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Preface

This thesis describes the result of PhD research initiated in November 2015 and ac-

complished in June 2019. The research was done mainly in the Institute of Statistics,

University of Natural Resources and Life Sciences Vienna.

This research was stemmed from my passion to explore the food security domain,

especially in its methods, measurements, and visualizations. As severe food security

mainly happens in developing countries, a continuous monitoring to improve the food

security in these countries becomes indispensable. Indonesia as a developing country

has developed a food security and vulnerability atlas (FSVA) to monitor the country’s

food security state. It grouped its regions via a partitioning algorithm based on a

numerical data set. If the available data set is a mixed variables data set, how will we

create the FSVA? It is my passion to develop tools to solve the barrier of this mixed

variables data set such that the result is applicable mutatis mutandis.

The thesis traces existing mixed variables distances and medoid-based partitioning

algorithms. A generalized distance function and generalized spatial distance func-

tion has been introduced to extend the mixed variable distance choices and impose

constraints in the variables, respectively. A medoid-based partitioning algorithm, in

addition, has also been developed, namely a simple k-medoids which is vis-a- vis with

the existing medoid-based partitioning algorithms.

The mixed variables distances and medoid-based algorithms are directly imple-

mented in the R environment via the kmed package. The internal and relative criteria

validation and visualization of the partitioning results were also distributed in the

package. Thanks to my supervisor, Professor Friedrich Leisch, who is also one of the

R core team members, who encouraged me to put the R functions for this research

in an R package and deposit it in the cran R. In addition, Josep Richert, an Rstudio
ambassador and chief editor of the R Views blog, selected this package as one of the

”Top 40 New Package Picks” in February 2018 from the 171 new packages.
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Abstract

This thesis discusses medoid-based partitioning algorithm for mixed variables data

sets. The partitioning around medoids (PAM) in the Gower distance is a common

approach for mixed variables data partitioning whereas varying the distances is required

to investigate the data structure in a partitioning algorithm. Thus, a generalized

distance function (GDF) was developed in order to extend the distance choices in the

mixed variables data. It consists of distance combinations with specified weights.

The GDF is then supplied in a medoid-based partitioning algorithm in order to

produce the partitioning results. A medoid-based partitioning algorithm called a fast

and simple k-medoids (SFKM), which is claimed to be more efficient than the PAM,

has been developed. However, it suffers from empty cluster and local optima problems

such that a simple k-medoids (SKM) is developed. The simulations showed that the

PAM and SKM were better than the SFKM, while the PAM and SKM were on a par.

The SKM, moreover, was more efficient than the PAM when the number of objects (n)

is larger than 1000 and the number of clusters (k) is smaller than 10.

In the empirical data set of food security mapping of Banten Province, Indonesia,

the GDF and SKM algorithm were applied to group the districts in Banten Province.

A generalized spatial distance function (GSDF) was introduced in order to manage

the spatial and administrative constraints imposed in the food security mapping due

to agricultural extension agents task coverage. The results of both GDF and GSDF

were compared applying internal and relative criteria. A bootstrap sampling technique

was applied in the latter criteria, producing a measure of stability proportion. The

opted result was the four-cluster from the GSDF, namely available, utilize-accessible,

accessible, and available-stable future clusters.

The R implementation was in the kmed package, which covers the GDFs and

medoid-based algorithms. The usage of the package includes cluster validation and

visualization via internal and relative criteria, while the partitioning results could be

plotted in a modified barplot for interpretation purpose. Moreover, examples of writing

the user’s own functions were given.
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Zusammenfassung

In dieser Arbeit wird ein Medoid-basierter partitionierender Clusteralgorithmus für

Datensätze mit mindestens zwei unterschiedlichen Typen von Variablen numerisch,

kategoriell oder binär - diskutiert. Ein üblicher Ansatz im Partitionieren um Medoide

(PAM) ist die Verwendung der Gower Distanz für gemischte Variablen. Für parti-

tionierende Algorithmen ist es notwendig, unterschiedliche Distanzfunktionen zu ver-

wenden, um die Datenstruktur zu untersuchen. Daher wurde eine generalisierte Dis-

tanzfunktion (GDF) entwickelt, um die Auswahlmöglichkeiten im Fall von gemischten

Variablen zu erweitern. Die GDF besteht aus Kombinationen von Distanzmaßen mit

vordefinierten Gewichten.

Die GDF wird dann im einem Medoid-basierten partitionierenden Clusteralgorith-

mus verwendet, um eine Partition der Daten zu erhalten. Es wurde ein neuer Algorith-

mus entwickelt, der SFKM (simple and fast k-mediods), der effizienter als PAM sein

soll. Allerdings hat dieser Algorithmus Probleme mit leeren Clustern und lokalen Op-

tima. Daher wurde ein simpler k-Medoid Algorithmus (SKM) entwickelt. Simulationen

haben gezeigt, dass PAM und SKM bessere Ergebnisse liefern als SFKM, wobei PAM

und SKM gleichauf lagen. SKM war auerdem effizienter als PAM, wenn die Anzahl

der Objekte (n) größer als 1000 ist und die Anzahl der Cluster (k) kleiner als 10.

In einem weiteren Kapitel dieser Arbeit wurden GDF und SKM auf einen Daten-

satz zum Mapping von Lebensmittelsicherheit in der Banten Provinz in Indonesien

angewendet, mit dem Ziel, die einzelnen Bezirke der Banten Provinz zu gruppieren.

Hier wurde eine generalisierte räumliche Distanzfunktion (GSDF) entwickelt, um die

räumlichen und administrativen Beschränkungen zu berücksichtigen, die beim Mapping

von Lebensmittelsicherheit entstehen durch die Abdeckung von Aufgaben von einzelnen

landwirtschaftlichen Entwicklungsbeamten (agricultural extension agents). Die Ergeb-

nisse von GDF und GSDF wurden mit internen und relativen Kriterien verglichen. In

einem weiteren Kriterium wurde eine Bootstrap Sampling Methode verwendet, die ein

Maß für den stabilen Anteil liefert. Das gewählte Resultat war eine 4-Cluster Lösung

von GSDF, ein Cluster hatte die Eigenschaft available, der zweite utilize-accessible, der

dritte accessible, und der vierte available-stable future.

Im R Paket kmed wurden die GDFs und die Medoid-basierten Algorithmen im-

plementiert. Die Anwendung des Pakets enthlt auch Cluster Validierung und Visual-

isierung mittels interner und relativer Kriterien. Des Weiteren können partitionierende
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Clusterlösungen mittels modifizierter Barplots visualisiert und interpretiert werden.

Zusätzlich werden Beispiele für eigene Anwenderfunktionen bereitgestellt.
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1
Introduction

This thesis is concerned with distance-based partitioning algorithms for food security

mapping. The food security data usually consist of mixed variables, such that the

focus of the distance-based partitioning algorithms is medoid-based algorithms, which

are the most suitable algorithms for mixed variables data set. A list of mixed variable

distances as an input of the algorithm is also provided with an additional extension

from the common approach, namely generalized distance function (GDF).

To complement the algorithms, the cluster validation and visualization are pre-

sented. While the cluster validations include internal, external, and relative criteria,

the cluster visualizations are internal-based, relative-based, location and dispersion vi-

sualizations. The focus of the validation and visualization is a relative-based criterion

where it applies a bootstrap sampling technique.

1.1 Food security data

Definitions of food security have shifted over time. They are expanding and contin-

uously evaluated (Jarosz, 2011). Food security has been enhanced from the secure,

sufficient, and suitable supply of food for all persons to become a broader concept

involving availability, accessibility, utilization, and stability concepts. Coates (2013)

and van Dijk and Meijerink (2014), moreover, have added the food acceptability across

many different cultures. Despite this addition, the well-known and commonly endorsed

definition of food security dimensions are the availability, accessibility, utilization, and

stability dimensions (FAO, 2006; Barrett, 2010).

In the last two decade, the dimensions of food security have been foremost and

have become standard indicators to measure a food security state. Applying these

dimensions to evaluate the achievement of the Millennium Development Goal (MDG)

1c hunger target, FAO et al. (2015) have reported that a total of 72 developing countries

have accomplished a food secure state.

Indonesia, as one of the developing countries, has indicated a positive performance

with regard to the food security progress. This improvement can be due to its contin-

uous inspections via a food security and vulnerability atlas (FSVA), utilizing national

food security data. FSC and WFP (2015) have mapped FSVA for 2005, 2009, and

2015 to illustrate and monitor the food security state of all regions in Indonesia. The

latest FSVA has shown that 58 regions are categorized as being the most vulnerable.
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The FSVA has presented a comprehensive mapping of the food security state in

Indonesia, however, it excludes all cities. With the region-based measurement in the

FSVA, moreover, a lower administrative level, i.e. a district-based, is utterly required

because the agriculture extension (AE) agents who are responsible for the food security

monitoring, have assignments in a district-based coverage.

The FSVA merely includes numerical variables as the indicator variables as well,

while binary or categorical indicator variables are often possible. Accessibility to

potable water with yes or no answers, for instance, can be available and is an im-

portant variable to contribute the food security dimensions. Thus, mixed variables in

food security data are inevitable.

FSC and WFP (2015) have mentioned that Banten Province, as one of the newest

provinces, is able to change its status of food security into a more secure state. Due

to the cities exclusion in the FSVA, only 50% of the area in Banten Province has been

mapped and monitored for its food security state. In this thesis, a comprehensive FSVA

of Banten Province is mapped by taking into account the presence of mixed variables,

the inclusion of cities, and the lower administrative objects.

1.2 Cluster analysis

Measuring food security subsequently requires pre-survey and post-survey analyses,

while the former involves a food security zoning (mapping) (WFP, 2009). The food

security mapping task is discriminating areas (objects) based on the food security

dimensions such that homogeneous areas are assigned into a group and heterogeneous

ones are partitioned. This analysis is identical to a cluster analysis, and in the statistical

learning context, it is addressed as a method of unsupervised classification due to the

absence of prior labels (Duda et al., 2001; Hastie et al., 2009).

Cluster analysis is an important exploratory tool in data structure investigation.

This method is able to discriminate objects into groups where each object within the

group is similar (homogeneous) to each other and objects between groups are distinct

(heterogeneous) to one another (Kaufman and Rousseeuw, 1990; Gan et al., 2007).

The process of separating homogeneous group into a distinctive part is referred to

a dissection (Everitt et al., 2011). Thus, we can divide the steps of cluster analysis

into two consecutive parts, the similarity quantification and the segregating process

(algorithm).

A homogeneous (similarity) quantification between objects can based on their dis-

tance in a distance-based clustering algorithm, the more similar objects have the closer

distance and vice versa. Some common distances such as Euclidean and Manhattan

are applicable for objects that have numerical variables, while the objects having bi-

nary or categorical variables, Matching and Jaccard similarity can be selected. If the

objects have mixture of numerical, binary, and categorical variables, on the other hand,
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the Gower (1971) similarity measures can be applied. Other distances for numerical,

binary, and categorical variables can refer to Xu and Wunsch II (2005); Everitt et al.

(2011); dos Santos and Zárate (2015).

A distance-based algorithm to build clusters is opted after the similarity measure

is defined. A rough but commonly agreed-upon taxonomy of clustering algorithm/

technique for a distance-based method is hierarchical vs partitioning algorithms (Jain

et al., 1999; Xu and Wunsch II, 2005). The hierarchical clustering algorithms are

irreversible processes that repeat the cycle of either merging all objects into a cluster

or separating a cluster of all objects into an individual.

On the contrary, the partitioning clustering algorithms produce diverse partitions

that are evaluated based on some defined criteria, for instance by minimizing the dis-

tance between the objects and the cluster centers. This algorithm assigns the objects

to the closest predefined centers and re-estimates the centers based on the current

members. The process is repeated until convergence. A popular choice for a partition-

ing algorithm is k-means and partitioning around medoids (Hastie et al., 2009; Leisch,

2006).

A partitioning clustering algorithm is a technique to group objects based on some

designed objectives. It projects objects that consist of multidimensional characteristics

into a single discrete variable, namely the cluster membership (Leisch, 2008). One of

the popular partitioning algorithm is k-means (Hartigan and Wong, 1979), which Wu

et al. (2008) has mentioned as the one of top ten algorithms in data mining. The

k-means, in addition, applies Euclidean distance.

Although the k-means is considered as a fast algorithm, the result of k-means greatly

relies on its initialization. If ”bad” objects are selected in the initialization step, an

empty cluster can occur (Pakhira, 2009). The k-means algorithm has local optima of

the objective function, i.e. minimize the distance between the objects and the cluster

centers, so that numerous local optima could emerge depending on the choice of the

starting values (Steinley, 2003).

The k-means algorithm is irrelevant when the variables of inclusion are non-numerical

variables, i.e. binary, categorical or mixed variables, because ”means” as the center

of the clusters is unavailable and Euclidean distance is not applicable. Moreover, in a

mixed variable data set, modified k-means algorithms have been developed to manage

this problem by redefining the cluster center as means-like, i.e. a prototype/ central

value. The prototypes can be the combinations of the means/ median (numerical) and

mode (binary/ categorical), or proportional distribution (categorical) (Huang, 1997;

Yin and Tan, 2005; Ahmad and Dey, 2007; Bushel et al., 2007; Ji et al., 2013; Liu

et al., 2016).

With the modified k-means algorithms, the new cluster center definitions vary de-

pending on the distances applied in each class of variable of the mixed variable data.

However, if the cluster centers are a set of selected objects (medoids), the medoids are

3



always the most centrally located objects irrespective of the distance and algorithm ap-

plied. In addition, any distance for numerical, binary, categorical, or mixed variables

can be easily applied in a medoid-based algorithm.

1.3 Overview of the thesis

This thesis focuses on medoid-based partitioning algorithms, validation, and visualiza-

tion for mixed variables data. The algorithms are then applied to create a district-based

FSVA of Banten Province.

Chapter 2 discusses the existing partitioning algorithms that is applicable for mixed

variables data. It also provides a distance function to manage with mixed variables

data. Applying this distance function, distance weights and combinations can be easily

adjusted.

Chapter 3 presents the validation and visualization of the cluster result in order

to obtain a suitable number of clusters. A cluster heatmap of stability measured is

presented and combined with cluster indices to complement the cluster results. The

heatmap can be converted as well into a directed graph figure.

Chapter 4 applies the partitioning algorithms, validation, and visualization in R
software environment (R Core Team, 2015). The focus is applying the kmed package

(Budiaji, 2019). This package is helpful to calculate mixed variables distances, apply

some partitioning algorithms, and evaluate the cluster results.

Chapter 5 provides demonstration studies of the partitioning algorithms in two

types of simulated mixed variable data sets. Two mixed variable data sets from the

UCI website are also analyzed.

In Chapter 6, food security mapping is presented. Because districts in the map

are spatially contiguous, a constrained clustering is required in the analysis. It can be

easily perform via a generalized spatial distance function (GSDF) explained in Chapter

2.

Chapter 7 summarizes the main finding of the thesis. The appendices contain the

R documentation (Appendix A) and vignette of the kmed package (Appendix B).
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2
Partitioning Algorithms for Mixed Variable Data

This chapter introduces the distances and partitioning algorithms for mixed variables

data. In a partitioning algorithm, each object is set to have one and only one cluster

membership based on the similarity/ distance measure. Compared to distance measures

in either numerical or categorical variables, there are limited alternatives for mixed

variables distance. Although the most common measure and medoid-based algorithm

for mixed variables data is Gower (1971) and partitioning around medoids (PAM)

(Kaufman and Rousseeuw, 1990), respectively, some other measures and algorithms

are also presented.

2.1 Distances

2.1.1 Gower

Gower (1971) similarity can calculate mixed variable data by adding the numerical,

binary, and categorical variables. The Gower similarity between object i and object j

is defined as

sij =

∑p
l=1 ωijlsijl∑p
l=1 ωijl

, (2.1)

sijl = 1− |xil − xjl|
Rl

, or (2.2)

sijl ∈ {0, 1},

where ωijl is the j-th weight of object i in the variable l, xil is the value of the object

i on the l-th (numerical) variable, Rl is the range of the l-th (numerical) variable, and

sijl = 1 if the objects i and j are similar in the l-th (binary or categorical) variable

and 0 otherwise. The Gower distance is then obtained by subtracting 1 with Equation

2.1, i.e. dij = 1 − sij. Equation 2.1 is also valid with at least a non missing value in

the p variables. However, when there is a missing value in the object i or j on the l-th

variable, for example, ωijl becomes 0. It implies that if there is a missing value, how

to calculate the distance among the objects can be different due to the difference of∑p
l=1 ωijl.

5



2.1.2 Wishart

Wishart (2003) has modified the Gower similarity to incorporate it in a k-means al-

gorithm. The difference it has with the Gower similarity is in the numerical variable

where the Wishart distance applies a variance weight instead of a range in the numer-

ical variables, and a squared distance component. The Wishart distance is calculated

by

dij =

√√√√
p∑

l=1

ωijl

(
xil − xjl
δijl

)2

, (2.3)

where δijl = σl when l is a numerical or ordinal variable, or δijl = 1 when l is a binary

variable, and δijl = 1 for xil = xjl or δijl = xil − xjl for xil 6= xjl when l is a categorical

variable.

2.1.3 Podani

Podani (1999) has proposed an alternative distance for mixed variable data. Although

the Podani distance has a similar form to Equation 2.3, the δijl becomes the range (Rl)

when l is a numerical or ordinal variable. Like the Gower and Wishart distances, the

Podani distance can calculate a distance with missing values.

2.1.4 Huang

Another mixed variable distance that combines numerical and categorical variables is

Huang (1997) distance. The Huang distance between object i and object j can be

computed by

dij =
Pn∑

r=1

(xir − xjr)2 + γ

Pc∑

s=1

δc(xis − xjs), (2.4)

where pn is the number of numerical variables, pc is the number of categorical variables,

γ is the weight for the categorical distance, δc is the categorical distance, and δc(xis, xjs)

is the categorical distance between object i and object j in the variable s. It is suggested

that γ is replaced by the average standard deviation of the numerical variables and the

categorical distance is the mismatch coefficient.

2.1.5 Harikumar-PV

Harikumar and PV (2015) has proposed a vector based distance of numerical, binary,

and categorical distances. The Harikumar-PV distance is defined as

dij =
Pn∑

r=1

|xir − xjr|+
Pc∑

s=1

δc(xis − xjs) +

pb∑

t=1

δb(xit, xjt), (2.5)
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where pb is the number of binary variables, and δb(xit, xjt) is the binary distance between

object i and object j in the variable t. The binary distance in the Harikumar-PV

distance is Hamming distance, while the categorical distance applies a co-occurrence

distance, a distance that is calculated based on the distribution of other categorical

variables.

2.2 Generalized distance function (GDF)

We propose a generalized distance function (GDF) to calculate mixed variable distance.

The GDF approach is similar to Huang (1997), Ahmad and Dey (2007), McCane and

Albert (2008), and Harikumar and PV (2015) approaches, where numerical, binary,

and categorical distances are combined. The GDF is defined as

dij =

(
α

pn∑

r=1

δn(xir, xjr) + β

pb∑

t=1

δb(xit, xjt) + γ

pc∑

s=1

δc(xis, xjs)

)ω
, (2.6)

where ω, α, β and γ are the weights for the whole distance function, numerical, binary,

and categorical variables respectively, δn is the numerical distance.

Applying the GDF (Equation 2.6), the distance is adjustable to any type of data and

flexible with any combination of distances and weights. The aforementioned distances,

moreover, can be modified into the GDF function such that they are equal. Thus, the

Gower, Wishart, Podani, Huang, and Harikumar-PV distances become

dij =
1

pn + pb + pc

(
pn∑

r=1

1

Rr

|xir − xjr|+ pb

pb∑

t=1

δb(xit, xjt) + pc

pc∑

s=1

δc(xis, xjs)

)
,

dij =

(
1

pn + pb + pc

(
pn∑

r=1

1

s2r
(xir − xjr)2 + pb

pb∑

t=1

δb(xit, xjt) + pc

pc∑

s=1

δc(xis, xjs)

)) 1
2

,

dij =

(
pn∑

r=1

1

R2
r

(xir − xjr)2 + pb

pb∑

t=1

δb(xit, xjt) + pc

pc∑

s=1

δc(xis, xjs)

) 1
2

,

dij =

pn∑

r=1

(xir − xjr)2 +

∑pn
r=1 sr
pn

pb∑

t=1

δb(xit, xjt) +

∑pn
r=1 sr
pn

pc∑

s=1

δc(xis, xjs),

dij =

pn∑

r=1

|xir − xjr|+
pb∑

t=1

δb(xit, xjt) +

pc∑

s=1

δc(xis, xjs),

respectively. Table 2.1 shows the reformulation of some mixed variables data into the

GDF structure.
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Table 2.1: Mixed variable distances in the GDF formulation
GDF ω α β γ δn(xir, xjr) δb(xit, xjt) δc(xis, xjs)
Gower 1 1

pn+pb+pc

pb
pn+pb+pc

pc
pn+pb+pc

M rw SM SM

Wishart 1
2

1
pn+pb+pc

pb
pn+pb+pc

pc
pn+pb+pc

SE vw SM SM

Podani 1
2

1 pb pc SE r2w SM SM
Huang 1 1 sn sn SE H H
Harikumar-PV 1 1 1 1 M H CoC
pn = Number of numerical variables, pb = Number of binary variables,
pc = Number of categorical variables, sn = mean of standard deviation of
numerical variables, E = Euclidean, H = Hamming, M = Manhattan,
SE = Squared Euclidean, SM = Simple Matching, CoC = Co-occurrence,
rw = range weighted, r2w = squared range weighted, vw = variance weighted

2.3 Generalized spatial distance function (GSDF)

When spatial constraints occur in the clustering task, they can be taken into account

as either weights or other numerical variables included in the clustering algorithm. The

former is preferable due to its distinction between variables and spatial spaces. Then,

the weights of the spatial constraint can be obtained by a neighborhood system. The

neighborhood system generates a connecting scheme (contiguity matrix) such as the

Delanuay triangulation, Gabriel graph, relative neighborhood, minimum spanning tree,

maximum distance, and semi-variogram (Legendre and Legendre, 2012; Pawitan and

Huang, 2003; Simbahan and Dobermann, 2006).

