0.09 −0.04 

[0.01] [0.01] [0.01] [0.01] [0.02] [0.01] [0.01] [0.01] [0.01] 

No. of workers = 1 0.22 0.15 0.76 0.02 −0.70 −0.18 −0.10 −0.09 −0.03 

[0.02] [0.01] [0.01] [0.02] [0.03] [0.01] [0.01] [0.01] [0.01] 

> = 2 0.46 0.27 0.74 −0.87 −0.62 −0.17 −0.09 −0.08 −0.04 

[0.02] [0.01] [0.01] [0.05] [0.05] [0.01] [0.01] [0.01] [0.01] 
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Table B.6 ( continued ) 

Segmentation � φ1 θ1 θw βcost βwalk βbike βcar βPT 

Pers. income < 432 eur/wk 0.38 0.26 0.75 −0.87 −0.66 −0.19 −0.08 −0.10 −0.03 

[0.02] [0.01] [0.01] [0.05] [0.03] [0.01] [0.01] [0.02] [0.01] 

> = 432 eur/wk 0.31 0.16 0.73 −0.05 −0.54 −0.17 −0.09 −0.09 −0.05 

[0.01] [0.01] [0.01] [0.02] [0.02] [0.01] [0.01] [0.01] [0.01] 

Segmentation γ L, walk γ L,bike γ L,car γ L,PT γ W, walk γ W,bike γ W,car γ W,PT 

Global 0.06 0.00 0.01 −0.01 −0.09 0.00 0.00 0.00 

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.01] 

Urbanity = urban 0.04 −0.02 −0.05 −0.03 −0.04 0.02 0.05 0.03 

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

= nonurban 0.07 0.00 0.04 0.00 −0.12 0.01 0.00 0.00 

[0.01] [0.01] [0.02] [0.01] [0.01] [0.01] [0.02] [0.01] 

Gender = male 0.06 0.01 0.03 0.01 −0.07 0.00 0.00 0.00 

[0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] 

= female 0.07 0.00 0.04 −0.01 −0.11 0.01 −0.01 0.01 

[0.02] [0.01] [0.02] [0.02] [0.02] [0.01] [0.02] [0.02] 

Age < 46 years 0.10 0.00 0.03 0.00 −0.13 0.01 0.01 0.00 

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] 

> = 46 years 0.03 0.00 0.00 −0.02 −0.05 0.01 0.01 0.02 

[0.01] [0.01] [0.02] [0.01] [0.01] [0.01] [0.01] [0.01] 

Education < HS degree 0.12 −0.02 0.01 −0.03 −0.20 0.01 0.01 0.02 

[0.01] [0.02] [0.03] [0.02] [0.01] [0.01] [0.02] [0.02] 

> = HS degree 0.04 −0.01 0.00 −0.01 −0.06 0.01 0.02 0.01 

[0.00] [0.01] [0.01] [0.00] [0.01] [0.00] [0.01] [0.01] 

Children = no 0.05 −0.01 −0.01 −0.02 −0.07 0.01 0.01 0.01 

[0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] 

= yes 0.07 0.01 0.07 0.02 −0.09 −0.01 −0.03 −0.02 

[0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.00] 

No. of workers = 1 0.05 −0.02 0.01 0.00 −0.10 0.01 −0.01 −0.01 

[0.01] [0.01] [0.02] [0.02] [0.01] [0.01] [0.01] [0.01] 

> = 2 0.06 0.00 0.02 −0.01 −0.07 0.00 0.01 0.01 

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] 

Pers. income < 432 eur/wk 0.08 −0.01 0.01 −0.02 −0.12 0.01 0.01 0.01 

[0.01] [0.01] [0.02] [0.02] [0.01] [0.01] [0.01] [0.01] 

> = 432 eur/wk 0.04 −0.01 −0.01 −0.02 −0.06 0.02 0.02 0.02 

[0.01] [0.01] [0.01] [0.01] [0.02] [0.01] [0.02] [0.01] 

Table B.7 

Estimation results for different segments, estimate [s.d.]. 

Segmentation αbike αPT αcar β t2bus βservInt βstops βHhPark β JobPark βMgPark ρTw & T f 1 

Global −3.20 −2.19 −1.98 −0.06 −0.03 −0.42 0.59 0.63 −1.20 −0.70 

[0.03] [0.10] [0.03] [0.01] [0.01] [0.06] [0.06] [0.03] [0.10] [0.02] 

Urbanity = urban −2.28 −1.83 −1.95 −0.06 −0.02 −0.37 0.28 0.41 −0.97 −0.72 

[0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.03] 

= nonurban −3.85 −2.38 −1.64 −0.05 −0.03 0.08 0.07 0.69 −1.03 −0.67 

[0.02] [0.04] [0.07] [0.02] [0.01] [0.08] [0.06] [0.04] [0.09] [0.02] 

Gender = male −2.73 −2.05 −2.19 −0.06 −0.03 −0.27 0.58 0.65 −0.59 −0.70 

[0.00] [0.00] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.02] 

= female −3.94 −1.83 −1.99 −0.08 −0.04 −0.17 0.38 0.46 −1.17 −0.70 

[0.09] [0.08] [0.07] [0.01] [0.01] [0.06] [0.09] [0.06] [0.05] [0.02] 

Age < 46 years −3.38 −2.41 −2.49 −0.04 −0.03 −0.23 0.58 0.53 −1.19 −0.71 

[0.03] [0.04] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.02] [0.02] 

> = 46 years −3.03 −1.82 −1.66 −0.07 −0.03 −0.40 0.43 0.70 −0.86 −0.68 

[0.03] [0.05] [0.04] [0.01] [0.01] [0.04] [0.06] [0.05] [0.08] [0.02] 

Education < HS degree −4.02 −2.66 −2.80 −0.06 −0.04 −0.01 0.98 0.70 −0.87 −0.71 

[0.01] [0.05] [0.03] [0.01] [0.01] [0.06] [0.03] [0.04] [0.03] [0.02] 

> = HS degree −2.82 −1.90 −2.05 −0.07 −0.03 −0.21 0.35 0.50 −1.09 −0.67 

[0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.02] [0.02] 

Children = no −2.69 −1.57 −1.57 −0.06 −0.03 −0.14 0.28 0.64 −0.91 −0.71 

[0.02] [0.03] [0.03] [0.01] [0.00] [0.02] [0.02] [0.03] [0.01] [0.02] 

= yes −3.73 −2.76 −2.67 −0.07 −0.02 −0.29 0.67 0.53 −1.11 −0.66 

[0.02] [0.01] [0.02] [0.02] [0.01] [0.04] [0.01] [0.01] [0.02] [0.03] 
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Table B.7 ( continued ) 

Segmentation αbike αPT αcar β t2bus βservInt βstops βHhPark β JobPark βMgPark ρTw & T f 1 

No. of workers = 1 −2.79 −1.97 −1.69 −0.06 −0.03 −0.24 −0.10 0.51 −1.06 −0.75 

[0.03] [0.03] [0.01] [0.01] [0.01] [0.01] [0.02] [0.03] [0.04] [0.03] 

> = 2 −3.15 −1.96 −2.25 −0.07 −0.03 −0.27 0.61 0.54 −0.97 −0.67 

[0.02] [0.02] [0.02] [0.01] [0.00] [0.05] [0.03] [0.03] [0.03] [0.02] 

Pers. income < 432 eur/wk −3.70 −2.20 −2.30 −0.06 −0.03 −0.24 0.71 0.63 −1.15 −0.72 

[0.11] [0.04] [0.04] [0.02] [0.01] [0.05] [0.05] [0.03] [0.06] [0.02] 

> = 432 eur/wk −2.97 −2.05 −1.94 −0.07 −0.03 −0.26 0.25 0.47 −0.62 −0.66 

[0.03] [0.01] [0.01] [0.01] [0.01] [0.01] [0.03] [0.03] [0.03] [0.02] 

Segmentation ρTw & E f 1 ρTw & walk ρTw & bike ρTw & PT ρTw & car ρT f 1& E f 1 ρT f 1& walk ρT f 1& bike ρT f 1& PT ρT f 1& car 

Global 0.40 −0.07 −0.10 0.03 −0.18 −0.44 0.22 0.21 0.15 0.28 

[0.03] [0.02] [0.03] [0.03] [0.04] [0.03] [0.02] [0.03] [0.03] [0.03] 

Urbanity = urban 0.38 −0.02 −0.08 0.18 −0.17 −0.42 0.17 0.23 0.02 0.25 

[0.05] [0.04] [0.04] [0.05] [0.05] [0.05] [0.04] [0.04] [0.05] [0.05] 

= nonurban 0.30 0.00 −0.01 0.06 0.03 −0.38 0.20 0.08 0.15 0.18 

[0.04] [0.03] [0.04] [0.04] [0.05] [0.03] [0.03] [0.04] [0.04] [0.04] 

Gender = male 0.30 −0.01 −0.05 0.18 0.05 −0.37 0.10 0.07 −0.03 −0.04 

[0.04] [0.04] [0.04] [0.04] [0.05] [0.04] [0.03] [0.04] [0.05] [0.05] 

= female 0.46 −0.04 −0.08 0.04 −0.24 −0.48 0.25 0.25 0.17 0.38 

[0.03] [0.03] [0.04] [0.04] [0.05] [0.03] [0.03] [0.04] [0.04] [0.04] 

Age < 46 years 0.39 −0.02 0.01 0.09 −0.08 −0.39 0.19 0.15 0.20 0.27 

[0.03] [0.03] [0.04] [0.04] [0.05] [0.04] [0.03] [0.04] [0.04] [0.05] 

> = 46 years 0.38 −0.12 −0.21 −0.02 −0.26 −0.44 0.27 0.26 0.09 0.28 

[0.04] [0.03] [0.04] [0.05] [0.05] [0.04] [0.03] [0.04] [0.04] [0.05] 

Education < HS degree 0.19 −0.04 −0.08 0.06 0.00 −0.29 0.28 0.18 0.08 0.25 

[0.06] [0.04] [0.06] [0.07] [0.07] [0.05] [0.04] [0.06] [0.07] [0.06] 

> = HS degree 0.45 −0.06 −0.12 0.04 −0.20 −0.47 0.15 0.16 0.10 0.20 

[0.03] [0.03] [0.03] [0.03] [0.04] [0.03] [0.03] [0.03] [0.04] [0.04] 

Children = no 0.38 −0.12 −0.05 −0.01 −0.22 −0.41 0.29 0.20 0.20 0.32 

[0.04] [0.03] [0.04] [0.04] [0.05] [0.04] [0.03] [0.04] [0.04] [0.04] 

= yes 0.40 −0.02 −0.14 0.17 −0.11 −0.43 0.07 0.15 0.02 0.12 

[0.04] [0.05] [0.05] [0.05] [0.06] [0.05] [0.04] [0.05] [0.05] [0.06] 

No. of workers = 1 0.38 −0.18 0.04 0.19 −0.05 −0.36 0.35 0.16 0.12 0.30 

[0.05] [0.05] [0.06] [0.06] [0.08] [0.05] [0.05] [0.05] [0.06] [0.06] 

> = 2 0.37 −0.04 −0.14 0.02 −0.21 −0.42 0.19 0.22 0.14 0.27 

[0.03] [0.03] [0.03] [0.03] [0.04] [0.03] [0.02] [0.03] [0.03] [0.03] 

Pers. income < 432 eur/wk 0.27 0.08 0.14 0.20 0.06 −0.31 0.17 0.09 0.06 0.24 

[0.04] [0.03] [0.04] [0.04] [0.05] [0.04] [0.03] [0.04] [0.04] [0.05] 

> = 432 eur/wk 0.46 −0.10 −0.27 −0.05 −0.21 −0.48 0.15 0.15 0.11 0.09 

[0.04] [0.03] [0.04] [0.05] [0.04] [0.04] [0.03] [0.04] [0.05] [0.04] 

Table B.8 

Estimation results for different segments, estimate [s.d.]. 

Segmentation ρE f 1& walk ρE f 1& bike ρE f 1& PT ρE f 1& car f bike f PT f car ω walk ω bike ω PT ω car 

Global −0.33 −0.41 −0.47 −0.58 −0.92 −0.41 1.20 2.68 4.19 1.89 2.26 

[0.02] [0.02] [0.02] [0.02] [0.03] [0.03] [0.07] [0.03] [0.03] [0.02] [0.03] 

Urbanity = urban −0.11 −0.31 −0.26 −0.22 −0.85 −0.48 1.01 2.22 3.81 1.85 2.77 

[0.03] [0.04] [0.04] [0.05] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

= nonurban −0.34 −0.26 −0.41 −0.57 −0.94 −0.38 1.14 3.48 4.90 1.87 2.01 

[0.03] [0.04] [0.04] [0.03] [0.06] [0.06] [0.08] [0.07] [0.06] [0.03] [0.13] 

Gender = male −0.24 −0.34 −0.42 −0.40 −0.87 −0.45 1.04 2.73 4.13 1.86 2.33 

[0.03] [0.03] [0.04] [0.03] [0.00] [0.01] [0.01] [0.00] [0.01] [0.00] [0.01] 

= female −0.34 −0.41 −0.44 −0.65 −0.84 −0.25 1.06 2.92 4.41 1.67 2.14 

[0.03] [0.03] [0.03] [0.03] [0.06] [0.07] [0.06] [0.07] [0.05] [0.06] [0.08] 

Age < 46 years −0.33 −0.39 −0.46 −0.52 −0.87 −0.42 0.99 2.75 3.98 2.04 2.41 

[0.03] [0.03] [0.03] [0.03] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] 

> = 46 years −0.37 −0.40 −0.47 −0.64 −0.82 −0.36 1.23 2.97 4.60 1.72 1.94 

[0.03] [0.03] [0.03] [0.02] [0.03] [0.02] [0.04] [0.03] [0.04] [0.02] [0.06] 

Education < HS degree −0.30 −0.12 −0.53 −0.47 −0.83 −0.50 1.05 2.97 6.02 2.28 2.50 

[0.04] [0.06] [0.06] [0.05] [0.02] [0.02] [0.06] [0.04] [0.03] [0.09] [0.03] 

> = HS degree −0.32 −0.43 −0.42 −0.58 −0.87 −0.48 1.04 2.61 3.85 1.65 2.18 

[0.02] [0.03] [0.03] [0.02] [0.01] [0.01] [0.02] [0.03] [0.01] [0.01] [0.01] 
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Table B.8 ( continued ) 

Segmentation ρE f 1& walk ρE f 1& bike ρE f 1& PT ρE f 1& car f bike f PT f car ω walk ω bike ω PT ω car 

Children = no −0.34 −0.37 −0.43 −0.58 −0.84 −0.45 1.07 2.72 4.58 1.64 2.28 

[0.03] [0.03] [0.04] [0.03] [0.02] [0.04] [0.02] [0.03] [0.01] [0.02] [0.03] 

= yes −0.40 −0.40 −0.42 −0.63 −0.85 −0.50 1.00 2.64 3.85 2.40 2.27 

[0.03] [0.04] [0.04] [0.03] [0.01] [0.01] [0.01] [0.02] [0.01] [0.02] [0.01] 

No. of workers = 1 −0.44 −0.40 −0.39 −0.40 −0.89 −0.50 0.97 2.18 4.16 1.34 2.45 

[0.04] [0.05] [0.06] [0.06] [0.01] [0.01] [0.02] [0.02] [0.05] [0.01] [0.05] 

> = 2 −0.34 −0.40 −0.49 −0.66 −0.80 −0.34 1.06 2.95 4.28 1.84 2.12 

[0.02] [0.03] [0.03] [0.02] [0.06] [0.07] [0.02] [0.05] [0.02] [0.02] [0.02] 

Pers. income < 432 eur/wk −0.30 −0.37 −0.44 −0.56 −0.94 −0.52 0.97 2.99 4.65 2.00 2.15 

[0.03] [0.04] [0.04] [0.04] [0.05] [0.06] [0.03] [0.05] [0.11] [0.04] [0.06] 

> = 432 eur/wk −0.30 −0.41 −0.46 −0.50 −0.86 −0.49 1.07 2.84 4.23 1.69 2.23 

[0.03] [0.03] [0.03] [0.02] [0.02] [0.01] [0.02] [0.03] [0.02] [0.02] [0.01] 

Segmentation αL,bike αL,PT αL,car σ Tw σ Tf 1 σ Ef 1 αW,bike αW,PT αW,car 

Global 0.43 0.64 0.47 61.50 64.70 36.50 −1.05 −0.97 −1.19 

[0.03] [0.04] [0.03] [0.36] [0.19] [0.63] [0.05] [0.02] [0.05] 

Urbanity = urban 0.55 0.58 1.10 63.20 65.40 39.70 −0.89 −0.82 −1.50 

[0.00] [0.00] [0.00] [0.33] [0.46] [0.73] [0.00] [0.00] [0.00] 

= nonurban 0.69 1.07 0.22 59.50 63.20 35.00 −1.55 −1.29 −1.49 

[0.07] [0.06] [0.04] [0.48] [0.31] [0.39] [0.03] [0.07] [0.06] 

Gender = male 0.64 0.58 0.60 60.00 70.30 41.00 −0.95 −0.82 −1.30 

[0.01] [0.01] [0.00] [0.63] [0.30] [0.47] [0.00] [0.01] [0.00] 

= female 0.40 0.79 −0.05 62.80 59.20 30.00 −1.10 −1.23 −1.09 

[0.04] [0.10] [0.06] [0.53] [0.29] [0.68] [0.10] [0.07] [0.07] 

Age < 46 years 0.84 0.88 0.78 63.10 67.80 32.40 −1.45 −1.25 −1.80 

[0.03] [0.03] [0.01] [0.61] [0.57] [0.59] [0.02] [0.01] [0.05] 

> = 46 years 0.21 0.74 0.17 58.10 62.00 37.60 −0.99 −1.01 −0.82 

[0.04] [0.03] [0.04] [0.64] [0.19] [0.69] [0.04] [0.05] [0.04] 

Education < HS degree 1.32 1.40 0.74 61.60 62.20 29.00 −1.96 −1.98 −1.90 

[0.02] [0.05] [0.05] [0.38] [0.49] [0.60] [0.03] [0.03] [0.05] 

> = HS degree 0.40 0.49 0.43 59.90 67.30 38.30 −0.84 −0.87 −1.26 

[0.01] [0.01] [0.02] [0.61] [0.19] [0.44] [0.02] [0.01] [0.02] 

Children = no 0.62 0.75 0.58 61.40 63.70 34.60 −1.07 −0.87 −1.16 

[0.06] [0.02] [0.01] [0.32] [0.35] [0.49] [0.02] [0.03] [0.02] 

= yes 0.34 0.85 0.12 55.40 63.50 37.30 −0.84 −1.07 −1.10 

[0.01] [0.01] [0.02] [0.35] [0.28] [0.90] [0.01] [0.01] [0.01] 

No. of workers = 1 0.22 0.10 0.11 60.90 64.10 36.50 −1.04 −1.01 −1.00 

[0.02] [0.02] [0.04] [0.63] [0.44] [1.28] [0.01] [0.03] [0.04] 

> = 2 0.60 0.77 0.33 60.80 63.90 33.20 −0.78 −1.01 −1.25 

[0.02] [0.04] [0.04] [0.47] [0.16] [0.37] [0.06] [0.03] [0.03] 

Pers. income < 432 eur/wk 0.72 0.89 0.53 64.20 63.80 23.40 −1.34 −1.27 −1.58 

[0.07] [0.06] [0.07] [0.43] [0.34] [0.59] [0.06] [0.03] [0.04] 

> = 432 eur/wk 0.34 0.57 0.30 47.30 64.70 43.50 −0.86 −0.88 −1.02 

[0.01] [0.01] [0.02] [0.57] [0.34] [0.64] [0.01] [0.02] [0.02] 
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Abstract
We propose an improved method to assess the economic value of unpaid housework
and childcare. Existing literature has typically assigned a minimum, generalist or
specialist’s wage, or the performer’s opportunity cost to the hourly value of these
activities. Then it was used to calculate macro-level value based on the number of
hours spent in this work. In this paper, instead of imputing an average or minimum
wage for housework and childcare to determine a value to the work, we use the actual
local wage rate requested for these services from providers on online platforms.
Applying this method to Austrian Time Use Survey data shows that the value of
unpaid childcare and housework, had it been paid, would be equivalent to about 22%
of the 2018 GDP.

Keywords Unpaid work ● Valuation ● Domestic work ● Housework ● Care work

JEL Classification C81 ● J22 ● J13 ● G59

1 Introduction

No economy would function without adequate care for young children (who will
grow to become economic agents) or the housework necessary to sustain people.
Since care- and housework in one’s own home is largely unpaid, it is unclear how to
measure the economic value of this work. To understand the economics of the
household, though, it is important to understand better the economic value of the
work produced within it.
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The literature quantifying the worth of house- and care work1 assigns a value to
the number of hours spent in this work (most commonly calculated using time-use
surveys) in one of three main ways. On the one hand, there are two “input” methods:
the opportunity cost approach and the market replacement cost approach. On the
other hand, there is an “output” method. The first of these three – the opportunity cost
approach – assumes that time spent on unpaid work is at the expense of earning a
market wage. Many calculations of opportunity costs simply use an average wage
rate of all employed people (Ahmad & Koh, 2011); others estimate a potential wage
rate even for people outside the paid labor force (Gammage, 2010; Schmid et al.,
1999). The second approach – the market replacement approach – imputes wages
that reflect the market price of the respective tasks, using either the average wage rate
of a general housekeeper (Ahmad & Koh, 2011; Varjonen et al., 2014) or including
multiple wage rates of specialists in matched occupations (Hamdad, 2003; Landefeld
et al., 2005). Sometimes, calculations with minimum wages for these tasks are
included to provide lower-bound estimates (Landefeld et al., 2005). Some studies
using the market replacement approach also account for the intensity of care (e.g.
physical and development care) and incorporate supervisory care (Suh & Folbre,
2016; Mullan, 2010). Finally, the output approach quantifies the value of the output
of unpaid work, measuring the service price of, for example, a kilogram of washing
or ironing (Holloway et al., 2002), or a child taken care of (Mullan, 2010; Yoon,
2014). In practice, many studies in the literature calculate a value of unpaid work
using more than just one of these methods, providing instead a battery of potential
wage rates in order to give a range of estimates for the value of domestic and care
work. The fact that many studies report values calculated with several different
approaches speaks to the lack of any “best” practice in this literature.

In considering how to better and consistently quantify the value of unpaid house-
and care work, we propose a new approach to introduce more precision into wage
estimates in the specialist replacement cost method. In particular, we use the wages
demanded for housework and childcare on actual online platforms to get the market
price of the work performed, disaggregated by region at the NUTS-2 level. We then
apply these values to region-specific time-use statistics to compute the aggregate
value of the work.

The use of online platforms to organize work has become increasingly prevalent
(see, for example, Katz and Krueger (2019) and Kässi and Lehdonvirta (2018)), not
least to match households with babysitters and cleaners. Our approach thus allows
the literature to keep up with the changing nature of the organization and payment for
this work. National accounting offices, who are already working to supplement GDP
measures with satellite accounts (European Communities, 2003), can find our
approach particularly useful.

In relation to other literature on this topic, we consider our approach to fit into the
specialist framework, in that we assume that it is specialists who offer childcare and
cleaning services on online platforms. Table 1 shows that there are varying degrees
of “specialization” among the workers on the platforms we use; those with more
years of experience also demand higher wages.

1 We use the terms “housework” and “domestic” work interchangeably, and always differentiate these
activities from childcare. Childcare and housework/domestic work are defined in footnote 3 below.
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The benefits of the calculation method described here are five-fold. First, our
approach does not rely on hypothetical considerations about the value of the worker’s
time to measure an opportunity cost of doing the work, estimates of which differ
widely based on education, professional experience, and socioeconomic background
(Schmid et al., 1999). Instead, our approach takes the value of the work to be the
market value that the worker herself demands. Second, our approach uses relatively
local wage rates (NUTS-2 level), meaning that the application of our method would
produce more accurate local estimates of the value of household and care work.
Third, the approach avoids applying a minimum wage to a job that may actually
receive higher remuneration, making it more accurate. Fourth, the wage data are
reported per hour, unlike in labor force surveys, where hourly wage data are often
imprecisely computed because they are calculated using other variables such as
yearly income, hours worked per week, and weeks worked per year. Finally, our
approach uses free and real-time data on wages paid, instead of relying on this
information from labor force surveys. The latter are costly in terms of time as well as
money and their publication typically has a long delay after data collection.
Researchers can use our method in any country that collects time-use data and in
which there are platforms organizing these services.

In the next section, we show an application of our method with the wage data
collected from online platforms. We estimate the aggregated value of typically
unpaid work by applying wage rates to time-use data from the same region.

2 Application

We use data from Austria for our empirical application. Data on time-use come from
the 2008–20092 time-use survey (TUS) conducted by Statistik Austria (2020).
According to the TUS, the following tasks are considered housework: cooking,
cleaning, laundry, gardening, repairs, shopping for the household, household man-
agement, travel related to housework, and other housework activities. Childcare
comprises primary care of the child, helping with the child with schoolwork,
recreation with the child, accompanying the child to appointments, travel related to

Table 1 Distribution of
advertisements by years of
experiencea

Domestic Childcare

Experience Mean N Mean N

0–4 11.18 6555 10.58 8975

5–9 11.57 3377 10.94 3625

10+ 11.96 4518 11.66 2070

aNot all workers used in the main analysis below indicate their years
of experience

2 There are more recent time-use data for Austria available from the Mobility-Activity-Expenditure Diary
(MAED) survey conducted in 2015, but these data comprise only 748 individuals and do not report
childcare as a separate activity. As reported in Hössinger et al. (2019), time-use patterns did not change
significantly between the national time use survey in 2008/2009 and the MAED survey in 2015, and there
is no reason to suspect that it would have changed significantly in the time to 2019.
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childcare, and other childcare activities. These activities likely make up a large
portion of all activities related to domestic and childcare work. However, any other
kind of work in these areas is not captured in our wage calculations - which implies
that our estimates are a lower-bound value for domestic and childcare work. Table 2
shows the average number of minutes spent per day on childcare and household work
for 15–64 year olds. It is calculated based on whether the activity was primary or
secondary (the latter are activities that are done simultaneously with the primary
activity, such as listening to music while primarily cooking). Individuals in the
survey spent on average about 34 min in childcare and 172 min in household work
per day. Disaggregating these figures into households with and without children
under 10 reveals that–not surprisingly–those with children spent on average almost
2 h more on childcare. Parents spend “only” 2 h per day on childcare because the
Austrian Time Use Survey does not include information on supervisory responsi-
bilities that encompasses activities like being present while a child naps. The survey
thus cannot capture the element of childcare that relates to the worth of what care
work prevents a caregiver from doing, such as working for pay outside of the home.

