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Abstract 

Brazil is a country with lots of hydropower generation, which is at risk due to insufficient electricity 

generation capacities by droughts in recent years. Hence, other means of renewable energy generation 

need to be evaluated and promoted. Wind power has high potential, especially in the North-East 

region of Brazil. Therefore, the temporally explicit potential of wind power generation is examined in 

this thesis, to allow for an assessment of short- and long-term variability of this resource. A model is 

developed, which simulates wind power generation from reanalysis wind speed data provided by 

NASA. The wind speed data is corrected with measured wind speeds from the National Meteorological 

Institute (INMET) as well as with wind power generation data provided by the National Electrical 

System Operator (ONS). Results show that bias correction substantially improves the simulated time 

series. Although correlations are sometimes reduced, the deviation (RMSE) as well as absolute 

differences between simulated and measured wind power generation are reduced. Both measures are 

lowest when applying both bias correction methods. Results show that correlations between simulated 

and observed data are better in periods of low installed wind power capacity than in periods of higher 

installed capacities, i.e. at later time periods. The deviation at higher installed capacities is possibly due 

to different reasons, such as the use of new types of wind turbines (not considered in our simulation) 

or different locations of newer wind parks. The error could possibly be reduced by more detailed data 

on technologies and installation locations. In general, the model is suitable for estimating the wind 

power generation of a whole region, which can be interesting for simulation of different long-term 

energy scenarios in policy development.  
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Kurzfassung 

Brasilien ist ein Land, das seit jeher von einem hohen Anteil an Wasserkraft geprägt ist, dessen 

Produktion jedoch starken Risiken durch Dürreperioden ausgesetzt ist. Daher ist es notwendig nach 

Alternativen in der Energieerzeugung zu suchen. Windkraft bietet dafür besonders im Nordosten 

Brasiliens hohes Potenzial, weshalb die mögliche Energieerzeugung aus Windkraft in dieser Arbeit 

untersucht wird. Zunächst wird auf Basis von durch die NASA zur Verfügung gestellten Reanalyse 

Winddaten die mögliche Windkraftproduktion modelliert. Diese Daten werden einer Fehlerkorrektur 

mit Windgeschwindigkeitsdaten vom Nationalen Meteorologischen Institut (INMET) sowie mit 

Energieerzeugungsdaten aus Windkraft vom Nationalen Netzbetreiber (ONS) unterzogen. Aus den 

Ergebnissen geht hervor, dass die Fehlerkorrektur die Simulation wesentlich verbessert. Auch wenn 

die Korrelationen zwischen gemessenen und simulierten Daten in manchen Fällen verringert werden, 

sinken sowohl die Abweichungen als auch absolute Differenzen zwischen simulierten und gemessenen 

Zeitreihen. Die Anwendung der Windgeschwindigkeits- und Windenergiefehlerkorrektur führen zu 

deutlich besseren Ergebnissen. In Zeiten niedrigerer installierter Kapazitäten korrelieren simulierte 

und gemessene Daten besser als bei höheren installierten Kapazitäten. Die Diskrepanz bei höheren 

Produktionswerten kann auf unterschiedliche Ursachen, wie den Ausbau unterschiedlicher Typen von 

Windkraftanlagen oder den genauen Standorten von neu installierten Windparks, zurückgeführt 

werden. Zusammenfassend lässt sich sagen, dass das Modell geeignet ist, die Windkraftproduktion auf 

regionaler Ebene in ausreichender Genauigkeit zu simulieren. Dies ist vor allem für 

Energiesystemmodelle, die der Politikberatung dienen, von Bedeutung. 
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1 Introduction 

A global growth in demand for energy has been observed for many years. However, increasing energy 

consumption usually leads to environmental problems, as fossil fuels continue to be the major 

contributor to total energy supply. Therefore, several new policies and targets were recently set in the 

energy sector: In January 2016, the United Nations’ 17 sustainable development goals (SDGs) came 

into force. The 7th goal refers to future energy provision: “Ensure access to affordable, reliable, 

sustainable, and modern energy for all” [1]. Furthermore, the World Energy Council formulated the 

key word “energy trilemma”, indicating that energy should be provided in a secure, affordable and 

environmentally sustainable way [2]. The UN Climate Change Conference (COP 21) in Paris took place 

in 2015. The reduction of emissions in order to reach the two-degree-goal to enable a clean and 

stable development is paramount in the agreement met in this conference. In particular, developing 

countries shall be supported financially in helping with the achievement of this goal [3]. 

These agreements, among others, set greenhouse gas emission targets to help prevent pollution from 

energy consumption. In order to implement these goals, new policies have to be adopted and the 

energy system has to be completely restructured. To support political and management decisions in 

this fields, energy system models are frequently used to inform about possible future scenarios and 

trends [4]. 

In this thesis, we develop highly important input data for such models by simulating the wind power 

generation in the North-East of Brazil from reanalysis data. In this chapter, first of all insights into the 

current Brazilian energy landscape with a focus on wind power will be given. Furthermore, the use of 

energy system models and the suitability of reanalysis data as a source of weather data are discussed. 

Finally, the aim and structure of the thesis are presented. 

 

1.1 Wind power and the Brazilian electricity system 

Brazil is a country, where a large share of the electric power generation is provided by hydropower. In 

the period from 2004 to 2013, Brazilian electricity consumption was rising by about 4% per year and 

was estimated in 2013 to increase by 4.7% annually until 2022 [5] [6]. According to the official 

government expansion plan, around 2030 the load is expected to double, compared to the year 2013, 

with an annual growth of 4.2% [7]. The demand for energy in all of Brazil is in principle rising, however, 

a slight downturn was experienced in recent years due to profound economic recession [8]. Most of 

this demand has been and is still covered by hydropower: Between 2004 and 2013, the share of 

hydropower in Brazilian electricity generation ranged from 69% to 84% [5] [7] [9]. However, because 

of seasonal and annual variabilities, droughts and regulation failures, this source of energy is risky [7] 
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[9]. Between 2000 and 2002, there was an energy crisis due to several reasons including reduced 

rainfall. Later, it has become difficult to replenish the water reservoirs that were emptied during that 

time [10]. In 2013, the share of hydropower fell from 84.5% in the year before to 79.3%, due to 

unfavourable climatic conditions [8]. In 2014, another crisis in the electricity system occurred due to a 

long drought [7], which has caused lower electricity generation from hydropower than in previous 

years and therefore more energy had to be produced thermally from sources as coal, natural gas, or 

biomass [8]. 

The reasons for that lack of hydrological resources are sometimes anthropogenic, as the construction 

of large dams can cause a reduction of rainfalls due to less evapotranspiration as a consequence of 

forests that had to be deforested to provide space for the reservoir [9]. Especially the North-East of 

Brazil is a vulnerable region for relying mainly on hydropower, as hydrological resources show high 

inter-annual variability, which is attributed to the El Niño Southern Oscillation [7]. Apart from droughts, 

another problem of hydropower is that the construction of new reservoirs poses environmental as well 

as social problems, like deforestation or resettlement of local residents [7] [9]. An example, where 

problems like this cumulated during the construction of a hydropower plant, was the case of Belo 

Monte [11]. 

As electricity generation from fossil fuels should be reduced, or in the case of Brazil, at least not further 

expanded and as electricity generation from hydropower causes social and environmental problems, 

the necessary electricity has to be provided by other means. The supply of power from a portfolio of 

renewables is also more stable than a hydropower system only and there is less need for thermal 

power from fossil resources [7]. The optimal mix of PV and wind power with hydropower has been 

examined in [9] and results in 37% PV, 9% wind and 50% hydropower generation. In this case, only 2% 

of supply would have to be provided by thermal power and the overall risk of deficit would be 

decreased in comparison to a scenario with mainly hydro-power generation. In a hydro-power and 

thermal only scenario, the risk of deficit is enhanced tenfold, which shows the importance of 

incorporating enough wind power and PV into the Brazilian energy system. 

According to the National Agency of Electrical Energy of Brazil (ANEEL) [12], the incorporation of wind 

power into the National Interconnection System (SIN) brings many advantages: reduction of emissions 

from thermal power plants, no necessity to build large reservoirs as well as a reduction of the seasonal 

risk of loss of load posed by hydropower. One disadvantage, however, are the costs of wind power, as 

they are about 30% higher, compared to those of hydropower [7]. 

Wind power has been used in Brazil since 2006, mainly in the North-East and South regions. Initially 

there was no notable generation, but expansion grew rapidly and in 2014 1.2% of national demand 
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could be covered by that source [9]; in 2016 already 3.4% of demand could be covered by wind power, 

according to data of the National Electrical System Operator of Brazil [13] [14].  

 However, wind power shows strong seasonality in Brazil, where PV has a significantly lower seasonal 

variability [9]. It should also be considered, that wind power is a volatile source of electricity: if a system 

relies only or mostly on this source, some of the electricity has to be stored temporarily to be 

consumed later. This still poses a huge challenge in many electricity supply systems, as storing 

electricity is expensive [7]. However, in Brazil storage is less of a problem than in other regions, as big 

hydro-storage reservoirs are abundant with a total storage volume of 212 TWh [5] [7]. These reservoirs 

allow the balancing of volatile renewable electricity supply [9]. However, what may be a bottleneck to 

storing lots of intermittent energy in hydro-storage reservoirs, is the transmission grid, as electricity 

transmission all over the country between the locations of energy generation, storage, and 

consumption is limited [5]. The integration of wind power is especially a big advantage in a country like 

Brazil, with a high share of hydropower in the electricity generation, as wind power is temporally 

available in a complementary way to hydropower due to higher wind speeds in the dry than in the 

rainy period [15]. Schmidt et al. [5] [7] also come to the conclusion, that in the first half of the year 

wind power generation is lower than in the second half, contrary to hydropower generation. 

The North-East of Brazil is an interesting region for wind power generation, as the geographical 

conditions often provide stable wind speeds. Figure 1 shows the distribution of average wind speeds 

in Brazil. It can clearly be seen, that the highest wind speeds occur in the North-East of Brazil. 

Furthermore, the expansion of wind turbines is not limited by extreme weather conditions, like in other 

countries where hurricanes, earthquakes or cold winters can cause disruptions to generation. This fact 

makes wind power generation in Brazil cheaper than in other areas of the world and has already led 

to lots of investments into wind energy in this region in the past years [8]. Modelling the supply of wind 

power is therefore a highly important measure to plan the future expansion of wind power in Brazil – 

and is the core aim of this thesis. 
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Figure 1: Mean yearly wind speed at 50 m height in Brazil (the legend for wind speeds is given in the Table in m/s, source: [12]) 

 

1.2 Use of synthetic time series in energy system models 

To plan for climate change mitigation in the energy sector, it has to be assessed which shares of 

renewables, especially wind and solar power, should be optimally incorporated into the electricity 

generation system [16] [17] [18]. Energy system models are an important tool for studying the 

feasibility of different scenarios towards a low carbon society in order to help policy development and 
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decision making [4] [17] [19]. They examine which impact long- as well as short-term changes in 

electricity generation from renewable resources have on the power grid and therefore can help in 

planning how to overcome the challenges they create [17] [19]. Because of these fluctuations in 

electricity generation from wind or solar energy, not only the average potential power generation is of 

interest, but also the time profile has to be determined in order to find out whether in periods of lower 

generation other forms of preferably renewable power generation can fill in those gaps [20]. The 

variability of renewable energy sources, particularly wind, influences the load in the electricity grid and 

thus has an effect on many factors: costs, investments in the transmission grid, emissions or electricity 

prices [20] [17]. Therefore, energy system models have to be fed with time series of power generation 

data. Observations of generation, however, are often not accessible, and of short duration, and 

therefore it can be a better option to simulate renewable electricity generation from weather data. As 

also explained in more detail in section 1.3, observed data are either not available in sufficient quality 

or very expensive, which is why it is a better choice to simulate electricity generation from wind or 

solar power based on freely available reanalysis data. For this reason, this thesis aims at creating a 

simulation of wind power generation to produce such time series, for the further use in simulation and 

optimization models of the Brazilian system.  

 

1.3 Simulating renewable power generation 

Models for renewable energy generation, which can be part of larger energy system models, play an 

important role for the investigation of future energy generation potentials. As observations of wind 

power generation are either not available or only for short time spans, such models have to be based 

on some kind of weather data, for which there are multiple possible sources. First of all, observed 

weather data, such as wind speed measurements or solar irradiation measurements, can be used. 

These measurements can be carried out either on or near the earth’s surface or from space by 

satellites. One possibility is to use average values of weather data, which of course only provide 

average energy generation; another option is to use time series of weather data, which then also can 

depict changes of electricity generation throughout the day, year, or between years, which is in 

particular important to understand the integration of renewables into an energy system. Such 

measured datasets are provided for example by 3TIER, which offers remote sensing data as well as on-

site measurements [21]. 

Another possible source of weather data are reanalysis data, which are based on measured data and 

interpolated to provide long-term consistent, validated time series of weather data, for example wind 

speeds at several heights above ground. An example for such a dataset are MERRA and MERRA-2 data; 
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the latter are used in this thesis. Other sources of reanalysis data are the 15 year reanalysis (ERA15) 

and the updated version ERA-Interim from the European Centre for Medium-Range Weather Forecasts 

(ECMWF), from the National Center of Atmospheric research (NCAR), from the National Centers for 

Environmental Protection (NCEP), from the National Center for Atmospheric Research (NCAR) as well 

as the NASA Goddard Earth Observing System 1 (GEOS1) reanalysis [9] [22] [23]. These different kinds 

of data sources have several advantages as well as disadvantages, which will be discussed in the 

following. 

For observed data there are alternatives of high quality data, for example the before mentioned 3TIER 

weather data, which have a high spatiotemporal resolution and deliver very accurate results [24]. On-

site measured data provide the advantage of considering local conditions, which can be useful in some 

cases, but not desirable in others. If only a very limited area is investigated, as for example in a study 

about the assessment of the wind energy potential in Maroua [25], it is possible and recommendable 

to use measured data, for the aforementioned reasons. If local conditions are not of interest, but 

rather weather data for larger areas shall be considered, it is better to use satellite data. 

Noteworthy disadvantages of measured data are the limited availability of the data as well as the 

limited quality. For the case of wind speed measurements in Brazil, there are data available, however 

only for certain regions. Constraints in quality of data comprise low spatiotemporal resolution of data, 

often only three or six hourly mean values, incomplete data, with temporal or spatial gaps which create 

the time intensive need for selection of complete data, or erroneously measured data [26]. Also the 

change of measuring equipment can cause biases in measurement results [27]. For the case of wind 

speeds, measurements are often conducted only at one height, typically at 10 meters above ground 

and not at hub height, which can create a bias in the resulting data, as surroundings like buildings or 

vegetation influence near ground wind speeds. It would be more useful for the simulation of wind 

power generation to measure wind speeds at remote places or at heights near the hub height of wind 

turbines, as is also pointed out by Cannon et al. [27] as well as Pfenninger and Staffell [24] [26]. Another 

problem of observed weather data can be that they are measured at locations that are far from actual 

power plants and therefore do not represent the weather conditions there adequately [28]. A major 

downside of high quality measured data is that even if they may be easily obtainable, they are mostly 

costly, especially if larger amounts of data for longer time series or large areas are needed [24] [26]. 

For these reasons reanalysis data can be a better choice. One of the most important advantages is that 

they are easily, openly, and often freely obtainable, which makes them accessible for scientific 

verification and discourse. Moreover, reanalysis data are available without gaps in spatial and 

temporal coverage, contrary to observational data. The spatial or temporal resolution of underlying 
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data do not influence the final modelled reanalysis data, as areas or times of missing data are filled 

with simulated data [23], which makes them very useful for a continuous model. Several more 

advantages of reanalysis data are described concisely by Cannon et al. [27], Pfenninger and Staffell 

[26] as well as Bengtsson et al. [23]: Reanalysis data often reproduce observed wind speeds better 

than measured data, because they are not biased by local conditions such as buildings or vegetation, 

which often influence wind speeds near the ground, or by change of equipment during the considered 

period of measurement. Due to the use of different kinds of data sources in reanalysis data, these kinds 

of biases are reduced compared to measured data. Also, though not relevant for this thesis, reanalysis 

data provide information for regions where measurements are difficult or impossible, like offshore. 

