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4. Abstract 

Eastern Austria represents Austria’s most important cereal production region, with winter wheat 

being the most widely grown arable crop achieving highest grain qualities. Farmers’ manage-

ment practices often rely on experience without considering difficult to access seasonal infor-

mation, such as current soil water or crop nitrogen (N) status. Crop growth models are software 

tools which allow simulation of crop growth and development in response to environmental, 

soil, management, and cultivar-specific genetic factors. After comprehensive parameterisation 

accounting for region and specific cultivars, the models can deliver a range of highly relevant 

soil and crop information to support farmers’ management decisions. So far, only a few model-

ling studies have addressed winter wheat in Eastern Austria, and many models either lack doc-

umentation, require numerous input parameters, or do not allow free-of-charge commercial ap-

plication. Additionally, few models have found their way into user-friendly software-implemen-

tations which support farmers’ and stakeholders’ decisions. The aim of this PhD thesis was the 

detailed cultivar-specific parameterisation and evaluation of the well-documented, relatively 

simple, and freely available SSM-iCrop (iCrop) model for several modern winter wheat cultivars 

grown in multi-environment trials in Eastern Austria.  

Two field experiments (2017/18 and 2018/19) were conducted in Tulln (Eastern Austria) using 

four local winter wheat cultivars (Arnold, Aurelius, Bernstein, Emilio) and four N-fertilisation 

levels (N0 to N3; 0 to 210 kg N ha-1 in 70 kg N ha-1 steps). Phenology was scored regularly, and 

crop and soil samples were collected and analysed on multiple dates. The collected data set was 

used for parameterisation, while an independent long-term data set from Eastern Austria was 

used for evaluation of the iCrop model regarding anthesis timing and yield. 

While several calculated parameters did not show cultivar differences, including all crop N re-

lated parameters, cultivar-specific parameters were still found, exclusively for phenology, leaf 

area index (LAI), and dry mass (DM) partitioning between leaves and stems. iCrop simulated 

cultivar-specific phenology for the two field experiments (anthesis error: max. 5 days) as well as 

for the long-term evaluation data (RMSE: 2.9 days) with high accuracy. LAI simulations of the 

field experiments were moderately accurate (anthesis RMSE: 0.8). Using a biphasic stem N pa-

rameter, iCrop captured N-specific leaf and stem N content dynamics correctly. Observed dif-

ferences in post-anthesis leaf traits (LAI, N content) indicated different stay-green behaviours 

of the cultivars. However, these were not captured by iCrop due to missing soil data and param-

eters (e.g. root exploration factor). Soil water simulations were partially excellent, at the same 

time they appeared to be sensitive to small changes in soil parameters of single layers. Soil min-

eral N content was systematically overestimated, indicated by total crop N overestimation at the 
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end of the season. Average leaf, stem, and grain N estimates were good, while cultivar-differ-

ences for grain N were poorly simulated. This was at least partially caused by biased N-dilution 

due to overestimation of crop total DM (percentage error at harvest: +13.7%) and yield (+6%). 

Simulated leaf:stem DM partitioning was poor, but the relative cultivar differences were repre-

sented well nevertheless. The model evaluation with long-term data was inconclusive for yield 

due to lack of soil data. 

This study shows that the iCrop model can be used for successful cultivar-specific winter wheat 

simulation in Eastern Austria, thus enabling further scientific investigation and practical appli-

cation. However, identified weaknesses of the model and options to improve these are given in 

the study. The parameterised iCrop model has been implemented in two research projects, 

COMBIRISK and Farm/IT, the latter directly delivering scientific advances to farmers and stake-

holders in agriculture via modern software tools.
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5. Introduction 

5.1. Winter Wheat  

5.1.1. Wheat Production in Eastern Austria 

Lower Austria is the largest of Austria’s nine federated states, covering significant parts of the 

agricultural production region in Eastern Austria. Lower Austria’s total area covers more than 

1.9 Mha of which over 1.6 Mha were cultivated by farms and agricultural businesses in 2016. The 

largest land uses were forests with 43% closely followed by arable lands with 42% (over 

682.000 ha). Winter wheat was mostly grown arable crop by area, covering 23% (over 

157.000 ha) of arable lands, followed by grain maize (incl. corn-cob mix) with 11% (75.000 ha) 

and spring barley with 6% (39.000 ha) (Grüner Bericht Niederösterreich, 2018). Lower Austria 

accommodated over 61% of Austria’s total winter wheat area (ca. 255.000 ha) and 57% 

(705.000 t) of the country’s wheat yield in 2018. 77% of Austria’s wheat production were classi-

fied as quality wheat (i.e. min. 14% grain protein), with best qualities found in Eastern Austria 

(Grüner Bericht, 2019).  

5.1.2. Morphology and Phenology of the Wheat Crop 

Perry and Belford (2000) have neatly described the evolution and biology of the wheat crop, as 

subsumed in the following. 

For over 10.000 years, cereals have evolved alongside humans, starting in the Middle East. The 

evolution of cereals from their low-yielding wild ancestors towards modern high yielding culti-

vars was a key to the development of humanity’s society. All modern cereals are annual grasses, 

including wheat (Triticum), maize (Zea), barley (Hordeum), oat (Avena), rye (Secale), as well as 

the artificially made triticale (Triticosecale) (Perry and Belford, 2000). 

While there are worldwide more than 30 species of wheat and over 40.000 cultivars, only three 

species are commercially relevant: club wheat (Triticum compactum), a hexaploid and usually 

soft-grained wheat used for cake flour, durum wheat (Triticum durgidum cv. durum), tetraploid 

hard wheat well known for its use in pasta, and the most popular common or bread wheat (Trit-

icum aestivum) (Perry and Belford, 2000). 

The main development phases of wheat (and cereals in general) are (i) germination and seedling 

establishment, (ii) initiation and development of leaves, (iii) tillering, (iv) root growth, (v) ear 

formation and growth, (vi) stem elongation, and (vii) flowering and grain growth (Perry and 

Belford, 2000). 
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Leaf development is initiated from primordia at the shoot apex. About three primordia are al-

ready present at germination, more being produced sequentially and on alternating sides of the 

apex during plant growth. The last developed leaf before the emergence of the ear is called flag 

leaf. All wheat leaves are relatively long and narrow, separated into a basal part encircling the 

stem called leaf sheath and the upper extension serving as main region for photosynthesis 

named leaf blade (Figure 1) (Perry and Belford, 2000). 

 

Figure 1 Morphology of the wheat plant (figure from “The wheat book”, Perry and Belford, 2004). 

The leaf appearance rate (phyllochron) of a wheat main stem is defined as the time a single leaf 

needs to fully emerge. It is strongly correlated with thermal time and much less correlated with 

chronological time (Gallagher, 1979). While chronological time refers to the count of hours or 

days, the thermal time is the sum of daily average temperatures above a base threshold over a 

specific period expressed in degree days (°C d). 

Tillers are basal side shoots that originate from buds in the leaf axils of the main stem. Since 

they are virtually identical to the main stem, they have the potential to produce ears and grains. 

Leaves on tillers appear at 90 ° relative to the main stem leaves. Tillers are usually referred to by 

the number of the leaf axil on the main stem from which they appear (e.g. tiller one appearing 

from main stem leaf one). Primary tillers appear from the main stem, while secondary tillers 

appear from leaves on primary tillers. Tertiary tillers may appear but are rare. Sometimes tillers 

appear from the coleoptile (a modified leaf structure that protects and encloses the shoot during 

emergence) named coleoptile tillers (Perry and Belford, 2000). 
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The wheat stem consists of several nodes and hollow internodes and is wrapped in the sheaths 

of the surrounding leaves. The sheaths enhance the stem’s mechanical strength, thereby reduc-

ing lodging. The nodes build regions where other structures (leaves, roots, tillers, spikelets) join 

the stem. The tissue between adjacent nodes is called internode. The young wheat plant appears 

to grow leaves from a single point. However, the leaves actually appear from 8-14 nodes which 

are closely stacked above each other, separated by very short (<1 mm) internodes. During the 

phenological phase named stem elongation, internodes begin to grow, thereby forming the char-

acteristic tall wheat stem of the mature plant. A significant proportion of the stem’s dry mass at 

ear emergence constitutes of carbohydrates and nutrients which can be translocated to grains 

during grain filling. Thereby, the stem fulfils both a mechanical/structural as well as a storage 

function (Perry and Belford, 2000). 

The wheat ear (inflorescence) is a compound spike that consists of a rachis with spikelets at-

tached on each side. The spikelets contain up to ten florlets (flowers) of which only two to four 

usually develop into seeds (grains, kernels). Typical wheat ears develop between 30 to 50 grains 

(Perry and Belford, 2000). 

5.1.3. Agronomic Aspects of Wheat Production 

Common agricultural practices for growing winter wheat in Eastern Austria are, for instance, 

sowing in mid-October, the use of recommended N-fertilisation rates, and herbicide application. 

Irrigation of wheat is mostly uncommon. Management strategies usually aim for high yields and 

possibly high grain protein content, depending on the target use of the harvest product such as 

fodder cereal (lower grain protein) or quality wheat (higher grain protein) for milling and bak-

ing. 

Official references exist for N fertilisation application amounts and dates. The AGES (Austrian 

Federal Agency for Health and Food Safety) (Baumgarten et al., 2017) recommends winter wheat 

N fertilisation for average yield expectations (5 t ha-1, BMLRT, 2021) of 110-130 kg N ha-1 split 

among three dates: (i) start of the vegetation period in spring (BBCH varies; ca. 21-24), (ii) be-

ginning of stem elongation (BBCH 30), and (iii) prior to beginning of heading (BBCH 51). Ap-

parently, all three of these dates are highly dependent on the wheat crop’s phenological devel-

opment. While the timing of the first N application (i) depends mainly on wheat base tempera-

ture above which plant physiological processes start (commonly assumed 0 °C; e.g. Porter and 

Gawith, 1999) which is considered mostly cultivar-independent, initiation of stem elongation 

(ii) and heading (iii) may vary significantly between cultivars and even more between seasons. 

Cultivar differences originate from genetically set durations of phenological phases and their 

reaction to environmental influence such as day length (photoperiod) and cold temperatures 
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(vernalisation). Seasonal differences result from environmental effects, mainly regarding year-

to-year variation of temperature and precipitation. In practice, farmers have to observe their 

fields to determine the occurrence of critical phenological stages such as beginning of stem elon-

gation to find the optimum date for management. Other seasonal variables such as weather 

forecasts and soil water status are usually not considered when N application is planned. Reasons 

for the exclusion of these informations may be their inaccessibility (mid-range skilful weather 

forecasts) or difficulty and expensiveness of their determination (soil sampling and determina-

tion of soil water content). 

Crop growth models offer the possibility to estimate some of these data. Soil water content, for 

instance, can be estimated from past weather data over several months. Online software solu-

tions can automatically integrate historical weather data as well as short and long-term weather 

forecasts into crop model simulations (Manschadi et al., 2019, 2020b). Farmers may adapt their 

fertilisation and/or irrigation strategy specifically to the current season based on the crop model 

simulation results (Boote, 2020; Van Evert, 2020). Overall, crop growth models are tools that 

have the potential to support informed decision making in agriculture (Sinclair and Seligman, 

1996; Van Evert, 2020) by integrating numerous relevant data which can, due to their vast 

amount, hardly be taken into account manually. 

5.2. Crop Growth Models 

Modelling can be defined as the transformation of scientific understanding into a mathematical 

structure. Due to the infinite complexity of the real world, models necessarily include simplifi-

cations and logical assumptions. Otherwise, when allowing for too many details in the model, it 

becomes either vastly complex or even insolvable (Eck et al., 2011). Crop growth models, as a 

sub-type of models, calculate a crop’s development and growth as influenced by a wide range of 

conditions. Essential components are energy input (intercepted solar radiation, MJ m−2 d−1) and 

output (crop growth rate, g d−1), time (growing period), and production of crop dry mass as a 

result of energy input, a PAR (photosynthetically active radiation) factor, and radiation use effi-

ciency (RUE, g MJ−1). Beyond these variables, models usually include responses to temperature, 

day length, soil water and nutrient status (often nitrogen), precipitation, irrigation, fertilisation, 

and other management options such as sowing density. Specific model can also include effects 

of pests, diseases, and weeds (Soltani and Sinclair, 2012 cited in Fuchs, 2016). 

In a previous work (Fuchs, 2016) I have summarised literature on the history of crop growth 

modelling (5.2.1) and the processes of parameterising and calibrating (5.2.2) crop models. In this 

PhD thesis, I have condensed this information in this section (5.2) and its subsections, adding 

supplementary information and references where appropriate. 
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5.2.1. Brief History of Crop Modelling 

Crop modelling dates back to the 1970s (Passioura, 1996; Sinclair and Seligman, 1996) and its 

predecessors even to the 1960s when C.T. de Wit published a key report titled “Photosynthesis 

of leaf canopies” (Bouman et al., 1996; de Wit, 1965; Soltani et al., 2013). 25 years ago, Sinclair 

and Seligman (1996) described the development of crop models in the style of a human’s life, 

“from infancy to maturity”. Although a quarter century ago, their description is still up to date 

and, therefore, recapped in the following (with a few updates such as “smart farming”). 

The first models were rather simple, but the idea of quantifying crop growth and development 

motivated researchers to quickly improve them. New findings in crop physiology as well as the 

prospect to enable prediction of yields, reduction of experiments, and evaluation of new genetic 

material lead to rapidly increasing numbers of parameters and model complexity. Awareness 

grew that this could not go on forever. The task of trying to model the complexity of a crop while 

avoiding an oversaturation of details led to extensive reductionism. Scientists tried to reduce as 

much as possible into basic physical, chemical, and physiological processes. The adverse effect 

was an increase in complexity without improvements of the predictions. The idea of developing 

universal models, applicable in each and every situation, was given up. However, the importance 

of model evaluation became clear. While models can, technically, not be validated due to the 

lack of a single, falsifiable hypothesis, the act of trying to evaluate a model by testing its perfor-

mance in different situations gives model users at least an idea of where a model has proven 

useful and where not. Nowadays, crop models are being used as powerful aids in research, teach-

ing, and smart farming. In models, knowledge of a crop is organized logically, where the cor-

rectness of assumptions can be verified or falsified. Simple and easy-to-understand models serve 

to teach students interactions such as the factors influencing crop production under different 

circumstances. In research, crop models are used to create sound concepts reflecting current 

knowledge. Moreover, they are tools for analysing experimental results by investigating the 

causes of differences. In early applications of smart farming, crop models have been used for 

pest management in cotton and wheat already in the 1980s (Sinclair and Seligman, 1996 cited in 

Fuchs, 2016). 

Crop models can be classified into mechanistic (process-based) and empirical models. While 

process-based models try to imitate real world processes (on a physical and physiological basis), 

empirical models use mathematical functions chosen to best fit observations without consider-

ation of the underlying processes (Monteith, 1996). However, process-based models also become 

empirical (i.e. purely mathematical) at a lower organizational layer (Sinclair and Seligman, 1996; 

Soltani and Sinclair, 2012).  
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Soltani and Sinclair (2015) compared four wheat models with different complexity, including 

SSM-iCrop (simple) and APSIM (complex). They found that the simpler models were generally 

more robust than the complex ones. Obviously, simpler models are advantageous as they are 

easier to parameterise and investigate. Therefore, it is not surprising that Passioura (1996) noted 

very early that models should be kept as simple as possible and demand only little input data. 

5.2.2. Model Parameterisation and Calibration 

The input parameters of a mechanistic crop growth model represent important crop/cultivar 

characteristics necessary to model bio-physiological processes. Parameters are (mathematical) 

variables whose values are generally constant within a simulation, such as a crop’s transpiration 

efficiency. Using observed data from literature and/or experimentation, parameter values are 

calculated for a specific genotype x environment combination. This procedure is referred to as 

“parameterisation”. In contrast, the term ”calibration” means randomly changing parameter val-

ues, selecting those fitting best to expectations such as observed yield (Sinclair and Seligman, 

1996; Soltani and Sinclair, 2012). Some models need parameters which are not related to a meas-

urable size and can only be calibrated by using the model itself. Since calibration is a purely “trial 

and error” method that ignores scientific knowledge on crop physiological processes and their 

interactions with the environment it should be avoided where possible (Monteith, 1996; Soltani 

and Sinclair, 2015, 2012). Therefore, calibration of a single parameter in relation to a measured 

size is acceptable, but calibration of the whole model for a specific output (e.g. to fit observed 

yields) is not. While some authors do not distinguish between calibration and parameterisation, 

in this thesis, the above-mentioned definition will be used. 

There is no standardised approach on how to parameterise and calibrate a crop model. While 

there is a general need for high quality data sets to enable sound parameterisation (Rötter et al., 

2011), the process itself is tackled differently. In a survey among crop modellers, Seidel et al. 

(2018) found that parameters are estimated mostly by trial and error in a multiple stage process, 

usually started with phenology parameters. The term "trial and error" would suggest a pure cal-

ibration exercise, in terms of the above-mentioned description. However, it can probably be 

safely assumed that most scientific modellers will base their trial and error approach on previ-

ously measured and calculated values, only adjusting them to optimise results. Apparently, the 

difference between the terms "parameterisation" and "calibration" is not a sharp line. However, 

in their survey, Seidel et al. (2018) found that among crop modellers the time spent to parame-

terise a model ranged from only one day to as much as five years (median 25 days) indicating 

the complexity and challenge of the parameterisation exercise. 
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5.2.3. Model Evaluation 

In the context of crop growth modelling, the term “evaluation”, also called testing or validation 

(Boote et al., 1996), is the process of gaining confidence in the model itself or a specific applica-

tion of the model, such as a newly derived set of parameters defining a previously untested cul-

tivar. Frequently evaluated crop model outputs are the timing of emergence, anthesis, and ma-

turity, leaf area index at anthesis, total crop biomass (dry mass) at anthesis and maturity, and 

grain yield. Depending on the subject of interest, other simulation results may be evaluated in 

detail, such as soil water content or grain nitrogen concentration. 

Commonly applied methods to evaluate model results include qualitative assessments as well as 

quantitative tests. Concerning qualitative assessments, visual comparisons of simulated time se-

ries with observed points are frequently used in literature from early modelling (e.g. Monteith, 

1965) until today (e.g. Asseng et al., 2019; Ebrahimi et al., 2016; Manschadi et al., 2020b; Webber 

et al., 2017). Field experiments carried out for crop modelling are usually designed with at least 

three replications to facilitate statistical testing. However, as exact mathematical models, crop 

models mostly lack any randomness, thereby making replications of the same simulation a use-

less task, as results would be identical. However, if several different environments are simulated, 

quantitative tests (i.e. statistical tests) can be used to assess model performance (e.g. Hunt and 

Boote, 1998 cited in Cao et al., 2012).  

A quantitative method often used to describe crop model results is the goodness-of-fit (e.g. re-

gression analysis simulated vs. observed). Sometimes the same dataset is used for parameterisa-

tion and evaluation, which leads to over-optimistic results (Efron 1983 cited in Seidel et al. 2018). 

Thus, it is better to have independent parameterisation and evaluation datasets (Seidel et al., 

2018). In general, test statistics can be classified into two groups: those based on correlation, 

such as the correlation coefficient R², and those based on deviation, such as the root mean 

squared error (RMSE). 

5.2.4. SSM-iCrop – a Process-based Crop Growth Model 

Given the range of available crop models nowadays, the question "why make another model?" 

arises. The developers of SSM-iCrop (Soltani et al., 2013; Soltani and Sinclair, 2012) argued that 

previous models often (i) lack of documentation, (ii) are very complex, (iii) restrict access to 

model code, (iv) lack intuitive user interfaces, and (v) have parameters with unclear meaning. 

Regarding (v), one of the key goals of the developers was to exclusively use measurable parame-

ters in SSM-iCrop. Other authors such as Seidel et al. (2018) supported the critique concerning 

the lack of documentation (i) and problems with high complexity (ii) among many models and 
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even claimed these issues to be of major importance during the process of model parameterisa-

tion. 

The development of SSM-iCrop (SSM: Simple Simulation Models; hereafter referred to as 

“iCrop”) dates back more than 30 years when the first model version for soybean was described 

by Sinclair (1986). Since then, the model has been applied to a range of important field crops 

such as wheat (Sinclair and Amir, 1992; Soltani et al., 2013), maize (Sinclair and Muchow, 1995), 

barley (Wahbi and Sinclair, 2005), sorghum (Sinclair et al., 1997), peanut (Hammer et al., 1995), 

and chickpea (Soltani and Sinclair, 2011). In a study by Soltani and Sinclair (2015) the model’s 

performance was tested against three widely used and recognised crop models and iCrop was 

found to be transparent and robust. A simplified version of the model for large area simulations 

(SSM-iCrop2) was parameterised and tested for more than 30 crop species and has been used in 

large scale studies in different continents for various crop species (Sinclair et al., 2020; Soltani 

et al., 2020). 

The version of iCrop presented and used in this PhD thesis was based on the original SSM-iCrop 

model as described in the book by Soltani and Sinclair (2012) and in the journal article by Soltani 

et al. (2013). 

5.2.5. Aspects of Wheat Simulation 

In the following, some of the aspects of crop growth models simulating winter wheat are pre-

sented and different approaches are shown. A detailed description of the iCrop model itself is 

provided in the Materials and Methods chapter. 

Soil is an essential part of a crop model, incorporating several crucial processes (Figure 2). While 

some soil-related variables are often completely ignored in some crop models (e.g. root biomass) 

others are usually included with varying detail (e.g. soil water content) depending on the varia-

bles of interest in the specific situation. For instance, simulations of yield potential might ignore 

soil water completely and just assume optimal conditions, while simulations aiming at deriving 

decision support for irrigation schemes will have to include detailed soil water representations. 

Equations and algorithms are coded in the soil sub-model in a way to represent soil water infil-

tration, surface runoff, water distribution, drainage, water and nitrogen uptake by the plant’s 

roots, nitrogen mineralisation, demineralisation, volatilisation, and more. 
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Figure 2 Conceptual overview of the soil and its in- and outputs (figure from ”Modeling physiology of crop development, 

growth and yield”, Soltani and Sinclair, 2012). 

Implementations of soil water sub-models range from rather simple approaches such as “single-

bucket” (Sinclair and Amir, 1992) or “multiple tipping-buckets” (Ritchie, 1998) to complex solu-

tions such as the well-known Richards equation (Richards, 1931). The multiple tipping-buckets 

approach, also known as cascading layers approach, is among the most frequently applied solu-

tions. It is based on the concept that water that exceeds field capacity (i.e. drained upper limit) 

in one layer infiltrates the following layer below. Formulas to limit the water flow to soil layers 

based on hydraulic conductivity also exist (Stöckle and Meza, 2020). 

Soil water content highly depends on infiltration of water from precipitation and irrigation. Most 

crop models allow for both water input from weather data (precipitation) and water input from 

irrigation as a management option. Water that does not immediately infiltrate the soil may be 

accumulated on the soil surface or simply be removed as runoff. While only few models account 

for accumulated water on the soil surface, most do calculate runoff, often using the USDA-SCS 

curve number method (USDA, 2004) that accounts for slope, soil texture, tillage, amount of 

precipitation, and more (Stöckle and Meza, 2020). The method may be simplified to require less 

input parameters (e.g. as used in iCrop (Soltani and Sinclair, 2012) where slope, texture, and 

tillage are ignored). 

Soil water in the topmost layer is prone to evaporation, i.e. water flux from soil to the atmos-

phere. Several factors affect soil evaporation, including soil water availability, atmospheric evap-

orative demand, crop cover (leaf area), crop residue, and tillage. According to Stöckle and Meza 

(2020) only few models use mechanistic approaches which estimate fluxes of heat and water in 

the soil that result in many finite difference equations. Most crop models apply more simple 

approaches such as the two-stage evaporation proposed by Ritchie (1972). Stage 1 is energy lim-

ited and captures the atmospheric evaporative demand (including e.g. crop cover, residue cover) 
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and stage 2 water limited describing the reduction of the soil’s evaporative rate (often a function 

of time or soil water content). Usually, 0.1 m of the topmost layer are affected by evaporation, 

but this may be increased for sandy soils or decreased for clay-rich soils. 

Crop water uptake is often modelled under the assumption of uniform root distribution in the 

soil layers, meaning that all roots are considered having the same water uptake capacity with 

always sufficient root length density for water uptake. The simulation of vertical downward root 

growth incorporates crop/cultivar-specific optimum root extension rate, accounting for limiting 

factors such as soil temperature and stresses regarding water and nutrients (Wang and Smith, 

2004). However, the roots’ water uptake capacity in reality is highly dynamic.  

Soil water taken up by the roots is transported to the leaves and transpired. Again, approaches 

with varying complexity exist to model the process of transpiration. Stöckle and Meza (2020) 

reviewed literature and found that relatively few studies exist which compare different water 

uptake algorithms and that significant differences may result from different approaches. How-

ever, while they argued that nowadays, with high computing power compared to several decades 

ago, more complex approaches such as the SPAC (soil-plant-atmosphere continuum) framework 

(e.g. Campbell et al., 1976) would give better results they also acknowledged that most crop 

models implement rather simple approaches. One such simple method is relating transpiration 

to daily crop dry matter production (g m-2 day-1), the atmosphere’s vapour pressure deficit (VPD, 

Pa), and a species-specific transpiration efficiency coefficient (TEC, Pa) (Soltani and Sinclair, 

2012). 

Nitrogen (N) is quantitatively the most important element in plant nutrition (when ignoring 

hydrogen and oxygen from carbon dioxide assimilation and water uptake). Between 2014 and 

2015, most of the world’s N fertilisers were applied to maize (19.3%) and wheat (18.5%) (Heffer 

et al., 2017). Since the invention of the Haber-Bosch process in the early 20th century, N fertiliser 

use has increased highly – and so have wheat yields and grain protein contents (Cao et al., 2018; 

Follett et al., 2010; Sinclair, 1998). Of course, besides improved N supply to the crop, other ad-

vances contributed to this as well (e.g. breeding, technical progress). Nevertheless, the plant 

available N resource poses a major potential – or limitation. Therefore, crop models need to 

simulate soil N dynamics and interactions with the crop. Over 50 soil N models for crop models 

exist, most of them process-based and capable of additionally simulating soil carbon dynamics 

(Singh and Porter, 2020). The modelling of nitrogen in crop growth models can be divided into 

crop N demand and soil N supply. The latter comprises of plant available soil N, that is mineral 

soil N (Nmin; ammonium and nitrate), which is used by most models (Shaffer et al., 2001 cited 

in Singh and Porter, 2020). 
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The empirical relation between temperature and the rate of plant physiological processes such 

as leaf expansion, organ emergence, or the timing of anthesis has been modelled for more than 

100 years (Kim et al., 2020). Temperature drives plant development from the very beginning 

(sowing) until the very end (harvest maturity, crop death). Thermal time is a concept where 

daily temperatures above a threshold (base temperature) are summed up and used for crop 

model calculations. The critical question is which temperature to sum up, as the diurnal pattern 

of temperature is usually far from constant. Also, different crop species react differently to tem-

perature. One of the earliest concepts to condense daily temperature into a single, crop species-

specific value was the growing degree day (GDD). McMaster and Wilhelm (1997) used the fol-

lowing formula:  

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 

(1) 

with Tmax and Tmin being daily maximum and minimum temperature, respectively, and Tbase be-

ing a crop specific minimum temperature below which plant development is stopped. GDDs can 

be cumulated, commonly referred to as thermal time (see below). 

While GDD was a big step forward in crop modelling, it did not explain plant phenology suffi-

ciently well. According to Kim et al. (2020), several approaches were found to better describe 

the influence of temperature on plant development (e.g. Yin et al., 1995). One of them was the 

“cardinal temperature approach” where Tbase, Topt, and Tcrit are defined: Plant development only 

starts if temperature is above Tbase. The development rate rises until Topt, then decreases until 

Tcrit after which it ceases completely. While these cardinal temperatures may be interpolated 

linearly, other solutions were found to work better. One well recognised approach to interpolate 

between the cardinal temperatures is using a curvilinear relationship (beta function, Figure 3) 

(Kim et al., 2012; Yan and Hunt, 1999).  
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Figure 3 Schematic curvilinear relation of the phenological relative response to temperature with various response re-

gions. Starting point of A: Tbase, breakpoint B/C: Topt, ending point of C: Tcrit. Figure from ”Modeling physiology of crop 

development, growth and yield” (Soltani and Sinclair 2012). 

The influence of photoperiod (day-length) and vernalisation (winter chilling) was discovered 

early in the 19th century (e.g. Coville, 1920 cited in Kim et al., 2020). The photoperiod affects 

induction of anthesis (flowering) of plants: short-day plants require day-length below a certain 

threshold, long-day plants above a threshold, and day-neutral plants do not react to day-length. 

The threshold is often defined as 12 hours. Vernalisation represents the need of some plant spe-

cies for a certain duration of cold temperatures to induce anthesis, otherwise, they stay in a 

vegetative state. 

In terms of crop modelling, vernalisation and photoperiod are often implemented by modifying 

the accumulated thermal time using factors (0-1) (Kim et al., 2020). For instance, a long-day 

crop experiencing too short day-lengths will cause the model to reduce the thermal time (pho-

toperiod factor below 1). In the same manner, for a winter wheat crop that experiences rather 

high temperatures (e.g. 10 °C) the crop model will also reduce thermal time (vernalisation factor 

below 1), thereby slowing the progress of phenology. Usually, such factors are only active during 

specific phases of a plant’s development, otherwise they are set to 1. 

Depending on the purpose of a crop model, different phenological stages will be defined and 

programmed into the model. For example, Soltani and Sinclair (2012) used the following rele-

vant phenological stages for wheat: emergence (50% of plants have emerged from the soil sur-

face), termination of leaf growth on the main stem (end of the effective leaf production), begin-

ning and termination of seed growth (beginning and end of effective grain mass increase), and 

harvest maturity (reduction of seed water content to a level where machine harvest is sensible). 

Soltani and Sinclair (2012) also state that additional stages may be simulated, for instance to 

support crop management decisions regarding timing of the application of fertilisers and pesti-

cides. 
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In technical terms, the phenological stages that need to be simulated are defined as thermal time 

targets. For instance, winter wheat might require 120 °Cd for emergence and a total of 2000 °Cd 

from emergence until harvest maturity. However, these values are cultivar-specific and require 

thorough parameterisation. 

The simulation of leaf canopy variables, particularly of the development of leaf area index (LAI), 

has a significant impact on intercepted radiation and dry matter production and, therefore, on 

grain yield (Sinclair, 1984; Soltani and Sinclair, 2012). Due to the practical importance of yield 

quantity, the exact simulation of LAI is obviously a key in crop growth models. 

Soltani and Sinclair (2012) have reviewed methods for simulating LAI and identified three dif-

ferent approaches: (i) carbon-based, (ii) temperature-based, and (iii) hybrid (carbon and tem-

perature). Carbon-based approaches (i) assume that dry matter allocated to leaves has the most 

significant influence on LAI development. The daily increase in leaf area is calculated from daily 

dry matter increase for leaves times the specific leaf area – a coefficient representing leaf area 

per unit of leaf dry matter. Models using the temperature-based approach (ii) relate LAI growth 

to temperature. Hybrid methods (iii) use a mixture, for instance calculating both carbon-limited 

and temperature-limited LAI increase and using the minimum of both. 

Main stem node number simulation is usually based on the phyllochron concept. It is important 

in two ways: first, as a measure of phenological development (e.g. Haun-stage and Zadoks-stage, 

Haun, 1973; Zadoks et al., 1974) and second as a driver of LAI expansion, both in reality and in 

the model. 

5.3. Research Gap Filled by this Thesis 

Crop growth models have been applied in various situations all around the planet (e.g. Reynolds 

et al., 2018). However, models are not “generic”, meaning that a single crop model parameteri-

sation cannot be reliably used anywhere in the world. Rather, each parameterisation is only valid 

within the ranges of its parameterisation data base, and extrapolation to other environments is 

very limited. For example, a crop growth model parameterised for winter wheat in a wet envi-

ronment can hardly be used to simulate barley in a dry environment, or even spring wheat in a 

semi-dry environment. 

As of my knowledge, only few studies have been carried out using crop growth models for cereals 

in Eastern Austria (e.g. Ebrahimi et al., 2016; Eitzinger et al., 2013a, 2013b). None of them were 

addressing multiple modern winter wheat varieties with varying N-fertilisation levels using a 

highly detailed and comprehensive data set as later presented in my study. Also, none of the 
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previous studies were using the iCrop model in Eastern Austria. While the necessity to parame-

terise crop models for up-to-date cultivars is obvious, it could be argued that other models are 

more readily available and more intensely tested than iCrop and should be used instead. How-

ever, there are several good reasons to use this specific crop model. First, its source code is freely 

available without any licensing, thereby enabling its use for scientific, commercial, and com-

bined applications which bridge the gap between research and industry. For instance, the results 

of this study contributed to the research project COMBIRISK (COMBIned weather related RISK 

assessment monitor for tailoring climate change adaptation in Austrian crop production, 

https://combirisk.boku.ac.at/) as well as to the Farm/IT project (https://www.farmit.at/, Man-

schadi et al., 2020b, 2019) which focused on implementing the crop modelling research results 

to software applications for stakeholders in agriculture. Also, iCrop is exceptionally well docu-

mented in a book (Soltani and Sinclair, 2012) which can, unfortunately, not be taken for granted 

(Asseng et al., 2020). Another very handy aspect of iCrop is its ease of use. As described later in 

the Materials and Methods section, iCrop is written in a rather simple programming language 

in a macro within Microsoft Excel (Microsoft Corporation, 2018) which enables easy alteration 

of the model’s algorithms and testing scientific hypotheses. Finally, an additional model can in 

future be used in multi-model ensembles which have received increased attention in recent 

years for highly significant topics such as climate change impact studies (e.g. Asseng et al., 2019, 

2013; Basso et al., 2018; Liu et al., 2019; Rosenzweig et al., 2013). It has been shown that the 

performance of the single models within the ensemble is a key to decrease the variation of the 

overall ensemble simulation results (Maiorano et al., 2017).  