While the input of the medoids-based algorithm is a distance matrix where a GDF

(Section 2.2) can be applied, a Hadamard product of distance and contiguity matrices

from the variables and spatial information, respectively, is applicable for a clustering

algorithm (Legendre and Legendre, 2012). In the GDF form, we call the Hadamard

product of the distance and contiguity matrices as a generalized spatial distance func-

tion (GSDF). The GSDF is then defined as

dij = θij

(
α

pn∑

r=1

δn(xir, xjr) + β

pb∑

t=1

δb(xit, xjt) + γ

pc∑

s=1

δc(xis, xjs)

)ω

=

(
θ

1
ω
ij (α

pn∑

r=1

δn(xir, xjr) + β

pb∑

t=1

δb(xit, xjt) + γ

pc∑

s=1

δc(xis, xjs) )

)ω

=

(
θ

1
ω
ij α

pn∑

r=1

δn(xir, xjr) + θ
1
ω
ij β

pb∑

t=1

δb(xit, xjt) + θ
1
ω
ij γ

pc∑

s=1

δc(xis, xjs)

)ω

=

(
α∗ij

pn∑

r=1

δn(xir, xjr) + β∗ij

pb∑

t=1

δb(xit, xjt) + γ∗ij

pc∑

s=1

δc(xis, xjs)

)ω

,

where α∗ij, β
∗
ij, and γ∗ij are the numerical, binary, and categorical weights considering

the spatial constraint, θij. Then, the weights of mixed variable distances, i.e. θij (Table
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2.2), replace a constant of 1 in Table 2.1.

Table 2.2: Spatial weights of mixed variable distances
ω α∗ β∗ γ∗

Gower 1
θij

pn+pb+pc

θij pb
pn+pb+pc

θij pc
pn+pb+pc

Wishart 1
2

θij
pn+pb+pc

θij pb
pn+pb+pc

θij pc
pn+pb+pc

Podani 1
2

θij θij pb θij pc
Huang 1 θij θij sn θij sn
Harikumar-PV 1 θij θij θij

2.4 Medoids-based algorithms

2.4.1 Partitioning around medoids (PAM)

A well-known choice of a medoids-based algorithm is partitioning around medoids

(PAM) (Kaufman and Rousseeuw, 1990). For mixed variable data, the common prac-

tice is to calculate Gower (1971) distance and run the PAM algorithm from this distance

matrix. The PAM algorithm is

1. Select a set of initial medoids, Mk, arbitrarily.

i

h

t

Objects: Selected Unselected

Figure 2.1: Swapping step in the PAM algorithm

2. For each medoid m and each non-medoid o, swap m and o and calculate the total

swapping cost. For example, for each pair of non-medoid h and medoid i (Figure

2.1), the total swapping cost, TCih, can be computed. The swapping cost due to

object t (non-medoid) can be calculated by

Ctih = d(t, h)− d(t, i),
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where d(t, h) is the distance between object t and h. Then, TCih is computed by

TCih =
∑

∀o
Coih. (2.7)

3. Select the configuration that has a lowest TC, i.e. if TCih in Equation 2.7 is

negative (TCih < 0), i is replaced by h.

4. Repeat steps 2-3 and 4 until the selected medoids do not change.

Due to the sensitivity of means towards outliers and noise, the PAM is more robust

than the k-means. However, the PAM has a high complexity resulted from examining

all of the k(n − k) combinations of intermediate solutions in steps 2 and 3 of each

iteration (Rangel et al., 2016).

2.4.2 K-medoids (KM)

The k-medoids (KM) algorithm adapts the k-means algorithm, with the cluster centers

represented by a set of medoids instead of the means. Reynolds et al. (2006) have

presented the k-medoids algorithm as

1. Select a set of initial medoids, Mk, as many as k from all object Xn at random.

2. Assign the label/ membership of each object to the closest medoid Mk by pre-

serving the cluster label l(xn) fixed.

3. Update the new position ofMk medoids by finding the object within the cluster

that minimizes the sum of distance between this object with the other objects in

the cluster.

mg := argmin
g ∈K

∑

n:l(xn)=mg

d(xn,mg),

g = 1, 2, 3, . . . , k. (2.8)

Figure 2.2 shows that a candidate of medoid is scanned from all objects within

cluster, i.e. setting the cluster membership fixed.

4. Repeat steps 2 and 3 until the medoids are fixed.

5. Assign all objects to the closest medoids.

The KM algorithm is an optimization problem that equals to a binary linear pro-

gramming formulation (Gordon and Vichi, 1998). Compared to the PAM, it gains

efficiency in terms of speed. However, due to similarity to the k-means algorithm, it

suffers from the aforementioned problems such as an empty cluster and local optima

depending on the starting values.
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Figure 2.2: Updating a medoid in the KM algorithm

2.4.3 Simple and fast k-medoids (SFKM)

A simple and fast k-medoids (SFKM) algorithm has been proposed by Park and Jun

(2009). The SFKM algorithm is similar to the KM algorithm. The differences are in

the first step where the SFKM does not select the initial medoids arbitrarily, and in the

stopping rule of the algorithm. The initial medoids are selected based on an ordered

vj where it is calculated by

vj =
n∑

i=1

dij∑n
l=1 dil

, j = 1, 2, 3, . . . , n. (2.9)

If the number of clusters is k, the first k’s are selected as initial medoids. While the

KM algorithm stops when the previous medoids are identical, the SFKM is quit when

the sum of distance of the objects to their medoids are equal to the previous step. The

distance between a medoid and objects within a cluster is defined by

E =
k∑

g=1

∑

xn∈Cg

d(xn,mg), (2.10)

where Cg is group g, which has a medoid mg.

Figure 2.3 shows the first and second steps in the SFKM algorithm. The initial

medoids of v1 and v2, which are sorted from Equation 2.9, are selected where they are

the first and second objects that have the closest distance to the other objects. The

Equation 2.9 implies that all objects are sorted from the center space to the outer. The

first k initial medoids are the k most centrally located objects.

The SFKM algorithm has been applied in both the numerical and categorical vari-

able data set. With the medoids as cluster centers, the SFKM is suitable as well for a

11



mixed variable data set. Although, it is argued that this algorithm is simple and fast,

how to manage with the local optima and empty clusters are not discussed.

V2

V1

Group: Group 1 Group 2

Figure 2.3: First and second steps in the SFKM algorithm

2.4.4 Rank k-medoids (RKM)

Zadegan et al. (2013) have presented a ranked k-medoids (RKM) as an algorithm that

is argued as solving the local optima problem in the SFKM algorithm. The RKM

algorithm is

1. Transform the n x n distance matrix into a rank matrix R. The rank values in

the matrix R can be calculated by either a row-based or column-based rank from

the distance matrix. Thus, the matrix R is an asymmetric matrix.

2. Select k initial medoids randomly.

3. Assign the label/ membership of a b group of objects to the closest medoid based

on the values of the matrix R. The choice of b is arbitrary.

4. Update the medoids in the b group by finding the maximum hostility. The hos-

tility of object i is calculated by

hi =
∑

Xj∈Y
rij, (2.11)

where Y is a set of objects as many as b.

5. Repeat steps 3 and 4 until the maximum iteration is reached.

6. Assign all objects to the closest medoids.

12



Figure 2.4 illustrates initial medoids selection with the three closest objects (b = 4)

to the initial medoids clustered. There is no restriction in the choice of b. However,

when b is large, for instance b = n, all objects overlap such that an empty cluster can

emerge. In addition, there are two distances involved, the original and asymmetric (R)

distances. For the latter distance, a preference of two objects when they have an equal

rank has to be taken into account as well.

Initial: Selected Unselected

Figure 2.4: First and second steps in the RKM algorithm (b = 4)

2.4.5 Increasing number of cluster in k-medoids (INCKM)

An increasing number of clusters in k-medoids (INCKM) has been presented by Yu

et al. (2018), who has modified the initial medoids of the KM/ SFKM. The initial

medoids are selected from a set of 2m possible medoids, where m = dlog2 ke, i.e. the

smallest integer that is greater than or equal to log2 k. The INCKM algorithm is

originally intended for numerical variable with the Euclidean distance such that the

object mean, variances of both data set and all objects are easily calculated. Because

it is a medoid-based algorithm, we could redefine the object mean and variances into

the centrally located object (medoid) and an average deviation of all objects to the

medoid, respectively. With this new definition, the INCKM is applicable for mixed

variable data.

The algorithm to select mg initial medoids is

1. Select the most centrally located objects, v1, via Equation 2.9.

2. Calculate the average deviation of the data set and the deviation of each object.
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The average deviation of the data set can be computed via

σ =

√√√√ 1

n− 1

n∑

i=1

d(Oi, v1), (2.12)

while the average deviation of each object is calculated by applying

σi =

√√√√ 1

n− 1

n∑

j=1

d(Oi, Oj). (2.13)

3. Find the candidate medoids Oc. An Oc object is an object that has an average

deviation (Equation 2.13) smaller or equal to the average deviation of the data

set (Equation 2.12). It is calculated by

Oc = {Xi|σi ≤ ασ, i = 1, 2, . . . , n}, (2.14)

where α is a stretch factor defined by the user.

4. The first initial medoids m1 is an Oc object that minimizes the distance to the

all Oc, while the second initial medoids m2 is an Oc object that maximizes the

distance of m1 to the all Oc objects.

m1 := argmin
Xi ∈ Sm

∑

∀Sm

d(xi,m1).

m2 := argmax
Xi ∈ Sm

∑

∀Sm

d(xi,m1).

5. If k = 2, m1 and m2 are the initial medoids.

6. Assign all objects to the closest medoids m1 or m2 into two clusters.

7. Select m3 and m4 by maximizing the distance between m1 and m3 within cluster

1, and the distance between m2 and m4 within cluster 2, respectively. If k equals

to 4, m1,m2,m3, and m4 are the initial medoids. However, if k equals to 3, the

initial medoids are m1 and m2 and one of m3 or m4. When d(m1,m3) is greater

than d(m2,m4), m3 is selected, and otherwise.

8. Repeat steps 6 and 7 until the set of initial medoids mp as many as k.

Figure 2.5 shows the initial medoids that are selected applying the increasing num-

ber of cluster in k-medoids algorithm. If k = 3, the medoids are m1,m2, and m3

because d(m1,m3) > d(m2,m4). The INCKM is equivalent to applying the KM algo-

rithm twice, i.e. in the initial medoids selection and in the clustering algorithm. Thus,

the possibility of local optima and empty clusters in the INCKM increases.
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m4

m2

m3

m1

Objects: Selected Unselected

Figure 2.5: Initial medoids in the INCKM algorithm (k = 4)

2.4.6 Simple k-medoids (SKM)

We develop a simple k-medoids (SKM) algorithm to manage the local optima and

empty cluster in both the KM and SFKM algorithms. To avoid the local optima, several

initializations are applied as Steinley and Brusco (2007) recommendation. Preserving

the label when non-unique medoids are initialized is a way out for an empty cluster.

The initial medoids, moreover, only retains an object that is equivalent to v1 as a fixed

initial medoid in each initialization.

The SKM algorithm is

1. Select a set of initial medoidsMk. The first initial medoids is the most centrally

located object. As Equation 2.9 is a standardized version, v1 is selected by

excluding the denominator, i.e. the unstandardized version. The k − 1 initial

medoids are randomly selected.

2. Assign all objects to the closest medoid Mk. If non-unique exists, objects are

assigned to only one of the non-unique medoids.

3. Update the new set medoids as in the KM algorithm. The non-unique medoids

preserve its label except the non-unique medoids that has more than one object

as the member.

4. Calculate the sum of within cluster distance (E) via Equation 2.10.

5. Repeat steps 2-4 as many as a pre-determined number of iterations or until E is

equal to the previous E.
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m2

V1

S=1: Selected Unselected

m2

V1

S=2: Selected Unselected

Figure 2.6: Initial medoids in the SKM algorithm (s = 2)

6. Repeat steps 1-5 s times to produce s times initialization (s seeding). The final

medoids are a set of medoids that has a minimum value of E. Figure 2.6 illustrates

two different seedings. In both seedings, the most centrally located object always

becomes the one of the initial medoids.

7. Assign all objects to the closest final medoids.
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3
Cluster Validation and Visualization

The partitioning process in cluster analysis involves an absence of pre-defined class,

thus named an unsupervised technique. The final partition then requires validation

measures to find the best partition that fits the underlying data. The cluster valida-

tion can be classified into three types, namely external, internal, and relative criteria

(Theodoridis and Koutroubas, 2008; Webb and Copsey, 2011). The difference among

these three criteria is the available information in the process of cluster validation such

that it is hard to compare these criteria in the same framework (Arbelaitz et al., 2013).

3.1 External criteria

The external criteria validate the partition result with the known class label (”gold

standard”) (Handl et al., 2005). This is useful when the objective of evaluation is

a clustering algorithm on a benchmark data set or a controlled environment. The

external criteria validation examines if the objects are structured by random or not

(Halkidi et al., 2001). A clustering accuracy (Ji et al., 2013) and cluster purity (Handl

et al., 2005; Wu et al., 2009) are examples of the external criteria.

Table 3.1: Table of true class vs partitioning result
Partition True class

∑

result C1 C2 . . . Ck
P1 n11 n12 . . . n1k n1.

P2 n21 n22 . . . n2k n2.

. . . . . . . . . . . . . . . . . .
Pk nk1 nk2 . . . nkk nk.∑

n.1 n.2 . . . n.k n..

3.1.1 Cluster accuracy

Assuming the diagonal values of the contingency table of partitioning result vs true

class (Table 3.1) are optimum, the accuracy rate of the clustering algorithm can be

calculated by

A =
k∑

i=1

nii
n..
, (3.1)

where nii is the diagonal values of row i column i, and n.. is the sum of all values.
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3.1.2 Cluster purity

The cluster purity is computed by

P =
k∑

i=1

ni.
n..

(max
j ∈ k

nij
ni.

), (3.2)

where ni. is the sum of row i, and nij is the value of row i column j. When the diagonal

values of Table 3.1 are also maximum, A is equal to P .

3.1.3 Rand index

Let B denotes the number of all pairs of data points which are either assigned to the

same clusters by both partitions or to different clusters by both partitions. On the

other hand, let D denotes the number of all pairs of data points which are assigned to

a cluster in a partition, yet to a different cluster by another partition. The rand index

(Rand, 1971) is then measured by

RI =
B

B +D
. (3.3)

3.2 Internal criteria

When either the true class or gold standard is absent, which is always likely to happen

in a real data set, the internal validation is relevant. Since the class label is unknown,

the internal validation uses the intrinsic information of the data to measure the quality

of partition. It usually measures compactness and separation of the cluster (Arbelaitz

et al., 2013). The compactness examines the cluster homogeneity, i.e. within-cluster

variance, while the separation assesses the degree of separation between clusters. Char-

rad et al. (2014) has listed 19 internal indices that have been implemented in R and

SAS software. One of the popular indices is silhouette width (Rousseeuw, 1987) by

which the compactness and separation are non-linearly combined (Brock et al., 2008).

3.2.1 Silhouette width

Silhouette width is the average silhouette value of each object. The silhouette value of

object i can be calculated by

sv(i) =
bi − ai

max(ai, bi)
, where (3.4)

ai =
1

n(C(i))

∑

j∈C(i)

d(i, j) and bi = min
Ck ∈C\C(i)

∑

j∈Ck

d(i, j)

n(Ck)
.
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C(i) is the cluster that belongs to object i, ai is the average distance between object i

and all objects within cluster C(i), and bi is the average distance between object i and

all objects within the nearest neighbor cluster. The value of silhouette is within [−1, 1]

where 1 indicates a well-separated cluster, conversely, -1 indicates a poorly-separated

cluster.

3.2.2 Shadow value

A similar measure to silhouette, called shadow value, which is based on the first and

second closest centroids, has been developed (Leisch, 2006, 2010). The shadow value

can be computed via

sh(i) =
2 d(i, c(i))

d(i, c(i)) + d(i, c̃(i))
, (3.5)

where c(i) and c̃(i) is the first and second-closest centroid from object i, respectively.

The average shadow value of objects where cluster x is the closest and cluster y is the

second closest is then obtained by

shxy =

∑
i ∈Axy

sh(i)

Ax
, (3.6)

where Axy = {i ∈ XN |c(i) = cx, c̃(i) = cy}. If shxy is close to 1, it indicates the clusters

are poorly-separated.
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Figure 3.1: Silhouette (left) and shadow value (right) of well-separated clusters

Figure 3.1 shows well-separated clusters applying silhouette and shadow values,

while Figure 3.2 shows the opposite. When the clusters are well-separated, the silhou-
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ette graphs (Figure 3.1) have high values. At the same case, the shadow values have

small values. Thus, the silhouette and shadow value plot are interpreted in a different

way.

1 2 3

0.00

0.25

0.50

0.75

1.00

1 2 3

0.00

0.25

0.50

0.75

1.00

Figure 3.2: Silhouette (left) and shadow value (right) of poor-separated clusters

3.3 Relative criteria

Another form of cluster validation is a stability based-validation, which does not re-

quire compactness assumption. It relies on sets of replicated samples via a replication

technique like the cross validation method. The bootstrap method, i.e. sampling with

replacement, is also an alternative method to asses the stability of clusters (Jain and

Moreau, 1987; Fang, 2012), where the natural structure of data exists if the cluster

results are consistent across replications (Dolnicar and Leisch, 2010).

3.3.1 Consensus matrix

The consistency of cluster results of a clustering algorithm across replications can be

put in a n x n agreement/ consensus matrix. Because the consensus between objects i

and j is equal to that of between objects j and i, the consensus matrix is a symmetric

matrix. To create an ordered consensus matrix, another clustering algorithm is required

(Monti et al., 2003; Benson-Putnins et al., 2011) such that a heatmap is produced.

Figure 3.3 shows heatmaps of consensus matrix of well and poorly sepaterated

clusters. Because they rely on another clustering algorithm, a hierarchical clustering

20



for instance, to rearrange the objects in the consensus matrix, a problem in a branch

of cluster trees occurs that is called a swing problem (Weinstein, 2008), which it is also

described as a seriation problem (Wilkinson and Friendly, 2009).

Figure 3.3: Consensus matrix heatmap of well-separated (left) and poor-separated
(right) clusters

3.3.2 Reduced size of consensus matrix

We introduce a reduced size of consensus matrix, which has a k x k dimension instead

of nxn. It eliminates the swing/ seriation problem by applying the Hungarian method

to optimize the relabeling result. Compared to the original consensus matrix (n x n),

a reduced dimension of a consensus matrix has a smaller size of dimension, i.e. k x k,

where k is the number of clusters. The values in the matrix represent proportions of

stable and unstable objects when the objects are sampled twice in a pair of replicated

data sets. To create a k xk reduced size of consensus matrix from b bootstrap samples,

the algorithm is

1. Assign all objects (population) into k clusters via a clustering algorithm.

2. Draw b bootstrap samples from the data.

3. Applying the clustering algorithm partitioned into k clusters, assign memberships

of the selected objects for each b bootstrap samples.

4. Evaluate the membership label of the b bootstrap samples by referring to the

population label in the step 1. To optimize the relabeling result, a linear pro-

gramming method can be applied. However, because the Hungarian method is

more efficient than linear programming (Hornik, 2017), the former is preferred to

the latter.

5. Calculate the percentage of objects that remain in the same cluster or leaves

to any different cluster when an object is taken twice in a pair of bootstrap
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samples. As a result, square matrices Q as many as (b2) are produced. At the

beginning, Q is a column vector with the length k. Then, it transforms into a

k x k squared matrix where Q(1,2) and Q(2,1) have opposite meaning. The former

is the proportion of objects leaving from cluster 1 to cluster 2, while the latter

means the proportion of objects moving from cluster 2 to cluster 1. Thus, matrix

Q is read per row. If matrix Q is formed from a row vector in the beginning, it

is read per column instead.

6. Calculate the weighted sum of Qi matrices.

V =

(b2)∑

i=1

1

(b2)
Qi.

The matrix V can be a symmetric square matrix, if the proportion of objects leaving

cluster i to cluster j is equal to the proportion of objects moving from cluster j to cluster

i for all i and j (i = j = 1, 2, . . . k). The diagonal values of V always represent the

proportion of stable objects, while the off diagonal values are the unstable proportion.

3.4 Visualization

The clustering process of both hierarchical and partitioning algorithm can be visualized

in a plot. The common graph for the hierarchical algorithm is a dendogram, while a

clustergram is able to illustrate both algorithms (Schonlau, 2004). Although the latter

depicts the character of hierarchical (nested) and partitioning (merged and partitioned)

algorithms well, neither well nor poor separated clusters are discernible. The well and

poorly separated clusters are presented in two different visualization techniques, i.e.

internal-based and relative-based criteria.

3.4.1 Internal-based criteria

Neighborhood graph

A neighborhood graph visualization is drawn based on an internal criterion, i.e. the

shadow values (Equation 3.6) as edge weights, in an undirected graph (Leisch, 2006).

The edges correspond to the either well or poorly separated clusters. The thinner

the lines, the better the clusters are separated and vice versa. Figure 3.4 shows a

well-separated cluster in a neighborhood graph (left), while Figure 3.5 illustrates a

poorly-separated clusters. If the line in the neighborhood graph is thin, it indicates

the clusters having good separation.
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Figure 3.4: Shadow value plot of well-separated clusters in neighborhood graph
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Figure 3.5: Shadow value plot of poor-separated clusters in neighborhood graph

Stripe plot

A stripe plot, moreover, is drawn based on the first and second closest centroid (Leisch,

2008). While the neighborhood graph has two axes representing two selected variables,

the stripe plot has a cluster number in an axis, and a distance in the other axis. If

clusters have good separation, it is indicated by non-overlap stripes. Figure 3.6 and

3.7 show well and poorly separated clusters illustrated in a stripe plot, respectively.
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Figure 3.6: A stripe plot of well-separated clusters
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Figure 3.7: A stripe plot of poorly-separated clusters

Modified stripe plot

When the data set is mixed variables data, a modified stripe plot is proposed. Adapted

from the original stripe plot, a modified stripe plot easily replaces the centroids into

medoids. The results of the modified stripe plots in both the well and poorly separated

clusters (Figure 3.8 and 3.9) are similar to the stripe plots. The only difference is that

the former is based on medoids.
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Figure 3.8: A modified stripe plot of well-separated clusters
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Figure 3.9: A modified stripe plot of poor-separated clusters

3.4.2 Relative-based criteria

The heatmap of consensus matrix in Section 3.3.1 represents a relative-based criteria

visualization. It is a visualization of a n x n consensus matrix. On the other hand, the

reduced size of the consensus matrix (Section 3.3.2) is a summary version of the the

n x n consensus matrix. Because the reduced size of the consensus matrix has much

smaller dimension (k x k) than the original consensus matrix, the matrix V can be

visualized directly in a squared matrix (Figure 3.10).