Additionally, the data are available for different heights, which is usually not the case for measured 

data.  

An advantage of MERRA data in particular, which are used in this thesis, are their high temporal 

resolution of one hour and the availability of more than one height of wind speed data, which is very 

useful, as in other datasets wind speeds are usually only given at a height of 10 m above the ground, 

which is significantly lower than hub heights of commonly used wind turbines and makes it difficult to 

appropriately estimate wind power generation from these data [24]. Although MERRA data were 

found to not always be very accurate compared to measured weather data, especially for particular 

wind farms or wind turbines, they are more stable and also provide good results for the reproduction 

of electricity generation for a whole region as for example Sweden [24] [20]. 

What can be seen as a disadvantage of reanalysis data is that they are a global data source, where local 

conditions may not be perfectly reproduced. However, using additional local information can improve 

the quality of results [24]. In a study about wind speeds and wind power generation in the UK [27], 

where MERRA reanalysis data were used, it has been found that the mean value of wind speeds of 

measured and reanalysis data is very similar, but wind speeds for various locations sometimes are 

different. The authors conclude that reanalysis data often underestimate the variations in wind speed 

compared to observed wind speed data. Staffell and Pfenninger [24] list similar reasons why reanalysis 

data may be erroneous or not very accurate: as the data are just the output of a model, which does 

not reflect reality perfectly, there can be a systematic bias. The spatial resolution is not very high, so 

the local topography is disregarded. Furthermore it is questionable, whether the wind speeds are able 

to reproduce wind conditions for certain sites, as they are only based on ground measurements and 

satellite data. Furthermore they point out, that results from the use of reanalysis data have to be 

handled with care, as they may vary from one region to another and cannot be applied to all countries 

or areas around the world. 
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For several countries bias-corrected reanalysis data have already been used to simulate wind power 

generation, for example in Great Britain [27] or Ireland [28]. What is new for this thesis is that for the 

first time an hourly dataset of bias-corrected wind power generation in the North-East of Brazil will be 

made publicly available and furthermore not only wind power generation but also wind speed bias 

correction is conducted. 

 

1.4 Aim and structure of the thesis 

This thesis aims at simulating potential hourly wind electricity generation in selected areas in Brazil. 

These simulations will be compared to wind speed measurements and also observed wind power 

generation data in the subsystem “Nordeste” of Brazil, in order to determine bias correction factors 

for wind speed and power generation, in a similar way as it has been done in [24] for Europe. The 

North-East region of Brazil is chosen, because wind speeds, especially in coastal regions, are higher 

than in other regions of Brazil (see Figure 1) and therefore most of the wind power plants are located 

there [12]. Also, seasons of lots of wind coincide with seasons of little rainfall, which means that wind 

power could complement hydropower generation in this area [9] [10]. Wind power from the North-

East region of Brazil is especially useful for this, more than from the South region, where also a lot of 

wind power capacity is already installed [5]. Hence, it will be possible to estimate the potential of wind 

power in case of a full expansion on a 37-year-basis. The analysis of the data is carried out using the 

statistical software R. 

The following research questions will be analysed: 

- Can a model based on MERRA reanalysis data adequately depict daily and monthly observed 

wind power generation? 

- How well can the model be adapted to observed data by using bias correction methods? How 

does bias-correction with measured wind speeds compare to bias-correction with measured 

power generation? 

- Which extreme events of very low or very high production can be identified in the final time 

series of wind power generation? 
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2 Data & Methods 

This chapter describes the data and methods used in this thesis. In order to develop a model of wind 

power generation, the wind speed data from the MERRA reanalysis project will be bias-corrected using 

hourly measured wind speed data. From the modelled wind speeds, the potential power generation 

can be simulated and verified with observed monthly and daily generation data and a second set of 

bias correction factors is calculated. Finally, the calculated bias correction factors are used to model 

the power output over 37 years. In Figure 2, a scheme of the approach is depicted. 

 

Figure 2: Approach for the analysis of the data (own representation) 

 

2.1 Data: Access & Preparation 

The data used for this thesis contain several wind measurement and reanalysis datasets as well as 

datasets on observed wind power generation. Altogether four different sources of data are utilised: 

 MERRA-2 reanalysis data, which are modelled hourly wind speed data (hourly, 1980 - October 

2016) 

 INMET wind speed measurement data (hourly, 1999 – April 2016) 

 Monthly generation data from the national electrical system operator of Brazil (monthly, 2002 

– October 2016) and 

 Daily generation data from the national electrical system operator of Brazil (daily, August 2015 

– October 2016) 

As the MERRA-2 data are no measured data and are produced globally, the other two datasets are 

used to adapt them to real local conditions. Each of these datasets will be described in more detail in 

the following. 

Potential analysis

37 years wind power at full expansion

Bias correction wind power: calculation of monthly correction factors

Monthly energy production calculated from corrected MERRA-2 
wind speed data

Monthly measured ONS energy production data in subsystem

Bias correction wind: calculation of hourly and monthly correction factors

Hourly MERRA-2 reanalysis wind speed data Hourly INMET wind speed measurement data
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2.1.1 MERRA-2 data 

The MERRA-2 reanalysis data are provided for free online by NASA, the National Aeronautics and Space 

Administration. MERRA-2 stands for Modern-Era Retrospective analysis for Research and Applications, 

Version 2. Compared to the first version of the data set (MERRA), there have been improvements in 

the assimilation system. The data are available starting in since 1980 and is updated monthly [29]. 

In order to be able to download data, it is necessary to create an account at 

https://urs.earthdata.nasa.gov/. After registration, one has to log-in to the NASA GESDISC Data Archive 

before downloading the data. With the application wget64, which allows to download data from http 

and ftp servers, the data can be downloaded after creating the links to them with the help of the NASA 

MDISC application. 

The used dataset MERRA-2 can be accessed via MDISC at http://disc.sci.gsfc.nasa.gov/daac-

bin/FTPSubset2.pl%20, where the desired data product has to be chosen. The subset used is 

“tavg1_2d_slv_Nx”, which stands for hourly, time averaged, single level, assimilation, single level 

diagnostics. It is two-dimensional and has a resolution of 1 hour. The data are averaged hourly, starting 

at 00:30 UTC (Universal Time Coordinated) every day [30]. For further calculations, we assume a shift 

of half an hour in generation (i.e. the 00:30 timestamp is assumed to be valid at 01:00). 

As only the area of the North-East of Brazil is relevant for the calculations, an area as small as possible 

around this subsystem is selected. The chosen boundaries in geographical coordinates are North: 1°S, 

South: 19°S, East: 34°W and West: 49°W, as can be seen in Figure 3. 

 

Figure 3: Selected area for MERRA-2 data in the North-East region of Brazil (download from [31]) 

https://urs.earthdata.nasa.gov/
http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl
http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl
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As the spatial resolution is 0.625 degrees in longitude and 0.5 degrees in latitude, which is about 50 

kilometres in distance [30], this amounts to 888 (24*37) points in the grid. Figure 4 shows the location 

of these points around the North-East region of Brazil. 

 

Figure 4: Distribution of MERRA-2 grid points (own depiction) 

The extracted parameters are the displacement height (DISPH) and the east- (U) and northward (V) 

wind at 2 and 10 meters above displacement height, as well as 50 meters above the surface. The time 

window used is 1st of January 1980 until 31st of October 2016, as this was the time span for which data 

was available at the time of the download. The format for the files to be downloaded is selected as 

“.nc-files”. A list of filenames is created and downloaded. 

To download the files, it is necessary to be logged in with the before created account, which is done 

via a log-in file. To create this log-in file the following commands are typed into the command line: 

type nul .netrc 

echo "machine urs.earthdata.nasa.gov login <uid> password <password>" >> .netrc 

<uid> has to be replaced with the login name and <password> with the corresponding password. Also 

type nul .urs_cookies 

is used to save cookies. The download is started with the following command: 

ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ ֺ

Bahia

Piauí

Maranhão
Ceará

Pernambuco

Paraíba

Alagoas

Sergipe

Rio Grande do Norte
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wget64 --load-cookies ~/.urs_cookies --save-cookies ~/.urs_cookies --keep-session-cookies --

content-disposition --user <uid> --password <password> -i myfile.dat 

Again <uid> is replaced with the login name and <password> with the actual password. 

The files downloaded amount to 13089 files, one for each day of the timespan regarded. Each of this 

files contains wind speeds at different heights and in two different wind directions, as well as the 

disposition height for each of the 888 points in the MERRA-2 grid in the selected area for all 24 hours 

of this day. 

The format in which the files are saved is called netCDF-4, which stands for Network Common Data 

Form and is the fourth version of the netCDF [32] [33] file format. This is a special file format for saving 

and processing data used in geoscience education and research, developed by Unidata, which is part 

of the University Corporation for Atmospheric research. The advantage of using this file format is that 

it is “portable” and “self-describing”, which makes it independent from the machine it is used on, and 

it can be simply read with software libraries provided for a range of programming environments. 

NetCDF-4 is the latest version of netCDF and was sponsored by the Earth Science Technology Office of 

NASA. It is compatible with older versions of netCDF and offers some new functionalities like chunking 

[34]. 

 

2.1.2 Power Curve 

For calculating power output from wind speeds, the power curve of a wind turbine is needed. The 

power curve indicates the energy output at a certain wind speed for a particular wind turbine. The 

actual wind turbines that are used in the single wind power plants are not known, therefore a standard 

turbine is chosen for the model. The wind turbine assumed for these calculation is the ENERCON E-82 

with a rated power of 2000 kW, a rotor diameter of 82 m and a height of 108 m. This wind turbine was 

chosen, because it is a relatively cheap solution of generating electricity from wind, as mentioned in 

[25] and was also consulted in a study about the economic viability of the construction of a wind park 

in Parnaíba [35]. Figure 5 shows the power curve of the used wind turbine ENERCON E-82. A value of 

0 kW power generation at 0 m/s wind speed has been added for simplification in the interpolation 

function. 
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Figure 5: Power curve of ENERCON E-82 (own depiction with data from [36]) 

 

2.1.3 Data used for bias correction 

As global reanalysis data alone are not necessarily representative of local conditions, measured data 

are used to validate and bias correct, respectively, the reanalysis data. In our approach, two types of 

data are utilised: measured wind speeds and observed wind power generation. 

The measured wind speeds are provided by the meteorological institute of Brazil (Instituto Nacional 

de Meteorologia, INMET) and can be downloaded from its homepage1. The wind speed is measured at 

10 m height above the earth surface at 841 stations in Brazil and in some cases outside of Brazil (as for 

example the Projeto Criosfera in the Antarctic). For each of these stations a separate file with time 

series of wind speed measurement data is downloaded. Only 128 of these stations are used (indicated 

by red dots in Figure 6), as the others are outside of the North-East region of Brazil and therefore 

irrelevant for the calculations in this model. The stations are chosen by state they are located in, 

indicated by two letters in the file name. The nine relevant states are coloured in blue in Figure 10 (see 

page 17): Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paraíba (PB), Pernambuco (PE), Piauí 

(PI), Rio Grande do Norte (RN) and Sergipe (SE). For each INMET station, the geographical coordinates 

are given, as well as hourly wind speed measurements. Also other information, like temperature, 

                                                           
1 http://www.inmet.gov.br/portal/ 

http://www.inmet.gov.br/portal/
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humidity or precipitation, is provided in the dataset. However, it is not used in this wind power 

simulation model. 

 

 

Figure 6: Location of INMET stations: the red dots indicate the stations considered (own depiction in ArcGIS with INMET meta 
data and a map of the municipalities in Brazil from the CodeGeo homepage [37]) 

The datasets are available for the period 1st of January 1999 00:00:00 - 20th of April 2016 00:00:00. 

However, continuous data are not necessarily available from the beginning of 1999. In most cases the 

measurements were started after the initial date and in addition, in many cases the series of values 

are interrupted in certain time periods. This means that the INMET data, unlike MERRA-2 data, are not 

complete, which makes it necessary to disregard the corresponding MERRA-2 data to prevent the 

distortion of results. Figure 7 shows an example of the hourly mean wind speed data of the year 2015 

of the INMET station number 12 in Bom Jesus da Lapa, with hours starting with 1st of January 2015. 

The gaps in the data can be seen clearly. 
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Figure 7: Wind speeds measured by INMET in 2015 in Bom Jesus da Lapa (own depiction of INMET data) 

In contrast to that, the data at the same INMET station were complete in 2010, as can be seen in 

Figure 8. 

 

Figure 8: Wind speeds measured by INMET in 2010 in Bom Jesus da Lapa (own depiction of INMET data) 
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Some data are considered erroneous, as over longer periods of time a wind speed of 0 m/s is shown. 

Figure 9 shows an example for this in the year 2013 at station number 119 situated in Calcanhar. For a 

time span of about 4000 hours starting from 1st of January 2013 00:00:00 (about five to six months, i.e. 

until the middle of May) there are either data missing or a wind speed of 0 m/s is indicated, with only 

three peaks. These obvious errors in the data have to be considered in the further analysis. 

 

Figure 9: Wind speeds measured by INMET in 2013 in Calcanhar (own depiction of INMET data) 

 

The second dataset used for bias correction is recorded wind power generation data. On the homepage 

of the national electrical system operator of Brazil (Operador Nacional do Sistema Elétrico, ONS) 

http://www.ons.org.br/, data on the monthly wind power generation per Brazilian subsystem between 

2002 and 2016 can be found. The subsystem of interest here is North-East, whose location and federal 

states can be seen in Figure 10. For the North-East of Brazil only data since 2006 are available because 

significant wind power generation only started in that year. 

http://www.ons.org.br/
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Figure 10: Subsystems in Brazil (Subsistemas do Brasil, source: [38]) 

In order to be able to calculate the power generated at a certain wind speed, it is necessary to know 

the installed capacity. Installed capacities as well as the generation start dates of wind power plants in 

Brazil can be found on the homepage of the Brazilian Electricity Regulatory Agency (Agência Nacional 

de Energia Elétrica, ANEEL) [39], when selecting “EOL” in the first Table “Empreendimentos em 

Operação” (operating enterprises). Figure 11 shows a bubble chart of the installed capacities per 

municipality until November 2016. As can be seen in the image, the highest wind power plant density 

as well as most of the installed capacity are in the North of the North-East region of Brazil on the 

North(Eastern) coast of Brazil as well as in the centre of Bahia. Figure 12 shows the distribution of wind 

speeds in the North-East of Brazil and it is obvious, that wind power plants have been built where wind 

speeds are the highest. 
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Figure 11: Installed capacities per municipality (own depiction with data from [39] in ArcMap, data until November 2016) 

 

Figure 12: Mean annual wind speeds at 50 m height in the North-East of Brazil (source: [40]) 
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The table of installed capacities is not directly downloadable. As a consequence, the homepage was 

saved as html and converted to a .csv-file online [41] with the settings “;” as a separator, “remove 

HTML tags in CSV” and “replace multiple spaces with 1 space in CSV”, and downloaded. After the 

download, it is necessary to edit the data, to make them useful for the calculations: special characters 

are not converted correctly and therefore have to be replaced manually. Also, the “new lines” in the 

last column are removed by searching for them with the search function for “Strg+010”. Furthermore, 

in the last column the “-” are replaced by “;” to separate municipality from the state code (two letter 

abbreviation), with the aim to select only the states in the North-East of Brazil. There are two entries 

(Ventos de Santo Augusto V, Ventos de São Clemente 7), where two municipalities are listed. In these 

cases, only the first municipality listed is adopted. 