By parameterisation and evaluation of the iCrop model in a previously rarely tested but agricul-

turally important environment my study contributes to filling a gap in a highly relevant and up-

to-date scientific topic. 

  

https://combirisk.boku.ac.at/
https://www.farmit.at/
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6. Research Question and Hypotheses 

Research Question 

Is the iCrop crop growth model capable of capturing winter wheat canopy growth and develop-

ment in the environment of Eastern Austria using field data for detailed model parameterisa-

tion? 

Hypotheses 

In the environment of Eastern Austria iCrop is capable of simulating: 

1. Soil mineral N content (Nmin) and soil water content 

2. Winter wheat cultivar-specific phenological development 

3. Winter wheat cultivar-specific and N-fertilisation-specific crop dry mass and crop-N dy-

namics at organ-level (leaf, stem, grain) 

7. Materials and Methods 

In this chapter, the materials and methods used to parameterise the iCrop model are described, 

starting with data acquisition from field experimentation (7.1). Section 7.3 gives a detailed de-

scription of the specifics of the iCrop model itself, and section 7.4 explains the calculation of 

parameters from observed data. 

7.1. Field Experiments 

Plant and soil data were collected from two field experiments conducted in 2017/18 (EXP1) and 

2018/19 (EXP2) at the UFT (Universitäts- und Forschungszentrum, Tulln, BOKU university), 

Lower Austria (48 ° 19 ́ N, 16 ° 04 ́ E, 178 m a.s.l.) (Figure 4). The two experiments were in ca. 

500 m distance from each other. The location of EXP2 was changed to another field since the 

data of EXP1 had shown inhomogeneous soil conditions. Also, the closeness to a windbreak (Fig-

ure 5) of EXP1 was unfavourable.  



 

16 

 

Figure 4 Map of parameterisation experiment location (black symbol), long-term experiment locations (orange symbols) 

and corresponding weather station locations (blue symbols). The “Langenlebarn” weather station (ca. 4 km east of Tulln) 

is not shown. Map source: www.google.at/maps. 

Four widely-grown winter wheat (Triticum aestivum L.) cultivars, contrasting in phenology and 

grain protein content (Arnold, Aurelius, Bernstein, and Emilio), were sown on 16 October 2017 

in EXP1 and on 15 October 2018 in EXP2. The sowing density was 375 seeds m⁻² with a row 

spacing of 120 mm sown in 10 rows (single-plot size: 10 x 1.2 m). Single-plots were sown twice in 

parallel to increase area for destructive sampling, so the final plot size was ca. 10 x 3 m (including 

wheel tracks). To minimise border effects from different N-fertiliser treatments, buffer plots of 

the same size were added. Also, the previous crops (wheat in EXP1, maize in EXP2) were unfer-

tilised to reach low initial soil N levels. Although both experiments were in close proximity to 

each other, the soil map “eBod” (https://bodenkarte.at; Wandl and Horvath, n.d.) classifies the 

soils of the two locations differently: EXP1 as “Anmoor” (calcaric mollic gleysol) and EXP2 as 

“Feuchtschwarzerde” (calcaric gleyic phaeozem). The reference weather station was located at 

Langenlebarn (ca. 4 km east of the field experiments). Long term weather averages (period: 1991 

to 2015) at Langenlebarn during the wheat growing season (October – June) were 408 mm pre-

cipitation and 7.9 °C average temperature. 

http://www.google.at/maps
https://bodenkarte.at/
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Figure 5 Experimental design of the winter wheat field experiment 2017/18 at Tulln (EXP1). Winter wheat cultivars: Ar-

nold, Aurelius, Bernstein, and Emilio. 

The experimental design was a randomised split-plot with fixed N-treatment blocks and four 

replications (shown for EXP1 in Figure 5). The layout of EXP2 was identical to EXP1, only the 

(sub) plots within the main-plots (i.e. replication x N-treatment) were newly randomised. Also, 

there was no windbreak nearby in EXP2. For phenological and destructive crop samples in both 

experiments, replication R4 was dropped due to obvious inhomogeneity. Both experiments re-

ceived a nitrogen (N) fertilisation treatment with four different levels: 0 (N0), 70 (N1), 140 (N2), 

and 210 kg N ha-1 (N3). N fertiliser was applied in two equal rates on 9 April (BBCH 26, tillering) 

and 8 May (BBCH 43, booting) in EXP1 and on 8 March (BBCH 22, tillering) and 10 April (BBCH 

26-31, tillering/stem elongation) in EXP2. The coating area was sown with Bernstein and re-

ceived N2 fertilisation, excluding a buffer zone of 2 m next to the N0 plots. Both experiments 

were rain-fed exclusively. Prior to sowing, a phosphorus-potassium fertiliser (15% P, 40% K) was 

applied at the rate of 300 kg fertiliser ha-1. Control of pests, diseases, and weeds was managed 

according to common regional practices. 

In both experiments, three plants per plot (from all N-treatments in EXP1, and only N0 and N3 

in EXP2) were chosen randomly, marked with small plastic markers, and used for weekly scor-

ings of phenology according to the BBCH scale (Meier, 2001) during the main active growing 

period (i.e. excluding winter, ca. December – February). The phenological stage of a treatment 

was calculated as follows: If all three plants were in the same BBCH main stage, the average of 

all three plants was used. If one plant was in a different stage than the other two, the one plant’s 

value was removed and the average of the two other plants was used. This is in compliance with 

the BBCH scoring method, which states that a main stage is reached if at least 50% of the plants 
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in the canopy show that stage. For instance, if the three plants were scored 12.3, 13.4, and 21, 

then 21 was removed and the average of 12.3 and 13.4 was calculated. It did not occur that each 

of the three plants was in a different main stage. Main stages are: 0 germination, 1 seedling 

growth, 2 tillering, 3 stem elongation, 4 booting, 5 ear emergence from boot (heading), 6 anthe-

sis, 7 milk development, 8 dough development, and 9 ripening. 

Sequential destructive plant samples were cut directly above soil surface and analysed for crop 

dry mass, leaf area development, N-uptake, and grain yield. Sampling area was 0.25 m² for in-

season measurements and 1.00 m² at final harvest. Plant biomass samples were separated into 

photosynthetic active leaf blades (i.e. green leaves) and senesced leave blades (area threshold: 

50%), stems (including leaf sheaths), chaff, and grains. For measuring leaf area index (LAI), a 

subsample of the green leaves was immediately taken and analysed (LI-3100C Area meter, LI-

COR, USA). All samples were dried for 72 h at 60 °C to retrieve dry mass. The N concentration 

of plant tissues was measured using a CN elemental analyser (Vario Macro Cube, Elementar 

Analysensysteme GmbH, Germany). 
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Table 1 Sampling date, observed phenology (BBCH), and phenological stage name used in text when referencing to spe-

cific sampling dates (sowing, anthesis, harvest) during the two winter wheat seasons. Sample types: biomass (i.e. above-

ground biomass for measuring dry mass), SW (soil water), and Nmin (soil mineral nitrogen). Seasons: EXP1: 2017/18, 

EXP2: 2018/19. 

Season Sampling date Reference in text BBCH Sample type 

    Biomass SW Nmin 

EXP1 13 September 2017    p p 

 18 October 2017 Sowing <9  p  

 30/31 January 2018   P p  

 26 March 2018   p   

 11/12 April 2018   p p  

 30 April/2 May 2018   f p  

 28/30 May 2018 Anthesis ca. 71 f p  

 4 July 2018 Harvest >89 f p p 

       

EXP2 1 October 2018    p p 

 18 October 2018 Sowing <9  p  

 15 February 2019   f   

 4/5 March 2019   f p p 

 20/21 March 2019   f p  

 1/2 April 2019   p p  

 15/16 April 2019   f p  

 2 May 2019   f p  

 17 May 2019   p p  

 3 June 2019 Anthesis 62-69 f p  

 11 June 2019   p   

 1 July 2019    p  

 16 July 2019 Harvest >89 f p p 

p: partial sample, only selected plots or plant organs were sampled; f: full sample, all plots were sampled  
 

Gravimetric soil water content was measured at sowing, anthesis, harvest, and on several addi-

tional dates (Table 1). The sample collection procedure involved driving augers 120 cm deep into 

the soil. After pulling them out, the soil samples were divided into 0-10, 10-30, 30-60, 60-90, 

and 90-120 cm soil layers. On each sampling date at least two augers were extracted per plot. 

The layer-wise corresponding samples from the augers were then mixed homogenously, packed 

in plastic bags and immediately stored in dark, cooled containers. Soil fresh weight was then 

measured as soon as the samples were brought to the laboratory. Afterwards, they were dried at 

105 °C and again weighed for dry weight. In EXP 1, in-season soil water samples were taken along 

a transect, resulting in rather random selection of treatments: Arnold N0, Bernstein N2, Emilio 

N1, and Emilio N3. At harvest of EXP1, all treatments were sampled, using a mix of replication 

R2 and R3 to save costs. However, since the transect-method did not prove advantageous, in-

season soil water samples of EXP2 were always taken from the same two to three replications of 

Arnold and Bernstein with treatment N0 and N3 for better comparability between cultivars and 
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N-treatments. At harvest of EXP2, all treatments were sampled, using two replications (not 

mixed). Soil bulk density was measured on a nearby (ca. 1 km distance) field and adjusted using 

publicly available soil data from “eBod” (Wandl and Horvath, n.d.) as well as data from a neigh-

bouring experiment (spatially in between EXP1 and EXP2) (Sethmacher, 2018). The on-field 

measurement was done by digging a pit and using metal sampling rings (35 mm radius, 50 mm 

length) to extract undisturbed soil samples from the corresponding soil layers. The soil bulk 

density samples were dried for 72 h at 105 °C and weighed. Soil bulk density (BD, g cm⁻³) was 

calculated following a simple division: 

𝐵𝐷 =
𝑚

𝑉
 (2) 

where m is the soil dry weight (g) and V the cylinder volume (cm³). 

Volumetric soil water content (SWVOL) was calculated from gravimetric soil water content 

(SWGRAV) and bulk density: 

𝑆𝑊𝑉𝑂𝐿 = 𝑆𝑊𝐺𝑅𝐴𝑉 ⋅ 𝐵𝐷 (3) 

𝑆𝑊𝐺𝑅𝐴𝑉 =
𝑚𝑓𝑟𝑒𝑠ℎ−𝑚𝑑𝑟𝑦

𝑚𝑑𝑟𝑦
 (4) 

where mfresh and mdry are the soil masses before and after drying, respectively. 

Soil mineral nitrogen content (Nmin) was measured pre-sowing and at harvest in both experi-

ments, and additionally at early tillering in EXP2 (ca. BBCH 22, 4 March 2019) for Arnold and 

Bernstein, each with N0 and N3. In both experiments, Nmin samples pre-sowing were taken 

from four equidistant points along a transect. The values were pooled and used for identical soil 

Nmin initials in the simulations. Harvest samples of both experiments were collected from two 

replications of all treatments. Only in EXP1 the replications of these samples were mixed before 

analysis to save costs, therefore only one value per treatment was available. For both experi-

ments, the splitting of soil Nmin samples into layers was similar to that for gravimetric soil water 

samples, only the first two layers were merged: 0-30, 30-60, 60-90, 90-120 cm. Material (augers) 

and procedure (min. two augers per measurement) was identical to that for soil water (see 

above). The samples were sent to a commercial soil laboratory for analysing Nmin and organic 

carbon content. 

The soil Nmin balance was calculated as follows: 

𝑁𝐵𝑎𝑙 = 𝐼𝑛𝑖𝑁𝑚𝑖𝑛 + 𝐹𝑒𝑟𝑡𝑁 − 𝑁𝑈𝑃 − 𝐹𝑖𝑛𝑁𝑚𝑖𝑛 (5) 
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where NBal (kg N ha⁻¹) is the soil Nmin balance, IniNmin (kg N ha⁻¹) the soil initial Nmin at sowing, 

FertN (kg N ha⁻¹) the total fertilised N during the season, NUP (kg N ha⁻¹) the N content of the 

crop at harvest, and FinNmin (kg N ha⁻¹) the final soil Nmin at harvest. 

7.2. Long Term Wheat Data Set 

Model evaluation was performed using independent field experimental data from AGES (Aus-

trian Federal Agency for Health and Food Safety). Data covered four locations across Eastern 

Austria (Grossnondorf, Obersiebenbrunn, Gerhaus, Pottendorf), three seasons (2014/15, 

2015/16, and 2016/17), and the same four winter wheat cultivars as used for parameterisation 

(Arnold, Aurelius, Bernstein, Emilio).  

Management and soil data availability was limited. Data included the dates of sowing, heading 

(BBCH 59), and harvest, as well as grain yield and location (city name, but not coordinates). 

Also, dates and amounts of N fertiliser application were available. All experiments received min-

eral N fertilisation (no organic fertilisation). On a few occasions, experiments were irrigated 

(amount and date available). 

Weather data was acquired from ZAMG (Central Institution for Meteorology and Geodynamics, 

a subordinate agency of the Austrian Ministry of Education, Science and Research). The loca-

tions of the weather stations vs. field experiments are shown in Figure 4. The closest available 

weather station was used for simulation of each experiment (ca. 10 to 25 km distance). On a few 

single days, weather data was missing. In these cases, missing data was substituted with data 

from the next nearest station. 

7.3. The “iCrop” Crop Growth Model 

7.3.1. Overview 

iCrop is a process-based crop growth model that simulates phenology, leaf growth and senes-

cence, biomass (above-ground dry mass) production and partitioning, crop nitrogen uptake and 

partitioning, yield formation, and soil water and nitrogen dynamics. The model operates on a 

daily time step but also provides the option of hourly time steps for calculating the response of 

transpiration to vapour pressure deficit. Required model inputs are daily weather data (mini-

mum and maximum temperature, global radiation, precipitation), soil parameters and initials, 

management settings (sowing date and density, irrigation dates and amounts, fertilisation dates 

and amounts), and crop/cultivar genetic parameters (phenology, leaf characteristics, dry mass 

production, nitrogen concentrations) (Soltani et al., 2013; Soltani and Sinclair, 2012). 
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The iCrop model is implemented as a macro in Microsoft (MS) Excel (Microsoft Corporation, 

2018) written in the programming language Visual Basic for Applications (VBA). The implemen-

tation into MS Excel allows easy access and usability. All necessary model inputs and outputs 

are entered and displayed directly in the sheets of a single MS Excel file. The file may be defined 

to simulate multiple seasons, crops, and locations. It is not necessary to have programming skills 

for the normal use of iCrop. However, for advanced users it is possible to test the model exten-

sively. Model functionality can be modified easily via the VBA source code, requiring no addi-

tional software besides MS Excel. Thereby, scientific hypotheses can be implemented and tested 

smoothly. 

Since the publication of the current version of the model in 2012, iCrop has received some up-

dates and improvements from its developers. Also, the model provides simplified modes for non-

limiting conditions regarding soil water and soil nitrogen, where some functions differ from the 

complete (i.e. water and nitrogen limited) model. However, in the following sections the model 

is described in its 2012 version including all functionality unless otherwise noted. The main ref-

erences are the publications of Soltani and Sinclair (2012) and Soltani et al. (2013) and the model 

code itself, unless explicitly cited otherwise. The contents of the following sections were largely 

paraphrased from Soltani and Sinclair (2012). 

Hereafter, model parameters, variables, and outputs are formatted in italics (e.g. ppfun, WSFD). 

In some sections, the italics and normal form of an abbreviation are used next to each other to 

help distinguishing between model simulations and field measurements/observations (e.g. sim-

ulated LAI vs. observed LAI). 

7.3.2. Phenology 

iCrop simulates important phenological stages of the wheat crop: emergence, first tiller, first 

node (i.e. first node on the main stem), flag leaf ligule emergence (i.e. full expansion of the flag 

leaf), ear emergence, anthesis, and physiological maturity. The development is based on the cal-

culation of biological days (parameter name: bd<phenology_phase>; e.g. bdEMRTIL for emer-

gence to tillering, unit: bd), where one bd represents a day with optimal growing conditions 

(regarding temperature, photoperiod, vernalisation, and soil water availability). Default opti-

mum temperature for wheat is 27.5 °C. For each day, the model calculates 

𝑏𝑑 = 𝑡𝑒𝑚𝑝𝑓𝑢𝑛 ⋅ 𝑝𝑝𝑓𝑢𝑛 ⋅ 𝑣𝑒𝑟𝑓𝑢𝑛 ⋅ 𝑊𝑆𝐹𝐷  (6) 

using sub-functions for photoperiod (ppfun), vernalisation (verfun), water stress (WSFD, see sec-

tion Soil Water), and temperature (tempfun). When cumulative biological days pass the defined 
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starting threshold of a phenological phase, that phase is initiated. For instance, the wheat culti-

var Tajan requires 5 cumulative biological days from sowing to emergence. The set of bd<phe-

nology_phase> thresholds for a cultivar needs to be defined as a part of the parameterisation 

process (Soltani et al., 2013; Soltani and Sinclair, 2012). 

The temperature function (tempfun) simulates the effect of daily mean temperature on pheno-

logical development (Yan and Hunt, 1999): 

𝑡𝑒𝑚𝑝𝑓𝑢𝑛 =
𝑇𝑐−𝑇

𝑇𝑐−𝑇𝑜
⋅ (

𝑇−𝑇𝑏

𝑇𝑜−𝑇𝑏
)

𝑇𝑜−𝑇𝑏
𝑇𝑐−𝑇𝑜  (7) 

with daily mean temperature (T), wheat base temperature (Tb), optimum temperature (To), and 

critical maximum temperature (Tc). Wang et al. (2017; 1998) proposed a more complex temper-

ature function, claiming it improved phenology and biomass simulation of many well-known 

models. However, the function proposed by Wang et al. is almost identical to the one used in 

iCrop, so the model appears up to date. 

Wheat phenological stages sensitive to day length (photoperiod) are influenced by the photo-

period function (Soltani et al., 2006): 

𝑝𝑝𝑓𝑢𝑛 = 1 if 𝑃𝑃 ≥ 𝐶𝑃𝑃 (8) 

𝑝𝑝𝑓𝑢𝑛 = 1 − 𝑝𝑝𝑠𝑒𝑛 ⋅ (𝐶𝑃𝑃 − 𝑃𝑃)2 if 𝑃𝑃 < 𝐶𝑃𝑃 (9) 

where PP is the photoperiod (h d-1), CPP the critical (lower) photoperiod, and ppsen the cultivar-

specific coefficient for photoperiod sensitivity. 

The vernalisation function is calculated as 

𝑣𝑒𝑟𝑓𝑢𝑛 = 1 − 𝑣𝑠𝑒𝑛 ⋅ (𝑉𝐷𝑆𝐴𝑇 − 𝐶𝑈𝑀𝑉𝐸𝑅𝑖) if 𝐶𝑈𝑀𝑉𝐸𝑅𝑖 < 𝑉𝐷𝑆𝐴𝑇 (10) 

𝑣𝑒𝑟𝑓𝑢𝑛 = 1 if 𝐶𝑈𝑀𝑉𝐸𝑅𝑖 ≥ 𝑉𝐷𝑆𝐴𝑇 (11) 

where vsen is the cultivar-specific sensitivity coefficient, VDSAT the required cumulative vernal-

isation demand (50 days for all wheat cultivars), and CUMVERi the cumulative vernalisation up 

to the current day i: 

𝐶𝑈𝑀𝑉𝐸𝑅𝑖 = 𝐶𝑈𝑀𝑉𝐸𝑅𝑖−1 + 𝑉𝐸𝑅𝐷𝐴𝑌 (12) 

where VERDAY is today's vernalisation, which ranges from 0 (no vernalisation) to 1 (optimum 

vernalisation). Optimum vernalisation temperature in wheat ranges from 0 to 8 °C, while tem-
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peratures below -1 °C and above 12 °C do not contribute to vernalisation. Suboptimum vernali-

sation occurs for temperatures from 0 to -1 and from 8 to 12 °C following a linear decrease 

(Soltani et al., 2013; Soltani and Sinclair, 2012). 

Vernalisation can be reversed under certain circumstances. This is called de-vernalisation and 

occurs only in early stages when the crop has experienced less than 10 days of cumulative ver-

nalisation and at high maximum air temperatures (above 30 °C). 

Both the response to photoperiod and the response to vernalisation occur only from emergence 

until the appearance of the first node during stem elongation (i.e. ca. BBCH 31). 

The water stress deficit factor (WSFD) ranges from 1 to 1.4 and accounts for the fastening of crop 

development during drought stress (Soltani et al., 2013; Soltani and Sinclair, 2012). 

7.3.3. Leaf Development  

Leaf development simulation covers leaf (i.e. node) number on the main stem (MSNN, dimen-

sionless) and green leaf area index (LAI, m2 m-2, i.e. m2 leaf area m-2 soil surface). The environ-

mental factors soil water availability and soil mineral nitrogen availability, photoperiod, vernal-

isation, and temperature affect leaf development through various processes, as described below 

(Soltani et al., 2013; Soltani and Sinclair, 2012). 

MSNN is calculated using the phyllochron approach. A constant, cultivar-specific value of phyl-

lochron is assumed from emergence until the appearance of the flag leaf (note that this has been 

changed in the iCrop version used in this thesis). During this phenological phase, potential leaf 

area index (PLAI, m2 m-2) directly depends on leaf number, using a simple power function: 

𝑃𝐿𝐴𝐼 = 𝑃𝐿𝐴𝐶𝑂𝑁 ⋅ 𝑀𝑆𝑁𝑁𝑃𝐿𝐴𝑃𝑂𝑊  (13) 

with PLACON as a constant (default: 1). The exponent, PLAPOW (dimensionless), is a cultivar-

specific coefficient which is adjusted for plant density. Daily leaf area increase (GLAI, m2 m-2) is 

then just the difference between today's (i) and yesterday's (i-1) PLAI considering water stress: 

𝐺𝐿𝐴𝐼 = (𝑃𝐿𝐴𝐼𝑖 − 𝑃𝐿𝐴𝐼𝑖−1) ⋅ 𝑊𝑆𝐹𝐿 (14) 

where WSFL is the water stress factor for leaf area expansion (see 7.3.7 Soil Water). 

In addition, GLAI is limited to daily available nitrogen to leaves (INLF, g m-2 soil surface) in 

relation to specific nitrogen of green leaves (SLNG, g m⁻² leaf area): 

𝐺𝐿𝐴𝐼 = 𝑚𝑎𝑥 ((
𝐼𝑁𝐿𝐹

𝑆𝐿𝑁𝐺
) , (𝑃𝐿𝐴𝐼𝑖 − 𝑃𝐿𝐴𝐼𝑖−1) ⋅ 𝑊𝑆𝐹𝐿) (15) 
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After full expansion of the flag leaf and up until the beginning of seed growth, the model assumes 

a slight continuation of LAI increase due to tiller leaf expansion: 

𝐺𝐿𝐴𝐼 = 𝐺𝐿𝐹 ⋅ 𝑆𝐿𝐴 (16) 

where GLF (g m-2) is the dry matter allocated to leaves and SLA (m2 leaf area g-1) is the specific 

leaf area. 

Simulated leaf area index is also limited by nitrogen availability via leaf area senescence: 

𝐷𝐿𝐴𝐼 =
𝑋𝐿𝑁

𝑆𝐿𝑁𝐺−𝑆𝐿𝑁𝑆
 (17) 

where DLAI (m² m⁻²) is the reduction in leaf area index, XLN is nitrogen mobilised from leaves 

(g m-2), SLNS (g N m-2 leaf area) is the specific leaf nitrogen of senesced leaves, and SLNG (g N m-2 

leaf area) is the specific leaf nitrogen of green leaves. The current leaf area index on day i is 

eventually calculated as 

𝐿𝐴𝐼𝑖 = 𝐿𝐴𝐼𝑖−1 + 𝐺𝐿𝐴𝐼 − 𝐷𝐿𝐴𝐼 (18) 

After beginning of seed growth, no more LAI increase is assumed in the model. 

At very low and high temperatures, the model also calculates LAI senescence due to frost and 

heat, respectively (Soltani et al., 2013; Soltani and Sinclair, 2012). 

7.3.4. Dry Mass Production and Partitioning 

iCrop simulates crop biomass (dry mass, DM, g m⁻²) production using the radiation use effi-

ciency (RUE, g MJ-1) approach (Soltani et al., 2013; Soltani and Sinclair, 2012).  

𝐷𝑀 = 𝑃𝐴𝑅 ⋅ 𝐹𝐼𝑁𝑇 ⋅ 𝑅𝑈𝐸 (19) 

𝐹𝐼𝑁𝑇 = 1 − 𝑒−𝐾𝑃𝐴𝑅⋅𝐿𝐴𝐼 (20) 

𝑅𝑈𝐸 = 𝐼𝑅𝑈𝐸 ⋅ 𝑇𝐶𝐹𝑅𝑈𝐸 ⋅ 𝑊𝑆𝐹𝐺 ⋅ 𝐶𝑂2𝑅𝑈𝐸 (21) 

where PAR (MJ m⁻²) is the photosynthetic active radiation which is calculated from the weather 

data input global radiation (SRAD, MJ m⁻²) and a constant conversion factor (0.48) and FINT 

(dimensionless) the fraction of PAR that is being intercepted by the crop canopy.  

For the calculation of FINT, iCrop uses the crop canopy extinction coefficient (KPAR, dimen-

sionless) which is a surrogate for crop canopy architectural traits such as the horizontal arrange-

ment of leaves (i.e. their lack of random overlapping), sun angle, and leaf angles (Hay and Porter, 

2006). Although KPAR changes throughout the day (sun angle) and growing season (LAI), the 

model assumes a constant value (wheat default: 0.65) (Soltani et al., 2013; Soltani and Sinclair, 

2012). 
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The RUE calculation uses potential RUE (IRUE) and includes correction factors (each 0 to 1, 

dimensionless) for effects of temperature (TCFRUE), water stress (WSFG, see 7.3.7 Soil Water), 

and atmospheric CO2 concentration (CO2RUE) (Soltani et al., 2013; Soltani and Sinclair, 2012). 

Dry mass partitioning is simulated between leaves (i.e. leaf blades), grains, and everything else 

except roots (i.e. true stems, leaf sheaths, chaff dry matter). Since the stem dry mass pool com-

prises most of "everything else", it is referred to as "stem" in the context of the iCrop model 

(Soltani et al., 2013; Soltani and Sinclair, 2012). iCrop does not simulate root dry mass. 

Before the beginning of seed growth (BSG) phenological phase, all dry mass is partitioned be-

tween leaves and stems. The relation of dry mass partitioning to leaves (leaf fraction) follows a 

multi-phase curve (Figure 6). In the first phase until a cultivar-specific total dry mass value (de-

fault: 160 g m⁻²), leaf fraction is 0.6 (FLF1A). Thereafter in phase two, more dry mass is allocated 

to stems (leaf fraction: 0.3; FLF1B). Eventually, in the period between termination of leaf growth 

on the main stem (TLM) and BSG, leaf fraction is still 0.1 (FLF2) due to delayed development of 

leaves on tillers. From BSG on, all dry mass is allocated to grains, unless grain demand is over-

satisfied. In this case, excess dry mass is allocated to stems exclusively (Soltani et al., 2013; Soltani 

and Sinclair, 2012). 
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Figure 6 iCrop’s default leaf fraction parameters for wheat (phase 1: FLF1A, phase 2: FLF1B, phase 3: FLF2) depending 

on total above-ground dry mass and key phenological phases (TLM: termination of leaf production on the main stem, 

BSG: beginning of seed growth). For the switch from FLF1A to FLF1B, a cultivar-specific dry mass threshold is defined, 

while for TLM and BSG the shown dry mass values are exemplarily only. 

7.3.5. Nitrogen Uptake and Allocation 

Plant N uptake is split in two phases. In the first phase up until BSG (vegetative growth), poten-

tial N demand (PNUP, g N m⁻²) is driven by leaf area increase (GLAI) and stem dry mass increase 

(GST, g m⁻²): 

𝑃𝑁𝑈𝑃 = 𝐺𝐿𝐴𝐼 ⋅ 𝑆𝐿𝑁𝐺 + 𝐺𝑆𝑇 ⋅ 𝑆𝑁𝐶𝐺 (22) 

where SLNG is the specific leaf nitrogen of green leaves and SNCG (%; g N g⁻¹ dry mass) is the 

nitrogen concentration of green (i.e. growing) stems. In its default version the iCrop model as-

sumes SLNG independent from phenology with 1.5 g m⁻² (nitrogen mass per leaf area) and also 

SNCG independent from phenology with 1.5% (target stem nitrogen concentration) (Soltani et 

al., 2013; Soltani and Sinclair, 2012). However, SLNG and SNCG can be defined for each cultivar. 

Potential crop nitrogen uptake is then limited by several factors to simulate actual N-uptake 

(NUP, g N m⁻²). MXNUP (g N m⁻²) defines a total maximum for daily NUP, reflecting the plants' 

energy costs for assimilating nitrate and ammonium into amino acids (Barker and Pilbeam, 

2015). Also, NUP is limited when the soil is close to saturation (flooding) and when the availa-

bility of soil mineral nitrogen for crop uptake (SNAVL, g N m⁻²) is below demand (Soltani et al., 

2013; Soltani and Sinclair, 2012). 

𝑁𝑈𝑃 = min (𝑃𝑁𝑈𝑃, 𝑀𝑋𝑁𝑈𝑃, 𝑁𝑈𝑃𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔_𝑙𝑖𝑚𝑖𝑡𝑒𝑑 , 𝑆𝑁𝐴𝑉𝐿) (23) 
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If N is limited during vegetative growth, i.e. when crop N-uptake does not meet stem and leaf 

demand, the model first allows stem nitrogen concentration to drop below SNCG in order to 

satisfy leaf N demand. Stem N concentration may drop to a minimum defined by SNCS (senesced 

stem nitrogen concentration, %). If stem N concentration reaches this minimum and leaf de-

mand still cannot be satisfied by NUP, then leaf area expansion is limited by N availability, up 

until the complete inhibition of leaf area increase. At this point of N stress, stem growth contin-

ues at minimum N concentration. When NUP drops even below this minimum, iCrop allows leaf 

senescence to remobilise N from leaves to stems to continue stem growth at SNCS (Soltani et 

al., 2013; Soltani and Sinclair, 2012). 

From BSG on, i.e. in the generative growth phase, the above described N allocation and distri-

bution rules still apply. Obviously, rules regarding leaf area expansion are then obsolete. The 

major change is that the new sink, grain, is considered primary as well as exclusive by the model. 

Potential NUP is, therefore, calculated from seed growth rate (SGR, g m⁻²) and seed nitrogen 

concentration (%GN, %; i.e. g N g⁻¹ dry mass): 

𝑃𝑁𝑈𝑃 = 𝑆𝐺𝑅 ⋅ %𝐺𝑁 (24) 

%GN ranges within the user-defined boundaries of %GNmin and %GNmax (minimum and maxi-

mum grain nitrogen concentration). 

However, N-uptake from soil requires dry mass production and happens only when there is more 

dry mass than the demand by SGR. Otherwise, N-uptake from soil is zero. In case of limited N 

conditions (higher grain demand for N than soil N-uptake), the model translocates nitrogen 

from stems and leaves to the grains. The amount of nitrogen translocated from leaves and stems 

is defined by the fraction of N translocated from leaves (FXLF, dimensionless) as follows: 

𝑇𝑅𝐿𝑁 = 𝐿𝐴𝐼 ⋅ (𝑆𝐿𝑁𝐺 − 𝑆𝐿𝑁𝑆) + (𝑁𝑆𝑇 − 𝑊𝑆𝑇 ⋅ 𝑆𝑁𝐶𝑆) (25) 

𝐹𝑋𝐿𝐹 = 𝐿𝐴𝐼 ⋅
(𝑆𝐿𝑁𝐺−𝑆𝐿𝑁𝑆)

𝑇𝑅𝐿𝑁
 (26) 

where TRLN (g N m⁻²) is the nitrogen pool translocatable from leaves and stems, NST (g N m⁻²) 

the total nitrogen content in stems, and WST (g m⁻²) the stem dry mass (see above for the de-

scription of the other variables). With FXLF, the daily removal of N from leaves and stems is 

calculated: 

𝑋𝐿𝐹𝑁 = (𝑆𝐺𝑅 ⋅ %𝐺𝑁 − 𝑁𝑈𝑃) ⋅ 𝐹𝑋𝐿𝐹 (27) 

𝑋𝑁𝑆𝑇 = (𝑆𝐺𝑅 ⋅ %𝐺𝑁 − 𝑁𝑈𝑃) ⋅ (1 − 𝐹𝑋𝐿𝐹) (28) 
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where XNLF and XNST (both g N m⁻²) are the nitrogen amounts removed from leaves and stems, 

respectively. Through the processes described for the vegetative growth (which also apply in the 

generative phase), reduction of leaf N content eventually leads to leaf area senescence and, 

hence, reduction of dry mass production (Soltani et al., 2013; Soltani and Sinclair, 2012). 