25



0.3

0.37

0.33

1 2 3

3

2

1

Stable objects =  100 %

Figure 3.10: Direct visualization of matrix V of well-separated clusters

Heatmap-like pattern

A matrix can be visualized in a pattern such as squares, circles, bars, or pies (Murdoch

and Chow, 1996; Friendly, 2002). Its values can also be transformed by applying either

a linear or nonlinear transformation (Hahsler and Hornik, 2011) to produce a shaded

patterns of plot for visualization purpose. Thus, a matrix V can be visualized in a

pattern such that it is similar to a heatmap.
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Figure 3.11: Reduced size of consensus matrix heatmap of well-separated clusters

Figure 3.11 shows a shaded squared patterns of matrix V by applying a non-linear

transformation. Each element of matrix V is transform into

vij =
vij −min (∀i,j vij)

max (∀i,j vij)−min (∀i,j vij)
.
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The best clustering result based on relative criteria is achieved when the sum of diagonal

values are 1. While Figure 3.11 illustrates well-separated clusters, Figure 3.12 shows

the contrary.
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Figure 3.12: Reduced size of consensus matrix heatmap of poor-separated clusters

Although Figure 3.11 and 3.3 (left) are similar, they are read and constructed

differently. The proportions of the stable/ unstable objects are visible in the reduced

size of the consensus matrix, in which they can be easily replaced by the actual number

of objects. While the n x n consensus matrix describes the unstable objects twice in

both the upper and lower of the off-diagonal values, i.e. indicated by a symmetric

squared matrix, the reduced size of the k x k consensus matrix only presents once.

Hence, it has to be read either by row or column depending on the column or row

vector at the beginning, respectively. In the grid measure, moreover, both heatmaps

have different sizes, where the original consensus matrix has n x n grids compared to

only k x k grids in the reduced size of the consensus matrix.

Directed graph

The reduced size of consensus matrix V can be directly plotted in 2-dimension as a

directed graph. The graph elements can be decorated with attributes (Kolaczyk and

Csardi, 2014) in order to comply with the associated values of the matrix V. Some

attribute elements are introduced as follows to visualize the matrix V in a network

graph.

1. The number of nodes is as many as the number of clusters (k).

2. The size of the diameter nodes is proportional to the diagonal element values.

This corresponds to the size of the stable objects.
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3. The non-zero elements in the off-diagonal matrix are equal in number to the

number of edges in the graph.

4. Because of a non-symmetric matrix, the edges are directed.

5. The weight for the edges is proportional to the off diagonal element values. This

represents the number of unstable objects. If the weight is less than 1
n
, the edge

is absent.

To set the nodes and edges in a 2-dimensional space, it requires a graph layout.

Battista et al. (1994) have listed many graph layouts with their respective drawing

algorithms. One of them is a tree in which a star layout is formed when the degree

distribution of the nodes achieves a lower bound (Kincaid and Phillips, 2011). A k-star

layout is depicted by a node in the center and k − 1 equidistant nodes. The largest

proportion of the stable objects can be set as the center of the nodes.

Stable objects = 100 %

Cluster 1 
 prop = 0.3

Cluster 2 
 prop = 0.37

Cluster 3 
 prop = 0.33

Figure 3.13: A directed graph of well separated clusters

Figure 3.13 shows a well-separated cluster presented in a directed graph opposing

to Figure 3.14. The best-separated clusters are achieved when the edge is absent, while

poorly-separated clusters are indicated by many edges with thicker lines. Although the

neighborhood and directed graphs depict similar style, i.e. topology-network, they are

created differently. They are based on the internal-based and relative-based criteria,

respectively.

3.4.3 Combination of external-based and relative-based criteria

In order not to rely solely on the consensus matrix and stability measure (Senbabaoglu

et al., 2014; Hennig, 2007), relative criteria can be combined with external criteria.

The external criteria can also be extracted simultaneously when the relative criteria

algorithm to obtain the reduced size of consensus matrix (Section 3.3.2) is run. Then,
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Figure 3.14: A directed graph of poor separated clusters

a kernel density evaluation of the external criteria can be plotted side by side with the

reduced size of consensus matrix. Hence, the reduced size of consensus matrix and the

kernel density become a good pair to visualize the bootstrap summary.
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Figure 3.15: Combination of relative-based and internal-based criteria of well-separated
clusters

Figure 3.15 shows the combination plot of a reduced size of the cluster consensus

matrix in a squared pattern and a rand index kernel density. The best separated
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clusters are indicated by a maximum proportion (100%) of stable objects and and a

strong peak at one.

3.4.4 Location and dispersion

In order to interpret the cluster result of a numerical variable data set, Leisch (2008)

has proposed a barplot with the measures of the location and dispersion of each cluster.

This barplot can also be added by some markers such that a marked barplot is produced

(Dolnicar and Leisch, 2014). The marker tags the mean of the population and within

cluster (Figure 3.16). If the data set is an ordinal variables data set, on the other

hand, Brentari et al. (2016) have performed a rank-based boxplot for the location and

dispersion measures of the clusters.
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Figure 3.16: A marked barplot of numerical data set (k = 3)

While the barplot is intended for numerical data sets, we modify the barplot to

adapt the mixed variable data. Two rules are introduced to create a modified barplot:

1. The numerical variables are re-scaled such that the minimum and maximum

values are 0 and 1, respectively.

2. While a mean is applied for the numerical variables, a proportion measure is

calculated in binary/ categorical variables to replace the mean.
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Figure 3.17 shows a modified barplot of the mixed variable data set partitioned into

two clusters. The population means (numerical variables) are indicated by dots, while

the population proportion (binary and categorical variables) are denoted by triangles

(t). If a variable has a triangle (t = 1), it is either a binary variable or a categorical

variable that has two classes. Moreover, when the number of triangles is more than

two (t > 1), the variables are categorical variables with t+ 1 categories.
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Figure 3.17: A modified marked barplot of mixed variable data set (k = 2)
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4
Implementation in R

The GDF functions and medoids-based algorithms (Chapter 2), and cluster validation

and visualization (Chapter 3) are implemented in the R software (R Core Team, 2015).

This chapter discusses the main functions in the kmed package (Budiaji, 2019) with the

presented codes and results between two horizontal lines. The details of implementation

are required in order to extend the package usage by writing the user’s own function,

especially when implementing the GDF, developing the k-medoids initialization algo-

rithm, applying bootstrap and heatmap reordering algorithms. For the implementation

in R, a small data set, i.e. 100 objects, is generated by the clusterGeneration package

(Qiu and Joe, 2015) with the genRandomClust function.

library(kmed)

set.seed(2018)

randclust <- clusterGeneration::genRandomClust(3, sepVal = 0.3, numNonNoisy

= 6, numReplicate = 1, clustszind = 3, clustSizes =

as.numeric(table(sample(1:3, 100, replace = TRUE))),outputDatFlag=FALSE,

outputLogFlag=FALSE, outputEmpirical=FALSE, outputInfo=FALSE)

dat1 <- randclust$datList$test_1

dat1 <- data.frame(dat1)

rownames(dat1) <- 1:nrow(dat1)

classdat1 <- randclust$memList$test_1

dat1$x3 <- dat1$x3 < median(dat1$x3)

dat1$x4 <- dat1$x4 < median(dat1$x4)

## Quantile categorization

intv <- function(vec, class) {

nbase <- (1:(class-1))/class

nq <- numeric(length(nbase))

for (i in 1:length(nq)) {

nq[i] <- quantile(vec, nbase[i])

}

res <- c(min(vec), nq, max(vec))

res[1] <- res[1]-1

return(res)

}

dat1$x5 <- as.factor(cut(dat1$x5, intv(dat1$x5, 3), labels = (1:3)))

dat1$x6 <- as.factor(cut(dat1$x6, intv(dat1$x6, 4), labels = (1:4)))
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The generated data set in this chapter has three clusters with two variables of each

numerical, binary, and categorical variables. Cluster 1, 2, and 3 have 39, 34, and 27

objects, respectively. The binary and categorical variable are generated via a quantile

categorization (Section 5.2). While the categorical variables have three and four classes,

each binary variable has equally distributed categories.

classdat1

## [1] 1 1 1 2 2 1 1 1 1 2 2 1 1 3 3 1 2 2 3 3 2 1 2 3 2 3 1 2 3 2 1 3 3

## 2 3 2 2 1 1 1 3 1 2 1 3 3 1 2 3

## [50] 2 3 3 1 1 2 1 2 1 1 3 2 2 2 3 1 1 1 1 1 2 2 3 3 1 1 3 2 2 1 1 2 1

## 2 1 3 3 3 2 2 2 3 3 2 2 3 2 1 1

## [99] 1 1

table(classdat1)

## classdat1

## 1 2 3

## 39 34 27

summary(dat1)

## x1 x2 x3 x4 x5 x6

## Min. :-6.8230 Min. :-9.0950 Mode :logical Mode :logical 1:34 1:25

## 1st Qu.:-2.1477 1st Qu.:-3.7587 FALSE:50 FALSE:50 2:33 2:25

## Median : 0.2452 Median : 0.7726 TRUE :50 TRUE :50 3:33 3:25

## Mean : 0.2024 Mean : 0.1101 NA’s :0 NA’s :0 4:25

## 3rd Qu.: 2.2374 3rd Qu.: 3.8407

## Max. : 6.0427 Max. : 8.4472

4.1 Distance calculation in R

4.1.1 Numerical distances

In the kmed package, there are five numerical distances implemented, namely Man-

hattan weighted by range (mrw), squared Euclidean weighted by range (ser), squared

Euclidean weighted by squared range (ser.2), squared Euclidean weighted by variance

(sev), and un-weighted squared Euclidean (se). To implement the numerical distance,

the distNumeric function can be called. Then, the method argument controls the

desired distance, for instance squared Euclidean weighted by range (ser).

numdist <- distNumeric(data.matrix(dat1[,1:2]), data.matrix(dat1[,1:2]),

method = "ser")

round(numdist[1:6,1:6],2)

## 1 2 3 4 5 6

##1 0.00 2.53 6.24 12.52 11.47 1.04

##2 2.53 0.00 0.82 7.37 5.35 1.20
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##3 6.24 0.82 0.00 6.48 3.95 3.49

##4 12.52 7.37 6.48 0.00 0.42 6.37

##5 11.47 5.35 3.95 0.42 0.00 5.65

##6 1.04 1.20 3.49 6.37 5.65 0.00

4.1.2 Binary and categorical distance

The cooccur function implements the co-occurrence distance for binary and categorical

variables. The other distance is the simple matching (matching) that is commonly

applied for binary and categorical variables. The difference between the cooccur and

matching functions is that the latter applies a pair distance such that the inputs have

to be two matrices.

bindist <- cooccur(dat1[,3:4])

bindist[1:6,1:6]

## [,1] [,2] [,3] [,4] [,5] [,6]

##[1,] 0.00 0.44 0.00 0.44 0.44 0.88

##[2,] 0.44 0.00 0.44 0.88 0.88 0.44

##[3,] 0.00 0.44 0.00 0.44 0.44 0.88

##[4,] 0.44 0.88 0.44 0.00 0.00 0.44

##[5,] 0.44 0.88 0.44 0.00 0.00 0.44

##[6,] 0.88 0.44 0.88 0.44 0.44 0.00

catdist <- matching(dat1[,3:4], dat1[,3:4])

catdist[1:6,1:6]

## 1 2 3 4 5 6

##1 0.0 0.5 0.0 0.5 0.5 1.0

##2 0.5 0.0 0.5 1.0 1.0 0.5

##3 0.0 0.5 0.0 0.5 0.5 1.0

##4 0.5 1.0 0.5 0.0 0.0 0.5

##5 0.5 1.0 0.5 0.0 0.0 0.5

##6 1.0 0.5 1.0 0.5 0.5 0.0

4.1.3 Mixed distances

The mixed distances like the Gower (gower), Wishart (wishart), Podani (podani),
Huang (huang), Harikumar-PV (harikumar), Ahmad-Dey (ahmad) are directly avail-

able in the kmed package via the distmix function. The distmix function requires a

column id of each class of variables. If the results of the distmix are compared to the

daisy function in the cluster package (Maechler et al., 2017), they are equal.

distdat1 <- distmix(dat1, method = ’gower’, idnum=1:2, idbin=3:4, idcat=5:6)

round(distdat1[1:6,1:6],2)
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## 1 2 3 4 5 6

##1 0.00 0.59 0.47 0.53 0.50 0.55

##2 0.59 0.00 0.55 0.83 0.80 0.40

##3 0.47 0.55 0.00 0.48 0.45 0.78

##4 0.53 0.83 0.48 0.00 0.03 0.64

##5 0.50 0.80 0.45 0.03 0.00 0.61

##6 0.55 0.40 0.78 0.64 0.61 0.00

gowdat1 <- cluster::daisy(dat1, metric = "gower", type = list(symm = 3:4))

sum(distdat1-as.matrix(gowdat1) > 1e-10)

## [1] 0

4.2 Medoids-based algorithms in R

There are three medoids-based algorithms directly implemented in the kmed package,

namely the SFKM (fastkmed), RKM (rankkmed), and INCKM (inckmed). For the

KM and SKM algorithms, the fastkmed function can be indirectly applied (Section

4.4.2). On the other hand, the PAM has been implemented in the cluster package

with the pam function and k-medoids from a linear programming perspective has been

applied in the clue package (Hornik, 2005, 2017) with the kmedoids function.

4.2.1 SFKM in R

The generated data set, dat1, is partitioned via the SFKM algorithm with the Gower

GDF. The fastkmed function requires arguments of the distance matrix, number of

clusters, and number of iterations (10 as a default). With the dat1 data set, the SFKM

results in 16% missed classification rate. The medoid objects are objects number 37,

72, and 82. The sum of the within cluster distance is calculated as 22.4.

sfkmdat1 <- fastkmed(distdat1, 3, iterate = 50)

resfkm <- sfkmdat1$cluster

table(classdat1, resfkm)

## resfkm

##classdat1 1 2 3

## 1 1 32 6

## 2 32 1 1

## 3 5 2 20

(1+6+1+1+5+2)/100

## [1] 0.16

sfkmdat1$medoid

## [1] 37 82 72
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sfkmdat1$minimum_distance

## [1] 22.40216

4.2.2 RKM in R

Next, the RKM algorithm can be also applied directly in R. Similar to the fastkmed
function, the rankkmed requires the same arguments with an additional argument m

to calculate a hostility measure. If m is set to 5, the hostility is calculated based on

the five closest objects from the medoids. For the dat1 data set, the RKM partitioning

algorithm produces 22% missed classification rate with the objects number 18, 31, and

51 as the medoids. The sum of the within cluster distance is higher than the SFKM

algorithm. It determines that the SFKM is better than the RKM for the dat1 data

set.

rkmdat1 <- rankkmed(distdat1, 3, m = 5, iterate = 50)

resrkm <- rkmdat1$cluster

table(classdat1, resrkm)

## resrkm

##classdat1 1 2 3

## 1 2 29 8

## 2 33 0 1

## 3 8 3 16

(2+8+0+1+8+3)/100

##[1] 0.22

rkmdat1$medoid

##[1] "18" "31" "51"

rkmdat1$minimum_distance

##[1] 24.95745

4.2.3 INCKM in R

The other medoid-based algorithm that is directly applied is the inckmed function

that implements the INCKM algorithm. Instead of m, the inckmed requires alpha as

an additional argument. It is a stretch factor that specifies a range to find medoid

candidates. Although the missed classification rate of the INCKM algorithm is equal

to the SFKM algorithm, i.e. 16%, its sum of the within cluster distance is lower than

the SFKM indicating that the INCKM is better.

inckmdat1 <- inckmed(distdat1, 3, alpha = 1.1, iterate = 50)

resinckm <- inckmdat1$cluster
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table(classdat1, resinckm)

## resinckm

##classdat1 1 2 3

## 1 2 35 2

## 2 7 0 27

## 3 22 3 2

(2+2+7+0+3+2)/100

## [1] 0.16

inckmdat1$medoid

## [1] 49 82 37

inckmdat1$minimum_distance

## [1] 21.80374

4.3 Cluster validation and visualization in R

The kmed package implements internal and relative criteria validation. Both criteria

can be visualized in a graph. The clustering results, moreover, are visualized via a

biplot of the principle component and barplot.

4.3.1 Internal criteria in R

Silhouette

The sil function calculates silhouette values of each object and produces a silhouette

plot. It requires a distance matrix, medoid id, and cluster membership, while a title

of the plot is an option. The silhouette plot of the dat1 data set partitioned via the

INCKM algorithm is shown in Figure 4.1 (left). In cluster 1, there are some objects

that have negative silhouette values.

sildat1 <- sil(distdat1, inckmdat1$medoid, inckmdat1$cluster)

sildat1$result[c(1:5),]

## silhouette cluster

##1 0.220040523 2

##2 0.467714497 2

##3 -0.009763089 1

##4 0.397216287 3

##5 0.413070884 3

Shadow value

Figure 4.1 (right) also shows a shadow value plot of the dat1 data set produced by the

csv function. The required arguments for this function are identical to the sil function.
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Based on the silhouette and shadow value plots, both plots depict poorly-separated

clusters when the dat1 data set is partitioned via the INCKM algorithm.

shadat1 <- csv(distdat1, inckmdat1$medoid, inckmdat1$cluster)

shadat1$result[c(1:5),]

## shadval cluster

##1 0.8024029 2

##2 0.5110660 2

##3 0.9357375 1

##4 0.6596323 3

##5 0.6274620 3

gridExtra::grid.arrange(sildat1$plot, shadat1$plot, ncol = 2)
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Figure 4.1: Silhouette (left) and shadow value (right) plots of the generated data set
(dat1)

4.3.2 Relative criteria in R

To apply relative criteria validation via a heatmap of the n x n consensus matrix ,

there are three steps. First, a matrix of bootstrap replicates is created. Then, this

matrix is transformed into a consensus (agreement) matrix. The last step is drawing

the consensus matrix in a heatmap image.
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The bootstrap matrix

The clustboot function can be applied to create a bootstrap matrix. There are four

arguments in the function, i.e. a distance matrix, number of clusters, algorithm, and

number of bootstrap replicates. For the algorithm argument, it is a user defined func-

tion, i.e. a function within an argument, that has to be created before hand. It has

two input arguments, namely a distance matrix and number of clusters. Meanwhile,

the output is a vector of class membership. The default argument for the algorithm
provided in the kmed package is the SFKM algorithm, which is defined as the fastclust
function.

# the default function for the bootstrap/ reorder matrix provided in the

# package. A re-declaration of the function is unnecessary.

# fastclust <- function(x, nclust) {

# res <- fastkmed(x, nclust, iterate = 50)

# return(res$cluster)

# }

# step 1: a matrix of bootstrap replicates via inckm algorithm

# an inckm algorithm as an input in the algorithm argument is developed

algorinckm <- function(x, nclust) {

res <- inckmed(x, nclust, alpha = 1.1, iterate = 50)

return(res$cluster)

}

inckmboot <- clustboot(distdat1, nclust=3, algorithm = algorinckm, nboot=50)

colnames(inckmboot) <- paste("bootstrap sample", 1:ncol(inckmboot))

rownames(inckmboot) <- 1:nrow(inckmboot)

inckmboot[1:6, 1:3]

## bootstrap sample 1 bootstrap sample 2 bootstrap sample 3

##1 1 2 2

##2 1 2 2

##3 2 1 1

##4 0 0 3

##5 2 0 3

##6 1 2 2

The consensus matrix

The consensus matrix is produced by the consensusmatrix function based on the

previous bootstrap matrix. The consensus matrix has to be ordered such that objects

having a similar consensus index are close to each other. A user has to define how

the consensus matrix is ordered. This ordering task can be carried out by creating
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an ordering function, for instance a ward linkage algorithm ordering. This function is

then supplied in the reorder argument of the consensusmatrix function. The reorder
argument, moreover, is similar to the algorithm argument in the clustboot function.

The default reorder function is the fastclust function.

# step 2: a consensus matrix

# a ward linkage algorithm as an input in the reorder argument is generated

wardorder <- function(x, nclust) {

res <- hclust(x, method = "ward.D2")

member <- cutree(res, nclust)

return(member)

}

consensusinckm <- consensusmatrix(inckmboot, nclust = 3, reorder =

wardorder)

consensusinckmalt <- consensusmatrix(inckmboot, nclust = 3, reorder =

algorinckm)

consensusinckm[1:6, 1:6]

## 1 1 1 1 1 1

##1 1.0000000 0.7142857 0.8823529 0.6000000 0.7391304 0.7894737

##1 0.7142857 1.0000000 0.7500000 0.8823529 0.8947368 0.5625000

##1 0.8823529 0.7500000 1.0000000 1.0000000 0.9000000 0.8421053

##1 0.6000000 0.8823529 1.0000000 1.0000000 1.0000000 0.7058824

##1 0.7391304 0.8947368 0.9000000 1.0000000 1.0000000 0.7222222

##1 0.7894737 0.5625000 0.8421053 0.7058824 0.7222222 1.0000000

consensusinckmalt[1:6, 1:6]

## 1 1 1 1 1 1

##1 1.0000000 1.0000000 1.0000000 0.9565217 1.0000000 0.9583333

##1 1.0000000 1.0000000 0.9473684 1.0000000 1.0000000 1.0000000

##1 1.0000000 0.9473684 1.0000000 1.0000000 0.9545455 1.0000000

##1 0.9565217 1.0000000 1.0000000 1.0000000 0.9375000 0.9500000

##1 1.0000000 1.0000000 0.9545455 0.9375000 1.0000000 0.9500000

##1 0.9583333 1.0000000 1.0000000 0.9500000 0.9500000 1.0000000

The heatmap

The consensus matrix can be plotted in a heatmap. The clustheatmap function does

it directly when the input is a consensus matrix. An argument of the heatmap title

can be added in the clustheatmap function as well. A squared block diagonal image

of the heatmap indicates that the evaluated clustering algorithm is suitable to group

the data. Figure 4.2 shows a heatmap of the generated data set (dat1) partitioned by

the INCKM algorithm. The consensus matrix yielded is then reordered by the ward

linkage and INCKM algorithms. The results of the two different reordering algorithms
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depict two similar patterns of heatmap.