As the exact position of each wind power plant is not given in the data, the centre of the municipality 

in which it is located is assumed as geographical position. To obtain the geographical coordinates of 

the centres of the municipalities, the shapefile is loaded into ArcGIS and the x and y coordinates of the 

shapes’ barycentres are determined and associated with the data of each wind power plant by the 

name of the municipality it is located in. This way, for each municipality the sum of installed capacities 

with according geographical coordinates is known. The data are adapted using Excel: The capacity has 

to be multiplied by 1000 to convert it from MW to kW, so that it is in the same dimension as the data 

from the power curve. The date is changed to another format of yyyy-mm-dd as well, to make it 

readable for RStudio. The file is saved as csv after the data have been ordered by municipality. A second 

file is created where the sums of the capacities installed per municipality are calculated by using Pivot 

tables in Excel. 

Four of the start-up dates of the wind power plants in the North-East of Brazil were missing. Therefore, 

information about these wind power plants was researched on the Internet to find approximate start-

up dates. The first of these power plants with a missing start-up date is located in Aquiraz. No exact 

start-up date could be found but on the website of the magazine Grandes Construções it is stated, that 

the wind park “Parque Eólico Prainha” in the municipality of Aquiraz with a capacity of 10 MW was 

inaugurated in 1999 [42]. Hence, a start-up date of 1st of January 1999 was assumed. The second 

missing start-up date was from a wind power plant in Brejinho. No reliable or exact data about this 

power plant could be found. It was assumed that the start-up date of the wind power plant “Ventos 

do Brejo A-6” was in 2012, as on the page of the power plant on ANEEL website the “Registro” has the 

number 2012 attached [43]. Thus, the 1st of January 2012 is assumed as start-up date. The next missing 

start-up date is from a wind power plant located near Fortaleza. The inauguration date of the “Usina 

Eólica do Mucuripe” was in 2002 [42], hence the start-up date is defined as the 1st of January 2002. 

The last power plant with a missing start-up date is situated in the municipality Macau. No official 
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information about this wind power plant was found either, but in an article it was mentioned that the 

wind park was inaugurated in 2004 [44]. Therefore, the start-up date was determined as the 1st of 

January 2004. 

 

2.1.4 Data used for validation 

For the comparison of data after correction, also daily data of energy produced from wind provided by 

the ONS are used, which have been available only since recently. These data are available since 1st of 

August 2015 and are updated once per day. As MERRA-2 data were only downloaded until the 31st of 

October 2016, the data only until this date are used for comparison, which allows for a comparison of 

a period of one year and four months. 

 

2.2 Methods 

The following chapters describe the methods used in the development of the wind power simulation 

model. After collecting the data from the different sources as described in chapter 2.1, they are 

adapted to a format so that they can be used for further calculations. The procedure of simulation is 

structured into four main parts which will be explained in more detail: 

 Extrapolation and correction of wind data 

 Correction of wind power generation data  

 Validation with daily wind power generation data and 

 Simulation of 37 years of wind power generation and analysis of the results 

Starting from MERRA-2 reanalysis data of wind speed at different points, an extrapolation to the 

desired height is conducted, followed by the first bias correction with wind speed data from INMET. 

After that correction, a second bias correction is performed with wind generation data from the 

national electrical system operator of Brazil. Finally, 37 years of wind power generation at full 

expansion can be simulated, using the correction factors calculated previously. 

The calculations are performed with the statistical computing software RStudio version 1.0.136. As a 

prerequisite for RStudio, R version 3.3.2 is installed. Four packages are loaded that are needed in the 

development of the model and for the analysis of the data: 

1) ncdf4: The package “ncdf4” is needed to read files of the format netCDF version 4, in which 

the MERRA-2 files are downloaded. The functions “nc_open” and “nc_close” are used to open 
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the netCDF files and by means of “ncvar_get” the desired variables are read from the particular 

files. 

2) lubridate: The package “lubridate” contains, among others, the functions “year” and “month”, 

which are applied to dates of the class “POSIXct” to extract the year and month, respectively 

from the date. At several occasions, year or month need to be extracted to aggregate data per 

month or to correct data depending on the month they occur with the corresponding 

correction factor. 

3) plotly: The package “plotly” is used for plotting heat maps, to analyse correction factors, and 

contour plots, which are useful for the comparison of observed and simulated power 

generation. By passing an argument of the required plot (in these cases either “heatmap” or 

histogram2dcontour” as type) to the function “plot_ly”, the desired graph is generated. 

4) hydroGOF: The package “hydroGOF” (Goodness-of-fit functions for comparison of simulated 

and observed hydrological time series [45]) is used to calculate the RMSE (Root Mean Square 

Error) between simulated and observed wind power time series with the function “rmse”. 

 

2.2.1 Extrapolation and correction of wind data 

For working with MERRA-2 data it is necessary to load them into RStudio, using the “ncdf4”-package. 

Three reading functions are implemented to read data from the netCDF files: The first reading function 

“datum” reads the dates from each file and replicates them 24 times for each hour of the day. The 

hour is added and the date converted to the class “POSIXct”. A list of dates with 24 entries in each list 

element is created, later unlisted with the “unlist”-function of R and saved as a vector on the hard 

drive. The second reading function “getlonlatMRR” reads the 24 longitudes and 37 latitudes of the 

MERRA-2 grid points and expands a grid among those points, resulting in 888 geographical coordinates. 

The third reading function “readMRRvar” reads a variable, that has to be passed to the function, and 

matches it to the longitudes and latitudes, that were read by the second function. For each day a matrix 

with the 888 grid points in the rows and 24 hours in the columns is created. The whole dataset is saved 

as a list of matrices for each single day. This is done for each of the five variables (U50M, V50M, U10M, 

V10M and DISPH) separately because the memory was exceeded when trying to load all the data since 

1980 at once. 

In order to make the access to MERRA-2 data faster and easier, the data were rearranged in such a 

way that for each of the 888 grid points one file is saved with the time series of the five variables. This 

results in 888 files, each containing a data frame with six columns named “date”, “u50m”, “v50m”, 

“u10m”, “v10m” and “disph”. The files are named “ll***MRRdf.RData”, where *** is replaced by the 

position of the longitude and latitude in the list of longitudes and latitudes. This way data for one of 
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the grid points can be easily accessed by opening one of those files, which will be needed often during 

the calculations. Although this claims a fair amount of time for calculation and saving, it is unavoidable, 

as the working storage is not large enough to deal with such a vast amount of data. 

The first step of preparing the model intends to bias-correct the reanalysis data with observed wind 

speed measurements of INMET. To compare the data, the nearest neighbouring MERRA-2 grid point 

to each of the INMET stations is located. The method of the Nearest Neighbour is chosen in this case, 

as it is a simple method with relatively low computational cost. Other methods of interpolation were 

tested too, as also described and performed in [46]. The methods Bilinear Interpolation, Bicubic 

Interpolation and Inverse Distance Weighting were assessed with four INMET stations. The stations 

were selected randomly. Table 1 shows correlations of the different methods. 

Table 1: Correlations of the four assessed interpolation methods for four INMET stations (own representation) 

Method Station 1 Station 2 Station 42 Station 66 

Nearest Neighbour 0.70 0.64 0.34 0.22 

Bilinear Interpolation 0.69 0.60 0.34 0.24 

Bicubic Interpolation 0.61 0.47 0.33 -0.11 

Inverse Distance Weighting 0.69 0.62 0.34 0.24 

 

As can be seen in the table, more complex methods do not increase correlations significantly compared 

to the simple Nearest Neighbour method. Only in the case of station 66 slightly better correlations, 

except for the Bicubic Interpolation, were obtained. However, this may be due to a very low correlation 

of only about 22% with the Nearest Neighbour method. Therefore, the Nearest Neighbour method 

was selected as the final method, as its results are comparably good and also less computing effort is 

necessary compared to the other methods. 

The method of the Nearest Neighbour calculates the distance of each INMET station to all the 888 

MERRA-2 grid points according to the spherical law of cosines: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑟 ∗  𝑎𝑐𝑜𝑠(𝑠𝑖𝑛(𝑙𝑎𝑡1)  ∗  𝑠𝑖𝑛(𝑙𝑎𝑡2)  +  𝑐𝑜𝑠(𝑙𝑎𝑡1)  ∗  𝑐𝑜𝑠(𝑙𝑎𝑡2)  ∗  𝑐𝑜𝑠(𝑙𝑜𝑛2 − 𝑙𝑜𝑛1)), 

where r is the mean radius of the earth (6378.388 km), lon1 and lat1 are the longitude and latitude of 

the INMET station in radians and lon2 and lat2 are the longitudes and latitudes of the MERRA-2 grid 

points in radians. As RStudio trigonometric functions are implemented for calculating with radians, but 

the geographical coordinates are given in degrees of longitude and latitude, the values have to be 

multiplied by the factor 
𝜋

180°
 to convert them to radians. The spherical law of cosines thus is used for 
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calculating the distance between two points on the surface of the earth and is also applied for example 

in GPS Tracking Systems [47]. 

The calculated distance is saved to a data frame along with the according longitudes and latitudes of 

the MERRA-2 grid point as well as a numbering from 1 to 888.  Afterwards, the rows of the data frame 

are ordered by distance with the “order” function, which results in a data frame where the first entry 

is the nearest neighbour. The number then can be used to open the according file with the data of the 

nearest neighbour. For example, for INMET station number 63 with the longitude -44.79499° and the 

latitude -4.243056° in Bacabal in the state Maranhão, the nearest MERRA-2 grid point has the 

geographical coordinates -45° longitude and -4° latitude with a distance of about 35.4 km. Therefore, 

the index of the nearest MERRA-2 grid point is 727 and the file “ll727MRRdf.RData” is loaded to obtain 

the wind speed data for this point. 

To compare the reanalysis data with the wind speed measurement data, it is also necessary to adjust 

them to the same level of height above ground. INMET data are measured 10 meters above the ground, 

MERRA-2 reanalysis data, however, are provided at 50 metres above the ground and 10 metres above 

displacement height. This makes it necessary to extrapolate the data, as the displacement height is not 

necessarily 0. For this purpose, the power law with the ground surface friction coefficient α is used: 

𝑣2 = 𝑣1 (
ℎ2

ℎ1
)

𝛼

, 

with v1 and v2 being wind velocities at different heights h1 and h2. It would also be possible to use other 

methods of extrapolation, as described in [46], which would also consider more than two altitudes. 

However, as shown in [46], different vertical interpolation methods do not change results significantly. 

The resulting wind speed (vres) must be calculated from the east- (veast) and northward (vnorth) wind 

speeds for each height, by using the theorem of Pythagoras: 

𝑣𝑟𝑒𝑠 = √𝑣𝑒𝑎𝑠𝑡
2 + 𝑣𝑛𝑜𝑟𝑡ℎ

2 

The friction coefficient α depends on the structure of the surface: the smoother the surface, the 

smaller the friction coefficient, the coarser the surface, the higher the friction coefficient [48]. Table 2 

gives a few examples of typical friction coefficients depending on the surface. 
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Table 2: Friction coefficient α depending on surface of the earth (source: [48, p. 45]) 

Terrain Type Friction Coefficient α 

Lake, ocean, and smooth, hard ground 0.10 

Foot-high grass on level ground 0.15 

Tall crops, hedges, and shrubs 0.20 

Wooded country with many trees 0.25 

Small town with some trees and shrubs 0.30 

City area with tall buildings 0.40 

 

However, surface data for each point in the North-East of Brazil were not available. For this reason, 

the friction coefficient is calculated by using wind speeds in two heights (50 metres above the ground 

and 10 metres above displacement height). The power law equation is rearranged to the following 

equation: 

𝛼 =
ln(𝑣2)−ln(𝑣1)

ln(ℎ2)−ln(ℎ1)
. 

v2 is the resulting wind velocity at 50 metres above the ground, v1 is the resulting wind velocity at 

disposition height plus 10 metres, h2 is 50 metres and h1 is disposition height plus 10 metres added. 

The calculated friction coefficient subsequently is inserted into the power law equation to calculate 

the wind velocity at 10 metres above the ground to compare it to the wind velocities measured by 

INMET. In the model this is done by the function “extrap”. 

Afterwards the INMET and MERRA-2 data are aligned so that they cover the same time span. As 

MERRA-2 data exist since 1980 and INMET data only since 1999, the first 19 years of MERRA are 

dropped. Also, MERRA-2 data were downloaded until the 31st of October 2016, but INMET data are 

only available until the end of April 2016, which makes it also necessary to cut the last six months of 

MERRA-2 data. Another operation that is needed, is to remove missing data, as INMET data are 

incomplete. For this purpose, INMET and MRERA-2 data are joined into a data frame and with the help 

of the function “na.omit” only full rows of data are retained. 

The next step is the calculation of the hourly and monthly correction factors. For this purpose, the 

months of the dates are extracted. The hours were numbered before omitting missing values. Month 

and hour are joined in to the format “mmhh”. This way, the monthly and hourly wind speeds can be 

added up by using the function “aggregate”, resulting in 12*24 = 288 sums, one for each hour of every 

month. Then the two datasets are compared and 288 correction factors are calculated by dividing the 

hourly and monthly sums of the INMET data by the MERRA-2 data. 
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Afterwards the correction factors can be used to correct the wind speeds of the MERRA-2 dataset by 

multiplying each wind speed with the correction factor according to the corresponding hour of the day 

and month. Thus, the correlation after the correction compared to the correlation without correction 

can be enhanced. Furthermore, the sum of wind speeds after correction of MERRA-2 data is the same 

as for the INMET data. 

Other methods of correction were tested as well: hourly and monthly correction separately, resulting 

in 24 respectively twelve correction factors. However, the results were worse than with combined 

hourly and monthly correction. Table 3 shows the correlations resulting from different correction 

methods (no correction, only hourly, only monthly and hourly and monthly correction combined) for 

four of the INMET stations. As can be seen, the best results (the highest correlations) are obtained with 

the hourly and monthly correction combined, which is why this method is selected for the further 

simulation. It can also be observed that the monthly correction alone mostly increases correlation only 

slightly, whereas the hourly correction does so to a higher extent. This may be due to higher differences 

in wind speeds depending on the hour of the day than depending on the season, despite noticeable 

differences in wind speeds in the different seasons [35]. 

Table 3: Correlations of time series of four INMET stations with time series of MERRA reanalysis data with and without 
different bias correction methods (own representation) 

Correction Station 1 Station 2 Station 42 Station 66 

no 0.70 0.64 0.34 0.22 

hourly 0.77 0.77 0.39 0.35 

monthly 0.72 0.64 0.35 0.24 

hourly and monthly 0.81 0.78 0.41 0.41 

 

However, we do not use bias-correction for all locations, but apply a heuristic to decide whether to 

correct or not: The correction factors will only be applied if  

1) there is a correlation of more than 50% after the correction and 

2) the INMET station and the MERRA-2 grid point are no more than 80 km apart. 

When checking the data, it was found that most correlations were above 50% and most distances 

below 80 km. As it is desired that most of the data are corrected, these limits were chosen, excluding 

only a few with very low correlations or far distances. Furthermore, it was assumed that the correlation 

should be at least 50%, because at lower correlations, data would rather be distorted than improved 

by applying the correction factors. 
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All in all, too low correlations applied to nine INMET stations, which were excluded (automatically by 

if-statement) for this reason. Causes of the low correlations were checked by assessing the location of 

the stations as well as the data by plotting them. As already described in chapter 2.1.2, some datasets 

were lacking lots of data or apparently erroneous data (lots of 0 m/s wind speed) were incorporated. 

Stations, where this was the case, are shown in Table 4. Remarks on the data quality are also shown. 