7.3.6. Grain Yield 

iCrop uses the harvest index (HI, g g⁻¹; grain yield per total above-ground dry mass) approach 

to simulate wheat grain yield. Growth conditions during the vegetative phase are taken into 

account by the introduction of several dry mass thresholds at beginning of seed growth. Optimal 

vegetative growing conditions are assumed when dry mass accumulation reached 600 to 

1200 g m⁻² at the beginning of seed growth (Soltani et al., 2013; Soltani and Sinclair, 2012). 

Low dry mass production can limit seed growth. However, insufficient post-anthesis dry mass 

production is usually compensated for by mobilisation of dry matter from stems and leaves. 

Total mobilisable dry mass is by default 0.22 (FRTRL, g g⁻¹) of total dry mass at the beginning 

of seed growth (Soltani et al., 2013; Soltani and Sinclair, 2012). 

7.3.7. Soil Water 

iCrop simulates soil water (and nitrogen) dynamics using up to 10 user-defined soil layers. Ef-

fects of soil water deficiencies and excesses on crop development and growth are accounted for. 

The version of the iCrop model used in this thesis included some updates (see sub-section 8.2 

iCrop Source Code Updates) to the version outlined by Soltani et al. (2012). The following de-

scription includes these updates. 

Water inputs to the soil are derived from daily weather data (precipitation, mm) and user-defi-

nitions (irrigation, mm). iCrop incorporates a simple snow model which depends on maximum 

temperature. Weather data does not need to define the type of precipitation. Irrigation may be 

manually defined as single events or automatic irrigation schemes depending on soil water sta-

tus, crop phenology, or date (Soltani et al., 2013; Soltani and Sinclair, 2012). 

Soil water content (SW, mm mm⁻³) is simulated using the cascading layer approach (“tipping 

bucket approach”). For each layer, the water holding capacity is defined by air-dry limit (ADRY), 

lower limit (LL), drained upper limit (DUL), and saturation (SAT). Plant extractable soil water 

content (EXTR) is calculated as the difference between DUL and LL. Further soil input parame-

ters are a drainage factor (DRAINF, dimensionless; fraction of SW above DUL that drains each 

day) and initial water content (iniWL) for each layer. Also, soil albedo (soil reflectance, dimen-

sionless) needs to be defined (Soltani et al., 2013; Soltani and Sinclair, 2012). 
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The calculation of total soil water (mm) in each layer is as follows: 

𝑊𝐿(𝐿)𝑖 = 𝑊𝐿(𝐿)𝑖−1 + 𝐹𝐿𝐼𝑁(𝐿) − 𝑊𝑈(𝐿) − 𝑆𝐸(𝐿) − 𝐹𝐿𝑂𝑈𝑇(𝐿) (29) 

where WL(L)i is the total soil water of layer L on day i (today), WL(L)i-1 the WL on the previous 

day, FLIN and FLOUT the incoming and outgoing water fluxes, respectively, WU the amount of 

water taken up and transpired by the crop, and SE the soil evaporation. Incoming water flux in 

the topmost soil layer includes rainfall and irrigation, while the deeper layers receive incoming 

water only from the adjacent overlying layer (Soltani et al., 2013; Soltani and Sinclair, 2012). 

iCrop calculates actual transpirable soil water (ATSW, mm) and total transpirable soil water 

(TTSW, mm) as follows: 

𝐴𝑇𝑆𝑊(𝐿) = 𝑊𝐿(𝐿) − 𝑊𝐿𝐿𝐿(𝐿) (30) 

𝑇𝑇𝑆𝑊(𝐿) = 𝑊𝐿𝑈𝐿(𝐿) − 𝑊𝐿𝐿𝐿(𝐿) (31) 

where WLUL and WLLL are the total soil water (mm) amounts for a layer L at drained upper 

limit and lower limit, respectively. The fraction of actual transpirable soil water (FTSW) is then 

calculated and used as drought stress indicator: 

𝐹𝑇𝑆𝑊(𝐿) =
𝐴𝑇𝑆𝑊(𝐿)

𝑇𝑇𝑆𝑊(𝐿)
 (32) 

The simulation of soil evaporation is a two-stage process and uses calculations derived and mod-

ified from Priestly and Taylor (Priestley and Taylor, 1972; Ritchie, 1998). Actual evaporation is 

calculated from potential evaporation and accounts for crop cover (LAI), crop and soil albedo, 

temperature, and global radiation. The soil is considered wet if the fraction of transpirable soil 

water in the root zone (FTSWRZ) is at least 50%. If the soil layer is wet, stage I evaporation 

occurs. When FTSWRZ drops below 50%, stage II evaporation occurs. Evaporation is then an 

exponential function of time, thereby drastically decreasing the amount of evaporated soil water. 

Rainfall and irrigation events above a certain threshold (WETWAT, default 10 mm) reset evap-

oration to stage I. Evaporated water is primarily extracted from the top soil layer but also from 

deeper layers. Soil evaporation stops when a layer reaches the air-dry lower limit (Soltani et al., 

2013; Soltani and Sinclair, 2012). 

Transpiration is calculated from daily crop dry mass growth, a transpiration efficiency coefficient 

(TEC, Pa), and the vapour pressure deficit (VPD, kPa). VPD is simulated from saturated VPD, 

using daily minimum and maximum temperatures, assuming a fraction (VPDF) of 65 to 75% 

depending on climate (Soltani et al., 2013; Soltani and Sinclair, 2012). 
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The effective root depth (hereafter: root depth) is simulated starting with an initial root depth 

of 200 mm. Growth in root depth is defined by the potential rate of root vertical penetration 

(GRTDP, default: 30 mm bd-1). In dry soil layers, i.e. no plant available soil water (wilting point), 

root growth is stopped. Also, dry mass production must be greater than zero to allow root 

growth. After the beginning of seed growth (BSG), no more root growth is assumed (Soltani et 

al., 2013; Soltani and Sinclair, 2012). 

iCrop calculates water stress factors (each from 0 to 1, dimensionless) for leaf area expansion 

(WSFL), dry mass production (WSFG), and phenological development (WSFD). WSFL and 

WSFG are calculated in the same way, depending on thresholds: 

𝑊𝑆𝐹𝐿 = 1 if 𝐹𝑇𝑆𝑊𝑅𝑍 ≥ 𝑊𝑆𝑆𝐿 (33) 

𝑊𝑆𝐹𝐿 =
𝐹𝑇𝑆𝑊𝑅𝑍

𝑊𝑆𝑆𝐿
 if 𝐹𝑇𝑆𝑊𝑅𝑍 < 𝑊𝑆𝑆𝐿 (34) 

and 

𝑊𝑆𝐹𝐺 = 1 if 𝐹𝑇𝑆𝑊𝑅𝑍 ≥ 𝑊𝑆𝑆𝐺 (35) 

𝑊𝑆𝐹𝐺 =
𝐹𝑇𝑆𝑊𝑅𝑍

𝑊𝑆𝑆𝐺
 if 𝐹𝑇𝑆𝑊𝑅𝑍 < 𝑊𝑆𝑆𝐺 (36) 

where WSSL and WSSG are the threshold FTSWRZ values for drought stress effects on leaf area 

expansion and dry mass production, respectively. The water stress factor affecting crop phenol-

ogy, WSFD, may hasten development. The same threshold as for dry mass production, WSSG, is 

used to calculate this stress factor. However, maximum hastening is 40% (WSFD = 1.4), which 

directly affects the calculation of biological days (Soltani et al., 2013; Soltani and Sinclair, 2012) 

(see 7.3.2). 

Excessive soil water content over 95% of saturation (flooding) sets all water stress factors (WSFL, 

WSFG, and WSFD) to zero (i.e. maximum stress), thereby restricting any crop growth or devel-

opment (Soltani et al., 2013; Soltani and Sinclair, 2012). 

7.3.8. Soil Nitrogen 

iCrop considers ammonium (NH4+) and nitrate (NO3-) as plant available soil mineral nitrogen 

pool, NSOL (soluble nitrogen in the soil solution, g N m⁻²). However, the model does not distin-

guish between the two forms of nitrogen but only accounts for the pure mineral N amount. 

𝑁𝑆𝑂𝐿(𝐿)𝑖 = 𝑁𝑆𝑂𝐿(𝐿)𝑖−1 + 𝑁𝑀𝐼𝑁(𝐿) + 𝑁𝐹𝐸𝑅𝑇(𝐿) − 𝑁𝑉𝑂𝐿(𝐿) − 𝑁𝑂𝑈𝑇(𝐿) − 𝑁𝐷𝑁𝐼𝑇(𝐿) − 𝑁𝑈𝑃(𝐿) (37) 

where i (today) and i-1 (yesterday) represent simulation days, NMIN (not to be confused with 

Nmin) is the net mineralisation (including immobilisation) of nitrogen from organic soil matter, 

NFERT the nitrogen applied through fertilisation, NVOL the amount of nitrogen volatilisation, 
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NOUT the nitrogen drained to the next lower layer through water mass flow, NDNIT the nitro-

gen transformed through denitrification, and NUP the nitrogen taken up by the crop. The plant 

available nitrogen (SNAVL) is calculated considering a minimum required N concentration in 

the soil solution (1 mg N l⁻¹) and the rooted fraction of a layer (Soltani et al., 2013; Soltani and 

Sinclair, 2012). 

N mineralisation from soil organic N via ammonium to nitrate is simplified to a single function. 

N mineralisation is calculated based on the fraction of potentially mineralisable N from organic 

soil N (FMIN, dimensionless), NSOL, soil water, and soil temperature (assumed equal to air tem-

perature). N-fertilisation is defined in terms of pure N input (g m⁻²), regardless of which form 

(e.g. nitrate, ammonium, urea) of N is applied. Also, the fraction of volatilised N must be speci-

fied. iCrop considers fertilised and volatilised N only for the topmost soil layer. N denitrification 

is simulated when SW in a layer exceeds the drained upper limit (Soltani et al., 2013; Soltani and 

Sinclair, 2012). 

7.4. Parameter Calculation 

The iCrop parameterisation for the four winter wheat cultivars in this study was performed in 

three main steps: 

1. Crop phenology parameterisation: cultivar-specific parameters for crop sensitivity to vernali-

sation and photoperiod were estimated (calibration against observed phenology).  

2. Parameterisation of processes which affect dry mass production: iCrop includes several inter-

acting parameters that influence crop dry mass accumulation and partitioning. Among these are 

crop and soil parameters that control canopy development (i.e. leaf area index (LAI), leaf number 

on the main stem), soil water availability, and soil and plant N dynamics. The parameters were 

estimated from field data. 

3. Final yield: Due to its dependence on dry mass production during the growing season, param-

eters which directly influence yield formation were parameterised last. These include only PDHI 

(potential daily harvest index) and %GN limits (minimum and maximum).  

After parameterisation, the iCrop model was evaluated using an independent long-term data set 

(four locations across Lower Austria during three seasons, i.e. 12 environments). The crop/cul-

tivar parameters were not changed, only season-specifics (weather data), location-specifics (lat-

itude, soil parameters), and management-specifics (sowing date, fertilisation) were adapted to 

the evaluation environment. The simulation results were then compared to the observed data 

sets and the model performance analysed. 
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The following sections describe how parameters were calculated during the model parameteri-

sation process. 

7.4.1. Weather Data Input 

Daily weather data (precipitation [mm], daily maximum and minimum temperature [°C], global 

radiation [MJ m⁻²]) for parameterisation and evaluation was both acquired from weather sta-

tions run by ZAMG (Central Institution for Meteorology and Geodynamics, a subordinate agency 

of the Austrian Ministry of Education, Science and Research). By default, daily temperature val-

ues were referenced to the period from 7 p.m. of the previous day until 7 p.m. of the current day. 

Also, precipitation data was cumulated from 7 a.m. of the current day until 7 a.m. of the follow-

ing day. Global radiation was delivered in (J cm-2) and had to be converted to (MJ m-2) by simple 

multiplication. Although ZAMG continuously verifies all data, I also briefly checked the integrity 

of the parameterisation data set by simple comparison of yearly cumulative, minimum, average, 

and maximum global radiation and cumulative rainfall for the period from 1991 to 2019. This 

comparison did not show any apparent outliers. 

The vapour pressure deficit factor (VPDF) was calibrated via comparison of simulated and ob-

served plant growth and soil water content. The atmospheric carbon-dioxide (CO2) concentra-

tion (parameter: CO2) was taken from literature. 

7.4.2. Soil Parameters 

Previous experiments (e.g. Fuchs, 2016) have shown that gravimetric soil water measurements 

in the field are prone to a high variability in the top 0-10 cm layer, while data from deeper layers 

appears more stable. Therefore, the chosen soil layering (for sampling and model parameterisa-

tion) included a thinner top-layer: 0-10, 10-30, 30-60, 60-90, and 90-120 cm. For soil nitrogen, 

the more common 30 cm intervals were used: 0-30, 30-60, 60-90, and 90-120 cm. For the pa-

rameters NORG (organic N content), FMIN (fraction mineralisable N), and initial Nmin I con-

verted the top-soil layering (0-30 cm) to the parameterised soil. For NORG and FMIN, the 0-30 

cm value was directly used for 0-10 and 10-30, while for initial Nmin the factors 1/3 (0-10 cm) 

and 2/3 (10-30 cm) were applied for the conversion. 

The model’s soil water and Nmin parameters were chosen for each experiment separately (EXP1, 

EXP2) as results showed obvious differences in soil texture, particularly in deeper soil layers (see 

8.3.16 and 8.3.17). Initial values for Nmin and soil bulk density (BDL) were set to the measured 

values. For initial soil water, the in-season comparison of simulated vs. observed was included 

in the calibration. The soil water lower limit (LL) and drained upper limit (DUL) were selected 

for each layer based on observed data points during the growing season. As a guideline, the 5% 

quantile (for air-dry LL [ADRY] for the 0-10 cm layer, and for LL for the remaining layers) and 
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the 95% quantile (for DUL) served. For the topmost layer (0-10 cm), LL was assumed to be 

0.03 mm³ mm⁻³ higher than ADRY. For the other layers (from 10 cm downwards) I assumed 

ADRY and LL equal. Saturated soil water content (SAT) was assumed 0.03 mm³ mm⁻³ higher 

than DUL across all layers. The drainage factor (DRAINF) was set identical for both experiments 

based on previous experiments and calibration against observed in-season soil water data. 

For the calculation of layer-wise soil NORG (organic nitrogen content, %) measured total soil 

organic carbon content (TOC, %) was used. TOC can roughly be converted to NORG by convert-

ing it with an average C/N ratio: 

𝐶 𝑁⁄ =
𝑇𝑂𝐶

𝑁𝑇𝑂𝑇
  (38) 

where NTOT is the soil’s total nitrogen content (%). 

Since NORG usually represents at least 95% of NTOT in common agricultural soils (Bayerisches 

Staatsministerium für Ernährung, Landwirtschaft und Forsten (StMELF), 2018) and an estimate 

was sufficient for estimating the model’s parameter, I assumed:  

𝑁𝑂𝑅𝐺 = 𝑁𝑇𝑂𝑇  (39) 

The C/N ratio of many common agricultural soils usually ranges between 9 and 11 (Baumgarten 

et al., 2017; Diez and Weigelt, 1991). Assuming an average C/N ratio of 10, which is the optimum 

according to Baumgarten et al. (2017), together with equation (39), NORG was calculated with 

a simple division: 

𝑁𝑂𝑅𝐺 =
𝑇𝑂𝐶

10
 (40) 

For soil albedo and the runoff curve number, the model’s default values were used. 

7.4.3. Crop/Cultivar Parameters 

The parameters vsen (vernalisation sensitivity), cpp (critical photoperiod, h), and ppsen (photo-

period sensitivity) were first calibrated using phenological data from a previous experiment con-

ducted in Eastern Austria with the winter wheat cultivar Capo sown in September, October, 

November, March, and April in the season 2013/14 (Fuchs, 2016). Based on the pre-calibrated 

values, the parameters were then estimated to fit simulated phenological stages using pheno-

logical data from EXP1 and EXP2. 

The phenological parameters which define the duration of phenology phases (bd-phases; i.e. 

thermal time targets of the phenological phases) were calibrated to match the observed stage 

occurrence (e.g. beginning of stem elongation, BBCH 31). Observed relative differences between 

the cultivars received priority during this process. Observed phenological data was interpolated 

based on thermal time to calculate the occurrence of the exact same main stages as simulated in 

iCrop. 
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Calculation of other model parameters based on field observations was always carried out with 

the highest possible accuracy. Usually, this meant that single measurements were used, e.g. LAI 

on a specific day of one experiment in a specific plot (i.e. a specific replication of a specific cul-

tivar with a specific N-treatment). Afterwards, this “population of parameters” was mathemati-

cally converted into a single parameter value using summary calculations. A suitable summary 

calculation (e.g. mean) was chosen depending on the parameter’s nature. The summary calcu-

lations were either applied to the whole data set or on sub-sets (such as a specific cultivar or N-

treatment). Summary-calculations included linear regressions (including segmented linear re-

gressions), power functions, mean, and quantiles (percentiles). Details are described below. 

The iCrop parametrs affecting leaf canopy development include phyllochron (phyl, °C leaf⁻¹), 

leaf area expansion parameters (PLACON and PLAPOW, both dimensionless), and leaf:stem par-

titioning parameters (WTOPL, g m⁻²; FLF1A, g g⁻¹; FLF1B, g g⁻¹; FLF2, g g⁻¹).  

Phyllochron was calculated using the linear regression of observed main stem leaf number 

(MSNN, dimensionless or “leaf number”) against cumulative thermal time (CDTU, °Cd) during 

the leaf appearance phase. While the default version of iCrop defines one phyl parameter, I im-

plemented two phases of leaf number development (phyl1 and phyl2) to better reflect observa-

tions which showed two linear phases. These were divided by a breakpoint (phylBP, dimension-

less or “leaf number”) based on MSNN, similar to the approach in APSIM (Holzworth et al., 

2014). phyl1 and phyl2 were calculated from the left and right slope of the segmented linear 

regression of MSNN versus CDTU (Figure 7).  

 

Figure 7 Example for the calculation of the phyllochron parameters (phyl1: slope of left segment, phyl2: slope of right 

segment). Data: Observed main stem leaf number vs. cumulative thermal time from BBCH 11 (first leaf) to 39 (end of 

stem elongation), exemplarily shown for the winter wheat cultivar Aurelius in two seasons (2017/18 and 2018/19, Tulln). 

Lines: two-segment linear regression. 

𝑀𝑆𝑁𝑁 = 𝑘 ⋅ 𝐶𝐷𝑇𝑈 + 𝑑 (41) 
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𝑘 =
1

𝑝ℎ𝑦𝑙
 (42) 

where d is the intercept. 

The breakpoint phylBP was converted to the unit main stem leaf number as follows: 

𝑝ℎ𝑦𝑙𝐵𝑃 [𝑙𝑒𝑎𝑓] =
𝑝ℎ𝑦𝑙𝐵𝑃 [°𝐶]

𝑝ℎ𝑦𝑙1 [°𝐶 𝑙𝑒𝑎𝑓⁻¹]
 (43) 

Leaf area expansion in iCrop is calculated following a power function (Figure 8); see equation 

(13). PLACON is assumed 1 (default), and PLAPOW was calculated from field measurements of 

LA and MSNN by fitting a power function using a non-linear least squares method. The effect of 

increasing plant density (PD) is also captured. iCrop requires PLAPOW to be normalised to 300 

plants per m² (PLAPOW300): 

𝑃𝐿𝐴𝑃𝑂𝑊300 =
𝑃𝐿𝐴𝑃𝑂𝑊𝑃𝐷

1.1718−0.0006⋅𝑃𝐷
 (44) 

 

Figure 8 Example for the calculation of the parameter PLAPOW. Data: Leaf area per plant versus main stem leaf number, 

exemplarily shown for the winter wheat cultivar Aurelius with high N-fertilisation (N2, N3) in two seasons (2017/18 and 

2018/19, Tulln). Line: Regression analysis (power). 

SLA affects LAI in the model calculations only after termination of the MSNN growth (BBCH 41) 

up until BSG (BBCH 71) and has a low impact on overall LAI. Therefore, the SLA parameter was 

calculated as the slope of the linear regression of measured LAI and green leaf dry matter 

(GLDM, g m⁻²) between BBCH 40 and 71 (intercept assumed zero): 

𝑆𝐿𝐴 =
𝐿𝐴𝐼

𝐺𝐿𝐷𝑀
 (45) 

The leaf:stem partitioning parameters were calculated from observed dry matter (DM) of leaves 

and total DM (i.e. leaves plus stems) up until booting, using a two-segment linear model (Figure 

9). The model parameters FLF1A and FLF1B represented the slopes before and after the break-

point (WTOPL, g m⁻²). 
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Figure 9 Example for the calculation of the parameters WTOPL (breakpoint at ca. 110 g m⁻²), FLF1A (slope of the left 

segment), and FLF1B (slope of the right segment). Data: Leaf biomass (dry mass) versus total above-ground biomass 

(dry mass) from BBCH 9 (emergence) until BBCH 37 (flag leaf emergence), exemplarily shown for winter wheat cultivar 

Aurelius in well fertilised treatments (N2, N3) in two seasons (2017/18 and 2018/19). Line: Regression analysis (seg-

mented linear regression). 

Plant nitrogen parameters included concentrations for stem (senesced: SNCS, green: SNCG; both 

g g⁻¹), grain (minimum: %GNmin, maximum: %GNmax; both g g⁻¹), and specific leaf nitrogen 

contents (senesced: SLNS, green: SLNG; both g m⁻² leaf area). The iCrop model calculates leaf N 

content from SLNG and daily leaf area growth. Leaf area growth terminates at BSG. Therefore, 

for the calculation of SLN at BSG (SLNBSG) the measurements of green leaf N uptake 

(NUPLG, g m⁻²) at BSG and LAI (m² m⁻²) at BSG were used: 

𝑆𝐿𝑁𝐵𝑆𝐺 =
𝑁𝑈𝑃𝐿𝐺𝐵𝑆𝐺

𝐿𝐴𝐼𝐵𝑆𝐺
 

(46) 

𝑆𝐿𝑁𝐺 = 𝑄97.5%(𝑆𝐿𝑁𝐵𝑆𝐺,𝑖, . . . , 𝑆𝐿𝑁𝐵𝑆𝐺,𝑘) (47) 

where Q97.5% is the 97.5% quantile (percentile), i and k are the first and last considered single 

measurements (i.e. factor combination of season, replication, cultivar, and N-treatment). 

In the iCrop model, N is mobilised from leaves to grains in relation to LAI-dynamics (i.e. LAI 

decrease) and mobilisable SLN (i.e. SLNG minus SLNS) from BSG until TSG. Simulated leaf N 

content reaches its maximum at BSG and LAI may reach zero at TSG (for details, see Solatani 

and Sinclair (2012) and the crop model source code). In other words, iCrop will reduce LAI to 

zero if all mobilisable leaf N is translocated to the grains. Also, as soon as LAI is zero, no more 

N mobilisation from leaves to grains is possible. Therefore, the calculation of the SLNS parame-

ter must use measurements of total leaf N uptake (NUPLTOT) at TSG (which equals harvest) 

and maximum LAI: 
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𝑆𝐿𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡 =
𝑁𝑈𝑃𝐿𝑇𝑂𝑇ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝐿𝐴𝐼𝑚𝑎𝑥
 

(48) 

𝑆𝐿𝑁𝑆 = 𝑄2.5%(𝑆𝐿𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑖, … , 𝑆𝐿𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑘) (49) 

where Q2.5% is the 2.5% quantile, i and k: see above. 

Stem N content simulation by iCrop is similar to leaf except that it is based on dry mass (g N g⁻¹ 

dry matter). Measured stem N concentrations were directly used for parameter calculation: 

𝑆𝑁𝐶𝐺 = 𝑄97.5%(𝑆𝑁𝐶𝐵𝑆𝐺,𝑖, … , 𝑆𝑁𝐶𝐵𝑆𝐺,𝑘) (50) 

𝑆𝑁𝐶𝑆 = 𝑄2.5%(𝑆𝑁𝐶ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑖, … , 𝑆𝑁𝐶ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑘) (51) 

where SNC is the measured stem nitrogen concentration at BSG and at harvest, and Q, i, k: see 

above. 

The 2012 version of the iCrop model defined only one SNCS parameter for the whole plant life 

cycle. I updated the source code and implemented two phases of SNCS: SNCS1 from emergence 

to BSG, and SNCS2 after BSG until maturity (see 8.2 iCrop Source Code Updates). The reasons 

for this are given in the Discussion chapter (sub-section 9.3.5). The calculation of SNCS2 is iden-

tical to the calculation of the original parameter SNCS. 

𝑆𝐶𝑁𝑆1 = 𝑄2.5%(𝑆𝑁𝐶𝐵𝑆𝐺,𝑖, … , 𝑆𝑁𝐶𝐵𝑆𝐺,𝑘) (52) 

𝑆𝐶𝑁𝑆2 = 𝑄2.5%(𝑆𝑁𝐶ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑖, … , 𝑆𝑁𝐶ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑘) (53) 

Obviously, both SNCG and SNCS1 were calculated from observed SNC at BSG. 

The fraction of above-ground dry mass at BSG which is available for translocation to seeds (pa-

rameter FRTRL, g g⁻¹) was estimated from observed data of total above-ground dry mass at BSG 

(TDMBSG) and harvest (TDMharvest) and grain yield at harvest (YLDharvest): 

𝐹𝑅𝑇𝑅𝐿𝑛 =
(𝑇𝐷𝑀𝐵𝑆𝐺,𝑛 − (𝑇𝐷𝑀ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑛 − 𝑌𝐿𝐷ℎ𝑎𝑟𝑣𝑒𝑠𝑡,𝑛))

𝑇𝐷𝑀𝐵𝑆𝐺,𝑛
 

(54) 

𝐹𝑅𝑇𝑅𝐿 = 𝑚𝑒𝑎𝑛(𝐹𝑅𝑇𝑅𝐿𝑖, … , 𝐹𝑅𝑇𝑅𝐿𝑘) (55) 

where n represents a single measurement (i.e. factor combination of season, replication, cultivar, 

and N-treatment) and i and k are the first and last considered single measurement.  

An estimate for the parameter PDHI (potential increase in daily harvest index, g g⁻¹ d⁻¹) was 

calculated as follows: 
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𝐷𝐻𝐼 =
𝐻𝐼

𝑆𝐺𝐷
 

(56) 

with  

𝐻𝐼 =
𝑦𝑖𝑒𝑙𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝑊𝑇𝑂𝑃ℎ𝑎𝑟𝑣𝑒𝑠𝑡
 

(57) 

𝑆𝐺𝐷 = 𝑇𝑆𝐺 − 𝐵𝑆𝐺 (58) 

where DHI is the actual increase in daily harvest index (g g⁻¹ d⁻¹), HI the measured harvest index 

(g g⁻¹), SDG the measured duration of the seed growth period (d), TSG the termination of seed 

growth (days after sowing), and BSG the beginning of seed growth (days after sowing). For BSG 

and TSG, the corresponding observed BBCH stages were defined as 71 (BSG) and 87 (TSG). Ob-

served occurrence of these stages (days after sowing) was linearly interpolated between the clos-

est previous and following BBCH observation. 

Apparently, to calculate the true PDHI from field data, an experiment with optimal conditions 

would be required. However, the maximum of the observed DHI’s was used as an estimate: 

𝑃𝐷𝐻𝐼 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝐷𝐻𝐼𝑖, … , 𝐷𝐻𝐼𝑘)  (59) 

where i and k are the first and last considered single measurement (see above). 

The radiation use efficiency parameter (IRUE, g MJ⁻¹) was changed to the value used in the crop 

growth model APSIM (Holzworth et al., 2014) using the following conversion: In APSIM, the 

RUE-parameter is directly applied to photosynthetic active radiation (PAR) for calculating dry 

matter production. In iCrop, dry matter is calculated using the RUE-parameter (IRUEICROP) with 

global radiation (SRAD) and a conversion factor to PAR (0.48). Therefore, the model parameter 

conversion from RUEAPSIM to IRUEICROP was: 

𝐼𝑅𝑈𝐸𝐼𝐶𝑅𝑂𝑃 =
𝑅𝑈𝐸𝐴𝑃𝑆𝐼𝑀

0.48
 (60) 

Reasons for changing the IRUE parameter are given in the Discussion section (9.2.8 Dry Mass). 

7.5. Statistics 

All statistical tests were performed with R (R Core Team, 2015). For data handling and manipu-

lation I used the packages “tidyr” (Wickham and Henry, 2018) and “dplyr” (Wickham et al., 

2019). Various statistical tests were performed using the packages “agricolae” (Mendiburu, 2017) 

(e.g. for ANOVA), “devtools” (Wickham and Chang, 2017), “broom” (e.g. for easier display of 

grouped ANOVA), and “car” (Fox and Weisberg, 2011). For approximation of missing values the 

package “zoo” (Zeileis and Grothendieck, 2005) was used. Also graphs were produced using the 
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R package “ggplot2” (Wickham, 2009) in combination with “segmented” (Muggeo, 2003) for 

estimation of segmented linear regressions and their breakpoints, and “lubridate” (Grolemund 

and Wickham, 2011) for easy conversion of date formats. Non-linear least square estimates were 

calculated with the function nls() from the R-base package “stats”. 

The root mean square error (RMSE, unit depending on the examined measurement) and mean 

bias error (MBE) were calculated as described by Salo et al. (2015). 

The relative RMSE (RRMSE, %; also called normalised RMSE [NRMSE]) was calculated as: 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̄�
⋅ 100  (61) 

where �̄� is the average of the observed variable. 

The percentage error (PE, %) was calculated as follows: 

𝑃𝐸𝑛 =
𝑠𝑛−𝑜𝑛

𝑜𝑛
⋅ 100 (62) 

𝑃𝐸 = 𝑚𝑒𝑎𝑛(𝑃𝐸𝑖, … , 𝑃𝐸𝑘) (63) 

where s and o are corresponding simulated and observed values, n represents a single measure-

ment (i.e. factor combination of season, replication, cultivar, and N-treatment), and i and k are 

the first and last considered single measurement. 

Taylor et al. (1999) reported an average coefficient of variation (CV) of 13.5% for over 300 wheat 

field experiments. Also, Asseng et al. (2013) compared model variations using the same thresh-

old (13.5%). However, He et al. (2017) argued that model variation (RRMSE) cannot be expected 

to be below the variation in the data which was used for calibration. Therefore, if model variation 

gets close to 13.5% it can be regarded robust. In the following, an RRMSE below 20% is referred 

to as “robust”.   
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8. Results 

This chapter outlines the weather during the field experiments as well as their outcomes (soil 

observations, in-season measurements, harvest) (8.1), results of model parameter calculations 

and calibrations from measured data (8.3), simulation results of the field experiments using the 

derived parameters (8.4), and model evaluation results using long-term data (8.5). Section 8.2 

describes changes to algorithms in the iCrop model source code. 

8.1. Field Experiments 

8.1.1. Weather 

Total precipitation in the growing season (October to June) at Tulln (Eastern Austria) was 

374 mm (EXP1, 2017/18) and 481 mm (EXP2, 2018/19) (Figure 10). Long term average (1991-2015) 

was 408 mm. Average temperatures in the growing seasons were 9.3 °C in EXP1 and 9.4 °C in 

EXP2 (long term average: 7.9 °C).  

During the first three months of the season (Oct – Nov) monthly precipitation decreased in EXP1 

from ca. 60 mm to 20 mm while it increased in EXP2 from ca. 15 mm to 95 mm. In the same 

period, average monthly temperatures dropped similarly in both seasons from ca. 13 °C to 3 °C 

with only slightly lower values in EXP1. Between January and March precipitation in EXP1 was 

low and rather constant at ca. 25 mm while in EXP2 variation was greater (10 to 50 mm). Tem-

perature was rather high in January in EXP1 (ca. 4 °C) and cold afterwards (below 0 °C) while in 

EXP2 it was cooler in January (close to 0 °C) and much warmer February and March (ca 4 and 

9 °C, resp.). The last three months of the growing season (Apr – Jun) were warmer and dryer in 

EXP1 than in EXP2. In EXP1, April showed almost no precipitation while May was wet (ca. 

120 mm) and June rather dry (ca. 50 mm). In comparison, EXP2 showed much more precipita-

tion in April (ca. 50 mm), a very wet May (ca. 170 mm), followed by a very dry June (ca. 15 mm). 

Mean temperatures from April to June increased gradually in EXP1 from ca. 15 °C to 21 °C and 

less gradual in EXP2 from ca. 12 °C (April) to 13 °C (May) then jumping to 24 °C (June). 

Cumulative global radiation during the growing season was 2644 MJ m⁻² in EXP1 and 2729 

MJ m⁻² in EXP2 (long term average: 2591 MJ m⁻²). 
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Figure 10 Monthly precipitation (bars) and mean temperatures (dots) during the winter wheat growing season in EXP1 

(2017/18) and EXP2 (2018/19) at the meteorological station Langenlebarn near Tulln (Lower Austria). 