# step 3: a heatmap image

plotheat1 <- clustheatmap(consensusinckm, "Ward reorder")

plotheat2 <- clustheatmap(consensusinckmalt, "INCKM reorder")

gridExtra::grid.arrange(plotheat1, plotheat2, ncol = 2)

Ward reorder INCKM reorder

Figure 4.2: Heatmap image of generated data set (dat1) partitioned via the INCKM
algorithm with the ward linkage (left) and INCKM (right) to reorder the consensus
matrix

4.3.3 Visualization of the clustering result in R

Principle component plot

If variables in the data set are all numerical variables, the pcabiplot function can be

applied to obtain a graph of two principle components (pc) in its axes and colored

objects based on the clustering result. This function has arguments to control the axes

and colored objects. Figure 4.3 shows a pca biplot of iris data set grouped by the

SFKM algorithm with Manhattan range weighted GDF.

pcadat <- prcomp(iris[,1:4], scale. = TRUE)

mrwiris <- distNumeric(data.matrix(iris[,1:4]), data.matrix(iris[,1:4]),

method = "mrw")

sfkmiris <- fastkmed(mrwiris, 3, iterate = 50)

pcabiplot(pcadat, colobj = sfkmiris$cluster+1, o.size = 3)

Barplot

The summary of variables based on the clustering result can be plotted in a barplot.

The barplotnum function creates a barplot of clustering results from numerical variables

data set. It requires the original data, and class memberships. It also produces a

significance test of each variable, i.e. t-test between means of the population and
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Figure 4.3: PCA biplot of the iris data set with colored objects via the SFKM algorihtm
with the Manhattan range weighted GDF

within a cluster. The layout of the barplot is set in the nc argument. Figure 4.4 shows

a barplot of the iris data set via the SFKM algorithm with Manhattan range weighted

GDF. The layout of Figure 4.4 is set nc = 1.
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Figure 4.4: Barplot of the iris data set via the SFKM algorithm
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4.4 Writing your own functions

4.4.1 GDF generating

The GDF (Section 2.2) can be generated manually to vary the distance options in

the mixed variable data. Esimma, for example, which combines Euclidean and simple

matching distances, can be easily implemented in R. The collection of numerical, bi-

nary, and categorical distances can be obtained from proxy (Meyer and Buchta, 2016)

and nomclust (Sulc and Rezankova, 2016) packages. The latter package is an im-

plementation of some categorical distances, such as Morlini and Zani (2012) and Lin

(1998), that have been presented by Boriah et al. (2008). With these additional two

packages, a user can vary the GDF by combining the numerical, binary, and categorical

distances. The result of the SFKM algorithm via the combination of Mahalanobis (nu-

merical), Tanimoto (binary), and Morlini (categorical), for instance, produces a 15%

missed classification rate, which is slightly lower than the Gower GDF (Section 4.2.1).

#combine Mahalanobis, Tanomoto, and Morlini

matamor <- as.matrix(proxy::dist(dat1[,1:2], method = "Mahalanobis")) +

as.matrix(proxy::dist(dat1[,3:4], method = "Tanimoto")) +

nomclust::morlini(dat1[,5:6])

diag(matamor) <- 0

sfkmmata <- fastkmed(matamor, 3, iterate = 50)

resfkm2 <- sfkmmata$cluster

table(classdat1, resfkm2)

## resfkm2

##classdat1 1 2 3

## 1 0 38 1

## 2 32 0 2

## 3 7 5 15

(0+1+0+2+7+5)/100

## [1] 0.15

sfkmmata$medoid

## [1] 37 82 64

sfkmmata$minimum_distance

## [1] 171.4651

4.4.2 SFKM initial medoids

In the fastkmed function, the init argument is set to be NULL where the standard

SFKM algorithm is applied. This argument is flexible such that other algorithms can

emerge by defining the desired initial medoids, for instance the KM algorithm, which

set the initial medoids randomly. It produces 24% missed classification rate. The
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INCKM algorithm, which is denoted by the inckmed function in the kmed package,

in addition, also utilizes the init argument flexibility.

kminit <- sample(1:nrow(matamor), 3)

kmmata <- fastkmed(matamor, 3, iterate = 50, init = kminit)

reskm <- kmmata$cluster

table(classdat1, reskm)

## reskm

##classdat1 1 2 3

## 1 0 7 32

## 2 34 0 0

## 3 12 10 5

(0+7+0+0+12+5)/100

## [1] 0.24

kmmata$medoid

## [1] 37 91 42

kmmata$minimum_distance

## [1] 166.985

4.4.3 Cluster bootstrap

The bootstrap matrix, which is created by the clustboot function, has the algorithm
argument that can be defined by a user (Section 4.3.2). It guarantees that any hard

clustering algorithms is applicable. It has to be consisted of two input arguments, i.e.

a distance matrix and number of clusters and a vector output of cluster memberships.

A hard clustering from other packages, the pam function from the cluster package for

example, is applicable as long as the user-defined function has correct input and output

arguments.

# A user defined funtion with a distance matrix and number of cluster

# input arguments and a vector of class membership output.

algorpam <- function(x, nclust){

algor <- cluster::pam(x, nclust, diss = TRUE)

res <- algor$clustering

return(res)

}

pamboot <- clustboot(distdat1, nclust = 3, algorithm = algorpam, nboot = 50)

colnames(pamboot) <- paste("bootstrap sample", 1:ncol(pamboot))

rownames(pamboot) <- 1:nrow(pamboot)

pamboot[1:6, 1:3]

## bootstrap sample 1 bootstrap sample 2 bootstrap sample 3

##1 1 1 1

##2 1 1 1
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##3 0 2 2

##4 2 2 3

##5 2 2 3

##6 1 1 1

4.4.4 Heatmap reordering

The heatmap reordering has a similar case to the cluster bootstrap matrix. The con-
sensusmatrix function, which is intended to produce a heatmap, has the reorder ar-

gument that is adjustable to be defined by a user. The format of this user defined

function is similar to the algorithm argument in the cluster bootstrap matrix. The

difference is that the reorder is only valid for any distance-input clustering algorithm

due to the nxn consensus/ agreement matrix as an input. Figure 4.5 shows a heatmap

of the simulated data set (dat1) grouped by the INCKM algorithm and reordered by

the PAM algorithm. It produces a similar heatmap pattern to Figure 4.2.

consensuspam <- consensusmatrix(inckmboot, nclust = 3, reorder = algorpam)

clustheatmap(consensuspam, "PAM reorder")

PAM reorder

Figure 4.5: Heatmap of the generated data set (dat1) partitioned via the INCKM
algorithm with the PAM algorithm to reorder the consensus matrix
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5
Demonstration

Two types of data sets are presented in this chapter. The first types are artificial

data sets from the Qiu and Joe (2006a) cluster generation algorithm. This algorithm

generates only numerical data sets, such that the categorization of a numerical variable

to a binary/ categorical variable is required in order to obtain a mixed variable data

set. On the other hand, the second types of the data sets are real data sets from the

machine learning repository of UCI (Lichman, 2013) and The Economist Intelligent

Unit (2017). All data sets are then analyzed via six different k-medoids algorithms.

The GDF also varies, applying the Gower, Wishart, Podani, Huang, Harikumar-PV

GDF. Two distances derived from the GDF formula are introduced by varying the

distance combinations (Table 5.1).

Table 5.1: Two distances from the GDF formulation
GDF ω α β γ δn(xir, xjr) δb(xit, xjt) δc(xis, xjs)
Esimma 1 1 1 1 E SM SM
Marweco 1 1 1 1 M rw CoC CoC

E = Euclidean, CoC = Co-occurrence, M = Manhattan,
SM = Simple Matching, rw = range weighted

5.1 Artificial numerical data set

In the data simulation, the Qiu and Joe (2006a) algorithm is applied to generate an

artificial data set consisting of two numerical variables partitioned into four clusters.

The algorithm has a separation index (Qiu and Joe, 2006b) between −1 and 1, such

that the more dispersed cluster has a separation index closer to 1. The separation

index of the simulated data set is set to be 0.1, 0.3, 0.5, and 0.7. Then, each data set

has 200 objects (Figure 5.1).

The simulated data set is partitioned via six k-medoids algorithms with seven GDF’s

(Tabel 2.1 and 5.1). Due to involving only numerical variables, the seven GDF’s are

adjusted (Table 5.2). Then, the rand index (Equation 3.3) is applied to evaluate the

clustering results.

5.1.1 PAM

When the artificial data set is partitioned via the PAM algorithm, the rand indices that

are produced from all seven GDF’s are consistently high (Table 5.3). This indicates
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Figure 5.1: The simulated data set with separation values: 0.1 (a), 0.3 (b), 0.5 (c), and
0.7 (d)

Table 5.2: Adjusted numerical variable distances
GDF ω α δn(xir, xjr)
Gower 1 1

pn
Manhattan weighted by range

Wishart 1 1
pn

Squared Euclidean weighted by variance

Podani 1
2

1 Squared Euclidean weighted by squared range
Huang 1 1 Squared Euclidean
Harikumar-PV 1 1 Manhattan
Esimma 1 1 Euclidean
Marweco 1 1 Manhattan weighted by range

Table 5.3: Rand indices of the simulated data via the PAM algorithm
Data Gower Wishart Podani Huang Harikumar Esimma Marweco
Data a 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

that the PAM produces a very good clustering result for all of the data sets in any

GDF.
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5.1.2 KM

For each GDF, the KM algorithm is repeated five times. The results of the KM

algorithm for the simulated data produce varied rand indices (Table 5.4). This indicates

a strong effect of medoid initialization, where different initials produce different results.

Table 5.4: Rand indices of the simulated data via the KM algorithm
Replicate Data Gower Wishart Podani Huang Harikumar Esimma Marweco

1 Data a 0.99a 0.98 0.98 0.99 0.99 0.99 0.82
Data b 1.00 0.83 0.84 1.00 0.84 1.00 1.00
Data c 0.86 1.00 1.00 1.00 1.00b 1.00 1.00
Data d 1.00 1.00 0.57 0.83 0.84 1.00 0.83

2 Data a 0.81a 0.98 0.98 0.99 0.82 0.99 0.98
Data b 0.84 1.00 0.84 1.00 1.00 1.00 0.84
Data c 1.00 1.00 0.85 1.00 1.00b 1.00 1.00
Data d 1.00 1.00 0.84 0.81 1.00 0.84 0.85

3 Data a 0.83a 0.98 0.99 0.99 0.99 0.99 0.99
Data b 1.00 1.00 1.00 1.00 1.00 1.00 0.84
Data c 1.00 1.00 1.00 0.79 0.84b 0.83 0.83
Data d 0.84 1.00 1.00 1.00 0.83 0.85 1.00

4 Data a 0.82a 0.82 0.98 0.82 0.83 0.99 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 0.84
Data c 0.83 0.84 1.00 0.84 0.59b 0.86 0.84
Data d 1.00 1.00 0.86 1.00 0.59 0.84 1.00

5 Data a 0.98a 0.81 0.83 0.81 0.99 0.99 0.99
Data b 1.00 1.00 1.00 1.00 1.00 0.84 1.00
Data c 0.83 1.00 0.85 0.84 1.00b 1.00 0.84
Data d 0.83 0.84 0.85 1.00 1.00 0.84 1.00

Examples of rand indices that vary in different replications in:
a Gower and b Harikumar-PV GDFs

5.1.3 SFKM

Similar to the results of the PAM algorithm, the SFKM algorithm has also consistent

indices for all GDF (Table 5.5). For these simulated data sets, although the a data

set has the lowest value compared to the other three data sets, the SFKM algorithm

produces robust results.

Table 5.5: Rand indices of the simulated data via the SFKM algorithm
Data Gower Wishart Podani Huang Harikumar Esimma Marweco
Data a 0.81 0.81 0.81 0.81 0.81 0.81 0.81
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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5.1.4 RKM

In the RKM algorithm, a hostility parameter has to be defined. For the simulated data

sets, they are assigned as 10, 20, 30, 40, and 50. If the hostility parameter is defined as

20, for instance, the hostility is measured based on 20 closest objects. Table 5.6 shows

that the rand indices of the RKM algorithm are varied for all of the data sets.

Table 5.6: Rand indices of the simulated data via the RKM algorithm
Hostility Data Gower Wishart Podani Huang Harikumar Esimma Marweco

10 Data a 0.83 0.96 0.83 0.90 0.82 0.85 0.85
Data b 1.00 0.88 0.85 0.68b 0.91 0.82 0.92
Data c 0.84 0.84a 0.84 0.84 0.84 0.91 0.84
Data d 0.79 0.85 0.78 0.87 0.83 0.84 0.85

20 Data a 0.86 0.81 0.82 0.77 0.84 0.86 0.93
Data b 0.74 0.83 0.91 1.00b 0.85 0.72 0.67
Data c 0.79 0.85a 0.84 0.86 0.86 0.85 0.84
Data d 0.90 0.83 0.82 1.00 0.59 0.82 0.81

30 Data a 0.81 0.85 0.83 0.84 0.79 0.73 0.71
Data b 0.88 0.83 0.87 0.85b 0.85 0.80 0.83
Data c 0.84 0.85 a 0.84 0.78 0.83 0.84 0.87
Data d 0.85 0.80 0.84 1.00 0.80 0.81 0.84

40 Data a 0.61 0.92 0.88 0.85 0.81 0.95 0.61
Data b 0.90 0.84 0.67 1.00b 0.80 0.98 0.90
Data c 1.00 1.00a 1.00 1.00 0.85 0.83 0.84
Data d 0.83 1.00 0.83 0.81 0.85 0.88 0.90

50 Data a 0.74 0.84 0.78 0.72 0.97 0.77 0.77
Data b 0.96 0.93 0.97 0.97b 0.87 0.97 0.96
Data c 0.76 0.61a 0.78 0.78 0.79 0.88 0.76
Data d 0.85 0.85 0.79 0.90 0.90 0.90 0.90

Examples of rand indices that vary in different hostility settings in:
a Wishart and b Huang GDFs

5.1.5 INCKM

When the hostility parameter has to be specified in the RKM algorithm, the INCKM

algorithm has an alpha parameter to determine a stretch factor. It measures how far

the range of the medoid candidate is calculated. In these data sets, the stretch factors

are defined as 1.1, 1.5, 2, 3, and 5. Table 5.7 shows that the INCKM algorithm produces

varied rand indices. Although they are consistently high in the small stretch factor,

i.e. 1.1, they varies after a particular stretch value. The Gower GDF, for instance, the

rand indices vary when the stretch factor greater than 2, while, it is consistent in any

stretch factor for the Esimma GDF.
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Table 5.7: Rand indices of the simulated data via the INCKM algorithm
Stretch Data Gower Wishart Podani Huang Harikumar Esimma Marweco

1.1 Data a 0.98 0.98 0.99 0.99 0.84 0.82 0.98
Data b 1.00a 1.00 1.00 1.00 1.00 1.00b 1.00
Data c 1.00 0.86 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.5 Data a 0.82 0.98 0.99 0.99 0.82 0.81 0.82
Data b 1.00a 1.00 1.00 1.00 1.00 1.00b 1.00
Data c 0.83 0.84 1.00 1.00 0.83 1.00 0.83
Data d 0.84 1.00 1.00 1.00 0.84 1.00 0.84

2 Data a 0.82 0.98 0.82 0.81 0.82 0.99 0.82
Data b 0.84a 0.86 1.00 1.00 0.83 1.00b 0.84
Data c 0.83 0.83 0.83 0.83 0.83 0.83 0.83
Data d 0.84 0.84 0.84 1.00 0.84 0.84 0.84

3 Data a 0.82 0.98 0.82 0.83 0.82 0.81 0.82
Data b 0.84a 0.86 0.86 0.86 0.83 1.00b 0.84
Data c 0.83 0.83 0.83 0.83 0.83 0.83 0.83
Data d 0.84 0.84 0.84 0.84 0.84 0.84 0.84

5 Data a 0.82 0.98 0.82 0.81 0.82 0.81 0.82
Data b 0.84a 0.85 0.86 0.86 0.83 1.00b 0.84
Data c 0.83 0.83 0.83 0.83 0.83 0.83 0.83
Data d 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Examples of rand indices that vary in different stretch factor settings in:
a Gower and b Esimma GDFs

5.1.6 SKM

An important parameter in the SKM algorithm is s (seeding), which determines how

many times an initialization process is repeated. For these data sets, five different

seedings are applied, namely 10, 20, 40, 60, and 80. Table 5.8 shows that the rand

indices for all GDF’s and seedings have consistently high results. Similar to the PAM

and SFKM algorihtms, the SKM algorithm performs well.

5.2 Artificial mixed variable data set

The Qiu and Joe (2006a) algorithm generates a numerical variable data set only. Then,

in order to obtain a binary/ categorical variable, a numerical variable is categorized

via a quantile categorization. The categorization of a numerical variable into a binary/

categorical variable is obtained by dividing the numerical variable into c-number of

classes with 100/c % quantile as the cut point. Thus, a binary variable is achieved

when a median of the numerical variable is applied as a cutoff point.

The artificial mixed variable data set consists of four different settings with sep-

aration value equal to 0.5. The variants include the variables proportion, number of

clusters, number of variables, and number of objects. Due to the consistency results

of the PAM, SFKM, and SKM algorithms (Section 5.1), these algorithm are included
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Table 5.8: Rand indices of the simulated data via the SKM algorithm
Seeding Data Gower Wishart Podani Huang Harikumar Esimma Marweco

10 Data a 0.98 0.98 0.99 0.99 0.99 0.99 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

20 Data a 0.98 0.98 0.99 0.99 0.99 0.99 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

40 Data a 0.98 0.98 0.99 0.99 0.99 0.99 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

60 Data a 0.98 0.98 0.99 0.99 0.99 0.99 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

80 Data a 0.98 0.98 0.99 0.99 0.99 0.99 0.98
Data b 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data d 1.00 1.00 1.00 1.00 1.00 1.00 1.00

in the mixed variable data set simulation. Although the INCKM algorithm is also

consistent with a stretch factor of 1.1, it is impractical for the simulation settings be-

cause a suitable stretch factor has to be defined for each simulated data set, which

can be different from a data set to another data set. Thus, each simulated data set is

partitioned applying seven GDF’s (Table 2.1 and 5.1) by the PAM, SFKM, and SKM

algorithms. To compare the algorithm performance, the rand indices are calculated

and averaged via a subsetting strategy (Hennig, 2007) in 50 replications. Then, they

are presented in a table.

5.2.1 Different variable proportion

In the variable proportion experiments, the artificial mixed variable data have four

different settings. They are dominated by numerical, binary, categorical with 3 classes

of categories, and categorical with 5 classes of categories (Table 5.9). In all settings,

the SFKM algorithm produces the lowest rand index compared to the PAM and SKM

algorithms, except in the data set dominated by binary variables when the Huang,

Harikumar, or Esimma GDFs are applied. Moreover, the all rand indices of the PAM

and SKM are not statistically different at the 0.05 alpha level.

5.2.2 Different number of clusters

The numbers of clusters (k) generated are 3, 4, 8, 10. In any number of clusters, there

are always rand indices of the SFKM algorithm that are lower than the other two
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Table 5.9: Rand indices of the different proportion of variables
Domination Algorithm Gower Wishart Podani Huang Harikumar Esimma Marweco

Numerical PAM 0.87 0.92 0.84 0.92 0.95 0.94 0.92
SFKM 0.80a 0.84a 0.81a 0.90a 0.92a 0.91a 0.85a

SKM 0.87 0.92 0.84 0.92 0.95 0.94 0.92
Binary PAM 0.80 0.78 0.79 0.73 0.76 0.71 0.84

SFKM 0.76a 0.73a 0.73a 0.73 0.74 0.71 0.80a

SKM 0.79 0.76 0.79 0.73 0.75 0.71 0.84
Categorical PAM 0.88 0.97 0.86 0.99 0.99 0.98 0.96
c = 3 SFKM 0.83a 0.89a 0.80a 0.94a 0.94a 0.93a 0.91a

SKM 0.89 0.98 0.87 0.99 0.99 0.98 0.96
Categorical PAM 0.86 0.97 0.85 0.99 0.99 0.98 0.94
c = 5 SFKM 0.78a 0.83a 0.76a 0.97a 0.97a 0.95a 0.86a

SKM 0.85 0.97 0.85 0.99 0.99 0.98 0.94

Significantly different (α = 0.05) to: a PAM and SKM

Table 5.10: Rand indices of the different number of clusters
k Algorithm Gower Wishart Podani Huang Harikumar Esimma Marweco

3 PAM 0.98 0.99 0.98 0.95 0.96 0.95 1.00
SFKM 0.96a 0.94a 0.85a 0.94 0.95 0.94 0.93a

SKM 0.98 0.99 0.98 0.95 0.96 0.95 1.00
4 PAM 0.89 1.00 0.85 1.00 1.00 1.00 1.00

SFKM 0.83a 0.94a 0.81a 0.98a 0.97a 0.98a 0.90a

SKM 0.89 1.00 0.85 1.00 1.00 1.00 1.00
8 PAM 0.88 0.94 0.87 0.94 0.94 0.94 0.94

SFKM 0.85a 0.91a 0.85a 0.94 0.94 0.94 0.91a

SKM 0.88 0.93 0.87 0.94 0.93 0.94 0.93
10 PAM 0.88 0.97 0.88 0.95 0.95 0.95 0.94

SFKM 0.86a 0.94a 0.87a 0.95 0.94a 0.94 0.90a

SKM 0.88 0.96 0.87 0.95 0.95 0.95 0.93

Significantly different (α = 0.05) to: a PAM and SKM

algorithms (Table 5.10). Similar to the simulation with different variable proportions,

the SFKM algorithm is under performed compared to the other two algorithms.

5.2.3 Different number of variables

The algorithm of the simulated data generates four different numbers of variables.