Table 4: INMET stations with anomalies in the data (own representation) 

Station Number Location Remarks 

24 Ilheus Lots of 0, 2008 only 0 

78 Areia 2008 nearly only 0 

90 Garanhuns 2013 fluctuation between 0 and higher values, beginning 

of 2014 only 0 

98 Alvorada do Gurgeia 2009 outliers, 2013 and 2014 only 0 

119 Calcanhar Lots of 0, especially 2013 

 

Moreover, Table 5 shows all stations excluded because of their low correlation and discusses possible 

anomalies in their location. They were determined by searching for the coordinates on Google Maps 

and examining the surroundings (height, vegetation, site density). High buildings, vegetation, 

mountains or valley location may influence the wind direction and intensity. 

Table 5: INMET stations with anomalies in their location (own representation) 

Station Number Location Remarks 

12 

36 

66 

78 

98 

103 

119 

Bom Jesus da Lapa 

Piatã 

Buriticupu 

Areia 

Alvorada do Gurgeia 

Esperantina 

Calcanhar 

Ground objects such as buildings or trees are located 

close to the station and measurements may therefore be 

distorted in terms of representing wind speeds at hub 

heights 

24 

90 

Ilheus 

Garanhus 

On an elevation of about 100 m above the surroundings/ 

On high plateau of Borborema -> wind turbines are also 

located on elevation, therefore no obvious reason for 

low correlations was found 
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2.2.2 Correction of wind generation data 

After determining the correction factors for the measured wind speeds, the next step is the bias-

correction of the original reanalysis data and the reanalysis data corrected with measured wind speeds 

to observed generation data from the national electrical system operator of Brazil. As the data for a 

larger time span of several years exist only in monthly resolution for the whole North-East subsystem, 

the MERRA-2 data also have to be monthly aggregated for the whole North-East. The applied approach 

is depicted in Figure 13. In the following the single steps will be explained in more detail. 

 

Figure 13: Approach of the wind power correction (own depiction) 

To be able to bias-correct, the power resulting from the wind speed has to be calculated. This happens 

in the model by the function “calcmunpower”. The rated power (2 MW), the hub height (108 m), the 

power curve (as two vectors of wind speed and the resulting power), as well as the correlation limit 

(50%) and the maximum distance of the INMET station (80 km) are passed to the function. The latter 

two are used, as explained before in chapter 2.2.1. 

As mentioned before, the exact positions of the wind power plants are not known. For this reason, the 

centres of the municipalities they are located in are assumed as locations. The power is therefore 

calculated per municipality. It would be easy to just sum up the installed capacities per municipality, 

however, the wind power plants have different start-up dates. So, at first the data of the installed 

capacities are read into R, with the relevant data being the geographical coordinates of the centre of 

the municipality, the installed capacity and the start-up date of each of the wind power plants. As the 

data are sorted by municipality, the rows of the power plants in this municipality are extracted to a 

separate data frame. In that data frame, only the capacities and the start-up dates are saved. The 
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longitude and latitude are saved in separate variables. The data frame is then sorted by start-up date 

and a list of the cumulative installed capacities per date is created. A list of capacities, in the length of 

the examined time span is created, where the entire capacity installed in the municipality at each time 

is stored. 

Afterwards the nearest neighbour of the MERRA-2 grid points is searched by calculating the distances 

and applying the function “distanceorder”, as described before. The data are loaded from the 

rearranged and saved files and are then corrected, if the limits of maximum distance between MERRA-

2 grid point and INMET station, as well as the minimum correlation value are met. 

Next, the power generation has to be calculated. This is done with the help of the power curve, shown 

in Figure 5, which indicates the power output from the selected turbine Enercon E-82 for a specific 

wind speed. This standard turbine is chosen, as no exact data of the installed turbines in the North-

East of Brazil are known. Only certain points of the power curve are known. That is why the wind 

speeds between the given points have to be interpolated to receive the power output. For this 

purpose, the nearest point below and the one above the respective wind speed are determined. The 

interpolation is done for each point of time by a simple linear interpolation equation: 

𝑝𝑜𝑤𝑒𝑟 =
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑟𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟
∗ (

𝑝𝑜𝑤𝑒𝑟1 − 𝑝𝑜𝑤𝑒𝑟2

𝑤𝑖𝑛𝑑1 − 𝑤𝑖𝑛𝑑2
∗ (𝑤𝑖𝑛𝑑𝑚 − 𝑤𝑖𝑛𝑑2) + 𝑝𝑜𝑤𝑒𝑟2), 

where “capacity” is the installed capacity in a municipality at a certain time, and “ratedpower” is the 

rated power of the wind turbine (2 MW). The number of turbines per wind power plant is calculated 

by dividing the installed capacity by the rated power and multiplying it with the power produced at 

that time. “wind1” and “power1” are the lower neighbouring data from the power curve, while “wind2” 

and “power2” are the upper neighbouring data from the power curve and “windm” is the (corrected) 

wind speed occurring at a certain time in the middle of the municipality. For wind speeds that are 

above the highest wind speed in the power curve, the power output is set to that of the highest wind 

speed (25 m/s) as the power curve flattens in the end and a maximum power output of 2 MW is 

reached. Finally, the energy produced can be determined from the power by multiplying with the time, 

which in this case is one hour, as the data are in hourly resolution. 

When the electricity generated over time has been calculated for all the municipalities, it needs to be 

summed up and compared to the observed electricity generation. First, the calculated powerr output 

is dropped before the year 2006, as the data for comparison only exist since 2006. Then the calculated 

power output is aggregated by month for each municipality separately. Next the monthly sums over 

the municipalities are aggregated by month, resulting in 12 monthly sums for the whole North-East 

region for the period of 2006-2016. The sums are divided by 106 to convert them from kWh to GWh, 
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the same unit as the observed data. The latter are also aggregated to 12 monthly sums. Then the 

measured power generation is divided by the calculated power generation and 12 correction factors 

for the whole North-East are obtained. 

Afterwards, the whole data are corrected with the monthly correction factors for the North-East and 

the original correlation is compared to the correlation of the corrected data with the measured data. 

A different approach was also examined: here, simulated as well as measured wind power generation 

are normalised with the installed capacity at that time before calculating the wind power generation 

correction factors. However, as can be seen in Figure 14, the simulated generation after wind and 

power correction (green line) underestimates the observed generation (black line), especially in recent 

years, more than the only wind corrected simulated generation (blue line). Therefore this approach 

does not result in better adapted time series, which is why it was discarded. 

 

Figure 14: Illustration of the discarded approach of normalising generation with installed capacity (own depiction) 

 

2.2.3 Validation with Daily Wind Power Generation Data 

Similarly to the monthly wind power generation data, an analysis with daily generation data is 

conducted. The observed daily generation is compared to the simulated generation with and without 

application of different bias correction methods, in order to find out how well daily fluctuations in wind 

power generation can be simulated. 
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2.2.4 Simulation and Analysis 

After all the correction factors have been calculated, finally a simulation of 37 years of wind power at 

full expansion can be simulated. For this purpose, for all the existing wind power plants, the sums of 

installed capacities are assumed as fixed and the electricity generated over the whole timespan of 

existing MERRA-2 data is calculated. The wind speeds at the centres of the municipalities are corrected 

with the hourly and monthly correction factors previously computed by comparing reanalysis data to 

INMET data. Again, the correlation limit of 50% and the distance limit of 80 km are assumed and data 

are only corrected if the respective values complied with the limits. Afterwards, the monthly correction 

factors for wind power generation for the North-East are applied as well. A sum over the municipalities 

as well as the time is calculated and the results indicate a possible wind power generation for 37 years 

if the current installed capacity stays the same. 

Furthermore, a statistical analysis of the data is carried out. For the wind speed bias correction, 

scatterplots are created and correlations are calculated to determine interrelations of the correlations 

of INMET and MERRA-2 wind speeds with the distance to the nearest neighbours or the share of 

missing data. A possible impact on the change of correlation when applying the hourly and monthly 

correction factors is examined as well. The scatterplots are created using the “plot” function in RStudio 

and setting the type to “p”, for points. 

Moreover correlations before and after the hourly and monthly wind speed correction are compared 

in a boxplot. Also the changes in correlations are examined. Boxplots are generated with the “boxplot” 

function in R. 

To find out how the wind speeds behave over time for certain stations, plots of hourly mean wind 

speeds for ten days are created, comparing the INMET wind speeds to the MERRA-2 uncorrected and 

corrected wind speeds. From these plots it can be visually determined how well the trajectory of the 

simulated and observed wind speeds match and also whether the simulation over- or underestimates 

the observed wind speeds and what changes are caused by the correction. As there are 128 INMET 

stations, not all of them could be examined, but certain ones were picked: The INMET stations with 

the lowest correlation with the MERRA-2 data before and after correction, the stations with the highest 

correlations with MERRA-2 wind speeds before and after bias correction, the stations with the lowest 

and highest change in correlation when applying the hourly and monthly correction factors as well as 

stations with medium correlation before and after the bias correction. The plots were generated with 

the “plot” function in RStudio, setting the type parameter to “l”, for line. 

For the same set of INMET stations, the hourly and monthly correction factors are examined. As it 

would be difficult to analyse 288 correction factors displayed as numbers, heat maps are drawn in R 
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with the “plot_ly” function from the “plotly” package. The function parameter type is set to “heatmap” 

and a heat map is created where blue rectangles stand for low values and red rectangles for high 

values. However, the shade values differ between heatmaps. The heat maps help to determine in 

which times of the day or months of the year the wind speeds have to be lowered or heightened to 

bias-correct them and also when measured wind speeds are over- or underestimated (Examples can 

be seen in Figure 45 to Figure 53). 

Furthermore, two boxplots are created for all correction factors, one with the correction factors 

segregated into twelve monthly boxplots and one segregated into 24 hourly boxplots. This way, it can 

be found out in which hours or months the wind speeds need to be lowered or increased. As some 

correction factors are significantly higher than the average, not the whole plot is displayed, but only 

the part where the boxes and therefore the main part of the data lie (see Figure 17 and Figure 16). 

All these parameters and plots serve as illustration of the effect of the application of correction factors 

and furthermore show how observed and simulated data differ. 

 

The next part of the analysis comprises the monthly wind power bias correction. The correction factors 

are presented in table, as there are only twelve of them for each method (with and without preceding 

wind speed correction). Furthermore, the daily, monthly and yearly aggregated electricity generations 

from wind power are compared with line plots and the correlations of the data before and after 

monthly bias correction are determined. The comparisons for the monthly and yearly generation data 

are in a time span between January 2006 and October 2016. The daily comparison is only exerted 

between August 2015 and October 2016, as no earlier data are available. 

The corrected and uncorrected simulated data are compared to the measured data also by boxplots, 

to see how the measured data are over- or underestimated and also how the correction influences the 

data. Also the errors (differences between observed generation data and simulated or corrected 

simulated energy outputs, respectively) are compared as boxplots. There are no boxplots created for 

the aggregated yearly electricity generation from wind power in the North-East of Brazil, as there are 

too few data for these plots to be meaningful. 

A histogram of power classes is created only for daily means of power, as only in the daily resolution 

sufficient data are available. The histogram is created using the “hist” function in RStudio. 

To compare the observed and simulated power generation, contour plots are used. These plots are 

generated in R using the “plot_ly” function, by setting the parameter type to “histogram2dcontour”. 

Eight plots are generated, comparing the observed generation to the simulated generation before and 
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after correction with and without previous wind speed correction, for monthly as well as for daily 

generation data. These plots help to determine whether the simulation over- or underestimates the 

observed generation and also in which amounts of generated energy. 

Furthermore the statistical parameters correlation, mean, RMSE and minimum and maximum 

difference between measured and simulated wind power generation are determined and displayed in 

a table. 

 

 

3 Results 

This chapter presents the results from the analysis and correction of the MERRA-2, INMET and ONS 

data. Original reanalysis and corrected data are compared to observations and statistical parameters 

are calculated to show the effect of the bias correction. Also time series and correction factors are 

examined to find out whether the reanalysis data and the energy output calculated from them over- 

or underestimate the observed data. 

 

3.1 Wind Speed Bias Correction 

This chapter presents the results of the correction performed with hourly and monthly correction 

factors obtained by comparing MERRA-2 reanalysis data to observed wind speed data by INMET. 

Several factors are examined, which may have an influence on the fitness of the model. Furthermore 

the correction factors are examined to find out whether observed wind speed values are over- or 

underestimated. 

The detailed analysis can be found in the appendix (section 6.1). The results are summarised in this 

section. 

First of all, influences of different factors on the correlation between measured and simulated wind 

speed data were examined. It is shown, that neither the distance to the nearest neighbour, the share 

of missing values in the INMET data, nor the location (per state) have an influence on the correlation 

or change in correlation after bias-correction. 

What could be determined, however, is that bias-correction in most cases has a very positive influence 

on the correlations. The correlations are always increased, only in a few cases, where correlation was 

very low initially, they remain low after correction. The improvement of correlations varies a lot, 

ranging from nearly 0 percentage points up to more than 50 percentage points (see Figure 15). 
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Figure 15: Boxplot of the changes in correlation with the monthly and hourly correction (own depiction) 

When examining the correction factors it can be observed, that they show significant differences 

between locations, sometimes being lower than 1 and therefore reducing the simulated wind speeds, 

and other times being as high as 50, significantly increasing the simulated wind speeds. This shows, 

how important it is to calculate these factors for many different locations in order to adapt the 

simulated data well to measured data. Furthermore it could be determined that there is hardly any 

seasonal variation of correction factors, they are only slightly lower in summer months (see Figure 16). 

 

Figure 16: Boxplot for correction factors per month (own depiction) 
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However, there is a remarkable difference in correction factors during the day, as they are significantly 

lower in late morning hours and higher in afternoon and night hours (see Figure 17). 

 

Figure 17: Boxplot for hourly and monthly correction factors per hours (own depiciton) 

 

To sum up, applying the hourly and monthly correction for wind speeds, in most cases, has a very 

positive influence on the correlation of observed and simulated wind speeds, fitting the time series of 

reanalysis data better to time series of wind speed measurements. It can also be observed, that 

especially the hourly correction makes a big difference. The correction factors vary a lot, depending on 

the location. Sometimes there is a clear distinction between higher and lower correction factors in the 

evening or morning hours, respectively. 

 

3.2 Wind Power Generation Bias Correction 

This section of the results shows the results of bias-correction of wind power generation with monthly 

electricity generation data from wind power. The daily, monthly and yearly correlation and trajectories 

of simulated, corrected and observed wind power generation data are examined for the whole of the 

North-East region. In the implementation of the model, twelve monthly correction factors were 

determined twice, once with uncorrected wind speed data and once with wind speed corrected wind 

speed data, which are displayed in Table 6. 
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Table 6: Correction factors for the North-East of Brazil (own representation) 

Month      Correction factors 

without Wind Correction 

Correction factors with 

Wind Correction 

January 0.63 1.02 

February 0.66 1.08 

March 0.66 1.11 

April 0.63 1.11 

May 0.65 1.15 

June 0.61 1.15 

July 0.60 1.13 

August 0.63 1.12 

September 0.64 1.08 

October 0.63 1.02 

November 0.63 1.05 

December 0.63 1.03 

 

All of the correction factors calculated from data without wind speed correction are between 0 and 1 

and thus reduce the amount of energy produced when applying them, which indicates that the 

simulation overestimates the observed power generation. It can also be observed that in the months 

from February to May, apart from April, the correction factors are slightly higher (between 0.65 and 

0.66) than in other months. The lowest correction factors are calculated for June and July where they 

lie at 0.61 and 0.60, respectively. This means that in the spring months the simulated generation is 

slightly better adapted to observed generation and in summer months the observed generation is 

overestimated the most by the simulation. When applying the wind speed correction beforehand, the 

correction factors are all slightly above 1 (between 1.02 and 1.15), which means that the simulated 

wind power generation underestimates the observed wind power generation. The highest correction 

factors occur in spring and summer months between March and August (between 1.11 and 1.15), 

whereas in the autumn and winter months between September and February they are all below 1.1 

(between 1.02 and 1.08). This means that in spring and summer observed wind power generation is 

more underestimated by the simulated generation than in autumn and winter months. In general, it 

can be said that in summer months, especially June and July, simulated wind power generation needs 

to be corrected the most, compared to other months, as in these months the correction factors deviate 

the most from 1. 
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Figure 18 shows the comparison of daily wind power generation in GWh for the whole North-East 

region of Brazil. The orange line is wind power generation calculated from uncorrected MERRA data. 