8.1.2. Sampling Dates 

Phenological stages of the winter wheat experiments were scored 40 times during the two sea-

sons. Destructive plant and soil samples were taken on 29 dates (Table 1). Soil water (SW) sam-

ples at sowing were taken 2 days (EXP1) and 3 days (EXP2) after actual sowing. SW and biomass 

(total above-ground dry mass, TDM) samples closest to observed anthesis were taken during 

BBCH 71 (EXP1) and BBCH 62-69 (EXP2). At harvest, phenological stages of all treatments were 

beyond BBCH 89, the exact stage was not scored.  

The aim was to collect soil and plant samples at the important stages sowing (BBCH 0), anthesis 

(BBCH 65), and physiological maturity/harvest (BBCH 89+). Although the actually measured 

phenological stages deviate from these (especially for anthesis in EXP1), I use the mentioned 

main stage names in the text when referring to a specific sampling date, as shown in Table 1. The 

implications of these deviations are discussed in section 9.2 “Calculation of Model Parameters”. 

8.1.3. Observed Soil Processes 

Soil Water 

Soil bulk density was 1.37, 1.50, 1.49, 1.42, and 1.48 g m-2 for the soil layers 0-10, 10-30, 30-60, 

60-90, and 90-120 cm, respectively. 

Average total soil water content (full profile: 0-120 cm soil depth) at sowing was 574 mm in EXP1 

and 364 mm in EXP2. Soil water contents at harvest were 462 mm in EXP1 and 276 mm in EXP2.  

The time course of soil water content in the different soil layers (exemplarily shown for specific 

treatments in Figure 11) showed similar ranges for the top three layers (0-10, 10-30, and 30-60 
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cm soil depth) in both experiments. The deepest layers (60-90 and 90-120 cm) showed much 

lower water contents in EXP2 than in EXP1. In EXP1 there was a steep decline of soil water from 

ca. day 150 (mid-April) onwards, especially in the upper soil layers. In the upper layers, EXP2 

showed a decline from ca. day 150 until day 200 (end of April), then an incline for ca. 30 days 

(until end of May), followed by another decline until the second last measurement (end of June). 

Across both seasons, variations in soil water content were largest in the topmost soil layer which 

transferred delayed and with reduced amplitudes to the lower layers. 
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Figure 11 Soil water content (volumetric) for each soil layer of the full soil profile over time, shown exemplarily for winter 

wheat cultivar Emilio with nitrogen fertilisation treatment N1 and N3 in the season of EXP1 and Bernstein with N0 and 

N3 in EXP2. Soil layers (cm): 0-10, 10-30, 30-60, 60-90, 90-120. Seasons: EXP1: 2017/18, EXP2: 2018/19. N-treatments: 

no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Error bars indicate standard error. Points without error bars are 

based on single measurements. 

Soil Mineral Nitrogen 

Average initial soil mineral nitrogen content (Nmin) of the whole soil profile (0-120 cm soil 

depth) was 63 kg N ha⁻¹ one month before sowing in EXP1 and 30 kg N ha⁻¹ two weeks before 

sowing in EXP2 (Table 2). Final average Nmin contents at harvest ranged from 23 (N0) to 114 

(N3) and from 11 (N0) to 37 (N3) kg N ha⁻¹ in EXP1 and EXP2, respectively.  

The N balance was negative for all treatments, ranging from -10 kg N ha⁻¹ in Bernstein (N3, 

EXP2) to -127 in Bernstein (N3, EXP1). There was no consistent trend of the effect of N-fertilisa-

tion on the N balance. Absolute values were always higher in EXP1 compared to EXP2.  
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Table 2 Soil mineral nitrogen (Nmin) balance (Bal.) for both winter wheat growing seasons (EXP1: 2017/18, EXP2: 

2018/19). Cultivars (Cv.): Arnold (Ar.), Aurelius (Au.), Bernstein (Be.), and Emilio (Em.). Ini. and Fin. Nmin: Initial (at 

sowing) and final (at harvest) soil mineral N, FertN: cumulative fertilised N, NUP: crop N-uptake at harvest. 

Cv. N-trt. EXP1 EXP2 

  
Ini. 
Nmin 

FertN NUP 
Fin. 
Nmin 

Bal. 
Ini. 
Nmin 

FertN NUP 
Fin. 
Nmin 

Bal. 

  (kg N ha⁻¹) 

Ar. N0 63.3 0.0 107.5 27.0 -71.3 29.9 0.0 69.0 15.0 -54.1 

 N1 63.3 70.0 170.2 57.0 -93.9 29.9 70.0 120.9 16.0 -37.0 

 N2 63.3 140.0 194.4 104.0 -95.2 29.9 140.0 181.7 34.0 -45.8 

 N3 63.3 210.0 201.5 129.0 -57.2 29.9 210.0 230.8 36.5 -27.4 

Au. N0 63.3 0.0 120.0 25.0 -81.8 29.9 0.0 70.0 9.0 -49.1 

 N1 63.3 70.0 197.8 25.0 -89.5 29.9 70.0 123.1 22.0 -45.2 

 N2 63.3 140.0 221.0 77.0 -94.7 29.9 140.0 193.3 27.5 -50.9 

 N3 63.3 210.0 237.0 78.0 -41.8 29.9 210.0 237.9 36.5 -34.5 

Be. N0 63.3 0.0 112.0 20.0 -68.7 29.9 0.0 65.5 10.5 -46.1 

 N1 63.3 70.0 190.7 28.0 -85.5 29.9 70.0 127.6 17.0 -44.7 

 N2 63.3 140.0 234.2 52.0 -83.0 29.9 140.0 190.9 20.5 -41.5 

 N3 63.3 210.0 231.8 168.0 -126.5 29.9 210.0 215.4 34.5 -10.0 

Em. N0 63.3 0.0 109.9 21.0 -67.6 29.9 0.0 59.2 10.5 -39.8 

 N1 63.3 70.0 177.0 43.0 -86.8 29.9 70.0 110.3 19.0 -29.4 

 N2 63.3 140.0 207.5 85.0 -89.2 29.9 140.0 184.6 22.0 -36.7 

 N3 63.3 210.0 206.7 147.0 -80.5 29.9 210.0 223.6 41.5 -25.2 

8.1.4. Phenology 

Effect of Season 

For phenology, the seasonal differences (Figure 12) showed emergence 15 days after sowing 

(DAS) in EXP1 and 24 DAS in EXP2. In temperature sums, emergence occurred 123 °Cd (EXP1) 

and 250 °Cd (EXP2) after sowing. Tillering occurred earlier in EXP1 (87 DAS) than in EXP2 (127 

DAS) (left arrows in Figure 12). The dynamics of tiller number showed no differences between 

EXP1 and EXP2 (data not shown). The first plants of EXP1 had entered the beginning of the 

anthesis stage 214 DAS (1056 °Cd after emergence) while in EXP2 a similar stage was reached 12 

DAS later but 79 °Cd earlier at 226 DAS (977 °Cd) (arrows in Figure 12 and Figure 13). Similarly, 

physiological maturity (BBCH 87) was observed 6 DAS earlier in EXP1 (254 DAS, 1960 °Cd after 

emergence) than in EXP2 (260 DAS, 1815 °Cd). In general, development in EXP2 was slower than 

in EXP1. 
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Figure 12 Phenological development (BBCH stages) of the four winter wheat cultivars in both seasons (EXP1: 2017/18, 

EXP2: 2018/19). Arrows indicate the samplings with first occurrence of (left to right) tillering (BBCH 21+) and anthesis 

(BBCH 61+). 

Effect of N-Treatment 

The N-treatment appeared to influence development only in EXP2 at a few single measurement 

dates (data not shown). The largest differences were observed at tiller initiation (ca. mid Febru-

ary 2019) where plants in the N0/N3 treatments were in BBCH 13.2/21.5 (Arnold) and 21.5/12.8 

(Bernstein) and at beginning of anthesis (ca. end of May 2019) where plants in N0/N3 were in 

BBCH stage 64.0/59.0 (Arnold) and 58.3/55.5 (Bernstein). The data indicated a trend of accel-

erated phenological development of N0, except for one contradictory measurement of Arnold 

at tiller initiation. However, overall the differences between N0 and N3 rarely exceeded 1 on the 

BBCH scale. It needs to be mentioned that quantitative comparisons between phenological 

measurements should be used with caution, as the BBCH scale is not linear among main stages 

(e.g. between leaf development, BBCH 1x, and tillering, BBCH 2x) and also not necessarily linear 

within main stages. Still, quantitative comparisons of BBCH give an indication of the direction 

of different development rates (such as which cultivars or N-treatments were earlier, equal, or 

later). 

Effect of Cultivar 

In EXP2 the cultivars Arnold, Bernstein, and Emilio started tillering earlier than Aurelius (Figure 

12), while in EXP1 measurement intervals during tiller initiation were too large to observe differ-
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ences. Tiller dynamics and beginning of stem elongation (BBCH 30) were similar across the cul-

tivars in both experiments. Thereafter until milk development (BBCH 70), the cultivars showed 

the largest differences in both years (Figure 13). The phenological development of cultivar Ar-

nold was fastest, while Bernstein was slowest (both seasons). The cultivars Aurelius and Emilio 

ranged in between Arnold and Bernstein but were generally closer to Arnold. In EXP1 Arnold 

had reached anthesis 214 DAS (observed BBCH: 65.5) while for the other cultivars anthesis was 

observed 5 days later (Aurelius: BBCH 67.1, Emilio: BBCH 67.6) and even later for Bernstein 

where an anthesis measurement was missed (224 DAS Bernstein had already reached BBCH 71). 

Anthesis in EXP2 was first observed 226 DAS for Arnold (BBCH 63.5) and Aurelius (BBCH 62.0) 

and 5 days later for Bernstein (BBCH 62.0) and Emilio (BBCH 65.0). From grain development 

(BBCH 71) onwards, differences between cultivars disappeared, only showing a tendency of 

faster development of Arnold in EXP1 (Figure 12). 

Overall, the main observed differences were faster development of cultivar Arnold, intermediate 

development of the cultivars Aurelius and Emilio, and slowest development of Bernstein, while 

N-fertilisation had only negligible effects. 
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Figure 13 Phenological development from stem elongation (BBCH 30) until end of milk development (BBCH 79) of the 

four winter wheat cultivars in both seasons (EXP1: 2017/18, EXP2: 2018/19). The arrow indicates the sampling with the 

first occurrence of anthesis (BBCH 61+). This figure shows the same data as Figure 12 but zoomed to the above mentioned 

BBCH stages. 

8.1.5. Leaf Canopy Development 

Tillers 

The number of tillers was measured up until the emergence of the flag leaf (EXP1: 8 May 2018, 

EXP2: 24 May 2019). Tiller number on that date ranged from 0.5 (Arnold N0, EXP2) to 2.0 

(Emilio N2, EXP1). When pooling both experiments and considering only N0 and N3 (N1 and 

N2 were not measured in EXP2), none of the factors and factor-interactions influenced tiller 

number significantly. However, when analysing each experiment separately, only the N treat-

ment in EXP2 had significant influence (p = 0.01) with N3 showing 1.4 tillers on average and N0 

only 0.8. Cultivar averages (both experiments pooled) were 1.1 (Aurelius, Bernstein), 1.2 (Ar-

nold), and 1.4 (Emilio). 

Leaf Area Index 

Leaf area index (LAI) at anthesis ranged from 0.7 (Arnold N0, EXP2) to 4.0 (Bernstein N1 and 

N3, EXP1) (Table 3). LAI was significantly affected by the N-treatment showing highest LAI un-

der highest N-treatments (N3 mean: 3.1 and 3.2 in EXP1 and EXP2, resp.) and a mostly gradual 

decline towards N0 (mean: 1.8 and 1.0 in EXP1 and EXP2, resp.). Cultivar effect on LAI was sig-

nificant. Bernstein showed highest average LAI in both years (3.5 and 2.6 in EXP1 and EXP2, 
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resp.), Emilio (2.3 and 2.0) and Arnold (2.1 and 1.9) the lowest. Between the seasons, LAI of N3 

was similar except for Arnold, while LAI of N0 was always lower in EXP2. 

Table 3 Leaf area index (LAI), main stem node number (MSNN), leaf fraction, and specific leaf area (SLA) at anthesis for 

four winter wheat cultivars (Cv.) under different N-treatments in two seasons (EXP1: 2017/18, EXP2: 2018/19). The N-

treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. 

Cultivar N-trt. LAI (mm² mm⁻²) MSNN (-) Leaf frac. (g g⁻¹) SLA (mm² g⁻¹) 

  EXP1 EXP2 EXP1 EXP2 EXP1 EXP2 EXP1 EXP2 

Arnold N0 1.4 0.7 10.6 10.5 0.19 0.18 171 164 

 N1 2.1 1.7 10.6 NA 0.20 0.19 169 191 

 N2 2.4 2.3 10.6 NA 0.20 0.19 179 197 

 N3 2.4 2.8 11.1 11.0 0.20 0.19 170 194 

Aurelius N0 2.3 1.4 11.7 11.2 0.21 0.18 207 182 

 N1 3.0 2.1 11.7 NA 0.22 0.19 201 196 

 N2 3.0 2.7 11.6 NA 0.24 0.20 201 204 

 N3 3.4 3.3 11.6 11.2 0.24 0.21 205 205 

Bernstein N0 2.3 1.1 11.2 10.2 0.21 0.17 203 200 

 N1 4.0 2.4 10.4 NA 0.23 0.20 216 200 

 N2 3.8 3.1 11.3 NA 0.26 0.23 184 206 

 N3 4.0 3.9 11.1 10.7 0.23 0.24 215 210 

Emilio N0 1.4 0.8 11.4 10.8 0.20 0.16 155 188 

 N1 2.4 1.9 11.3 NA 0.19 0.17 177 196 

 N2 2.6 2.3 11.7 NA 0.22 0.19 174 207 

 N3 2.8 2.8 11.9 10.7 0.21 0.19 181 204 

          

Source of variation         

Season * ns (0.89)1 ns (0.24) ns (0.46) 

Cultivar *** ***1 * *** 

N *** ns (0.06)1 ns (0.37) ns (0.57) 

Season x cultivar * ns (0.13)1 ** *** 

Season x N *** ns (0.96)1 ns (0.15) ns (0.08) 

Cultivar x N ns (0.28) ns (0.41)1 ** ns (0.35) 

*** Significant at p < 0.001 

** significant at p < 0.01 

* significant at p < 0.05; ns: not significant 

1 only N0 and N3 considered 

Main Stem Leaf Number 

The final number of leaves (nodes) on the main stem (MSNN) ranged from 10.2 (Bernstein N0, 

EXP2) to 11.9 leaves (Emilio N3, EXP1) (Table 3). MSNN was unaffected by N-treatment but var-

ied significantly between the cultivars in both experiments. Bernstein and Arnold showed the 

lowest (both 10.7) average MSNN, followed by Emilio (11.2) and Aurelius (11.4). 

Total Number of Green Leaves 

The total number of green leaves was only measured in EXP2. At anthesis, it ranged from 946 

(Emilio N0) to 2671 leaves per m2 (Bernstein N3) showing no differences between the cultivars 
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(p = 0.46) but significant influence of the N treatment (p < 0.001). N3 (2405 leaves m-2) and N2 

(2213) were significantly higher than N1 (1807) which was higher than N0 (1100) (Tukey post-

hoc). While cultivars did not differ significantly, they showed a trend with Bernstein (mean 

2070) and Aurelius (2065) having higher average green leaf number than Arnold (1695) and 

Emilio (1694). When considering only the highly fertilised treatments (N2, N3), neither cultivar 

nor N treatment were significant factors. 

Leaf Fraction 

Leaf fraction, i.e. the ratio of leaf dry mass to total above-ground dry mass, at anthesis ranged 

from 0.16 to 0.26 with a non-significant tendency of lower values in EXP2 (Table 3). Regarding 

cultivar differences, Bernstein showed the highest leaf fraction (mean 0.22) followed by Aurelius 

(0.21) and Arnold and Emilio (both 0.19). The significant interaction effect of season x cultivar 

showed high values for Aurelius in EXP1 (mean 0.23) but low in EXP2 (mean 0.19) while the 

other cultivars showed rather similar values across the two seasons. Regarding the cultivar x N-

treatment effect the observed response of Emilio to increased N-fertilisation was erratic, show-

ing no change between N0 and N1 (mean: 0.18, both) followed by a jump to N2 (0.20) and then 

again no response to N3 (0.20). In contrast, the other cultivars responded relatively continuous 

to increased N-fertilisation between N0 and N2 (e.g. Arnold, mean: 0.18, 0.19, 0.20, 0.19; N0 to 

N3, resp.) while the response to N3 was mostly minor or slightly negative. 

Specific Leaf Area 

The specific leaf area (SLA) at anthesis ranged from 155 (Emilio N0, EXP2) to 216 mm² g⁻¹ (Bern-

stein N1, EXP2) (Table 3). The effect of cultivar was significant (means: Bernstein 204, Aurelius 

200, Emilio 185, Arnold 179 mm² g⁻¹). Looking at the season x cultivar effect SLA, was higher in 

EXP2 than in EXP1 for Arnold (mean: 172 and 186 mm² g⁻¹, EXP1 and EXP2, resp.) and Emilio 

(172 and 199) while it was similar in both seasons for Bernstein (204 in both seasons) and Aure-

lius (203 and 197). 

8.1.6. Yield and Dry Mass 

Most dry mass related variables measured at harvest showed a stronger influence of the N-treat-

ment in EXP2 (Table 4).  
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Table 4 Grain yield, total above-ground dry mass (TDM), total above-ground N-uptake (NUP), grain N concentration 

(%GN), number of ears, thousand kernel weight (TKW), and number of seeds per ear (Seeds) at harvest for four winter 

wheat cultivars (Cv.) under different N-treatments in two seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments 

included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. 

Season Cv. N-trt. Yield TDM NUP %GN Ear no. TKW Seeds 
   (g m⁻²) (g m⁻²) (g m⁻²) (%) (m⁻²) (g) (#) 

EXP1 Arnold N0 424 1064 10.8 2.1 434.7 40 24 
  N1 558 1309 17.0 2.6 453.0 42 29 
  N2 575 1370 19.4 2.9 488.0 40 30 
  N3 583 1340 20.1 3.0 473.7 41 30 
 Aurelius N0 540 1248 12.0 1.8 391.0 44 31 
  N1 701 1543 19.8 2.4 454.0 45 34 
  N2 706 1559 22.1 2.6 445.0 42 37 
  N3 705 1560 23.7 2.7 464.0 42 36 
 Bernstein N0 519 1265 11.2 1.7 400.7 43 30 
  N1 676 1572 19.1 2.3 435.7 43 36 
  N2 719 1676 23.4 2.7 466.3 43 36 
  N3 717 1636 23.2 2.7 477.7 42 36 
 Emilio N0 484 1246 11.0 1.8 464.7 36 29 
  N1 625 1541 17.7 2.3 490.7 37 35 
  N2 609 1539 20.7 2.7 507.3 36 34 
  N3 648 1545 20.7 2.6 527.7 35 35 
EXP2 Arnold N0 268 708 6.9 2.0 367.0 37 20 
  N1 435 1035 12.1 2.3 424.0 38 27 
  N2 596 1302 18.2 2.6 485.3 38 32 
  N3 683 1520 23.1 2.8 531.7 39 33 
 Aurelius N0 324 788 7.0 1.7 352.0 39 23 
  N1 545 1165 12.3 1.9 400.0 40 34 
  N2 739 1540 19.3 2.2 455.3 39 41 
  N3 788 1638 23.8 2.6 479.7 39 43 
 Bernstein N0 303 729 6.6 1.7 318.3 37 26 
  N1 553 1226 12.8 1.9 371.3 37 41 
  N2 708 1512 19.1 2.2 428.3 36 46 
  N3 693 1551 21.5 2.5 463.0 34 44 
 Emilio N0 297 734 5.9 1.6 367.0 35 23 
  N1 515 1158 11.0 1.8 393.0 35 37 
  N2 694 1483 18.5 2.2 501.0 34 40 
  N3 741 1632 22.4 2.5 518.0 33 43 
 
Source of variation 

       

Season  *** *** *** ns (0.33) *** *** *** 

Cultivar  *** * ns (0.15) *** ** *** * 

N  *** *** *** *** ** * ns (0.07) 

Season x cultivar  * * * * ** *** ** 

Season x N  *** *** *** *** *** ns (0.37) *** 

Cultivar x N  ns (0.49) ns (0.83) ns (0.53) ns (0.89) ns (0.86) ** ns (0.10) 

*** Significant at p < 0.001 
** Significant at p < 0.01 
* Significant at p < 0.05 
ns: not significant 

    

 

  

Grain Yield 

Observed wheat grain yields ranged from 268 (Arnold N0, EXP2) to 788 g m-2 (Aurelius N3, 

EXP2) with both the lowest and highest values (except for Bernstein’s highest yield) in EXP2 

(Table 4 and Figure 14). Mean yield of EXP1 (619 g m-2) was significantly higher than for EXP2 

(572 g m-2), while mean yield of only N3 was lower in EXP1 (663 g m-2) than in EXP2 (726 g m-2). 

Cultivar and N-treatment showed significant effects on yield. For each cultivar, N0 showed al-

ways the lowest yield (N0 mean: 395 g m⁻²), and N2 or N3 the highest (mean: N2: 672, 
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N3: 695 g m⁻²). In EXP1 the response to N-fertilisation was strongest between N0 and N1 while 

further increases in N-fertilisation (N2, N3) showed only marginal effects. Contrary, in EXP2 the 

effect of N was more equally distributed from N0 to N3 (except for Bernstein between N2 and 

N3). Among cultivars, Aurelius showed the highest yields (mean: 631 g m⁻²) followed by Bern-

stein (611 g m⁻²), Emilio (577 g m⁻²), and Arnold (515 g m⁻²). Regarding the interaction effect 

season x cultivar, Bernstein showed the strongest response to season with a drop of mean yield 

between EXP1 and EXP2 of almost 100 g m⁻² (658 to 565 g m⁻²) while Emilio responded with a 

reduction of less than 30 g m⁻² (591 to 562 g m⁻²). Concerning the season x N-treatment inter-

action, mean yields of N0 and N1 dropped from EXP1 to EXP2 by ca. 200 and 130 g m⁻², respec-

tively, while there was a slightly increasing effect of season in N2 (plus ca. 40 g m⁻²) and N3 

(plus ca. 60 g m-²). 

 

Figure 14 Grain yield of the four winter wheat cultivars under different N-treatments in two seasons (EXP1: 2017/18, 

EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent stand-

ard errors of the means. 

Dry Mass 

Observed total above-ground dry mass (TDM) at harvest ranged from 708 (Arnold N0, EXP2) 

to 1676 g m-2 (Bernstein N2, EXP1) with the lowest values in N0 of EXP2 (Table 4 and Figure 15).  

Overall, the response of TDM to season, N-treatment, cultivar, and the tested interactions were 

similar to those described for yield. Mean TDM in EXP1 (1440 g m-2) was significantly higher 

than in EXP2 (1267 g m-2), while N3 TDM was lower in EXP1 (1520 g m-2) than in EXP2 

(1585 g m-2). Contrary, at anthesis N3 TDM was higher in EXP1 (1158 g m-2) than in EXP2 

(1037 g m-2). N-treatment showed significant effect on TDM at harvest. The N0 treatment re-

sulted in the lowest TDM (N0 mean: 973 g m-2) followed by N1 (1319), N2 (1494), and N3 (1553). 
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In EXP1 the response to N-fertilisation was strongest between N0 (mean: 1206 g m-2) and N1 

(1491) while further increases in N-fertilisation (N2: 1499, N3: 1520) showed only marginal ef-

fects. Contrary, in EXP2 the effect of N was more equally distributed (N0: 740, N1: 1146, N2: 

1488, N3: 1585). Among cultivars, Bernstein showed the highest mean TDM (1396 g m⁻²) fol-

lowed by Aurelius (1380 g m-2), Emilio (1360 g m-2), and Arnold (1206 g m-2). Regarding the 

interaction effect season x cultivar, Bernstein showed the strongest response to season with a 

drop of mean TDM between EXP1 and EXP2 of almost 300 g m-2 (1537 to 1254 g m-2) while Ar-

nold’s response was smallest (1271 to 1141 g m-2). The significant season x N-treatment interaction 

effect showed different mean TDM responses to the season depending on the N-treatment. 

While mean TDM responded negatively to the season (EXP1 to EXP2) for N0 (minus ca. 

460 g m-2) and N1 (minus ca. 350 g m-2), the response in N2 (minus ca. 10 g m-2) and N3 (plus 

ca. 60 g m-2) was positive but much smaller in absolute values. 

 

Figure 15 Biomass (total above-ground dry mass) of the four winter wheat cultivars under different N-treatments in two 

seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N 

ha⁻¹. Bars represent standard errors of the means. 

8.1.7. Crop Nitrogen 

Total above-ground N-uptake (NUP) at harvest ranged from 5.9 (Emilio N0, EXP2) to 23.8 g m⁻² 

(Aurelius N3, EXP2) (Table 4 and Figure 16). Mean NUP in EXP1 was higher (18.2 g N m⁻²) than 

in EXP2 (15.0 g N m⁻²). There was no significant influence of the cultivar. The effect of N-treat-

ment was significant. NUP increased gradually from N0 (mean: 8.9 g N m⁻²) to N1 (15.2), N2 

(20.0), and N3 (22.3). Similar to yield and TDM, the positive effect of N-treatment on N-uptake 

was larger in EXP2 than in EXP1. 
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Figure 16 N-uptake of the four winter wheat cultivars under different N-treatments in two seasons (EXP1: 2017/18, EXP2: 

2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard 

errors of the means. 

Grain N concentration (%GN) (Table 4) at harvest ranged from 1.6% (Emilio N0, EXP2) to 3.0% 

(Arnold N3, EXP1). There was no significant influence of the season. The effects of N-treatment 

and cultivar were significant. Increase of N-fertilisation affected %GN positively (means: N0: 

1.8%, N1: 2.2%, N2: 2.5%, N3: 2.7%). Arnold showed highest mean %GN (2.5%) compared to all 

other cultivars (Aurelius, Bernstein, Emilio; each 2.2%).  

8.1.8. Yield Components 

The number of ears at harvest ranged from 318 (Bernstein N0, EXP2) to 532 ears m⁻² (Arnold 

N3, EXP2). Ear number was higher in EXP1 (468) than in EXP2 (436). All treatments and their 

pairwise interactions were significant, except N x cultivar. Highest mean values were observed 

for the cultivars Emilio (471) and Arnold (457) followed by Aurelius (430) and Bernstein (420). 

N-treatment had a positive effect on ear number (means: N0: 387, N1: 428, N2: 483, N3: 492). 

The thousand kernel weights (TKW) ranged from 33 g (Emilio N3, EXP2) to 45 g (Aurelius N1, 

EXP1) (Table 4). TKW was lower in EXP1 (mean: 34 g) than in EXP2 (37 g). Effects of cultivar, N-

treatment, and their interactions were significant. In both seasons, cultivar Emilio had the low-

est TKW (mean: 35 g). The effect of increased N-fertilization on TKW was diverse, with negative 

effects in a few cases (in EXP1: Aurelius and Bernstein, in EXP2: Bernstein and Emilio), a clear 

positive effect in one case (EXP2: Arnold), and varying responses in the remaining factor com-

binations (e.g. EXP1: Arnold). 

The number of seeds per ear at harvest ranged from 20 (Arnold N0, EXP2) to 46 (Bernstein N2, 

EXP2). EXP1 showed less seeds per ear (mean: 33) than EXP2 (35). This was mainly due to low 



 

55 

seed number of N0 and N1 treatments in EXP1, while N2 and N3 treatments of EXP1 showed 

higher seed number than EXP2. The effect of cultivar was significant, N-treatment was not 

(p = 0.07). Seed number per ear showed a mostly positive response to N-treatment which was 

more apparent in EXP2 than in EXP1. Arnold had the lowest mean seed number (mean: 28) 

followed by Aurelius and Emilio (both 35) and Bernstein (38). 

8.2. iCrop Source Code Updates 

Based on comparisons between model estimates and field experimental data, the crop model 

code was modified. I introduced functionalities to enable wheat simulation based on (i) two 

phases of phyllochron and (ii) two phases of minimum stem nitrogen concentration (SNCS). The 

latter was implemented in a similar way as for maize in Manschadi et al. (2020a). 

For phyllochron (i), the two phases were separated by a threshold main stem leaf number (LNP2) 

which triggered the switch from the first phase phyllochron (PHYL1) to the second phase 

(PHYL2). In the default version of iCrop only one phyllochron was specified for the whole node 

production period (from emergence to termination of leaf production on the main stem, i.e. flag 

leaf emergence; BBCH 37). 

For SNCS (ii), the parameter switch from the first phase (SNCS1) to the second phase (SNCS2) 

occurred on the first day of the beginning seed growth phenological phase. By default, iCrop 

used only one SNCS parameter for the entire simulation. 

8.3. iCrop Setup and Parameters 

The important genotype parameters derived for iCrop in this study are presented in Table 5. 
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Table 5 iCrop parameters derived for the four winter wheat cultivars Arnold, Aurelius, Bernstein, and Emilio based on 

field data from two seasons (2017/18 and 2018/19) and four N-fertilisation treatments (0, 70, 140, and 210kg N ha⁻¹) at 

one location (Tulln, Eastern Austria). 

Parameter Description Unit Cultivar 

   Arnold Aurelius Bernstein Emilio 

PLAPOW Exponent in leaf area expansion calculation 1 1.9 1.9 2 1.9 

SLA Specific leaf area m² g⁻¹ 0.021 0.021 0.021 0.021 

IRUE 
Radiation use efficiency under optimum condi-
tions 

g MJ⁻¹ 2.58 2.58 2.58 2.58 

FLF1A Leaf fraction in phase 1 g g⁻¹ 0.72 0.76 0.80 0.72 

FLF1B Leaf fraction in phase 2 g g⁻¹ 0.29 0.29 0.37 0.29 

WTOPL 
Total above-ground dry mass as breakpoint be-
tween FLF1A and FLF1B 

g m⁻² 123 117 113 123 

PHYL1 Phyllochron in phase 1 °C leaf⁻¹ 55 60 65 50 

PHYL2 Phyllochron in phase 2 °C leaf⁻¹ 130 105 120 110 

LNP2 
Leaf number as breakpoint between PHYL1 and 
PHYL2 

1 6.5 6.5 6.0 6.5 

SNCS1 Minimum stem N concentration in phase 1 g g⁻¹ 0.0063 0.0063 0.0063 0.0063 

SNCS2 Minimum stem N concentration in phase 2 g g⁻¹ 0.0022 0.0022 0.0022 0.0022 

SLNG Specific leaf N in green leaves g m⁻² 2.10 2.10 2.10 2.10 

SLNS Specific leaf N in senesced leaves g m⁻² 0.10 0.10 0.10 0.10 

SNCG Maximum stem N concentration g g⁻¹ 0.019 0.019 0.019 0.019 

%GNmin Minimum grain N concentration g g⁻¹ 0.016 0.016 0.016 0.016 

%GNmax Maximum grain N concentration g g⁻¹ 0.029 0.029 0.029 0.029 

MXNUP Maximum daily N-uptake g m⁻² d⁻¹ 0.6 0.6 0.6 0.6 

vsen Vernalisation sensitivity 1 0.018 0.018 0.018 0.018 

cpp Critical photoperiod h 21 21 21 21 

ppsen Photoperiod sensitivity 1 0.004 0.004 0.004 0.004 

bdSOWEM
R 

Biological days from sowing to emergence bd 4.5 4.5 4.5 4.5 

bdEMRTIL … emergence to tillering bd 2 2 2 2 

bdTILSEL … tillering to stem elongation bd 12.5 13.0 13.5 13.0 

bdSELBOT … stem elongation to booting bd 7.0 7.0 8.0 7.0 

bdBOTEAR … booting to ear emergence bd 3.0 3.0 4.0 4.0 

bdEARANT … ear emergence to anthesis bd 5.0 5.0 6.0 6.0 

bdANTPM … anthesis to plant maturity bd 33.5 33.5 31.0 33.0 

8.3.1. Management 

The model was set up to start simulations a few weeks before sowing, matching the first meas-

urements of soil water content (EXP1: -33 DAS, 13 Sept. 2017; EXP2: -14 DAS, 1 Oct. 2018). Wheat 

sowing density (all treatments: 375 seeds m⁻²), N-fertilisation dates (EXP1: 99 and 128 DAS; 

EXP2: 67 and 100 DAS) and amounts (N0: 0, N1: 3.5, N2: 7, N3: 10.5 g N m⁻² per application) 

were all set to the exact applied values. Initial soil water content was calibrated based on meas-

ured initial soil water and comparison of simulated and observed soil water dynamics. 

8.3.2. Environment 

The vapour pressure deficit factor (VPDF) was calibrated to 0.60 which was slightly below the 

common range of 0.65 to 0.75 (wet and dry environments, respectively) (Soltani and Sinclair, 
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2012). Reason for choosing a value outside the common range was the better fit of simulated to 

observed soil water content. 

The atmospheric carbon dioxide (CO2) concentration was set to 400 ppm since average global 

CO2 levels have exceeded this value in ca. 2016 (Butler and Montzka, 2020). The previous de-

fault value in iCrop was 350 ppm. 