To calculate the monetary value of this work, we use two prominent online
platforms to obtain the wages for housework and childcare: www.haushaltshilfe24.at
(household help 24) and www.babysitter24.at, respectively. These sites are intended
for private, individual users (both suppliers and demanders of housework and
childcare services), but some agencies may covertly find work for their employees
via these platforms.

In June 2019 we collected data on the wages demanded from workers offering
childcare and housework3 services. The listings on these websites give an hourly wage,
which we use in our calculations. Some of the arrangements are for one-time jobs, while
others may be requesting repeated work, such as weekly babysitting. We take the hourly
wage as listed, regardless of the regularity with which the work was meant to be
completed. In addition, the data from the listings do not allow us to differentiate
between work to be completed during regular business hours versus other times of the

Table 2 Time spent in childcare and housework (minutes/day), 15–64 year olds

Primary activity only Primary and secondary

Segment (N) Activity Total Women Men Total Women Men

Total (6215) Childcare 34.0 46.8 18.7 43.1 60.1 22.7

Housework 172.6 224.6 110.3 182.0 238.2 114.5

w/ children (1542) Childcare 117.0 156.3 66.1 148.0 200.4 80.0

Housework 175.7 239.3 93.3 188.3 257.7 98.5

w/o children (4673) Childcare 6.6 9.0 3.9 8.5 11.7 4.8

Housework 171.6 219.5 115.6 179.9 231.4 119.5

3 Cooking is a prominent activity in the time-use data, which may be too particular to include in the
general housework category. To test this, we used the fact that some workers mention their willingness to
cook in their personal descriptions on the websites. We divided our sample into advertisements with and
without cooking and performed a t-test for independent samples. The results show that there is no
statistically significant difference in wages between these two groups. Thus, the mean wage used in the
analysis was constructed from all available activities without further differentiating cooking.
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day, like overnight care shifts, though the latter could be paid differently than daytime
work. We cannot specify whether these wages are the worker’s gross wages or net of
taxes, because tax payments depend on total income. Workers with very low income do
not pay any income taxes; some of the workers offering services on this platform may
fall into this group, while others will have to pay taxes on their income.

We filtered listings according to postal area and worker gender. It would have
been interesting to further observe wages for immigrant versus native workers, but
the data do not contain information on country of origin or family migration back-
ground. We took the wages demanded from around 15,000 observations from each
online platform. Almost 90% of advertisements offering services come from women
(Table 3). We calculate the average wage demanded for household work and
childcare at the NUTS-2 level, for each of the nine regions of Austria (Fig. 1).

Figure 1 shows the average wage rate demanded for household work and for
babysitting services, broken down by gender and region. There is significant varia-
tion in the hourly wage of these services across regions, but overall, an hour of
childcare costs about €11 and household work costs closer to €12. Interestingly, the

Table 3 Number of
advertisements by NUTS-2
region in Austria

Domestic Childcare

Women Men Women Men

All 12,871 1584 14,041 753

Vienna 5003 633 5796 425

Lower Austria 1881 233 2046 100

Styria 1781 207 1583 65

Upper Austria 1728 221 1525 61

Carinthia 639 82 695 21

Tyrol 595 69 983 32

Salzburg 573 75 679 28

Burgenland 423 39 331 8

Vorarlberg 248 25 403 13

Fig. 1 Average wage rates of domestic work, EUR/h
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average hourly wage demanded by men on these platforms is higher than the wage
demanded by women.

3 A macro-level estimate for the value of unpaid work

We next apply the region-specific average wage rates to the average time spent on
household and childcare activities in each region. The goal of this exercise is to
determine the value of the work as a percentage of GDP, which is the standard
measure of the value of unpaid work in the literature. We use the most recent GDP
data at the time of research available for Austria, namely data from 2018, which was
equal to about €386 billion. There is a 1-year mismatch in the time dimensions of our
wage and GDP data; the platform wage data were collected in 2019 and the most
recent GDP figures are from 2018. To correct this mismatch, we deflate the wage
rates using the national consumer price index,4 Table 4 presents results of our final
percentage estimates.

When considering primary activities only, we find that the value of housework
and childcare amounts to about 22% of the 2018 GDP; when using both primary and
secondary activities, the value is near 23.4%. Ahmed and Koh (2011) have also
calculated the value of labor for domestic and care work in Austria compared to the
total value of the 2008 GDP using the same time-use data, but with different
valuation methods and wage data (in particular, OECD PPP wage data) and including
several activities not used in our study (in particular, care for adult household

Table 4 Average value of
domestic work as
percentage of GDP

Activities included Women Men Total

Primary activity only

Total 14.21 7.41 21.62

Childcare 2.23 0.94 3.17

Housework 11.98 6.47 18.45

Both, weighteda

Total 9.06 4.62 13.68

Childcare 1.58 0.64 2.22

Housework 7.48 3.98 11.46

Primary and secondary

Total 15.54 7.84 23.39

Childcare 2.83 1.13 3.96

Housework 12.72 6.71 19.42

aTime spent on the activity was weighted by 0.6 if it was a primary
activity and by 0.4 if it was a secondary activity, as suggested in Apps
and Rees (2011, FN 24). These weights were only used in the row
“both, weighted” in the ablet; the data in the other rows were
unweighted

4 We use the country-level consumer price index to deflate the wage rate. It would have been beneficial to
deflate prices at the regional level but region-specific consumer price indices are unavailable for Austria.
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members, care for non-household members, and volunteer work). Using average
generalist wages for primary activities, they estimate that labor costs for housework
and care work was equivalent to 24% of GDP in 2008. When using instead an
opportunity cost approach, the estimate is 41% of GDP in 2008. Schappelwein
(2018) has applied the generalist approach to the same Austrian time-use data but
with data on net wages from European Union Survey on Income and Living Con-
ditions. She computed a labor value for housework and care of dependent people
(children and others) equivalent to 27% of GDP in 2008. These comparisons – which
all use the same time-use data – show that the valuation of domestic work is sensitive
to the methodological approach and, crucially, the wage data employed. We argue
that our approach is superior to previous methods, primarily because it uses what is
likely the closest true value of the market cost of an hour of this work. In addition,
with more widespread use of the internet, more services will be offered online and
thus the estimates of wage rates using our method will improve.

4 Discussion

The main contribution of this paper has been to introduce a new approach to the
valuation of domestic work. By using easily accessible and free information on actual
wages, our method helps form a better understanding of the market value of
household work and childcare. Calculating this worth sheds light on the economic
value of such work. We find that this work would be additionally worth about 22% of
GDP if it were paid at going market prices; this estimate is close to the value created
by the industry sector in Austria. The approach proposed in this paper can be par-
ticularly useful to national accounting offices while developing household-specific
satellite accounts to supplement measures of the gross domestic product.
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Abstract The value of travel time savings (VTTS) representing the willingness to pay to reduce travel time,
consists of two components: the value of liberating time (equal to the value of leisure (VoL)) and the value of
time assigned to travel (VTAT), representing the travel conditions of a trip. Their relative values indicate
which dimension to emphasize when investing in transport: speed or comfort. In this paper, we formulate
and estimate a framework aimed at the improvement in the estimation of the VoL. By introducing a novel
treatment of time assigned to domestic work, we consider that unpaid labor should be assigned a wage rate
as a measure of the expenses avoided when assigning time to those chores. We use state-of-the-art data on
time use and expenses as well as online data on gig workers collected in Austria, and apply the time-use and
expenditure model of Jara-Diaz et al. (2008). The wage rates for paid and unpaid work were combined to
re-formulate the budget constraint, which affected women more than men due to the higher involvement of
the former in domestic activities. Compared against the original estimation, the VoL changed from AC10/hr
for men and AC6/hr for women to AC9/hr for both genders, which in turn yields a larger average VTAT, which
becomes positive for public transport. As a conclusion, the novel treatment of domestic labor contributes to
closing the gap in the VoL between genders and highlights the power of unveiling the components behind the
VTTS. The empirical findings imply that investments in travel time reductions rather than in comfort should
be prioritized, given the very good conditions of public transport in Austria.

Keywords domestic work; gender budget analysis; value of leisure; gender pay gap; value of time assigned to
travel; value of travel time savings
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1 Introduction

The value of travel time savings (VTTS) has long been considered a key input in the appraisal of transport
projects. The usual interpretation has been that the larger the VTTS the more important is the reduction in
trip time. After all, it represents the willingness to pay to diminish travel time by one unit and is usually
estimated with some form of travel choice model. However, behind this single figure there are two elements
that contribute to the size of its value: the valuation that the individual assigns to the liberated time - the
value of leisure (VoL)- and the valuation that the individual assigns to the conditions of travel – the value of
time assigned to travel (VTAT). For short, the VTTS increases not only with the value of time assigned to
alternative (rewarding) activities but also with the unpleasantness of the trip, components that were first
identified and estimated by Jara-Díaz and Guevara (2003). Identifying the VoL and VTAT “illuminates the
emphasis that decision makers should put when deciding on investments in the transport sector whenever
speed and comfort collide” (Jara-Diaz, 2020). It is therefore vital to empirically determine which of the two
components dominates, which can be achieved by estimating the VoL from time use models1.

For more than 50 years, it has been widely agreed that time is a scarce resource and that it has value (Becker,
1965; Johnson, 1966; Oort, 1969; DeSerpa, 1971). The main two techniques for its valuation are the contingent
valuation method (CVM) and time-use models (TUM). Both methods offer a way of assigning value to various
types of activities such as work, travel and leisure. Only TUM, however, rely on the observed assignment
of time to activities based on the assumption that behind that assignment underlies an implicit subjective
valuation of the time spent on those activities, which can be revealed by modeling behavior. Since the
formulation of this microeconomic model by Jara-Díaz and Guevara (2003), a series of improvements have
been made in the estimation of the VoL from TUM. Nevertheless, this framework still lacks an adequate
treatment of some activities: “In order to estimate more reliable VoL, there are two activity types that should
be explored and studied with great care: what can be called maintenance activities (sleep, eat), and domestic
work.” Jara-Diaz (2020).

Domestic work (cleaning, cooking, childcare) presents various particular characteristics. First, it consumes a
significant proportion of time - as shown in Table 1 -, certainly comparable to paid work time, and sometimes
larger2. Second, in most (if not in all) countries the majority of domestic work is done by women, such that
even if time assigned to paid work is lower for women, total work time is in most countries larger for them, as
shown in Figure 1. Third, domestic work is an activity that can be delegated to a third (hired) party (Reid,
1934); it is not a tertiary activity (like transport) as defined by Burda et al. (2007). Several recent studies
have reported gender specific differences in the VoL (e.g. Konduri et al., 2011; Verbooy et al., 2018; Hössinger
et al., 2019; Jokubauskaitė et al., 2019) which we believe to be connected with an inadequate treatment of
domestic work. This is what we want to examine in this paper, giving domestic work a new treatment while
employing the TUM framework. As explained above, this is necessary for the estimation of a more reliable
VoL and, ultimately, of better estimates of the VTAT. After all, undergoing domestic work means “[. . . ]
money saved that is traded for time assigned; the connection with the VoL is quite evident”(Jara-Diaz, 2020).
This paper hence focuses on the role of unpaid domestic work in explaining the gap between gender specific
(monetary) values of leisure (VoL) and proposes our approach as a possible advancement in estimating the
components of the VTTS.

1Recent estimations of VoL and VTAT in Austria (Hössinger et al., 2019; Jokubauskaitė et al., 2019) and Swiss (Schmid et al.,
2020) show that VTAT can indeed dominate for public transport.

2Australia, Poland, Italy, Spain, Belgium, Greece.
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Table 1 Distribution of time in different countries, %

Country Unpaid work Paid work or study Leisure Personal care Other
Mexico 18.74 24.90 12.34 42.53 1.49
Australia 16.89 16.54 19.53 45.66 1.39
Slovenia 16.02 18.38 21.57 43.62 0.42
Poland 15.70 15.15 19.29 46.33 3.53
Portugal 15.45 20.49 16.71 46.92 0.42
Italy 15.21 12.27 22.45 49.15 0.92
Spain 15.05 14.03 21.95 48.04 0.93
Denmark 15.04 15.61 22.84 45.79 0.72
Ireland 14.76 18.79 21.90 42.76 1.79
Belgium 14.64 13.25 25.61 46.15 0.35
Estonia 14.42 17.75 21.49 46.02 0.35
New Zealand 14.17 18.75 20.90 45.00 1.18
Austria 14.03 21.28 20.22 43.89 0.58
Hungary 13.90 19.25 19.32 47.39 0.14
Turkey 13.80 13.87 19.65 48.29 4.39
United States 13.71 20.10 19.67 44.88 1.63
Finland 13.67 15.91 22.99 44.48 2.95
Sweden 13.64 19.04 21.32 42.41 3.60
Latvia 13.62 22.91 18.67 44.53 0.27
Germany 13.61 17.21 23.00 45.00 1.18
Norway 13.61 16.75 25.57 43.56 0.50
United Kingdom 13.51 18.21 21.22 44.81 2.25
Greece 13.40 12.63 24.50 48.99 0.49
Netherlands 13.39 19.49 20.53 44.28 2.32
India 13.27 20.48 17.64 47.74 0.86
Canada 12.92 21.16 19.37 44.21 2.36
South Africa 12.66 16.71 21.24 48.27 1.12
France 12.58 14.18 20.38 52.24 0.62
China (People’s Republic of) 11.38 23.59 15.82 48.16 1.04
Korea 9.43 24.18 20.24 45.26 0.89
Japan 9.17 25.18 19.33 43.06 3.27
Source: OECD (2018)
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Fig. 1 Average daily work-time by men as proportion of work-time by women. Latest year available data
reported

In time use models, it is common to treat only the official (paid) work as “work” and domestic (unpaid) work
as a committed activity3. This assumption is questionable, since work is work and time is money. So far, only
some studies have factored in the domestic work while estimating the value of leisure. In a recent paper by
Verbooy et al. (2018), the value of unpaid work in the Netherlands was estimated with CVM (AC16/hr) and
was shown to be close to the wage rate of housekeepers (AC14/hr, Hakkaart-van Roijen et al. (2015)). However,
the CVM approach is based on stated (declared) preferences and “stated behavior does not necessarily align
with the actual behavior of respondents” (Verbooy et al., 2018). The TUM framework from Jara-Díaz et al.
(2008) was recently extended in a related direction as well: Rosales-Salas and Jara-Díaz (2017) introduced
external providers (employed personnel). The estimation of such model is, however, not always possible
or efficient. Domestic chores are mostly performed by household members and not by employed personnel.
Therefore, obtaining a sufficiently large sample size of households that employ personnel is likely to be difficult
in most countries.

The original Jara-Díaz and Guevara (2003) framework offers a convenient way for the VoL estimation and
has been used in many studies (Munizaga et al., 2008; Jara-Díaz et al., 2008; Jara-Díaz and Astroza, 2013;
Jara-Díaz et al., 2013; Konduri et al., 2011; Jara-Díaz et al., 2016). The most recent and advanced applications
are Hössinger et al. (2019) and Jokubauskaitė et al. (2019), who work with the same innovative data gathered
in Austria as this paper. Although, the used dataset is very informative (Aschauer et al., 2018), no information
on external providers or stated preferences for time-use allocation was gathered. Thus, neither an estimation
similar to the one included in Rosales-Salas and Jara-Díaz (2017) nor the application of CVM is possible.

In both recent investigations of the VTTS based on the same dataset as this paper (Hössinger et al., 2019;
Jokubauskaitė et al., 2019), the VoL4 has been estimated for different demographic and socioeconomic
segments. The papers separately but consistently report that the estimated VoL of women is only half of

3Committed activities are activities that are necessary for personal/household maintenance and on which individuals do not
want to spend more time than needed.

4The VoL corresponds to the resource value of time in DeSerpa (1971).



the VoL of men5. Moreover, the largest recorded gender-specific differences in time allocation are between
time spent in domestic work (men: 10.11hr/week; women: 18.42hr/week) and paid work (men: 42.34hr/week;
women: 33.35hr/week). This phenomenon is not unique for Austria, and has been well documented around
the world. According to Alonso et al. (2019), women are typically involved in two hours more of unpaid work
per day than men. Also, having a partner and/or children hampers their leisure time (Alonso et al., 2019;
Wallace and Young, 2010). Argyrous and Rahman (2017) have observed that regardless of their earnings and
working hours, women spend more time and take on more responsibility for childcare (Heiland et al., 2017).
Thus, women are involved in a “second shift” and they suffer from the resulting time poverty (Hochschild and
Machung, 2012; Schor, 2008; Hochschild, 1997; Vickery, 1977). The reduction of labor market hours caused
by parenthood or taking care of a dependent person (Chaykowski and Powell, 1999; Bloemen et al., 2010;
European Commission, 2017) reduces their financial security as well.

The microeconomic theory of labor supply introduced by Becker (1965) assumes that individuals decide on the
amount of time devoted to work by maximizing their utility functions subject to time and income constraints.
According to Becker’s time-use model (TUM), income is defined by the time assigned to work and the hourly
wage rate and the VoL is set to equal the wage rate. Thus, the gender-specific VoL gap is the difference
between the corresponding wage rates. Based on Becker’s framework, Johnson (1966), DeSerpa (1971) and
Jara-Díaz and Guevara (2003) provided subsequent theoretical work on the valuation of leisure and other
types of time. Another evolutionary extension of TUM came with the previously mentioned introduction of
external providers by Rosales-Salas and Jara-Díaz (2017). They show that the exclusion of external providers,
results in an overestimation of the VoL. Yet, if nobody is hired, they treat the same work as a committed
activity, pushing it to the shadows of the economic domain, as it does not generate any income. This is well
reflected in the words of Margaret G. Reid written in the beginning of the 20th century: “the more we have
concentrated on money values the more we have overlooked that part of our economic system which is not
organized on a profit basis” (Reid, 1934).

The majority of existing studies examining the economic valuation of unpaid work focuses on the inclusion
of unpaid work into the calculation of the gross domestic product (GDP). Depending on methodological
and geographical differences, the value of unpaid work ranges from 10 % up to 60% of GDP. For instance,
Bridgman et al. (2018) estimate the average value of unpaid work to be 35 % of GDP for their sample of
43 countries (covering nearly a half of the world population). Payne and Vassilev (2018) have reported a
60% unpaid work value share for the UK, Schwarz and Schwahn (2016) 40% for Germany, and Schmid et al.
(2002) 40-60% for Switzerland. Such a sizable contribution is certainly relevant and prompts a more careful
look at the role it plays in the calculation of the values of work and leisure for men and women in the TUM
framework.

In this study, we investigate the effect of the valuation (i.e. monetarization) of domestic work on gender-specific
differences in the values of leisure (VoL) derived from the time-use and expenditure model (Jara-Díaz et al.,
2008). This in turn will improve the VTAT estimation and will allow including a more balanced gender analysis
(BGA) into the CBA of transport related projects. We estimate the TUM from Jara-Díaz et al. (2008) using
a novel and very rich dataset collected in Austria in 2015, which is based on a Mobility-Activity-Expenditure
Diary (MAED) described in Aschauer et al. (2018). Unlike the original framework, we consider that individuals
who undertake domestic work could have hired a third person. We assume that they could have paid a
market wage rate, which individuals choose not to pay avoiding expenses. In our study, different forms for the
calculation of the wage rate associated with unpaid work have been analyzed in depth, with the result that
we impute it using online data on the market price of various domestic work services in Austria.

The modeling framework (a system of non-linear equations) is introduced in the next section. Afterwards, in
Section 3 we describe the data, offer new ways to consider a wage rate for domestic work, estimate the model
using the re-calculated wage rate including a sensitivity analysis, and present the modeling results. These are
then compared to the ones obtained with the original data in Section 4, where we show a) that the gap in the
VoL between genders almost disappears if the value of domestic work is considered, and b) that the global
VoL increases. This suggests an updated method to estimate time values for the analysis of transport related

5Konduri et al. (2011) also estimated a higher VoL for men (AC39.94/hr) than for women (AC24.56/hr) (for more segmentation
comparisons see Hössinger et al. (2019) Table 1).
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6 CHAPTER 2. THEORETICAL MODEL

projects.

2 Theoretical Model

The frameworks of Becker (1965), DeSerpa (1971) or Heckman (1974) laid the foundation of the time-use
incorporation into the consumer theory. Each advancement resulted in the derivation of new indicators - value
of leisure (“resource value of time”, (DeSerpa, 1971)), value of travel time savings (Bates, 1987; Jara-Díaz,
1998), and value of time assigned to travel (Jara-Díaz et al., 2008). In this article, we use the same theoretical
model as Hössinger et al. (2019) and Jokubauskaitė et al. (2019), which was first presented in Jara-Díaz
and Guevara (2003) and further advanced by Jara-Díaz et al. (2008). The Cobb-Douglas utility function
maximized by each individual is given as:

U = ΩT θw
w

n∏

i=1
T θi
i

m∏

j=1
E
φj

j (1)

In Eq. (1), the utility U is a function of the time assigned to work (Tw), the time assigned to activity i (Ti),
and the expenditure assigned to good j (Ej). Ω is a utility constant, the exponents {θw, θi, φj} represent
the elasticities of utility with respect to work, activities, and expenditures on goods. By dropping out Ω and
taking a monotonous transformation of U, the maximization problem can be rewritten as:

max ln(U) = max


θwln(Tw) +

n∑

i=1
θiln(Ti) +

m∑

j=1
φj ln(Ej)


 (2)

Subject to:

τ − Tw −
n∑

i=1
Ti = 0 (µ) (time constraint) (3)

wTw + I −
m∑

j=1
Ej ≥ 0 (λ) (budget constraint) (4)

Ti − TMin
i ≥ 0 (κi) (technical constraints on activities) (5)

Ej − EMin
j ≥ 0 (ηj) (technical constraints on goods) (6)

Here w is the wage rate; I is the income not related to work; τ is total available time in the work-leisure
cycle (for example 168 hours - per week). There are m expenditure groups with index set G and n activity
categories with index set A. Also, goods and activities are separated into freely chosen (index set Gf and Af )
and committed (index set Gc and Ac). The latter goods and activities restrict their freely chosen counterparts
and are deduced from the observations (Tg = TMin

g , g ∈ Ac and Ek = EMin
k , k ∈ Gc). The sum of such

activities and goods is introduced in the time and budget constraints as Tc and Ec, respectively (Hössinger
et al., 2019). To solve this maximization problem, we assume that individuals freely choose how much to
work. After application of the Lagrange method with multipliers λ and µ, one gets an expression of optimal
Tw, Ei and Tj (for more details on the derivation see Hössinger et al., 2019):



T ∗w =
(
(Φ + θw)(τ − Tc) + (Θ + θw)Ec

w

)
±
√
D

2(Θ + Φ + θw) (7)

with D =
(

(Φ + θw)(τ − Tc) + (Θ + θw)Ec
w

)2
− 4(Θ + Φ + θw)θw(τ − Tc)

Ec
w

T ∗fi = θi
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committed time and expenditures, respectively.

The model given by the nonlinear equation system (Eq. 7 - 9) can be estimated using the maximum likelihood
(ML) method. After the normalization of the full model (by setting Θ = 1) there are at least 4 parameters
left to estimate {θw, Φ, θ1, φ1} and 2 parameters to calculate (θ2 = 1− θ1 and φ2 = Φ− φ1). In the original
model of Jara-Díaz and Guevara (2003), a different normalization was used; the choice of normalization does
not affect the estimates, as there is a direct relationship between {α, β} used in Jara-Díaz and Guevara (2003)
and {θw,Θ,Φ} used here (based on Jara-Díaz et al. (2008)). In Jara-Díaz et al. (2008) (Eq. 24 and 25) it was
shown that the VoL and value of time assigned to work (VTAW) can be calculated using the estimates of Φ
and θw:

V oL = ∂U\∂Ti
∂U\∂Ej

= µ

λ
= Θ(wTw − Ec)

Φ(τ − Tw − Tc)
Θ=1︷︸︸︷= (wTw − Ec)

Φ(τ − Tw − Tc)
(10)

V TAW = ∂U\∂Tw
λ

= θw
Φ
wTw − Ec

Tw
= V oL− w (11)

Here λ and µ are marginal utilities of income and time, respectively. Thus, the VoL is calculated as a
ratio between two marginal utilities. This result was derived from the First Oder Conditions (FOC) of the
maximization problem for Eq. (2) and constraints of time (Eq. 3) and budget (Eq. 4). In Hössinger et al.
(2019) the FOC are given as:

θw
Tw

+ λw − µ = 0 (12)

θi
Ti
− µ = 0,∀i ∈ Af (13)

φj
Ej
− λ = 0,∀j ∈ Gf (14)

By solving them, one gets expressions for µ and λ:

µ = ∂U

∂Ti
= Θ
τ − Tw − Tc

λ = ∂U

∂Ej
= Φ
wTw − Ec

(15)

Actually, Φ and θw are the only parameters needed for the calculation of VoL and VTAW. Therefore, one could
only estimate the labor supply defined in Eq. (7), but the estimates would be less efficient as the additional
information would be ignored (Eq. 8 and 9). Many of the models based on the presented modeling framework
and estimated prior to Hössinger et al. (2019) and Jokubauskaitė et al. (2019) did not use the expenditure

7
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equation (Eq. 9). As shown in Jokubauskaitė et al. (2019), the inclusion of expenditure estimation might
play a crucial role. Without it, the VoL was overestimated by around 20% for Austria. The lack of other
comparable estimations might be caused by the almost non-existent availability of time-use surveys with
expenditure information. The MAED survey used in this study and carried out in Austria in 2015 is an
exception.

3 Application

3.1 MAED data

The estimation of Eq. (7) - (9) requires detailed information not only on time-use (activities), but also on
expenditures. To facilitate this, the Mobility-Activity-Expenditure-Diary (MAED) was developed (Aschauer
et al., 2018). The survey was carried out in the form of self-administered mail-back questionnaires with
telephone support and incentives in Austria in spring and autumn of 2015. Participants reported their data
for one week. This period was chosen as a trade-off between the hardship of response and proper portrayal of
the individual’s long-term equilibrium. Diary-type information on all travel and non-travel activities as well
as on any expenditures was gathered simultaneously (from the same individual at the same time) including 10
activity types, 14 expenditure groups, and 5 transport modes (walk, bike, car driver, car passenger, public
transport). This makes MAED data one of a kind.