The blue line is the wind power generation calculated from MERRA-2 data, where the wind speed has 

been corrected. The red line is the wind power generation calculated from uncorrected wind speed 

data but corrected with monthly wind power generation correction factors. The green line is the 

corrected electricity generation (corrected with hourly and monthly correction factors derived from 

INMET wind speed measurements as well as with monthly correction factors derived from ONS wind 

power generation data) and the black line shows the observed electricity generation from wind power 

provided by the national electrical system operator of Brazil. As daily comparison data are only 

available since 1st of August 2015, the comparison is done only for a timespan of one year and three 

months. It can be seen, that the trajectory of the not corrected line fits quite well to the observed 

electricity generation, it only is about twice as high, whereas the power generation calculated from 

wind speed corrected MERRA-2 data is lower than the observed power generation for the later months 

of 2016 but sometimes slightly lower or higher before that (in 2015 as well as in the earlier months of 

2016). 

 

Figure 18: Daily observed and simulated wind power generation in the North-East of Brazil compared (own depiction) 
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When looking at the wind power generation data that have only been monthly power corrected, it can 

be seen that their trajectory fits observed generation much better than the uncorrected data. Also the 

trajectory of wind power generation calculated from wind speed corrected wind data seems to fit the 

observed wind power generation well. When comparing the two power generation corrected time 

series, it cannot be determined which one fits the measured daily wind power generation better: The 

trajectory of data with power correction only shows better fitting in the early months, where the 

simulation only slightly underestimates observed wind power generation, whereas the trajectory of 

the time series that have also been wind corrected overestimates the measured data. However, in the 

later months, the trajectory of the data on which correction factors, calculated from INMET data was 

well as the ones from ONS data, have been applied, seems to fit better to the trajectory of the observed 

wind power generation, as they underestimate the observed generation less than the only power 

corrected data. In terms of correlations, no correction (r_nc) or only power correction (r_pc) seem to 

bring the best results, as they correlate with 93%, whereas only wind corrected data (r_wc) correlate 

with only 88% and wind and power corrected data (r_wpc) with 90%. Without performing wind speed 

correction, the power generation correction does not improve correlation, whereas when wind speed 

correction is applied, the correlation deteriorates. However, one must bear in mind, that correlation 

alone is not an indicator for the goodness of fitting. 
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Figure 19 only partly supports what has been ascertained from the preceding figures: The positions of 

the boxplots show, that the simulated data without correction overestimate and the simulated data 

with correction underestimate the observed daily power generation data, at least for the higher and 

middle values. Furthermore, it can be seen, that with the correction the range of variation of the data 

is reduced, as the boxes as well as the whiskers are smaller. The variation of the uncorrected simulated 

data, which lie in a range between about 20 to nearly 180 GWh per day, is larger than the one of the 

measured data, which has values between about 20 (disregarding the outlier) and approximately 120 

GWh per day. Also compared to the corrected simulated data, which range between about 20 and 100 

to 110 GWh per day, the variation of uncorrected data is obviously higher. The simulation, which seems 

best adapted to the observed wind power generation data in terms of distribution, is the one with 

wind speed as well as wind power generation correction, as the median as well as the whiskers are 

closest to the measured data, compared to the other simulations. 

 

Figure 19: Boxplot for comparison of daily power generation in the North-East of Brazil (own depiction) 
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In Figure 20, from the left to the right, the absolute differences between observed daily wind electricity 

generation and simulated uncorrected, simulated wind corrected, simulated power corrected as well 

as simulated wind and power corrected wind power generation are displayed. When looking at the 

absolute differences in GWh represented as boxplots, a clear improvement in the differences can be 

observed when bias-correction is applied, as the median is lower and some differences are even at or 

very close to 0 GWh. The best results again seem to emerge from wind speed correction with 

subsequent wind power generation correction. 

 

Figure 20: Boxplots for comparison of absolute differences between measured and simulated uncorrected or corrected daily 
wind power generation (own depiction) 
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In Figure 21, the real differences between measured and simulated (on the left) or wind and/or power 

corrected simulated (the three boxplots on the right) daily power generation are displayed in GWh. 

Here it can be seen, that before the bias correction the measured wind power generation data are 

overestimated and afterwards underestimated for the examined period, as the first lie above 0 GWh 

and those after correction mostly below 0 GWh (always nearly 75% of the daily generations). 

Furthermore, the differences are nearer to 0 GWh after the correction, which means that the 

simulated data better fit to the observed data in terms of absolute differences. The dataset with 

differences closest to 0 GWh is the one with wind speed and wind power generation corrected. Table 7 

additionally displays the minimum and maximum difference of simulated and observed daily wind 

power generation. 

 

Figure 21: Boxplots for comparison of differences between measured and simulated uncorrected or corrected daily wind power 
generation (own depiction) 
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In Table 7, a comparison of the correlations between the resulting data from different corrections and 

observed data as well as the RMSE, the means, the minimum and the maximum difference to the 

observed data of each of the time series are displayed. The best correlations occur with uncorrected 

data as well as with only power corrected data. However, only looking at the correlations does not 

indicate how well the two time series fit, which is why also other parameters like mean and RMSE 

should be consulted. As can be clearly seen, the mean of the uncorrected data is significantly higher, 

at 85.67 GWh, than the mean of the measured wind power generation at 62.81 GWh. In contrast to 

the means of the monthly comparison in Table 8, the means of the daily comparison are not all the 

same despite bias-correction, because only a sub-period is considered. The mean closest to the mean 

of observed generation results from the wind speed and wind power generation correction, which 

again underpins the assumption that this simulation provides the best fitness to the observed wind 

power generation data. Also the lowest RMSE of only 11.32 GWh, which indicates the difference 

between measured and simulated time series, supports this. 

 

Table 7: Comparison of correlations, means, RMSE, minimum and maximum of differences to observed data of different 
methods for daily wind power generation (own representation) 

Method Correlation with 

Observed 

Generation 

Mean 

[GWh] 

RMSE 

[GWh] 

Minimum 

Difference to 

Observed 

Data [GWh] 

Maximum 

Difference to 

Observed 

Data [GWh] 

No Correction 0.93 85.57 26.12 -6.60 138.70 

Wind Correction 0.88 53.02 14.65 -37.46 80.30 

Power Correction 0.93 53.88 12.35 -31.22 83.60 

Wind & Power Correction 0.90 57.61 11.32 -30.68 90.38 

Observed 1.00 62.81 0.00 0.00 0.00 

 

Some additional results from wind power production bias correction for the daily wind power 

generation in the form of contour plots can be found in section 6.3.  
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In Table 8, a comparison of the correlations between the resulting monthly wind power generation 

data from different corrections and measured data as well as the RMSE, the means, the minimum and 

the maximum difference to the observed data of each of the time series are displayed. For all cases, 

the correlations are very high at 99%. However, as mentioned before, only looking at the correlations 

is not sufficient to determine how well the simulated and observed time series fit, which is why also 

other parameters like mean and RMSE are consulted. As can be clearly seen, the mean of the 

uncorrected data is significantly higher at 645.12 GWh than the mean of the measured wind power 

generation at 406.92 GWh. The mean of wind corrected only simulation underestimates the observed 

wind power generation with only 374.83 GWh monthly mean. The means of the two wind power 

corrected simulations are the same as the measured wind power generation, due to bias-correction. 

The lowest RMSE of 108.31 GWh, which indicates the difference between measured and simulated 

time series, occurs for the wind speed and wind power generation corrected time series. This does not 

fully support the observations made before, as the only wind speed corrected data seemed to fit 

better. For more detailed information on the results of wind power generation bias correction for the 

monthly wind power generation see the Appendix (section 6.2). 

 

Table 8: Comparison of correlations, means, RMSE, minimum and maximum difference to measured data of different methods 
for monthly wind power generation (own representation) 

Method Correlation with 

Observed 

Generation 

Mean 

[GWh] 

RMSE 

[GWh] 

Minimum 

Difference to 

Observed 

Data [GWh] 

Maximum 

Difference to 

Observed 

Data [GWh] 

No Correction 0.99 645.12 340.67 1.71 1153.28 

Wind Correction 0.99 374.83 147.50 -704.10 111.80 

Power Correction 0.99 406.92 133.15 -547.62 184.86 

Wind & Power Correction 0.99 406.92 108.13 -491.61 188.93 

Observed 1.00 406.92 0.00 0.00 0.00 
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Figure 22 shows the yearly sums of wind power generation in TWh in the North-East of Brazil. The 

simulated generation without correction, displayed as an orange line, is the highest. When it is 

corrected with the hourly and monthly wind speed correction factors, illustrated by the blue line, the 

simulated wind power generation is reduced and therefore its trajectory fits  the observed electricity 

generation better and sometimes over- and sometimes underestimates the observed wind power 

generation. When it is also corrected with the monthly correction factors (green line), the simulated 

power generation differs slightly more from the trajectory of the observed electricity generation, 

drawn in black, except for the last year and also only overestimates the observed wind power 

generation (again apart from the last year). If only the wind power generation correction is applied 

(red line) the differences to the observed power generation are obviously larger than when applying 

the wind speed correction (with or without wind power generation correction afterwards). Therefore 

it seems recommendable to apply the wind speed bias correction. According to the correlations, which 

are always at 99%, the corrections bring no improvements. However, as there are not many years to 

be compared, the evaluation of statistical parameters is not significant, which is why it is left out for 

the yearly comparison. 

 

Figure 22: Yearly observed and simulated wind power generation in the North-East of Brazil compared (own depiction) 
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In the following, histograms, which compare the power classes of simulation to those of the observed 

data, will be displayed. They are only created for corrected data, as uncorrected data differ too far 

from observed data. The first histogram for the comparison of daily means of wind corrected power 

to observed power can be found in Figure 23. On the x-axis the power classes between 0 and 5 GW 

daily mean are shown, divided into ten classes each of 0.5 GW. The y-axis represents the frequency of 

each of these classes, indicating how often these power classes occur between the 1st of August 2015 

and the 31st of October 2016. The highest frequency of about 120 to 130 occurrences for the simulated 

as well as the observed power is between 2 and 2.5 GW daily mean. The distribution of the power 

classes of the observed and simulated data is the same, as they lie both between 0 and 5 GW daily 

mean. The overlapping area is quite big, which means that the daily mean power classes of the 

observed electricity generation and of the wind corrected simulated electricity generation correspond 

well to each other, which underpins the observations made in the graph of daily power generation in 

Figure 18. However, what has to be emphasised, is, that the wind speed corrected wind power 

generation has higher frequencies in the lower power classes and the observed generation more 

occurrences in the higher power classes, from which one can conclude that the simulation tends to 

underestimate the observed power generation. 

 

Figure 23: Histogram of mean daily simulated wind corrected and observed power (own depiction) 

  



45 
 

The following histogram (Figure 24) shows the comparison of mean daily power for the power 

corrected and the observed wind power generation. This graph looks very similar to the previous one, 

however, the simulated generation has slightly lower frequencies in the lower power classes and a few 

more occurrences in the higher power classes, which is hardly visible to the naked eye. Again the 

highest frequency is in the power class between 2 and 2.5 GW daily mean and also for lower power 

classes there are less occurrences for the observed data and in higher power classes there are more, 

compared to the simulated wind power. This again means that despite the power correction, the 

simulation tends to underestimate the observed wind power generation. 

 

Figure 24: Histogram of mean daily simulated power corrected and observed power (own depiction) 
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Figure 25 compares the mean daily power of the observed to the wind speed and power generation 

corrected electricity generation. In this case, the highest frequency of the simulation is not between 2 

and 2.5 GW (like the observed mean power) but between 2.5 and 3 GW. What can also be observed is 

that for lower power classes the frequency of the simulated daily mean power is increased and for 

higher power classes it is reduced, which means that application of wind speed and wind power 

generation bias-correction to the simulated power fits it better to the measured power. 

 

Figure 25: Histogram of mean daily simulated wind and power corrected and observed power (own depiction) 

 

To sum up, one can say that in general the calculated wind power generation simulates the observed 

electricity generation quite well, but tends to underestimate the observed wind power generation for 

higher values of wind power generation. What can be determined from the monthly wind power 

generation correction factors, is, that if the wind speed correction is applied before the wind power 

generation correction, the simulation slightly underestimates the observed generation, which can be 

seen as the correction factors are all slightly above 1. The wind power generation correction factors 

without previous wind speed correction however, are all below 1, as before the correction the 

simulation overestimates the observed wind power generation. Table 9 provides a summary of the 

results from wind power generation bias correction. It can be clearly seen, that for the daily 

comparison, wind speed and wind power generation correction provides the best results, concluding 

from the different graphs as well as from the mean and RMSE. Only the correlation is worse for this 

type of correction. For the monthly comparison, from the plots the most recommendable methods 

seem to be wind speed correction and also the wind speed and wind power generation correction. 
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Correlation does not change by means of the correction methods and the mean of the simulations is 

the same as the one of observed data due to the method. The RMSE is lowest when applying wind 

speed as well as wind power generation correction. Therefore for daily as well as monthly comparisons 

both correction methods deliver good results. 

Table 9: Summary of results from wind power generation bias correction (own representation) 

 
Correction No Wind Power Wind & 

Power 

D
ai

ly
 C

o
m

p
ar

is
o

n
 

Correlation 0.93 0.88 0.93 0.90 

Mean (% Deviation) 36.67 -15.32 -13.94 -7.99 

RMSE 26.12 14.65 12.35 11.32 

Boxplot -- + + ++ 

Boxplot Abs. Diff. -- - + ++ 

Boxplot Difference -- - + ++ 

Histogram -- - - ++ 

Contour Plot -- ++ - ++ 

M
o

n
th

ly
 C

o
m

p
ar

is
o

n
 

Correlation 0.99 0.99 0.99 0.99 

Mean (% Deviation) 58.54 65.84 0.00 0.00 

RMSE 340.67 147.50 133.15 108.13 

Boxplot -- ++ - ++ 

Boxplot Abs. Diff. -- ++ - ++ 

Boxplot Difference -- ++ + ++ 

Contour Plot -- ++ - ++ 

 

 

3.3 37 Years of Simulation 

As the aim of the model is to be able to estimate future electricity generation potential from wind 

power, the past 37 years’ (36 years and 10 months) reanalysis wind speed data are used to simulate 

wind, assuming that the following 37 years will be in similar weather conditions. The current (8.02 GW 

at the moment of download, in November 2016) capacities are assumed for the calculations, although 

they will probably increase. For the whole time of 36 years and 10 months, an overall energy output 

of between 783 TWh and 850 TWh was calculated, depending on the correction method used (see 

Figure 27).  The lowest generation results from wind speed correction only, the highest from wind 
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speed and wind power generation correction. These results yield a yearly mean of 21.26 TWh to 23.07 

TWh of energy produced by wind power. 

Figure 26 shows the monthly energy produced at full capacity for nearly 37 years in GWh. The 

maximum monthly power generation corrected as well as wind speed and wind power generation 

corrected energy produced is in August 2007, at 2904.61 GWh and 3076.44 GWh, respectively. The 

maximum power generation for the only wind speed corrected wind power prodcution occurs in 

September 2007, with 2747.85 GWh. The minima for wind speed, wind power generation and both 

corrections are at 596.02 GWh, 625.47 GWh and 661.69 GWh, respectively, all in April 2009. Clear 

seasonal fluctuations can be observed in the graph, with peaks in late summer or autumn and valleys 

in spring months. 