8.3.3. Emergence 

The minimum threshold fraction of transpirable soil water (FTSW) that inhibited crop develop-

ment for germination (i.e. from sowing to emergence) was set to 0.3 (default: 0.0, for details see 

discussion). 

8.3.4. Vernalisation and Photoperiod 

The vernalisation parameter (vsen) was calibrated to 0.018. The critical photoperiod (cpp) was 

set to 21 h, photoperiod sensitivity (ppsen) to 0.004. These parameters were set identical for all 

cultivars in both experiments. 

8.3.5. Development Phases 

The calibrated parameters for the phenological phases defined by iCrop (Table 5) were based on 

observed differences in development rate between the cultivars (Figure 17). The parameters I 

chose did not differ between the cultivars until the beginning of tillering (bdSOWEMR, sowing 

until emergence, and bdEMRTIL, emergence until tillering). In the phase from emergence until 

stem elongation (BBCH 09 – 31), observations showed faster development of Arnold in both 

seasons (baseline: average of all four cultivars), as well as slower development of Bernstein in 

both seasons (Figure 17). This was reflected in the parameter bdTILSEL (phase tillering until 

stem elongation) (Table 5). The observed slower developments of Bernstein and Emilio in both 

seasons from BBCH 31 to 61 (the sum of bdSELBOT, bdBOTEAR, and bdEARANT) was also set 

in the parameters, with Bernstein requiring 18 bd, Emilio 17 bd, and the two remaining cultivars 

both 15 bd. The phase from beginning of anthesis (BBCH 61) until physiological maturity (BBCH 

87) (parameter bdANTPM) showed quickened development of Bernstein in EXP2 only. Emilio 

showed faster development than the mean in both years. Taking into account measurement dif-

ficulties during grain filling, possible effects of drought stress on phenology, and other effects, 

the parameters were calibrated to a fast development of Bernstein (31 bd) and similarly slower 

developments of Emilio (33 bd) and the remaining cultivars (both 33.5 bd). 
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Figure 17 Observed cumulative biological days (bd) differences between each of the four winter wheat cultivars and their 

mean for the phenological phases from emergence (BBCH 9) to beginning of stem elongation (SEL, BBCH 31), from SEL 

to beginning of anthesis (ANT, BBCH 61), and from ANT to physiological maturity (BBCH 87), in both seasons (EXP1: 

2017/18, EXP2: 2018/19). Data was based on linear interpolation of the phenological stages BBCH 31, 61, and 87 using 

the actually observed BBCH stages and temperature sums. Conversion to biological days assumed an optimum temper-

ature of 27.5 °C. 

8.3.6. Phyllochron 

The development of leaves on the main stem (main stem node number, MSNN) based on tem-

perature sums (phyllochron: required temperature sum to develop one leaf) showed a biphasic 

pattern for all four cultivars (Figure 18, Table 6). In the first phase, cultivars Emilio and Arnold 

showed the fastest and Bernstein slowest leaf number increase while in the second phase Aure-

lius and Emilio were fastest and Arnold slowest. 

By default, iCrop used only one phyllochron parameter for the whole leaf development phase. 

To adequately represent the observed biphasic pattern in iCrop, the model code was updated to 

support two phyllochron parameters (PHYL1, PHYL2) and a breakpoint (LNP2). For the param-

eters, calculated phyllochrons were rounded to 5 °C leaf⁻¹ and breakpoints to 0.5 (Table 5). 
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Figure 18 Observed main stem node number vs. temperature sums from BBCH 11 to 39 for four winter wheat cultivars in 

two seasons. Lines: two-segment linear regression. 

Table 6 Observed phyllochrons (PHYL1, PHYL2) and breakpoints (LNP2) assuming a segmented linear regression for 

four winter wheat cultivars across two seasons. 

Cultivar Phyllochron (°C leaf⁻¹) LNP2 (breakpoint) 
(leaf no.)  PHYL1 PHYL2 

Arnold 54.1 129.9 6.5 
Aurelius 59.5 106.2 6.4 
Bernstein 63.6 119.5 5.9 
Emilio 48.2 108.3 6.4 

8.3.7. Leaf Area 

For the calculation of the iCrop parameter PLAPOW which defines leaf area expansion in re-

sponse to main stem leaf number (MSNN), I investigated observed plant leaf area and MSNN 

from emergence up until anthesis. 

At anthesis, the N-treatment did significantly affect observed LAI but not MSNN (Table 3). Due 

to the effect on LAI I decided to take only well fertilised treatments (N2, N3) into account for 

the calculation of PLAPOW. 

The cultivar effect on LAI was significant (p < 0.001) and showed a clear trend. Bernstein 

(3.1 mm² mm⁻²) showed highest average LAI followed by Aurelius (2.7), while Emilio (2.1) and 

Arnold (2.0) were similar with lowest LAI. The plant number was assumed equal to sowing den-

sity (370 plants m⁻²; thereby, LAI statistics was representative for leaf area per plant). 
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Similar to the observed cultivar differences in LAI, calculated PLAPOW was highest for Bern-

stein (2.03 ±0.02 standard error). The cultivars Arnold (1.89 ±0.02), Aurelius (1.88 ±0.02), and 

Emilio (1.92 ±0.02) were similarly low (Figure 19). For the final model parameter, values were 

rounded to one decimal. 

 

Figure 19 Leaf area per plant versus main stem leaf number for the four winter wheat cultivars with high N-fertilisation 

(N2, N3) in both seasons. Lines: Regression analysis (power). 

For specific leaf area (SLA), data from EXP1 appeared to have outliers (data not shown). There-

fore, only EXP2 was investigated. SLA averages in EXP2 ranged from 0.0191 to 0.0240 m² g⁻¹. 

However, this was close to the default value (0.0210 m² g⁻¹) and observed data was based on 

only one sampling (near anthesis). Also, the overall effect of SLA in the crop model is relatively 

short (only after flag leaf emergence until beginning seed growth) and, therefore, minor. As a 

result, I decided to keep the default for all cultivars. 

8.3.8. Radiation Use Efficiency 

The cardinal temperatures for radiation use efficiency (RUE) were kept default (°C): base tem-

perature TBRUE = 0, lower optimum TP1RUE = 15, upper optimum TP2RUE = 22, and critical 

temperature TCRUE = 35. 

The extinction coefficient (KPAR) was also set to the default of 0.65. 

I changed the RUE for optimum conditions (IRUE) from its default (2.2 g MJ⁻¹) to 2.58 g MJ⁻¹. 

This value was adopted from the RUE parameter used in the crop growth model APSIM 

(Holzworth et al., 2014) (RUEAPSIM = 1.48 g MJ⁻¹). The conversion was necessary due to model 

internal differences in calculating dry matter production (see 7.4). 
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8.3.9. Leaf:Stem Partitioning 

Well N-fertilised treatments (N2, N3) of the samplings on 30 April 2018 in EXP1 (196 DAS, ca. 

BBCH 32) and on 2 May 2019 in EXP2 (198 DAS, ca. BBCH 33) (Figure 20) showed the highest 

leaf fraction for Bernstein (partly significant) while Arnold and Emilio had lowest. Other sam-

plings in the range BBCH 10 to BBCH 37 showed a mostly similar trend (Figure 21). 

The two segmented linear regression of leaf dry mass depending on total dry mass also showed 

Bernstein clearly differentiated from the other cultivars (Figure 21). I pooled Arnold and Emilio 

but kept Bernstein and Aurelius separate to calculate iCrop's leaf:stem partitioning parameters 

FLF1A, FLF1B, and WTOPL (Table 5). Further explanations are given in the Discussion chapter 

(9.3.4 Dry Mass). 

 

Figure 20 Observed leaf fraction (ratio leaf:total dry mass) for the four winter wheat cultivars on 30 April 2018 in EXP1 

(196 DAS, ca. BBCH 32) and on 2 May 2019 in EXP2 (198 DAS, ca. BBCH 33) with high N-fertilisation (average of N2 

and N3). Within cultivars, means indicated by the different letters are significantly different at p < 0.05 according to 

Tukey’s post-hoc test 
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Figure 21 Leaf biomass (dry mass) versus total above-ground biomass from BBCH 9 (emergence) until BBCH 37 (flag 

leaf emergence) of four winter wheat cultivars in well fertilised treatments (N2, N3) in both experiments (2017/18 and 

2018/19). Lines: Regression analysis (segmented linear regression). 

For iCrop’s leaf fraction parameter FLF2 (leaf fraction after the flag leaf has fully emerged [BBCH 

39] until beginning of seed growth [BBCH 71]) I used the default value of 0.1. 

8.3.10. Yield 

The observed fraction of translocated dry mass (FRTRL, i.e. the part of vegetative crop dry mass 

available at the beginning of seed growth for translocation to grains until harvest) was 23% on 

average, ranging from ca. 10% to 35% (Figure 22). While the N-treatment did not show a con-

sistent pattern across cultivars in EXP1, there was a downward trend visible in EXP2. Cultivar 

averages were 28% (Arnold), 21% (Aurelius), 19% (Bernstein), and 23% (Emilio).  

The overall variance of the measurements was high. Also, the FRTRL parameter in iCrop defines 

only the theoretical maximum availability of crop mass for translocation to seeds, not the actual 

translocated dry mass. Therefore, I used the default parameter value of 22%. 
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Figure 22 Observed fraction of translocated dry mass (FRTRL) for the four winter wheat cultivars in both seasons (EXP1: 

2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Lines: linear 

regression. Error bars indicate standard error. 

The observed daily harvest index increase (DHI) was calculated from observed harvest index 

divided by an estimate of seed growth duration (SGD). SGD was calculated from the time span 

between BBCH 71 (beginning seed growth) and BBCH 87 (hard dough stage). The dates of these 

BBCH stages were estimated by linear interpolation versus cumulative thermal time. 

DHI showed an increase with higher N-fertilisation rates (Figure 23). Values ranged from 0.014 

to 0.020. In EXP1 values were overall lower than in EXP2. Bernstein showed the overall lowest 

DHI in EXP1. Combined with data from a previous experiment (Fuchs, 2016) I calibrated the 

parameter PDHI (potential DHI) equal for all cultivars to 0.017. 
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Figure 23 Observed daily harvest index increase (DHI) for the four winter wheat cultivars in both seasons (EXP1: 2017/18, 

EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Lines: liner regression. 

8.3.11. Root Growth 

The daily rate of root penetration (GRTDP) was not measured in the field. Soil water data was 

too coarse to derive differences in the cultivars’ rooting depth rates (data not shown). Therefore, 

I used the default parameter value (30 mm bd-¹). 

8.3.12. Stem Nitrogen 

The observed stem nitrogen concentrations (SNC) at anthesis were statistically unaffected by 

season (p = 0.24) and cultivar (p = 0.97) but highly dependent on the N-fertilisation treatment 

(p < 0.001) (Figure 24). At harvest, season was significant (p < 0.001) but cultivar again did not 

significantly influence SNC (p = 0.28) while N-treatment did (p < 0.001). Therefore, I pooled the 

cultivars and used identical parameters for the four cultivars for each of the parameters SNCS1, 

SNCS2 (SNCS: “senesced”, i.e. minimum), and SNCG (SNCG: “green”, i.e. maximum). 

The model parameters SNCS1 and SNCG were calculated from measurements at anthesis (Figure 

24). Calculated parameters based on both experiments were 0.63% for SNCS1 (2.5% quantile) 

and 1.90% for SNCG (97.5% quantile). SNCS2 was 0.22% calculated from data at harvest (2.5% 

quantile) (Figure 24). 
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Figure 24 Stem nitrogen concentration at anthesis and harvest. The N-treatments included no N (N0), 70 (N1), 140 (N2), 

and 210 (N3) kg N ha⁻¹. Dashed black line: mean. Full black line: median. Blue lines: 97.5% quantile (upper) and 2.5% 

quantile (lower). 

8.3.13. Leaf Nitrogen 

The specific leaf nitrogen of green leaves (SLNG) was calculated from data sampled at anthesis 

(Figure 25). There were differences between the seasons (p < 0.01) and N-treatments (p < 0.001) 

but not between the cultivars (p = 0.06). The 97.5% quantiles of the cultivars were 2.20 (Arnold), 

2.06 (Aurelius), 2.23 (Bernstein, outlier removed), and 2.16 g m⁻² (Emilio). For the SLNG param-

eter of all cultivars I used the 97.5% quantile of the pooled data (2.1 g m⁻², rounded to one dec-

imal) after removal of one extreme value (2.86, Bernstein, EXP1). 
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Figure 25 Specific leaf nitrogen (SLN) at anthesis. The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) 

kg N ha⁻¹. Dashed black line: mean. Full black line: median. Red line: mean + three standard deviations. Blue line: 97.5% 

quantile after removal of the highest value (outlier). 

SLNS (specific leaf nitrogen of senesced leaves) was calculated from N in senesced leaves at har-

vest and the highest observed LAI during the season (which was mostly close to or at anthesis). 

SLN at harvest ranged from roughly 0.1 to 0.4 g m⁻² (Figure 26). There was no effect of season 

(p = 0.09), cultivar (p = 0.80), and N-treatment (p = 0.36). The 2.5% quantile was 0.10 g m⁻² 

which I used as the SLNS parameter in iCrop for all four cultivars. 
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Figure 26 Specific leaf nitrogen of senesced leaves (SLNS, g N m⁻²) at harvest, assuming senesced leaf area at harvest 

equalled maximum leaf area of green leaves during the season. The N-treatments included no N (N0), 70 (N1), 140 (N2), 

and 210 (N3) kg N ha⁻¹. Dashed black line: mean. Full black line: median. Blue line: 2.5% quantile. 

8.3.14. Grain Nitrogen 

The grain nitrogen concentration (%GN) at harvest did not show seasonal differences (p-value: 

0.33). The effects of cultivar and N-treatment were both highly significant (p < 0.001). However, 

the data was pooled and the 2.5% quantile (%GNmin = 1.6%, lower blue line in Figure 27) and 

97.5% quantile (%GNmax = 2.9%, upper blue line) were used for the iCrop model parameters. 

Reasons for the decision to ignore the significant effect of cultivar and pool the data are ex-

plained in the discussion. 
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Figure 27 Grain nitrogen concentration at harvest of the different N-treatments. The N-treatments included no N (N0), 

70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Blue lines: 2.5% and 97.5% quantiles of all data. Dashed black lines: mean 

of N0 and N3. 

8.3.15. Nitrogen Uptake Rate 

The highest daily N-uptake rates were observed between the samplings on 196 and 224 DAS 

(EXP1) (ca. beginning of stem elongation and beginning of seed growth, resp.) and between 199 

and 214 DAS (EXP2) (ca. beginning of stem elongation and shortly before anthesis, resp.) (Figure 

28). The average daily uptake rates were highest in the N3 treatments (except Emilio, EXP2), 

ranging from 0.30 to 0.53 g N m⁻² d⁻¹ (Figure 29). I set the iCrop parameter MXNUP (maximum 

daily N-uptake) to 0.60 g N m⁻² d⁻¹ which is the same value as used in the APSIM wheat model 

(Holzworth et al., 2014). 
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Figure 28 Total nitrogen uptake of the four winter wheat cultivars with the highest N-fertilisation (N3: 210 kg N ha⁻¹) in 

both seasons (EXP1: 2017/18, EXP2: 2018/19). Error bars indicate standard error. Arrows highlight the interval with the 

highest N-uptake rate in each season. 

 

Figure 29 Daily nitrogen uptake of the four winter wheat cultivars from 196 to 224 days after sowing (DAS) in EXP1 and 

from 199 to 214 DAS in EXP2 (i.e. the periods between the arrows in Figure 28). Seasons: EXP1: 2017/18, EXP2: 2018/19. 

The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Error bars indicate standard error. 

8.3.16. Soil Water 

The model was set to simulate runoff. 
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For calculating soil water content and for the model’s BDL parameter, measured bulk densities 

were used. While for EXP1 the exact measured values were used as parameter, bulk density was 

reduced to 1.30 g m-2 for the deeper soil layers (60-90 and 90-120 cm) in EXP2 to represent 

visually observed sandy layers (Figure 30) as well as observed differences in gravimetric soil wa-

ter content. 

 

Figure 30 Augers filled with soil shortly after being extracted from the soil of the second field experiment (2018/19). The 

numbers indicate soil depth in cm. The start of the sandy subsoil layer is clearly visible at ca. 70 cm. Some of the soil 

sample was lost from the top (dry topsoil; re-added manually to the sample) and some from the bottom (gravelly).  

Based on previous simulation studies comparing iCrop and APSIM soil water contents (data not 

shown), the necessary rainfall amount to return from stage II evaporation to stage I was set to 

6 mm (default: 10 mm, parameter WETWAT). This results in more frequent stage I evaporation 

and, therefore, generally higher evaporation. 

The parameters defining soil water limits (SAT: saturated soil water content, DUL: drained up-

per limit (i.e. field capacity), LL: lower limit (i.e. wilting point), and ADRY: air-dry lower limit) 

were calculated for each soil layer from measured soil water data of the two winter wheat grow-

ing seasons. Since the two experiments were carried out on different fields with apparent soil 

differences, I also used different parameter sets for the soils in each season. The observed soil 

water ranges (Figure 31) and total organic carbon contents (Table 7) of the three topmost layers 

(0-10 cm, 10-30 cm, and 30-60 cm) were similar in both seasons. Therefore, identical model 

parameters were defined for these layers in both seasons. With greater soil depth, deviations 

between observed soil water contents in the two seasons started to increase, with EXP2 showing 

the lower values. Accordingly, model parameters were calibrated to reflect these differences.  

Initial soil water contents were calculated from measurements at simulation start: 33 and 14 days 

before sowing in EXP1 and EXP2, respectively. Initials in EXP1 amounted to 539 mm and in EXP2 

to 362 mm soil water. 
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Figure 31 Soil water content (volumetric) measured in the winter wheat seasons 2017/18 (EXP1) and 2018/19 (EXP2) and 

derived soil water parameters (lines) for saturation (SAT), drained upper limit (DUL), lower limit (LL), and air-dry lower 

limit (ADRY); lines from top to bottom, respectively. 

8.3.17. Soil Nitrogen 

Soil organic carbon content (TOC) ranged from 0.27% to 2.24% with decreasing values from 

shallow to deeper soil layers (Table 7). Between the two seasons, TOC was similar in the top soil 

layers (0-30 and 30-60 cm) while EXP2 showed lower TOC in deeper layers compared to EXP1. 

Calculated parameter values for soil organic nitrogen content (NORG) reflect these differences 

directly. 

Table 7 Soil total organic carbon content (TOC) measured on three dates and soil C/N ratio used for the calculation of 

the soil organic N content (NORG) parameter for both seasons (EXP1: 2017/18, EXP2: 2018/19). 

Soil layer (cm) TOC (%) measured C/N NORG (%) calculated 

 EXP1 EXP2  EXP1 EXP2 

 13/09/2017 1/10/2018 13/05/2019    

0-30 2.33 ± 0.03 2.24 ± 0.04 2.19 ± 0.02 10:1 0.22 0.22 

30-60 1.61 ± 0.08 1.62 ± 0.03 1.57 ± 0.04 10:1 0.16 0.16 

60-90 1.38 ± 0.11 0.83 ± 0.12 0.89 ± 0.05 10:1 0.14 0.09 

90-120 1.09 ± 0.13 0.27 ± 0.09 0.44 ± 0.02 10:1 0.11 0.03 

 

The fraction of NORG available for daily mineralization (FMIN) was calibrated by trial-and-error 

and comparison between simulated final soil Nmin versus observed. Identical parameter values 

were used for both seasons, decreasing from 0.050 in the topmost layer to 0.001 in the deepest 

layer. 
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Initial soil mineral nitrogen (Nmin) was measured at the same dates as initial soil water (see 

above). Total initial Nmin contents across the whole soil profile were 63 kg N ha⁻¹ in EXP1 and 

30 kg N ha⁻¹ in EXP2. 

8.4. iCrop Simulation Results 

In this section, the results of simulating the parameterisation field experiments (EXP1: 2017/18, 

EXP2: 2018/19; Tulln, Eastern Austria) using the previously derived parameter set (8.3) are de-

scribed. Due to their contrasting phenological developments I picked the cultivars Arnold and 

Bernstein for most comparisons. Unless stated otherwise, the other cultivars (Aurelius, Emilio) 

did not show any specific behaviour departing largely from the two described cultivars. Descrip-

tive statistics (RMSE, PE) are based on all treatments (all cultivars) unless a cultivar is explicitly 

referred to. 

8.4.1. Phenology 

Simulated phenology hardly responded to the N-treatment, showing differences of maximum 2 

days only shortly before maturity (data not shown). The simulations showed faster average phe-

nological development of Arnold compared to Bernstein, mainly from BBCH 30 (stem elonga-

tion) until ca. BBCH 80 (ripening) (Figure 32). This agreed well to the observed cultivar effects, 

especially in EXP1. 

Overall, the agreement between simulated and observed phenology was good (Table 8). Emer-

gence was simulated very close to the observations. Only the beginning of tillering (BBCH 21) 

was matched poorly in EXP1, with varying errors for the cultivars. All other stages were simulated 

within 9 days. In EXP1 the simulations were very close to the observations, showing a trend of 

being slightly too early. Anthesis in EXP1 was simulated with +/- 2 days, and maturity was within 

5 days. EXP2 showed higher absolute errors than EXP1 and was mostly delayed compared to 

observations. Anthesis (BBCH 61 - 69) was simulated 1 to 5 days later than observed, and ma-

turity with plus 7 to 8 days. 
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Table 8 Errors for simulating key phenological stages of four winter wheat cultivars in two seasons (EXP1: 2017/18, EXP2: 

2018/19). Negative values: simulations earlier than observed. Phenological stages (BBCH): 9 emergence, 21 first tiller, 31 

first node (stem elongation), 41 flag leaf sheath extending (booting), 51 tip of ear just visible (ear emergence), 59 ear 

emergence complete, 61 beginning of anthesis, 65 anthesis half-way, 69 anthesis complete, 71 kernel water ripe (milk 

development), 81 early dough development, 87 hard dough stage (maturity). The N-fertilisation treatments were pooled. 

Season Cultivar BBCH: 9 21 31 41 51 59 61 65 69 71 81 87 

   Error (days) 

EXP1 Arnold  1 20 3 -3 -2 -1 0 2 0 -3 2 0 

 Aurelius  1 -36 -2 -2 -2 -3 -2 -1 -1 -3 1 -1 

 Bernstein  1 -31 -1 -3 -4 -2 -1 -1 1 1 3 -5 

 Emilio  1 21 1 -2 -2 0 1 2 2 0 5 1 

EXP2 Arnold  1 9 9 7 5 3 4 4 4 3 4 7 

 Aurelius  1 -7 9 7 6 4 5 1 3 2 4 7 

 Bernstein  1 9 8 8 3 3 4 4 5 5 6 7 

 Emilio  1 8 8 5 3 3 4 3 4 4 6 8 

 

Figure 32 Phenological development (BBCH stages): Observed (symbols) vs. simulated (lines) values of two contrasting 

winter wheat cultivars (Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). Observed values were 

averaged across N-treatments. 

8.4.2. Leaf Canopy Development 

Simulated node number on the main stem (MSNN) was unaffected by N-treatment (data not 

shown). Accordingly, observed final MSNN was not significantly affected by the N-treatment 

(p = 0.06, see also sub-section 8.1.5). 

iCrop simulated lower MSNN for Bernstein than for Arnold during the development phase (Fig-

ure 33). However, the duration of the MSNN production was simulated longer for Bernstein, 

resulting in similar final MSNN for both cultivars. 
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The agreement between simulation and observation of Arnold’s and Bernstein’s MSNN was es-

pecially good in EXP1. In EXP2 iCrop underestimated MSNN in the final phase of the node de-

velopment phase (ca. 175 until 220 DAS) mainly for Arnold. Still, in both seasons for all four 

cultivars, estimates of final MSNN were within 1 leaf of observed values and highly robust 

(RMSE = 0.5, RRMSE = 6%, PE = +3%).  

 

Figure 33 Main stem node number: Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat 

cultivars (Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). Observed values were averaged across 

N-treatments 

In both seasons, simulated LAI showed response to N-treatment mainly between no fertilisation 

(N0) and the other N-treatments (N1, N2, N3) (Figure 34). The LAI-reducing effect of N0 was 

stronger in EXP2 (maximum LAI ca. 2) than in EXP1 (max. LAI ca. 3). The simulations showed 

hardly any difference between N1, N2, and N3 in both seasons. 

Regarding simulated cultivar differences in LAI, Bernstein had consistently higher LAI during 

most of the growing season across all treatments. Differences between the cultivars were lowest 

in the N0 treatment. In the other treatments (N1, N2, N3), maximum LAI of Bernstein was higher 

than Arnold by ca. 1 mm² mm⁻². 

The model predicted the dynamics of LAI with varying accuracy. The relative trends of the in-

fluence of N-treatment and cultivar were captured correctly. At anthesis, LAI simulations were 

not robust (RMSE = 0.8, NRSME = 32%, PE = +36%). Also, iCrop showed a tendency to overes-

timate early LAI (up until ca. 150 DAS, i.e. mid-March) as well as LAI at harvest (observed: all 

zero) for high N-treatments. Maximum LAI of Bernstein (RMSE = 0.5, RRMSE = 17%, PE = +17%) 

was simulated very close to the observations. In contrast, although Arnold’s maximum LAI was 

simulated lower than Bernstein, it was still overestimated across most treatments (RMSE = 0.9, 
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RRMSE = 43%, PE = +52%). Aurelius (RMSE = 0.5, RRMSE = 20%, PE = +16%) was similarly well 

predicted as Bernstein, and Emilio (RMSE = 1.1, RRMSE = 53%, PE = +58%) similarly poor as 

Arnold. 

 

Figure 34 Leaf area index (LAI): Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat culti-

vars (Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 

(N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

8.4.3. Dry Mass Accumulation and Partitioning 

Simulated total above-ground dry mass responded positively to increased N-fertilisation, with 

the strongest response between N0 and N1 (Figure 35). iCrop consistently simulated higher TDM 

for Bernstein than for Arnold, with the difference emerging mainly in the last days of TDM 

growth (shortly before harvest). 

While the simulated trends regarding N-treatment and cultivar differences were in agreement 

with the observations, the predictions of the absolute values ranged from poor to good. Predic-

tions at harvest (all cultivars) were generally better for EXP1 (RMSE = 117, RRMSE = 8%, 

PE = +/-0%) than for EXP2 (RMSE = 321 g m-2, RRMSE = 26%, PE = +28%). iCrop showed a 

tendency to overestimate TDM for low N-fertilisation treatments while it predicted high N-

treatments much better (Figure 35). More generally viewed, low TDM at anthesis and harvest 

were overestimated, while high TDM at anthesis and harvest were underestimated or estimated 

well, respectively (Figure 36). While iCrop was able to capture the direction of cultivar differ-

ences (Bernstein higher than Arnold), it underestimated these differences at harvest as well as 

in-season. In almost all treatments, iCrop overestimated in-season TDM between ca. 150 and 

200 DAS (ca. the whole stem elongation phase, BBCH 30 to 39). Overall, at anthesis (ca. 225 

DAS) iCrop estimates matched observations closely (RMSE = 114 g m-2, RRMSE = 12%, PE = +6%). 
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Also, final TDM estimates matched the observations quite well (overall RMSE of 241 g m-2, 

RRMSE = 18%, PE = +13.7%). 

 

Figure 35 Total above-ground biomass (dry mass): Observed (symbols) vs. simulated (lines) values of two contrasting 

winter wheat cultivars (Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments in-

cluded no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

 

Figure 36 Total above-ground dry mass (TDM) of two contrasting winter wheat cultivars (Arnold and Bernstein) in both 

seasons (EXP1: 2017/18, EXP2: 2018/19) at anthesis (left) and harvest (right). Coloured lines: linear regression, black line: 

1:1. Bars represent standard errors of the means. 

Simulated yield showed a stronger positive response to N-fertilisation in EXP2 than in EXP1 

(Figure 37). In both seasons, this response was strongest between N0 and N1. Simulated differ-

ences between the cultivars were small, with highest N3 yields simulated for Arnold in EXP1 

(628 g m⁻²) followed by Aurelius (610), Emilio (598), and Bernstein (578), and highest N3 yield 

for Aurelius in EXP2 (748 g m⁻²) followed by Arnold (732), Emilio (726), and Bernstein (700). 
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Apart from the positive direction of the estimated yield response to N-fertilisation, iCrop had 

problems capturing seasonal and cultivar differences. In both seasons, the model underesti-

mated the impact of N-fertilisation on yield. For three cultivars (Aurelius, Bernstein, Emilio) of 

EXP1 the estimate for N0 was good while the higher N-treatments were clearly underestimated. 

The high N-treatments of the same cultivars were predicted well in EXP2, but N0 and N1 were 

overestimated. Still, overall final yield simulation was robust (RMSE = 95 g m⁻², RRMSE = 16%, 

PE = +6%). 

 

Figure 37 Grain yield: Observed (points) vs. simulated (bars) values of four winter wheat cultivars (Arnold, Aurelius, 

Bernstein, and Emilio) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 

140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

Simulated leaf dry mass showed hardly any response to N-fertilisation (Figure 38). The model 

simulated differences between the cultivars, starting ca. 200 DAS, with higher leaf dry mass for 

Bernstein than for Arnold. At anthesis (ca. 225 DAS) leaf dry mass was largely overestimated 

(RMSE = 121 g m⁻², RRMSE = 73%, PE = +78%). The model also overestimated leaf dry mass 

towards the end of the growing season. However, it needs to be considered that despite iCrop 

does calculate dry mass retranslocation from vegetative organs (leaves and stems) to the grains, 

it does not account for retranslocated dry mass separately in the output of leaf and stem dry 

mass. Therefore, comparisons between simulations and observations for leaf and stem dry mass 

towards the end of the growing season are not possible. 
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Figure 38 Leaf biomass (dry mass): Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat 

cultivars (Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 

70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. Note that biomass retransloca-

tion from leaf to grain is calculated in the model, but not shown in the output (i.e. the “plateau” at the end of the season 

does not represent model simulations correctly). 

Simulated stem dry mass showed a weak response to N-fertilisation (Figure 39). The model es-

timates showed differences between the cultivars only late in the season for final stem weight, 

with Bernstein showing higher dry mass than Arnold. While the relative direction of this differ-

ence matched observations, the second last measurements (anthesis) were predicted with vary-

ing precision (RMSE = 131 g m-2, RRMSE = 16%, PE = 11%). Observed response to N-treatment 

was stronger than predicted by the model, thereby resulting in either a good prediction of N0 

and poor prediction of the high N-treatments (N1, N2, N3) or the other way around. 
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Figure 39 Stem biomass (dry mass): Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat 

cultivars (Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 

70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. Note that biomass retransloca-

tion from stem to grain is calculated in the model, but not shown in the output (i.e. the “plateau” at the end of the season 

does not represent model simulations correctly). 

Both leaf and stem dry mass (i.e. total dry mass before the beginning of seed growth) of all cul-

tivars were mostly overestimated before anthesis (exemplarily shown for Bernstein in Figure 40). 

At anthesis and thereafter, N0 was still overestimated, while in N3 stem dry mass was underes-

timated. 
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Figure 40 Simulated stem (black lines) and leaf (grey lines) dry mass vs. observations (symbols) for cultivar Bernstein 

without (N0) and with maximum N-fertilisation (210 kg N ha-1) (zoomed to the period 100 to 250 days after sowing). 

The vertical blue lines indicate the simulated switches between the leaf:stem partitioning parameters (left to right): 

FLF1A, FLF1B, FLF2, and zero thereafter. Bars represent standard errors of the means. 

8.4.4. Crop Nitrogen Uptake and Partitioning 

Simulated total shoot N-uptake (TNU) at harvest showed a clear and rather linear response to 

N-fertilisation (Figure 41). Cultivar differences were marginal. TNU was higher in EXP1 than in 

EXP2. On average, simulations of TNU at harvest were robust (RMSE = 3.2 g m⁻², RRMSE = 19%, 

PE = +14.3%). However, in EXP1 the impact of N-fertilisation was overestimated, expressed by 

good estimates for N0 across all cultivars but overestimation of N3. In EXP2 all treatments were 

overestimated. 
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Figure 41 N-uptake at harvest: Observed (points) vs. simulated (bars) values of four winter wheat cultivars (Arnold, 

Aurelius, Bernstein, and Emilio) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 

70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

Simulated TNU dynamics showed a positive response to N-fertilisation starting ca. 200 DAS 

(Figure 42). iCrop simulated only small differences between Arnold (lower) and Bernstein 

(higher), most of those emerging only under higher N-fertilisation rates and at the end of the 

season. In EXP1 iCrop simulated TNU until 200 DAS very well compared to observations. There-

after, observed cultivar differences were not matched and N3 was overestimated. In EXP2 esti-

mates showed a similar behaviour. Also, there was a trend towards overestimation. On average 

across all treatments, TNU at anthesis was simulated well and robust (RMSE = 2.6 g m⁻², 

RRMSE = 17%, PE = +14.0%), similar to TNU at harvest (see above). 
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Figure 42 NUP: Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat cultivars (Arnold and 

Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 

210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

The model estimates for grain N-concentration (%GN) showed a positive response to increased 

N-fertilisation, although the step from N2 to N3 resulted in almost no effect in EXP1 (Figure 43). 