They are 6, 8, 10, and 14 mixed variables. Table 5.11 shows that the SFKM algorithm

always performs the worst. As the number of variables increases, the rand index of the

Gower GDF decreases. For the other six GDF’s, on the other hand, the rand indices

substantially decrease when the number of variables is more than 10 (p > 10).
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Table 5.11: Rand indices of the different number of variables
p Algorithm Gower Wishart Podani Huang Harikumar Esimma Marweco

6 PAM 0.94 0.99 0.94 0.99 0.99 0.99 0.94
SFKM 0.91a 0.93a 0.88a 0.98a 0.95a 0.96a 0.89a

SKM 0.94 0.99 0.94 0.99 0.99 0.99 0.94
8 PAM 0.89 1.00 0.87 1.00 1.00 1.00 0.97

SFKM 0.86a 0.97a 0.81a 0.99 0.96a 0.99a 0.93a

SKM 0.89 1.00 0.87 1.00 1.00 1.00 0.97
10 PAM 0.83 0.98 0.78 1.00 1.00 1.00 0.99

SFKM 0.76a 0.88a 0.71a 0.96a 0.94a 0.97a 0.88a

SKM 0.82 0.99 0.78 1.00 1.00 1.00 0.99
14 PAM 0.84 0.87 0.82 0.85 0.84 0.85 0.95

SFKM 0.76a 0.78a 0.75a 0.79a 0.79a 0.80a 0.85a

SKM 0.84 0.87 0.82 0.85 0.83 0.85 0.95

Significantly different (α = 0.05) to: a PAM and SKM

5.2.4 Different number of objects

Four different numbers of objects are generated from 50 to 500 objects. Similar to the

other experiment settings, the rand index of the SFKM algorithm is always lower than

the two other algorithms (Table 5.12). A rand index of the SFKM is only higher than

two other algorithms when it has 500 objects in the Podani GDF.

Table 5.12: Rand indices of the different number of objects
n Algorithm Gower Wishart Podani Huang Harikumar Esimma Marweco

50 PAM 0.88 1.00 0.83 1.00 1.00 1.00 0.99
SFKM 0.81a 0.88a 0.77a 0.95a 0.90a 0.93a 0.86a

SKM 0.88 1.00 0.83 1.00 1.00 1.00 0.99
100 PAM 0.87 0.91 0.84 0.87 0.87 0.88 0.91

SFKM 0.83a 0.87a 0.79a 0.85 0.85a 0.88 0.89a

SKM 0.87 0.91 0.84 0.86 0.88 0.88 0.91
200 PAM 0.87 1.00 0.86 1.00 1.00 1.00 0.97

SFKM 0.85a 0.95a 0.80a 0.96a 0.93a 0.98a 0.91a

SKM 0.87 1.00 0.86 1.00 1.00 1.00 0.97
500 PAM 0.87 0.98 0.82 1.00 1.00 1.00 0.97

SFKM 0.84a 0.89a 0.85a 0.99a 0.95a 0.98a 0.89a

SKM 0.88 0.98 0.83 1.00 1.00 1.00 0.97

Significantly different (α = 0.05) to: a PAM and SKM

5.2.5 Algorithms bench marking

Due to the previous experiment results, which are favorable to the PAM and SKM

algorithms, the bench marking (evaluation) is applied for the PAM and SKM algorithms

only. The evaluations perform in a different number of clusters (k), objects (n), with

a fixed seeding/ initialization (s = 20). The k’s are 2, 4, 7, and 10 clusters, while the

n’s are 50, 200, 1000, and 3000 objects.
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Figure 5.2 and 5.3 show a comparison between the PAM and SKM for k = 2

and k = 4, respectively. They illustrate a similar result where the PAM requires

slightly more time (in microseconds) than the SKM, along with the increasing number

of objects. When k equals to 7, moreover, the difference of the PAM and SKM is

pronounced (in microseconds) for the number of objects n larger than 1000 (Figure

5.4).

0

250

500

750

0 1000 2000 3000

 Number of objects

M
ic

ro
se

co
nd

s 
 

Algorithms

PAM

SKM

Figure 5.2: Benchmarking of the PAM and SKM (k = 2, s = 20)
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Figure 5.3: Benchmarking of the PAM and SKM (k = 4, s = 20)

54



0

250

500

750

1000

1250

0 1000 2000 3000

 Number of objects

M
ic

ro
se

co
nd

s 
 

Algorithms

PAM

SKM

Figure 5.4: Benchmarking of the PAM and SKM (k = 7, s = 20)
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Figure 5.5: Benchmarking of the PAM and SKM (k = 10, s = 20)

If the number of clusters (k) equals to 10, on the other hand, the running time of

the PAM and SKM is similar (Figure 5.5). In any number of objects, they require a

similar amount of time to complete the partitioning task. Hence, when the number

of clusters is small (k < 10) and the number of objects is large (n > 1000), the SKM

algorithm (with s = 20 ) requires less time than the PAM algorithm.
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5.3 Heart disease data set

The heart disease data set is a data set from the machine learning repository of UCI

(Lichman, 2013). This data set has a grouping variable where 297 patients are grouped

into two classes according to the presence or absence of heart disease. The data set is

intended for a classification task, albeit we can apply this data to evaluate the medoid-

based algorithm performance.

The heart disease data set is a mixed variable data set that consists of 13 variables,

which are composed of six numerical, three binary, and four categorical variables. The

13 variables are age of the patients (numerical), sex (binary), type of chest pain (cat-

egorical), resting blood pressure (numerical), serum cholesterol (numerical), fasting

blood sugar (binary), resting electrocardiographs (categorical), maximum heart rate

(numerical), exercise included angina (binary), ST depression induced by exercise rel-

ative to rest (numerical), slope of the peak exercise ST segment (categorical), number

of major vessel (numerical), heart rate (categorical).

The results of applying six medoid-based algorithms in seven GDFs show that the

Gower, Podani, and Marweco GDFs have similar results where five algorithms produce

a high accuracy rate (Table 5.13). It implies that when a weighted of range is applied

in the numerical variables of the heart disease data set, the accuracy rate achieves the

maximum value for this data set, i.e. 79-81%.

Table 5.13: Accuracy rate of the heart disease data
Gower Wishart Podani Huang Harikumar Esimma Marweco

PAM 0.80 0.74 0.80 0.59 0.57 0.56 0.79
KM 0.81 0.75 0.80 0.58 0.54 0.58 0.79
SFKM 0.59 0.75 0.80 0.59 0.56 0.56 0.79
RKM 0.79 0.64 0.57 0.58 0.68 0.59 0.57
INCKM 0.80 0.79 0.80 0.59 0.57 0.58 0.79
SKM 0.80 0.74 0.80 0.59 0.57 0.56 0.79

High values of the accuracy rate are achieved in the Gower, Podani, and Marweco
GDFs. These GDFs apply a range weighted in their numerical variables.

5.4 Global food security data

The global food security data consist of 113 countries and 27 indicator variables from

The Economist Intelligent Unit (2017). The 27 indicator variables are then summa-

rized into four variables, namely affordability, availability, quality and safety, natural

resources and resilience. All variables are scored by food-security panel specialists from

0 to 100 where 100 is the most favorable toward food security. Hence, the four food

security variables are numeric.
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The task for this data set is to group the countries based on their food security

indices such that similar countries in terms of food security characteristics are composed

in the same cluster. Due to all variables being numerical, a projection of the first

two principal components are applied prior the application of clustering algorithms to

explore the data structure. Figure 5.6 shows that the developed countries are in the

upper right of the plot with favorable food security in all variables, while the developing

countries show the opposite. The first exploration from the principle components plot

indicates that the countries can be partitioned into two or three groups.
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Figure 5.6: The first and second principal components plot of the global food security
data

If external-based criteria are applied in the 50 bootstrap replicates, the means of

rand index k = 3 is slightly better than that of k = 2 (Table 5.14 and 5.15). In the

Huang GDF, which has the highest rand index in both k = 2 and k = 3, the SKM

algorithm has the highest rand index. Thus, for further evaluation, only the SKM with

k = 2 and k = 3 of the Huang GDF is evaluated.

Applying internal-based criteria visualization, in addition, the stripe plot of k = 2

and k = 3 shows that the separation of the clusters are similar, i.e. not-well separated

(Figure 5.7 and 5.8). Combining relative-based and external-based criteria, the stability

proportion of k = 3 and k = 2 is also similar (Figure 5.9 and 5.10). Hence, taken into

account the similarity in the stripe plot and stability proportion, the number of clusters

is 3 due to its higher rand index.
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Table 5.14: Rand indices of the global food security data for k = 2
Gower Wishart Podani Huang Harikumar Esimma Marweco

PAM 0.62 0.61 0.61 0.62 0.61 0.61 0.60
KM 0.60 0.60 0.60 0.60 0.61 0.61 0.60
SFKM 0.62 0.59 0.62 0.62 0.62 0.62 0.59
RKM 0.57 0.57 0.58 0.58 0.56 0.57 0.57
INCKM 0.61 0.61 0.61 0.62 0.61 0.61 0.61
SKM 0.62 0.61 0.61 0.62 0.62 0.62 0.61

0.62 is the highest rand index

Table 5.15: Rand indices of the global food security data for k = 3
Gower Wishart Podani Huang Harikumar Esimma Marweco

PAM 0.66 0.66 0.66 0.66 0.67 0.66 0.66
KM 0.65 0.64 0.65 0.66 0.65 0.66 0.65
SFKM 0.65 0.65 0.66 0.66 0.66 0.66 0.64
RKM 0.62 0.62 0.62 0.63 0.63 0.62 0.62
INCKM 0.66 0.66 0.67 0.66 0.67 0.66 0.65
SKM 0.66 0.65 0.67 0.67 0.66 0.67 0.66

0.67 is the highest rand index
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Figure 5.7: Stripe plot of the global food security data via the SKM algorithm with
the Huang GDF (k = 2)
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Figure 5.8: Stripe plot of the global food security data via the SKM algorithm with
the Huang GDF (k = 3)
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Figure 5.9: Combination plots of the global food security data via the SKM algorithm
with the Huang GDF (k = 2)

59



0.35

0.02

0.01

0.02

0.31

0

0.02

0

0.28

1 2 3

3

2

1

Stable objects =  93.91 %

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

RI
RI (mean) =  0.67 
 J (mean) =  0.23 
 H (mean) =  0.15

Figure 5.10: Combination plots of the global food security data via the SKM algorithm
with the Huang GDF (k = 3)

5.5 Sponge data set

Like the heart disease data set, the marine sponge data set is a data set from the

UCI machine learning repository. This data represent marine sponges consisting of

45 mixed variables, and 76 objects. Due to many missing values in the 39th variable,

this variable is excluded. Upon the 39th variable exclusion, the number of numerical,

binary, and categorical variables becomes 3, 15, and 26, respectively. Similar to the

global food security data set, the task for the sponge data set is a clustering task

because the class memberships of the sponges are absent.

Due to the small number of objects in the data set, and the high number of clusters

that are examined, i.e. 2 to 15, the KM, SFKM, and INCKM algorithms are excluded.

An empty cluster is possible to arise in those algorithms. The RKM algorithm is also

excluded due to its sensitivity of the m-parameter to calculate the hostility index in

this data set. Thus, the algorithms applied in this data set are the PAM and SKM

algorithms.

The silhouette index as an internal criterion is applied to asses the number of

clusters in the seven GDF’s. The maximum value of the average silhouette value of

each object is achieved in the Marweco GDF in the two clusters (Table 5.16). Table

5.16 shows that the average value of silhouette indices in any GDF decreases slightly.

However, in the Esimma GDF, it increases when k = 14. With the internal criterion,

it has still uninformative measure.
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Table 5.16: Average value of silhouette indices of the sponge data set
k Algorithm Gower Wishart Podani Huang Harikumar Esimma Marweco

2 PAM 0.46 0.30 0.28 0.54 0.54 0.50 0.56
SKM 0.46 0.30 0.28 0.54 0.53 0.50 0.56

3 PAM 0.35 0.22 0.21 0.41 0.45 0.41 0.42
SKM 0.35 0.22 0.20 0.41 0.45 0.42 0.42

4 PAM 0.25 0.16 0.15 0.36 0.36 0.37 0.34
SKM 0.26 0.16 0.15 0.28 0.31 0.34 0.34

5 PAM 0.22 0.13 0.17 0.21 0.22 0.37 0.36
SKM 0.22 0.13 0.13 0.21 0.22 0.37 0.36

6 PAM 0.23 0.15 0.16 0.22 0.24 0.35 0.37
SKM 0.23 0.12 0.14 0.31 0.19 0.36 0.27

7 PAM 0.25 0.16 0.16 0.21 0.26 0.36 0.28
SKM 0.21 0.15 0.16 0.17 0.25 0.36 0.28

8 PAM 0.29 0.17 0.17 0.23 0.25 0.36 0.30
SKM 0.28 0.15 0.15 0.19 0.25 0.40 0.27

9 PAM 0.31 0.15 0.19 0.25 0.28 0.38 0.32
SKM 0.25 0.15 0.13 0.23 0.32 0.36 0.33

10 PAM 0.29 0.17 0.18 0.28 0.26 0.40 0.33
SKM 0.22 0.14 0.18 0.21 0.22 0.38 0.28

11 PAM 0.29 0.18 0.20 0.31 0.27 0.43 0.35
SKM 0.20 0.16 0.19 0.21 0.24 0.42 0.24

12 PAM 0.32 0.19 0.19 0.30 0.28 0.45 0.33
SKM 0.31 0.17 0.21 0.24 0.26 0.42 0.31

13 PAM 0.32 0.20 0.20 0.30 0.29 0.46 0.35
SKM 0.24 0.16 0.16 0.24 0.26 0.37 0.28

14 PAM 0.30 0.22 0.20 0.32 0.30 0.50 0.33
SKM 0.27 0.14 0.18 0.24 0.29 0.47 0.24

15 PAM 0.30 0.22 0.20 0.32 0.33 0.53 0.36
SKM 0.27 0.18 0.18 0.23 0.31 0.36 0.24

Candidates of k are selected when the average value is at least 0.50

To add information for deciding the number of clusters in the marine sponge data

set, a relative criterion via bootstrap samples is taken into consideration as well. Table

5.17 shows that the stability proportions are equal to or larger than 80% when the

number of clusters is 2 to 7, 13, 14, and 15. Hence, based on the nature of the marine

sponge species and relative criteria evaluation, the simplest and most suitable number

of clusters is 7, when applying the Esimma GDF and PAM algorithm.

Figure 5.11 shows a directed graph of the sponge data set. Cluster 3 and 5 are

closer to each other than to the other clusters, while cluster 6 is also close to cluster

5. The both clusters have only 1 unstable object. The most distinctive clusters are

cluster 1, 2, 4, and 7.
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Table 5.17: Stability proportion of the sponge data set
k Algorithm Gower Wishart Podani Huang Harikumar Esimma Marweco

2 PAM 1.00 0.97 1.00 0.99 0.98 0.99 0.99
SKM 1.00 0.97 0.99 0.99 0.97 0.99 0.99

3 PAM 0.87 0.75 0.79 0.85 0.92 0.71 0.78
SKM 0.84 0.78 0.79 0.89 0.93 0.84 0.78

4 PAM 0.73 0.73 0.77 0.63 0.72 0.85 0.88
SKM 0.78 0.80 0.80 0.68 0.73 0.86 0.93

5 PAM 0.72 0.70 0.78 0.70 0.75 0.76 0.87
SKM 0.70 0.67 0.72 0.66 0.67 0.79 0.85

6 PAM 0.73 0.67 0.71 0.70 0.70 0.79 0.84
SKM 0.68 0.58 0.64 0.65 0.59 0.74 0.78

7 PAM 0.76 0.61 0.71 0.64 0.67 0.86 0.77
SKM 0.66 0.56 0.64 0.62 0.64 0.73 0.68

8 PAM 0.70 0.60 0.70 0.65 0.66 0.78 0.72
SKM 0.65 0.54 0.59 0.56 0.58 0.73 0.67

9 PAM 0.67 0.62 0.65 0.66 0.64 0.77 0.69
SKM 0.62 0.56 0.57 0.55 0.58 0.70 0.62

10 PAM 0.64 0.63 0.59 0.68 0.62 0.78 0.72
SKM 0.55 0.51 0.59 0.47 0.53 0.68 0.60

11 PAM 0.66 0.65 0.58 0.65 0.59 0.76 0.71
SKM 0.56 0.53 0.55 0.49 0.53 0.67 0.61

12 PAM 0.67 0.67 0.65 0.61 0.64 0.79 0.72
SKM 0.50 0.54 0.55 0.53 0.56 0.66 0.54

13 PAM 0.71 0.63 0.66 0.61 0.62 0.80 0.74
SKM 0.55 0.56 0.58 0.52 0.54 0.65 0.58

14 PAM 0.67 0.64 0.65 0.66 0.65 0.80 0.73
SKM 0.53 0.55 0.58 0.51 0.53 0.61 0.55

15 PAM 0.67 0.67 0.67 0.65 0.64 0.84 0.76
SKM 0.54 0.54 0.54 0.50 0.53 0.61 0.54

Candidates of k are selected when the stability proportion is equal to or larger than 0.80

Stable objects = 85.9 %
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Figure 5.11: Directed graph of sponge data set via the PAM algorithm with the Esimma
GDF (k = 7)
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6
Application on Food Security Mapping

Due to the lack of food security mapping at the district level, this chapter discusses

an application of a medoid-based algorithm via both the GSDF and GDF in food

security mapping. The mapping is based on the food security zoning data set of

Banten Province, Indonesia, where it is a mixed variable data set. The analysis varies

the GSDF and GDF, yet fixes the SKM algorithm due to its greater efficiency than

the PAM algorithm (Section 5.2.5).

The food security zoning data set has six numerical, two binary and two categorical

variables. The data consist of 154 districts in the Banten Province, Indonesia. All ten

variables were taken from the village potency data (PODES) collected by the Statis-

tical Bureau of Indonesia. They represent the indicator variables of the food security

dimensions that were commonly endorsed by FAO amplifying the food availability,

accessibility, utilization, and stability aspects (van Dijk and Meijerink, 2014; Coates,

2013; FAO, 2006).

Table 6.1: Variables in the food security data set
variable type definition (computation)
ncconsa numerical normative cereal consumption (cereal

production/ n persons)
poorb numerical poor households ratio (n poor households/

n households)
electricityb numerical no electricity households (n households without

electricity/ n households)
illiteratec numerical literacy activities (literacy activities within

district/ all literacy activities)
waterc binary potable water (1 is absent, 0 otherwise)
healthc categorical nearest health service (3 categories: 1 (< 5 km),

2 (5-10 km), and 3 (> 10 km))
disasterd numerical drought accidents (drought accidents within

district/ all drought accidents)
convertd binary land conversion (1 is present, 0 otherwise)
marketb categorical nearest market (3 categories: 1 (< 10 km),

2 (10-20 km), and 3 (> 20 km))
industryc numerical food and beverages small business (n food

and beverages small business within district/
all food and beverages small business)

aAvailability indicator, bAccessibility indicator,

cUtilization indicator, dStability indicator
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The food availability is indicated by the normative cereal consumption per capita.

The second dimension, the food accessibility is represented by the poor household ratio,

ratio of households that do not have any access to the electricity and to the market fa-

cility. Next, the illiteracy activities, absence of potable water, health facility and small

business of the food and beverages denote the food utilization. Last, the occurrence of

drought and presence of land conversion indicate the food stability dimension. Table

6.1 summarizes the indicator variables in the food security zoning data.

6.1 Summary statistics

The summary statistics of food security zoning data are presented in Table 6.2. The

normative cereal consumption per capita as the availability indicator has a mean 0.354

ton/ year. It is larger than its baseline for insecure food availability conditions, i.e.

0.11 ton/ year (FSC and WFP, 2015). It indicates the districts’ food availability is

guaranteed.

Table 6.2: Summary statistics of the indicator variables
Indicator Variable min mean max
Availability nccons 0.000 0.354 1.600

Accessibility poor 0.027 0.339 0.718
electricity 0.000 0.016 0.252

nearby middle-range far-away
market 0.539 0.260 0.201

min mean max
Utilization illiterate 0.000 0.006 0.016

industry 0.000 0.007 0.142

nearby middle-range far-away
health 0.532 0.351 0.117

present absent
water 0.909 0.091

Stability convert 0.740 0.260

min mean max
disaster 0.002 0.006 0.015

In the accessibility indicator variables, the ratio of poor households is 34%, the

household without electricity access is 1.6%, and most districts (54%) have easy access

to the closest market. The main concern in the accessibility indicators is the number
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of poor households where one third of the districts are poor and there is a district with

a huge poverty rate (71.8%).

For the indicator variables of utilization, each district organizes only one literacy

activity (0.0064∗154 = 0.92) and has one food and beverages small business on average.

A lot of districts have nearby health facility locations (53.2%) and 140 out of 154 (91%)

have potable water access. These four utilization indicator variables suggest that most

districts are able to utilize food properly.

Last, for the stability indicator variables, it is about 74% of the districts that have

a land conversion activity and each district has only one disaster (drought accident)

on average. Although the Banten Province is a new growing province, land conversion

activities, especially arable land conversion into either settlement or industry, threat

food stability. The stability indicator variables indicate that the land conversion threat

is higher than the risk of natural disasters.

6.2 Cluster analysis

The first problem encountered before applying a cluster analysis is using either original

or standardized numerical variables to calculate a distance. In the food security zoning

data, the numerical variables are unstandardized. The reason in using unstandardized

variables is that the numerical variables are obtained from a proportional calculation

so that they are comparable to one another. An unstandardized variable is preferred

for the real data interpretation as well. After deciding to apply the unstandardized

numerical variables, the next step is to calculate the distance between districts.

6.2.1 GSDF and SKM

Due to the administrative constraint and the geographical boundary, the distance be-

tween districts is computed by the GSDF (Table 2.2). Then, the SKM algorithm is

applied in the GSDF.

To obtain the number of clusters, a bootstrap cluster evaluation in various numbers

of clusters (k = 2, 3, . . . , 9) of all five GSDF is applied. Table 6.3 shows that the all

indices are similar in each GSDF. The cluster stability proportion, on the other hand,

indicates that the Huang GSDF has the most stable objects in k = 2 and 3 (Table

6.4). In four clusters, moreover, the Wishart GSDF has a high stability proportion, i.e.

90%. For further analysis, only two, and three clusters in the Huang GSDF and four

clusters in the Wishart GSDF are compared via their both kernel density and cluster

consensus matrix heatmap.