748 representatively selected Austrian workers6 took part in the survey. Hössinger et al. (2019) present a
detailed review of plausibility checks, imputations, and error corrections done to the data. Aschauer et al.
(2019) and Aschauer et al. (2018) give a comprehensive overview of MAED characteristics.

Overall, the MAED data are fairly consistent with the latest Austrian Time Use Survey (ATUS; 2008/09) as
well as the Austrian Consumer Expenditure Survey (ACES; 2009/10) data (see Tables 2 and 3). Noticeable
variations appear in expenditures on housing (ACES - 16.53 % and MAED - 22.15 %, Table 2) and savings
(ACES - 11.01 % and MAED - 4.38 %, Table 2). As Hössinger et al. (2019) explains, “the original ACES data
include rental equivalents (instead of reported expenses) of owner-occupied housing. The MAED data include,
in contrast, only reported mortgage repayments and operating costs, which are not comparable to the (on
average lower) rental equivalents. Since we found no way to make both procedures comparable, we removed
the rental equivalents in the ACES, which explains the lower share.” In addition, there was an actual drop in
the saving rate. According OeNB (2018) the saving rate of private households has dropped from 11.4% to 6.8
% between 2009 and 2015. Another divergence is the travel time. In the MAED sample, individuals devote
more time to travel than in ATUS (1.23 hr/week, Table 3). This might be more of a problem in ATUS than
in the MAED, as time-use surveys are prone to under-report travel (Gerike et al., 2015; Aschauer et al., 2018).
What is more, there is a shift in personal care and leisure, caused by the overlapping nature of such activities.
In the MAED, individuals identified activities as leisure if they were performed of one’s own free will. As
Hössinger et al. (2019) point out, some activities (e.g., going to church, visiting the sick) might be classified as
leisure in ATUS, while in MAED they are assigned to “Personal”, as people did not perceive them as leisure.

In terms of socio-economic segments, the biggest differences between segments in MAED expenditure categories
seem to occur with respect to expenditures for housing and food. Otherwise, expenditure shares do not
vary greatly within and between the segments. In contrast, time-use allocation (Table 3) varies substantially
between socio-economic segments The biggest difference in time allocation by segment is in terms of the time
spent on paid work and domestic work. On average, per week, women spend around nine hours less in paid
work and eight hours more in the unpaid/domestic work than men (Table 3, Table 5).

6Only workers were chosen because information on wage rates as well as work times is needed for the estimation.
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Table 2 Distribution of expenditure in different segments, %

Housing Food Mobile Savings Leisure Accomodation Clothing Furniture
Global ACES 2009/10 16.53 15.1 11.56 11.01 9.91 5.52 5.43 5.29

MAED 22.15 16.59 12.10 4.38 7.42 5.49 5.38 2.30
Urbanity = urban 23.06 16.28 10.39 4.67 7.69 7.10 5.54 2.32

= nonurban 21.84 16.69 12.68 4.28 7.34 4.94 5.33 2.29
Gender = male 21.85 17.07 12.16 4.20 7.40 5.51 5.40 2.34

= female 22.57 15.91 12.02 4.64 7.46 5.46 5.36 2.24
Age < 46 years 23.64 17.38 11.69 2.71 7.24 5.71 5.86 2.31

>= 46 years 21.01 15.98 12.42 5.66 7.57 5.32 5.02 2.29
Education < HS degree 21.12 18.26 12.72 3.92 6.93 4.70 5.61 2.48

>= HS degree 22.66 15.76 11.79 4.61 7.67 5.88 5.27 2.21
Children = no 21.22 15.37 11.81 7.13 7.61 5.42 5.28 2.21

= yes 23.79 18.74 12.62 -0.47 7.10 5.60 5.56 2.46
No. of workers = 1 25.24 16.25 12.04 1.57 7.22 5.67 5.23 2.15

>= 2 21.17 16.69 12.12 5.27 7.49 5.43 5.43 2.35
Pers. income < 432 eur/wk 24.12 18.80 13.41 -2.81 7.10 5.59 5.88 2.53

>= 432 eur/wk 21.19 15.51 11.47 7.90 7.58 5.44 5.14 2.19
Services Insurance Electricity Health Other Education Finance

Global ACES 2009/10 5.08 4.84 3.82 2.81 1.91 1.14 0.05
MAED 2.99 7.81 3.48 2.31 4.47 1.96 1.18

Urbanity = urban 2.83 6.54 3.91 2.08 4.01 2.47 1.11
= nonurban 3.05 8.23 3.33 2.39 4.62 1.78 1.20

Gender = male 2.83 8.11 3.50 2.28 4.31 1.87 1.17
= female 3.21 7.38 3.44 2.35 4.69 2.08 1.18

Age < 46 years 2.89 7.68 3.33 2.14 4.28 1.97 1.19
>= 46 years 3.07 7.91 3.59 2.44 4.61 1.94 1.17

Education < HS degree 2.94 8.44 3.51 1.95 4.51 1.78 1.13
>= HS degree 3.02 7.49 3.46 2.49 4.44 2.05 1.20

Children = no 3.00 7.73 3.61 2.18 4.37 1.88 1.19
= yes 2.97 7.94 3.25 2.53 4.64 2.10 1.17

No. of workers = 1 3.28 7.82 3.43 2.47 4.44 1.91 1.26
>= 2 2.90 7.80 3.49 2.26 4.47 1.97 1.15

Pers. income < 432 eur/wk 3.15 8.08 3.97 2.28 4.79 1.84 1.30
>= 432 eur/wk 2.91 7.67 3.24 2.33 4.31 2.01 1.12



10 CHAPTER 3. APPLICATION

Table 3 Distribution of activities in different segments, hr/week

Eating Travel Personal Sleep Work
Global ATUS 2008/09 8.63 8.05 6.77 55.88 36.87

MAED 9.29 9.28 9.54 55.08 37.84
Urbanity = urban 9.45 9.76 10.30 55.31 39.16

= nonurban 9.25 9.12 9.30 55.01 37.42
Gender = male 9.53 9.92 9.03 54.19 42.34

= female 9.06 8.63 10.06 55.97 33.35
Age < 46 years 9.26 9.01 9.44 55.47 35.90

>= 46 years 9.33 9.53 9.64 54.71 39.67
Education < HS degree 8.76 8.74 9.06 55.21 37.65

>= HS degree 9.64 9.62 9.85 55.00 37.96
Children = no 9.09 9.24 9.36 55.13 39.26

= yes 9.65 9.35 9.86 55.00 35.37
No. of workers = 1 8.98 9.06 9.37 55.17 40.92

>= 2 9.38 9.33 9.59 55.06 37.00
Pers. income < 432 eur/wk 9.26 9.03 10.11 56.06 32.78

>= 432 eur/wk 9.33 9.53 8.96 54.08 43.05
Leisure Domestic Shopping Other&Misc. Education

Global ATUS 2008/09 32.32 14.93 1.98 1.52 1.05
MAED 28.93 14.27 2.05 0.41 1.29

Urbanity = urban 26.98 12.56 2.24 0.33 1.90
= nonurban 29.56 14.82 1.99 0.44 1.10

Gender = male 29.78 10.11 1.65 0.37 1.08
= female 28.09 18.42 2.46 0.45 1.51

Age < 46 years 28.95 15.41 2.14 0.44 1.97
>= 46 years 28.92 13.20 1.97 0.39 0.65

Education < HS degree 30.40 14.63 2.18 0.34 1.03
>= HS degree 27.99 14.05 1.97 0.46 1.46

Children = no 29.63 12.29 2.02 0.42 1.57
= yes 27.74 17.70 2.11 0.40 0.82

No. of workers = 1 28.75 12.15 2.15 0.44 1.00
>= 2 28.98 14.85 2.02 0.40 1.37

Pers. income < 432 eur/wk 29.73 16.56 2.31 0.39 1.78
>= 432 eur/wk 28.12 11.92 1.78 0.43 0.79
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To estimate the model (in particular Eq. 7 - 9), activities and expenditures had to be separated into freely
chosen and committed ones. Aggregation results are presented in Table 4. Unlike Hössinger et al. (2019) or
Jokubauskaitė et al. (2019), we use three expenditure equations {Ef1, Ef2, Ef3} and thus we get estimates for
{φ1, φ2} and φ3 is calculated as 1− φ1 − φ2. This is done in order to take into account available information
on the savings (S), which was previously only implicitly included into the estimation as part of Ef2. As
Schmid et al. (2020) correctly points out, the estimated exponent φ2 from the previous studies was related to
the estimation of Ef2 + S and not purely to Ef2. For other groups, the aggregation remained the same as in
Hössinger et al. (2019) and Jokubauskaitė et al. (2019). More information on the grouping of variables can be
found in Hössinger et al. (2019), Jokubauskaitė et al. (2019),Aschauer et al. (2019), Jara-Díaz et al. (2016),
and Mokhtarian and Chen (2004).

Table 4 Shares and correlations of expenditure and time-use data

Activities Expenditure
Var. % Var. %

Observed categories:
Paid work Tw 22.52 Leisure Ef1 7.42
Leisure Tf1 17.22 Accomm Ef1 5.49
Eating Tf2 5.53 Electronic Ef1 3.48
Shopping Tf2 1.22 Clothes Ef2 5.38
Unspec Tf2 0.06 Savings Ef3 4.38
Sleep Tc 32.79 Housing Ec 22.15
Unpaid work Tc 8.50 Food Ec 16.59
Personal Tc 5.68 Mobility Ec 12.10
Travel Tc 5.52 Insurance Ec 7.81
Education Tc 0.77 Other Ec 4.47
Other Tc 0.18 Service Ec 2.99

Health Ec 2.31
Furniture Ec 2.30
Education Ec 1.96
Financing Ec 1.18

Model variables:
Tw 22.52 Ef1 16.39
Tf1 17.22 Ef2 5.38
Tf2 6.81 Ef3 4.38
Tc 53.44 Ec 73.85

Correlations:
Tw Tf1 Tf2 Tc Ef1 Ef2 Ef3

Tf1 -0.22***
Tf2 -0.18*** -0.19***
Tc -0.60*** -0.58*** -0.04
Ef1 0.39*** -0.12*** 0.11** -0.26***
Ef2 0.26*** -0.03 0.12** -0.23*** 0.31***
Ef3 0.19*** 0.03 -0.10** -0.15*** 0.41*** 0.25***
Ec 0.57*** -0.17*** -0.05 -0.33*** 0.56*** 0.36*** 0.45***

Signif. codes: *** p < .001, ** p < .01, * p < .05

In the MAED data, the average share of time spent on paid work is 22.52% and to unpaid work 8.50%,
respectively. On average, committed activities (Tc) make up 53.44% of the total time budget and committed
expenditures (Ec) 73.85% of the monetary budget. No assumptions about relationships between goods and
activities are made, as the Jara-Díaz and Guevara (2003) model does not require a one-to-one mapping
between them. Most empirical correlations are statistically significant (Table 5) and will be taken into
account while estimating the model with maximum likelihood (ML). In addition, the aggregated modeling
variables/groups are broadly defined, thus there is no danger of running into corner solutions (zero values).
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The gender-specific distribution of activities can be seen in Table 5. Only domestic work and paid work
exhibit strong gender-specific differences.

Table 5 Distribution of activities by gender, hr/week

Activity Variable Men Women ∆
Paid work Tw 42.34 33.35 8.99
Unpaid work Tc 10.11 18.42 -8.31
Shopping Tf2 1.65 2.46 -0.81
Eating Tf2 9.53 9.06 0.47
Leisure Tf1 29.78 28.09 1.69
Travel Tc 9.92 8.63 1.29
Sleep Tc 54.19 55.97 -1.78
Personal Tc 9.03 10.06 -1.03
Other&Misc. Tc 0.37 0.45 -0.08
Education Tc 1.08 1.51 -0.43

3.2 Valuation of domestic work

Several possibilities exist for the valuation of domestic work, including the opportunity cost method (OCM;
Luxton, 1997) and the replacement cost method (RCM; Folbre, 2006). The first approach is based on the
forgone value of paid employment, while the second one is based on the cost of hiring somebody to carry
out the domestic work. The latter approach can be further divided into specialist (RCM-S), generalist
(RCM-G), and hybrid (RCM-H) approaches. The specialist approach takes the cost of hiring a specialist
to do some specific work, while the generalist approach takes an ‘all-around’ worker (such as housekeeper).
RCM-H is a mix between the previous two approaches, where household activities are priced according to
the generalist approach and more complex tasks (such as child or elderly care) are priced in accordance with
the rate demanded by a specialist. The latter approach has been applied to, among others, data in Mexico,
Canada, and Australia (UNECE, 2017). Depending on which approach is chosen, the value of domestic
work may vary considerably. In Jackson and William (2015), the share of unpaid work in the GDP was
reported to vary between 35% and 70% when employing the OCM and between 35% and 60% with an RCM-S
approach. A similarly strong variation was reported in Schmid et al. (2002), where the OCM resulted in a
valuation of unpaid domestic work equal to 37.5% of GDP, while the RCM-S approach showed domestic work
being valued at 57.9% of GDP in Switzerland. The authors also tried to compare Switzerland, Australia,
Finland, the Netherlands, Canada and Norway, but concluded that due to the differences in data gathering
(time-use survey), the comparison might not be meaningful. Reports from UNSD (2005), UN (2014), and
Eurostat (2008) have proposed guidelines for the harmonization of time-use surveys and UNECE (2017)
made a recommendation to use the replacement cost generalist approach, meaning to use the wage rate of an
“all-round” worker/housekeeper.

In this paper, we take an approach similar to the RCM-G, but we do not use the national account (NA) data.
Instead, we use information available on the Internet, which should depict the current market situation for
domestic work better. We have extracted data from two Internet platforms, where people (not companies)
offer their services to perform domestic work. We will call them “Platform A” and “Platform B”. For the
robustness check, data from both platforms are analyzed. On the first website, the following work categories
are available: cleaning services (cleaning, ironing . . . ), gardening, craft-works, property management during
absence, and combinations of these tasks. One person can offer more than one service and the listed price is
the average of all offered categories. Thus, there is no clear separation between the prices of different services.
One can only get information on so-called “all-rounders” willing to do some or all predefined tasks. In the
second platform, individuals offer their work for distinct services. This allows for a clear identification of
service-specific wage rates. In comparison to the first platform, one can find a wage rate for house & garden
(a combination of cleaning, gardening, craft-works), childcare, elderly-care, pet-care, but no combinations for
the same user. In each platform, employers can get the following information on the worker (if provided by
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the worker): postal code, age, years of experience, requested wage rate. In addition to this, “Platform A”
makes it possible to filter workers by gender and spoken languages. New users are added each day to these
platforms and prices are negotiable. The data was collected in August 20187. Average prices of services by
region across Austria are presented in Fig. 2.

Fig. 2 Average wage rate of offered services by regions, AC/hr

Table 6 Average wage rate by service and federal state, AC/hr

Platform B Platform A
Total House&garden Childcare Elderly-care Total Gardening Craftworks House

Austria 10.62 10.92 10.23 11.19 11.28 11.32 11.60 11.25
Burgenland 9.78 9.78 9.53 10.42 10.34 10.43 10.76 10.31
Styria 10.25 10.53 9.82 10.86 11.20 11.12 11.16 11.18
L. Austria 10.50 10.89 9.94 11.20 11.22 11.25 11.68 11.15
Vienna 10.52 10.53 10.41 10.98 10.80 10.90 11.00 10.79
Carinthia 10.55 10.95 9.92 11.61 11.48 11.49 11.89 11.47
U. Austria 10.76 11.18 10.10 11.63 11.99 12.04 12.63 11.92
Tyrol 11.38 12.46 10.68 11.43 13.02 13.46 13.94 12.98
Salzburg 11.51 12.11 10.90 12.00 12.46 12.11 12.24 12.46
Vorarlberg 11.87 12.73 11.05 12.51 12.94 12.21 12.32 12.97

The data collected from “Platform A” imply higher wage rates than that from “Platform B”, due to the way
in which the wage on each platform is specified. On “Platform B”, people specify the minimal wage rate,
while on “Platform A” workers list their desired hourly rate (“gewünschter Stundensatz”). Thus, the data
from “Platform B” underestimate the actually paid wage rate and those from “Platform A” overestimate
it. Both data sets exhibit a wage increase from the east to the west of Austria (Fig. 2). This might be
partly explained by the spillover effects of lower wage rates of neighboring countries as well as by higher

7Wages for pet-care were excluded from “Platform A” as almost all listings implied wage rates of around AC7/hr, strongly
weighing down the average wage rate across different types of tasks.
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unemployment in the eastern regions. In 2017, of the nine Austrian regions, Vienna (in the East) had the
highest unemployment rate (13.0%) and Vorarlberg (in the West) had one of the lowest (5.8%) (AMS, 2017).
To the east, Austria is surrounded by low wage countries - the Czech Republic, Slovakia, Hungary and Slovenia
- and in the west by high-income countries - Italy, Switzerland, and Germany. In addition, Vienna as by
far the largest city of Austria has the highest immigrant share (ÖIF, 2018). This fact, in combination with
the higher unemployment rate in Vienna, might explain the lower observable wage rate in this state. On
“Platform B” the most expensive service is “Elderly-care”, and on “Platform A” it is “Craftworks” (Table 6).
In the “Platform A” sample, around 90% of observations are identified as female. As “Platform B” does not
offer gender-specific data, the gender had to be predicted. After name matching and comparison, 91% of
observations were identified as female. Thus, both data sets are strongly female dominated.

Although the “Platform B” dataset might undervalue housework, it provides information on childcare, which
consumes a lot of time for households with children. Thus, the “Platform B” data was ultimately chosen for the
estimation. According to Ghassemi et al. (2009), in Austria working individuals spend on average around 19.5
hr/week doing housekeeping and childcare as a primary activity. Childcare is also often done as a secondary
activity: around 8% of women reported almost one hr/day of talking with a child as a secondary activity, 4%
of women and 2%of men played with children while being involved in another activity (Ghassemi et al., 2009).
According to the same source, working men spend on average 11.4 hr/week engaging in housekeeping tasks,
whereas women do almost twice that (21.6 hr/week). The difference in terms of the average time assigned to
childcare is only one hr/week (women - 4.2 hr/week and men - 3.2 hr/week 8).

The next step is to merge the MAED data with the “Platform B” data. As both data sets were gathered in
different years (MAED in 2015, “Platform B” in 2018), the wage rates collected from “Platform B” had to be
adjusted for inflation. According to Statistik Austria, the yearly inflation with basis 2015 in 2018 was 5.1%.
Next, data matching between MAED and “Platform B” had to be done. From each data set it is possible to
identify where individuals live according to the four-digit postal code. These areas can be further spatially
aggregated to obtain larger areas approximating the nine provinces of Austria. The two data sets (MAED
and “Platform B”) were merged by two-digit postal codes, which carry information on the province in which
an individual lives. Merging by larger spatial area was necessary in some cases, because otherwise we would
lack reliable information on some of the service types. Then for each individual included in the MAED data,
filtering by four-digit postal code was done. If no “Platform B” data from the same postal code area was
available, information from the two-digit postal code area (i.e. the provincial level) was used. Next, it was
checked whether a person from the MAED data has children: if yes, observations from “Platform B” having
the same postal region (or two-digit postal area) that offer services of childcare were identified. To get the
closest match (“best approximation”) from “Platform B” for the MAED individual, the search was narrowed
down by choosing individuals from “Platform B” of the same gender as the MAED individual.

For the final calculation of the domestic wage rate, two chores were used: housekeeping (house & garden) and
childcare. The MAED data does not distinguish between different types of domestic work. Thus, proportions
for housekeeping and childcare were chosen based on the Austrian Time Use Survey (ATUS) and considering
only these two household chores (Table 7). According to these proportions, working women devote 84%
of domestic work9 to housekeeping and 16% to childcare, whereas for men these amount to 78% and 22%,
respectively. The average total chore split is 82% (housekeeping) and 18% (childcare). In order to test the
robustness of our results with respect to different weights/ratios that unpaid work is assumed to be composed
of, a sensitivity analysis was performed. Three different splits were used: 50%-50%, 82%-18% (total split),
gender-specific (women split 84%-16%, men split 78%-22%). These weights can help to approximate the
domestic wage rate - wD which is specific to a given individual in the MAED dataset.

Table 7 Distribution of domestic work according to the Austrian Time Use Survey, %

Service Women Men Total
Housekeeping 83.72 78.08 81.54
Childcare 16.28 21.92 18.46

8Average was calculated for the whole population and not for the people with children.
9Here domestic work is defined only as a sum of housekeeping and childcare.
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Besides treating domestic work as official (paid) work, we do not make any further changes in the theoretical
model. We make the following five data adjustments for each split of household chores separately:

0. Calculate the average domestic wage rate: wD = whousekeepingw1 + wcildcarew2, w1 ∈ {50, 82, gender},
w2 ∈ {50, 18, gender}.

1. Synergy of official and domestic work wage rates: wnew = (wTw + wDTD)/(Tw + TD).
2. Treat domestic work as official work: Tneww = Tw + TD.
3. Balance the time constraint: Tnewc = Tc − TD.
4. Balance the budget constraint: Enewc = Ec + wDTD.

Table 8 Summary statistics according to different data adjustment procedures

Original 50%-50%
Global Men Women ∆ Global Men Women ∆

w 12.14 12.76 11.51 1.25 wnew 11.74 12.46 11.02 1.44
wD 10.52 10.78 10.27 0.51
Tw 37.84 42.34 33.35 8.99 Tneww 52.10 52.44 51.77 0.67
Tc 89.77 84.58 94.95 -10.36 Tnewc 75.51 74.49 76.53 -2.04
Ec 332.44 394.74 270.32 124.42 Enewc 481.74 503.62 459.91 43.72

wTw − Ec 127.49 148.06 106.97 41.09 - - - -
τ − Tw − Tc 40.39 41.08 39.71 1.37 - - - -

82%-18% Gender-specific
Global Men Women ∆ Global Men Women ∆

wnew 11.77 12.49 11.06 1.43 11.77 12.49 11.06 1.42
wD 10.65 10.94 10.36 0.58 10.64 10.92 10.36 0.56

Enewc 483.70 505.44 462.03 43.41 483.68 505.24 462.17 43.06

Results of the data adjustments are presented in Table 8. The domestic wage rate is lower than the wage
rates paid on the official labor market; as a result, the “new” official wage rate is now lower for both genders.
The female wage rate drops more, as women work relatively more in the domestic sector. Correspondingly,
the wage gap increases from AC1.25/hour to AC1.4/hour (Table 8) when we include the valuation of unpaid
work. After these adjustments, men work in total around one hr/week more than women do (row Tneww ).
There is no significant difference between the “gender-specific” and the “82%-18%” split. Thus, in addition to
the “50%-50%” split, only the “82%-18%” data adjustment, being the easier one, will be used in the further
analysis. The question now is how these will affect the VoL, which was previously estimated to be AC11/hour
for men and AC6/hour for women in Jokubauskaitė et al. (2019).

3.3 Estimation

The theoretical model (Eq. 7 - 9) is estimated as a system of g nonlinear equation with contemporaneous
covariance matrix Σ:

Yi = gi(β) + ηi, E(ηiη>j ) = σijIn, i, j = {1, . . . , g} . (16)

Here i, j are equation specific indices. The dependent variable Yi is modeled through the regression function gi
and error term ηi, which is assumed to be normally distributed (ηi ∼ N(µi, σi)). β is a vector of parameters
to be estimated, σij is an element from the covariace matrix Σ and In is an n× n identity matrix. Estimation
results10 can be found in Table 9.

10The estimation of the nonlinear system of equations is based on the R package maxLik (Henningsen and Toomet, 2011) and
self-written R package nmm. The latter package allows flexible estimation of Nonlinear Multivariate Models (NMM) and will be
published on CRAN upon completion.
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The first model is the one estimated with the original data and modeling framework, where domestic work is
treated as committed activity with no wage rate attached to it. The other model estimations presented in
Table 9 correspond to different wage rates attached to domestic work. As both data adjustments (“50%-50%”
and “82%-18%”) result in almost identical estimates and “82%-18%” represents the real world situation more
accurately, only the “82%-18%” split will be used in the following analysis.

There is almost no change across the models in the estimated parameter θ1, which shows the elasticity of
utility with respect to the first freely chosen activities group, and minimal changes in log-likelihood, adjusted
R2, and correlations. The FOC given by Eq. (13) defines the binding relationship between {θi, Ti, µ}. Thus,
if Ti does not change and θi does not change, the marginal utility of leisure time (µ) remains constant. And if
µ does not change and disposable income as well as time remain constant, the change in the VoL is caused by
either λ or θw (Eq. 10 and 11, Table 10). In the further analysis, we will concentrate on the FOC given by
Eq. (12)-(14). Eq. (12) consists of three marginal utilities: work-time, money and leisure time.

According to the estimation results (Table 9), {Φ, φ1, φ2} decrease about 20%-30 %. To keep the Eq. (14)
valid, λ has to decrease proportionally to this change. This decrease in turn leads to an increase in the VoL
(Table 10, column “Global”). With a decreasing wage rate and a decreasing λ, the marginal utility of money
(λw) declines. The model tries to compensate the loss and equilibrate Eq. (12) by raising the marginal utility
of work (θw/Tw). Because Tw increases, θw has to go up. Although, in comparison to the original model the
estimate of θw almost halves, it remains statistically significant. As a result, the VTAW also almost halves,
but remains negative; the marginal time spent at work generates dis-utility, but not as large as with the
original data. In the new setting, work is perceived more positively and leisure is more valuable.