 

Figure 26: Simulation monthly power generation for 36 years and ten months (own depiction) 
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The following Figure 27 shows the yearly electricity generation of the same simulation in TWh. There 

are clear yearly fluctuations visible between the single years. The last year 2016 was removed from 

the graph, as two months are missing and the generation is very low due to this. Other minima occur 

in the years 1985, with yearly wind power generations between 17.34 TWh and 18.85 TWh, and 2009, 

with yearly wind power generations between 17.78 TWh and 19.23 TWh. The years with the highest 

wind speeds and therefore electricity generations are 1981 and 2012, where the yearly generation 

from wind power amounts to between 22.09 TWh and 24.02 TWh or between 23.61 TWh and 25.63 

TWh, respectively. 

 

Figure 27: Simulation yearly power generation for 36 years (own depiction) 

 

A simulation like this one can help to determine, how much of the electricity demand can be covered 

by wind energy, with current or future installed capacities. It can also help to decide, how much 

capacities need to be installed for estimated future demand, especially if other sources of electricity, 

like hydropower, cannot be used in the amount they have been used in the past. 

 

 

4 Discussion & Conclusion 

In this thesis, a model for simulating wind power generation in North-East Brazil based on publicly 

available wind speed and wind power generation data has been presented and validated with 
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measured data. The model is optimised by applying hourly and monthly wind speed correction as well 

as monthly wind power generation correction. The results in the previous chapter show, that the 

model developed in this thesis is capable of simulating wind power generation in the North-East of 

Brazil, if at least one type of bias-correction is applied. If the data are not corrected at all, the observed 

wind power generation is overestimated, as can be seen in Figure 18, Figure 54 and Figure 22 as well 

as in the contour and boxplots, which underpins the necessity to apply at least one form of correction. 

For the first correction, the wind speed bias correction, neither the distance to the nearest neighbour, 

the share of missing values in the INMET data nor the state, where the INMET stations are located in, 

had an influence on the correlation before or after correction or on the change in correlation. This 

means that improving any of these factors will probably not lead to better results. As could be seen, 

MERRA data alone do not simulate observed wind speeds very well and therefore should be corrected. 

The hourly and monthly correction delivers simulated wind speeds better adapted to observed wind 

speeds, as correlations rise with correction. Only hourly or only monthly correction cannot be 

recommended, as they do not result in that well adapted data, as can be seen in Table 3. In some cases, 

correlations are very low even after correction. This may not only be due to lack of accurateness of 

MERRA data, but maybe also to erroneous INMET data, as has been shown in section 2.2.1. However 

it should not be disregarded, that reanalysis data can contain a systematic bias, because they are also 

only output from a model, as emphasised by Staffell and Pfenninger [24]. 

In general, it has been observed, that simulated wind speeds often overestimate measured wind 

speeds, as the majority of the correction factors are between 0 and 1, but for some cases they are 

highly underestimated, with values of up to 50. In summer, wind speeds are mostly more 

overestimated than in winter months (see Figure 16) and around noon measured wind speeds also are 

more overestimated, resulting in lower correction factors (see Figure 17). This may be due to the 

assumption that reanalysis data often underestimate the observed variations of wind speeds, as stated 

by Cannon et al. [27]. 

It is not possible to determine exactly how well reanalysis data can simulate measured wind speeds (in 

this case from INMET), because, as mentioned before, either of them can be erroneous for various 

reasons.  

Correlations of monthly and daily generation time series for the whole North-East region have been 

examined and show good results. Daily correlations vary between 88% and 93%, monthly correlations 

are all at 99% for any or no correction applied. What seems to be negative at the first glance is that 

the wind speed correction reduces the daily correlation. This can be due to the rather short time span 

regarded for daily comparison and furthermore because wind power generation correction factors 
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were calculated for a longer timespan than the one examined in the daily comparison. However, 

correlation alone is not a sufficient measure to understand the quality of simulated time series, which 

is why also other statistical parameters like the RMSE are calculated and interpreted. For daily as well 

as for monthly data the RMSE is smallest when applying wind speed as well as wind power generation 

correction. From the boxplot in Figure 19 it can be determined, that the range of simulated daily 

generation is closest to the one of measured generation when applying both bias correction methods. 

Therefore this method is recommended for further use. 

What makes the analysis of wind power generation difficult is the vast expansion of wind power 

capacity in recent years – and the technological and locational details of new turbines are unknown. 

Wind power generations at higher installed capacities are always underestimated by the simulations, 

even after correction. This is most likely due to applying the same correction factors as in times when 

lower capacities were installed to periods with higher capacities installed in the recent years. An 

approach for elimination of this problem was tried, by normalising with the installed capacities, but 

was discarded, as it led to worse results. The problem when applying the same correction factors for 

the whole time span is, that wind power generation structure can change, when new wind power 

plants are installed in different regions than the older ones, as there can be different weather 

conditions. To eliminate this problem, more precise data are necessary: Exact location of wind parks 

(not only the centre of the municipality they are located in), knowledge about the wind turbines (type, 

capacity, amount, rotor diameter, height), more accurate data for calculation of correction factors, for 

example data of measured wind power generation not only for a whole subsystem but maybe per 

state. The lack of more accurate (or higher resolved) data is also criticised by Pfenninger and Staffell 

[24] [26] as well as Schmidt et al. [9]. 

The importance of correcting wind speeds at many locations and not for a whole region is shown with 

the heat maps and boxplots of hourly and monthly correction factors in sections 3.1 and 6.1. Correction 

factors differ significantly at various stations and can depend highly on the location of the wind 

measurement station, as surroundings like buildings or trees influence the measurements at 10 metres 

height but not reanalysis wind speeds. Therefore these measurements do not represent the wind 

speeds correctly and in these cases it may be a better choice to use uncorrected reanalysis data, in 

order not to distort them, as also discussed by Bengtsson et al. [23]. 

Similar to two studies about the UK [27] and Sweden [20], it was also found that, in general, wind 

speeds can be reproduced quite well, but sometimes for single locations simulated wind speeds differ 

considerably from measured wind speeds, which may be due to the rather coarse resolution of the 

MERRA grid points at 50 km. 
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The incapability of representing observed data at single locations most likely also applies to electricity 

generation from wind power, but as data from single wind farms were not available, neither locations 

or the number and type of installed wind turbines, nor wind power generation time series, it cannot 

be determined whether it is possible to simulate wind power generation at turbine level. Mosshammer 

[49], Olauson and Bergkvist [20], as well as Pfenninger and Staffell [24] underpin the conclusion, that 

MERRA reanalysis data cannot represent local wind speeds and wind power generation adequately. 

From the simulation of 36 years and 10 months of wind power generation, a total electricity generation 

of between 783 TWh and 850 TWh results, depending on the correction method used, which amounts 

to a mean yearly generation of 21.26 TWh to 23.07 TWh. For the electricity consumption of the North-

East of Brazil in 2014 (67.1TWh [50]) this would make up for between 27.9% and 30.3%. For the 2015 

electricity consumption of 79.9 TWh [8], only between 26.6% and 28.9% could be covered by wind 

power. In their 2024 Energy Plan the Brazilian Ministry of Mines and Energy estimates the 2024 

electricity demand in the North-East of Brazil to rise to 111.0 TWh [50]. Therefore, if the capacity 

remains the same, only between 19.2% and 20.8% of demand can be covered, according to the 

calculations. Therefore, if the share of electricity from wind power in the (North-East) Brazilian 

electricity consumption shall remain at the same high level, capacity needs to be expanded. 

It can be concluded, that it makes no relevant difference which bias correction method is applied, as 

results are similar. If computational cost shall be saved, only one method can be applied, applying both 

wind speed as well as wind power generation correction is however the recommended method. 

For the future, several tasks remain: It is possible to automatize the acquisition of more recent data by 

using the R package “feeder”, which automatically downloads new data, when running the code. 

Moreover, the model can be applied to other areas of Brazil (especially in the South) or in the world, 

if appropriate data are available and scenarios of expansion of wind power in Brazil can be developed 

with simulated data. As other methods of interpolation did not show better results, it is not considered 

worthwhile to try the model with these. However, what has not been attempted in this model is 

smoothing the power curve, which maybe could deliver better results. Also the parameters of 

maximum distance to the nearest neighbour as well as the minimum correlation could be varied in 

future research. 

In order to facilitate research in this area, the data and the model are made public. It can be 

recommended for the future to search for methods for improving the data underlying this model, 

which means the quality of reanalysis as well as measured data, and especially the availability of site 

specific data, in order to increase the quality of this model. 
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6 Appendix 

6.1 Wind Speed Correction - Results 

This section gives a more detailed overview of the results of the wind speed correction. First the 

possible influences on the correlations between measured and simulated data are examined, then the 

effect of correction on simulated wind speeds is demonstrated for several stations. Furthermore the 

hourly and monthly correction factors of particular stations are compared. 

Figure 28 shows a scatterplot of the relation between the distance of each INMET station to its nearest 

neighbour and the correlation between the MERRA-2 data at the location of the nearest neighbour 

and the data of the respective INMET station, where data since 1999 were used. The correlations range 

from about 0.1, with one exception, up to nearly 0.8. The distances between the INMET stations and 

their nearest neighbours lie between slightly above 0 up to nearly 40 km. From the plot, no clear 

interrelation between the distance and the correlation can be determined, which is underpinned by 

the very low correlation of about 5.8% between these two factors. In general, a negative correlation 

could be expected, as the bigger the distance of the points of comparison the lower the correlation 

could be. However, this relation could not be found but even a slightly positive correlation. Therefore, 

it cannot be said that the correlation of INMET and MERRA-2 data depends on the distance between 

INMET station and nearest MERRA-2 grid point. 

 

Figure 28: Relation between distance of INMET stations to their nearest neighbours and the correlation between MERRA-2 
and INMET data without hourly and monthly correction (own depiction) 
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The next graph (Figure 29), similarly to the previous one, illustrates the relation of the distance 

between INMET stations to their nearest MERRA-2 neighbours and the correlation but with an hourly 

and monthly correction with the determined correction factors. The distances remain in the same 

range, but the correlation rises to a range of nearly 0.4 up to about 0.9. From the graph, still no relation 

of the distance between INMET stations and nearest MERRA-2 grid points and the correlation of INMET 

and MERRA-2 data after correction can be observed, which is supported by the low correlation of 

about 6.2%. It is slightly higher than before, but still too low to show a connection of the distance and 

the correlations after applying the hourly and monthly correction factors. Moreover, one could rather 

expect a negative than a positive correlation. 

 

Figure 29: Relation between distance of INMET stations to their nearest neighbours and the correlation between MERRA-2 
and INMET data with hourly and monthly correction (own depiction) 
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As another possible reason for low correlation of MERRA-2 wind speeds and INMET wind speeds the 

share of missing values (NAs) is assumed, also this factor and its possible influence on the correlations 

are examined. Figure 30 shows a scatterplot of the correlations between the INMET and the MERRA-2 

data without hourly and monthly correction and of the share of NAs in the INMET datasets. The share 

of NAs lies between 30 and nearly 80% with an accumulation around 60%. However, a clear relation 

between these two factors cannot be determined, which is also underpinned by the slightly negative 

and low correlation of about -2.7% between the shares of NAs and the correlations between INMET 

and uncorrected MERRA-2 wind speeds. Therefore the hypothesis that the share of NAs has an impact 

on the correlation of INMET data and uncorrected MERRA-2 data is not supported by the data. 

 

Figure 30: Relation between share of NAs in data of INMET stations and the correlation between MERRA-2 and INMET data 
without hourly and monthly correction (own depiction) 
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In Figure 31 the relation of the share of NAs in the INMET data and the correlation of INMET and 

MERRA-2 wind speeds with hourly and monthly correction is illustrated. An agglomeration around the 

point of 0.7 correlation and 60% share in NAs can be perceived, but no obvious relation between the 

share of NAs and the correlation between INMET and corrected MERRA-2 wind speeds. The correlation 

between these two factors is about 8.0%, thus higher than without correction and also positive. As this 

correlation still is very low, this supports the assumption, that there is no impact of the share of NAs 

on the correlation of INMET and MERRA-2 wind speeds after correction. 

 

Figure 31: Relation between share of NAs in data of INMET stations and the correlation between MERRA-2 and INMET data 
with hourly and monthly correction (own depiction) 
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Furthermore, it is of interest, what might have an impact on the change in correlation of INMET and 

MERRA-2 when correction factors are applied. At first the relation between the distances of the INMET 

stations to their nearest neighbours in the MERRA-2 grid and the change in correlation is examined, 

which is displayed in Figure 32. The changes in correlation lie in a range of about 2 percentage points 

up to more than 50 percentage points. The points are widely spread and no relation between the 

distances between INMET stations and MERRA-2 grid points and the change in correlation can be 

determined. The slightly negative and low correlation of these two factors of about -1.7% underpins 

this observation. 

 

Figure 32: Relation between the distance to the nearest neighbour of INMET stations and the change in correlation between 
MERRA-2 and INMET data through hourly and monthly correction (own depiction) 
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Figure 33 shows the relation between the share of missing data in the INMET datasets and the changes 

in correlation when correcting the MERRA-2 data with the hourly and monthly correction factors. No 

relation between the two factors can be recognized. The correlation is higher than in the graphs 

presented before, but with about 13.9% still not very high. Tested with Steiger’s test, the correlation 

results show no significance. So no real dependence of the distance to the nearest neighbour on the 

change on correlation after applying the hourly and monthly wind speed correction factors can be 

assumed. 

 

Figure 33: Relation between the share of NAs in the data of INMET Stations and the change in correlation between MERRA-2 
and INMET data through hourly and monthly correction (own depiction) 
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Moreover, the location of the single states in the North-East of Brazil may have an influence on the 

correlation. Therefore the means of the calculated correlations between MERRA-2 wind speeds and 

INMET wind speeds per state are calculated, as displayed in Table 10. The lowest average correlation 

before application of the correction factors can be found in the state Maranhão, with about 0.43, the 

highest in Alagoas with about 0.67. After the correction the highest mean correlation remains in 

Alagoas with about 0.83, whereas the lowest average correlation after correction can be found not 

only in Maranhão but also in Rio Grande do Norte with about 0.65. 

Table 10: Mean correlations before and after correction per state (own depiction) 

State Correlation before correction Correlation after correction 

Alagoas 0.67 0.83 

Bahia 0.51 0.66 

Ceará 0.58 0.74 

Maranhão 0.43 0.65 

Paraíba 0.55 0.69 

Pernambuco 0.56 0.67 

Piauí 0.49 0.68 

Rio Grande do Norte 0.51 0.65 

Sergipe 0.52 0.73 
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In order to find out how the application of hourly and monthly correction factors improves the 

correlation between the MERRA-2 and the INMET wind speed data, the boxplot in Figure 34 was 

created. It shows the correlation of MERRA-2 and INMET data before and after correction. It can be 

clearly seen, that the correlations are lower before the correction, between about 20% and less than 

80% disregarding the outliers. After the correction, they lie in a range of around 50% up to 90% 

correlation, not considering the outliers. The box of the boxplot of corrected correlations is above the 

box of uncorrected correlations, which means that at least the highest 75% of the correlations between 

corrected MERRA-2 and INMET data are higher than the lowest 75% of the correlations between the 

uncorrected MERRA-2 and INMET data. This means that the correlations of reanalysis and measured 

wind speed data can be enhanced quite well by correcting them with hourly and monthly wind speed 

correction factors. 