Simulated cultivar differences were small, showing lowest %GN for Arnold in EXP1 and highest 

for Bernstein in EXP2. On average, the model estimates for %GN were robust (RMSE = 0.22%, 

RRMSE = 9%, PE = -1.3%). However, %GN of Arnold was always underestimated (RMSE = 0.32%, 

RRMSE = 13%, PE = -12.8%) while Aurelius (RMSE = 0.13%, RRMSE = 6%, PE = -0.7%), Bernstein 

(RMSE = 0.19%, RRMSE = 9%, PE = 5.0%), and Emilio (RMSE = 0.16%, RRMSE = 8%, PE = 3.4%) 

were simulated better. For all cultivars, there was a trend of N0 underestimation, for Bernstein 

and Emilio also N3 overestimation, indicating an overestimation of the N-treatment impact. 
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Figure 43 Grain N- concentration: Observed (points) vs. simulated (bars) values of four winter wheat cultivars (Arnold, 

Aurelius, Bernstein, and Emilio) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 

70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

Simulated leaf N content responded to N-fertilisation only between N0 and N1 (Figure 44). The 

simulated effect of cultivar (considering only Arnold and Bernstein) started emerging ca. 200 

DAS, with Bernstein showing higher values. These cultivar differences reached their maximum 

ca. at anthesis, where absolute values were at their maximum as well (for N1, N2, N3) or shortly 

after the maximum (for N0). Afterwards, in most cases, cultivar differences gradually declined 

towards zero at harvest. 

In EXP1, simulations matched observations well until ca. anthesis (RMSE at anthesis: Bernstein 

1.3, Arnold 2.0 g N m⁻²). At harvest, all but the N0 treatments were overestimated. For EXP2, 

estimates of harvest leaf N content were better, but most of the season for N0 was overestimated. 

iCrop captured the general direction of differences between the cultivars in many treatments. 

However, in both seasons, Arnold’s leaf N content at anthesis was clearly overestimated. Overall, 

leaf N content was overestimated at both anthesis (RMSE = 2.3 g N m⁻², RRMSE = 50%, 

PE = +62.7%) and harvest (RMSE = 1.1 g N m⁻², RRMSE = 147%, PE = +63.9%). 
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Figure 44 Leaf-N content: Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat cultivars 

(Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 

140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

Stem-N content simulated by iCrop showed clear responses from N0 to N2 and a reduced re-

sponse for N3 (Figure 45). Simulated differences between Arnold and Bernstein were small and 

showed an interaction with N-fertilisation: For N1, Arnold’s maximum was higher than Bern-

stein’s, while this was inverted for N3. 

The observed pattern showed a maximum at anthesis and was generally matched by the model. 

Absolute values at anthesis were underestimated in EXP1 (RMSE = 2.8 g N m⁻², RRMSE = 23%, 

PE = -19.5%) and matched well in EXP2 (RMSE = 1.2 g N m⁻², RRMSE = 13%, PE = -0.7%). At 

harvest, iCrop overestimated stem N content on average by 69.5% (RMSE = 2.1 g N m⁻², 

RRMSE = 99%), showing higher overestimation with increasing N-fertilisation. 
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Figure 45 Stem-N content: Observed (symbols) vs. simulated (lines) values of two contrasting winter wheat cultivars 

(Arnold and Bernstein) in both seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 

140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent standard errors of the means. 

8.4.5. Soil Water 

Simulated total soil water content showed a clear difference between N0 (higher) and the other 

N-treatments, starting ca. 230 DAS (Figure 46). Simulated differences between the cultivars 

were relatively small, total soil water content for N3 at harvest ranged from 400 mm (Bernstein) 

to 411 mm (Arnold) in EXP1, and from 279 mm (Bernstein) to 293 mm (Arnold) in EXP2. 

Overall, in both seasons and across all cultivars, the relative patterns of simulated soil water 

matched the observations quite well, especially Bernstein in EXP1, where also the absolute values 

were matched with astonishing precision (except for harvest). The absolute values were also 

estimated well for Emilio in EXP1, while they were mainly overestimated for Arnold in EXP1. In 

EXP2, although initial soil water simulations were parameterised to start lower than observa-

tions to better match in-season observations, the rest of the season was mainly overestimated 

(except for harvest). N0 at harvest in EXP2 was clearly overestimated. In most cases where in-

season observed values were available, iCrop overestimated soil water decline in the last steep 

drop of the graph just before harvest. Thereby, either mid-season soil water was overestimated 

and harvest matched better (e.g. Bernstein N3, EXP2), or mid-season soil water was matched 

and harvest underestimated (Bernstein N2 and Emilio N3, EXP1). On average, estimates of the 

measured treatments (only specific treatments were measured, see Materials and Methods) were 

robust at both anthesis (RMSE = 39 mm, RRMSE = 9%, PE = +2%) and harvest (RMSE = 47 mm, 

RRMSE = 13%, PE = +4%). 
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Figure 46 Total soil water content (sum of the whole soil profile, 0-120 cm soil depth): Observed (symbols) vs. simulated 

(lines) values of four winter wheat cultivars (Arnold, Aurelius, Bernstein, and Emilio) in both seasons (EXP1: 2017/18, 

EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N ha⁻¹. Bars represent stand-

ard errors of the means. Points without bars were single measurements. Dashed lines: drained upper limit (upper line) 

and lower limit (lower line). 

Layer-wise simulated versus observed volumetric soil water (SW) contents are exemplarily 

shown for specific treatments in Figure 47. The range of simulated SW contents was similar in 

both seasons in the three topmost layers (0-10, 10-30, 30-60 cm soil depth). In the deeper layers 

(60-90, 90-120 cm) the simulated amplitude and absolute SW contents were both lower in 

EXP2. Regarding the effect of N-treatment, lower SW contents were simulated towards the end 

of the season in the N3 treatments, compared to N1 and N0. 
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Estimates matched observations variably well. In all layers, estimated SW contents deviated sig-

nificantly from at least some observation points. However, observed patterns were largely cor-

rectly represented by the simulations. For instance, in EXP1 during the winter months (ca. until 

150 DAS, mid-March) SW contents increased in the deeper soil layers. Also, in the layers 10-30 

and 30-60 cm of EXP2 the sharp decline (from ca. 170-200 DAS) followed by an abrupt rise was 

predicted well. 

 

Figure 47 Volumetric soil water content: Observed (symbols) vs. simulated (lines) values of selected treatments (wheat 

cultivar Emilio in EXP1 [2017/18] and wheat cultivar Bernstein in EXP2 [2018/19]) for each of the defined soil layers (0-

10, 10-30, 30-60, 60-90, and 90-120 cm soil depth). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 

(N3) kg N ha⁻¹. Bars represent standard errors of the means. Points without bars were single measurements. Dashed 

lines: drained upper limit (upper line) and lower limit (lower line). 

Simulated cumulative runoff ranged from 44 to 51 mm (EXP1) (data not shown). Much of the 

runoff (ca. 18 mm) was simulated on a single day (198 DAS) with 64 mm rainfall. In EXP2, runoff 
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was 42 mm (all simulations identical). Most runoff (ca. 18 mm) occurred between 208 and 219 

DAS (cumulative rainfall in this period: 114 mm). Total cumulative drainage was zero in EXP1 

and 9 mm in EXP2 (all treatments). 

8.4.6. Soil Mineral Nitrogen 

In both seasons, initial soil mineral N content (Nmin) was set to the average of observed values. 

In EXP1, Nmin was measured only at harvest and sowing (Figure 48). In EXP2, Nmin was also 

measured once during the season (141 DAS), shortly before the first N-fertilisation date. 

In EXP1, iCrop underestimated the impact of N-fertilisation. At harvest (EXP1), soil Nmin was 

predicted well for N0 and N1 (simulated: 2-3, observed: 2-6 kg N ha⁻¹), while N2 and N3 were 

underestimated (simulated: 2-5, observed: 5-15 kg N ha⁻¹). In EXP2, the only in-season measure-

ment of Nmin (shortly before the first application of N-fertiliser) was predicted precisely (both 

simulated and observed: ca. 4 kg N ha⁻¹). Also, harvest Nmin of EXP2 was simulated well (2-5 

kg N ha⁻¹ across all treatments). However, iCrop simulations did not represent the observed 

impact of N-treatments on harvest Nmin correctly, which were higher Nmin with higher N fer-

tilisation (only simulation of N3 in EXP1 followed this trend correctly). The simulations of both 

seasons resulted in slightly higher Nmin values for N0 than for N1 and N2 (negative influence of 

N-fertilisation), while observations showed a tendency towards a positive response to increased 

N-fertilisation. 
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Figure 48 Total soil mineral nitrogen content (Nmin) (sum of the whole soil profile, 0-120 cm soil depth): Observed 

(points) vs. simulated (lines) values of four winter wheat cultivars (Arnold, Aurelius, Bernstein, and Emilio) in both 

seasons (EXP1: 2017/18, EXP2: 2018/19). The N-treatments included no N (N0), 70 (N1), 140 (N2), and 210 (N3) kg N 

ha⁻¹. Bars represent standard errors of the means. Points without bars were single measurements 

8.5. iCrop Evaluation 

8.5.1. Long Term Data 

The available field experimental data covered grain yield, sowing date, heading date, and harvest 

date, as well as basic management information (dates and amounts of nitrogen fertiliser and 

irrigation application). No information on soil variables, such as initial/final soil water and min-

eral nitrogen content, was available. 

Cumulative rainfall during the growing season (Oct. to June) across all twelve environments 

(location x year) ranged from 216 to 450 mm (mean: 341 mm). This was, on average, 10% less 
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than in EXP1 (374 mm) and 41% less than in EXP2 (481 mm). Average temperatures during the 

growing season ranged from 7.3 to 9.4 °C (mean: 8.6 °C) which was lower than in EXP1 (9.3 °C) 

and EXP1 (9.4 °C). Cumulative global radiation during the growing season ranged from 2459 to 

2800 MJ m⁻² (mean: 2645 MJ m⁻²). On average, this was almost identical to EXP1 (2644 MJ m⁻²) 

and 3% lower than in EXP2 (2729 MJ m⁻²). 

8.5.2. Evaluation Simulation Setup 

Due to the evaluation data set being incomplete for the model setup, some required model input 

data had to be estimated. This included soil parameters and soil initials. The estimates were 

derived manually by comparison of soil data from EXP1 and EXP2 as well as data from a previous 

experiment in Eastern Austria (Fuchs, 2016) and freely available soil data in the soil maps “eBod” 

(Wandl and Horvath, n.d.) and ESDAC (Hiederer, 2013a, 2013b). The same soil parameterisation 

and initialisation was used for all evaluation simulations, shown in Table 9. 

Table 9 Soil parameters and initials used for the evaluation simulations. #: layer number (top to bottom), DLYER: layer 

thickness, SAT: saturated soil water content, DUL: drained upper limit, LL: lower limit, ADRY: air-dry lower limit, iniWL: 

initial soil water content, DRAINF: drainage factor, FG: gravel fraction, BDL: soil bulk density, NORG: soil organic ni-

trogen content, FMIN: fraction of NORG available for mineralisation, Nmin: soil mineral nitrogen content. 

The simulation start dates were set identical for all locations (October 9th). While earlier simu-

lation start dates might seem appropriate to have the model estimate soil water content auto-

matically via precipitation from weather input, tests showed that earlier simulation start dates 

hardly affected simulation output. 

Sowing dates, irrigation amounts and their application dates (if any), and fertilisation amounts 

and application dates were set exactly to the values provided in the data set. 

8.5.3. Phenology 

The date of heading (BBCH 59) was estimated well by the model (Figure 49). Observed vs. sim-

ulated average heading occurred 216.1 vs. 215.3 DAS (Arnold), 217.3 vs. 216.3 DAS (Aurelius), 

222.3 vs. 220.8 DAS (Bernstein), and 218.3 vs. 218.0 DAS (Emilio) (overall RMSE = 2.9 days, 

RRMSE = 1%, PE = -0.4%). 

# DLYER SAT DUL LL ADRY iniWL DRAINF FG BDL NORG FMIN Nmin 

 mm mm³ mm⁻³ - - g cm⁻³ % - kg ha⁻¹ 

1 300 0.37 0.32 0.12 0.08 0.32 0.5 0 1.25 0.14 0.097 15 

2 300 0.35 0.30 0.08 0.08 0.25 0.3 0 1.23 0.10 0.07 10 

3 300 0.33 0.28 0.07 0.07 0.23 0.3 0 1.28 0.06 0.01 5 

4 300 0.32 0.27 0.07 0.07 0.22 0.3 0 1.3 0.06 0.01 5 
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Figure 49 Observed vs. simulated heading date (DAS: days after sowing) of four winter wheat cultivars (Arnold, Aurelius, 

Bernstein, Emilio) at four locations in three seasons. Blue line: linear regression. Shaded area: standard error of the 

regression. Points were slightly jittered to avoid over-plotting. 

8.5.4. Yield 

Long-term yield simulations deviated largely from observations (Figure 50, Figure 51, and Figure 

52). Simulations mainly underestimated the yield (RMSE = 198 g m-², RRMSE = 26%, 

PE = -17.6%). Overall best estimates were found for Arnold (RMSE = 136 g m-², RRMSE = 20%, 

PE = -9.1%) (Figure 50). 
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Figure 50 Simulated vs. observed yields of four winter wheat cultivars (Arnold, Aurelius, Bernstein, Emilio) at four loca-

tions in three seasons. Lines: linear regression (blue line: average across all cultivars; red: Arnold, green: Aurelius, tur-

quoise: Bernstein, violet: Emilio), black line: 1:1. Shaded area: standard error of the average regression.  

The range of observed yields (i.e. range of the 25th to 75th percentile; boxes excluding whiskers 

in Figure 51) was not covered by the simulations, except for Arnold. For each cultivar, mean 

yields were simulated lower than observed.  

 

Figure 51 Simulated (red) vs. observed (turquoise) grain yield of four winter wheat cultivars (Arnold, Aurelius, Bernstein, 

Emilio) at four locations in three seasons. Boxes: 25th to 75th quartile. Whiskers: value within 1.5 inter-quartile ranges. 

Points: outliers. Blue crosses: mean. Black horizontal lines in the boxes: median. 

Figure 52 shows yield (simulated and observed) versus simulated evapotranspiration (ET). Ob-

served ET was not measured, therefore simulated ET was also used for observed yields. Simu-
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lated yields responded much stronger to simulated ET than observed yields. While yield esti-

mates above ca. 500 mm ET were very similar to observed yields, the model underestimated 

yield increasingly with decreasing ET. 

 

Figure 52 Observed yields (red points) and simulated yields (blue points) versus simulated evapotranspiration of four 

winter wheat cultivars (Arnold, Aurelius, Bernstein, Emilio) at four locations in three seasons. Black lines: water use 

efficiency thresholds (top to bottom: 2, 1.5, 1 g m⁻² mm⁻¹). Coloured lines: linear regression. Shaded areas: standard error 

of the regression.  
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9. Discussion 

The overall objective of this study was the detailed parameterisation and evaluation of the iCrop 

growth model for the simulation of phenology, growth, canopy development, and N uptake of 

winter wheat cultivars grown in a temperate environment (Eastern Austria). 

For the following discussion, I structured the sections in a similar way as the results: It starts 

with a relatively technical discussion of the winter wheat parameterisation field experiments 

(EXP1: 2017/18, EXP2: 2018/19, both at Tulln, Austria) in section 9.1 since they served as an im-

portant basis for most of the work in this study. Thereafter, the key topics of this study follow, 

which are the calculation and estimation of crop model parameters and initials from the param-

eterisation field experiments (9.2), followed by the simulation results of the parameterised crop 

model regarding the parameterisation field experiments (9.3), and the evaluation of the param-

eterised crop model using long-term independent data sets of the same winter wheat cultivars 

as used in the parameterisation field experiments (9.4). While 9.2 (parameter calculation) and 

9.3 (model simulation results) naturally overlap since the simulation results were based on the 

calculated parameters, I still stuck to separating them in different sections to stress their sepa-

ration in the modelling process and to provide a clear structure to the reader. Finally, a brief 

section on the integration of the iCrop model within the scope of the Farm/IT project is pre-

sented (9.5), showing the translation of my findings into application. 

9.1. Field Experiments 

This section focuses on various aspects of the parameterisation field experiments, such as the 

impact of seasonal weather conditions on the winter wheat crop and the influence of different 

locations of the two parameterisation field experiments. Also, seemingly surprising results are 

discussed, e.g. clear differences in days to emergence and tillering between the first (EXP1) and 

the second (EXP2) parameterisation field experiment despite similar weather conditions. Meas-

urement timings and techniques are critically reviewed. Additionally, cultivars are compared 

regarding their performance (e.g. yield) as well as their interaction with nitrogen fertilisation 

treatments. 

9.1.1. Weather 

Growing conditions varied, being advantageous in EXP1 (2017/18) until anthesis but better in 

EXP2 (2018/19) thereafter. While initial soil water content was lower by ca. 200 mm in EXP2, 

the distribution and amount of rainfall during the growing season (Figure 10) was slightly more 

favourable in EXP2, thereby overcompensating the initially lacking water. In EXP1 rainfall was 

low in February and March, and almost zero in April. Contrary, rainfall in EXP2 increased from 
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February (10 mm) until April (50 mm). Also, rainfall in May was higher in EXP2 than in EXP1. 

While precipitation during winter time is mostly stored in the soil and taken up later in the 

season by the crop, it is also prone to evaporation due to lack of a closed canopy cover (plants 

are small, LAI is far below 1). Therefore, precipitation during the highest dry mass production 

phase, starting ca. in April, might be more efficient. Overall, in EXP2 cumulative precipitation 

was ca. 100 mm higher than in EXP1. Although EXP2 still had ca. 100 mm less total input water 

(i.e. precipitation plus initial soil water) than EXP1, the physiologically better distribution of 

water input was apparently superior to the quantitatively lower total input, as shown by higher 

average yield (EXP1: 663, EXP2: 726 g m-2) and dry mass of the high fertilisation treatment N3 

in EXP2 (Figure 14 and Figure 15, resp.). 

9.1.2. Soil Water 

Observations showed differences in the amplitude of volumetric soil water content in deeper 

soil layers (60-120 cm soil depth) between the field experiments (lower in EXP2), while the shal-

lower soil layers (0-60 cm) were similar (Figure 11). Although the experiments were only a few 

hundred meters apart, the soil map eBod (Wandl and Horvath, n.d.) showed different soil types 

(see also 9.2.3 “Soil Parameters”). Also, visual comparison of the extracted augers showed obvi-

ous differences in the depth of increased sand content in soil layers (visible by the contrast be-

tween darker soil and brighter sandy soil) between the experiments (shown for EXP2 in Figure 

30), with EXP2 showing sand in shallower layers (60 cm) than EXP1 (90 cm). Since the water 

storage capacity of sand is lowest among common soil textures (e.g. Rawls et al., 1982), this 

explains lower measured volumetric soil water content in EXP2 well. 

9.1.3. Soil Nitrogen 

Observed initial soil mineral nitrogen (Nmin) was lower in EXP2 than in EXP1 (30 vs. 

62 kg N ha-1) (Table 2). Also, final Nmin was lower in EXP2 than in EXP1 (11-37 in EXP2 vs. 

23-114 kg N ha-1 in EXP1; N0-N3, resp.). Both appeared logical as the previous crop in EXP1 was 

harvested earlier (wheat in July) than in EXP2 (maize in September) and allowed, therefore, 

more N to be mineralised in the soil of EXP1 before sowing of the wheat experiment. The differ-

ences in final Nmin showed the same trend as the initial differences (EXP2 lower than EXP1). In 

addition, around and after anthesis the wheat crop in EXP2 experienced better growing condi-

tions than EXP1 (higher rainfall in May, see 8.1.1 Weather), thereby enabling the crop to take up 

more nitrogen. 

Moitzi et al. (2020) conducted field experiments in Eastern Austria, with one same cultivar out 

of the four wheat cultivars used in my experiments (Bernstein), with zero and 160 kg N ha-1 

fertilisation of different types. When recalculating their numbers using the formula presented 
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here (see equation (5)), their N balances were -30.2 kg N ha-1 without N fertilisation and -2.9 to 

22.3 kg N ha-1 with ammonium nitrate fertilisation. In comparison, Bernstein in my experiments 

with N0 fertilisation balanced to -68.7 and -46.1 kg N ha-1 and N2 (140 kg N ha-1 fertilisation) 

balanced to -83.0 and -43.5 (EXP1 and EXP2, resp.). The main reason for lower N balances in my 

experiments was that Moitzi et al. (2020) found lower crop N uptake for the fertilised treatments 

(average NUP of 163 kg N ha-1 for fertilised treatments) compared to N2 in my experiments (av-

erage Bernstein NUP: 213 kg N ha-1). This difference might be related to the application scheme 

used in their experiments (three splits) compared to my experiments (two splits) and, of course, 

to the different environments (initial soil water content, rainfall, etc.). 

The fact that the N balances were exclusively negative (-126.5 to -10.0 kg N ha-1, Table 2) was not 

surprising since net soil N mineralisation was not accounted for in the calculation. Geisseler et 

al. (2019) found an average annual net soil N mineralisation in the top 30 cm of Californian (US) 

fields ranging from 76 to 123 kg N ha-1. Risch et al. (2019) investigated 30 grasslands worldwide 

and found realised net N mineralisation rates during peak plant biomass production of roughly 

0.1 to 0.4 (maximum: 1.4 mg N kg-1 soil day-1), which translates to 11.7 to 46.8 (maximum: 

163.8 kg N ha-1 per month) for the top 30 cm of the soil, assuming a soil bulk density of 1.3 g cm-3. 

Given these ranges, the assumption that the observed negative N balance of up to 126.5 kg N ha-1 

was caused by the soil’s net N mineralisation appears logical and realistic. 

The effect of varying N fertilisation levels on the N balance (Table 2) was, however, unclear. 

Higher (i.e. closer to zero) values for the N balance, indicating higher soil-N input/output ratio, 

were similarly often found in both N3 and N0 treatments. While this seems paradox, both can 

be argued. For N3, a high N balance makes sense since the N uptake efficiency (ratio of crop 

NUP to N supply) decreases with increasing N supply. Also, a relatively high N balance for N0 

can be argued, since N0 crops likely grow poorly due to N stress due to their complete depend-

ence on soil Nmin resources. However, Soltani and Sinclair (2012) incorporated an inhibition 

effect of present soil Nmin on the mineralisation rate in iCrop based on previous findings show-

ing reduced N mineralisation with higher soil Nmin contents (Hadas et al., 1986; Sinclair and 

Amir, 1992). With this assumption, a closer to zero N balance makes more sense for N3 than for 

N0, since the effect of the (in the N balance calculation) unaccounted N mineralisation is re-

duced in N3. Furthermore, the measurement technique of Nmin was prone to variation and 

errors since the intense effort to collect samples resulted in a relatively low sample number 

(three per plot) and Nmin content is known to possibly vary considerably within close proximi-

ties. Overall, the effect of N fertilisation on N balance remained ambiguous. 
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9.1.4. Phenology 

Phenological observations of EXP1 and EXP2 showed fastest development of winter wheat culti-

var Arnold, intermediate developments of Aurelius and Emilio, and slowest development of 

Bernstein (Figure 12). This matched long term observations of AGES (Austrian Federal Agency 

for Health and Food Safety) that are based on different environments (AGES, 2020) (Table 10).  

Observations showed by tendency a slight accelerating effect of the unfertilised treatment (N0) 

on development. Other studies found no effects of N fertilisation rate on wheat phenology under 

field conditions (e.g. Basso et al., 2010; Davidson and Campbell, 1983; Salvagiotti and Miralles, 

2007). 

Table 10 Rankings of phenological stages (booting; BBCH 41-49, ripening; BBCH 83-89) and yield (dry, wet areas) for 

the cultivars Arnold, Aurelius, Bernstein, and Emilio. 1: very early/low, 9 very late/high (AGES, 2020). 

 Booting Ripening Yield (dry area) Yield (wet area) 

Arnold 2 2 3 3 

Aurelius 3 4 7 6 

Bernstein 6 7 7 6 

Emilio 4 3 7 6 

The influence of photoperiod (day length) and vernalisation (requirement of a cold period) can 

affect phenology and especially cumulative temperature sums to reach a specific stage (e.g. tem-

perature sum from sowing until anthesis). Photoperiod did not influence the two experiments 

differently since planting date was almost identical (mid-October). Also, the vernalisation de-

mand was satisfied in both years. For instance, based on observations, the APSIM model (Keat-

ing et al., 2003) defines 50 days at optimum vernalisation temperature of 2 °C for winter wheat 

vernalisation, while temperatures between 0 and 15 °C are also effective but prolong the required 

period. Compared to the observed mean monthly temperatures in EXP1 and EXP2 (Figure 10) it 

can be assumed that vernalisation was easily met during winter time in both experiments. There-

fore, cultivar-specific temperature sums were expected to be equal in both experiments (assum-

ing no influence from drought and N stress). 

The delayed observed emergence in EXP2 (24 days after sowing, DAS; 250 °Cd) compared to 

EXP1 (15 DAS, 123 °Cd) may have been caused by differences in observed initial topsoil water 

content. The 0-10 cm soil layer contained 0.41 cm3 cm-3 volumetric soil water in EXP1 and only 

0.31 cm3 cm-3 in EXP2. In both experiments, the lowest measured values (i.e. estimate for wilting 

point) were similar (also the corresponding model parameter lower limit was set identical to 

0.15 in both experiments). Due to the higher water content in EXP1 seeds had probably enough 

available soil water for water absorption and germination. However, in EXP2 initial soil water 
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was probably too low for germination, but a rainfall event 9 days after sowing (amount: 9 mm) 

appears to have initiated seed water absorption and the germination process. Calculated from 

that rainfall event onwards, emergence took 15 days (identical to in EXP1).  

Earlier initiation of tillering in EXP1 (87 DAS) compared to EXP2 (127 DAS) was possibly partly 

caused by slightly differing scoring methods due to changing personnel, error resulting from 

interpolation of the relatively long measurement intervals in EXP1 (up to two months in winter), 

and, as mentioned above, delayed emergence in EXP2. Measures were taken to minimise the 

errors from different scoring-personnel by doing measurements together several times and com-

paring and adjusting the recorded values. However, the largest error contributor were likely the 

long measurement intervals in EXP1 which made it impossible to estimate the true beginning of 

tillering. The estimated date using interpolation very likely included a large error, possibly sev-

eral weeks. 

While, in terms of days after sowing, anthesis occurred 12 days earlier in EXP1 than in EXP2, the 

relation was the other way around when comparing cumulative temperature sums from sowing 

(EXP2 56 °Cd earlier than EXP1) or emergence (79 °Cd). However, this difference constituted 

only two to three biological days (one biological day being a day with 27.5 °C average tempera-

ture). This relatively small difference may easily be explained by default experimental and cal-

culation errors (e.g. due to interpolation between measurements). Therefore, in terms of tem-

perature sums, beginning of anthesis can be assumed equal in the two experiments. 

The phenological differences between the cultivars were largest around anthesis but these dif-

ferences mainly disappeared after ca. BBCH 70 (beginning of fruit development) (Figure 13). 

This was possibly caused by difficult scoring of the phenological stages from that stage onwards 

(grains must be inspected). Continuing the seasonal trends, EXP1 reached physiological maturity 

(BBCH 87) 6 days earlier than EXP2. In terms of temperature sums since emergence, EXP1 

reached physiological maturity 145 °Cd later than EXP2. Compared to anthesis, the difference 

between the experiments had grown. A likely explanation for this is terminal drought stress 

which possibly accelerated phenology in the last days/weeks of EXP1 caused by lower rainfall 

amounts in April and May in EXP1.  

9.1.5. Leaf Development 

Among the cultivars, Bernstein showed the highest LAI at anthesis, Arnold the lowest. However, 

Bernstein and Arnold had the exact same average leaf number on the main stem (MSNN) at 

anthesis (10.7), while the other cultivars Emilio (11.2) and Aurelius (11.4) had significantly higher 

MSNN. Tiller number can affect LAI but was not measured at anthesis. While the number of 

green leaves (only measured in EXP2) did not differ significantly between the cultivars, there 
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was a trend showing a much higher leaf number for Bernstein (2070 leaves per m²) than for 

Arnold (1695) which could explain the difference in LAI. The possibility of different stay-green 

behaviours is discussed later (9.3.3). 

9.1.6. Dry mass 

Total above-ground dry mass (TDM) at harvest for cultivar Bernstein was 729-1636 g m-2. This 

compared well to a study by Moitzi et al. (2020) who conducted field experiments with Bern-

stein in Eastern Austria (seasons 2016/17 and 2017/18) and found 1023 g m-2 (no N fertilisation) 

and 1227-1376 (with 160 kg N ha-1) TDM at harvest. 

At harvest, the influence of N-treatment on crop dry mass was mostly stronger in EXP2 than in 

EXP1 (Table 4, Figure 15). This was expected, as the previous unfertilised maize crop was har-

vested only a few weeks before winter wheat sowing in EXP2, thereby extracting much of the 

soil Nmin and allowing little time for N mineralisation. Contrary in EXP1, the previous unferti-

lised crop was wheat which was harvested in July, giving soil N mineralisation ca. three months 

to accumulate (see above 9.1.3 Soil Nitrogen). As a result, plants in the N0 treatment of EXP2 

had less N available than in EXP1. Of course, the same is true for N3, but it is a well-known fact 

that yield and total dry mass respond less with increasing N-fertilisation, up to a point where 

the response turns negative. This was described early by Mitscherlich and Boguslawski, named 

the “law of diminishing yield increment” (Boguslawski, 1958; Mitscherlich, 1954 cited in 

Marschner, 2012). 

9.1.7. Crop Nitrogen 

Grain nitrogen concentration (%GN, Table 4) ranged from 1.6 to 3.0% and was similar to reports 

from other studies in Eastern Austria. Neugschwandtner et al. (2015) measured 2.07% for a rel-

atively old cultivar (Xenos) grown in 2011/12 at Raasdorf (east of Vienna). At the same location 

using the cultivar Bernstein, Moitzi et al. (2020) found 1.37% (no N fertilisation) and 2.44-3.03% 

(160 kg N ha-1) in the seasons 2016/17 and 2017/18. 

Among cultivars, the average %GN was highest for Arnold (2.5%), the other three cultivars were 

almost identical (2.2%). This appeared to be easily explained by the well-known nitrogen dilu-

tion effect (e.g. Justes et al., 1994) since Arnold showed lowest grain yield and lowest total dry 

mass of all cultivars. However, Arnold might have had a genetic advantage over Bernstein. Re-

sults from EXP2 point at this, where the N3 treatments of Arnold and Bernstein showed similar 

final dry mass and yield, but Arnold had 2.8 %GN while Bernstein had only 2.5. Contrary, in 

EXP1, Bernstein’s yield and dry mass was clearly higher than Arnold’s, and the difference in %GN 



 

100 

was still 0.3% (Arnold: 3.0, Bernstein: 2.7). Data from the two field experiments was not suffi-

cient to draw a conclusion regarding any genetic %GN advantages, but further investigation 

would be interesting. 

9.1.8. Yield 

Observed yields of Bernstein ranged from 303-717 g m-2 (Table 4). In a comparable study in 

Eastern Austria (Raasdorf, east of Vienna), Moitzi et al. (2020) found similar Bernstein yields, 

ranging from 460 g m-2 (no N fertilisation) to 535-624 (160 kg N ha-1). In a long-term winter 

wheat experiment at the same location, Neugschwandtner et al. (2015) found yields of different 

cultivars ranging from 130 to 623 g m-2 for different pre-crops and tillage systems. The extremely 

low yield (130 g m-2) occurred in 2012 where severe droughts affected the crops (seasonal rainfall 

2012: 221 mm; long-term average: 362 mm). Ignoring that year, minimum yield found by Neug-

schwandtner et al. was 314 g m-2 which compared well to my experiments (minimum: 268). 

Similar to dry mass, yield (Figure 14) showed a stronger response to the N treatment in EXP2 

than in EXP1 due to lower initial soil Nmin as well as due to the better growing conditions during 

anthesis and grain filling phase (discussed previously). Therefore, the yield-range in EXP2 was 

larger (268 - 788 g m-2) than in EXP1 (424 - 719). Also, the stronger yield response to N fertilisa-

tion at higher fertilisation levels (N2, N3) in EXP2 compared to EXP1 was affected by the differ-

ent initial soil Nmin contents in the experiments. 

The average yields of the cultivars (Aurelius 631 > Bernstein 611 > Emilio 577 > Arnold 515 g m-2) 

were partly in agreement with publicly available long-term yield-scores (Table 10), where Aure-

lius, Bernstein, and Emilio were rated equal (score: 7/10) and Arnold (3/10) clearly lower. 

9.2. Calculation of Model Parameters and Initials 

In the following section, different aspects of the calculation and calibration of the iCrop model 

parameters are discussed. I explain why I chose which method for acquiring a parameter value 

(e.g. calculation or calibration, using which subset of observation data, pooling cultivars or 

grouping data by cultivar, etc.). Also, possible error sources and alternative approaches are eval-

uated. While some effects of the parameter choice on model simulation results are mentioned, 

the main discussion of crop model simulation results is provided in the subsequent sections (9.3 

Crop Model Simulations of the Field Experiments and 9.4 Crop Model Evaluation). 