Table 9 Estimation results

Original 50%-50% 82%-18%
Par s.e Par s.e Par s.e

θw -0.602 (0.086) -0.337 (0.074) -0.329 (0.074)
Φ 0.413 (0.027) 0.323 (0.019) 0.320 (0.019)
θ1 0.733 (0.004) 0.732 (0.004) 0.732 (0.004)
φ1 0.260 (0.017) 0.203 (0.012) 0.201 (0.012)
φ2 0.085 (0.006) 0.066 (0.004) 0.066 (0.004)

σTw 62.447 (0.153) 62.278 (1.595) 62.228 (1.653)
σTf1 68.379 (0.758) 68.718 (1.772) 68.716 (1.856)
σEf1 39.204 (0.540) 40.671 (1.040) 40.773 (1.062)
σEf2 20.394 (0.538) 20.564 (0.535) 20.562 (0.537)

ρTw&Tf1 -0.696 (0.016) -0.701 (0.019) -0.701 (0.019)
ρTw&Ef1 0.343 (0.030) 0.397 (0.031) 0.400 (0.031)
ρTw&Ef2 0.127 (0.036) 0.163 (0.036) 0.165 (0.036)
ρTf1&Ef1 -0.450 (0.027) -0.483 (0.028) -0.484 (0.028)
ρTf1&Ef2 -0.218 (0.035) -0.244 (0.035) -0.245 (0.035)
ρEf1&Ef2 0.090 (0.036) 0.122 (0.036) 0.123 (0.036)
LLnull -17170.083 -17136.798 -17135.453
LLfinal -12214.024 -12223.104 -12223.040

R2
adj : Tw 0.691 0.687 0.687

Tf1 0.619 0.615 0.615
Ef1 0.388 0.336 0.333
Ef2 0.146 0.135 0.136

Wage 12.136 11.737 11.774
VoL 7.191 (0.399) 9.171 (0.432) 9.246 (0.435)

VTAW -4.945 (0.399) -2.566 (0.432) -2.528 (0.435)
Signif. codes: *** p < .001, ** p < .01, * p < .05
Standard errors of indicators were calculated using the
δ-method proposed in Doob (1935). Adjusted R2 are
calculated using 5-hold cross-validation.
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Table (10) shows a summary of gender-specific estimation results and summary statistics. The gender-specific
models were estimated using a-priori segmentation (estimation of separate models for different segments). Tw
increases for both genders (by 55.90% for women and 24.11% for men) and Tc decreases accordingly. Through
this trade-off, Tw and Tc are harmonized within the genders. Due to the balancing of the budget constraint,
this change comes along with an analogous change in Ec. As the ratio between disposable income (wTw −Ec)
and freetime (τ − Tw − Tc) remains almost the same, only the change in the modeling parameters affects the
VoL and VTAW values.

A similar pattern as in the global model is observed for females (Table 10, column “Women”). Their marginal
utility (MU) of leisure does not change, their MU of money decreases, and their MU of work-time increases.
Due to this, their VoL and VTAW increase. In contrast, for men, the MU of money increases. To compensate
this, model tries to decrease θw and as a consequence the VTAW decreases. With the adjusted data, men
work more than women do and receive higher disutility from work, but because of the higher wage rate, their
time is still a little bit “more valuable”. Without a huge decrease in the VoL of men, the gender-specific gap
in the VoL is closed.

Table 10 Results by gender, estimation based on different data adjustments

Global Women Men
Original 82%-18% 50%-50% Original 82%-18% 50%-50% Original 82%-18% 50%-50%

VoL 7.19 9.25 9.17 5.52 9.00 8.91 10.12 9.20 9.15
w 12.14 11.77 11.74 11.51 11.06 11.02 12.76 12.49 12.46
VTAW -4.95 -2.53 -2.57 -5.99 -2.06 -2.11 -2.64 -3.29 -3.31
Φ 0.41 0.32 0.32 0.48 0.29 0.30 0.32 0.36 0.36
θw -0.60 -0.33 -0.34 -0.85 -0.28 -0.29 -0.25 -0.43 -0.43
1/Φ 2.42 3.12 3.10 2.08 3.40 3.36 3.09 2.80 2.78
(wT̂w−Ec)
(τ−T̂w−Tc)

2.97 2.96 2.96 2.65 2.65 2.65 3.28 3.29 3.29
wT̂w − Ec 118.09 119.51 119.43 101.26 104.41 104.30 135.26 135.10 135.05
τ − T̂w − Tc 40.49 40.33 40.33 39.72 39.51 39.51 41.24 41.16 41.17
T̂w 37.74 52.16 52.16 33.33 51.96 51.97 42.18 52.35 52.35
Ec 332.44 483.70 481.74 270.32 462.03 459.91 394.74 505.44 503.62
µ 0.00278 0.00273 0.00274 0.00288 0.00279 0.00279 0.00267 0.00268 0.00268
λ 0.00051 0.00033 0.00033 0.00071 0.00033 0.00033 0.00033 0.00034 0.00034
λw 0.00509 0.00340 0.00341 0.00742 0.00335 0.00337 0.00331 0.00353 0.00354
θw

T̂w

-0.02315 -0.00661 -0.00676 -0.04542 -0.00565 -0.00586 -0.00641 -0.00851 -0.00860

As a plausibility check, additional sensitivity analyses are carried out. In the first one, we assume that each
individual in the MAED data obtains the same wD per hour of domestic work (Fig. 3). The starting point is
where individuals receive only AC1/hr for domestic work, up to AC12/hr. The average wage rate of domestic
work from “Platform B” is around AC11/hr. In the second analysis, people receive a fraction ranging from
10% to 90% of the offered individual-specific wage rate for domestic work (with housekeeping and child-care
distribution “82%-18%”, Fig. 4). In both analyses, the gender-specific VoL gap narrows as wD increases,
while the VTAW (= V oL− w) remains almost constant.



18 CHAPTER 3. APPLICATION

7

9

11

13

2.5 5.0 7.5 10.0 12.5
wD

V
oL

, w

Global Men Women

Fig. 3 Simulation results, all get the same wage rate. Thick lines represent VoL, thin - wage rate

7

9

11

10 20 30 40 50 60 70 80 90
% of wD

V
oL

, w

Global Men Women

Fig. 4 Simulation results, different % of wD. Thick lines represents VoL, thin - wage rate

Ahmad and Koh (2011) have estimated that the domestic work in Austria is worth around 24% of GDP.
This share is close to the share of GDP contributed by the Austrian industrial sector. The importance of



domestic work should therefore not be neglected. The monetarization of domestic work results in an increased
estimate of the VoL, which has strong policy relevance. According to Schmid (2019) “Assuming a constant
VTTS and decreasing marginal impacts of additional investments on user benefits, a high VoL is reflected in a
high VTAT, and investing in speed might be more beneficial (by eventually decreasing the travel time), since
the opportunity costs of travel are relatively high, and the conditions of travel are already at a high level
(thus leaving less room for improvement).” Other situations are presented in Table 11. Jokubauskaitė et al.
(2019) have reported positive values of the VTAT only for public transport. Concluding that they reflect, “the
favorable public transport conditions in Austria”. Hence, the updated VoL values might give an even stronger
signal for the prioritization of investment in speed rather than comfort of public transport in Austria.

Table 11 Hypothetical examples of policy recommendations when considering the VoL in addition to the
VTTS under the assumption of decreasing marginal impacts of additional investments on user benefits.

VTTS[CHF/h] VoL[CHF/h] VTAT[CHF/h] Invest in . . . Implication
20 5 -15 Conditions VTTS ↓
20 20 0 Cond./Speed VTTS/travel time ↓
20 35 15 Speed Travel time ↓

Source: Schmid (2019)

4 Discussion and conclusions

The focus of this study was to research the possible effects of the monetary valuation of unpaid work on the
gender-specific value of leisure (VoL) and in turn to offer an updated information set for policymaking based
on the VTTS and its components. In many economic models, domestic work is ignored. It usually does not
appear in labor statistics as work and it is not factored into the official GDP. One might thus call it the same
way as Rollins (1985) did - “invisible work”, which is over-proportionally performed by females, and often
associated with lower disposable incomes and as a result lower pensions. In Jokubauskaitė et al. (2019), the
VoL of Austrian women is estimated to be worth only half of men’s (AC11/hr for men and AC6/h for women).
We show that this significant difference vanishes when a monetary value is assigned to domestic work. With
this adjustment, the VoL was estimated to be around AC9/hr for both genders, which is higher than without
the adjustment. As the value of travel time savings (the VTTS) increases in the VOL and decreases in the
VTAT when the VTAT is estimated to be positive (which has been the case only for public transport in the
earlier study based on the same data as this paper, see Jokubauskaitė et al. (2019)), the increase in the VoL
reinforces that investments directed towards public transport should prioritize time saving measures over
comfort enhancing measures.

The valuation of domestic work might seem to be a complicated task. On the one hand, no “best” method
exists; on the other hand, the disregard of its value might lead to gender-biased economic indicators that
discriminate against women and their work or anyone who is involved in domestic work. The inclusion of
domestic work is important at all stages of economic calculations - from microeconomic models, such as TUM,
to the calculation of the GDP. As shown in many research papers on the GDP (Alonso et al., 2019; Bridgman
et al., 2018; UNECE, 2017; Payne and Vassilev, 2018; Schwarz and Schwahn, 2016; Ahmad and Koh, 2017;
Hamdad, 2003; Schmid et al., 2002), the inclusion of a value for unpaid work might lead up to a 60% increase
in GDP, depending on which valuation method is used. For the valuation of domestic work, we have used
an approach similar to the replacement cost generalist method commonly used in the re-calculation of GDP.
Instead of national account data, we used data available online, which are likely to better reflect the current
market situation for domestic work in Austria. Based on location and gender, each MAED individual was
matched with the market wage rate for housekeeping and childcare tasks (the latter only for households with
children). As both data sets were gathered in different periods, the current market wage rate of domestic work
was inflation adjusted. After this modification, the average wage rate of unpaid work (wD) was computed to
be around AC10.52/hr (for men AC10.78/hr, for women AC10.27/hr). Due to the lower wD for women and higher
share of time spent in this type of employment, the new average wage rate (wnew) for women decreased more
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than for men. Despite this, the VoL estimates are similar for both genders: for women it was estimated to be
AC9.00/hr and for men AC9.20/hr. Therefore, we have shown that factoring in the domestic work reduced the
gender specific VoL gap, at least for the case of Austria. The applied sensitivity analyses confirmed these
results. Also, they do not seem to be overly sensitive to the different types of data adjustments that we have
tested.

It is not possible to say which value of the VoL is the “right” one, as the VoL is a latent variable, which cannot
be observed directly. Nevertheless, we believe that taking into account that engaging in domestic work means
savings in term of expenses is the right way to go. We show that the valuation of domestic work matters and
that it is indeed relevant within the framework of microeconomic time use models and time valuation, which
in turn is an essential input to appraisals of transport policies and investments.
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nmm: An R Package for Estimation of
Nonlinear Multivariate Models
by Simona Jokubauskaitė, Friedrich Leisch, and Reinhard Hössinger

Abstract Package nmm offers a convenient way to estimate a subset of nonlinear multivariate models.
It extends the already existing family of packages, which estimate systems of nonlinear regressions
and logit models. It uniquely factors in the correlations between the error terms from both models. The
estimation is based on maxLik with an option to use global optimization via the differential evolution
algorithm (DEoptim). Instead of using the numerical approximations of gradient and the Hessian,
nmm produces their analytical versions. The summary method of nmm object returns "normal", "robust"
or "clustered" standard errors. In addition, a wide range of goodness-of-fit statistics is included.
The flexible design of logit and system of nonlinear regressions, relaxation of linearity assumption,
correlation between continuous and discrete equations allows to use nmm in various settings to
estimate a wide range of models.



2

Introduction

The R (R Core Team (2020)) environment provides a rich soil for the estimation of linear systems of
equations as well as discrete choice models. One can estimate simultaneous equations using systemfit
(Henningsen and Hamann, 2007), thsls (Taha, 2015) or discrete choice models with mlogit (Croissant,
2019), mnlogit (Hasan et al., 2016), MNP (Imai and van Dyk, 2017), nnet (Venables and Ripley, 2002),
etc. Things start to get more complicated if the assumption of linearity is dropped and especially if
one is working with the multinomial variables. In this paper we introduce a new R package called
nmm that estimates a subset of non-linear multivariate models (NMM) in the maximum likelihood
(ML) framework.

nmm extends the already existing and popular family of packages, that estimate multivariate
nonlinear regression (MNR) and logit1 models. Under the assumption of normality of MNR error
terms and by applying the quantile transformation to the probabilities from logit, log-likelihood
is formed for the joint system of MNR and logit (Subsection “Joint Continuous-Discrete Model”).
By using this strategy, nmm package uniquely allows the correlation between the error terms from
MNR and the choice probabilities from logit. In addition to this, it enables a very flexible design of
multinomial logit. Different indirect utilities can be defined for each alternative separately, one can
use a non-linear specifications, and choice set is individual-specific.

The estimation framework is partly based on the maxLik package. maxLik employs several local
(“NR”, “BFGS”, “BHHH”, “CG”, “NM”) as well as one global (“SANN”) optimizer. To enhance
this toolbox, nmm incorporates the global optimization via the differential evolution algorithm
(implemented in DEoptim Mullen et al. (2011)). As default, maxLik uses the numeric approximations
of gradient and Hessian. nmm extends this with the usage of analytical counterparts. Only the system
of equations, parameter names, and model type is required from the user to produce likelihood,
gradient, and Hessian functions. Package supports the estimation of nonlinear simultaneous equations
models (NSEM), MNR, logit, and the joint model. The summary method of the "nmm" object includes
standard statistics such as estimates, t-values, probabilities, and standard errors. Latter ones are
reported either as “normal”, “robust” or “robust-clustered”. Additionally, a wide range of goodness-
of-fit statistics are included (R2, BIC, AIC, AICc, etc.) with several pseudo R2s (McFadden, Cox&Snell,
Nagelkerke).

In the following section, we introduce the theory of the NMM estimation. It is divided into
estimation of system of nonlinear regressions, nonlinear simultaneous equations, multinomial logit,
and the joint estimation of them. Section “Usage of nmm Package” introduces the functionality
of nmm. The joint estimation is demonstrated with the help of a simple data set and a real world
application. The latter one is based on the theoretical model of Munizaga et al. (2008) and a survey
data from Austria gathered in 2015. Both the model and the data are presented in Section “Estimation
of Theoretical model”.

Estimation of Nonlinear Multivariate Models using Maximum Likelihood

Using nmm one can estimate several types of NMMs: systems of nonlinear regressions (SNR) also
called multivariate nonlinear regressions (MNR), nonlinear simultaneous equation model (NSEM),
different types of logit, and the joint continuous-discrete model (JCDM). In this paper, we refer to
SNR, MNR, NSEM as the continuous block as the error terms are assumed be normally distributed.
Whereas, logit is referred to as discrete block. In this section we introduce theory related to the NMMs.
Material from this section is based on the theory on multivariate models presented in MacKinnon and
Davidson (1999), Chapter 12.

Systems of Nonlinear Regressions

A system of nonlinear regressions is given by the equation:

yti = xti (β) + uti, t = 1, . . . , n, i = 1, . . . , g (1)

Here yti is the t-th observation of dependent variable i and xti (β) is the t-th observation of the
regression function. β is a k-vector of parameters to be estimated and uti is an error term with an
assumption E(u|X) = 0. X stands for all explanatory variables that appear in all of the regression
functions. Error terms are assumed to be serially uncorrelated, homoscedastic within each equation,
and have contemporaneous covariance matrix Σ with elements σij:

1The dogit model from Gaundry and Dagenais (1979) can be also estimated.
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E
(

uti, usj

)
=

{
σij, t = s
0, t 6= s

(2)

If one stacks all observations from variable i vertically, Equation (1) can be rewritten as:

yi = xi (β) + ui, E
(

uiu>j
)
= σij In, i, j = 1, . . . , n (3)

Under the normality assumption, the log-likelihood function is:

LL (β) = log(L (β)) = − gn
2

log2π − n
2

log|Σ| − 1
2
(y. − x. (β))>

(
Σ−1 ⊕ In

)
(y. − x. (β)) (4)

Here y. denotes gn-vector of yis stacked vertically, x. (β) denotes gn-vector of xi (β)s stacked in the
same way. LL(β) is maximized with respect to β for a given Σ. The estimated variance-covariance
matrix of error terms based on the maximum likelihood estimation (MLE) can be found with the
formula:

Σ̂ML =
1
n

U>
(

β̂ML
)

U
(

β̂ML
)

(5)

Here U
(

β̂ML
)

is n× g matrix with columns equal to yi − xi
(

β̂ML
)
.

Nonlinear Simultaneous Equation Model

In the case of nonlinear simultaneous equation model (NSEM), one has g equations with g endogenous
variables. Equations can be expressed as:

fti (Yt, β) = uti, t = 1, . . . , n, i = 1, . . . , g (6)

Here functions fti depend on the predetermined variables and are in general nonlinear functions of
both Yt (1× g vector) and β (k-vector).

fi (Y, β) is n-vector with element t equal to fti (Yt, β) and Y is the n× g matrix with row t equal
to Yt. We can stack fi (Y, β) horizontally to get ht (Yt, β), which is 1× g row vector containing the
elements ft1, . . . , ftg. Now Equation (6) can be rewritten as:

ht (Yt, β) = Ut, Ut ∼ NID (0, Σ) (7)

Model from Equation (7) has the following concentrated log-likelihood function:

− gn
2

(log2π + 1) +
n

∑
t=1

log |detJt| −
n
2

log

∣∣∣∣∣
1
n

n

∑
t=1

h>t (Yt, β) ht (Yt, β)

∣∣∣∣∣ (8)

Here Jt = ∂ht (β) /∂Yt is different ∀t.

Multinomial logit

In the logit model, individual maximizes her/his utility by making a choice (q), which generates the
maximum utility:

Uq = Vq + εq ≥ maxm 6=q {Um} (9)

Vq ≥ maxm 6=q {Um} − εq = ωq (10)

Utility U consists of the observable part V (indirect utility) and an error term ε. Under the assumption
that εq terms are Gumbel distributed, ωq follows the logistic distribution (Domencich et al., 1975).

If V is a function of parameter vector θ, the distribution function of Vq can be expressed as:

Pq(θ) = F(Vq(θ)) =
exp(Vq(θ))

∑Q
j=1 αjexp(Vj(θ))

(11)

Here Q is a set of possible choices, αj is a dummy variable equal to one if alternative is available and
zero otherwise. If repeated measurements are allowed, the corresponding log-likelihood function can



4

be written as:

LL (θ) =
J

∑
i=1

∑
k∈Ai

Q

∑
q=1

δikqαikq log
(

Pikq

)
(12)

Here J is number of individuals or index set, Ai is a set of repeated choices for individual i. δikq is
equal to one if alternative q was chosen by individual i at choice k.

Joint Continuous-Discrete Model

The purpose of nmm is to allow the estimation of continuous-discrete model. Here continuous
model is a system of nonlinear equations and the discrete model is logit (arising from various choice
situations). By using quantile transformation, Lee (1983) was able to bind these two blocks together.
Assuming that u is a vector of errors terms from systems of nonlinear regression and ε from discrete
choice model, the framework developed in Munizaga et al. (2008) and introduced in Lee (1983) can be
summarized as:

u = (u1u2 . . . ug)
′ ∼ N (0, Σ)

︸ ︷︷ ︸
continuous block

Vq ≥ maxm 6=q {Um} − εq = ωq ∼ Logistic
︸ ︷︷ ︸

discrete block
⇓

yq = Φ−1(F(Vq)) ≥ Φ−1(ωq) = ω∗q ∼ N (0, 1)
︸ ︷︷ ︸

Quantile transformation

⇓ ⇓
Joint density

f (u, ω∗q ≤ yq) = f (u) f (ω∗q ≤ yq|u) = f (u)Φ(yq|u)
⇓

Conditional moments:E
[
yq|u

]
, Cov

[
yq|u

]

⇓
Theorem "Conditional normal distribution"

⇓
E
[
yq|u

]
= µyq + ΣyquΣ−1

uu (u− µu)

Cov
[
yq|u

]
= Σyqyq |u = Σyqyq − ΣyquΣ−1

uu Σyqu

As mentioned before, further in this paper we will refer to the system of nonlinear regressions
as the continuous block and to logit as the discrete block. Then talking about correlations, we will
differentiate between the intra and inter-block correlations. The first ones refer to the correlations
between the error terms from the continuous block. The second ones refer to the correlations between
continuous and discrete blocks. There is no intra-block correlation in the discrete block, as logit is
based on the independence of irrelevant alternatives (IIA) assumption.

Assuming that one has three continuous equations, Q - alternatives and repeated observations can
occur in the discrete part. The joint partitioned log-likelihood has the following form:

LL =
J

∑
i

∑
k∈Ai

Q

∑
q

αikqδikqWi log





φ(η1i)

W1i φ

(
η2i − µη2i |η1i

ση2|η1

)W2i

φ

(
η3i − µη3i |η1iη2i

ση3|η1η2

)W3i



WCi

Φ

(
yikq − µyikq |η1iη2iη3i

σyq |η1η2η3

)
Wiq

) (13)

Here i indicates a person, k is choice index and q - discrete alternative. αikq - is equal to 1, if alternative
q is available at choice k of person i, and 0 otherwise. δikq - is equal to 1, if alternative q is chosen
at choice k of person i, and 0 otherwise. φ(.) and Φ(.) correspond to the density and distribution
functions of the standard normal distribution. ηmi is the error term from the mth continuous equation
for individual i. µy|x and σy|x denote the conditional mean and the standard deviation respectively.
yikq is the quantile transformed probability of alternative q chosen by person i at choice k.

Additionally, W1i, W2i, W3i are weights applied to the separate continuous equations. In some
situation, this might be used to balance the log-likelihood. For example, for one observation of
continuous block multiple discrete choices are available. Each individual continuous observation has
to be cloned/repeated to match the number of discrete choice situations. The weights can be chosen to
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be proportional to the number of choices (ni) made by each individual i. Other individual-specific
weights that might be applied are: Wiq - for different discrete alternatives; WCi - for all continuous
equations (in nmm function argument npaths_cont=TRUE); Wi - for the whole system (n nmm function
argument npaths=TRUE).

Usage of nmm Package

We start the introduction of nmm package with a simple mock-up example without a theoretical
background. The joint continuous-discrete model (JCDM) introduced in Section “Joint Continuous-
Discrete Model” and separate parts of it are estimated with dataM data set from nmm package. This
dataset was created using MathPlacement object from Stat2Data (Cannon et al., 2019) package. It
consists of results from the math placement exam at a liberal arts college.

install.packages("nmm")

library(nmm)
data("dataM", package="nmm")

#> # A tibble: 6 x 11
#> Student Gender PSATM SATM ACTM Rank Size GPAadj PlcmtScore Recommends
#> <int> <int> <int> <int> <int> <int> <int> <int> <int> <fct>
#> 1 1 0 56 56 25 1 420 40 23 R0
#> 2 2 0 57 60 23 1 85 40 21 R0
#> 3 3 1 54 62 27 42 421 38 20 R0
#> 4 4 0 53 56 27 6 75 38 20 R0
#> 5 5 1 57 64 31 72 462 35 19 R0
#> 6 6 0 63 68 21 96 518 34 18 R0
#> # ... with 1 more variable: TooHigh <int>

Results of the placement exam can be found in column PlcmtScore. Based on these scores, a course
was recommended (column - Recommends) to a student. Not all of the students took the recommended
course. This can be seen from variables: TooHigh, TooLow, RecTaken. New column DR_Course was
created to show what type of course was selected based on the available recommendation:

• alow - lower,
• bnormal - recommended,
• chigh - higher.

Number of students that chose specific course:

alow bnormal chigh
54 855 1534

More than a half of students took a higher course than the recommended one. In this simple
example we will try to estimate a NMM consisting of:

• a system of nonlinear regressions (SNR) that models the score of math placement exam
(PlcmtScore) as well as ACT Score in Math (ACTM) and

• a multinomial logit, which predicts the level of course taken: low, normal or high.

ML estimation is performed with nmm function. User has at least to supply four arguments:

• data as data.frame;
• equation type: for SNR use - eq_type = "cont", for logit - eq_type = "disc", for joint - eq_type

="joint";
• formula as a character string/vector (SNR - eq_c, logit - eq_d, joint - supply both);
• parameter names (SNR - par_c, logit - par_d, joint - supply both).

The exported methods (summary, logLik, AIC, AICc, BIC, hessian) as well as internal methods
(gradient, bread, meat) are partially based on maxLik package. They mostly help to calculate the
different variants of covariance matrix (normal, robust and robust-clustered).

System of non-linear Regressions

We use a SNR, which is simple, but does not have a theoretical background:
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PlcmtScore = e(a0+a1PSATM+a2Rank+a3Size) + εPlcmtScore (14)

ACTM = e(c0+c1∗GPAadj) + εACTM (15)

Here we try to estimate the imposed nonlinear relationship that describes math scores of placement
exam (PlcmtScore) and ACT (ACTM). First, we formulate equations in a form of a character strings and
define the parameters:

eq_c <- c("PlcmtScore ~ exp(a0 + a1 * PSATM + a2 * Rank + a3 * Size) ",
"ACTM ~ exp(c0 + c1 * GPAadj)")

par_c <- c(paste0("a", 0:3), paste0("c", 0:1))

In nmm, nonlinear multivariate regression model is estimated in the ML framework and provides a
nice looking summary output of the estimated model. As in the most nonlinear estimation procedures,
nmm uses starting values in the optimization. For continuous block, get_start function uses at
first nlsystemfit, then nmm and maxLik functions. For discrete block, the nls function is used in
combination with nmm. One can supply starting values to nmm function directly by using argument
start_v. If not supplied, function get_start will be called automatically. For demonstration purpose,
we do it explicitly here:

stv1 <- c(3.39, 0.001, -0.001, 0.001, 3.58, -0.001)
names(stv1) <- par_c
stv <- get_start(data = dataM, part = "cont", eq_c = eq_c, par_c = par_c, startvals = stv1)

Using nmm function and supplying: data (data = dataM), equations (eq_c = eq_c), their type
(eq_type = “cont”), parameters (par_c = par_c) as well as starting values (start_v = stv), one
performs the maximum likelihood estimation:

nmm_cont_res <- nmm(data = dataM, eq_type = "cont", start_v = stv, eq_c = eq_c,
par_c = par_c)

summary(nmm_cont_res)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 16 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -9477.365
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> a0 3.3937870 0.0208091 163.092 <2e-16 ***
#> a1 0.0019029 0.0003318 5.735 <2e-16 ***
#> a2 -0.0012659 0.0000687 -18.420 <2e-16 ***
#> a3 0.0001869 0.0000174 10.730 <2e-16 ***
#> c0 3.5831095 0.0136083 263.303 <2e-16 ***
#> c1 -0.0077549 0.0003755 -20.653 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

PSATM score in Math and number of students in HS class(Size) have a positive impact on the score
in the math placement exam (PlcmtScore), whereas the adjusted rank in HS class (Rank) has a negative
one. Adjusted GPA (GPAadj) negatively affects ACT Score in Math.