 

Figure 34: Boxplots of correlations before and after correction with hourly and monthly correction factors (own depiction) 
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Looking at the boxplot of changes in correlation (Figure 15) with hourly and monthly wind speed bias 

correction, it can be seen, that in half of the cases the correlation could be improved by more than 15 

percentage points. The initially very low correlation of about 3.9% (INMET station 68) could even be 

increased to nearly 57.3%. Some data could hardly be improved (by only about 1.8 percentage points), 

whereas other show large improvements of up to over 40 percentage points, disregarding the outlying 

maximum.  On average, the correlation could be improved by about 16 percentage points. However, 

correlation alone does not provide information whether this data actually fit to observed data, as 

INMET data are erroneous too. This is why if the correlation was very low, the correction was not 

performed as it was assumed, that the MERRA-2 reanalysis data fit better when left uncorrected. 

The following figures show time series of simulated, corrected simulated and measured wind speed 

data for a random period of ten days to show how similar or different the shapes of the wind speed 

curves are. The correlation before correction (corn) and correlation between the data after the 

correction (corhm) is added to the figures. Only a few with extraordinary locations are chosen, which 

are shown in Figure 35. 

 

 

Figure 35: Location of the stations with extraordinary correlations or changes in correlations. Numbers indicate the number 
of the station used in the calculations (own depiction) 



68 
 

Figure 36 shows a comparison of time series of simulated, corrected simulated and observed wind 

speed data for a period of random ten days (5th of April 2013 08:00:00 until 15th of April 2013 08:00:00) 

for station 68, which is the INMET station with the lowest correlation with the data of the nearest 

neighbour in the MERRA-2 grid. Before correction, a correlation of only 0.04 (corn) was observed. 

However, the station experienced the highest change in correlation by 0.53, increasing the correlation 

to 0.57. The x-axis portrays the hours since the start date (5th of April 2013 08:00:00) and encompasses 

240 hours, which corresponds to 10 days, the y-axis depicts the mean hourly wind speed in m/s. The 

INMET wind speed data are represented by a black line, the original MERRA-2 wind speed data of the 

nearest MERRA-2 grid points neighbour to the INMET station 68 by a blue line and the green line shows 

the corrected MERRA-2 wind speed data. The blue line of the uncorrected MERRA-2 wind speeds is 

mostly very flat and hardly above 0, whereas the INMET wind speeds have clear peaks and valleys that 

are not followed by the original MERRA-2 data, which explains the very low correlation between these 

data before the correction. When correcting the MERRA-2 wind speed data, the shape of the curve is 

significantly changed and better adapted to INMET data which is reflected in the improved correlation. 

Before the correction the measured wind speeds are vastly underestimated, after the hourly and 

monthly correction the INMET wind speeds are sometimes over- and sometimes underestimated, as 

they are corrected to the mean and the overall sum of wind speeds is the same for measured and 

simulated data. What can also be seen here, is that there are daily variations, as there are ten peaks, 

one for each day. This underpins the observation, that especially the hourly correction has a large 

effect on the correlations. 
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Figure 36: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for the station 
with with the lowest correlation before correction and the highest change in correlation (own depiction) 

  

0 50 100 150 200

0
1

2
3

4
5

6
Comparison of Simulated and Real Wind Data for INMET Station 68

hours since 2013-04-05 08:00:00

w
in

d
s
p

e
e

d
 [
m

/s
]

INMET data

MERRA data

Corrected MERRA data

corn 0.04

corhm 0.57



70 
 

The following Figure 37 shows the mean hourly winds speeds of ten days in the same period of the 

INMET station 48, which is the station with the highest correlation after the hourly and monthly 

correction, as well as the original and corrected hourly MERRA-2 wind speeds. Here it can be observed 

that already before the correction the INMET and MERRA-2 data show a rather good correlation of 

about 73.6%, which can also be observed by similar shapes of the black and blue line. However, the 

original MERRA-2 wind speeds mostly overestimate the measured wind speeds. After the correction 

the measured and simulated wind speeds follow a similar course and the correlation is improved to 

nearly 90% (about 88.5%), which is a change in correlation of more than 15%, although the correlation 

was already quite high initially. 

 

Figure 37: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for the station 
with the highest correlation after hourly and monthly correction (own depiction)  
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Figure 38 shows the shapes of wind speed curves for the same 240 hours as in the graphs before for 

the INMET station 1, which has the highest correlation of nearly 76.5% with MERRA-2 data before the 

hourly and monthly correction. When comparing the black line, representing the INMET wind speeds, 

to the blue line, representing the MERRA-2 wind speeds before correction, it can be seen, that the 

shapes are already very similar, even without applying the bias correction factors. As in the graph 

shown in Figure 37 the measured wind speeds are overestimated by the uncorrected MERRA-2 wind 

speed data. After the correction the wind speeds are slightly lowered, but the shape is hardly changed, 

which is not necessary, as the correlation is quite good before the correction and can therefore only 

be enhanced by around 8%. 

 

Figure 38: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for the station 
with the highest correlation before correction (own depiction) 
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Figure 39 shows ten days of hourly wind speeds of INMET and uncorrected and corrected MERRA-2 

data for station 47, which is the station with the lowest change in correlation when applying the hourly 

and monthly correction factors. Before the correction, the MERRA-2 wind speed data underestimate 

the observed wind speed data, as the blue line is far below the black line. When correcting the data 

with the hourly and monthly bias correction factors, the green line, representing the corrected MERRA-

2 wind speeds, seems to adapt a bit better to the black line, which represents the measured INMET 

wind speeds, at least in the range of 125 to 240 hours after the 5th of April 2013 08:00:00. The 

correlation initially was at about 50.2% and is increased to 52.0%. For this station the correction is not 

too effective, a reason for this might be that there are no obvious peaks in the wind speed data, as 

seen in the graphs before. If there were more obvious peaks and differences in wind speeds depending 

on the time of the day they probably could be corrected by the hourly correction, which usually is way 

more effective than the monthly correction. 

 

Figure 39: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for the station 
with the lowest change in correlation by hourly and monthly correction (own depiction) 
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Figure 40 shows an example of ten days of wind speeds of MERRA-2 data with and without correction 

and INMET data, with medium correlation of INMET and MERRA-2 wind speeds before applying hourly 

and monthly correction factors. The correlation before the correction is about 55.6% and after the 

correction rises to about 75.7%. Before the correction, the MERRA-2 wind speed data (blue line) 

already follow the measured INMET data (black line) quite well: Wherever there is a peak in the 

observed data, there is also a peak in the reanalysis data. Also the smaller peaks between the larger 

ones appear in the simulation. With correction of the simulation (green line) the height of the peaks 

becomes smaller, adapting them better to the observed data. Furthermore, it can be observed that 

the shape of the peaks changes: Before the correction the beginning of the peaks is higher than the 

end and after the correction the end of the peaks is higher than the beginning. This example of medium 

correlation before the correction, when comparing it to other graphs of data with low or high 

correlations, looks different, as the observed wind speeds are not significantly over- or underestimated 

as in the other examples. 

 

Figure 40: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for a station 
with medium correlation without hourly and monthly correction (own depiction) 
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Figure 41 shows a second example of a station with medium correlation (station 83) of INMET and 

MERRA-2 data without correction. Before the correction (blue line) the peaks that can be seen in the 

INMET data (black line) are not always clearly found in the uncorrected data. After the correction these 

peaks emerge more and at the same locations as in the INMET data. The correlation is improved from 

about 55.7% to about 73.8%. The correction does only have a slight influence on the height of the wind 

speeds, they are reduced a bit. However, the uncorrected as well as the corrected MERRA-2 wind 

speeds both are around the measured wind speed data and the correction mainly influences the shape 

of the peaks. As in Figure 40 also here unlike in the preceding graphs the observed wind speeds are 

not significantly under- or overestimated by the reanalysis data. 

 

Figure 41: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for another 
station with medium correlation without hourly and monthly correction (own depiction) 
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The wind speeds of MERRA-2 data before and after hourly and monthly correction and measured 

INMET data with a medium correlation after the bias correction are compared in Figure 42. The 

uncorrected MERRA-2 wind speeds, represented as the blue line, do not seem to adapt to the 

measured wind speeds, represented as a black line, very well as sometimes the peaks of the INMET  

data meet the valleys of the MERRA-2 data (for example at 75, 150 or 175 hours after the 5th of April 

2013 08:00:00). Therefore, the correlation of the uncorrected reanalysis wind speed data and the 

INMET data only show a correlation of about 42.1%. After applying the hourly and monthly correction 

factors the curve seems to fit better to the observed wind speed data, which is reflected in the higher 

correlation of about 70.2%. Moreover, the uncorrected data seem to overestimate the measured data. 

 

Figure 42: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for the station 
with medium correlation after hourly and monthly correction (own depiction) 
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Figure 43 shows another example of a ten day period of an INMET station with medium correlation 

between the MERRA-2 and INMET data after bias correction. When looking at the curves of wind 

speeds, they all seem to be in the same range, meaning that the measured wind speeds are hardly 

over- or underestimated. The peaks of the MERRA-2 data before the correction show a quite good 

correspondence with the observed wind speed data, which is reflected in the relatively high correlation 

of nearly 60%. However, it has to be pointed out, that sometimes there can be observed a slight shift 

to the left, meaning the wind speeds of the reanalysis data start to rise before they do in the INMET 

data. With the correction this deviation can be mostly eliminated, resulting in a higher correlation of 

70.1%. 

 

Figure 43: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for another 
station with medium correlation after hourly and monthly correction (own depiction) 

 

An example for a very low correlation between MERRA-2 and INMET data even after the correction 

offers station 119. Figure 44 shows the comparison of wind speeds for uncorrected and corrected 

MERRA-2 and INMET data for a different period of ten days than in the other graphs, as for this station, 

the INMET data for this period were missing. The correlation before the correction is not very good, at 

about 18.6%, and can only be improved by nearly 8 percentage points to about 26.9% by means of the 

hourly and monthly correction. Although the peaks of reanalysis and measured data are matched 

relatively well, as they are always at the same positions, the shape of the curves is not so similar, as 
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especially the corrected wind speed curve is much rounder than the curve of observed wind speeds. 

Moreover, what is extraordinary for this station, is that the wind speeds of the measured data fluctuate 

between 0 and 11 m/s for this period, meaning there are very high peaks. The original MERRA-2 data 

fluctuate between 6 and 8 m/s wind speed and the corrected between about 4 and 9 m/s, which may 

have an impact on the correlation. However, it cannot be clearly said that this is the only reason for 

the low correlation, as the INMET data of station 119 also have a rather large share of missing values 

of about 66.8%. Moreover, it is not sure whether INMET data are always correct, as in this case the 

fluctuations of wind speeds seem exceptionally high. 

 

Figure 44: Comparison of a random period of ten days of INMET data with original and corrected MERRA-2 data for the station 
with lowest correlation after hourly and monthly correction (own depiction) 

The following graphs show some examples of hourly and monthly correction factors displayed as heat 
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coloured in a red shade, the lower the correction factor, the more the rectangle is coloured in a blue 

shade. As the ranges of the correction factors vary considerably, one colour cannot be identified with 

a certain value of a correction factor, but has to be interpreted individually for each image. 

The first heat map (Figure 45) shows the correction factors of INMET station 68, where the lowest 

correlation between INMET wind speeds and uncorrected MERRA-2 wind speeds as well as the highest 
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than 50, although this only applies to one hour and month (June between 7 and 8 pm). Most of the 

other correction factors are below 30, but this is still high, considering the values of other correction 

factors which will be seen in the following. The high correction factors indicate that the observed wind 

speed data are highly underestimated by the reanalysis data, which could already be observed in 

Figure 36. As can be seen in the time series in the previous figure, the high peaks of the measured data 

are missing in the uncorrected MERRA-2 data, and are generated by the high correction factors 

especially in the evening hours. As the examined period was in April, the corresponding correction 

factors are rather high for this time of the day, being in darker shades of red. In the autumn and winter 

months (September to December) there are no high correction factors (only in December between 8 

and 9 pm a slightly red colour is found).  Apparently there is a high variation of wind speeds in the time 

of the day as it can be corrected well, when applying the correction factors, which increase the wind 

speeds in the evening hours. As the location of this station (latitude: -4.82, longitude: -43.34, in Caixas 

in the state of Maranhão) is not near the sea, these hourly variations cannot be associated with land 

and sea breeze. 

 

Figure 45: Heat map for for the hourly and monthly correction factors of the INMET station with with the lowest correlation 
before correction and the highest change in correlation (own depiction) 
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Figure 46 illustrates the correction factors of INMET station 48, which is the station with the highest 

correlation of nearly 90% after applying the hourly and monthly correction factors. In this example it 

can be seen very well, that in the afternoon and evening hours, the correction factors are higher than 

in the morning hours and slightly below 1, which means that at this time of the day the simulation 

better fits measured data than in morning hours. The heat map seems to be divided in a red part, with 

higher correction factors on the right, and a blue part, with lower correction factors on the left. 

Comparing this heat map to the previous one, the much lower correction factors have to be pointed 

out: In this case they are in a range between only 0.3 and 1. As could be seen in the graph before 

(Figure 37), there was only a slight overestimation of wind speeds. 

 

Figure 46: Heat map for hourly and monthly correction factors of the station with the highest correlation after hourly and 
monthly correction (own depiction) 
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Figure 47 shows a heat map of the correction factors of station 1, the station with the highest 

correlation before the application of hourly and monthly correction factors. The range of the correction 

factors is similar to the one in the previous figure, between 0.1 and 0.8, reducing the reanalysis wind 

speeds. Most of the correction factors are in the red range, meaning that the MERRA-2 wind speeds 

are reduced to less than half by the correction. Also here, similar to the plot in Figure 46, the lower 

correction factors (below 0.5, blue colours) can be found only in the morning hours (on the left side of 

the heat map). As the correlation was quite good before the correction (around 76.5%) the correction 

factors do not need to change a lot. Moreover, the observed wind speeds were only slightly 

overestimated (as seen in Figure 38), which results in correction factors only slightly below 1. 

 

Figure 47: Heat map of the hourly and monthly correction factors of the station with the highest correlation before correction 
(own depiction) 
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Figure 48 shows a heat map for the correction factors of station 47, the station with the lowest change 

in correlation when applying the correction factors. No real pattern in the distribution of the correction 

factors can be determined, but the highest correction factors occur in December and the lowest (3 or 

less) between the hours of 9 am and 9 pm as well as in September and October. The correction factors 

are a bit higher than in the two heat maps before (Figure 46 and Figure 47), between 1.5 and 4.5. The 

distribution of the correction factors, which seems a bit random, may be a reason for the low 

improvement when applying these factors to correct the reanalysis data. Looking at the time series of 

this station (Figure 39), sometimes peaks are underestimated and sometimes they fit quite well. As 

there seems to be no real tendency in the over- or underestimation of peaks in wind speeds in the 

INMET data, these data can be difficult to correct properly and to improve the correlation of about 

50% initially substantially. 

 

Figure 48: Heat map for the hourly and monthly correction factors of the station with the lowest change in correlation by 
hourly and monthly correction (own depiction) 
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The heat map of the correction factors for station 61, which is an example of an INMET station with a 

medium correlation before the hourly and monthly bias correction, can be seen in Figure 49. In this 

case the correction factors lie between 0.1 and 1.3. Most of the area in the heat map is coloured in 

blue to lilac colours, which stand for values below 1, meaning that observed wind speeds are mostly 

overestimated by MERRA-2 wind speeds. Only in the hours between 9 and 11 pm the correction factors 

reach values a bit above 1, meaning that they correct wind speeds that are slightly underestimating 

the measured data. This observation can also be made in Figure 40, where at the end of the peaks 

(which corresponds to the end of a day), the MERRA-2 wind speeds fall below the measured wind 

speeds and therefore need to be increased to adapt them to the observed data. As also observed in 

graphs before, the lowest correction factors are in the early hours of the day (on the left side), whereas 

the higher ones are in the afternoon and evening hours (on the right side). 