9.2.1. Simulation Initialisation 

Simulations were initialised (i.e. the simulation start date was set) on 13.9.2017 (33 days before 

sowing) in EXP1 and on 1.10.2018 (14 days before sowing) in EXP2. These dates were picked to 
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match the dates of the first soil water measurements in each season. Although soil water meas-

urements were also available for the date of sowing in both experiments, I used the earlier dates 

for initiation of the simulation. This ensured “smoothing” of some modelled processes that re-

quire a few days after simulation start to achieve a more stable state. Such a process is vertical 

soil water distribution which shows relatively high water fluxes between neighbouring soil layers 

for a few days after simulation start due to strong gradients. These gradients are caused by the 

set of initial soil water values which were measured. Since the model is a simplified representa-

tion of reality, observed soil water gradients deviate from simulated gradients which results in 

the simulated high water fluxes for a few days after initiation. Therefore, starting the simulations 

very close to sowing date may lead to significant influences on e.g. emergence due to increased 

or decreased soil water availability during the described water fluxes between soil layers. To 

avoid such effects, I chose the earlier model initiation dates. 

9.2.2. Climate Parameter: CO2 

White et al. (2011) found that in many climate change impact simulation studies researchers 

used outdated atmospheric CO2 levels as baseline. They suggested using climate data close to 

the date of publication. Translated to the objective of this study, using CO2 levels corresponding 

to the seasons when the field experiments were carried out appeared sensible. Therefore, for 

EXP1 (season 2017/18) and EXP2 (2018/19) I set the model’s CO2 parameter to 400 ppm as this 

value corresponds closely to 2016’s average global atmospheric CO2 levels (Butler and Montzka, 

2020). iCrop’s previous default value (350 ppm, ca. corresponding to 1988’s global average) was 

clearly outdated. 

9.2.3. Soil Parameters 

Initial soil water contents of the soil layers in EXP1 was set to the average per layer of all obser-

vations (excluding the sampling point closest to the wind break). For EXP2, initial soil water was 

based on the observations and then calibrated to better fit in-season measurements (Figure 46) 

as well as to avoid simulated growth stress through excess soil water (oversaturation) during 

winter time. This occurred when using the exact observed initial values (data not shown). While 

stress through oversaturation was avoided in this way, in-season observations were still overes-

timated. This is further discussed in 9.3.1 Soil Water. 

The choice of soil water parameters (Figure 31) resulted in a total plant-extractable soil water 

content (EXTR) for the whole profile of 321 mm in EXP1 and 281 mm in EXP2 (1200 mm soil 

depth). Manschadi et al. (2020a) used iCrop soil parameters resulting in a similar EXTR value 

(251 mm) as in EXP2 based on a nearby experiment with maize. The eBod soil map (Wandl and 

Horvath, n.d.) classified EXTR for the locations of both EXP1 and EXP2 as “intermediate” (140 
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to 220 mm), while only EXP2 was directly adjacent to an area classified as “high” (220 to 

300 mm). The range of “intermediate” is considerably lower than the EXTR used for EXP1, and 

still lower compared to EXTR of EXP2. However, from the documentation of eBod it is not clear 

which soil depth is used for calculating EXTR. The eBod map is scaled rather coarse into “shal-

low” (<30 cm), “intermediate” (30-70 cm), and “deep” (>70 cm) soils, with both EXP1 and EXP2 

being classified as “deep”. It appears possible that eBod does not account for soil water from 

layers deeper than commonly used soil depths for sampling (often 90 or 100 cm) for calculating 

EXTR. When considering only 90 cm of the parameterised soil, EXTR of EXP1 amounts to 

245 mm and EXP2 to 233 mm. These reduced values are only slightly higher than eBod’s range 

for “intermediate” EXTR (140-220 mm). Nevertheless, eBod classified the experiments’ locations 

differently for the indicator “water supply” (“Wasserverhältnisse”) which describes the “average 

soil water available to plants”. On a six-parted scale (wet, rather wet, optimal, rather dry, dry, 

very dry) EXP1 was classified “rather wet” while EXP2 indicated “rather dry”. This fits the relative 

differences used for the soil parameters and EXTR (EXP1 higher than EXP2). Also, in the com-

ments, eBod noted for the location of EXP1 “very high water storage capability” and for EXP2 

“high water storage capability” which also agrees with the chosen parameters. 

The use of different soil parameters for EXP1 and EXP2 (Table 7: soil organic N, Figure 31: soil 

water) might be questioned due to their proximity. However, as mentioned above and in the 

“Materials and Methods” chapter, the soil map eBod indicated different soil types for the two 

experiments. In addition, measurements of TOC (soil total organic carbon content) showed clear 

differences between deeper soil layers of EXP1 and EXP2 (Table 7). Lower TOC of deep layers in 

EXP2 supported the theory of more sand and lower soil water storage capacity. 

9.2.4. Effect of Rooting Parameters on Yield 

While GRTDP (root depth growth) was an available parameter in iCrop, there was no root ex-

ploration factor parameter that defined soil water extraction rate. Other models such as APSIM 

(Holzworth et al., 2014) use a parameter (KL) to define the fraction to which each soil layer is 

explored by the roots, limiting daily maximum soil water and N uptake. In a previous study, 

Manschadi et al. (2006) have shown that different wheat genotypes may express very different 

root architectures which are closely related to drought tolerance. While they found clear differ-

ences between the root architectures and water uptake of a drought-tolerant wheat variety 

(SeriM82) compared to a standard variety (Hartog) in a sophisticated experimental setup using 

large rooting boxes, they could not measure these differences in water uptake under field con-

ditions. Therefore, there may have been (unidentified) significant differences in the root archi-

tectural systems of the cultivars in my experiments, which could explain their differences in yield 
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and other traits. As an example, by simply decreasing GRTDP for Arnold to 20 mm bd-1 (default: 

30), several simulation outputs, including yield, improved substantially (data not shown). How-

ever, to justify such parameter modifications, more detailed observed soil data showing clear 

differences in root architecture would be required. Future experiments could, for instance, in-

vestigate root architectural traits of different cultivars using established methods such as in-

vitro rooting experiments for root scanning and analysis. Also, innovative techniques to create 

field-like environments under controlled conditions such as spectral imaging of rhizoboxes 

(Bodner et al., 2021, 2018) appear promising to gain additional information on cultivar-specific 

root growth. While such experiments are known to not necessarily translate well into field con-

ditions, they still provide an indication which can serve to better parameterise crop models. 

In a study by Christopher et al. (2008) the same wheat cultivars as described above (SeriM82, 

Hartog) were tested. They found that the drought-tolerant wheat cultivar SeriM82 also exhib-

ited a stay-green phenology, maintaining green leaf area longer into the grain filling period than 

Hartog. They pointed out that yield advantage of SeriM82 was closely related to the stay-green 

trait, and also that stay-green was lost when deep soil water was depleted. This indicated that 

both deep soil water availability and the crop’s ability to extract it may be of great importance 

in dry seasons. However, the cultivars in my study were parameterised with identical GRTDP 

and could, therefore, not reproduce any possible differences in rooting behaviour. Also, iCrop’s 

lack of a root exploration factor such as KL in APSIM contributed to this problem. In conclusion, 

iCrop’s inability to capture the clear observed yield differences between Arnold and the other 

wheat cultivars may be solved by introducing a root exploration parameter (similar to KL) and/or 

conducting experiments to generate high-quality soil data sets as described above to support 

parameterisation of cultivar-specific rooting differences.  

9.2.5. Effect of Soil Runoff on Crop Dry Mass 

iCrop assumed runoff by default for rain-fed situations as in the parameterisation field experi-

ments presented in this study (simulated runoff: 44-51 mm in EXP1, 42 mm in EXP2). Simulation 

of runoff lowered plant available soil water content critically in EXP1. In test-simulations, simply 

deactivating runoff led to improvement of dry mass and yield simulations in EXP1 (data not 

shown). However, deactivating runoff had an adverse effect on simulations of EXP2 where an 

intense rainfall period between 208 and 219 days after sowing led to soil water oversaturation 

which in turn decreased dry mass and yield production substantially through excess soil water 

stress (data not shown). While deactivation of runoff for a seemingly flat field seems reasonable, 

several studies (e.g. Chaplot and Bissonnais, 2003; Fox et al., 1997) have shown that runoff can 

occur on fields at very small slopes (1.5 ° to 2.3 °). For EXP1 and EXP2 slopes were not measured 
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while they appeared flat to the “naked eye”. However, considering that runoff is generally possi-

ble with even slight slopes which may not be visible to the human eye without measurement, 

and also the fact that simulations overall worsened without runoff, I decided to stick to the de-

fault (i.e. runoff activated). 

9.2.6. Phenology Parameters 

With the default critical fraction of transpirable soil water threshold for germination 

(FTSW = 0), the date of emergence in EXP2 was simulated too early (data not shown). I cali-

brated the critical FTSW threshold for germination in EXP2 manually (FTSW = 0.3) for better 

simulation of the emergence date. While this calibration might be viewed as over-parameterisa-

tion, I argue that it was necessary in the scope of this study. The aim here was to parameterise 

the whole iCrop model and investigate model performance with focus on cultivar differences 

and N parameters. To be able to parameterise the model with data from the two experiments, 

good emergence simulation was required. Since all conservative approaches (e.g. calibration of 

initial soil water content) to simulate emergence correctly in EXP2 failed, I chose to calibrate 

FTSW for achieving this.  

Another option to calibrate emergence simulation is changing the parameter for sowing depth, 

which is not available in iCrop but in other models such as APSIM (Keating et al., 2003). While 

sowing depth on the field was, in theory, identical in both seasons, it is possible that differences 

in field preparation affected sowing depth and, thereby, emergence date.  

The above described results from the simulation of the parameterisation field experiments indi-

cated that iCrop had problems simulating emergence. However, to test the model’s performance 

in simulating emergence date and the influence of FTSW, the underlying data set would need to 

be more comprehensive, covering at least several seasons, locations, and sowing dates. Unfortu-

nately, information on emergence date was not available in the evaluation data set used in this 

study (see 9.4). Future work should address the question of iCrop’s performance in emergence 

prediction. 

Biological day phase parameters (bd<phase_acronym>) were calibrated based on observed de-

velopment differences between the cultivars (Table 5). Figure 17 shows the bd-difference of each 

cultivar compared to the mean across all cultivars, grouped into three important phenological 

phases. While the duration of each bd-phase parameter (e.g. the parameter bdSOWEMR for the 

duration from sowing to emergence) can be calculated from observed data, it would not be cor-

rect to use this value directly. The reason for this is that environmental factors such as vernali-

sation, photoperiod, and stresses reduce (sometimes enhance) the effect of the experienced bi-

ological day by the crop. Calibrating the bd-phase parameters was, therefore, challenging as the 



 

105 

observed bd-phase values can hardly be separated from the environmental factors mathemati-

cally.  

In addition, the observed bd-phase durations had to be calculated using linear interpolation of 

observed phenological stages to estimate their starting and end points (e.g. BBCH 21, 31, 41 and 

so on). While this was done based on temperature sums (instead of calendar date) to reflect the 

strong correlation between phenology and temperature (e.g. Wang and Engel, 1998), phenology 

expressed in the BBCH scale depending on temperature sums lacks the mathematical properties 

of continuity and linearity. The BBCH scale is an ordinal scale, meaning that ranking is possible, 

but not all mathematical operations. While the BBCH scale might be regarded a ratio scale 

within certain main stages (e.g. BBCH 10-19 where leaves are counted) the numerical difference 

between two values across the whole scale (BBCH 00-99) is certainly not always representing 

the same “amount” of phenological progress (e.g. BBCH 25 to 35 vs. BBCH 65 to 75). Therefore, 

a linear approximation between BBCH values is an option to estimate specific BBCH-stages but 

also introduces errors which need to be kept in mind when working with such results. 

9.2.7. Leaf Development: Phyllochron, LAI 

For the simulation of leaf number on the main stem (MSNN) in iCrop, I implemented new model 

source code for adding the functionality to simulate two phases of phyllochron (phyl1, phyl2; 

Figure 18 and Table 6) instead of only one (default). With only one phyllochron parameter for 

the whole life cycle of the crop, the model underestimated the in-season course of MSNN and 

reached the observed values only shortly before MSNN growth ceased (data not shown). With 

the implementation of two parameters for phyllochron, both parameterised based on observa-

tions, the development of MSNN was simulated close to the observations (Figure 33).  

While it is largely agreed that phyllochron varies with species and cultivar (e.g. Birch et al., 2003; 

Cao and Moss, 1989; Frank and Bauer, 1995), the question whether or not phyllochron is gener-

ally constant along the whole development of one genotype has been answered differently. 

While some studies found a rather constant phyllochron across the leaf appearance phase (e.g. 

Kirby and Perry, 1987), others found that phyllochron was dependent on the phenological stage 

(e.g. Jamieson et al., 1995; Salvagiotti and Miralles, 2007). Also, the authors of the iCrop model 

suggested the use of a 2-stage phenology-dependent phyllochron when data supports this 

(Soltani and Sinclair, 2012). Furthermore, Xue et al. (2004) argued that the phyllochron ap-

proach does not at all represent leaf development adequately, and they proposed using non-

linear methods instead which they found to give better results. However, using non-linear meth-

ods was not considered in my study since the iCrop model should be kept as simple as possible, 

and using these methods would include complex formulas requiring additional parameters. Xue 
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et al. (2004) also compared constant phyllochron and a three-phase phyllochron in a two year 

experiment and found both approaches in different years advantageous above the other. How-

ever, in my experiments, while using a two-phase phyllochron did not lead to perfect represen-

tation in both years (EXP1 was simulated better than EXP2, Figure 33), in-season predictions of 

MSNN improved compared to the default constant phyllochron. This was the aim, since MSNN 

directly affects LAI simulations in iCrop, and LAI has several successive effects (e.g. dry matter 

production, transpiration). 

LAI growth in iCrop is based on the following equation (see equation (13)): 

𝑃𝐿𝐴𝐼 = 𝑃𝐿𝐴𝐶𝑂𝑁 ⋅ 𝑀𝑆𝑁𝑁𝑃𝐿𝐴𝑃𝑂𝑊 

The parameter PLAPOW has, obviously, a significant impact on leaf area simulations, especially 

at higher MSNN. The calculation of parameters based on the field experiments resulted in higher 

PLAPOW for Bernstein (2.0) than the other cultivars (all 1.9) (Table 5). Similarly, observed LAI 

was highest for Bernstein, while MSNN was highest for Aurelius and Emilio (Table 3). Using the 

formula above for calculating the correlation (Figure 19), the effect of leaf area (PLAI) was obvi-

ously stronger than that of MSNN, resulting in higher PLAPOW for Bernstein. A higher 

PLAPOW also leads to increased sensitivity of simulated LAI at higher MSNN. However, simu-

lations showed good estimates of Bernstein’s maximum LAI for N3 in both parameterisation 

experiments (Figure 34), indicating no error from increased sensitivity. 

The parameter PLACON was assumed 1 as suggested by Soltani and Sinclair (2012). However, 

the correlation using equation (13) suggested using a lower PLACON since leaf areas (LA) for 

MSNN between 3 and 6 were overestimated (Figure 19). On the other hand, decreasing PLACON 

to improve the fit of the curve for low MSNN and LA would result in a steeper incline for higher 

MSNN and LA. This would drastically increase the risk of LAI overestimation for higher LA 

(around anthesis) due to high sensitivity to MSNN. Therefore, I decided to keep the default 

value. 

9.2.8. Dry Mass: Radiation Use Efficiency 

iCrop’s RUE parameter was changed to adapt the value from APSIM (2.58 g MJ-1, iCrop default 

2.2 g MJ-1). With the default value, iCrop underestimated total dry mass (data not shown). Other 

studies have found RUE for wheat of up to 2.47 (Shearman et al., 2005), 2.57 (Rose et al., 2017), 

or 2.8 g MJ-1 (Kiniry et al., 1989) which agreed well to APSIM’s and iCrop’s updated RUE.  

9.2.9. Crop Nitrogen Parameters 

The iCrop model code was updated to support the simulation of stem N content using senesced 

(minimum) stem N concentration parameters (SNCS) depending on crop development stage: 
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SNCS1 before BSG (beginning of seed growth, BBCH 71) and SNCS2 thereafter. This improved 

simulations of the N partitioning between leaves and stems and, thus, leaf area index, as ex-

plained in sub-section 9.3.5 “Effect of Development-dependent SNCS”. While the default version 

of iCrop supported only one SNCS parameter for the whole crop growing season, it has been 

found for wheat that stem minimum nitrogen concentration changes with development stage 

(e.g. Singh and Porter, 2020; Zhao et al., 2014). Also, other crop models such as APSIM 

(Holzworth et al., 2014) and AFRCWHEAT2 (Porter, 1993) use crop nitrogen parameters de-

pending on development stage. Manschadi et al. (2020a) also found a development-dependent 

two-phase SNCS necessary to simulate LAI of maize correctly with iCrop. 

Grain nitrogen concentration parameters (%GNmin, %GNmax) were calculated from pooled 

data although statistics found significant effects of the cultivars (Table 4). Therefore, one could 

argue that these parameters should be calculated per cultivar. However, observed values did 

clearly not cover the true minimum and maximum values of %GN since the experiment was not 

specifically designed to reach these extremes. While the experimental design offered a large var-

iation in N supply to the crop, various factors diminished the effects of the highest (N3) and 

lowest (N0) N-treatment to reach maximum and minimum %GN, respectively. While the N0 

treatment did not receive any mineral N fertiliser (and also the previous crop was not fertilised), 

a considerable amount of mineral nitrogen was measured in the soil before sowing (63 kg N ha-1 

in EXP1, 30 in EXP2). Also, microbial N release from soil organic N (N mineralisation) added to 

the N pool of all treatments, leading to increased N-uptake in N0 treatments. Furthermore, 

stresses such as terminal drought stress and the depletion of soil N towards the end of the season 

have limited N-uptake also in the high N-treatments. To reach high %GN it might be necessary 

to add an extra N fertilisation around anthesis to boost grain N uptake during grain filling. Over-

all, it seemed more likely to receive adequate estimates for the %GN parameters by pooling the 

data, generating a larger basis for the calculation. 

iCrop limits maximum daily N uptake from the soil (parameter MXNUP). The maximum ob-

served values over periods of two (EXP2) to four (EXP1) weeks were similar across the four wheat 

cultivars (ca. 0.5 g m-2 d-1; Figure 28 and Figure 29). The finally used MXNUP parameter value 

of 0.6 g m-2 d-1 (iCrop default: 0.25) was justified by (i) the use of the same value in the APSIM 

model (Holzworth et al., 2014) and (ii) the fact that the observations were averages over rather 

long periods (two to four weeks) which likely masked the true daily maximum N uptake capacity 

of the crop. 
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9.2.10. Yield Parameters 

Bernstein showed the overall lowest observed DHI (daily harvest index increase) in EXP1 (Figure 

23) due to the longest seed growth period of all cultivars (Figure 12). However, the PDHI (po-

tential DHI) parameter was calibrated equal for all cultivars (0.017) since the measured cultivar 

differences (particularly for Bernstein) appeared to have arisen mainly from measurement and 

interpolation errors. As mentioned earlier, scoring the wheat phenological stages beyond BBCH 

71 (beginning of seed growth) is generally challenging. In addition, the linear interpolation of 

BBCH growth stages to estimate the occurrence of specific BBCH stages was the best option but 

also introduced errors (as discussed in 9.2.6 Phenology Parameters). Both these sources of error 

probably resulted in lower calculated DHI values for Bernstein in EXP1. To achieve more reliable 

DHI estimates, phenological on-field measurements on a daily basis would be required around 

BSG (BBCH 71) and TSG (BBCH 87) to be able to exactly determine seed growth duration. 

9.2.11. Effect of Sampling Date on Parameter Calculation 

Each of the measurements of biomass on the field was done within a single day. The aim was to 

get crop measurements at specific phenological target-stages, e.g. at sowing, anthesis (BBCH 

65), or end of seed growth (BBCH 87). However, due to their genotypic differences the cultivars 

developed in different speeds. Therefore, they were not exactly in the target-stage when the 

measurements were done but scattered around the target-stage. For instance, in EXP1 most cul-

tivars had already reached or passed the beginning of seed growth (BSG, BBCH 71) for the an-

thesis target-stage measurement, while in EXP2 observations scattered from BBCH 62 to 69. 

Some critical iCrop parameters actually require to be calculated based on field observations at 

BSG. These parameters are two (out of three) of the stem N concentrations (SNCS1 and SNCG), 

the specific leaf N for green leaves (SLNG), and the fraction of translocatable dry mass (FRTRL). 

Since measured data targeted the anthesis stage (instead of BSG), error was automatically intro-

duced in the parameters. Indeed, for more precise parameter calculations, separate measure-

ments at anthesis and BSG would be desirable. However, since anthesis and BSG occur on the 

field within a few days, only a low impact on parameter estimates was expected. 

The theoretical effect of using measured data from other than the exact optimum phenological 

stage differs between the parameters. For the stem N concentration parameters SNCS1 and 

SNCG, the observed SNC (stem N concentration) at BSG was required. Parameters calculated 

from plant measurements pre-BSG were probably overestimated for SNC and those post-BSG 

underestimated since the N concentration in stems follows a declining dilution curve. As a re-

sult, both SNCG and SNCS1 may be over- or underestimated. Similarly, SLNG would be either 

overestimated (pre-BSG measurements) or underestimated (post-BSG). For FRTRL, the error 
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would be underestimation for pre-BSG, and overestimation for post-BSG, due to the higher in-

fluence of TDMBSG in the denominator of equation (54). Since in most cases biomass samples 

were rather taken pre-BSG, especially for the slower developing cultivar Bernstein and generally 

in EXP2, the parameters SNCG, SNCS1, and SLNG may be biased towards overestimation, and 

FRTRL towards underestimation. While keeping the potential biases in mind, the calculated pa-

rameters were used in iCrop without calibration or modification. While for FRTRL the default 

model value was used anyway, simulations of stem N (Figure 45) and leaf N content (Figure 44) 

did not indicate a systematic bias (discussed in more detail for SNC in 9.3.6). Therefore, the 

sampling time can be regarded adequate for the purpose of this study. 

9.2.12. Overall Cultivar Differences 

Based on observations in the parameterisation field experiments (EXP1, EXP2), the four winter 

wheat cultivars Arnold, Aurelius, Bernstein, and Emilio were parameterised (overview of the 

most important parameters in Table 5). The final parameterisation showed no difference be-

tween the cultivars for the following parameters (data not shown for some of them): specific leaf 

area (SLA), leaf extinction coefficient (KPAR), leaf fraction after flag leaf emergence (FLF2), frac-

tion of translocatable dry mass (FRTRL), potential daily harvest index increase (PDHI), root 

depth growth (GRTDP), minimum stem N concentrations (SNCS1 and SNCS2), specific leaf N 

concentrations (SLNG and SLNS), maximum stem N concentration (SNCG), grain N concentra-

tions (%GNmin and %GNmax), maximum N uptake rate (MXNUP), vernalisation (vsen), critical 

photoperiod (cpp), and photoperiod sensitivity (ppsen). Significant differences were observed 

for other traits, which were reflected in cultivar-specific parameters for leaf area growth 

(PLAPOW), leaf fraction until flag leaf emergence (FLF1A and FLF1B, WTOPL), phyllochron 

(PHYL1, PHYL2, LNP), and several phenological phase durations (bdTILSEL, bdSELBOT, bdBO-

TEAR, bdEARANT, bdANTPM).  

Simulated differences between the cultivars could only originate from parameters which were 

different between the cultivars. Those were parameters which directly affected traits related to 

(i) phenology, (ii) LAI, and (iii) dry mass partitioned to leaves. Any simulated cultivar differences 

found (see 9.3 and 9.4) can be traced back to these three traits. 

9.3. Crop Model Simulations of the Field Experiments 

While the previous section discussed the determination of the crop model parameters, the focus 

of the following section lies upon simulation results. iCrop’s strengths are pointed out and rea-

sons for poor estimates are discussed where appropriate, giving suggestions to improve the pa-

rameterisation for future studies. 
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9.3.1. Soil Water 

Total soil water content in EXP1 was clearly overestimated over the whole season for Arnold, 

while Bernstein was simulated well (Figure 46). Arnold overestimation was likely a result of 

suboptimal selection of sampling plots in EXP1. As mentioned previously, EXP1 was located rel-

atively close to a wind-break hedge. Soil water samples of Arnold were taken from the replication 

closest to the wind break, while Emilio and Bernstein samples were taken from replications fur-

ther away. Therefore, the influence of horizontally spreading roots of the wind-break as well as 

wind effects have probably caused lower soil water for Arnold. However, the overestimation of 

Arnold was constant throughout the season and the simulated pattern matched observations. 

Overall, total soil water content in EXP1 was simulated well by iCrop. 

The overestimation of in-season total soil water content in EXP2 remained unclear with several 

possible explanations. Errors in the soil water measurements seemed unlikely, since all early 

measurements (before and at sowing) as well as the later measurements (ca. between 140 DAS 

and harvest) were consistent. The error might have developed during winter time, where unfor-

tunately no measurements were made. As possible error sources remain that either (i) observed 

weather data was faulty (e.g. too low rain), or that the model overestimated soil water content 

by poor representation of at least one soil process or parameter. This could be (ii) underestima-

tion of soil water evaporation, (iii) underestimation of drainage, or (iv) overestimation of soil 

water storage capacity (i.e. the difference between drained upper limit, DUL, and lower limit, 

LL). Regarding weather data, there is no indication that rainfall data was erroneous (i). Simula-

tion of soil evaporation (ii) and drainage (iii) was good in EXP1 and the same parameters were 

used in EXP2. Also, the modification of the WETWAT parameter (rainfall threshold to return to 

stage I evaporation; see 8.3.16 Soil Water) already increased evaporation compared to the default 

WETWAT, but soil water of EXP2 was still overestimated. Further data would be required to 

assess whether iCrop’s evaporation estimation is generally inappropriate for the environment of 

Eastern Austria. Regarding drainage (iii), the soil water storage capacity (iv) of the deeper soil 

layers in EXP2 was reduced (compared to EXP1) based on observations (see Figure 31). However, 

Figure 47 indicates that DUL was overestimated in the 30-60 cm soil layer, resulting in overes-

timation of the water storage capacity of this layer. As a result, water might have been stored in 

the soil in iCrop but actually drained in the real world. DUL overestimation was ca. 

0.1 mm3 mm-3, which is equivalent to 30 mm total soil water (layer thickness: 300 mm). The 

overestimation of total soil water (March until harvest) was ca. 50 mm, so the DUL overestima-

tion of the 30-60 cm layer could explain most of it. However, drainage was not measured di-

rectly, and to avoid over-parameterisation I assumed identical soil parameters from 0-60 cm 

depth in both experiments. The assumption that sand content in deeper (60-120 cm) layers was 
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the main contributor to the soil differences between EXP1 and EXP2 appeared sensible at the 

time of parameterising the model. The fact that total soil organic carbon was almost identical 

between the experiments in the 0-60 cm layers and only differed clearly in deeper layers support 

this hypothesis (Table 7). In conclusion, the results indicated that relatively small changes 

(0.1 mm3 mm-3) to one parameter (DUL) of a single soil layer can lead to a clear offset in total 

soil water estimates through underestimation of drainage. While this hypothesis would need 

additional experiments and data to be confirmed, I assume that iCrop’s soil water simulation is 

sensitive to the soil parameters affecting extractable soil water (i.e. LL and DUL). Great care 

needs to be taken when parameterising iCrop for soil, but if this is done, precise and accurate 

soil water simulations can be achieved as shown for EXP1. 

9.3.2. Phenology 

The simulation of emergence was near perfect in both experiments (Table 8). However, emer-

gence in EXP2 was calibrated by manually adjusting one soil water parameter relevant for emer-

gence (see 9.2.6). One reason making this modification necessary could be related to the defini-

tion of “emergence” used for field observations. Forcella et al. (2000) criticised the approach of 

defining emergence as the date where at least 50% of the seedlings have emerged as possibly 

inappropriate in the context of modelling. They argue that emergence is not normally distrib-

uted around the 50% emergence date, and that emergence might take several weeks or even 

months, depending on the specific genotype and environment. The delayed simulation of emer-

gence in EXP2 may be such an example, since observations showed continued increase of the 

emergence rate over a few weeks (data not shown). Continuous recordings of emergence rate 

(%) over several weeks would help to improve estimating the true date of crop emergence on 

the field. 

The poor simulation of BBCH 21 (appearance of the first tiller) (Figure 32, Table 8) was clearly 

caused by interpolation errors resulting from long measurement intervals, particularly in EXP1. 

This effect was already discussed in 9.2.7. With more detailed observed data, the model can 

easily be parameterised to simulate BBCH 21 correctly. However, poor simulation of this stage 

does generally not affect any other process in the model. Especially leaf development variables 

(LAI, leaf number, leaf weight) in iCrop are independent from the initiation of this stage. There-

fore, other simulation results in this study remain valid. 

Leaf development in iCrop is affected by the simulated beginning of booting (BBCH 41) where 

the model stops leaf number growth on the main stem. This affects both LAI and leaf dry mass 

growth. BBCH 41 was simulated well in EXP1 (slightly too early, -2 to -3 days) but moderately 

delayed in EXP2 (+5 to +8 days) (Table 8). The effect of BBCH 41 simulation on leaf dry mass is 
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further discussed in 9.3.4 “Dry Mass”. For LAI, delayed simulation of BBCH 41 in EXP2 might 

have contributed to the overestimation, although maximum simulated LAI hardly differed be-

tween EXP1 and EXP2 and, therefore, suggested no influence (Figure 34). 

Another critical phenological stage is anthesis (BBCH 61-69). Numerous studies have investi-

gated anthesis simulation and pointed out its importance (e.g. Asseng et al., 2019, 1998; Eitzinger 

et al., 2013a; Liu et al., 2016; McMaster et al., 2008; O’Leary et al., 2015; Rötter et al., 2012; 

Stratonovitch and Semenov, 2015). iCrop simulated the beginning and end of anthesis well in 

both seasons (both stages within 2 days in EXP1 and within 5 days in EXP2).  

iCrop initiates the beginning of seed growth (BSG, BBCH 71) five biological days after the begin-

ning of anthesis (BBCH 61). The timely occurrence of BSG has a significant impact on seed 

growth by setting available vegetative crop dry mass for translocation to seeds and by influenc-

ing the seed growth duration. Also, leaf production fully terminates at BSG and leaf senescence 

is initiated (LAI starts to decline). BSG was simulated well in EXP1 (within 3 days) and also mod-

erately well in EXP2 (within 5 days of observations) (Table 8). 

Finally, BBCH 87 (termination of seed growth, TSG) defines the end of the seed growth period. 

In EXP1, TSG was simulated 5 days early for Bernstein but well for the other cultivars (within 1 

day), and in EXP2 TSG was simulated 7 to 8 days too late for all cultivars (Table 8). Across all 

cultivars, both BSG and TSG were simulated too late in EXP2, resulting in an overall slight over-

estimation of seed growth duration (2 to 5 days) while EXP1 showed underestimation (-2 to -8 

days) of seed-growth duration. While this generally matches the trends of N3 yield under- and 

overestimation of EXP1 and EXP2, respectively, the results are contradictory for the cultivars 

(Figure 37). For instance, the simulated slightly delayed BSG (+3 days) and clearly too early TSG 

(-5 days) of Bernstein in EXP1 resulted in a shortened seed-growth period which may have con-

tributed to underestimation of Bernstein yield. Contrary, Aurelius’ seed-growth period in EXP1 

was estimated well (BSG +1, TSG -1 day) but yield was still underestimated clearly, similar to 

Bernstein. It appeared that other factors than the simulated duration of the seed-growth period 

must have had a higher impact on variously accurate yield estimates (see 9.3.7 Yield). In a multi-

model wheat study Asseng et al. (2015) found that phenology had a surprisingly low impact on 

wheat grain yields. In accordance with this, results from my simulations indicate a low model 

sensitivity to seed-growth duration regarding yield.  

9.3.3. Leaf Development 

While LAI simulations captured the general relative differences between the different N-treat-

ments and cultivars, the most significant error was the overestimation of Arnold and Emilio at 

anthesis (PE = +52% and +58%, resp.), while Bernstein and Aurelius were simulated well 
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(PE = +17% and +20%, resp.) (Figure 34 for Arnold and Bernstein). In most N-treatments (par-

ticularly the higher fertilisations), observations showed an LAI peak at anthesis for Bernstein 

and Aurelius, while Arnold and Emilio did not show this peak as well as clearly lower LAI than 

Bernstein and Aurelius at anthesis. A similar trend as for LAI was found for observed leaf N 

content for Arnold and Bernstein (Figure 44) and also for Emilio and Aurelius (data not shown). 

While Bernstein reached anthesis last, the other cultivars (Arnold, Aurelius, Emilio) developed 

rather similarly (Figure 12), making comparisons between them more robust. With higher LAI 

and leaf N content at anthesis it can be assumed that Aurelius (and Bernstein) also maintained 

green leaves longer into the post-anthesis phase than Arnold and Emilio did. Such a prolonged 

maintenance of green leaves is known as stay-green trait (e.g. Thomas and Ougham, 2014). The 

different stay-green behaviours of the cultivars were not captured by the simulations. iCrop does 

not incorporate parameters to explicitly represent stay-green traits. The observed cultivar-spe-

cific stay-green behaviours could partly be explained by differences in the cultivars’ root systems, 

leading to prolonged water access for stay-green types (Christopher et al., 2008; Manschadi et 

al., 2006). However, the only parameter affecting root system directly, GRTDP, was set equal for 

all cultivars (see also 9.2.4 Effect of Rooting Parameters on Yield). Therefore, in this parameter-

isation, iCrop was unable to simulate differences in stay-green behaviour based on root system 

differences. The cultivar-specifically parameterised differences in LAI development (PLAPOW 

and leaf fraction parameters, see 9.2.12) were apparently not sufficient to represent different 

stay-green traits. 