The robust standard errors for βML can be calculated by setting argument type to "robust" in
summary. Contemporaneous covariance matrix of error terms (Equation 5) is calculated with nmm_sigma

function. If needed, Var(Σ̂ML) can be estimated by maximizing the log-likelihood from Equation (4)
with respect to Σ for the given β̂ML.
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nmm_sigma(nmm_cont_res)

#> $sd
#> s_1 s_2
#> 8.358836 4.067014
#>
#> $correlation
#> rho_1 rho_2
#> rho_1 1.0000000 0.8517698
#> rho_2 0.8517698 1.0000000

nmm_cont_sigma <- nmm_sigma(nmm_cont_res, estimate=TRUE)

summary(nmm_cont_sigma)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 9 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -9477.365
#> 3 free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> sd_1 8.358834 0.120894 69.14 <2e-16 ***
#> sd_2 4.067011 0.058820 69.14 <2e-16 ***
#> corr(c_1&c_2) 0.851810 0.005585 152.53 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

Here sd_i is the standard deviation of error term i from the continuous block, corr(c_i&c_j) are
intra-block correlations, c_i is an error term from the continuous block.

Setting parameter best_method = TRUE makes nmm apply all available optimization algorithms
from package maxLik and search for the “best” result between them:

nmm_cont_best <- nmm(dataM, eq_c = eq_c, par_c = par_c, eq_type = "cont",
start_v = stv, best_method = TRUE)

In this case, the “NR” algorithm performs the best, but the improvement over the “BFGS” is
minimal:

cc <- 1000000
(logLik(nmm_cont_best)*cc - logLik(nmm_cont_res)*cc)/cc

#> [1] 0.0001512576
#> attr(,"LLv")
#> res1 res2
#> [1,] -6408.307 -3069.058

One can choose a specific algorithm by setting opt_method argument (for all available methods,
see documentation of maxLik function). One can also set DEoptim_run_main = TRUE to use the global
optimization from DEoptim package.

Log-likelihood of each equation can be calculated separately with logLik function by supplying
the argument new_coef or it is also saved as an attribute of the nmm object:

logLik(nmm_cont_res,
new_coef = nmm_cont_res$estimate)

#> [1] -9477.365
#> attr(,"LLv")
#> res1 res2
#> [1,] -6408.271 -3069.094

attributes(nmm_cont_best)$LL

#> res1 res2
#> [1,] -6408.307 -3069.058
#> attr(,"names")
#> [1] "eq_1" "eq_2"

An object created with nmm inherits both classes of the maxLik object ("maxLik" and "maxim"):

class(nmm_cont_res)

#> [1] "nmm" "maxLik" "maxim"

The nmm object has the following attributes:

attributes(nmm_cont_res) %>% names

#> [1] "names" "class" "functions" "data" "LL"
#> [6] "type" "cont_e" "eq_c" "par_c" "corr_joint"

attributes(nmm_cont_res)$functions %>% names

#> [1] "jfunc" "jgrad" "jhess"

Here:

• names - attributes from maxLik
• class - class of object ("nmm", inherits "maxLik" and "maxim")
• functions - functions used in the maximum likelihood estimation:

– jfunc - the log-likelihood function,
– jgrad - gradient function,
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– jhess - Hessian function.
– if estimation type is “joint”, other functions will appear here too.

• data - prepared data used in the estimation
• LL - log-likelihood per equation
• type - estimation type: “cont”, “disc”, “joint”
• cont_e - continuous equations used in the estimation with “par[]” instead of parameter names
• eq_c - continuous equations used in estimation with original parameter names
• par_c - parameter names
• corr_joint - if there is correlation between continuous and discrete blocks.

For the sake of comparison of the nmm estimation results with the ones from other packages, in2mm
function was written. One can create nmm object with function in2nmm by supplying an appropriate
nmm object (skeleton) and the new coefficients. All statistics are recalculated according to the new
parameters/coefficients. Order of the new coefficients is important. It should match the order of
coefficients in the output of nmm object. They are sorted according to the names.

First we estimate the same theoretical model with function nlsystemfit from systemfit (Hen-
ningsen and Hamann, 2007) package.

library(systemfit)

model <- lapply(eq_c, as.formula)
labels <- eq_c %>% gsub("\\~.*", "", .)
model.sur <- nlsystemfit("SUR", model, stv1, data = dataM,

eqnlabels = labels )

There is no “nice” summary output for "nlsystemfit.system" object. Thus, we create a table
consisting of the estimated coefficients.

x <- c("b", "se", "t", "p")
coefs <- lapply(model.sur[["eq"]], function(y) Reduce(cbind, y[x])) %>% do.call(rbind, .)
coefs <- lapply(par_c, function(x)coefs[row.names(coefs)==x, ] %>% t %>%

as.matrix %>% .[1,]) %>% do.call(rbind, .) %>%data.frame() %>%
cbind(par_c, .)

colnames(coefs) <- c("Var", x)
coefs

#> Var b se t p
#> 1 a0 3.0938065735 0.0275195478 112.422144 0
#> 2 a1 0.0069750765 0.0004423654 15.767682 0
#> 3 a2 -0.0028691753 0.0000936795 -30.627570 0
#> 4 a3 0.0004198871 0.0000214210 19.601660 0
#> 5 c0 3.1349339795 0.0187170695 167.490641 0
#> 6 c1 0.0047152283 0.0005124161 9.201952 0

Next, we reorder values according to parameter names to match the order in the “skeleton” model:

ncoef <- coefs[order(coefs[, 1]), 2]
names(ncoef) <- sort(coefs[, 1])
nsem <- in2nmm(nmm_cont_res, new_coef = ncoef)

Now different goodness-of-fit measures can be computed for both models using diagnostics
function from nmm:

diagnostics(nsem, which=c("Rx2adj"))

#> stat eq value
#> 1: Rx2 Total 0.4687
#> 2: Rx2 1 0.4186
#> 3: Rx2 2 0.0881
#> 4: Rx2adj Total 0.4681
#> 5: Rx2adj 1 0.4179
#> 6: Rx2adj 2 0.0877
#> 7: AIC Total 19381.7863
#> 8: AICc Total 19381.7518
#> 9: BIC Total 19416.5922

sapply(model.sur[["eq"]],"[[", "adjr2")

#> [1] 0.4178554 0.0877303

diagnostics(nmm_cont_res, only_total = TRUE)

#> stat eq value
#> 1: RMSE Total 6.5758
#> 2: MAPE Total 20.3969
#> 3: Rx2 Total 0.2967
#> 4: Rx2adj Total 0.2960
#> 5: AIC Total 18966.7298
#> 6: AICc Total 18966.6953
#> 7: BIC Total 19001.5357
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Adjusted R2 values from systemfit coincide with the ones calculated with diagnostics. According
to information criteria (AIC, AICc, BIC), the coefficients found with nmm produce a better fit. Based
on R2, one would choose the model from nlsystemfit, but is not an appropriate measure of goodness-
of-fit in this non-linear case.

Some other estimation arguments of nmm function that can be useful are discussed below. The
additional parameter numerical_deriv tells nmm not to use the analytical versions of Hessian and
gradient, but instead to employ numericHessian and numericGradient functions. This might be
faster and quite reliable for some problems, but with more complex systems nmm advises to use the
analytical counterparts and to keep argument check_hess=TRUE. This argument checks the invertibility
of the Hessian to ensure the availability of standard errors in each optimization step. maxLik function
does not check this with the final solution2. Thus, sometimes one can get estimates, but no standard
errors. If one is not interested in them, one can ignore this.

By default, if an error (not invertible Hessian; infinity as a total value of log-likelihood; bad
function evaluation with starting values) in optimization appears, nmm jumps to the next optimizer.
Optimizers have the following order: “BFGS”, “NR”, “CG”, “NM”, “BHHH”, “SANN”. If they do
not produce a “good” log-likelihood value, nmm uses for the last attempt the global optimization with
DEoptim.

nmm presents several extensions/advancements of systemfit. First, non-linear system of equations
can be estimated with ML. Secondly, global optimizer can be used by setting argument DEoptim_run_main
= TRUE. Thirdly, summary provides a generalizing overview of the estimation. Fourthly, optimization
can be performed using analytical gradient and Hessian functions. Finally, “robust” as well as “robust
clustered” standard errors can be calculated.

logit estimation

To model the choice of chosen course, we estimate a simple logit with the following indirect utility
function:

Vi = ASCi + βSATMSATM + βPlcmtScorePlcmtScore

Here SATM and PlcmtScore are SAT and placement exam scores in Math, respectively. As before, one
needs to define equations and parameters:

eq_d <- c("ASC1" ,
"ASC2 + b1_2 * SATM + b2_2 * PlcmtScore",
"ASC3 + b1_3 * SATM + b2_3 * PlcmtScore")

par_d <- c(paste0("ASC", 1:3),paste0("b", rep(1:2, rep(2,2)), "_", 2:3))

Parameter “ASC1” is not estimated, as the first alternative is always the base one. Before the model
can be estimated with nmm function, data has to be prepared with the function prepare_data:

dataMp <- dataM%>% data.frame %>% prepare_data(. , choice="DR_Course", PeID = "Student")

Argument choice should get the name of the column with the chosen alternatives. In our case this
is DR_Course column. PeID points to a column with individual/Personal-IDentification number. If it
is unavailable, new column with name “PeID” is created.

dataMp %>% head(., 2)

#> Gender PSATM SATM ACTM chc_1 chc_2 chc_3 choicen Course CourseSuccess GPAadj
#> 1 0 56 56 25 0 1 0 2 210 1 40
#> 2 0 57 60 23 0 1 0 2 117 1 40
#> Grade npaths npaths_cont PeID PlcmtScore Rank Recommends RecTaken Size
#> 1 A 1 1 1 23 1 R0 1 420
#> 2 A 1 1 2 21 1 R0 1 85
#> TooHigh TooLow WeID avl_2 avl_3 avl_1 wd_2 wd_3 wd_1
#> 1 0 0 1 1 1 1 1 1 1
#> 2 0 0 1 1 1 1 1 1 1

Function prepare_data creates additional columns that are needed for the logit or joint estimation:

• WeID - choice identifier, this is needed to allow for repeated observations

2Although usage of analytical derivatives is recommended, it is not a sufficient condition for invertibility of the
Hessian, as choice of starting values is very important.
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• choisen - shows which alternative was chosen
• chc_i - equal to 1, if alternative i is chosen and 0 otherwise, from Equation (13) - δikq
• avl_i - equal to 1, if alternative i is available and 0 otherwise, from Equation (13) - αikq
• wd_i - weight applied to discrete choice equation i, from Equation (13) - Wiq
• npaths_cont - same weight applied to all continuous equations, from Equation (13) - WCi =

1/npaths_cont
• npaths - same weight applied to the whole system of equations, from Equation (13) - Wi =

1/npaths

Here we set argument eq_type = "disc" to reflect the equation type and supply equations (eq_d)
as well as parameters (par_d) to the discrete part:

nmm_disc_res <- nmm(dataMp, eq_type = "disc", eq_d = eq_d, par_d = par_d)

Summary and goodness-of-fit measures of the estimated model:

summary(nmm_disc_res)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 12 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -1718.04
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> ASC2 -1.45176 1.62471 -0.894 0.37156
#> ASC3 3.04740 1.60152 1.903 0.05706 .
#> b1_2 0.14553 0.03314 4.391 1.13e-05 ***
#> b1_3 0.10210 0.03274 3.118 0.00182 **
#> b2_2 -0.13307 0.02367 -5.622 < 2e-16 ***
#> b2_3 -0.16820 0.02357 -7.136 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

diagnostics(nmm_disc_res)

#> stat eq value
#> 1: MisClas Total 24.6691
#> 2: MisClas 1 2.2104
#> 3: MisClas 2 35.1617
#> 4: MisClas 3 36.6353
#> 5: adjMcFadden Total 0.0508
#> 6: adjMcFadden 1 0.0899
#> 7: adjMcFadden 2 0.0345
#> 8: adjMcFadden 3 0.0404
#> 9: McFadden Total 0.0546
#> 10: McFadden 1 0.1239
#> 11: McFadden 2 0.0423
#> 12: McFadden 3 0.0502
#> 13: AIC Total 3448.0794
#> 14: AICc Total 3448.0449
#> 15: BIC Total 3482.8853

Coefficients b2_2 and b2_3 are negative, indicating that the placement score (PlcmtScore) has a
negative impact on the probability to choose a recommended course (bnormal) or a higher one (chigh
). Whereas, the parameters of SATM indicate the positive impact. Logit is based on the independence
of irrelevant alternatives (IIA) assumption, thus the variance-covariance matrix is not available for this
type of estimation.

nmm_sigma(nmm_disc_res)
[1] "Variance-covariance matrix is not available for logit!"

Joint Estimation

The unique joint estimation is performed by setting eq_type to “joint” and supplying all of the
equations as well as the parameters 3:

nmm_joint_res <- nmm(dataMp, eq_type = "joint", eq_d = eq_d,
par_d = par_d, eq_c = eq_c, par_c = par_c,
start_v = c(nmm_cont_res$estimate, nmm_disc_res$estimate))

summary(nmm_joint_res)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 336 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -11302.51
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> a0 3.3937727 0.0206137 164.637 < 2e-16 ***
#> a1 0.0014372 0.0003307 4.346 1.39e-05 ***
#> a2 -0.0014517 0.0000703 -20.649 < 2e-16 ***
#> a3 0.0001921 0.0000175 10.979 < 2e-16 ***
#> c0 3.5830792 0.0134672 266.059 < 2e-16 ***
#> c1 -0.0084227 0.0003732 -22.568 < 2e-16 ***
#> ASC2 -1.4517647 1.4366732 -1.011 0.312254

3In logit estimation, function nmm uses random sampling for the selection of starting values. Thus, results might
slightly differ.
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#> ASC3 3.0473990 1.4031310 2.172 0.029867 *
#> b1_2 0.1454940 0.0303067 4.801 1.60e-06 ***
#> b1_3 0.1021573 0.0296959 3.440 0.000581 ***
#> b2_2 -0.1329216 0.0212702 -6.249 < 2e-16 ***
#> b2_3 -0.1683413 0.0210008 -8.016 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

For this data set and model, difference in the parameters is minimal. In other situation, the joint
inference might be preferable as it might reflect the simultaneous decision making situation better.
Here, first the score is recorded and only afterwards the course is recommended. This type of joint
estimation is not available with other R packages and thus is the main innovation of the nmm package.

Expresions of Conditional Moments

Estimation of NMMs involves calculation of conditional moments for the normal distribution. nmm
also provides a possibility to get TeX formulas of these expressions. Symbolic computation is per-
formed with the help of Maxima (2014). This program is not called by the estimation function if number
of equations is smaller than 5. To estimate a model with more than 4 equations (this happens auto-
matically) or get TeX expressions, function cond_expr can be used. In such case user needs to install
Maxima (2014) and include maxima into PATH system variable. Suppose one has 3 equations/variables
and u ∼ N (0, Σ) and we want to find µη3|η1η2

and Ση3|η1η2
:

neq <- 3
sdv <- rep(NA, neq)
mv <- rep(0, neq)
out <- cond_expr(neq, sdv, mv, tex = TRUE)

Variable neq defines number of equation, sdv is a vector of standard deviations and mv is vector of
means. µη3|η1η2

is:

out$latex$mean

#> [1]
"$$-{{\\left(\\sigma_{1}\\,\\rho_{2,3}-\\sigma_{1}\\,\\rho_{1,2}\\,\\rho_{1,3}
\\right)\\,\\sigma_{3}\\,{\\it eps_2}+\\left(\\rho_{1,3}\\,\\sigma_{2}-\\rho_{
1,2}\\,\\sigma_{2}\\,\\rho_{2,3}\\right)\\,\\sigma_{3}\\,{\\it eps_1}}\\over{
\\left(\\sigma_{1}\\,\\rho_{1,2}^2-\\sigma_{1}\\right)\\,\\sigma_{2}}}$$"

− (σ1 ρ2,3 − σ1 ρ1,2 ρ1,3) σ3 eps2 + (ρ1,3 σ2 − ρ1,2 σ2 ρ2,3) σ3 eps1(
σ1 ρ2

1,2 − σ1

)
σ2

Ση3|η1η2
is:

out$latex$cov

#> [1]
"$${{\\left(\\rho_{2,3}^2-2\\,\\rho_{1,2}\\,\\rho_{1,3}\\,\\rho_{2,3}+\\rho_{1,
3}^2+\\rho_{1,2}^2-1\\right)\\,\\sigma_{3}^2}\\over{\\rho_{1,2}^2-1}}$$"

(
ρ2

2,3 − 2 ρ1,2 ρ1,3 ρ2,3 + ρ2
1,3 + ρ2

1,2 − 1
)

σ2
3

ρ2
1,2 − 1

Here epsi correspond to the error vector u from equation i, σi - standard deviation, ρi,j - correlation
between ui and uj.

Estimation of Theoretical Model

The second part of demonstration focuses on the estimation of the joint time-use expenditure and
travel mode choice model used in Munizaga et al. (2008). Its macroeconomic framework is introduced
in next subsection. Jokubauskaitė et al. (2019) applied and estimated this model using the nmm
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package in combination with RSGHB (Dumont and Keller, 2019) to account for the observed panel
structure. In Section “MAED Data”, we introduce the unique Austrian data set (Aschauer et al. (2019))
used in that estimation. The theoretical time-use expenditure model (TUEM; continuous part) is
presented and estimated in Subsection “Time-Use and Expenditure Model Estimation”, discrete mode
choice model (logit) - in Subsection “Discrete Model for Trip Selection” and the joint estimation of
them - in Subsection “Joint Estimation”.

Although, in this paper we present only two applications of nmm, it can be used in other situations
there continuous and discrete choices are made by the same economic agent (for applications in energy
and transportation field see Derakhshan et al. (2015)). Also, it can be used for the estimation of system
of nonlinear regressions in maximum likelihood framework or to specify a more complex logit model.

Joint Time-Use Expenditure and Mode Choice Model

The joint time-use expenditure and mode choice model formulated in Munizaga et al. (2008) consists
of two blocks. Both of them can be estimated separately or jointly as described in Section “Joint
Continuous-Discrete Model”. First block is a system of nonlinear regressions (continuous block)
as presented in Jara-Díaz and Guevara (2003) and Jara-Díaz et al. (2008). The second one is the
discrete travel mode choice model formulated as a logit (discrete block). In this section, we present the
theoretical framework estimated in paper of Jokubauskaitė et al. (2019) and partly in Hössinger et al.
(2020) (only continuous block). Both studies use the same data sets. Reduced versions of these data
sets are also provided in the nmm package: MAEDtimeExpenditure and MAEDtravel.

We start with the continuous block - system of nonlinear regressions. In the framework developed
in Jara-Díaz and Guevara (2003) and Jara-Díaz et al. (2008) individual maximizes her/his utility
function:

U = Tθw
w

n

∏
i=1

Tθi
i

m

∏
j=1

E
φj

j (16)

Here utility U depends on: Tw - the amount of time assigned to work, Ti - the time assigned to
activity i, and Ej - the expenditure assigned to good j. The exponents {θw, θi, φj} represent the elasticity
of utility with respect to a specific input - work time, activity time, and expenditure good/group,
respectively.

Individual faces budget and time constraints, as well as technical constraints on committed/necessary
goods and activities:

wTw + I −
m

∑
j=1

Ej ≥ 0 (λ) (budget constraint) (17)

τ − Tw −
n

∑
i=1

Ti = 0 (µ) (time constraint) (18)

Ti − TMin
i ≥ 0 (κi) (technical constraints on activities) (19)

Ej − EMin
j ≥ 0 (ηj) (technical constraints on goods) (20)

Here w is the wage rate, I - income not related to work, τ - total available time (in our study it will
be 168 hours). The technical constraints (Equation (19) and (20) on those committed activities and
goods that are necessary for the personal and household maintenance (travel, rental cost, etc.), are not
explicitly estimated, but inferred from the observations. The consumers are left with no other choice
but to stick to the technical minimum ( TMin

i ,EMin
j ), which is data driven. Sums of such committed

activities and goods are introduced into the time and budget constraints as Tc and Ec, respectively
(Hössinger et al., 2020). {λ, µ, κi, ηj} are Lagrangian constants used in the solving of this maximization
problem. The result is an optimal allocation of time and expenditure, given by the following system of
equations:
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T∗w12 =

(
(Φ + θw)(τ − Tc) + (Θ + θw)

Ec
w

)
±
√

D

2(Θ + Φ + θw)
(21)

here D =

(
(Φ + θw)(τ − Tc) + (Θ + θw)

Ec

w

)2
−

− 4(Θ + Φ + θw)θw(τ − Tc)
Ec

w

T∗i =
θi
Θ
(τ − T∗w − Tc) (22)

E∗j =
φj

Φ
(wT∗w − Ec) (23)

Here Θ = ∑i∈A f
θi, Φ = ∑j∈G f

φj with A f and G f being the index sets of freely chosen activi-

ties/goods and their complement sets Ac
f and Gc

f . Tc = ∑i∈Ac
f

Tmin
i and Ec = ∑j∈Gc

f
Emin

j correspond

to the total committed time and expenditures. One can reformulate each equation as Y = x(β) + ε,
where ε ∼ N(0, σ) and x is a nonlinear function of parameter vector β = {Φ, θw, Θ, θi, φi}.

The system of equations can be estimated with methods either from Subsection “Systems of
Nonlinear Regressions” or from “Nonlinear Simultaneous Equation Model”. In this paper we choose
to estimate this model as a system of nonlinear regressions, substituting Tw expression into Equation
(22) and (23). Also, parameters are normalized with respect to Θ. In the simplest case (two groups of
freely chosen activities and goods), 4 parameters ({θw, θ1, φ1, Φ}) are estimated and 2 are calculated as
the outcome (θ2 = 1− θ1, φ2 = Φ− φ1). Actually, one could only estimate the labor supply given by
Equation (21), but as Jokubauskaitė et al. (2019) has shown, the omission of additional information,
might result in the estimation bias.

Another part of the joint time-use expenditure and discrete mode choice model is logit. This
discrete part can have various specifications. If handled alone, the estimation would follow the
procedure as described in Section “Multinomial logit”. If both blocks should be estimated jointly, the
estimation follows the procedure described in Section “Joint Continuous-Discrete Model”.

MAED Data

The estimation of the joint time-use and discrete choice model requires a lot of information. Data
needed for the continuous part could be retrieved from various Time-Use Surveys (TUS) and Consumer
Expenditure Surveys (CES). Usually, both surveys gather information on different individuals and
in order to estimate the TUM merging would need to be done. The same holds also for the discrete
travel mode choice part, which could be estimated on the National Household Travel Survey (NHTS)
data. To have a full information set needed for the joint estimation, one should combine TUS and CES
and then with NHTS. Such synthesized data might help to get some insight, but will not represent the
population very well. To tackle all the obstacles of such synthesis, Mobility-Activity-Expenditure Diary
(MAED) was designed and presented by Aschauer et al. (2019). It was carried out in Austria in two
waves: spring and autumn of 2015. Gathered information is in agreement with the reported data from
the Austrian Time Use Survey (ATUS) and Austrian Consumer Expenditure Survey (ACES) (Aschauer
et al. (2018)). The most important outcome of MAED is that it provides all the needed information
(time-use, expenditure, travel mode choice) simultaneously for the same individual and no merging of
the data sets is needed. It should be noted that only people with some kind of payed employment
were observed. Hössinger et al. (2020) provides a very detailed summary to all the adjustments done
to the data and Jokubauskaitė et al. (2019) presents a more detailed analysis on the travel mode choice.

The MAED data set has already been used in several studies to estimate various types of value
of time in €/h. Using the mixed logit framework, Schmid et al. (2019) estimated the discrete choice
part and got estimates for the Value of Travel Time Savings (VTTS) for four transport modes: walk,
bike, public transport and car. This indicator shows the opportunity cost of travel. The continuous
block was estimated in Hössinger et al. (2020). As an outcome, the Value of Leisure (VoL) and Value of
Time Assigned to Work (VTAW) were calculated. The VoL represents the marginal utility of all freely
chosen activities and VTAW - of work. The latter one is calculated as a difference between the VoL and
the hourly wage rate. Taking the VTTS information from Schmid et al. (2019), Hössinger et al. (2020)
has also calculated the Value of Time Assigned to Travel (VTAT=VoL-VTTS). This indicator represents
the direct (dis)utility derived from travel time. Both parts were united in the joint estimation present
in Jokubauskaitė et al. (2019) and standard errors for VTAT were reported. In Hössinger et al. (2020)
this was not possible, as the estimates of VoL and VTTS came from two different frameworks.

MAED data allows to tackle and research many different problems. Jokubauskaitė et al. (2019)
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Table 1: Aggregation into modeling variables

Activity Var. Activity Var. Expendirue Var. Expendirue Var.

Work Tw Sleep Tc Leisure E f 1 Insurance Ec
Leisure Tf 1 Domestic Tc Accomm E f 1 Other Ec
Eating Tf 2 Personal Tc Electronic E f 1 Service Ec
Shopping Tf 2 Travel Tc Clothes E f 2 Health Ec
Unspec Tf 2 Education Tc Savings E f 3 Furniture Ec

Other Tc Housing Ec Education Ec
Food Ec Financing Ec
Mobility Ec

noticed the significant difference between VoL for men and women. The main suspect for that
was the time spent at work. According to MAED women spent 9 hr/week less in the paid work
and 8.3 hr/week more in the unpaid work. This was put into test in Jokubauskaitė et al. (2020) by
assigning value to domestic work based on market wage rate for substitute workers (Jokubauskaitė
and Schneebaum, 2021). As a result, previously reported (Hössinger et al., 2020; Jokubauskaitė et al.,
2019, ) gender-specific VoL gap diminished.

In this paper we use only several variables needed for the basic JCDM estimation. Readers can
contact co-author Reinhard Hössinger to get a full access to this rich and innovative data set. Time-Use
and Expenditure data is saved in MAEDtimeExpenditure and the discrete travel mode choice data in
MAEDtravel data sets.