 

Figure 49: Heat map for the hourly and monthly correction factors of the station with medium correlation without hourly and 
monthly correction (own depiction) 
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The heat map of the correction factors for a second INMET station (station 83) with a medium 

correlation before the application of the correction factors can be found in Figure 50. For this station 

the correction factors are a bit lower than for the other station with medium correlation before the 

correction (Figure 49), in a range of about 0.1 to 0.9. As all the correction factors are below 1, the 

reanalysis wind speeds need to be reduced to adapt to the observed wind speeds, which means that 

without correction the MERRA-2 data overestimate the INMET data. Most of the correction factors are 

in a red or pink colour, meaning they are not far below 1. This means the wind speeds are only slightly 

overestimated, which meets with the observations made in Figure 41. This heat map looks similar to 

the one in Figure 47, the one of station 1 with a high correlation before the correction. 

 

Figure 50: Heat map for the hourly and monthly correction factors of another station with medium correlation without hourly 
and monthly correction (own depiction) 
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Figure 51 shows an example of a station with a medium correlation of observed and simulated wind 

speeds after applying the correction factors: the heat map of station 34. The values of the correction 

factors range from 0.3 to more than 0.8, but are all below 1, which means that the reanalysis data 

overestimate the observed generation slightly. As also seen in the other examples, the highest 

correction factors occur in the afternoon and evening hours (between noon and 9 pm). At these times, 

the reanalysis data only overestimate the observed wind speeds slightly, in earlier hours they need to 

be corrected more, sometimes up to only a third of the original wind speed. Again, the right part of 

the heat map (the afternoon and evening hours), is mostly red, meaning there are higher correction 

factors than in the right part of the heat map (morning hours). 

 

Figure 51: Heat map for the hourly and monthly correction factors of a station with medium correlation after hourly and 
monthly correction (own depiction) 
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Another example for the correction factors of a station with medium correlation after the bias 

correction offers Figure 52. The correction factors for this station lie between 0.3 and 1 or a little 

above. No clear separation between hours or months with lower or higher correction factors can be 

determined from the heat map. Very low correction factors occur between 5 and 10 am, the highest 

between 8 pm and 3 am. In general it can be said, that the observed wind speeds are overestimated, 

sometimes more and sometimes less, which fits the observations made in Figure 43. 

 

Figure 52: Heat map for the hourly and monthly correction factors of another station with medium correlation after hourly 
and monthly correction (own depiction) 
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The heat map of the hourly and monthly correction factors of station 119, the station with the lowest 

correlation of INMET data and corrected MERRA-2 data, can be seen in Figure 53. The correction 

factors all are below 1, in a rather narrow range between 0.5 and 0.95. Again, no pattern can be 

determined from the distribution of colours in the heat map. The highest correction factors occur in 

August and March. The arrangement of the correction factors with no clear pattern may be an indicator 

that the MERRA-2 and INMET data in general do not correlate very well and it is difficult to correct 

them. 

 

Figure 53: Heat map for the hourly and monthly correction factors of the station with lowest correlation after hourly and 
monthly correction (own depiction) 
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To be able to compare all the hourly and monthly correction factors for the different hours, a boxplot, 

as seen in Figure 17, is useful. As some correction factors were much higher than others, in ranges of 

more than 2 and up to 120, they are not all displayed in the graph, as the boxes would be too small to 

examine them. There are many outliers in the higher values, of which only some are included in the 

graph, for the previously mentioned reason. When looking at the medians and boxes, it can be seen 

clearly, that they are not all at the same height: The lowest correction factors can be found at 10 am, 

the highest at 9 pm. Between these hours the correction factors become continuously higher or lower, 

respectively. What also has to be pointed out, is that nearly for all hours, except for 9 pm, 75% or more 

of the correction factors are below 1, which means that in general it can be assumed that the reanalysis 

data overestimate the observed wind speeds and therefore need to be reduced to adapt to the 

measured values. 

Figure 16 shows the distribution of correction factors per month. In this case, also the upper part of 

the diagram was cut, excluding several outliers, in order to be able to see the boxes better. In this 

boxplot the boxes and whiskers seem very similar: They are all at about the same height, only a very 

slight decrease of the correction factors can be seen in the summer, compared to the winter. This 

underpins the assumption, that the monthly correction does not have a very big influence on the 

correlation of the simulated and observed data, compared to the hourly correlation, which influences 

the course of the wind speed curve more intensely. 

A summary of the presented results can be found in the main section in chapter 3.1. 

 

6.2 Wind Power Generation Correction – Monthly Results 

This section presents detailed results from the monthly analysis of wind power generation correction. 

First, simulated and observed monthly electricity generation from wind power are compared in a line 

diagram, to find out about the behaviour over time. Then the simulation and observations, as well as 

the differences between the simulated generation and the observed generation, are compared in 

boxplots. In the results (section 3.2) a short summary of the results in form of a table is presented. 

In Figure 54, the comparison of monthly wind power generation in GWh for the whole North-East 

region of Brazil is shown. Monthly comparison data are available since 2006, however, in the first two 

to three years there were hardly any wind power plants installed in the North-East of Brazil, which is 

why there was nearly no electricity generation from wind. It seems that the trajectory of the 

uncorrected line adapts quite well to the observed electricity generation, only being considerably 

higher. The corrected electricity generation curves all are close to the one of the observed wind power 

generation curve. In the first years until the beginning of 2014, they all mostly overestimate observed 
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generation. After that, the wind speed corrected and the wind speed and power corrected simulation 

overestimate the observed generation, whereas the only power corrected electricity generation 

underestimates it slightly. From the end of 2014, all corrected simulations underestimate the observed 

wind power generation, the one where both corrections are applied the least. The correlations of the 

uncorrected (r_nc), the wind corrected (r_wc), the power corrected (r_pc), and the wind and power 

corrected (r_wpc) simulations are all very high at 99%. In general, from this graph, it seems that the 

only wind speed corrected simulation adapts best to the observed wind power generation, as the blue 

line mostly is closest to the black line. 

 

Figure 54: Monthly observed and simulated wind power generation in the North-East of Brazil compared (own depiction) 

 

Figure 55 shows the boxplots for simulated uncorrected, simulated wind corrected, simulated power 

corrected, simulated wind and power corrected as well as observed monthly electricity generation in 

GWh from wind power in the North-East of Brazil. As there were many outliers, some of them are not 

displayed to make the location of the boxes better visible. It can be seen, that the uncorrected 

simulation, whose whiskers are between 0 and about 1500 GWh per month, overestimates the 

observed generation, which ranges between 0 and nearly 800 GWh per month, disregarding the 

outliers. The wind corrected simulated data, which lie in a range of 0 to about 750 GWh per month, 

however, seem to be near the observed data: When looking at the boxes, the simulation is slightly 
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lower. The box of the only power corrected simulation seems to not fit too well to the box of the 

measured power generation, as the mean, the quantiles as well as the upper whisker are higher than 

those of the observed wind power generation. When applying the power generation correction to the 

wind speed corrected time series, however, the results look better than in the other cases: The boxplot 

of this simulation and the observed electricity generation from wind power look very similar and only 

differ slightly. Thus, all bias-corrections deliver better results compared to the simulation without 

correction, especially when wind speed correction is applied and the boxplots of simulated data fit 

observed data best when applying both corrections. All of the boxplots have many outliers in the higher 

range (the ones of the uncorrected simulation are outside the visible area of the graph), but as this is 

the case for all the plots, it should not be of great importance when interpreting the plots. 

 

Figure 55: Boxplot for comparison of monthly power generation in the North-East of Brazil (own depiction) 
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Figure 56 shows the absolute differences in GWh between the uncorrected, wind and/or power 

corrected simulated monthly electricity generation from wind power and the observed wind power 

generation in the North-East of Brazil. For the uncorrected data, the differences range from 0 to nearly 

900 GWh and are much higher, compared to the differences of the corrected to the observed data, 

which lie between 0 and about 100 GWh for the wind only or wind and power corrected electricity 

generation, disregarding the outliers, and between 0 and 300 GWh for the power generation corrected 

simulation, when not considering the outliers. Therefore, the distributions of the differences of 

corrected to simulated data are also less spread for the corrected data (indicated by significantly 

smaller whiskers and boxes) and also the medians are much lower, being below 100 GWh, whereas 

the median for the differences of uncorrected simulated data to the observed data is at about 200 

GWh. What is moreover striking, is, that when looking at the differences of the simulated monthly 

generation data without correction to the observed monthly generation data, more than 50% of the 

differences are above 200 GWh, which indicates a considerable overestimation of the observed 

generation before correction. The smallest differences seem to occur when applying the wind speed 

correction only, however, there are more outliers than in the other cases. In general, as also observed 

in Figure 55, the best results are achieved when applying wind speed correction (and wind power 

generation correction optionally). 

 

Figure 56: Boxplots for comparison of absolute differences between observed and simulated uncorrected or corrected monthly 
wind power generation (own depiction) 
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In Figure 57, the real differences between the uncorrected simulated or the corrected simulated and 

the observed monthly wind power generation are displayed. The uncorrected simulation remains in 

the range of 0 to about 900 GWh difference to the observed power generation because it only 

overestimates the observed wind power generation. In contrast to this, the differences of corrected 

monthly electricity generation from wind power to measured electricity generation shift to a range 

near 0 GWh, only with several outliers differing from that range in the negative area and therefore 

supply a better approximation to the observed power generation data. When correcting the data with 

monthly power generation bias correction factors, however, there are differences in the positive as 

well as in the negative range, meaning, that in some months the power generation is underestimated 

whereas in other months it is overestimated. Again it can be observed, that the correction significantly 

improves the results and correlation with observed wind power generation, especially when applying 

the wind speed correction. This supports the observations made before. 

 

Figure 57: Boxplots for comparison of differences between measured and simulated uncorrected or corrected monthly wind 
power generation (own depiction) 
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The following contour plots compare observed and simulated monthly power generation. The first 

plot, Figure 58, shows the comparison of observed and simulated monthly electricity generation 

without applying any correction factors in a time span between January 2006 and October 2016. The 

contour plot shows only a slight dependence of the simulated wind power generation on the observed 

power generation. There is an accumulation at lower values, for the simulated generation between 0 

and 1000 GWh monthly and for the measured wind power generation between 0 and 500 GWh. This 

and the range of the two time series (up to 3500 GWh for the ONS data and up to 5000 GWh for the 

calculated wind power generation) mean that the simulated production overestimates the observed 

power generation in the North-East of Brazil, which fits the observation made in Figure 54. 

 

Figure 58: Contour plot for monthly observed and simulated power generation without any correction (own depiction) 
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Figure 59 illustrates the observed and wind corrected simulated monthly wind power generation. 

Compared to the previous contour plot, a clearer correlation can be determined. Still, there is an 

accumulation at low values, but this time for the measured as well as for the simulated data between 

0 and 500 GWh monthly. A smaller agglomeration of generations can be found at 1000 GWh monthly 

generation. Only for the higher values of wind power generation, there cannot be found a clear 

dependence, which is due to a lower frequency of events for higher wind power generation. It can be 

assumed that the simulation slightly underestimates the observed wind power generation, as it ranges 

only up to 3000 GWh monthly (compared to 3500 GWh), at least for the higher values, which again fits 

the observations made in Figure 54. What can be observed too, is, that the wind speed correction 

improves the data, as after the correction the simulation better fits the range of measured data. 

 

Figure 59: Contour plot for monthly observed and simulated power generation with wind speed correction (own depiction) 
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After bias correction with the wind power generation correction factors, the simulated power 

generation is reduced (Figure 60), similarly to the wind power generation after wind speed correction. 

However, in a few cases, the simulated and corrected electricity generation is lower, at about 1000 

GWh monthly, than the observed electricity generation, which then is between 1500 and 2000 GWh. 

For lower values, though, the opposite is the case: Where the measured wind power generation is 

concentrated between 0 and 500 GWh monthly, the simulation provides monthly wind power 

generation of up to 1000 GWh. This fits the observation made in the graph in Figure 54, where the 

simulated generation after power correction until the middle of 2014 underestimates the observed 

generation, and later overestimates it. 

 

Figure 60: Contour plot for monthly observed and simulated power generation with wind power generation correction (own 
depiction) 
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When applying the wind power generation correction after the wind speed correction on the simulated 

power generation, which can be seen in Figure 61, there seems to be a better correlation than when 

only correcting with wind power generation correction factors. However, from the contour plot there 

can hardly be any improvement perceived, compared to wind speed correction only. As in the other 

simulations with only either wind speed or wind power generation correction, for higher wind power 

generation, the simulation underestimates the measured wind power generation, which also fits the 

observations made in Figure 54. 

 

Figure 61: Contour plot for monthly observed and simulated power generation with wind speed and wind power generation 
correction (own depiction) 

Considering these observations, it cannot be said that the corrected simulated electricity generation 

in general overestimates or underestimates the observed electricity generation. Nevertheless, it can 

be assumed, that, once more capacities are installed, generation generally deviates more. 

 

6.3 Wind Power Generation Correction – Daily Contour Plots 

This section presents an additional analysis of daily electricity generation for the results of wind power 

generation bias correction in the form of contour plots. Further results are found in section 3.2. 

When looking at the daily generation, which is compared in Figure 62, for a time span between August 

2015 and October 2016, the simulated and observed power generation seem to correspond well, as 

frequent occurrences form a nearly diagonal line. However, the simulated generation is in a range 
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between about 20 and 180 GWh daily, whereas the observed generation lies between about 20 and 

120 GWh daily, which means that, without any correction, the simulated electricity generation from 

wind power overestimates the observed electricity generation, which has already been observed in 

Figure 18. This is also underpinned by looking at the most frequent daily wind power generations: The 

simulated wind power generation mostly ranges between 50 and 100 GWh, whereas the observed 

wind power generation mostly lies between only 40 and 80 GWh per day. 

 

Figure 62: Contour plot for daily observed and simulated power generation without any correction (own depiction) 
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The following contour plot (Figure 63) shows the daily observed as well as wind speed corrected wind 

power generation. After the correction, the correlation between simulated and observed electricity 

generation is not that clearly linear any more, however, the range of simulated daily wind power 

generation is lowered to between 10 and 110 GWh and now fits the range of the measured electricity 

generation from wind power better. Now also for observed as well as for simulated wind speed 

corrected wind power generation, the most frequent (yellow and light green area) daily wind power 

generations lie between 40 and 80 GWh. 

 

Figure 63: Contour plot for daily observed and simulated power generation with wind speed correction (own depiction) 
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When correcting the simulated wind power generation only with wind power generation correction 

factors and comparing it to the measured wind power generation, the correlation between these two 

seems to be more linear than when applying the wind speed correction. However, the observed 

electricity generation is underestimated at higher values between about 80 and 120 GWh daily. For 

lower values, the simulated and measured generation seem to correlate well, though. This is not 

supported by what was observed in Figure 18, as in the beginning of the considered timespan, where 

the generation is slightly lower than in the later days, the observed wind power generation is 

overestimated, and in the end of the considered timespan, where it is higher, it is underestimated by 

the wind speed corrected simulation. So only the underestimation for higher generation can be 

observed in both graphs. 

 

Figure 64: Contour plot for daily observed and simulated power generation with wind power generation correction (own 
depiction) 
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When the simulated wind speed corrected generation is corrected also with the monthly bias 

correction factors, which is illustrated in Figure 65, the relation between the simulated and the 

observed wind power generation in the North-East of Brazil seems not to be as direct as when only 

correcting with monthly wind power generation correction factors, as there is no clear diagonal line 

anymore. However, the simulated generation does not underestimate the observed electricity 

generation anymore for higher values, as both, the observed as well as the simulated daily energy 

outputs, lie between 20 and 120 GWh. What can be drawn as a conclusion from all the contour plots 

is, that the observed and simulated wind power generation mostly concur, especially when applying 

wind speed correction. 

 

Figure 65: Contour plot for daily observed and simulated power generation with wind speed and wind power generation 
correction (own depiction) 

 

 