Figure 6.1 shows that the kernel density of rand index (right) for two clusters has

only a peak, which is good, and its stability proportion (the sum of the diagonal values

of the heatmap) is high (94%). Moreover, with three clusters (Figure 6.2), its rand

index kernel density has a peak and the stability proportion is relatively good (82%).
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Table 6.3: Cluster indices summary of all GSDF
GSDF ri jaccard hubert ka kb kc

Gower 0.72 0.27 0.11 9 2 2
Wishart 0.72 0.25 0.13 8 2 4
Podani 0.72 0.25 0.10 9 2 3
Huang 0.71 0.27 0.14 9 2 2
Harikumar-PV 0.72 0.25 0.08 9 2 2

k is the corresponding number of clusters from the a rand,
b jaccard, and c hubert indices in the left columns

Table 6.4: Cluster stability proportion of all GSDF
GSDF 2 3 4 5
Gower 0.90 0.78 0.68 0.53
Wishart 0.85 0.75 0.90 0.79
Podani 0.86 0.79 0.62 0.56
Huang 0.94 0.82 0.69 0.55
Harikumar-PV 0.81 0.71 0.67 0.55

Candidates of k are selected when the stability

proportion is at least 0.80. k = 2 and 3 in

the Huang GDF and k = 4 in the Wishart

GDF are preferred due to its maximum value.
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Figure 6.1: The cluster consensus heatmap (left) and kernel density (right) of the
Huang GSDF for two clusters
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The four clusters of the Wishart GSDF produce also a high stability proportion (90%)

and a peak figure in the kernel density (Figure 6.3). Considering the evaluation using

stability proportion, kernel density, and technical application, four clusters applying

the Wishart GSDF are selected.

0.48

0.02

0.01

0.03

0.19

0.04

0.02

0.05

0.14

1 2 3

3

2

1

Stable objects =  81.76 %

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

RI
RI (mean) =  0.64 
 J (mean) =  0.23 
 H (mean) =  0.12

Figure 6.2: The cluster consensus heatmap (left) and kernel density (right) of the
Huang GSDF for three clusters

0.31

0

0.01

0.03

0

0.18

0

0

0.01

0

0.21

0

0.03

0

0

0.2

1 2 3 4

4

3

2

1

Stable objects =  90.17 %

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

RI
RI (mean) =  0.69 
 J (mean) =  0.2 
 H (mean) =  0.13

Figure 6.3: The cluster consensus heatmap (left) and kernel density (right) of the
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6.2.2 GDF and SKM

The clustering result by applying the GSDF and SKM is compared to the GDF and

SKM in which spatial constraints are excluded. Table 6.5 shows that all indices in

the GDF are similar to that of the GSDF in Table 6.3. Compared to the stability

proportions of the GSDF (Table 6.4), however, the stability proportions of the GDF in

the two to four clusters are the best in the Gower, Harikumar-PV and Wishart GDF,

respectively (Table 6.6).

Table 6.5: Cluster indices summary of all GDF
GDF ri jaccard hubert ka kb kc

Gower 0.72 0.28 0.15 9 2 2
Wishart 0.72 0.26 0.11 9 2 2
Podani 0.72 0.27 0.13 9 2 2
Huang 0.71 0.28 0.15 9 2 2
Harikumar-PV 0.72 0.26 0.15 9 2 3

k is the corresponding number of clusters from the a rand,
b jaccard, and c hubert indices in the left columns

Table 6.6: Cluster stability proportion of all GDF
GDF 2 3 4 5
Gower 0.96 0.74 0.63 0.67
Wishart 0.89 0.77 0.80 0.63
Podani 0.93 0.71 0.73 0.66
Huang 0.94 0.85 0.80 0.69
Harikumar-PV 0.78 0.93 0.79 0.75

Candidates of k are selected when the stability

proportion is at least 0.80. k = 2 in the Huang

GDF, k = 3 in the Harikumar-PV GDF, and

k = 4 in the Wishart GDF are preferred due to

its maximum value.

For the cluster consensus heatmap, high proportions of the stable objects are indi-

cated by an apparent diagonal heatmap in both the Gower and Harikumar-PV GDF’s

(Figure 6.4 (left) and 6.5 (left)). They also have smooth kernel density consisting only

a peak (Figure 6.4 (right) and 6.5 (right)). Moreover, the Wishart GDF with four

clusters has a similar figure (Figure 6.6) thought it has a lower stability proportion, i.e

80%. With respect to the stability proportion, kernel density, and technical applica-

tion, four clusters are selected. For the reason of the technical application, especially

for the extension agents, a visualization of cluster distributions is evaluated spatially

between GSDF and GDF.
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6.3 Visualization

The distributions of clusters via both the GSDF and GDF are mapped in Figure 6.7

and 6.8, respectively. The GDF map is more spread than GSDF, as expected. Thus,

for further analysis, four clusters of the Wishart GSDF is selected.

6.3.1 Barplot

In order to interpret the cluster result of numerical variable data set, Leisch (2008) has

proposed a barplot with the location and dispersion of each clusters. This barplot can

also be added by some markers such that a marked barplot is produced (Dolnicar and

Leisch, 2014). The marker tags the means of the population and within cluster. If the

data are ordinal variables data set, Brentari et al. (2016) have performed a rank-based

boxplot for the location and dispersion of the clusters.

Due to a mixed variable data set, the barplot is modified to assist the food secu-

rity data set interpretation. Two rules are added in the modified barplot. First, the

numerical variables are re-scaled such that the minimum and maximum values are 0

and 1, respectively. Then, a proportion measure of each category applies for the binary

and categorical/ ordinal variables.
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Figure 6.7: The clusters distribution via the GSDF

Figure 6.8: The clusters distribution via the GDF
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Figure 6.9 shows the modified barplot of the food security data set for four clusters.

The population means (numerical variables) are indicated by dots, while the population

proportion (binary and categorical variables) are denoted by triangles. If a variable

has a triangle, it is a binary/ categorical variable, which has two classes of categories.

Moreover, when the number of triangles are two, the variables are categorical variables

with three categories.
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Figure 6.9: The modified barplot of food security data (mixed variables) for four clus-
ters

Cluster 1 (17.5%): available. It has higher normative consumption than the popu-

lation means meaning that its food availability is assured. However, the number of the

natural disasters, the ratio of the poor household, and the proportion of the household

without electricity are higher than that of the population. Moreover, the access to the

market and health facility is limited. Thus, cluster 1 is only strong in the available

dimension.

Cluster 2 (24.7%): utilize-accessible. It has a good indicator of food utilization due

to a high number of small business of the food and beverages and illiteracy activities.

The proportions of the poor household and household without electricity, which assign

as the food accessibility indicator variables, are lower than that of the population.

They indicate that the food accessibility is guaranteed. However, its food stability is

fragile because the number of natural disasters and land conversions is high. Hence, it

is a cluster with the specialty in the food utilization and accessibility dimension.

Cluster 3 (34.4%): accessible. Similar to cluster 2, the food accessibility is the

strength of this cluster. With a low ratio of poor household and household without
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electricity, the accessibility is assured. Although it performs poorly in the availability,

stability, and utilization aspects, due to possessing the best market facility, this cluster

becomes the best cluster of accessibility towards food.

Cluster 4 (23.4%): available-stable future. Like cluster 1, cluster 4 guarantees the

food availability. In addition, the access to the market and health facility is limited.

The number of natural disasters and land conversion in this cluster, on the other hand,

is less than that of the population. It indicates the future stability of food. Thus, the

food availability and stability is the strength of this cluster.

6.3.2 Stripes plot and directed graph

While a modified barplot (Figure 6.9) describes each variable, to visualize the cluster

structures, both the internal and relative criteria based validation can be applied. A

stripe plot of centroid-based clustering, which adopts the shadow values, has been pro-

posed by Leisch (2008) where it applies the first and second closest centroids. Adapted

from the stripes plot, a modified stripe plot has been developed by replacing the cen-

troids into medoids context. Figure 6.10 shows the modified stripes plot of the food

security data in four clusters. From the internal criterion, all clusters are not well-

separated. They are indicated by overlapped lines between the first and second closest

medoids.
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Figure 6.10: The modified stripes plot of food security data (mixed variables) for four
clusters
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On the other hand, a relative-based criteria validation produces a directed graph of

the food security data (Figure 6.11). It shows that cluster 2 (utilize-accessible cluster)

is the most stable cluster, i.e. 28 districts (18%). However, cluster 1 and 4 have eight

unstable districts where four districts tends to move from cluster 1 (available) to cluster

4 (available-stable future) and four districts do the other away directions. It implies

that four districts are able to improve their food stability in the future, while other four

districts have their future food stability status at risk due to the shift into cluster 1.

Cluster 1 (available) and cluster 3 (accessible), moreover, have four unstable districts.

Two districts have a risk to loss of food production, while the other two districts gain

more access towards food.
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2 obj

4 obj
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Figure 6.11: The directed graph of food security data (mixed variables) for four clusters

6.3.3 Food security mapping

Combining the cluster results and possible cluster specific activities for the AE agents

to focus on, a summary is drawn in a food security map. In cluster 1, AE agents should

concentrate on two activities, namely the prevention of erosion/ landslide in the arable

land to improve the food stability and the community development activities to reduce

poor households. AE agents in the cluster 2 can focus only on the erosion/ landslide

prevention, while in the cluster 3, they provide activities to promote literacy and the

small business of the food and beverages. Last, cluster 4 has to support the community

development and literacy activities. Figure 6.12 presents the food security map with

the corresponding activities of each cluster.
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7
Conclusions

As food security mapping is identical to a partitioning analysis, a proper partitioning

algorithm for food security data is important due to the presence of mixed variables

in the data set. A common strategy for the partitioning of the mixed variables data

set is applying the Gower distance and followed by the partitioning around medoid

(PAM) algorithm. However, because different distances result in different optima in a

partitioning algorithm, variation of distances is required to explore the suitable result

of the partitioning algorithm.

This dissertation addresses the generalization of a distance function to manage

variations of the applicable distances in mixed variables data. The generalized distance

function (GDF) has been formulated to adapt the existing mixed variables distances

and produce new variations of the distances. By introducing a spatial constraint in the

weight of the GDF, it becomes a generalized spatial distance function (GSDF) where

it is also applicable for food security mapping vis-a-vis with the GDF.

In the part of the medoid-based partitioning algorithm, the simple and fast k-

medoids (SFKM) has been reported as more efficient than the PAM, albeit having

similar results. However, a simulation comparison between the SFKM and PAM pro-

duced an under-performing SFKM such that a simple k-medoids (SKM) has been

developed to improve the SFKM performance. The SKM algorithm, in addition, has

comparable results to the PAM algorithm, and is more efficient than the PAM algo-

rithm when the number of cluster is small (k < 10) and the number of objects is high

(n > 1000).

To evaluate the partitioning results, visualization techniques of both the internal-

based and relative-based criteria can depict well or poorly separated clusters. For the

internal-based criterion, the modified stripes show non-overlap stripes in well-separated

clusters. Meanwhile, a reduced size of consensus matrix produces a high stability pro-

portion if the clusters are well separated. A modified barplot visualization, moreover,

assists the partitioning result interpretation, especially for variable explanatory within

a cluster.

As shown in the empirical case of food security mapping in Banten Province, In-

donesia, the SKM algorithm was applied to group the districts in Banten Province via

both the GDF and GSDF. The GSDF result was favorable compared to that of the

GDF because the spread of the districts from the GSDF was more technically applicable

for the easiness of monitoring by the extension agents. There were 4 clusters, namely
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available, utilize-accessible, accessible, and available-stable future clusters. Possible ac-

tivities for those clusters were promoting small business and literacy activities, literacy

and poor household reducing activities, and erosion/ landslide prevention, respectively.

The kmed package, moreover, implements the GDF and medoid-based algorithms

in the R environment. There are five direct implementations of the GDF, i.e. Gower,

Wishar, Podani, Huang, Harikumar-PV, and Ahmad-Dey, via the distmix function.

With the support of the other packages, such as the proxy and nomclust packages,

the GDF is not limited to only these five GDF’s, but also possible for other GDF’s by

varying the combination of the numerical, binary, and categorical distances.

While the SFKM algorithm initial medoids are fixed, the initial medoids in the

fastkmed function, which is an implementation of the SFKM algorithm in the kmed
package, are flexible. With this flexibility, any initial medoids method is applicable.

Moreover, the implementation of the k-medoids (KM) and increasing the number of

clusters k-medoids (INCKM) algorithms in the kmed package apply this flexibility. The

SKM algorithm implementation in the kmed package has also been developed based on

the fastkmed function such that in the near future, the development of more methods

in the initial medoids selection can be adapted easily in the fastkmed function.
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Appendix A: R documentation

Reference manual of kmed package is deposited in cran R and can be obtained via

https://cran.r-project.org/web/packages/kmed/kmed.pdf
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barplotnum Barplot of each cluster for numerical variables data set

Description

This function creates a barplot from a cluster result. A barplot indicates the location and
dispersion of each cluster. The x-axis of the barplot is variable’s mean, while the y-axis
is the variable’s name.

Usage

barplotnum(dataori, clust, nc = 1, alpha = 0.05)

Arguments

dataori An original data set.

clust A vector of cluster membership (see Details).

nc A number of columns for the plot of all cluster (see Details).

alpha A numeric number to set the significant level (between 0 and 0.2).

Details

This is a marked barplot because some markers are added, i.e. a significant test, a pop-
ulation mean for each (numerical) variable. The significance test applies t-test between
the population’s mean and cluster’s mean in every variable. The alpha is set in between 0
to 20%. If the population mean differs to the cluster’s mean, the bar shade in the barplot
also differs.

clust is a vector with the length equal to the number of objects (n), or the function will
be an error otherwise. nc controls the layout (grid) of the plot. If nc = 1, the plot of
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example, the plot has a layout of 3-row and 2-column grids.
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Value

Function returns a barplot.

Author(s)

Weksi Budiaji
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References
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Examples

dat <- iris[,1:4]
memb <- cutree(hclust(dist(dat)),3)
barplotnum(dat, memb)
barplotnum(dat, memb, 2)

clust4 4-clustered data set

Description

A dataset containing two variables of 300 objects and their class memberships generated
by the clusterGeneration package.

Usage

clust4

Format

A data frame with 300 rows and 3 variables:

x1 X1.

x2 X2.

class Class membership.
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Source

Data is generated via the genRandomClust function in the clusterGeneration package.
The code to generate this data set is

set.seed(2016)

randclust <- clusterGeneration::genRandomClust(4, sepVal = 0.001, numNonNoisy = 2,
numReplicate = 1, clustszind = 3, clustSizes = as.numeric(table(sample(1:4, 300, replace
= TRUE))), outputDatFlag=FALSE, outputLogFlag=FALSE, outputEmpirical=FALSE,
outputInfo=FALSE)

clust4 <- as.data.frame(randclust$datList$test_1)

clust4$class <- randclust$memList$test_1

References

Qiu, W., and H. Joe. 2015. ClusterGeneration: Random Cluster Generation (with Speci-
fied Degree of Separation).

Qiu, W., and H. Joe. 2006a. Generation of Random Clusters with Specified Degree of
Separation. Journal of Classification 23 pp. 315-34.

Qiu, W., and H. Joe. 2006b. Separation Index and Partial Membership for Clustering.
Computational Statistics and Data Analysis 50 pp. 585-603.

clust5 5-clustered data set

Description

A dataset containing two variables of 800 objects and their class memberships generated
by the clusterGeneration package.

Usage

clust5

Format

A data frame with 800 rows and 3 variables:

x1 X1.

x2 X2.

class Class membership.
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Source

Data is generated via the genRandomClust function in the clusterGeneration package.
The code to generate this data set is

set.seed(2016)

randclust <- clusterGeneration::genRandomClust(5, sepVal = 0.2, numNonNoisy = 2,
numReplicate = 1, clustszind = 3, clustSizes = as.numeric(table(sample(1:5, 800, replace
= TRUE))), outputDatFlag=FALSE, outputLogFlag=FALSE, outputEmpirical=FALSE,
outputInfo=FALSE)

clust5 <- as.data.frame(randclust$datList$test_1)

clust5$class <- randclust$memList$test_1

References

Qiu, W., and H. Joe. 2015. ClusterGeneration: Random Cluster Generation (with Speci-
fied Degree of Separation).

Qiu, W., and H. Joe. 2006a. Generation of Random Clusters with Specified Degree of
Separation. Journal of Classification 23 pp. 315-34.

Qiu, W., and H. Joe. 2006b. Separation Index and Partial Membership for Clustering.
Computational Statistics and Data Analysis 50 pp. 585-603.

clustboot Bootstrap replications for clustering alorithm

Description

This function does bootstrap replications for a clustering algorithm. Any hard clustering
algorithm is valid.

Usage

clustboot(distdata, nclust = 2, algorithm = fastclust, nboot = 25,
diss = TRUE)

Arguments

distdata A distance matrix (n x n)/ dist object or a data frame.

nclust A number of clusters.

algorithm A clustering algorithm function (see Details).

nboot A number of bootstrap replicates.

diss A logical if distdata is a distance matrix/ object or a data frame.
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Details

This is a function to obtain bootstrap evaluation for cluster results. The algorithm
argument is a function where this function has two input arguments. The two input
arguments are a distance matrix/ object or a data frame, and number of clusters. Then
the output is only a vector of cluster memberships.

The default algorithm is fastclust applying the fastkmed function. The code of the
fastclust is

fastclust <- function(x, nclust) {

res <- fastkmed(x, nclust, iterate = 50)

return(res$cluster)

}

For other examples, see Examples. It applies ward and kmeans algorithms. When
kmeans is applied, for example, diss is set to be FALSE because the input of the kmclust
and clustboot is a data frame instead of a distance.

Value

Function returns a matrix of bootstrap replicates with a dimension of n x b, where n is
the number of objects and b is the number of bootstrap replicates.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Dolnicar, S. and Leisch, F. 2010. Evaluation of structure and reproducibility of cluster
solutions using the bootstrap. Marketing Letters 21 pp. 83-101.

Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
ward.D2 <- function(x, nclust) {
res <- hclust(as.dist(x), method = "ward.D2")
member <- cutree(res, nclust)
return(member)
}
kmclust <- function(x, nclust) {
res <- kmeans(x, nclust)
return(res$cluster)
}
irisfast <- clustboot(mrwdist, nclust=3, nboot=7)
head(irisfast)
irisward <- clustboot(mrwdist, nclust=3, algorithm = ward.D2, nboot=7)
head(irisward)
iriskmeans <- clustboot(num, nclust=3, algorithm = kmclust, nboot=7, diss = FALSE)
head(iriskmeans)
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clustheatmap Consensus matrix heatmap from A consensus matrix

Description

This function creates a consensus matrix heatmap from a consensus/ agreement ma-
trix. The values of the consensus/ agreement matrix are transformed in order to plot
the heatmap.

Usage

clustheatmap(consmat, title = "")

Arguments

consmat A matrix of consensus/ agreement matrix (see Details).

title A title of the plot.

Details

This is a function to produce a consensus matrix heatmap from a consensus/ agreement
matrix. A matrix produced by the consensusmatrix function can be directly provided
in the consmat argument. The values of the consensus matrix, A, are then transformed
via a non-linear transformation by applying

atrfij =
aij −min(a..)

max(a..)−min(a..)
where aij is the value of the consensus matrix in row i and column j, and a.. is the all
values of the matrix (∀A).

Value

Function returns a heatmap plot.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Monti, S., P. Tamayo, J. Mesirov, and T. Golub. 2003. Consensus clustering: A resampling-
based method for class discovery and visualization of gene expression microarray data.
Machine Learning 52 pp. 91-118.

Hahsler, M., and Hornik, K., 2011. Dissimilarity plots: A visual exploration tool for
partitional clustering. Journal of Computational and Graphical Statistics 20(2) pp. 335-
354.
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Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
irisfast <- clustboot(mrwdist, nclust=3, nboot=7)
complete <- function(x, nclust) {
res <- hclust(as.dist(x), method = "complete")
member <- cutree(res, nclust)
return(member)
}
consensuscomplete <- consensusmatrix(irisfast, nclust = 3, reorder = complete)
clustheatmap(consensuscomplete)

consensusmatrix Consensus matrix from A matrix of bootstrap replicates

Description

This function creates a consensus matrix from a matrix of bootstrap replicates. It trans-
forms an n x b matrix into an n x n matrix, where n is the number of objects and b is the
number of bootstrap replicates.

Usage

consensusmatrix(bootdata, nclust, reorder = fastclust)

Arguments

bootdata A matrix of bootstrap replicate (n x b) (see Details).

nclust A number of clusters.

reorder Any distance-based clustering algorithm function (see Details).

Details

This is a function to obtain a consensus matrix from a matrix of bootstrap replicates to
evaluate the clustering result. The bootdata argument can be supplied directly from a
matrix produced by the clustboot function. The values of the consensus matrix, A, are
calculated by

aij = aji =
#n of objects i and j in the same cluster

#n of objects i and j sampled at the same time

where aij is the agreement index between objects i and j. Note that due to the agreement
between objects i and j equal to the agreement between objects j and i, the consensus
matrix is a symmetric matrix.

Meanwhile, the reorder argument is a function to reorder the objects in both the row and
column of the consensus matrix such that similar objects are close to each other. This task
can be solved by applying a clustering algorithm in the consensus matrix. The reorder
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has to consist of two input arguments. The two input arguments are a distance matrix/
object and number of clusters. The output is only a vector of cluster memberships. Thus,
the algorihtm that can be applied in the reorder argument is the distance-based algo-
rithm with a distance as the input.

The default reorder is fastclust applying the fastkmed function. The code of the
fastclust is

fastclust <- function(x, nclust) {

res <- fastkmed(x, nclust, iterate = 50)

return(res$cluster)

}

For other examples, see Examples. It applies centroid and complete linkage algorithms.

Value

Function returns a consensus/ agreement matrix of n x n dimension.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Monti, S., P. Tamayo, J. Mesirov, and T. Golub. 2003. Consensus clustering: A resampling-
based method for class discovery and visualization of gene expression microarray data.
Machine Learning 52 pp. 91-118.

Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
irisfast <- clustboot(mrwdist, nclust=3, nboot=7)
consensusfast <- consensusmatrix(irisfast, nclust = 3)
centroid <- function(x, nclust) {
res <- hclust(as.dist(x), method = "centroid")
member <- cutree(res, nclust)
return(member)
}
consensuscentroid <- consensusmatrix(irisfast, nclust = 3, reorder = centroid)
complete <- function(x, nclust) {
res <- hclust(as.dist(x), method = "complete")
member <- cutree(res, nclust)
return(member)
}
consensuscomplete <- consensusmatrix(irisfast, nclust = 3, reorder = complete)
consensusfast[c(1:5,51:55,101:105),c(1:5,51:55,101:105)]
consensuscentroid[c(1:5,51:55,101:105),c(1:5,51:55,101:105)]
consensuscomplete[c(1:5,51:55,101:105),c(1:5,51:55,101:105)]
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cooccur Co-occurrence distance for binary/ categorical variables data

Description

This function calculates the co-occurrence distance proposed by Ahmad and Dey (2007).

Usage

cooccur(data)

Arguments

data A matrix or data frame of binary/ categorical variables (see Details).

Details

This function computes co-occurrence distance, which is a binary/ categorical distance,
that based on the other variable’s distribution (see Examples). In the Examples, we have
a data set:

object x y z
1 1 2 2
2 1 2 1
3 2 1 2
4 2 1 2
5 1 1 1
6 2 2 2
7 2 1 2

The co-occurrence distance transforms each category of binary/ categorical in a variable
based on the distribution of other variables, for example, the distance between categories
1 and 2 in the x variable can be different to the distance between categories 1 and 2 in the
z variable. As an example, the transformed distance between categories 1 and 2 in the z
variable is presented.

A cross tabulation between the z and x variables with corresponding (column) proportion
is

1 2 || 1 2
1 2 1 || 1.0 0.2
2 0 4 || 0.0 0.8

A cross tabulation between the z and y variables with corresponding (column) proportion
is

1 2 || 1 2
1 1 3 || 0.5 0.6
2 1 2 || 0.5 0.4
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Then, the maximum values of the proportion in each row are taken such that they are 1.0,
0.8, 0.6, and 0.5. The new distance between categories 1 and 2 in the z variable is

δz1,2 =
(1.0 + 0.8 + 0.6 + 0.5)− 2

2
= 0.45

The constant 2 in the formula applies because the z variable depends on the 2 other
variable distributions, i.e the x and y variables. The new distances of each category in the
for the x and y variables can be calculated in a similar way.

Thus, the distance between objects 1 and 2 is 0.45. It is only the z variable counted
to calculate the distance between objects 1 and 2 because objects 1 and 2 have similar
values in both the x and y variables.

The data argument can be supplied with either a matrix or data frame, in which the
class of the element has to be an integer. If it is not an integer, it will be converted to
an integer class. If the data of a variable only, a simple matching is calculated. The
co-occurrence is absent due to its dependency to the distribution of other variables and a
warning message appears.

Value

Function returns a distance matrix (n x n).

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Ahmad, A., and Dey, L. 2007. A K-mean clustering algorithm for mixed numeric and
categorical data. Data and Knowledge Engineering 63, pp. 503-527.

Harikumar, S., PV, S., 2015. K-medoid clustering for heterogeneous data sets. JProcedia
Computer Science 70, 226-237.

Examples

set.seed(1)
a <- matrix(sample(1:2, 7*3, replace = TRUE), 7, 3)
cooccur(a)
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csv Centroid shadow value (CSV) index and plot

Description

This function computes shadow values and shadow value plots of each cluster. The plot
presents the mean of the shadow values as well.

Usage

csv(distdata, idmedoid, idcluster, title = "")

Arguments

distdata A distance matrix (n x n) or dist object.

idmedoid A vector of id medoids (see Details).

idcluster A vector of cluster membership (see Details).

title A title of the plot.

Details

The origin of the shadow value is calculated in the shadow function of the flexclust
package, in which it is based on the first and second closest centroid. The csv function in
this package modifies the centroid into medoid such that the formula to compute shadow
value of object i is

sh(i) =
2d(i,m(i))

d(i,m(i)) + d(i,m′(i))

where d(i,m(i)) is the distance between object i to the first closest medoid and d(i, m’(i))
is the distance between object i to the second closest medoid.

The idmedoid argument corresponds to the idcluster argument. If the length of idmedoid
is 3, for example, the idcluster has to have 3 unique cluster memberships, or it returns
Error otherwise. The length of the idcluster has also to be equal to n (the number of
objects).

Value

Function returns a list with following components:

result is a data frame of the shadow values for all objects

plot is the shadow value plots of each cluster.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>
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References

F. Leisch. 2010 Neighborhood graphs, stripes and shadow plots for cluster visualization.
Statistics and Computing. vol. 20, pp. 457-469

Examples

distiris <- as.matrix(dist(iris[,1:4]))
res <- fastkmed(distiris, 3)
sha <- csv(distiris, res$medoid, res$cluster)
sha$result[c(1:3,70:75,101:103),]
sha$plot

distmix Distances for mixed variables data set

Description

This function computes a distance matrix for a mixed variable data set applying various
methods.

Usage

distmix(data, method = "gower", idnum = NULL, idbin = NULL,
idcat = NULL)

Arguments

data A data frame or matrix object.

method A method to calculate the mixed variables distance (see Details).

idnum A vector of column index of the numerical variables.

idbin A vector of column index of the binary variables.

idcat A vector of column index of the categorical variables.

Details

There are six methods available to calculate the mixed variable distance. They are gower,
wishart, podani, huang, harikumar, ahmad.

gower

The Gower (1971) distance is the most common distance for a mixed variable data set.
Although the Gower distance accommodates missing values, a missing value is not al-
lowed in this function. If there is a missing value, the Gower distance from the daisy
function in the cluster package can be applied. The Gower distance between objects i
and j is computed by dij = 1− sij , where

sij =

∑p
l=1 ωijlsijl∑p
l=1 ωijl

102



distmix

ωijl is a weight in variable l that is usually 1 or 0 (for a missing value). If the variable l is
a numerical variable,

sijl = 1− |xil − xjl|
Rl

sijl ∈ {0, 1}, if the variable l is a binary/ categorical variable.

wishart

Wishart (2003) has proposed a different measure compared to Gower (1971) in the nu-
merical variable part. Instead of a range, it applies a variance of the numerical variable
in the sijl such that the distance becomes

dij =

√√√√
p∑

l=1

ωijl

(
xil − xjl
δijl

)2

where δijl = sl when l is a numerical variable and δijl ∈ {0, 1} when l is a binary/
categorical variable.

podani

Podani (1999) has suggested a different method to compute a distance for a mixed vari-
able data set. The Podani distance is calculated by

dij =

√√√√
p∑

l=1

ωijl

(
xil − xjl
δijl

)2

where δijl = Rl when l is a numerical variable and δijl ∈ {0, 1} when l is a binary/
categorical variable.

huang

The Huang (1997) distance between objects i and j is computed by

dij =
Pn∑

r=1

(xir − xjr)2 + γ
Pc∑

s=1

δc(xis − xjs)

where Pn and Pc are the number of numerical and categorical variables, respectively,

γ =

∑Pn
r=1 s

2
r

Pn

and δc(xis − xjs) is the mismatch/ simple matching distance (see matching) between
object i and object j in the variable s.

harikumar

Harikumar-PV (2015) has proposed a distance for a mixed variable data set:

dij =
Pn∑

r=1

|xir − xjr|+
Pc∑

s=1

δc(xis − xjs) +
pb∑

t=1

δb(xit, xjt)

where Pb is the number of binary variables, δc(xis, xjs) is the co-occurrence distance (see
cooccur), and δb(xit, xjt) is the Hamming distance.

ahmad
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Ahmad and Dey (2007) has computed a distance of a mixed variable set via

dij =
Pn∑

r=1

(xir − xjr)2 +
Pc∑

s=1

δc(xis − xjs)

where δc(xit, xjt) are the co-occurrence distance (see cooccur). In the Ahmad and
Dey distance, the binary and categorical variables are not separable such that the co-
occurrence distance is based on the combined these two classes, i.e. binary and categor-
ical variables.

At leas two arguments of the idnum, idbin, and idcat have to be provided because
this function calculates the mixed distance. If the method is harikumar, the categorical
variables have to be at least two variables such that the co-occurrence distance can be
computed. It also applies when method = "ahmad". The idbin + idcat has to be more
than 1 column. It returns to an Error message otherwise.

Value

Function returns a distance matrix (n x n).

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Ahmad, A., and Dey, L. 2007. A K-mean clustering algorithm for mixed numeric and
categorical data. Data and Knowledge Engineering 63, pp. 503-527.

Gower, J., 1971. A general coefficient of similarity and some of its properties. Biometrics
27, pp. 857-871

Harikumar, S., PV, S., 2015. K-medoid clustering for heterogeneous data sets. JProcedia
Computer Science 70, pp. 226-237.

Huang, Z., 1997. Clustering large data sets with mixed numeric and categorical values,
in: The First Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
21-34.

Podani, J., 1999. Extending gower’s general coefficient of similarity to ordinal charac-
ters. Taxon 48, pp. 331-340.

Wishart, D., 2003. K-means clustering with outlier detection, mixed variables and miss-
ing values, in: Exploratory Data Analysis in Empirical Research: Proceedings of the
25th Annual Conference of the Gesellschaft fur Klassifikation e.V., University of Mu-
nich, March 14-16, 2001, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 216-226.

Examples

set.seed(1)
a <- matrix(sample(1:2, 7*3, replace = TRUE), 7, 3)
a1 <- matrix(sample(1:3, 7*3, replace = TRUE), 7, 3)
mixdata <- cbind(iris[1:7,1:3], a, a1)
colnames(mixdata) <- c(paste(c("num"), 1:3, sep = ""),
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paste(c("bin"), 1:3, sep = ""),
paste(c("cat"), 1:3, sep = ""))

distmix(mixdata, method = "gower", idnum = 1:3, idbin = 4:6, idcat = 7:9)

distNumeric A pair distance for numerical variables

Description

This function computes a pairwise numerical distance between two numerical data sets.

Usage

distNumeric(x, y, method = "mrw", xyequal = TRUE)

Arguments

x A first data matrix (see Details).

y A second data matrix (see Details).

method A method to calculate the pairwise numerical distance (see Details).

xyequal A logical if x is equal to y (see Details).

Details

The x and y arguments have to be matrices with the same number of columns where
the row indicates the object and the column is the variable. This function calculate all
pairwise distance between rows in the x and y matrices. Although it calculates a pair-
wise distance between two data sets, the default function computes all distances in the x
matrix. If the x matrix is not equal to the y matrix, the xyequal has to be set FALSE.

The method available are mrw (Manhattan weighted by range), sev (squared Euclidean
weighted by variance), ser (squared Euclidean weighted by range), ser.2 (squared Eu-
clidean weighted by squared range) and se (squared Euclidean). Their formulas are:

mrwij =
pn∑

r=1

|xir − xjr|
Rr

sevij =
pn∑

r=1

(xir − xjr)2
s2r

serij =
pn∑

r=1

(xir − xjr)2
Rr

ser.2ij =
pn∑

r=1

(xir − xjr)2
R2

r

seij =
pn∑

r=1

(xir − xjr)2

where pn is the number of numerical variables, Rr is the range of the r-th variables, s2r is
the variance of the r-th variables.
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Value

Function returns a distance matrix with the number of rows equal to the number of objects
in the x matrix (nx) and the number of columns equals to the number of objects in the y
matrix (ny).

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
mrwdist[1:6,1:6]

fastkmed Simple and fast k-medoid algorithm

Description

This function runs the simple and fast k-meoid algorithm proposed by Park and Jun
(2009).

Usage

fastkmed(distdata, ncluster, iterate = 10, init = NULL)

Arguments

distdata A distance matrix (n x n) or dist object.

ncluster A number of clusters.

iterate A number of iterations for the clustering algorithm.

init A vector of initial objects as the cluster medoids (see Details).

Details

The simple and fast k-medoids, which sets a set of medoids as the cluster centers, adapts
the k-means algorithm for medoid up-dating. The new medoids of each iteration are
calculated in the within cluster only such that it gains speed.

init = NULL is required because the Park and Jun (2009) has a particular method to
select the initial medoids. The initial medoids are selected by

vj =
n∑

i=1

dij∑n
l=1 dil

, j = 1, 2, 3, . . . , n

where the first k of the vj is selected if the number of clusters is k.
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init can be provided with a vector of id objects. The length of the vector has to be
equal to the number of clusters. However, assigning a vector in the init argument, the
algorithm is no longer the simple and fast k-medoids algorithm. The inckmed function,
for example, defines a different method to select the initial medoid though it applies the
fastkmed function.

Value

Function returns a list of components:

cluster is the clustering memberships result.

medoid is the id medoids.

minimum_distance is the distance of all objects to their cluster medoid.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Park, H., Jun, C., 2009. A simple and fast algorithm for k-medoids clustering. Expert
Systems with Applications 36, pp. 3336-3341.

Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
result <- fastkmed(mrwdist, ncluster = 3, iterate = 50)
table(result$cluster, iris[,5])

globalfood Global food security index

Description

A dataset containing four variables of 113 countries for their food security index based
on panelists evaluation in 2017.

Usage

globalfood
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Format

A data frame with 113 rows and 4 variables:

affordability Index of food affordability.

availability Index of food availability.

safety Index of food quality and safety.

resilience Index of natural resources and resilience.

Source

The original indicator variables consist of 27 variables. Then, they are summarized into
four pillars of food security; they are affordability, availability, quality and safety, and
natural resources and resilience. Food-security expertise panelists evaluate the score of
each country from 0 to 100, where 0 is the least favorable towards food security.

http://foodsecurityindex.eiu.com

heart Heart Disease data set

Description

A mixed variable dataset containing 14 variables of 297 patients for their heart disease
diagnosis.

Usage

heart

Format

A data frame with 297 rows and 14 variables:

age Age in years (numerical).

sex Sex: 1 = male, 0 = female (logical).

cp Four chest pain types: (1) typical angina, (2) atypical angina (3)non-anginal pain, (4)
asymptomatic (categorical).

trestbps Resting blood pressure (in mm Hg on admission to the hospital) (numerical).

chol Serum cholestoral in mg/dl (numerical).

fbs Fasting blood sugar more than 120 mg/dl (logical).

restecg Resting electrocardiographic results: (0) normal, (1) having ST-T wave abnor-
mality, (2) showing probable or definite left ventricular hypertrophy by Estes’ cri-
teria (categorical).

thalach Maximum heart rate achieved (numerical).

exang Exercise induced angina (logical).
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oldpeak ST depression induced by exercise relative to rest (numerical).

slope The slope of the peak exercise ST segment: (1) upsloping, (2) flat, (3) downsloping
(categorical).

ca Number of major vessels (0-3) colored by flourosopy (numerical).

thal (3) normal, (6) fixed defect, (7) reversable defect (categorical).

class Diagonosis of heart disease (4 classes). It can be 2 classes by setting 0 for 0 values
and 1 for non-0 values.

Source

The data set is taken from machine learning repository of UCI. The original data set
consists of 303 patients with 6 NA’s. Then, the missing values are omitted such that it
reduces into 297 patients.

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

References

Lichman, M. (2013). UCI machine learning repository.

inckmed Increasing number of clusters in k-medoids algorithm

Description

This function runs the increasing number of clusters in the k-medoids algorithm proposed
by Yu et. al. (2018).

Usage

inckmed(distdata, ncluster, iterate = 10, alpha = 1)

Arguments

distdata A distance matrix (n x n) or dist object.

ncluster A number of clusters.

iterate A number of iterations for the clustering algorithm.

alpha A stretch factor to determine the range of initial medoid selection (see
Details).
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Details

This algorithm is claimed to manage with the weakness of the simple and fast-kmedoids
(fastkmed). The origin of the algorithm is a centroid-based algorithm by applying the
Euclidean distance. Then, Bbecause the function is a medoid-based algorithm, the object
mean (centroid) and variance are redefined into medoid and deviation, respectively.

The alpha argument is a stretch factor, i.e. a constant defined by the user. It is applied to
determine a set of medoid candidates. The medoid candidates are calculated byOc ={Xi|
σi ≤ ασ, i = 1, 2, . . . , n }, where σi is the average deviation of object i, and σ is the
average deviation of the data set. They are computed by

σ =

√√√√ 1

n− 1

n∑

i=1

d(Oi, v1)

σi =

√√√√ 1

n− 1

n∑

i=1

d(Oi, Oj)

where n is the number of objects, Oi is the object i, and v1 is the most centrally located
object.

Value

Function returns a list of components:

cluster is the clustering memberships result.

medoid is the id medoids.

minimum_distance is the distance of all objects to their cluster medoid.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Yu, D., Liu, G., Guo, M., Liu, X., 2018. An improved K-medoids algorithm based on
step increasing and optimizing medoids. Expert Systems with Applications 92, pp. 464-
473.

Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
result <- inckmed(mrwdist, ncluster = 3, iterate = 50, alpha = 1.5)
table(result$cluster, iris[,5])
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matching

matching A pair distance for binary/ categorical variables

Description

This function computes the simple matching distance from two data frames/ matrices.

Usage

matching(x, y)

Arguments

x A first data frame or matrix (see Details).

y A second data frame or matrix (see Details).

Details

The x and y arguments have to be data frames/ matrices with the same number of columns
where the row indicates the object and the column is the variable. This function calculates
all pairwise distance between rows in the x and y data frames/ matrices. If the x data
frame/ matrix is equal to the y data frame/ matrix, it explicitly calculates all distances in
the x data frame/ matrix.

The simple matching distance between objects i and j is calculated by

dij =

∑P
s=1(xis − xjs)

P

where P is the number of variables, and xis − xjs ∈ {0, 1}. xis − xjs = 0, if xis = xjs
and xis − xjs = 1, when xis 6= xjs.

As an example, the distance between objects 1 and 2 is presented.

object x y z
1 1 2 2
2 1 2 1

The distance between objects 1 and 2 is

d12 =

∑3
s=1(xis − xjs)

3
=

0 + 0 + 1

3
=

1

3
= 0.33

Value

Function returns a distance matrix with the number of rows equal to the number of objects
in the x data frame/ matrix (nx) and the number of columns equals to the number of
objects in the y data frame/ matrix (ny).
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pcabiplot

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

Examples

set.seed(1)
a <- matrix(sample(1:2, 7*3, replace = TRUE), 7, 3)
matching(a, a)

pcabiplot Biplot of a PCA object

Description

This function creates a biplot from a pca object, which is generated by the prcomp func-
tion from the stats package.

Usage

pcabiplot(PC, x = "PC1", y = "PC2", var.line = TRUE, colobj = rep(1,
nrow(PC$x)), o.size = 1)

Arguments

PC A pca object generated by prcomp function.

x X axis (see Details).

y Y axis (see Details).

var.line A logical input, if variable lines are plotted.

colobj A vector to provide color in the objects (see Details).

o.size A numeric number to set the object size.

Details

This is a function to plot a pca biplot from a pca object. The x and y axes can be supplied
with any principle component. The length of the colobj vector has to be equal to the
number of objects. This argument controls the color of the objects and is very convenient
to explore the clustering result. The default value is that all object have the same color.

Value

Function returns a plot of pca.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>
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rankkmed

Examples

pcadat <- prcomp(iris[,1:4], scale. = TRUE)
pcabiplot(pcadat)

rankkmed Rank k-medoid algorithm

Description

This function runs the rank k-medoids algorithm proposed by Zadegan et. al. (2013).

Usage

rankkmed(distdata, ncluster, m = 3, iterate = 10, init = NULL)

Arguments

distdata A distance matrix (n x n) or dist object.

ncluster A number of clusters.

m A number of objects to compute hostility (see Details).

iterate A number of iterations for the clustering algorithm.

init A vector of initial objects as the cluster medoids (see Details).

Details

This algorithm is claimed to cope with the local optima problem of the simple and fast-
kmedoids algorithm (fastkmed). The m argument is defined by the user and has to be
1 < m ≤ n. The m is a hostility measure computed by

mi =
∑

Xj∈Y
rij

where xj is the object j, Y is the set of objects as many as m, and rij is the rank distance,
i.e. sorted distance, between object i and j.

init can be provided with a vector of id objects. The length of the vector has to be
equal to the number of clusters. However, assigning a vector in the init argument, the
algorithm is no longer the rank k-medoids algorithm.

Value

Function returns a list of components:

cluster is the clustering memberships result.

medoid is the id medoids.

minimum_distance is the distance of all objects to their cluster medoid.
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shadow

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

Zadegan, S.M.R, Mirzaie M, and Sadoughi, F. 2013. Ranked k-medoids: A fast and
accurate rank-based partitioning algorithm for clustering large datasets. Knowledge-
Based Systems 39, 133-143.

Examples

num <- as.matrix(iris[,1:4])
mrwdist <- distNumeric(num, num, method = "mrw")
result <- fastkmed(mrwdist, ncluster = 3, iterate = 50)
table(result$cluster, iris[,5])

shadow Centroid shadow value (CSV) index of each cluster based on
medoid

Description

This function is deprecated, use the csv function instead.

Usage

shadow(distdata, idmedoid, idcluster)

Arguments

distdata A distance object/ a n x n distance matrix.

idmedoid A vector of id medoids.

idcluster A vector of cluster membership.
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sil

sil Silhouette index and plot

Description

This function creates silhouette indices and silhouette plots of each cluster. The plot
presents also the mean of the silhouette indices per cluster.

Usage

sil(distdata, idmedoid, idcluster, title = "")

Arguments

distdata A distance matrix (n x n) or dist object.

idmedoid A vector of id medoids (see Details).

idcluster A vector of cluster membership (see Details).

title A title of the plot.

Details

The silhouette index of object i is calculated by

si(i) =
bi − ai

max(ai, bi)

where ai is the average distance of object i to all objects within the cluster, and bi is the
average distance of object i to all objects within the nearest cluster.

The idmedoid argument corresponds to the idcluster argument. If the length of idmedoid
is 3, for example, the idcluster has to have 3 unique memberships, or it returns Error
otherwise. The length of the idcluster has also to be equal to n (the number of objects).

Value

Function returns a list with following components:

result is a data frame of the silhouette indices for all objects

plot is the silhouette plots of each cluster.

Author(s)

Weksi Budiaji
Contact: <budiaji@untirta.ac.id>

References

P. J. Rousseeuw. 1987 Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65
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silhoutte

Examples

distiris <- as.matrix(dist(iris[,1:4]))
res <- fastkmed(distiris, 3)
silhouette <- sil(distiris, res$medoid, res$cluster)
silhouette$result[c(1:3,70:75,101:103),]
silhouette$plot

silhoutte Silhoutte index of each cluster

Description

This function is deprecated, use the sil function instead.