Now we will start the presentation of the MAED data. Summary of the weekly (168 hours) time-use
and expenditure data (MAEDtimeExpenditure object):

w I Tw Tf1 Tf2 Tc Td
12.13592 28.12353 37.83837 28.93532 11.44753 89.77092 14.2629

Ef1 Ef2 Ef3 Ec
79.99244 26.29829 40.02734 332.4444

Average wage rate is 12.14 EUR/h. People spend around 37.84 h/week at work and 14.26 at
domestic work. Situation by gender:

w I Tw Tf1 Tf2 Tc Td
11.50962 28.96125 33.34791 28.08886 11.61352 94.94515 18.41886
12.76391 27.28353 42.34103 29.78408 11.28109 84.58264 10.09565

Ef1 Ef2 Ef3 Ec
66.48772 21.80035 36.29339 270.3211
93.53386 30.80845 43.77144 394.7365

One can clearly see that females work less in the official work (column Tw), but do more unofficial
work (Td). For information on column names see ?MAEDtimeExpenditure, for aggregation of original
data into the modeling variables see Table (1).

Now we look at the travel data ?MAEDtravel needed for the logit estimation. Distribution of chosen
transportation modes total and by gender:

PeGenF chc_1 chc_2 chc_3 chc_4
Total 2326 1036 11910 1855
female 1304 458 5998 921
male 1022 578 5912 934

Here indexes {1, 2, 3, 4} correspond to the four travel modes {walk, bike, car, public transport}.
Other than walking more and using bikes less often, gender-specific differences seem to be absent in
the mode choice data. MAED is strongly dominated by car users, as 69.54 of total trips are done by
car. This might not be a surprise, as this data set includes only workers.

It should be noted that each individual could make more than one trip. Summary of number of
trips made by individuals is presented in the table below:

WeID Min. : 4.00 1st Qu.:17.00 Median :23.00 Mean :23.24 3rd Qu.:28.00 Max. :56.00

In each given situation individual simultaneously chooses vector of time spent in work, on freely
chosen/committed activities, expenditures as well as transport mode. This multidimensional decision
making problem is portrayed in the simplified graphic below. Here each individual i has coordinates
(Twi, Tf i, E f i, Tci, Eci, Trip1, . . . , Tripni ):
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Time-Use and Expenditure Model Estimation

First step is to define equations and parameters that will be estimated:

eq_c <- c(
"Tw ~ ((((PH) + (tw)) * (ta - Tc) + Ec/w * (1 + (tw)) +
sqrt((Ec/w *(1 + (tw)) + (ta - Tc) * ((PH) + (tw)))^2 -
4 * Ec/w * (ta -Tc) * (tw) * (1 + (PH) + (tw))))/(2 *
(1 + (PH) + (tw))))",

"Tf1 ~ (th1) * (ta - (Tw) - Tc)",
"Ef1 ~ (ph1)/(PH) * (w*(Tw) - Ec) ",
"Ef2 ~ (ph2)/(PH) * (w*(Tw) - Ec)")

eq_c[-1] %<>% gsub("Tw", eq_c[1] %>% gsub(".*~", "",.), .)
par_c <- c("tw", "PH", "th1", "ph1", "ph2")

Here we have 2 equations for freely chosen activities ({T f 1}, T f 2 is not estimated) and 3
for freely chosen goods ({E f 1, E f 2}, E f 3 is not estimated). Thus, 5 parameters are estimated
({tw, PH, th1, ph1, ph2} - {θw, Φ, θ1, φ1, φ2}) and the rest can be calculated as: θ2 = 1 − θ1, φ3 =
Φ− φ1 − φ2. These equations are mathematical counterparts of Equation (21)-(23), where Tw expres-
sion is substituted into the rest of the equations.

r_cont <- nmm(data = MAEDtimeExpenditure, eq_c = eq_c, par_c = par_c,
eq_type = "cont")

summary(r_cont)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 22 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -8820.291
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.417160 0.027616 15.106 <2e-16 ***
#> ph1 0.262488 0.017178 15.280 <2e-16 ***
#> ph2 0.085480 0.005866 14.571 <2e-16 ***
#> th1 0.733412 0.004206 174.381 <2e-16 ***
#> tw -0.617428 0.088474 -6.979 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

Parameter tw corresponds to θw from the theoretical model. The negative sign shows that work
has a negative marginal utility (MU). Positive values of PH,ph1,ph2,th1 show that the MU from freely
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chosen activities and goods is positive. These parameter estimates can be further used to get monetary
values of time: value of leisure, value of time assigned to work. For more details on this, please see
Hössinger et al. (2020) and Jokubauskaitė et al. (2019).

Discrete Model for Trip Selection

Now we want to estimate the probability of choosing a specific transport mode. MAEDtravel has 4
alternatives: walk, bike, car, bus. For the estimation with nmm, ones needs to formulate the indirect
utilities for each equation and to define parameter names:

eq_disc <- c("ASC1 + B11_dur * dur_1" ,
"ASC2 + B12_dur * dur_2",
"ASC3 + B13_dur * dur_3 + B20_cost * cost_3",
"ASC4 + B14_dur * vdur_4 + B20_cost * cost_4")

par_d <- c(paste0("ASC", 1:4), paste0("B1", 1:4, "_dur"), "B20_cost")

r_disc <- nmm(MAEDtravel, eq_d = eq_disc, par_d = par_d, eq_type = "disc",
check_hess = FALSE, numerical_deriv = TRUE,
weight_paths = FALSE)

New arguments:

• check_hess - if Hessian matrix should be checked for invertibility in each optimization step.
If set to TRUE, estimation becomes very slow. Nevertheless, this is a good option to have for
situations that are more complicated.

• numerical_deriv - if TRUE, uses numerical derivative instead of the analytical one.
• weight_paths - if TRUE, additional weights are applied to the repeated observations in the

MAEDtravel data. Here it is set to FALSE as we do not want to penalize the log-likelihood based
on the repeated observations.

summary(r_disc)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 11 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -8558.17
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> ASC2 -2.229819 0.073518 -30.330 < 2e-16 ***
#> ASC3 -0.236803 0.063698 -3.718 0.000201 ***
#> ASC4 -2.450802 0.078909 -31.059 < 2e-16 ***
#> B11_dur -0.162260 0.003943 -41.155 < 2e-16 ***
#> B12_dur -0.085414 0.002776 -30.773 < 2e-16 ***
#> B13_dur -0.121708 0.005314 -22.901 < 2e-16 ***
#> B14_dur -0.049332 0.003083 -16.000 < 2e-16 ***
#> B20_cost -0.794256 0.022630 -35.097 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

Duration and cost of a trip has a negative effect on the probability of choosing a specific mode.
The largest negative effect appears to be for walking (-0.16226). The parameters corresponding to the
duration and cost can be further used to calculate value of travel time, which is an important indicator
used in the cost-benefit analysis of transport related projects. For more details on this, please see
Hössinger et al. (2020) and Jokubauskaitė et al. (2019). One can also have a non-linear indirect utility
function in the logit estimation:

eq_disc1 <- c("ASC1 * 1 + B11_dur * dur_1 ** (H_3)" ,
"ASC2 * 1 + B12_dur * dur_2",
"ASC3 * 1 + B13_dur * dur_3 + B20_cost * cost_3",
"ASC4 * 1 + B14_dur * vdur_4 + B20_cost * cost_4")

par_d1 <- c(paste0("ASC", 1:4), paste0("B1", 1:4, "_dur"), "B20_cost", "H_3")
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r_disc1 <- nmm(MAEDtravel, eq_d = eq_disc1, par_d = par_d1, eq_type = "disc",
check_hess = FALSE, numerical_deriv = TRUE,
weight_paths = FALSE)

Joint Estimation

To take into account the simultaneous choice situation, joint estimation is recommended. For this
purpose, two data sets need to be merged.

jdata <- merge(MAEDtimeExpenditure, MAEDtravel)

Model estimation is now a combination from previous steps:

r_joint_BFGS <- nmm(jdata, eq_type = "joint",
eq_c = eq_c, par_c = par_c,
eq_d = eq_disc, par_d = par_d,
weight_paths_cont = TRUE,
weight_paths = FALSE, check_hess = FALSE)

Argument weight_paths_cont is set to TRUE, to apply weights according to the number of repeated
observations in the continuous block. In our case this is needed, as MAEDtimeExpenditure data is
artificially expanded to match the dimension of mode choice data. In other words, each individual has
only one entry in the MAEDtimeExpenditure data, but multiple ones in the MAEDtravel data.

jdata %>% filter(PeID==100) %>%
select("PeID", "WeID", "w", "Tw", "dur_1", "dur_2") %>% head(4)

#> PeID WeID w Tw dur_1 dur_2
#> 1 100 6069 10.53 41 182 86.0
#> 2 100 6074 10.53 41 242 113.5
#> 3 100 6078 10.53 41 260 122.5
#> 4 100 12643 10.53 41 242 113.5

For the sake of comparison, the joint estimation is also performed without inclusion of the inter-
block correlations.

r_no_corr_joint_BFGS <- nmm(jdata, eq_type = "joint", corrl = FALSE,
eq_c = eq_c, par_c = par_c,
eq_d = eq_disc, par_d = par_d,
weight_paths_cont = TRUE,
weight_paths = FALSE, check_hess = FALSE)

summary(r_no_corr_joint_BFGS)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 47 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -17379
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.41706 0.02822 14.78 < 2e-16 ***
#> ph1 0.26213 0.01754 14.95 < 2e-16 ***
#> ph2 0.08504 0.00597 14.26 < 2e-16 ***
#> th1 0.73367 0.00421 174.08 < 2e-16 ***
#> tw -0.61753 0.09046 -6.83 < 2e-16 ***
#> ASC2 -2.22981 0.07186 -31.03 < 2e-16 ***
#> ASC3 -0.23680 0.06250 -3.79 0.00015 ***
#> ASC4 -2.45079 0.07713 -31.78 < 2e-16 ***
#> B11_dur -0.16226 0.00387 -41.90 < 2e-16 ***
#> B12_dur -0.08541 0.00277 -30.79 < 2e-16 ***
#> B13_dur -0.12171 0.00532 -22.89 < 2e-16 ***
#> B14_dur -0.04933 0.00308 -16.01 < 2e-16 ***
#> B20_cost -0.79426 0.02262 -35.11 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

diagnostics(r_no_corr_joint_BFGS, only_total = TRUE)

#> stat eq value
#> 1: RMSE Total 22.6098
#> 2: MAPE Total 51.5218
#> 3: Rx2 Total 0.6008
#> 4: Rx2adj Total 0.5994
#> 5: MisClas Total 9.1201
#> 6: adjMcFadden Total 0.4646
#> 7: McFadden Total 0.4651
#> 8: AIC Total 34783.6536
#> 9: AICc Total 34783.6324
#> 10: BIC Total 34884.3830

summary(r_joint_BFGS)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 293 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -17148
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.43039 0.03335 12.91 < 2e-16 ***
#> ph1 0.20964 0.01654 12.67 < 2e-16 ***
#> ph2 0.08411 0.00684 12.29 < 2e-16 ***
#> th1 0.76543 0.00411 186.09 < 2e-16 ***
#> tw -0.62156 0.10774 -5.77 < 2e-16 ***
#> ASC2 -2.23051 0.07156 -31.17 < 2e-16 ***
#> ASC3 -0.23868 0.06251 -3.82 0.00013 ***
#> ASC4 -2.44977 0.07718 -31.74 < 2e-16 ***
#> B11_dur -0.15975 0.00382 -41.85 < 2e-16 ***
#> B12_dur -0.08506 0.00279 -30.54 < 2e-16 ***
#> B13_dur -0.12477 0.00537 -23.25 < 2e-16 ***
#> B14_dur -0.05028 0.00312 -16.10 < 2e-16 ***
#> B20_cost -0.79227 0.02298 -34.48 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

diagnostics(r_joint_BFGS, only_total = TRUE)

#> stat eq value
#> 1: RMSE Total 24.6409
#> 2: MAPE Total 50.1988
#> 3: Rx2 Total 0.5258
#> 4: Rx2adj Total 0.5242
#> 5: MisClas Total 9.1435
#> 6: adjMcFadden Total 0.4855
#> 7: McFadden Total 0.4861
#> 8: AIC Total 34321.5397
#> 9: AICc Total 34321.5185
#> 10: BIC Total 34422.2691
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There is an improvement in the log-likelihood and the biggest change is observed in the estimation
of parameters from the continuous block. Parameter tw becomes larger in absolute terms and thus the
marginal disutility of work increases. The opposite can be said about the marginal utilities of freely
chosen goods (PH), which increases. Discrete part parameters do not change much.

Most of the optimizers from maxLik package, with an exception of “SANN”, perform local
optimization. Therefore, the optimization sometimes might get stuck on a flat surface. Through our
experience we have seen that this quite often happens with “BFGS” algorithm, which is used by default
in nmm. To override this behavior, user can set argument opt_method="NM" or to a different value. Also,
one can use previously created nmm object in the new estimation, to speed-up the creation of "nmm"
skeleton (log-likelihood, gradient, Hessian functions, starting values). This is done by assigning the
"nmm" object to argument nmm_object = r_joint_BFGS.

r_joint <- nmm(jdata, eq_type="joint",
eq_c=eq_c, par_c=par_c,
eq_d=eq_disc, par_d=par_d,
weight_paths_cont = TRUE,
weight_paths = FALSE, check_hess = FALSE,
opt_method = "NM", miterlim = 1000000,
nmm_object = r_joint_BFGS,
start_v = r_joint_BFGS$estimate)

One could also use the evolutionary global optimization via the Differential Evolution algorithm
(implemented in DEoptim). This would be done by setting argument ‘DEoptim_run_main = TRUE’ and
supplying deconst, which defines the upper and lower bounds of the parameters. By default, DEoptim
is run with 1000 iterations. Afterwards, maxLik is called again with the starting values from DEoptim.

# Caution: this procedure is quite slow!
r_joint_DE <- nmm(jdata, eq_type = "joint", eq_d = eq_disc, eq_c = eq_c,

par_c = par_c, par_d = par_d, weight_paths_cont = TRUE,
weight_paths = FALSE, check_hess = FALSE,
DEoptim_run_main = TRUE,
nmm_object = r_joint, start_v = r_joint$estimate)

summary(r_joint_BFGS)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> BFGS maximization, 293 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -17148
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.43039 0.03335 12.91 < 2e-16 ***
#> ph1 0.20964 0.01654 12.67 < 2e-16 ***
#> ph2 0.08411 0.00684 12.29 < 2e-16 ***
#> th1 0.76543 0.00411 186.09 < 2e-16 ***
#> tw -0.62156 0.10774 -5.77 < 2e-16 ***
#> ASC2 -2.23051 0.07156 -31.17 < 2e-16 ***
#> ASC3 -0.23868 0.06251 -3.82 0.00013 ***
#> ASC4 -2.44977 0.07718 -31.74 < 2e-16 ***
#> B11_dur -0.15975 0.00382 -41.85 < 2e-16 ***
#> B12_dur -0.08506 0.00279 -30.54 < 2e-16 ***
#> B13_dur -0.12477 0.00537 -23.25 < 2e-16 ***
#> B14_dur -0.05028 0.00312 -16.10 < 2e-16 ***
#> B20_cost -0.79227 0.02298 -34.48 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

summary(r_joint)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> Nelder-Mead maximization, 901 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -17146
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.39982 0.02966 13.48 < 2e-16 ***
#> ph1 0.19507 0.01480 13.18 < 2e-16 ***
#> ph2 0.07933 0.00628 12.64 < 2e-16 ***
#> th1 0.76513 0.00410 186.71 < 2e-16 ***
#> tw -0.54371 0.09748 -5.58 < 2e-16 ***
#> ASC2 -2.25849 0.07173 -31.49 < 2e-16 ***
#> ASC3 -0.22831 0.06230 -3.66 0.00025 ***
#> ASC4 -2.41354 0.07688 -31.39 < 2e-16 ***
#> B11_dur -0.15806 0.00379 -41.72 < 2e-16 ***
#> B12_dur -0.08334 0.00276 -30.22 < 2e-16 ***
#> B13_dur -0.12315 0.00535 -23.03 < 2e-16 ***
#> B14_dur -0.04982 0.00311 -16.01 < 2e-16 ***
#> B20_cost -0.78856 0.02288 -34.46 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

There is a slight improvement in the log-likelihood, but it is minimal. r_joint model mirrors a
different world with lower marginal utility of freely chosen goods (PH) and a lower work disutility
(tw). Now let’s compare the results from r_joint and r_joint_DE:
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summary(r_joint)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> Nelder-Mead maximization, 901 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -17146
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.39982 0.02966 13.48 < 2e-16 ***
#> ph1 0.19507 0.01480 13.18 < 2e-16 ***
#> ph2 0.07933 0.00628 12.64 < 2e-16 ***
#> th1 0.76513 0.00410 186.71 < 2e-16 ***
#> tw -0.54371 0.09748 -5.58 < 2e-16 ***
#> ASC2 -2.25849 0.07173 -31.49 < 2e-16 ***
#> ASC3 -0.22831 0.06230 -3.66 0.00025 ***
#> ASC4 -2.41354 0.07688 -31.39 < 2e-16 ***
#> B11_dur -0.15806 0.00379 -41.72 < 2e-16 ***
#> B12_dur -0.08334 0.00276 -30.22 < 2e-16 ***
#> B13_dur -0.12315 0.00535 -23.03 < 2e-16 ***
#> B14_dur -0.04982 0.00311 -16.01 < 2e-16 ***
#> B20_cost -0.78856 0.02288 -34.46 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

summary(r_joint_DE)

#> --------------------------------------------
#> Maximum Likelihood estimation
#> Nelder-Mead maximization, 375 iterations
#> Return code 0: successful convergence
#> Log-Likelihood: -17146
#> free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> PH 0.41022 0.03105 13.21 < 2e-16 ***
#> ph1 0.20056 0.01551 12.93 < 2e-16 ***
#> ph2 0.08161 0.00657 12.43 < 2e-16 ***
#> th1 0.76435 0.00410 186.43 < 2e-16 ***
#> tw -0.57953 0.10250 -5.65 < 2e-16 ***
#> ASC2 -2.29009 0.07176 -31.91 < 2e-16 ***
#> ASC3 -0.23908 0.06226 -3.84 0.00012 ***
#> ASC4 -2.44211 0.07697 -31.73 < 2e-16 ***
#> B11_dur -0.15841 0.00380 -41.64 < 2e-16 ***
#> B12_dur -0.08163 0.00271 -30.09 < 2e-16 ***
#> B13_dur -0.12175 0.00531 -22.93 < 2e-16 ***
#> B14_dur -0.04818 0.00308 -15.64 < 2e-16 ***
#> B20_cost -0.78128 0.02270 -34.41 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> --------------------------------------------

One again gets a different set of parameters, but the differences are minimal. Model without the
inter-block correlations is the worst according to the Akaike’s Information Criterion and the global
optimization performed with DEoptim finds the best model.

Model w/o corr, BFGS w/ corr, BFGS w/ corr, NM w/ corr, DE
AIC 34783.65364 34321.53972 34318.91568 34317.86246

All these different optimization options might be helpful to push the optimizer from the local
optimum. The new solution might not only be better with respect to the log-likelihood, but will
generate a different set of parameters, which in their turn will result in different estimators of value of
time.

Conclusions

Estimation of linear models is widely used and well established in the R environment. On the other
hand, not many possibilities exist to estimate the nonlinear systems of equations. nmm package
extends the already existing family of packages that estimate systems of nonlinear regressions (SNR,
systemfit) and logit models (mlogit, mnlogit, MNP, nnet). What is more, it uniquely allows factoring
in the correlations between these two types of systems by employing the framework proposed in Lee
(1983).

For the robustness checks, estimation of separate blocks with nmm was tested and compared to
systemfit and mlogit packages. This was done using MathPlacement data set from Stat2Data. All
packages produce comparable results. No comparison of the joint estimation could be done, as other
packages are not suitable for the joint estimation.

nmm provides several advancements over systemfit and mlogit. Firstly, it allows to calculate
“robust” and “robust-clustered” standard errors. Secondly, estimation of system of nonlinear regres-
sions (SNR) is extended to include the maximum likelihood estimation. Also, with nmm user can
get a nice looking summary from the results of SNR estimation. Finally, models can be compared
according to a wide range of goodness-of-fit measures (R2, BIC, AIC, AICc) as well as to different
types of pseudo R2s (McFadden, adjusted McFadden, Cox&Snell, Nagelkerke). nmm also includes
the usage of global optimization via the differential evolution algorithm (DEoptim). What is more,
package nmm uniquely produces analytical versions of gradient and the Hessian functions, that can
be used in the gradient based optimization. This might speed-up the optimization in some cases.

To sum up, the nmm package can be seen as an evolution of the nonlinear multivariate models
estimation in the R environment. It allows a flexible design of logit and SNR, a unique modeling
of correlations between continuous and discrete equations, and the perks of global optimization
(DEoptim) in the ML framework.
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addInter Add interactions

Description

addInter add interactions into continuous equations.

Usage

addInter(eqcont, par_c, intv, inter_parl)
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Arguments

eqcont Vector of strings containing equations.
par_c Names of coefficients.
intv Vector of integers corresponding to coefficients to which interactions should be

added.
inter_parl Names of new coefficients (interactions).

Value

list: 1 - expressions of errors, equations, parameters to estimate

Examples

eq_c <- c("Tw ~ tw*w + ph1*Tc", "Tf1 ~ (1+w)^tw + ph1^3*Tc")
parl <- c("tw", "ph1")
intv <- c(1,0)
inter_parl <- c('yytw','yyph1')
res <- addInter(eq_c, parl, intv, inter_parl)

add_variable add_variable adds columns to the data matrix

Description

add_variable adds columns to the data matrix

Usage

add_variable(data = data, dname = "chc", weights = NULL)

Arguments

data data.frame, if dname=="chc" columns "chc_i" has to be in the data.
dname if dname=="chc" (dummy for chosen alternative) dummy for the choice alterna-

tive added, if "weights" weights added
weights Matrix with weights to be added to the data

Value

data.frame

Examples

chc <- c(1,2,1,4,3,1,4)
data <- data.frame(choice=chc, x=rnorm(length(chc)), y=rnorm(length(chc)))
add_variable(data, dname="chc")
ww <- c(1,1,1,2,2,2,3)
add_variable(data, dname="weights", weights=ww)
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AICc Adjusted Akaike’s Information Criterion.

Description

Calculates adjusted and Bayesian Information Criterion for nmm object

Usage

AICc(object, ..., k = 2)

## S3 method for class 'nmm'
AICc(object, ..., k = 2)

## Default S3 method:
AICc(object, ..., k = 2)

## S3 method for class 'nmm'
BIC(object, ..., k = 2)

Arguments

object Fitted nmm model.

... Not used.

k Multiplication factor.

Value

a numeric value with the corresponding AIC, AICc, BIC.

Examples

library(systemfit)
data( ppine , package="systemfit")
hg.formula <- hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)
dg.formula <- dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)
labels <- list( "height.growth", "diameter.growth" )
model <- list( hg.formula, dg.formula )
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
model.sur <- nlsystemfit( "SUR", model, start.values, data=ppine, eqnlabels=labels )
eq_c <- as.character(c(hg.formula, dg.formula))
parl <- c(paste0("h", 0:3),paste0("d", 0:3))
res <- nmm(ppine, eq_c=eq_c, start_v=start.values, par_c=parl,
eq_type = "cont", best_method = FALSE)
aa <- in2nmm(res, model.sur$b)
AICc(res)
AICc(aa)
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AIC(res)
AIC(aa)
BIC(res)
BIC(aa)

cond_expr cond_expr returns moments of conditional multivariate normal dis-
tribution X|Y (last variable is dependent). Only expression for X|Y.
Requires installation of Maxima software.

Description

cond_expr returns moments of conditional multivariate normal distribution X|Y (last variable is
dependent). Only expression for X|Y. Requires installation of Maxima software.

Usage

cond_expr(neq, sdv, mv, nconteq = neq - 1, tex = FALSE)

Arguments

neq Number of equations/variables.

sdv Vector of standard deviation of normally distributed variables, e.g. c(NA, NA,
NA, 1) NA - unknown, any number - know.

mv Vector of means of normally distributed variables, e.g. rep(0, 4).

nconteq Number of continuous equations.

tex i if TRUE TeX expressions from wxMaxima are returned.

Value

List of strings. First element is an expression of conditional mean and covariance. The second
element is a TeX formula.

Examples

# this means that E[y3|y1,y2] and V[y3|y1,y2] will be returned
# all continuous w/ unknown means
## Not run:
# To run this, one needs to install Maxima software
res <- cond_expr(neq=3)
# 3 continuous w/ unknown means and the last one with mean 0 and sd 1, d|c1c2c3
res <- cond_expr(neq=4, sdv=c(NA, NA, NA, 1), mv=c(NA, NA, NA, 0))
# 2 continuous w/ unknown means and 2 discrete with mean 0 and sd 1, d1|c1c2c3d2
res <- cond_expr(neq=4, sdv=c(NA, NA, 1, 1), mv=c(NA, NA, 0, 0), nconteq=2)

## End(Not run)
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cont_stats Goodness of fit measures

Description

Calculate RMSE, MAPE, R^2 and adjusted R^2

Usage

cont_stats(
x,
which = c("all", "RMSE", "MAPE", "Rx2", "Rx2adj"),
only_total = FALSE

)

Arguments

x Fitted nmm model.

which What to calculate. Options: "all", "RMSE", "MAPE", "Rx2", "Rx2adj".

only_total If TRUE, calculate statistics only for totals.

Value

matrix with Goodness of fit measures

Examples

library(systemfit)
data(ppine , package="systemfit")
hg.formula <- hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)
dg.formula <- dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)
labels <- list( "height.growth", "diameter.growth" )
model <- list( hg.formula, dg.formula )
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
model.sur <- nlsystemfit( "SUR", model, start.values, data=ppine, eqnlabels=labels )
eq_c <- as.character(c(hg.formula, dg.formula))
parl <- c(paste0("h", 0:3),paste0("d", 0:3))
res <- nmm(ppine, eq_c=eq_c, start_v=start.values, par_c=parl,
eq_type = "cont", best_method = FALSE)
cont_stats(res, which = "all")
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convert_attr2exp convert_attr2exp converts symbolic attribute of derivative into ex-
pression object.

Description

convert_attr2exp converts symbolic attribute of derivative into expression object.

Usage

convert_attr2exp(obj)

Arguments

obj Symbolic expression of gradient or hessian

Value

combine expression of derivatives

Examples

eq1 <- parse(text="2*(log(sin(x)/log(x)))+x^4*log(x)+cos(y+x)")
tt1 <- deriv(eq1, c("x", "y"), hessian=TRUE)
r1 <- convert_attr2exp(extract_attr_deriv(tt1, "grad"))
r2 <- convert_attr2exp(extract_attr_deriv(tt1, "hessian"))

dat4cond_mean_cov_expr

Log-likelihood expressions for cont. equations plus 1 discrete

Description

Log-likelihood expressions for cont. equations plus 1 discrete

Usage

data(dat4cond_mean_cov_expr)

Format

An object of class list of length 4.