The overall stronger LAI reduction effect of the unfertilised treatment N0 in EXP2 than in EXP1 

can be explained by lower initial soil mineral N in EXP2, as previously explained for above-

ground dry mass and yield. 

The model generally overestimated LAI at anthesis (RMSE = 0.8, NRSME = 32%, PE = +36%). 

Basso et al. (2016) reviewed 15 studies that reported on the LAI simulation performance of the 

CERES-Wheat model. These studies found LAI estimates with RMSE of 0.108, 0.069-0.075, 0.1-

0.9, and 0.87 and RRMSE of 17.9%, 27.8%, 25-35%, 20%, 8%, and 1.27% using a range of treat-

ments (including irrigation and fertilisation) and locations (India, China, USA, and others). 

Compared to these numbers, iCrop’s LAI estimation performance ranged among the poorer re-

sults. However, iCrop showed an even higher overestimation of LAI before the parameterisation 

(data not shown). The thorough parameterisation in this study based on detailed and compre-

hensive parameterisation data resulted in substantial improvement of LAI estimates. Previous 

studies (e.g. Bassu et al., 2014; He et al., 2017; Manschadi et al., 2020a; Moeller et al., 2007; Salo 

et al., 2015; Wallach et al., 2011) have also shown that detailed data sets for parameterisation are 

required to improve model performance.  
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iCrop simulated relatively high final LAI (at harvest), particularly in EXP1 and in high N treat-

ments, while observed LAI at harvest was always zero. This overestimation was caused by the 

simulation of the LAI senescence phase between anthesis and crop harvest. In iCrop, leaf senes-

cence after the beginning of seed growth is directly linked to N retranslocated from leaves to 

grains. Under optimal conditions, the removal of N from leaves continues until LAI is reduced 

to almost zero, thereby finalising the seed growth duration. However, if the seed growth dura-

tion is limited by another factor, LAI as well as leaf N content can stay at higher levels. Such a 

factor was terminal drought stress due to low rainfall in EXP1. As a result, simulated phenology 

was enhanced and the termination of seed growth was reached a few days earlier than under 

optimal conditions. Thereby, some leaf area remained at harvest. An improved LAI senescence 

function which compensates for drought-induced leaf area senescence in the seed growth phase 

would be desirable for iCrop. On the other side, LAI overestimation at harvest is probably more 

of a cosmetic error since transpiration does not depend on LAI but only on dry matter produc-

tion in iCrop, thereby having little effect besides possibly a slight dry mass overestimation post-

anthesis. 

9.3.4. Dry Mass 

Total above-ground dry mass (TDM) simulations captured the general relative differences be-

tween cultivars and N-fertilisation levels correctly (Figure 35). However, both these differences 

were underestimated. For instance, the observed difference of harvest TDM between Bernstein 

and Arnold, as well as between N0 (unfertilised) and N3 (210 kg N ha-1) was much larger than 

simulated. The previously described problems with simulating LAI (stay-green not simulated) 

and root growth (no differences between the cultivars) possibly contributed to the underesti-

mation of TDM cultivar-differences. Whatever the reason was, LAI differences between the cul-

tivars were underestimated (see previous sub-section). Since LAI is the main driver of dry matter 

accumulation in iCrop (see equations (19), (20), and (21)), the congruent underestimation of 

TDM cultivar-differences was a logical consequence. In addition, other growth-influencing pa-

rameters which were set equal for all cultivars (e.g. leaf extinction coefficient KPAR: direct in-

fluence on dry matter production, root growth GRTDP: indirect influence via soil water uptake 

and stress) have contributed to underestimation of cultivar-differences. The underestimation of 

N-treatment differences, particularly in EXP2, was likely related to soil Nmin simulations (dis-

cussed in 9.3.6 Crop and Soil Nitrogen).  

Overall, the parameters that were chosen cultivar-specifically (see 9.2.12) were insufficient to 

adequately represent observed TDM cultivar differences. In order to improve cultivar-specific 

TDM simulation in iCrop, I suggest the investigation of stay-green simulation capability (see 
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previous sub-section) as well as cultivar-specific parameterisation of KPAR and GRTDP. How-

ever, in this study, data was not adequate to estimate these parameters (no data collection re-

garding KPAR, and regarding GRTDP see 9.2.4). 

On the first glance, the figures showing simulated leaf and stem dry mass (Figure 38, Figure 39) 

appear to suggest that the leaf:stem partitioning parameters (FLF-parameters) were chosen 

wrong, with too much dry mass in leaves and too little in stems. However, this impression is 

deceiving. In the vegetative growth phase (emergence until anthesis), the partitioning of dry 

mass between leaves and stems is calculated based on the parameters FLF1A, FLF1B, and FLF2 

(“FLF”: fraction of dry mass partitioned to leaves) (see Figure 6). These parameters are used in 

consecutive order: FLF1A is used from emergence until the total crop dry mass reaches ca. 113-

123 g m-2 (defined by the cultivar-specific parameter WTOPL). Thereafter, FLF1B is used until 

leaf growth terminates on the main stem (which is set equal to booting, BBCH 41). Then, until 

anthesis, FLF2 defines the fraction of dry mass that is assigned to leaves. Generally, as well as in 

the observations of my experiments, more dry mass is allocated to leaves in earlier phenological 

stages: FLF1A (0.72-0.80) > FLF1B (0.29-0.37) > FLF2 (0.1) (see Table 5). 

Figure 40 shows the development of stem and leaf dry mass for Bernstein (which is representa-

tive for all cultivars), including indicators (blue lines) for the switches from one to another leaf 

partitioning parameter. Until the right-most blue line in Figure 40, simulated total dry mass 

comprised only of leaf and stem dry mass (since seed growth started thereafter). Obviously, TDM 

in N0 was overestimated, which lead to overestimation of stem and leaf dry matter. Still, the 

course of the observed relation of stem to leaf dry matter in N0 was represented well: Leaf dry 

mass was higher than stem dry mass until ca. 190 DAS after which this relation swapped. N3 

showed a very similar trend before anthesis (the second last observed points). From anthesis 

onwards, N3 stem dry mass was underestimated, while leaf dry mass was overestimated. 

Earlier simulation of booting (BBCH 41) would come with earlier initiation of the FLF2 parame-

ter (the middle blue line in Figure 40). This would result in higher dry mass partitioning to stems 

(because FLF2 allocates more dry mass to stems than the previous FLF1A does) and, hence, im-

provement of the simulations at anthesis for N3 as well as the relation of leaf:stem dry matter at 

anthesis in N0.  

The FLF2 parameter was set identical for all cultivars and could, therefore, not induce cultivar-

specific differences. Most treatments showed an increase in leaf dry mass during the FLF2 period 

(between second and third blue line in Figure 40, and corresponding observation points in Fig-

ure 38). However, FLF2 might have slightly contributed to leaf dry mass overestimation (too 

high FLF2).  
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In conclusion, care needs to be taken when parameterising phenology, especially the occurrence 

of booting (BBCH 41), in order to achieve correct leaf and stem dry mass simulations. However, 

there are no negative follow-up effects of poor leaf and stem dry mass estimates on other iCrop 

outputs. Simulated LAI is largely independent from leaf dry mass, and the translocation of veg-

etative dry mass to the seeds during seed growth is based on the sum of stem and leaf dry mass 

(i.e. vegetative dry mass) rather than a separate translocation from each organ. Still, improved 

partitioning simulation would be desirable. Additional data on phenology around the switch 

from FLF1B to FLF2 (BBCH 41) can help to support a more precise parameterisation. 

9.3.5. Effect of Development-dependent SNCS 

I added to the crop model source code to implement two phases of stem minimum nitrogen 

concentration (SNCS) depending on the development stage (see 8.2 and 9.2.9). Before the up-

date, iCrop used only one SNCS parameter and was unable to simulate observed dynamics of 

stem nitrogen uptake for both parameterisation experiments (data not shown). Stem nitrogen 

uptake was underestimated before anthesis, especially for low N input treatments (N0) because 

the model prioritises N distribution to leaves when N supply is limited. As a result, stem N con-

tent was underestimated, leaf N content overestimated (no N-stress induced), and, thus, LAI 

growth overestimated. This also lead to total dry mass overestimation. With the introduction of 

two phenology-dependent SNCS parameters, this problem was solved. Based on observed data, 

the two SNCS parameters were calculated, resulting in higher first-phase stem minimum N con-

centration (SNCS1, 0.0063 g g⁻¹) than second-phase (SNCS2, 0.0022 g g⁻¹) (Table 5). The rela-

tively high SNCS1 forced the model to distribute more N to stems before anthesis in N0 treat-

ments, even though N supply was limited (Figure 45). This lead to reduced N uptake in leaves 

of N0 (Figure 44). As a result, LAI growth before anthesis was limited in N0 (N-stress). As in the 

observations, clearly lower maximum LAI was simulated in N0 than in the other N-treatments 

(Figure 34). Manschadi et al. (2020a) also showed the necessity of two phases of SNCS to 

properly simulate LAI for maize. Overall, the described “chain reaction” from stem N concentra-

tion parameterisation until total dry mass estimation showed nicely how complex the model 

parameterisation process can become and also that process based models such as iCrop can ad-

equately reflect important crop physiological mechanisms based on a sound parameterisation.  

9.3.6. Crop and Soil Nitrogen 

Total above-ground crop N-uptake (TNU) at harvest was overestimated by iCrop. Simulations 

were good until ca. 200 DAS (ca. BBCH 33, stem elongation) but started to exceed observations 

thereafter (N2/N3 in EXP1 and all N-treatments in EXP2, see Figure 42). Overestimation of crop 

dry mass (TDM) can lead to overestimation of TNU, since N-uptake from the soil is driven by 
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dry mass production. This was the case for Arnold EXP2 (N0-N2) where both TDM and TNU 

were overestimated (Figure 35 and Figure 42). However, N0 TDM of Arnold EXP1 was overesti-

mated, while TNU was simulated well. Also, N3 TDM of Bernstein EXP1 was underestimated, but 

TNU was overestimated. Still, on average, TDM overestimation appeared being the reasonable 

cause for TNU overestimation at harvest (TDM PE: +13.7%, TNU PE: +14.0%). However, the con-

trary examples above as well as the comparison of PEs at anthesis (TDM: +6.0%, TNU: +14.0%) 

indicate that there were also other factors influencing crop N-uptake overestimation.  

One important of those might be related to soil-N supply. Unfortunately, the data for soil Nmin 

contained only relatively few samples, with a maximum of three in-season measurements (sow-

ing, tillering, harvest) for specific treatments only (Figure 48). However, the data was still suffi-

cient to indicate overestimation of soil N mineralisation in the model: In EXP2 (Arnold, Bern-

stein), all three observed sampling dates of soil Nmin were simulated well, but final crop TNU 

was overestimated. Both observed and simulated Nmin values were extremely low at harvest 

(below 5 kg N ha⁻¹) but TNU overestimation was approximately 50 kg N ha-1. This strongly sug-

gests that a significant amount of soil Nmin must have either (i) been lost on the field without 

being accounted for in the model, or (ii) been overestimated by the model.  

Unaccounted field Nmin losses (i) might occur due to N-leaching. iCrop calculates N-leaching 

based on soil water leaching (i.e. drainage from the deepest soil layer). In both experiments, 

significant rainfall amounts occurred in May/June but simulated water drainage during that time 

was very low. However, in EXP2 simulated soil water reached field capacity in May/June (Figure 

46). At that point, each additional water input in the model results in more or less direct drain-

age loss, making drainage very sensitive to slight errors in rain and soil water parameters. There-

fore, it seems possible that iCrop underestimated drainage (particularly in EXP2), thereby un-

derestimating N-leaching, resulting in overestimating N-uptake.  

Another possible reason for model-unaccounted field Nmin losses (i) is N-volatilisation from N 

fertiliser (surface application). iCrop accounts for N-volatilisation using a fixed user-defined per-

centage value which was set to 2%. It is possible that this value was higher in reality. Meisinger 

and Randall (1991) suggested 2-25% N losses for ammonium nitrate with surface application in 

subhumid areas (defined as areas with a likely precipitation of 0-6 mm within 7 days of fertiliser 

application). In a 2-year wheat field experiment in China, Yang et al. (2015) reported N volati-

lisation of 2.49 kg N ha-1 for 180 kg N ha-1 applied fertiliser (i.e. ca. 1.4% loss) in seasons with very 

low precipitation (ca. 110 and 190 mm in each season). In comparison to these studies, my as-

sumption of 2% N volatilisation was low but reasonable. However, higher volatilisation would 

be similarly possible, and its underestimation might have contributed to TNU overestimation. 
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For instance, assuming average (12.5%) and maximum (25%) N volatilisation from Meisinger 

and Randall (1991) for N3 (210 kg N ha-1 fertilisation) of my experiments, total N loss from volat-

ilisation would be 26.25 and 52.5 kg N ha-1, respectively, while the parameterised value of 2% 

resulted only in 4.2 kg N ha-1 in both years. The difference (22.05 and 48.3 kg N ha-1) might have 

been lost in reality, but was not accounted for in iCrop. Compared to the RMSE for TNU simu-

lation at harvest (3.2 g N m-2; i.e. 32 kg N ha-1), N volatilisation has the potential to explain much 

of the simulation error. 

Finally, iCrop might have overestimated (ii) soil N mineralisation. The corresponding parameter, 

FMIN, was calibrated for each soil layer based on observed soil Nmin data from the parameteri-

sation field experiments as well as additional data from previous experiments, including a fallow 

during winter time (data not shown). The fallow experiment was conducted on a field in ca. 2 km 

distance to the locations of the parameterisation field experiments. According to the soil map 

eBod (Wandl and Horvath, n.d.) the soil type was the same as in EXP2 (“Feuchtschwarzerde”, 

calcaric gleyic phaeozem) but different to EXP1. Therefore and due to the distance, it might not 

translate well to the parameterisation experiments. Additionally, temperature has a significant 

influence on soil N mineralisation in the field as well as in iCrop. While Nmin on a fallow field 

during winter time with cold temperatures might be simulated well, there is no guarantee that 

Nmin dynamics for spring and summer environments with higher temperatures is simulated 

equally well. Also, soil N mineralisation is related to soil water. Overestimation of soil water 

content, as previously described, can have contributed to N mineralisation overestimation. 

In conclusion, more detailed soil water and soil Nmin data would be required to identify the 

reasons for TNU overestimation. Ideally, this would include multiple years of fallow at several 

locations, including varying N fertiliser application (for N-volatilisation estimation) and several 

soil Nmin and water measurements, with shorter measurement intervals during warmer tem-

peratures, around N fertilisation dates, and during/after intense rainfalls (drainage). 

The previously mentioned possible errors resulting from early biomass sampling for parameter 

calculation at beginning seed growth (see 9.2.11) did not occur. Assuming the stem N concen-

tration parameters (SNCG and SNCS1) were overestimated, this would lead to stem N uptake 

overestimation in highly fertilised treatments (N2, N3) due to the SNCG parameter. Also, stem 

N uptake for unfertilised treatments (N0) would be overestimated until anthesis (SNCS1 param-

eter). However, as shown in Figure 45 for Arnold and Bernstein, stem N uptake was rather un-

derestimated at anthesis. The early overestimation of stem N content was caused by stem N dry 

mass overestimation at that time (Figure 39). Final stem N content overestimation for the highly 

fertilised treatments was part of the total N uptake overestimation, which was related to several 
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possible causes as discussed above (overestimation of soil-N supply) and below (underestima-

tion of N-retranslocation). For leaf N uptake, a possible underestimation of SLNG due to too 

early biomass sampling would induce leaf N content underestimation as well. However, leaf N 

content estimates reflected observations well (Figure 44). Also, they largely corresponded to LAI 

simulations (Figure 34) which are the main driver of leaf N content in iCrop. Overall, the stem 

N as well as leaf N content simulations were satisfactory and did not indicate any biases in the 

parameter calculation. 

The simulation of grain nitrogen concentration (%GN) was, on average, robust and satisfactory. 

However, using identical %GN parameters (%GNmin and %GNmax) for all cultivars, the model 

was not able to simulate the observed differences in %GN between the cultivars, mainly between 

Arnold (higher) and the three other cultivars (lower %GN) (Figure 43). The reasons for not pa-

rameterising %GN cultivar-specific are explained in sub-section 9.2.9 “Crop Nitrogen Parame-

ters”. iCrop’s inability to simulate the high observed %GN of Arnold can be explained by wrongly 

simulated N-dilution in Arnold due to yield overestimation (Figure 37). 

Regarding the effect of N-treatment, %GN of N0 were mostly underestimated. Since total N 

uptake at harvest (TNU, Figure 41) of N0 were mostly simulated well and yields were overesti-

mated (esp. EXP2), the underestimation of %GN can be explained with N-dilution. In addition, 

N removal from vegetative organs (translocation to grains) was sometimes underestimated 

(mainly N2 and N3 of EXP1) (see leaf N and stem N content, Figure 44 and Figure 45, resp.). 

While this contributed to %GN underestimation of Arnold, it has partly “corrected” %GN over-

estimation of N2 and N3 of the other cultivars.  

Overall, while %GN simulation was robust, it can be improved by addressing the following is-

sues: (i) Improvement of yield estimates, thereby reducing errors from grain-N dilution, (ii) im-

provement of vegetative N translocation simulation, and possibly (iii) the use of cultivar-specific 

%GN parameters. However, before (iii) %GN parameters can be parameterised for each cultivar, 

additional data based on field experiments designed to generate a range of %GN contents must 

be acquired (see 9.2.9). Also, correct (i) yield simulation and (ii) N translocation must be en-

sured to avoid over-parameterisation of the model.  

9.3.7. Yield 

While observed yields showed clear responses to N-fertilisation and cultivar, the simulations 

underestimated these responses (Figure 37). Especially the simulated yield differences between 

the cultivars were almost negligible and did not capture observations.  
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The most obvious simulation error occurred in EXP1 where Aurelius and Bernstein yields were 

clearly underestimated. In the simulations, total soil water contents of all cultivars reached very 

low levels (close to lower limit) during the grain filling phase (Figure 46). As a result, terminal 

water stress occurred in the model and caused both total dry mass and yield to decline for all 

cultivars almost equally. However, in reality, terminal water stress was apparently not as severe 

as simulated. A range of problems can have caused the overestimation of soil water stress, in-

cluding non-fitting soil parameters (lower limit) and other reasons, as discussed in 9.3.1 and 

9.3.4. 

Since the parameters which may affect yield directly (FRTRL and PDHI) were identical for the 

cultivars, simulated yield differences could only have come from other, cultivar-specific param-

eters (these were parameters affecting LAI, leaf:stem partitioning, and phenology; see 9.2.12). 

While the model was able to capture at least the general trends of cultivar differences correctly 

for simulating MSNN, LAI, and leaf and stem dry mass (see Figure 33, Figure 34, Figure 38, and 

Figure 39, resp.), these differences did not translate into correct yield simulation. Therefore, 

iCrop’s inability to capture the observed yield differences between the cultivars based solely on 

cultivar-specific parameters for LAI, leaf:stem partitioning, and phenology suggests that yield 

parameters (FRTRL and PDHI) also require cultivar-specific determination for correct yield sim-

ulation. Furthermore, other parameters which affect yield indirectly, such as the previously dis-

cussed root growth (GRTDP) and grain nitrogen concentrations (%GNmin, %GNmax), should 

also be considered candidates for cultivar-specific parameterisation. The impact of seed growth 

duration (BSG to TSG) on yield was discussed previously in sub-section 9.3.2. 

9.4. Crop Model Evaluation 

The iCrop parameterisation obtained from the field experiments at Tulln (EXP1 and EXP2) was 

evaluated against an independent long-term data set of field measurements in Eastern Austria. 

Average growing conditions during the long-term experiments were overall poorer than in the 

parameterisation experiments (10-41% less rain, slightly less global radiation). Also, slightly 

lower average temperatures were observed in the evaluation seasons. These might be both ad-

vantageous (less heat stress in summer) and disadvantageous (more frost damage during win-

ter). 

The date of heading was simulated well (RMSE = 2.9 days, Figure 49). This indicates that iCrop 

is robust regarding phenology simulation. Heading date (BBCH 59) is very close to the more 

commonly observed anthesis (BBCH 65) and, therefore, compares well to other studies showing 

anthesis date. In a multi-model comparison using 9 crop models, 44 growing seasons at 7 sites, 

simulating spring barley and winter wheat, Rötter et al. (2012) reported higher RMSE for the 
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mean model estimates of anthesis (for both crops), ranging from ca. 6 to 14 days. Soltani et al. 

(2013) evaluated the iCrop wheat model with independent field data from the Gorgan region 

(Iran) and found anthesis simulation with RMSE of 4.8 days, thereby underlining the quality 

and accuracy of my results. 

Yields of the evaluation data were mostly underestimated (Figure 50 and Figure 51). The RMSE 

of 136 g m-2 was much greater than the RMSE found by Soltani et al. (2013) in their iCrop evalu-

ation study (37.7). The reason for this poor estimate was probably related to the lack of initial 

soil data (water and Nmin), lack of data on soil properties of the different locations (such as 

lower limit and field capacity), and large distances to weather stations which possibly caused 

discrepancies between actual field rainfall and weather station rainfall data. Since identical soil 

parameterisations were used for all locations (see 8.5.2), possible soil differences were not re-

flected in the evaluation simulations, likely resulting in simulation errors. An indication for poor 

rainfall data is the relation of yield to evapotranspiration (ET). Simulated yield responded much 

stronger to simulated evapotranspiration than observed yield (Figure 52). Due to lack of ob-

served ET data I used simulated ET for both simulated and observed yield for the comparison in 

Figure 52. While this approach clearly does not give the best results, it still provides a reference 

to assess water use. Simulated ET incorporates interactions with observed rainfall and irrigation 

and, therefore, reflects observed seasonal differences in water input. However, simulated ET also 

accounts for effects of simulated crop dry mass (which drives transpiration in iCrop) which can 

introduce bias when dry mass simulations deviate from observations. Therefore, the following 

discussion based on simulated ET serves as indication only. Observed rainfall data was taken 

from weather stations with ca. 10-25 km distance to the experimental fields (Figure 4). Kerse-

baum et al. (2015) defined guidelines to assess suitability of data for crop modelling. They noted 

that the relevance of rainfall for a field experiment data drops sharply with distances from 1 to 

10 km, being hardly relevant thereafter. Therefore, it can be assumed that the distance surely 

introduced deviations between actual rainfall at the experimental sites and measured rainfall at 

the weather stations. However, this probably explains only partly why the estimates for yield 

were poor. Some extreme points in Figure 52, particularly very high yields (700 to 1000 g m⁻²) 

with lowest ET (less than 400 mm) appear unlikely. Almost all points (both observed and sim-

ulated) are above the 1 g m-2 mm-1 water use efficiency (WUE) threshold line. The simulated 

yields ranged mainly between WUE 1 and 1.5 (except at high ET values), while the observed yields 

ranged mainly between 1.5 and 2. Some of the extreme points even exceeded WUE 2 clearly. 

Moeller et al. (2007) reported WUE for wheat ranging from 0.19-0.98 g m-2 mm-1, simulated 

with APSIM in north-western Syria (annual precipitation: 340 mm, mean temperature: 17.6 °C). 
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Sadras and Angus (2006) compared data from rain-fed dry environments for wheat (South-East-

ern Australia, North American Great Plains, China Loess Plateau, and the Mediterranean Basin). 

They found a maximum WUE of 2.2 g m-2 mm-1 and average WUE of ca. 0.9 to 1. In comparison, 

the results of my study appear rather high, although parts of that may be explained by higher 

seasonal rainfall in Eastern Austria. Nevertheless, the different yield responses to ET between 

simulations and observations indicate a systematic error that could have several reasons. Miss-

ing information about initial soil water conditions may have caused underestimation of plant 

available soil water by choosing too low initial soil water for the simulations. Also, the data set 

might miss information on applied irrigation. As mentioned above, the distance between 

weather stations and field locations may have introduced errors. iCrop might systematically un-

derestimate yields in dry environments, although this seems unlikely since iCrop was developed 

based on data from Gorgan, Iran (Soltani et al., 2013), which is a relatively dry region (December-

June: 340 mm average rainfall) (Soltani and Sinclair, 2015). Overall, due to insufficient soil data, 

the evaluation simulations do neither confirm nor reject the hypothesis of iCrop’s capability to 

simulate cultivar-specific wheat yields in Eastern Austria.  

9.5. Application of the iCrop Model 

Bringing scientific knowledge into practise often poses a big challenge. Scientists sometimes 

struggle to effectively transport their findings to a broader, non-expert audience. In agriculture, 

it seems particularly difficult to generate scientifically-backed information that exceeds the vast 

practical and intuitive knowledge of farmers, consultants, and other stakeholders. However, 

crop models have been applied successfully in various scientific and practical fields, including 

agronomic management, precision agriculture, assessment of environmental impacts, plant 

breeding, management of climate variability and seasonal forecasting, policy in agriculture, and 

impacts and adaptations to climate change (Asseng et al., 2013; Basso et al., 2016; Chenu et al., 

2017; Reynolds et al., 2018). Hochman et al. (2009) tackled the problem of bringing the ad-

vantages of crop models to farmers actively, which resulted in the YieldProphet® software tool 

which is a good example for successful model application in practical farming. Also, this PhD 

study was conducted within the scope of a “from science to product” project, funded by the 

Austrian FFG (Forschungsförderungsgesellschaft). The project with the title “ICT for Decision 

Making in Farming” (Farm/IT; https://www.farmit.at/) (Manschadi et al., 2020b, 2019) was tai-

lored to provide web-based tools to stakeholders in the agricultural sector for enhancing in-

formed tactical and strategic decisions. By integrating a range of information and data, including 

weather, crop, soil, and satellite data, the Farm/IT software is capable of accurately simulating 

farm systems under changing climatic and environmental conditions. The targeted user-group 

covers farmers, consultants, agricultural businesses, and government agencies. The main scope 

https://www.farmit.at/
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of the Farm/IT project was offering online software tools to forecast crop yield and harvest date, 

optimising nitrogen fertilisation based on crop modelling and remote sensing, optimising grass-

land yield and forage quality, optimising irrigation schemes via remote sensing, optimisation 

and estimation of ecological footprints, and optimisation of crop rotations to improve resource 

use (Manschadi et al., 2019). 

In Farm/IT, the forecast of seasonal crop yield as well as the nitrogen fertilisation demand was 

identified as most relevant to policy makers and farmers. To address these, the process-based 

crop growth model iCrop was used in the project. Besides the wheat parameterisation presented 

here, iCrop is also currently being parameterised and evaluated for maize, potato, and sugar 

beet. Preliminary results were promising, showing that iCrop can simulate crop development, 

growth, and yield adequately in response to management (including irrigation, N fertilisation) 

and weather. However, similarly to my results, one of the biggest challenges for adapting the 

iCrop model to crops grown and conditions in Austria is the generation and/or acquisition of 

high-quality weather, soil, and crop data (Manschadi et al., 2019). 

The findings of my study presented here have substantially supported the improvement and 

adaptation of the iCrop model to Eastern Austrian conditions and cultivars. Strengths as well as 

weak spots in the model which need more thorough parameterisation and data were identified 

and additional functionality was implemented in the model source code to support correct sim-

ulation under critical conditions such as limited N supply. As a result, with additional parame-

terisation work, the iCrop model can deliver sound estimates for crop yield, harvest date, and N 

fertilisation demand within the Farm/IT framework. Using established local institutions such as 

the Maschinenring (an organisation for making agricultural equipment available to farmers at 

low costs via sharing), Farm/IT aims at delivering scientific and technological advances directly 

to farmers, thereby giving the outcomes of my study an immediate and relevant value.  
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10. Conclusions 

The capabilities and limitations of the iCrop growth model were outlined thoroughly in this 

work. Based on two seasons of detailed winter wheat field experimentations, iCrop was param-

eterised for the conditions of Eastern Austria. Focus was set on leaf development, soil and crop 

nitrogen, phenology, and crop dry mass. Simulation of long-term, independent field experi-

mental data from across Eastern Austria provided a sound basis to evaluate the phenological 

performance of the model, while evaluation of yield estimates was not possible due to the lack 

of comprehensive observed soil data. 

The overall research question was “Is the iCrop crop growth model capable of capturing winter 

wheat canopy growth and development in the environment of Eastern Austria using field data 

for detailed model parameterisation?” (see chapter 0). Based on the results presented, this can 

be generally answered with yes, although with limitations.  

The iCrop model showed its capability to simulate winter wheat growth and development in 

Eastern Austria regarding several aspects. The simulation of soil water content was shown to be 

excellent with good parameterisation (Figure 46), while the model appeared sensitive to soil 

parameters when water content was close to field capacity. Regarding soil Nmin, data scarcity 

made it difficult to assess iCrop’s abilities. However, overestimation of final crop N uptake (Fig-

ure 42) clearly indicated a systematic overestimation of the course of soil Nmin by overestimat-

ing N mineralisation and/or underestimating N losses. This was likely a matter of soil parameters 

rather than a model-intrinsic problem. Overall, iCrop clearly showed its ability to simulate soil 

water content, while for soil Nmin further investigation is necessary (hypothesis 1). 

iCrop impressively demonstrated its capability to deliver accurate and precise cultivar-specific 

phenology estimates (hypothesis 2) for the two-year parameterisation field experiments (Figure 

32) as well as for the long-term independent evaluation data set (Figure 49). Only a few devel-

opment stages were predicted with errors greater than 5 days which can easily be fixed with 

more detailed parameterisation data. 

Hypothesis 3 presumed cultivar-specific and N-fertilisation-specific dry mass and crop-N simu-

lation capabilities at organ-level. This was, overall, achieved with some limitations. While N-

specific differences for total crop dry mass (Figure 35) and yield (Figure 37) were roughly cap-

tured, iCrop could not represent cultivar differences or absolute values. This may be linked to 

some weaknesses in simulation of leaf development and root growth. Regarding leaf develop-

ment, iCrop was unable to capture clear differences in leaf area index between the cultivars (Fig-
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ure 34), possibly due to different stay-green behaviours of the cultivars which were not repre-

sented by the model. However, N-specific differences in leaf area were captured well after the 

implementation of a biphasic stem nitrogen parameter, triggering a cascade of improvements. 

Concerning root growth simulation, the lack of soil parameters representing root architectural 

differences (e.g. root exploration factor) between the cultivars might have prevented the model 

from capturing cultivar and N-fertilisation-specific differences. In regard to yield, cultivar-spe-

cific parameterisation of the directly influencing yield formation parameters might be necessary 

to improve estimates.  

Leaf and stem dry mass estimates were biased (Figure 38 and Figure 39). Only the relative dif-

ferences between the cultivars were captured but not absolute values, and the differences be-

tween N-treatments were clearly underestimated. Generally, leaf dry mass was overestimated 

and stem dry mass underestimated. Improvements of phenology simulation can potentially 

solve this problem by improving the timing of the activation of leaf:stem partitioning parame-

ters. However, since leaf area increase is decoupled from leaf dry mass growth in iCrop, poor leaf 

and stem dry mass estimates did not affect leaf area and yield simulations. 

Total crop nitrogen simulations were good during the first half of the season but were system-

atically overestimated towards the end of the season (Figure 42). This was linked to soil Nmin 

overestimation, as described above. Fixing soil Nmin would likely also improve crop nitrogen 

simulations. 

Grain nitrogen content simulation was overall good, but cultivar-differences were not captured 

(Figure 43) as a follow-up effect from inaccurate yield estimates resulting in biased grain N di-

lution. Leaf and stem N contents (Figure 44 and Figure 45) were simulated well, with a tendency 

to overestimation at harvest, possibly resulting from overall overestimation of crop nitrogen and 

LAI at harvest. 

Numerous previous studies have demonstrated that crop models have reached a stage where 

they can be used to address a range of important issues such as climate change impact assess-

ment, support of crop breeding, or informed decision making for e.g. optimised fertiliser use. 

The parameterisation and application of crop models in the important cereal production region 

in Eastern Austria has been scarce so far (e.g. Ebrahimi et al., 2016; Eitzinger et al., 2013a, 2013b). 

With this PhD thesis, a relatively simple model has been prepared to be applied in this particular 

region. Also, my results support the previous finding by Soltani and Sinclair (2015) that simple 

models with relatively few parameters can deliver accurate simulation results based on a sound 

parameterisation. 
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Beyond presenting iCrop’s suitability for simulating cultivar-specific growth and development 

of winter wheat in Eastern Austria, this study also provides information on how to enhance the 

model’s accuracy and precision by giving details on its weak spots and ideas how to address 

them. Furthermore, with the innovative Farm/IT project (https://farmit.at/, Manschadi et al., 

2020b), the results of this study were directly put to use through modern software tools aiming 

at delivering scientific advances to farmers and stakeholders in agriculture.  

https://farmit.at/
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