Examples

data(dat4cond_mean_cov_expr)
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dataM Example dataset

Description

Data "MathPlacement" taken from Stat2Data package.

Usage

data(dataM)

Format

A data frame containing:

Student Identification number for each student

Gender 0=Female, 1=Male

PSATM PSAT score in Math

SATM SAT score in Math

ACTM ACT Score in Math

Rank Adjusted rank in HS class

Size Number of students in HS class

GPAadj Adjusted GPA

PlcmtScore Score on math placement exam

Recommends Recommended course: R0 R01 R1 R12 R2 R3 R4 R6 R8

Course Actual course taken

Grade Course grade

RecTaken 1=recommended course, 0=otherwise

TooHigh 1=took course above recommended, 0=otherwise

TooLow 1=took course below recommended, 0=otherwise

CourseSuccess 1=B or better grade, 0=grade below B

DR_Course according to recommendations, which level of course was taken: alow - lower, bnor-
mal - recommended, chigh - higher

Details

Code for data modifications can be found in the example section.
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Examples

data(dataM)
library(magrittr)
library(dplyr)
if (requireNamespace("recipes", quietly = TRUE)&requireNamespace("Stat2Data", quietly = TRUE)) {
data("MathPlacement", package="Stat2Data")
head(MathPlacement)
library(recipes)
# As some of the data is missing, k-nearest neighbors (knn) imputation is
# used to fill the gaps. This is done with recipes package and function
# step_knnimpute.
dataM <- recipe(~ ., data = MathPlacement) %>%
step_knnimpute(everything()) %>% prep() %>% juice()
# Afterwards we create a categorical variable that will show whether a
# student took a course which was too high, too low, the recommended one or
# something else happened:
dataM %<>% mutate(Student = 1:n(), DR_Course = case_when(
TooHigh == 1 ~ "chigh",
TooLow == 1 ~ "alow",
RecTaken == 1 ~ "bnormal",
TRUE ~"dother"
))
# We remove observations with ambiguous course status:
dataM %<>% filter(DR_Course!="dother")
dataM %>% select(DR_Course) %>% table %>% t
}

datmaxle Log-likelihood expressions for cont. equations

Description

Log-likelihood expressions for cont. equations

Usage

data(datmaxle)

Format

An object of class list of length 4.

Examples

data(datmaxle)
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datmlsem Log-likelihood expressions for cont. equations sem

Description

Log-likelihood expressions for cont. equations sem

Usage

data(datmlsem)

Format

An object of class list of length 4.

Examples

data(datmlsem)

diagnostics Goodness of fit measures for both parts

Description

Calculation RMSE, misclassification and other goodness of fit measures.

Usage

diagnostics(
x,
xdigit = 4,
which = "all",
only_total = FALSE,
cPseudoR = TRUE,
cRs = TRUE

)

Arguments

x Fitted nmm model.

xdigit rounding number

which What to calculate. Options: "all", "RMSE", "MAPE", "Rx2", "Rx2adj".

only_total If TRUE, calculate statistics only for the whole system

cPseudoR If TRUE, calculate pseudo R^2s.

cRs Include "AIC", "AICc", "BIC"
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Value

matrix with goodness of fit measures. attribute corr holds empirical variance-covariance matrix.

Examples

library(systemfit)
data( ppine , package="systemfit")
hg.formula <- hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)
dg.formula <- dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)
labels <- list( "height.growth", "diameter.growth" )
model <- list( hg.formula, dg.formula )
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
model.sur <- nlsystemfit( "SUR", model, start.values, data=ppine, eqnlabels=labels )
eq_c <- as.character(c(hg.formula, dg.formula))
parl <- c(paste0("h", 0:3),paste0("d", 0:3))
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
res <- nmm(ppine, eq_c=eq_c, start_v=start.values, par_c=parl, eq_type = "cont",
best_method = FALSE)
ressur <- in2nmm(res, new_coef=model.sur$b)
diagnostics(res)
diagnostics(ressur)

#example discrete
library(mlogit)
data("Fishing", package = "mlogit")
Fish <- mlogit.data(Fishing, varying = c(2:9), shape = "wide", choice = "mode")
## a pure "conditional" model
mres <- summary(mlogit(mode ~ price + catch, data = Fish))
data <- prepare_data(Fish %>% data.frame %>% dplyr::select(-idx),
choice="alt", dummy="mode", PeID="chid", mode_spec_var = c("price", "catch"),
type="long")
eq_d <- c("a1 + p1 * price_1 + p2 * catch_2", "a2 + p1 * price_2 + p2 * catch_2",

"a3 + p1 * price_3 + p2 * catch_3", "a4 + p1 * price_4 + p2 * catch_4")
par_d <- c(paste0("a", 1:4), paste0("p", 1:2))
res <- nmm(data, eq_d=eq_d, par_d=par_d, eq_type="disc")
ncoef <- mres$coefficients
names(ncoef) <- par_d[-1]
resdisc <- in2nmm(res, new_coef = ncoef)
a <- diagnostics(res, xdigit=2)
a2 <- diagnostics(resdisc)
attributes(a2)$corr

expr_ll_norm Log-likelihood expressions for cont. equations

Description

Log-likelihood expressions for cont. equations
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Usage

data(expr_ll_norm)

Format

An object of class list of length 8.

Examples

data(expr_ll_norm)

expr_ll_norm_v2 Another Log-likelihood expressions for cont. equations version 2

Description

Another Log-likelihood expressions for cont. equations version 2

Usage

data(expr_ll_norm_v2)

Format

An object of class list of length 8.

Examples

data(expr_ll_norm_v2)

extract_attr_deriv extract_attr_deriv converts attributes(hessian/gradient) of
deriv() into a matrix of character strings.

Description

extract_attr_deriv converts attributes(hessian/gradient) of deriv() into a matrix of character
strings.

Usage

extract_attr_deriv(ex, attribute)

Arguments

ex Expression of derivative. Results of deriv().

attribute "grad" for gradient or "hessian" for the Hessian matrix.
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Value

Returns a matrix of character strings.

Examples

eq <- parse(text="2*(log(sin(x)/log(x)))+x^4*log(x)+cos(y+x)")
tt <- deriv(eq, c("x", "y"), hessian=TRUE)
g <- tt%>%extract_attr_deriv(., attribute = "grad")
h <- tt%>%extract_attr_deriv(., attribute = "hessian")

formula2string formula2string removes square brackets from the supplied expres-
sions. Convert par[2] -> par2, sigma[2] -> sigma_2_, sigma[2,3] ->
sigma_2x2

Description

formula2string removes square brackets from the supplied expressions. Convert par[2] -> par2,
sigma[2] -> sigma_2_, sigma[2,3] -> sigma_2x2

Usage

formula2string(x)

Arguments

x String with square brackets.

Value

String without square brackets.

Examples

xx <- "par[1]*3+par[2]*par+rho1[1,2]+sigma1[2]"
formula2string(xx)
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f_create f_create creates functions for log-likelihood of different models.

Description

f_create creates functions for log-likelihood of different models.

Usage

f_create(
mn,
data,
fixed = 0,
cheqs0 = NULL,
separatenmm = FALSE,
probt = NULL,
tformula = NULL,
hessian = NULL,
transform = TRUE,
sume = NULL

)

Arguments

mn Expression, can be a list of equations.

data Name of the data frame with which the function will be evaluated.

fixed Integer, which parameter is fixed to be 0.

cheqs0 If continuous are supplied, include the expressions of errors.

separatenmm if TRUE, separate log-likelihood for each equations is produced.

probt Expressions of un-simplified probabilities with quantile transformation(qnorm(ifelse(P))).

tformula unsimplified log(P)

hessian Adds lines to check the Hessian, hessian should be the name of hessian function.

transform if TRUE, adds lines to check conditional means

sume Expression of summed likelihoods.

Value

Function.
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Examples

eq_d <- c("ASC1 * 1 + B11_dur * dur_1" , "ASC2 * 1 + B12_dur * dur_2",
"ASC3 * 1 + B13_dur * dur_3 + B20_cost * cost_3 + B53_parkman * PbAvl_3",
"ASC4 * 1 + B14_dur * dur_4 + B20_cost * cost_4 + B34_serv * servIdx_4 + B44_stop * stopUs1R1_4")
parl <- c(paste0("ASC", 1:4), paste0("B1", 1:4, "_dur"), "B20_cost", "B53_parkman", "B34_serv",
"B44_stop")
obj <- get_par(parl, eq_d)
ffor <- obj$cheqs0
res <- MNlogitf(ffor, separatenmm=FALSE, transform=FALSE)
ff <- f_create(res$formula, data="data", fixed=1)

get_npar get_npar Get number of parameters or vector of parameters in sup-
plied equations. Extracts the number of parameters used in equations.
Parameters are given as par[1], ..., par[n].

Description

get_npar Get number of parameters or vector of parameters in supplied equations. Extracts the
number of parameters used in equations. Parameters are given as par[1], ..., par[n].

Usage

get_npar(x, values = FALSE)

Arguments

x List of strings.

values if TRUE returns the character vector with parameters (par[i]).

Value

Number of parameters or vector with parameters (in form par[i]).

Examples

eq_d <- c("ASC1 * 1 + B11_dur * dur_1" , "ASC2 * 1 + B12_dur * dur_2",
"ASC3 * 1 + B13_dur * dur_3 + B20_cost * cost_3 + B53_parkman * PbAvl_3",
"ASC4 * 1 + B14_dur * dur_4 + B20_cost * cost_4 + B34_serv * servIdx_4 + B44_stop * stopUs1R1_4")
parl <- c("ASC1", "B11_dur", "ASC2", "B12_dur", "ASC3", "B13_dur", "B20_cost", "B53_parkman",
"ASC4", "B14_dur", "B20_cost", "B34_serv", "B44_stop") %>% unique
disc_par <- get_par(parl, eq_d)
get_npar(disc_par$cheqs0)
get_npar(disc_par$cheqs0, values=TRUE)
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get_par get_par replaces names of parameters with par[i].

Description

get_par replaces names of parameters with par[i].

Usage

get_par(par, object)

Arguments

par Names of parameters, vector of character strings.

object List consisting formulas.

Value

A list object consisting of equations for errors with par[i] (cheqs0), the original list with formulas
(eqlab), vector of parameters (parld, same as par), vector of parameters in form of par[i] (parn,
exogenous variables (exog), endogenous variables (endog, in case of discrete ""), number of pa-
rameters in each equation (neq_par).

Examples

# System of Non-linear Regressions
eq_c <- c("hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)",
"dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)")
par_c <- c(paste0("h", 0:3),paste0("d", 0:3))
para_cont <- get_par(par_c, eq_c)
# Indirect utility functions for discrete choice:
eq_d <- c("a1 + p1 * price_1 + p2 * catch_2", "a2 + p1 * price_2 + p2 * catch_2",
"a3 + p1 * price_3 + p2 * catch_3", "a4 + p1 * price_4 + p2 * catch_4")
par_d <- c(paste0("a", 1:4), paste0("p", 1:2))
disc_par <- get_par(par_d, eq_d)

get_start get_start get starting values for discrete or continuous choice
model.

Description

get_start get starting values for discrete or continuous choice model.
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Usage

get_start(
eq_c = NULL,
eq_d = NULL,
data = NULL,
part = "joint",
datan = "data",
fixed_term = FALSE,
weight_paths = TRUE,
weight_paths_cont = FALSE,
data_weight = NULL,
par_c = NULL,
par_d = NULL,
best_method = FALSE,
startvals = NULL,
DEoptim_run = FALSE,
hessian = NULL,
transform = TRUE,
MNtypef = "logit",
pardogit = NULL,
opt_method = "BFGS",
numerical_deriv = FALSE

)

Arguments

eq_c Continuous equations errors.

eq_d Discrete equations.

data data.frame is used in the optimization.

part Type of estimation: "joint", "cont", "disc".

datan Name of data.frame used in the optimization.

fixed_term if TRUE, includes fixed term in log-likelihood.

weight_paths if TRUE, weights paths of the whole system.
weight_paths_cont

if TRUE, weight paths only in continuous part.

data_weight data.frame with weights for continuous and discrete equations, same dim as
data.

par_c Names of parameters in continuous equations.

par_d Names of parameters in discrete equations.

best_method if TRUE, try all possible optimization methods and choose the one with the small-
est likelihood.

startvals Starting values, can be also NULL.

DEoptim_run if TRUE, runs DEoptim for the optimization.

hessian Name of hessian function.
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transform if TRUE, quantile transformation is applied.

MNtypef "dogit" or "logit".

pardogit "dogit" parameters.

opt_method optimization method to use.
numerical_deriv

if TRUE, numerical derivatives are calculated in nmm function

Value

Starting values for discrete or continuous blocks.

Examples

# Example of discrete choice model
data("TravelMode", package = "AER")
eq_d <- c("ASC1 * 1 + B2_t * travel_1 + B3_v * vcost_1" ,

"ASC2 * 1 + B2_t * travel_2 + B3_v * vcost_2",
"ASC3 * 1 + B2_t * travel_3 + B3_v * vcost_3",
"ASC4 * 1 + B2_t * travel_4 + B3_v * vcost_4")

parl <- c(paste0("ASC", 1:4), "B2_t", "B3_v")
obj <- get_par(parl, eq_d)

mode_spec_var <- c("wait", "vcost", "travel", "gcost")
data <- TravelMode
data$wait <- as.numeric(data$wait)
data[data$wait==0,"wait"] <- 0.000001 # add a small number to 0
data$travel <- as.numeric(data$travel)
data[data$travel==0,"travel"] <- 0.000001
data$vcost <- as.numeric(data$vcost)
data[data$vcost==0,"vcost"] <- 0.000001
data <- prepare_data(data, choice="mode", dummy="choice", PeID="individual", WeID="",
type="long", mode_spec_var =mode_spec_var, wc=FALSE)
stv <- get_start(eq_d=eq_d, data=data, datan="data", part="disc", par_d = parl,
transform = FALSE)

#example, system of equations
data("CreditCard", package="AER")
cdat <- CreditCard
cdat$income2 <- cdat$income^2
cdat$d_selfemp <- as.numeric(cdat$selfemp)
eq_c <- c("expenditure ~ b1*age + b2*income + b3*income2",
"income ~ a1*age + a2*d_selfemp + a3*dependents + a4*majorcards")
parl <- c(paste0("b", 1:3), paste0("a", 1:4))
para_cont <- get_par(parl, eq_c)
cheqs0 <- para_cont$cheqs0

stv <- get_start(eq_c = eq_c, data=cdat, datan="cdat", part="cont", par_c=parl)
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grad_hess_eval grad_hess_eval forms function of gradient and Hessian of log-
likelihood produced by f_create.

Description

grad_hess_eval forms function of gradient and Hessian of log-likelihood produced by f_create.

Usage

grad_hess_eval(mn, parnl, hessian = FALSE, fixed = 0, data = "", cheqs0 = NULL)

Arguments

mn Expression, can be a list of equations.

parnl Names of parameters.

hessian if TRUE, returns hessian function, otherwise gradient.

fixed Integer, which parameter is fixed to be 0.

data Name of the data frame with which the function will be evaluated.

cheqs0 If continuous are supplied, include the expressions of errors.

Value

A function for evaluation of gradient or Hessian.

Examples

eq_d <- c("ASC1 * 1 + B11_dur * dur_1" , "ASC2 * 1 + B12_dur * dur_2",
"ASC3 * 1 + B13_dur * dur_3 + B20_cost * cost_3 + B53_parkman * PbAvl_3",
"ASC4 * 1 + B14_dur * dur_4 + B20_cost * cost_4 + B34_serv * servIdx_4 + B44_stop * stopUs1R1_4")
parl <- c(paste0("ASC", 1:4), paste0("B1", 1:4, "_dur"), "B20_cost", "B53_parkman", "B34_serv",
"B44_stop")

disc_par <- get_par(parl, eq_d)
ffor <- disc_par$cheqs0
parld <- disc_par$parld
res <- MNlogitf(ffor, separatenmm=FALSE, transform=FALSE)
parnl <- paste0("par", 1:length(parld))
gf <- grad_hess_eval (res, parnl, data="data", fixed=1)
hf <- grad_hess_eval (res, parnl, data="data", fixed=1, hessian=TRUE)
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in2nmm in2nmm convert some estimation results into nmm object.

Description

in2nmm convert some estimation results into nmm object.

Usage

in2nmm(to, new_coef)

Arguments

to nmm object.

new_coef New coefficients.

Value

nmm object.

Examples

#example continuous nonlinear
library(systemfit)
data( ppine , package="systemfit")
hg.formula <- hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)
dg.formula <- dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)
labels <- list( "height.growth", "diameter.growth" )
model <- list( hg.formula, dg.formula )
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
model.sur <- nlsystemfit( "SUR", model, start.values, data=ppine, eqnlabels=labels )
eq_c <- as.character(c(hg.formula, dg.formula))
parl <- c(paste0("h", 0:3),paste0("d", 0:3))
res <- nmm(ppine, eq_c=eq_c, start_v=start.values, par_c=parl, eq_type = "cont",
best_method = FALSE)
aa <- in2nmm(res, model.sur$b)
summary(res, new_coef=model.sur$b, type="robust")
summary(aa, type="robust")
summary(res, type="robust")
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logLik.nmm Log-likelihood(LL) with supplied coefficients.

Description

Log-likelihood(LL) with supplied coefficients.

Usage

## S3 method for class 'nmm'
logLik(

object,
new_coef = NULL,
separatenmm = FALSE,
transform = FALSE,
methodopt = "NA",
...

)

Arguments

object Object of class nmm.

new_coef "New" coefficients for which LL should be calculated.

separatenmm if TRUE, returns separate LL for each equation.

transform if TRUE, do quantile transformation (normal quantiles).

methodopt "NA" means that automatic algorithm was used in maxLik, if equal to "BHHH"
will return LL for each individual.

... some methods for this generic function require additional arguments.

Value

Returns log-likelihood.

Examples

#example continuous nonlinear
library(systemfit)
data( ppine , package="systemfit")
hg.formula <- hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)
dg.formula <- dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)
labels <- list( "height.growth", "diameter.growth" )
model <- list( hg.formula, dg.formula )
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
model.sur <- nlsystemfit( "SUR", model, start.values, data=ppine, eqnlabels=labels )
eq_c <- as.character(c(hg.formula, dg.formula))
parl <- c(paste0("h", 0:3),paste0("d", 0:3))
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res <- nmm(ppine, eq_c=eq_c, start_v=start.values, par_c=parl, eq_type = "cont",
best_method = FALSE)

logLik(res)
logLik(res, new_coef=res$estimate)
logLik(res, new_coef=model.sur$b)
#example discrete
library(mlogit)
data("Fishing", package = "mlogit")
Fish <- mlogit.data(Fishing, varying = c(2:9), shape = "wide", choice = "mode")
## a pure "conditional" model
mres <- summary(mlogit(mode ~ price + catch, data = Fish))
data <- prepare_data(Fish %>% data.frame %>% dplyr::select(-idx),
choice="alt", dummy="mode", PeID="chid", mode_spec_var = c("price", "catch"),
type="long")
eq_d <- c("a1 + p1 * price_1 + p2 * catch_2", "a2 + p1 * price_2 + p2 * catch_2",

"a3 + p1 * price_3 + p2 * catch_3", "a4 + p1 * price_4 + p2 * catch_4")
par_d <- c(paste0("a", 1:4), paste0("p", 1:2))
res <- nmm(data, eq_d=eq_d, eq_type="disc", fixed_term=FALSE, par_d=par_d,
best_method=FALSE)
logLik(res)
logLik(res, new_coef=res$estimate)
logLik(res, new_coef=mres$coefficients)

MAEDtimeExpenditure Time-use and expenditure dataset

Description

Data gathered in Austria in 2015 according to Mobility-Activity-Expenditure-Dairy (MAED), which
reported all trips, activities (time use) and expenditures of 737 persons over a whole week

Usage

data(MAEDtimeExpenditure)

Format

A data frame containing:

PeID individual index

PeGenF gender of the individual

PeAge age in years

PeEduc education level

PeEmploy employment state

HhCh type of household: with children or without children

w hourly wage rate, EUR/h

I income not realted to work, EUR/week
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Tw time spent at work, h/week

Tf1 freely chosen activities group 1 (leisure), h/week

Tf2 freely chosen activities group 2 (eating, shopping, unspecified), h/week

Tc time spent on committed activities (sleep, domestic work, personal care, travel, education,
other), h/week

Ef1 freely chosen expenditure group 1 (leisure, accommodation, electronics), EUR/week

Ef2 freely chosen expenditure group 2 (clothes), EUR/week

Ef3 freely chosen expenditure group 3 (savings), EUR/week

Ec committed expenditures (housing, food, mobility, insurance, other, services, health, furniture,
education, financing), EUR/week

ta total time budget = 168 h/week

Td time spent on domestic chores, h/week. Td is part of Tc.

Details

Time and expenditure data correspond to weekly totals. Time in hours and expenditure in EUR.

For more on data collection and description see (Aschauer et al. 2018) and (Aschauer et al. 2019).

A variant of this dataset was used in: (Schmid et al. 2019),(Jokubauskaite et al. 2019) and
(Hoessinger et al. 2020).

To get the full dataset please contact r.hoessinger@boku.ac.at.

References

Aschauer F, Roesel I, Hoessinger R, Kreis BH, Gerike R (2019). “Time use, mobility, expenditure:
An innovative survey design for understanding individual trade-off processes.” Transportation, 46,
307–339. doi: 10.1007/s1111601899619.

Aschauer F, Hoessinger R, Axhausen KW, Schmid B, Gerike R (2018). “Implications of survey
methods on travel and non-travel activities. A comparison of the Austrian national travel survey
and an innovative mobility-activity-expenditure diary (MAED).” European Journal of Transport
and Infrastructure Research, 18, 4–35. doi: 10.3929/ethzb000181072.

Hoessinger R, Aschauer F, Jara-Diaz S, Jokubauskaite S, Schmid B, Peer S, Axhausen KW, Gerike
R (2020). “A joint time-assignment and expenditure-allocation model: value of leisure and value of
time assigned to travel for specific population segments.” Transportation, 47, 1439–1475. doi: 10.1007/
s1111601910022w.

Jokubauskaite S, Hoessinger R, Aschauer F, Gerike R, Jara-Diaz S, Peer S, Schmid B, Axhausen
KW, Leisch F (2019). “Advanced continuous-discrete model for joint time-use expenditure and
mode choice estimation.” Transportation Research Part BMethodological., 129, 397–421. doi: 10.1016/
j.trb.2019.09.010, https://www.sciencedirect.com/science/article/pii/S0191261518308245.

Schmid B, Jokubauskaite S, Aschauer F, Peer S, Hoessinger R, Gerike R, Jara-Diaz SR, Axhausen
KW (2019). “A pooled RP/SP mode, route and destination choice model to investigate mode
and user-type effects in the value of travel time savings.” Transportation Research Part APolicy
and Practice, 124, 262–294. doi: 10.1016/j.tra.2019.03.001, https://www.sciencedirect.com/
science/article/pii/S0965856418301721.
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Examples

data(MAEDtimeExpenditure)

MAEDtravel Trip dataset

Description

Data gathered in Austria in 2015 according to Mobility-Activity-Expenditure-Dairy (MAED), which
reported all trips, activities (time use) and expenditures of 737 persons over a whole week.

Usage

data(MAEDtravel)

Format

A dataframe containing:

PeID individual index

PeGenF gender of the individual

PeAge age in years

PeEduc education level

PeEmploy employment state

HhCh type of household: with children or without children

WeID trip index

choice chosen mode: 1 - walk, 2 - bike, 3 - car, 4 -public transport (PT)

dist trip distance, km

avl_1 availability dummy for mode 1, walk

avl_2 availability dummy for mode 2, bike

avl_3 availability dummy for mode 3, car

avl_4 availability dummy for mode 4, PT

chc_1 choice dummy for mode 1, walk

chc_2 choice dummy for mode 2, bike

chc_3 choice dummy for mode 3, car

chc_4 choice dummy for mode 4, PT

cost_3 cost of car mode

cost_4 cost of PT mode

dur_1 trip duration with mode 1, minutes

dur_2 trip duration with mode 2, minutes

dur_3 trip duration with mode 3, minutes
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vdur_4 in vehicle time mode 4, minutes

acc_4 time to stop or from stop for mode 4, minutes

HhCarPark dummy, car parking at home available

JobCarPark dummy,car parking at workplace available

PbAvl_3 dummy, ar parking restrictions (time and/or cost) in-force at the destination of the trip

servIdx_4 public transport service interval in minutes

stopUs1R1_4 necessary number of changes to reach the destination with public transport

leis trip purpose leisure, effect coding

work trip purpose work, effect coding

oth trip purpose other, effect coding

int_1 inertia for mode 1

int_2 inertia for mode 2

int_3 inertia for mode 3

int_4 inertia for mode 4

Details

For more on data collection and description see (Aschauer et al. 2019) and (Aschauer et al. 2018).

A variant of this dataset was used in: (Schmid et al. 2019), (Jokubauskaite et al. 2019) and
(Hoessinger et al. 2020).

To get the full dataset please contact r.hoessinger@boku.ac.at.

Transport modes available: walk, bike, car, public transport (PT). The inertia variable (int_i) is a
dummy, which is equal to one if the mode chosen by a person for a trip at the start of the current tour
is the same as the one chosen in the previous tour made for the same purpose, and zero otherwise.
Variables for trip purpose (leis, work, oth) were created using the effect coding.

References

Aschauer F, Hoessinger R, Axhausen KW, Schmid B, Gerike R (2018). “Implications of survey
methods on travel and non-travel activities. A comparison of the Austrian national travel survey
and an innovative mobility-activity-expenditure diary (MAED).” European Journal of Transport
and Infrastructure Research, 18, 4–35. doi: 10.3929/ethzb000181072.

Aschauer F, Roesel I, Hoessinger R, Kreis BH, Gerike R (2019). “Time use, mobility, expenditure:
An innovative survey design for understanding individual trade-off processes.” Transportation, 46,
307–339. doi: 10.1007/s1111601899619.

Hoessinger R, Aschauer F, Jara-Diaz S, Jokubauskaite S, Schmid B, Peer S, Axhausen KW, Gerike
R (2020). “A joint time-assignment and expenditure-allocation model: value of leisure and value of
time assigned to travel for specific population segments.” Transportation, 47, 1439–1475. doi: 10.1007/
s1111601910022w.

Jokubauskaite S, Hoessinger R, Aschauer F, Gerike R, Jara-Diaz S, Peer S, Schmid B, Axhausen
KW, Leisch F (2019). “Advanced continuous-discrete model for joint time-use expenditure and
mode choice estimation.” Transportation Research Part BMethodological., 129, 397–421. doi: 10.1016/
j.trb.2019.09.010, https://www.sciencedirect.com/science/article/pii/S0191261518308245.
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Schmid B, Jokubauskaite S, Aschauer F, Peer S, Hoessinger R, Gerike R, Jara-Diaz SR, Axhausen
KW (2019). “A pooled RP/SP mode, route and destination choice model to investigate mode
and user-type effects in the value of travel time savings.” Transportation Research Part APolicy
and Practice, 124, 262–294. doi: 10.1016/j.tra.2019.03.001, https://www.sciencedirect.com/
science/article/pii/S0965856418301721.

Examples

data(MAEDtravel)

maxle maxle returns expression of log-likelihood (LL) of joint normal distri-
bution.

Description

maxle returns expression of log-likelihood (LL) of joint normal distribution.

Usage

maxle(cheqs0, fixed_term = TRUE)

Arguments

cheqs0 Strings defining equations of errors. Systems of Nonlinear Regressions (SNR)
variant.

fixed_term if TRUE fixed term -(k/2)*log(2*pi) (k number of equations) is included

Value

List with LL expressions of joint normal distribution, first element is string with expression for
derivative calculations, the second - string for evaluation.

Examples

# normal distribution
eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) -(1 + (PH))) +
sqrt((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 * (1 + (PH) +
(tw)) *(-(PH) * (ta - Tc + 2) + (1 - (tw) * (ta - Tc + 2)) * (2/w -Ec/w))))/(2 * (1 + (PH) +
(tw)))",

"Tf1 ~ (th1) * (ta - (((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) *(Ec/w - 2/w) - (1 + (PH))) +
sqrt((((PH) + (tw)) * (ta -Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *(1 + (PH) +
(tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) +
(tw)))) -Tc + 2) - 1",

"Ef1 ~ (ph1)/(PH) * (w * (((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) -
(1 + (PH))) + sqrt((((PH) + (tw)) *(ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 -4 *
(1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 *
(1 + (PH) + (tw)))) -Ec + 2) - 1")

parl <- c("tw","PH","th1","ph1")
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para_cont <- get_par(parl, eq_c)
cheqs0 <- para_cont$cheqs0
res <- maxle(cheqs0=cheqs0)

maxle_p maxle_p returns expression of partitioned log-likelihood.
f(y1,y2,..,yn)=f(y1)f(y2|y1)f(y3|y2y1)...f(yn|y1..y(n-1))

Description

maxle_p returns expression of partitioned log-likelihood. f(y1,y2,..,yn)=f(y1)f(y2|y1)f(y3|y2y1)...f(yn|y1..y(n-
1))

Usage

maxle_p(cheqs0, fixed_term = TRUE, version2 = TRUE)

Arguments

cheqs0 Strings defining equations of errors.

fixed_term if TRUE fixed term -(k/2)*log(2*pi) (k number of equations) is included

version2 another formulation of log-likelihood

Value

List. First element is expression of joint distribution for derivatives, second for evaluation, third
latex, fourth marginal distributions for each variable.

Examples

# joint normal distribution
eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) -(1 + (PH))) +
sqrt((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 * (1 + (PH) +
(tw)) *(-(PH) * (ta - Tc + 2) + (1 - (tw) * (ta - Tc + 2)) * (2/w -Ec/w))))/(2 * (1 + (PH) +
(tw)))",

"Tf1 ~ (th1) * (ta - (((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) *(Ec/w - 2/w) - (1 + (PH))) +
sqrt((((PH) + (tw)) * (ta -Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *(1 + (PH) +
(tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) +
(tw)))) -Tc + 2) - 1",

"Ef1 ~ (ph1)/(PH) * (w * (((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 +
(PH))) + sqrt((((PH) + (tw)) *(ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 -4 *
(1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 *
(1 + (PH) + (tw)))) -Ec + 2) - 1")

parl <- c("tw","PH","th1","ph1")
para_cont <- get_par(parl, eq_c)
cheqs0 <- para_cont$cheqs0
res <- maxle_p(cheqs0=cheqs0)
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mlsem mlsem returns expression of log-likelihood for joint normal distribu-
tion, for maximum likelihood (ML), Simultaneous Equations Models
(SEM) variant.

Description

mlsem returns expression of log-likelihood for joint normal distribution, for maximum likelihood
(ML), Simultaneous Equations Models (SEM) variant.

Usage

mlsem(cheqs0, fixed_term = TRUE)

Arguments

cheqs0 Strings defining equations of errors.

fixed_term if TRUE fixed term -(k/2)*log(2*pi) (k number of equations) is included

Value

List with LL expressions of joint normal distribution, first element is string with expression for
derivative calculations, the second - string for evaluation.

Examples

# normal distribution
eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc) + Ec/w * (1 + (tw)) + sqrt((Ec/w *(1 + (tw)) +
(ta - Tc) * ((PH) + (tw)))^2 - 4 * Ec/w * (ta -Tc) * (tw) * (1 + (PH) + (tw))))/(2 * (1 + (PH)
+ (tw))))",

"Tf1 ~ (th1) *(Tw - Tc)",
"Ef1 ~ (ph1)/(PH) * (w * Tw - Ec)")
parl <- c("tw","PH","th1","ph1")
para_cont <- get_par(parl, eq_c)
cheqs0 <- para_cont$cheqs0
res <- mlsem(cheqs0, fixed_term=FALSE)

MNlogitf MNlogitf or MNdogitf returns log-likelihood(LL) expression for dis-
crete equations of "logit" or "dogit" model.

Description

MNlogitf or MNdogitf returns log-likelihood(LL) expression for discrete equations of "logit" or
"dogit" model.
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Usage

MNlogitf(ffor, transform = FALSE, separatenmm = FALSE, weight_disc = FALSE)

MNdogitf(
ffor,
transform = FALSE,
separatenmm = FALSE,
weight_disc = FALSE,
ppardogit = NULL

)

Arguments

ffor Discrete choice equations.

transform if TRUE, quantile transformation (normal) is applied.

separatenmm if TRUE, equation specific LL is calculated

weight_disc if TRUE, equations will include equation specific weights.

ppardogit "dogit" parameters only used in MNdogitf

Value

formula simplified LL for each equation or joint

probs probability expression unsimplified

expr LL string simplified

formulat unsimplified log(P), only if transform is TRUE

probt unsimplified P with quantile transformation qnorm(ifelse(P)), only if transform
is TRUE

expreteso unsimplified pnorm((qnorm(P)-mean)/sd), only if transform is TRUE

probte qnorm(P)

tval If quantile transformation is applied

sume Denominator of logit probability

Functions

• MNlogitf: returns log-likelihood(LL) expression for discrete equations of "logit" model.

• MNdogitf: returns log-likelihood(LL) expression for discrete equations of "dogit" model.

Examples

eq_d <- c("ASC1 * 1 + B11_dur * dur_1" , "ASC2 * 1 + B12_dur * dur_2",
"ASC3 * 1 + B13_dur * dur_3 + B20_cost * cost_3 + B53_parkman * PbAvl_3",
"ASC4 * 1 + B14_dur * dur_4 + B20_cost * cost_4 + B34_serv * servIdx_4 + B44_stop * stopUs1R1_4")
parl <- c(paste0("ASC", 1:4), paste0("B1", 1:4, "_dur"), "B20_cost", "B53_parkman", "B34_serv",
"B44_stop")
disc_par <- get_par(parl, eq_d)
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ffor <- disc_par$cheqs0
res_l <- MNlogitf(ffor, separatenmm=FALSE, transform=FALSE)
res_d <- MNdogitf(ffor, separatenmm=FALSE, transform=FALSE)

nmm Maximum likelihood estimation of nonlinear multivariate models
(NMM).

Description

nmm, nmm_sigma and summary are the main functions used for the estimation of NMM.

• nmm - Maximum likelihood estimation of nonlinear multivariate models (NMM)

• nmm_sigma - Optimizes the covariance matrix

• summary - returns summary of nmm object with "normal", "robust" or "clustered" standard
errors. With option new_coef one can supply new coefficients and test their significance.

Usage

nmm(
data,
eq_type = c("joint", "cont", "disc"),
eq_d = NULL,
eq_c = NULL,
par_c = NULL,
par_d = NULL,
start_v = NULL,
check_hess = TRUE,
corrl = TRUE,
weight_paths = TRUE,
weight_paths_cont = FALSE,
data_weight = NULL,
estimate = TRUE,
fixed_term = FALSE,
best_method = FALSE,
DEoptim_run = FALSE,
hessian = "joint_hess",
print_out = FALSE,
diff_hessian = FALSE,
bayesian_random = FALSE,
DEoptim_run_main = FALSE,
deconst = 2,
numerical_deriv = FALSE,
best_method4start = FALSE,
eqsys = "sur",
miterlim = 10000,
opt_method = "BFGS",
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try_last_DEoptim = TRUE,
transform = NULL,
MNtypef = "logit",
nmm_object = NULL

)

## S3 method for class 'nmm'
summary(object, type = "normal", new_coef = NULL, ...)

nmm_sigma(
object,
methodopt = "BFGS",
try_1good = TRUE,
try_DEoptim = FALSE,
try_diff_method = FALSE,
trace = FALSE,
estimate = FALSE

)

Arguments

data data.frame used in the optimization.

eq_type Possible options "joint", "cont", "disc".

eq_d Discrete equations.

eq_c Continuous equations.

par_c Parameters from continuous equations.

par_d Parameters from discrete equations.

start_v Starting values for optimization. If NULL, starting values are found by get_start
function.

check_hess If TRUE, check the Hessian.

corrl If TRUE, correlation between blocks (continuous and discrete).

weight_paths If TRUE, weight according to the number of choices made by individual i will be
added to the whole system.

weight_paths_cont

If TRUE, if only to continuous part should be weighted.

data_weight Data weight matrix.

estimate If TRUE, estimation is performed.

fixed_term If TRUE, includes fixed term to continuous equation block.

best_method If TRUE, all optimizers are checked.

DEoptim_run If TRUE, runs DEoptim in generation of starting values.

hessian String, name of the Hessian function.

print_out If TRUE, prints out log-likelihood for each equation.

diff_hessian If TRUE, for changing hessian and gradient with weights.
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bayesian_random

If TRUE, than par[1] is changed to par[,1] to be used for optimization of random
parameters in Bayesian estimation.

DEoptim_run_main

If TRUE, run DEoptim in the main optimization.

deconst absolute value of lower and upper bound in DEoptim optimization.
numerical_deriv

If TRUE, uses numerical derivative instead of the analytical.
best_method4start

If TRUE, all optimizers are checked for starting values.

eqsys "sur" or "sem".

miterlim Number many iterations passed to maxLik function

opt_method optimization method for maxLik.
try_last_DEoptim

If TRUE, in case of error in maxLik should DEoptim be run.

transform if TRUE, quantile transformation is applied to discrete equations.

MNtypef estimate "logit", or "dogit"

nmm_object nmm object created by nmm function.

object nmm object, for summary and nmm_sigma

type Type of standard errors c("robust", "clustered", "normal"), for summary

new_coef New coefficients that will be tested, for summary

... additional arguments affecting the summary produced, for summary

methodopt optimizer from maxLik package, for nmm_sigma

try_1good If TRUE, stops then first good values are found, for nmm_sigma

try_DEoptim If TRUE, uses DEoptim for optimization, then maxLik optimizers produce errors,
for nmm_sigma

try_diff_method

If TRUE, stops then first good values with Hessian check are found, for nmm_sigma

trace If TRUE, trace of DEoptim is printed, for nmm_sigma

Value

nmm returns nmm object with estimated parameters, functions, and data.

nmm_sigma returns estimated parameters, functions, data.

summary returns summary of nmm object.

Examples

# estimation of System of Nonlinear Equations based on example from 'systemfit'
library(systemfit)
data( ppine , package="systemfit")
hg.formula <- hg ~ exp( h0 + h1*log(tht) + h2*tht^2 + h3*elev)
dg.formula <- dg ~ exp( d0 + d1*log(dbh) + d2*hg + d3*cr)
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labels <- list( "height.growth", "diameter.growth" )
model <- list( hg.formula, dg.formula )
start.values <- c(h0=-0.5, h1=0.5, h2=-0.001, h3=0.0001,

d0=-0.5, d1=0.009, d2=0.25, d3=0.005)
model.sur <- nlsystemfit( "SUR", model, start.values, data=ppine, eqnlabels=labels )
eq_c <- as.character(c(hg.formula, dg.formula))
parl <- c(paste0("h", 0:3),paste0("d", 0:3))
res <- nmm(ppine, eq_c=eq_c, par_c=parl, start_v = start.values,
eq_type = "cont", best_method = FALSE, numerical_deriv=TRUE)
summary(res)
res_sigma_cont <- nmm_sigma(res,estimate=TRUE) # Estimation of the Variance-Covariance matrix
summary(res_sigma_cont)

#example discrete choice
library(mlogit)
data("Fishing", package = "mlogit")
Fish <- mlogit.data(Fishing, varying = c(2:9), shape = "wide", choice = "mode")
## a pure "conditional" model
mres <- summary(mlogit(mode ~ price + catch, data = Fish))
data <- prepare_data(Fish %>% data.frame %>% dplyr::select(-idx),
choice="alt", dummy="mode", PeID="chid", mode_spec_var = c("price", "catch"),
type="long")

eq_d <- c("a1 + p1 * price_1 + p2 * catch_2", "a2 + p1 * price_2 + p2 * catch_2",
"a3 + p1 * price_3 + p2 * catch_3", "a4 + p1 * price_4 + p2 * catch_4")

par_d <- c(paste0("a", 1:4), paste0("p", 1:2))
res <- nmm(data, eq_d=eq_d, par_d = par_d, eq_type="disc", fixed_term=FALSE,
best_method=FALSE)
summary(res)

# joint estimation mockup example
data(dataM)
dataMp <- dataM %>% data.frame %>% prepare_data(. , choice="DR_Course",
PeID = "Student")
eq_c <- c("PlcmtScore ~ exp(a0 + a1 * PSATM + a2 * Rank + a3 * Size)",
"ACTM ~ exp(c0 + c1 * GPAadj)")
par_c <- c(paste0("a", 0:3), paste0("c", 0:1))
eq_d <- c("ASC1" ,
"ASC2 + b1_2 * SATM + b2_2 * PlcmtScore",
"ASC3 + b1_3 * SATM + b2_3 * PlcmtScore")
par_d <- c(paste0("ASC", 1:3), paste0("b", rep(1:2, rep(2,2)), "_", 2:3))

nmm_joint_res <- nmm(dataMp, eq_type = "joint", eq_d = eq_d,
par_d = par_d, eq_c = eq_c, par_c = par_c,
start_v = c(a0=3.394, a1=0.001, a2=-0.001, a3=0, c0=3.583, c1=-0.008,
ASC2=-1.452, ASC3=3.047, b1_2=0.145, b1_3=0.102, b2_2=-0.133, b2_3=-0.168))
summary(nmm_joint_res)

prepare_data prepare_data prepare data for the estimation.
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Description

prepare_data prepare data for the estimation.

Usage

prepare_data(
data,
choice = "",
dummy = "",
PeID = "",
WeID = "",
type = "",
mode_spec_var = "",
avl = TRUE,
chc = TRUE,
wc = TRUE,
wd = TRUE,
nc = 0,
weights = NULL,
weight_paths = FALSE,
weight_paths_cont = FALSE,
mode_factors = NULL

)

Arguments

data data.frame

choice Name of variable with modes.

dummy Name of variable indicating, if the mode was chosen.

PeID Name of variable with individual identification numbers.

WeID Name of variable with trip identification.

type Type of data. If "long", then modifications are done.

mode_spec_var Used if format "long", mode specific variables.

avl if TRUE, includes dummies for mode availability.

chc if TRUE, includes dummies for choice of mode.

wc if TRUE, creates weights 1 for continuous equations.

wd if TRUE, creates weights 1 for discrete equations.

nc Integer, number of continuous equations.

weights Data matrix with weights, column names have to be $wc_i$(continuous), $wd_i$(discrete).

weight_paths if TRUE, weight according to number of trips per person, discrete part.
weight_paths_cont

if TRUE, weight continuous part.

mode_factors if choice is not factor or numeric, this is important to supply.
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Value

data.frame used for modeling.

Examples

data("TravelMode", package = "AER")
mode_spec_var <- c("wait", "vcost", "travel", "gcost")
res <- prepare_data(TravelMode, choice="mode", dummy="choice", PeID="individual", WeID="",
type="long", mode_spec_var =mode_spec_var, nc=3)

pseudoR pseudo R^2

Description

Calculates pseudo R^2 for discrete choice part.

Usage

pseudoR(
x,
which = c("all", "McFadden", "adjMcFadden", "Cox&Snell", "Nagelkerke"),
only_total = FALSE

)

Arguments

x Fitted nmm model.

which which pseudo R^2 to calculate, options are: "all", "McFadden", "adjMcFadden",
"Cox&Snell","Nagelkerke".

only_total If TRUE, compute R^2 only for the whole sample.

Value

matrix with goodness of fit measures

Examples

library(mlogit)
data("Fishing", package = "mlogit")
Fish <- mlogit.data(Fishing, varying = c(2:9), shape = "wide", choice = "mode")
## a pure "conditional" model
mres <- summary(mlogit(mode ~ price + catch, data = Fish))
data <- prepare_data(Fish %>% data.frame %>% dplyr::select(-idx),
choice="alt", dummy="mode", PeID="chid", mode_spec_var = c("price", "catch"),
type="long")
eq_d <- c("a1 + p1 * price_1 + p2 * catch_2", "a2 + p1 * price_2 + p2 * catch_2",

"a3 + p1 * price_3 + p2 * catch_3", "a4 + p1 * price_4 + p2 * catch_4")
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par_d <- c(paste0("a", 1:4), paste0("p", 1:2))
res <- nmm(data, eq_d=eq_d, par_d = par_d, eq_type="disc", fixed_term=FALSE,
best_method=FALSE)
pseudoR(res, which = c("McFadden"))
ncf <- c(mres$coefficients)
names(ncf) <- par_d[-1]
mress <- in2nmm(res, new_coef = ncf)
pseudoR(mress, which = c("McFadden"))
pseudoR(mress)

replace_par replace_par replaces text with other text.

Description

replace_par replaces text with other text.

Usage

replace_par(iter, repdat, biogu)

Arguments

iter Integer, which line of repdat is used, if 1 iteratively all will be replaced, if >1
only the i-th parameter.

repdat data.frame with columns "old" and "new"
biogu string which will be modified

Value

Modified string.

Examples

eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) -(1 + (PH))) +
sqrt((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *
(1 + (PH) + (tw)) *(-(PH) * (ta - Tc + 2) + (1 - (tw) * (ta - Tc + 2)) * (2/w -Ec/w))))/(2 *
(1 + (PH) + (tw)))",

"Tf1 ~ (th1) * (ta - (((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) *(Ec/w - 2/w) - (1 + (PH))) +
sqrt((((PH) + (tw)) * (ta -Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *(1 + (PH) +
(tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) +
(tw)))) -Tc + 2) - 1",

"Ef1 ~ (ph1)/(PH) * (w * (((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) -
(1 + (PH))) + sqrt((((PH) + (tw)) *(ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 -4 *
(1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 *
(1 + (PH) + (tw)))) -Ec + 2) - 1")

parl <- c("tw","PH","th1","ph1")
parll <- paste0("par[", 1:length(parl), "]")
repdat <- data.frame(old=parl, new=parll)
replace_par(1, repdat, eq_c)
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replace_par_wrap replace_par_wrap replace text with other text, wrapper of
replace_par.

Description

replace_par_wrap replace text with other text, wrapper of replace_par.

Usage

replace_par_wrap(repdat, obj)

Arguments

repdat data.frame with columns "old" and "new"

obj character string or vector of strings that will be modified.

Value

Modified string/vector.

Examples

eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) -(1 + (PH))) +
sqrt((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *
(1 + (PH) + (tw)) *(-(PH) * (ta - Tc + 2) + (1 - (tw) * (ta - Tc + 2)) * (2/w -Ec/w))))/(2 *
(1 + (PH) + (tw)))",

"Tf1 ~ (th1) * (ta - (((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) *(Ec/w - 2/w) - (1 + (PH))) +
sqrt((((PH) + (tw)) * (ta -Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *(1 + (PH) +
(tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) +
(tw)))) -Tc + 2) - 1",

"Ef1 ~ (ph1)/(PH) * (w * (((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) -
(1 + (PH))) + sqrt((((PH) + (tw)) *(ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 -4 *
(1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 *
(1 + (PH) + (tw)))) -Ec + 2) - 1")

parl <- c("tw","PH","th1","ph1")
parll <- paste0("par[", 1:length(parl), "]")
repdat <- data.frame(old=parl, new=parll)
replace_par(2, repdat, eq_c)
replace_par_wrap(repdat, eq_c)
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stats_function Helper functions

Description

Produce function that calculate estimates of endogenous variables from the continuous block and
probabilities from discrete part.

Usage

stats_function(eq_c = NULL, eq_d = NULL, par_c = NULL, par_d = NULL, fixed = 0)

Arguments

eq_c continuous equations

eq_d discrete equations

par_c parameters from cont. eq

par_d parameters from disc. eq

fixed index of fixed parameter

Value

Returns functions.

Examples

eq_d <- c("ASC1 * 1 + B11_dur * dur_1" , "ASC2 * 1 + B12_dur * dur_2",
"ASC3 * 1 + B13_dur * dur_3")
eq_c <- c("Tw ~ tw*w + ph1*Tc", "Tf1 ~ (1+w)^tw + ph1^3*Tc")
parl <- c("tw", "ph1")
par_d <- c(paste0("ASC", 1:3), paste0("B1", 1:3, "_dur"))
stfunc <- stats_function(eq_c, eq_d, parl,par_d, fixed=3)
data <- matrix(runif(1000, min=0.001, max=50), ncol=8)
data <- data.frame(data)
names(data) <- c("dur_1", "dur_2", "dur_3", "w", "Tc", "avl_1", "avl_2", "avl_3")
parv <- c(0.5, 1, 1.5, 2, 1, -0.3, 0.2, -0.8)
methodopt <- "BHHH"
separatenmm <- TRUE
env <- environment()
fnames <- c("prob_func", "cont_func")
sapply(1:(length(stfunc)-1), function(x)assign(fnames[x], stfunc[[x]], envir=env))
eval(parse(text=paste0("environment(", fnames[1:(length(stfunc)-1)], ") <- env")))
probs <- prob_func(parv)
apply(probs, 2, mean)
cont <- cont_func(parv)
apply(cont, 2, mean)
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string2formula string2formula add square brackets to expressions. Reverse of
formula2string. Convert par[2] <- par2, sigma[2] <- sigma_2_,
sigma[2,3] <- sigma_2x2

Description

string2formula add square brackets to expressions. Reverse of formula2string. Convert par[2] <-
par2, sigma[2] <- sigma_2_, sigma[2,3] <- sigma_2x2

Usage

string2formula(x)

Arguments

x String without square brackets.

Value

String with square brackets.

Examples

xx <- "par[1]*3+par[2]*par+rho1[1,2]+sigma1[2]"
xm <- formula2string(xx)
string2formula(xm)

wxMaxima wxMaxima does symbolic computation in ’Maxima’ Requires installa-
tion of Maxima software.

Description

wxMaxima does symbolic computation in ’Maxima’ Requires installation of Maxima software.

Usage

wxMaxima(obj, out, tex = FALSE)

Arguments

obj Lines without printed output, that will be evaluated in wxMaxima.

out Lines with printed output, is end results of the function.

tex if TRUE TeX expression of the printed output.
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Value

List of character strings.

Examples

#components(determinant, Sigma inverse, argument for exponent) for joint normal distribution
eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) -(1 + (PH))) +
sqrt((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 * (1 + (PH) +
(tw)) *(-(PH) * (ta - Tc + 2) + (1 - (tw) * (ta - Tc + 2)) * (2/w -Ec/w))))/(2 * (1 + (PH) +
(tw)))",
"Tf1 ~ (th1) * (ta - (((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) *(Ec/w - 2/w) - (1 + (PH))) +
sqrt((((PH) + (tw)) * (ta -Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *(1 + (PH) +
(tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) +
(tw)))) -Tc + 2) - 1",

"Ef1 ~ (ph1)/(PH) * (w * (((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) -
(1 + (PH))) + sqrt((((PH) + (tw)) *(ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 -4 *
(1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 *
(1 + (PH) + (tw)))) -Ec + 2) - 1")

parl <- c("tw","PH","th1","ph1")
para_cont <- get_par(parl, eq_c)
cheqs0 <- para_cont$cheqs0
npar <- get_npar(cheqs0)
neq <- length(cheqs0)
sdv <- rep(NA, neq)
mv <- rep(NA, neq)
sigma <- expand.grid(1:neq, 1:neq)%>%apply(., 1, function(x)paste0(x, collapse=','))%>%
paste0('sigma', '[', . ,']')%>%sort
sigma <- matrix(sigma, neq, neq, byrow = TRUE)
sigma[lower.tri(sigma)] <- sort(sigma[upper.tri(sigma)])
#create Y
y <- paste0('eps[', 1:neq,']')
ypy <- paste0('[', y, ']', collapse = ',')
ypy <- paste0('Y : matrix(', ypy, ')')
#sigma
spy <- paste0(sapply(1:neq, function(i) paste0('[', paste0(sigma[i,], collapse = ', '), ']')),
collapse = ',')
spy <- paste0('Sigma : matrix(', spy, ')')
detS <- 'dets : ratsimp(determinant(Sigma))'
invS <- 'invs : ratsimp(invert(Sigma))'
expt <- 'expt : ratsimp(transpose(Y) . invs . Y)'
obj <- c(ypy, spy, detS, invS, expt)
#grind function in Maxima returns an object that can be mathematically evaluated
out <- c('print(new)', 'grind(dets)', 'print(new)', 'grind(invs)', 'print(new)', 'grind(expt)')
## Not run:
rez <- wxMaxima(obj, out)

## End(Not run)
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