Usage

silhoutte(distdata, idmedoid, idcluster)

Arguments

distdata A distance object/ a n x n distance matrix.

idmedoid A vector of id medoids.

idcluster A vector of cluster membership.

stepkmed Step k-medoid algorithm from Yu et al.

Description

This function is deprecated, use the inckmed function instead.

Usage

stepkmed(distdata, ncluster, iterate = 10, alpha = 1)

Arguments

distdata A matrix of distance objects (n x n) or a diss class.

ncluster A number of clusters.

iterate A number of iterations for the clustering algorithm.

alpha A numeric number to determine the range of initial medoids selection.
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Appendix B: Vignette of kmed package

Vignette of kmed package cran R can be downloaded via

https://cran.r-project.org/web/packages/kmed/vignettes/kmed.html
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kmed: Distance-Based K-Medoids
Weksi Budiaji
2019-06-14

Abstract

The kmed vignette consists of four sequantial parts of distance-based (k-medoids)
cluster analysis. The first part is defining the distance. It has numerical, binary,
categorical, and mixed distances. The next part is applying a clustering algorithm in
the pre-defined distance. There are four k-medoids presented, namely the simple and
fast k-medoids, k-medoids, ranked k-medoids, and increasing number of clusters in
k-medoids. After the clustering result is obtained, a validation step is required. The
cluster validation applies internal and relative criteria. The last part is visualizing
the cluster result in a pca biplot or marked barplot.

1. Introduction

The kmed package is designed to analyse k-medoids based clustering. The features include:

• distance computation:
– numerical variables:

∗ Manhattan weighted by range
∗ squared Euclidean weighted by range
∗ squared Euclidean weighted by squared range
∗ squared Euclidean weighted by variance
∗ unweighted squared Euclidean

– binary or categorical variables:
∗ simple matching
∗ co-occurrence

– mixed variables:
∗ Gower
∗ Wishart
∗ Podani
∗ Huang
∗ Harikumar and PV
∗ Ahmad and Dey

• k-medoids algorithms:
– Simple and fast k-medoids
– K-medoids
– Rank k-medoids
– Increasing number of clusters k-medoids

• cluster validations:
– internal criteria:

∗ Silhouette
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∗ Centroid-based shadow value
– relative criteria (bootstrap)

• Cluster visualizations:
– pca biplot
– marked barplot

2. Distance Computation

2.A. Numerical variables (distNumeric)

The distNumeric function can be applied to calculate numerical distances. There are four
distance options, namely Manhattan weighted by range (mrw), squared Euclidean weighted
by range (ser), squared Euclidean weighted by squared range (ser.2), squared Euclidean
weighted by variance (sev), and unweighted squared Euclidean (se). The distNumeric
function provides method in which the desired distance method can be selected. The
default method is mrw.

The distance computation in a numerical variable data set is performed in the iris data set.
An example of manual calculation of the numerical distances is applied for the first and
second objects only to introduce what the distNumeric function does.
library(kmed)

## Warning: package 'kmed' was built under R version 3.5.3
iris[1:3,]

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa

2.A.1. Manhattan weighted by range (method = "mrw")

By applying the distNumeric function with method = "mrw", the distance among objects
in the iris data set can be obtained.
num <- as.matrix(iris[,1:4])
rownames(num) <- rownames(iris)
#calculate the Manhattan weighted by range distance of all iris objects
mrwdist <- distNumeric(num, num)
#show the distance among objects 1 to 3
mrwdist[1:3,1:3]

## 1 2 3
## 1 0.0000000 0.2638889 0.2530603
## 2 0.2638889 0.0000000 0.1558380
## 3 0.2530603 0.1558380 0.0000000
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The Manhattan weighted by range distance between objects 1 and 2 is 0.2638889. To
calculate this distance, the range of each variable is computed.
#extract the range of each variable
apply(num, 2, function(x) max(x)-min(x))

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 3.6 2.4 5.9 2.4

Then, the distance between objects 1 and 2 is
#the distance between objects 1 and 2
abs(5.1-4.9)/3.6 + abs(3.5 - 3.0)/2.4 + abs(1.4-1.4)/5.9 +

abs(0.2-0.2)/2.4

## [1] 0.2638889

which is based on the data

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2

(Back to Intoduction)

2.A.2. squared Euclidean weighted by range (method = "ser")
#calculate the squared Euclidean weighthed by range distance of
#all iris objects
serdist <- distNumeric(num, num, method = "ser")
#show the distance among objects 1 to 3
serdist[1:3,1:3]

## 1 2 3
## 1 0.00000000 0.11527778 0.08363936
## 2 0.11527778 0.00000000 0.02947269
## 3 0.08363936 0.02947269 0.00000000

The squared Euclidean weighted by range distance between objects 1 and 2 is 0.11527778.
It is obtained by
#the distance between objects 1 and 2
(5.1-4.9)^2/3.6 + (3.5 - 3.0)^2/2.4 + (1.4-1.4)^2/5.9 + (0.2-0.2)^2/2.4

## [1] 0.1152778

(Back to Intoduction)

2.A.3. squared Euclidean weighted by squared range (method = "ser.2")
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#calculate the squared Euclidean weighthed by squared range distance of
#all iris objects
ser.2dist <- distNumeric(num, num, method = "ser.2")
#show the distance among objects 1 to 3
ser.2dist[1:3,1:3]

## 1 2 3
## 1 0.00000000 0.04648920 0.02825795
## 2 0.04648920 0.00000000 0.01031814
## 3 0.02825795 0.01031814 0.00000000

The squared Euclidean weighted by squared range distance between objects 1 and 2 is
0.04648920 that is computed by
(5.1-4.9)^2/3.6^2 + (3.5 - 3.0)^2/2.4^2 + (1.4-1.4)^2/5.9^2 +

(0.2-0.2)^2/2.4^2

## [1] 0.0464892

where the data are

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2

(Back to Intoduction)

2.A.4. squared Euclidean weighted by variance (method = "sev")
#calculate the squared Euclidean weighthed by variance distance of
#all iris objects
sevdist <- distNumeric(num, num, method = "sev")
#show the distance among objects 1 to 3
sevdist[1:3,1:3]

## 1 2 3
## 1 0.0000000 1.3742671 0.7102849
## 2 1.3742671 0.0000000 0.2720932
## 3 0.7102849 0.2720932 0.0000000

The squared Euclidean weighted by variance distance between objects 1 and 2 is 1.3742671.
To compute this distance, the variance of each variable is calculated.
#calculate the range of each variable
apply(num[,1:4], 2, function(x) var(x))

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.6856935 0.1899794 3.1162779 0.5810063

Then, the distance between objects 1 and 2 is
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(5.1-4.9)^2/0.6856935 + (3.5 - 3.0)^2/0.1899794 + (1.4-1.4)^2/3.1162779 +
(0.2-0.2)^2/0.5810063

## [1] 1.374267

(Back to Intoduction)

2.A.5. squared Euclidean (method = "se")
#calculate the squared Euclidean distance of all iris objects
sedist <- distNumeric(num, num, method = "se")
#show the distance among objects 1 to 3
sedist[1:3,1:3]

## 1 2 3
## 1 0.00 0.29 0.26
## 2 0.29 0.00 0.09
## 3 0.26 0.09 0.00

The squared Euclidean distance between objects 1 and 2 is 0.29. It is computed by
(5.1-4.9)^2 + (3.5 - 3.0)^2 + (1.4-1.4)^2 + (0.2-0.2)^2

## [1] 0.29

(Back to Intoduction)

2.B. Binary or Categorical variables

There are two functions to calculate the binary and categorical variables. The first is
matching to compute the simple matching distance and the second is cooccur to calculate
the co-occurrence distance. To introduce what these functions do, the bin data set is
generated.
set.seed(1)
bin <- matrix(sample(1:2, 4*2, replace = TRUE), 4, 2)
rownames(bin) <- 1:nrow(bin)
colnames(bin) <- c("x", "y")

2.B.1. Simple matching (matching)

The matching function calculates the simple matching distance between two data sets. If
the two data sets are identical, the functions calculates the distance among objects within
the data set. The simple matching distance is equal to the proportion of the mis-match
categories.
bin
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## x y
## 1 1 1
## 2 1 2
## 3 2 2
## 4 2 2
#calculate simple matching distance
matching(bin, bin)

## 1 2 3 4
## 1 0.0 0.5 1.0 1.0
## 2 0.5 0.0 0.5 0.5
## 3 1.0 0.5 0.0 0.0
## 4 1.0 0.5 0.0 0.0

As an example of the simple matching distance, the distance between objects 1 and 2 is
calculated by
((1 == 1) + (1 == 2))/ 2

## [1] 0.5

The distance between objects 1 and 2, which is 0.5, is produced from one mis-match and
one match categories from the two variables (x and y) in the bin data set. When x1 is
equal to x2, for instance, the score is 0. Meanwile, if x1 is not equal to x2, the score is 1.
These scores are also valid in the y variable. Hence, the distance between objects 1 and 2
is (0+1)/2 that is equal to 1/2.

(Back to Intoduction)

2.B.2. Co-occurrence distance (cooccur)

The co-ocurrence distance (Ahmad and Dey 2007; Harikumar and PV 2015) can be calcu-
lated via the cooccur function. To calculate the distance between objects, the distribution
of the variables are taken into consideration. Compared to the simple matching distance,
the co-occurrence distance redefines the score of match and mis-match categories such
that they are unnecessary to be 0 and 1, respectively. Due to relying on the distribution
of all inclusion variables, the co-occurence distance of a data set with a single variable is
absent.

The co-occurrence distance of the bin data set is
#calculate co-occurrence distance
cooccur(bin)

## 1 2 3 4
## 1 0.0000000 0.6666667 1.166667 1.166667
## 2 0.6666667 0.0000000 0.500000 0.500000
## 3 1.1666667 0.5000000 0.000000 0.000000
## 4 1.1666667 0.5000000 0.000000 0.000000
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To show how co-occurrence distance is calculated, the distance between objects 1 and 2 is
presented.
bin

## x y
## 1 1 1
## 2 1 2
## 3 2 2
## 4 2 2

Step 1 Creating cross tabulations
#cross tabulation to define score in the y variable
(tab.y <- table(bin[,'x'], bin[,'y']))

##
## 1 2
## 1 1 1
## 2 0 2
#cross tabulation to define score in the x variable
(tab.x <- table(bin[,'y'], bin[,'x']))

##
## 1 2
## 1 1 0
## 2 1 2

Step 2 Calculating the column proportions of each cross tabulation
#proportion in the y variable
(prop.y <- apply(tab.y, 2, function(x) x/sum(x)))

##
## 1 2
## 1 1 0.3333333
## 2 0 0.6666667
#proportion in the x variable
(prop.x <- apply(tab.x, 2, function(x) x/sum(x)))

##
## 1 2
## 1 0.5 0
## 2 0.5 1

Step 3 Finding the maximum values for each row of the proportion
#maximum proportion in the y variable
(max.y <- apply(prop.y, 2, function(x) max(x)))
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## 1 2
## 1.0000000 0.6666667
#maximum proportion in the x variable
(max.x <- apply(prop.x, 2, function(x) max(x)))

## 1 2
## 0.5 1.0

Step 4 Defining the scores of each variable

The score is obtained by a summation of the maximum value subtracted and divided by a
constant. The constant has a value depending on the number of inclusion variables. For
the bin data set, the constant is 1 because both x and y variables are only depended on
one other variable, i.e. x depends on the distribution of y and y relies on the distribution
of x.
#score mis-match in the y variable
(sum(max.y) - 1)/1

## [1] 0.6666667
#score mis-match in the x variable
(sum(max.x) - 1)/1

## [1] 0.5

It can be implied that the score for mis-match categories are 0.5 and 0.67 in the x and
y variables, respectively. Note that the score for match categories is alwalys 0. Thus,
the distance between objects 1 and 2 is 0+0.6666667 = 0.6666667 and between objects 1
and 3 is 0.5+0.6666667 = 1.1666667

(Back to Intoduction)

2.C. Mixed variables (distmix)

There are six available distance methods for a mixed variable data set. The distmix
function calculates mixed variable distance in which it requires column id of each class
of variables. The mixdata data set is generated to describe each method in the distmix
function.
cat <- matrix(c(1, 3, 2, 1, 3, 1, 2, 2), 4, 2)
mixdata <- cbind(iris[c(1:2, 51:52),3:4], bin, cat)
rownames(mixdata) <- 1:nrow(mixdata)
colnames(mixdata) <- c(paste(c("num"), 1:2, sep = ""),

paste(c("bin"), 1:2, sep = ""),
paste(c("cat"), 1:2, sep = ""))

2.C.1 Gower (method = "gower")
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The method = "gower" in the distmix function calculates the Gower (1971) distance.
The original Gower distance allows missing values, while it is not allowed in the distmix
function.
mixdata

## num1 num2 bin1 bin2 cat1 cat2
## 1 1.4 0.2 1 1 1 3
## 2 1.4 0.2 1 2 3 1
## 3 4.7 1.4 2 2 2 2
## 4 4.5 1.5 2 2 1 2

The Gower distance of the mixdata data set is
#calculate the Gower distance
distmix(mixdata, method = "gower", idnum = 1:2,

idbin = 3:4, idcat = 5:6)

## 1 2 3 4
## 1 0.0000000 0.5000000 0.9871795 0.8232323
## 2 0.5000000 0.0000000 0.8205128 0.8232323
## 3 0.9871795 0.8205128 0.0000000 0.1895882
## 4 0.8232323 0.8232323 0.1895882 0.0000000

As an example, the distance between objects 3 and 4 is presented. The range of each
numerical variables is necessary.
#extract the range of each numerical variable
apply(mixdata[,1:2], 2, function(x) max(x)-min(x))

## num1 num2
## 3.3 1.3

The Gower distance calculates the Gower similarity first. In the Gower similarity, the
mis-match categories in the binary/ categorical variables are scored 0 and the match
categories are 1. Meanwhile, in the numerical variables, 1 is subtracted by a ratio between
the absolute difference and its range. Then, the Gower similarity can be weighted by the
number of variables. Thus, the Gower similarity between objects 3 and 4 is
#the Gower similarity
(gowsim <- ((1-abs(4.7-4.5)/3.3) + (1-abs(1.4-1.5)/1.3) +

1 + 1 + 0 + 1)/ 6 )

## [1] 0.8104118

The Gower distance is obtained by subtracting 1 with the Gower similarity. The distance
between objects 3 and 4 is then
#the Gower distance
1 - gowsim

## [1] 0.1895882
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(Back to Intoduction)

2.C.2 Wishart (method = "wishart")

The Wishart (2003) distance can be calculated via method = "wishart". Although it
allows missing values, it is again illegitimate in the distmix function. The Wishart distance
for the mixdata is
#calculate the Wishart distance
distmix(mixdata, method = "wishart", idnum = 1:2,

idbin = 3:4, idcat = 5:6)

## 1 2 3 4
## 1 0.0000000 0.7071068 1.2871280 1.2277616
## 2 0.7071068 0.0000000 1.2206686 1.2277616
## 3 1.2871280 1.2206686 0.0000000 0.4144946
## 4 1.2277616 1.2277616 0.4144946 0.0000000

To calculate the Wishart distance, the variance of each numerical variable is required. It
weighs the squared difference of a numerical variable.
#extract the variance of each numerical variable
apply(mixdata[,1:2], 2, function(x) var(x))

## num1 num2
## 3.4200 0.5225

Meanwhile, the mis-match categories in the binary/ categorical variables are scored 1
and the match categories are 0. Then, all score of the variables is added and squared
rooted. Thus, the distance between objects 3 and 4 is
wish <- (((4.7-4.5)^2/3.42) + ((1.4-1.5)^2/0.5225) + 0 + 0 + 1 + 0)/ 6
#the Wishart distance
sqrt(wish)

## [1] 0.4144946

(Back to Intoduction)

2.C.3 Podani (method = "podani")

The method = "podani" in the distmix function calculates the Podani (1999) distance.
Similar to The Gower and Wishart distances, it allows missing values, yet it is not allowed
in the distmix function. The Podani distance for the mixdata is
#calculate Podani distance
distmix(mixdata, method = "podani", idnum = 1:2, idbin = 3:4, idcat = 5:6)

## 1 2 3 4
## 1 0.000000 1.732051 2.419105 2.209629
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## 2 1.732051 0.000000 2.202742 2.209629
## 3 2.419105 2.202742 0.000000 1.004784
## 4 2.209629 2.209629 1.004784 0.000000

The Podani and Wishart distances are similar. They are different in the denumerator for
the numerical variables. Instead of a variance, the Podani distance applies the squared
range for a numerical variable. Unlike the Gower and Podani distances, the number of
variables as a weight is absent in the Podani distance. Hence, the distance between objects
3 and 4 is
poda <- ((4.7-4.5)^2/3.3^2) + ((1.4-1.5)^2/1.3^2) + 0 + 0 + 1 + 0
#the Podani distance
sqrt(poda)

## [1] 1.004784

which is based on data

## num1 num2 bin1 bin2 cat1 cat2
## 3 4.7 1.4 2 2 2 2
## 4 4.5 1.5 2 2 1 2

(Back to Intoduction)

2.C.4 Huang (method = "huang")

The method = "huang" in the distmix function calculates the Huang (1997) distance.
The Huang distance of the mixdata data set is
#calculate the Huang distance
distmix(mixdata, method = "huang", idnum = 1:2,

idbin = 3:4, idcat = 5:6)

## 1 2 3 4
## 1 0.000000 3.858249 17.474332 15.158249
## 2 3.858249 0.000000 16.188249 15.158249
## 3 17.474332 16.188249 0.000000 1.336083
## 4 15.158249 15.158249 1.336083 0.000000

The average standard deviation of the numerical variables is required to calculate the
Huang distance. This measure weighs the binary/ categorical variables.
#find the average standard deviation of the numerical variables
mean(apply(mixdata[,1:2], 2, function(x) sd(x)))

## [1] 1.286083

While the squared difference of the numerical variables is calculated, the mis-match
categories are scored 1 and the match categories are 0 in the binary/ categorical variables.
Thus, the distance between objects 3 and 4 is
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(4.7-4.5)^2 + (1.4-1.5)^2 + 1.286083*(0 + 0) + 1.286083*(1 + 0)

## [1] 1.336083

(Back to Intoduction)

2.C.5 Harikumar and PV (method = "harikumar")

The Harikumar and PV (2015) distance can be calculated via method = "harikumar".
The Harikumar and PV distance for the mixdata is
#calculate Harikumar-PV distance
distmix(mixdata, method = "harikumar", idnum = 1:2,

idbin = 3:4, idcat = 5:6)

## 1 2 3 4
## 1 0.0 3.0 7.5 6.9
## 2 3.0 0.0 7.5 7.4
## 3 7.5 7.5 0.0 0.8
## 4 6.9 7.4 0.8 0.0

The Harikumar and PV distance requires an absolute difference in the numerical variables
and unweighted simple matching, i.e. Hamming distance, in the binary variables. For the
categorical variables, it applies co-occurrence distance. The co-occurence distance in the
categorical variables is (for manual calculation see co-occurrence subsection)
cooccur(mixdata[,5:6])

## 1 2 3 4
## 1 0.0 2 1.0 0.5
## 2 2.0 0 2.0 2.0
## 3 1.0 2 0.0 0.5
## 4 0.5 2 0.5 0.0

Hence, the distance between objects 1 and 3 is
abs(4.7-4.5) + abs(1.4-1.5) + (0 + 0) + (0.5)

## [1] 0.8

where the data are

## num1 num2 bin1 bin2 cat1 cat2
## 3 4.7 1.4 2 2 2 2
## 4 4.5 1.5 2 2 1 2

(Back to Intoduction)

2.C.6 Ahmad and Dey (method = "ahmad")
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The method = "ahmad" in the distmix function calculates the Ahmad and Dey (2007)
distance. The Ahmad and Dey distance of the mixdata data set is
#calculate Ahmad-Dey distance
distmix(mixdata, method = "ahmad", idnum = 1:2,

idbin = 3:4, idcat = 5:6)

## 1 2 3 4
## 1 0.00000 4.45679 20.04605 16.48827
## 2 4.45679 0.00000 16.33000 15.30000
## 3 20.04605 16.33000 0.00000 0.30000
## 4 16.48827 15.30000 0.30000 0.00000

The Ahmad and dey distance requires a squared difference in the numerical variables and
co-occurrence distance for both the binary and categorical variables. The co-occurrence
distance in the mixdata data set is
cooccur(mixdata[,3:6])

## 1 2 3 4
## 1 0.000000 2.111111 2.777778 2.277778
## 2 2.111111 0.000000 2.000000 2.000000
## 3 2.777778 2.000000 0.000000 0.500000
## 4 2.277778 2.000000 0.500000 0.000000

Thus, the distance between objects 2 and 3 is
(1.4-4.7)^2 + (0.2-1.4)^2 + (2)^2

## [1] 16.33

which is based on the data

## num1 num2 bin1 bin2 cat1 cat2
## 2 1.4 0.2 1 2 3 1
## 3 4.7 1.4 2 2 2 2

(Back to Intoduction)

3. K-medoids algorithms

There are some k-medoids algorithms available in this package. They are the simple
and fast k-medoids (fastkmed), k-medoids, ranked k-medoids (rankkmed), and increasing
number of clusters k-medoids (inckmed). All algorithms have a list of results, namely the
cluster membership, id medoids, and distance of all objects to their medoid.

In this section, the algorithms are applied in the iris data set by applying the mrw distance
(see Manhattan weighted by range). The number of clusters in this data set is 3.
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3.A. Simple and fast k-medoids algorithm (fastkmed)

The simple and fast k-medoid (SFKM) algorithm has been proposed by Park and Jun
(2009). The fastkmed function runs this algorithm to cluster the objects. The compulsory
inputs are a distance matrix or distance object and a number of clusters. Hence, the SFKM
algorithm for the iris data set is
#run the sfkm algorihtm on iris data set with mrw distance
(sfkm <- fastkmed(mrwdist, ncluster = 3, iterate = 50))

## $cluster
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 2
## 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## 3 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2
## 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## 2 2 2 3 3 3 2 2 2 2 2 2 2 2 3 2 2 2
## 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 3
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## 145 146 147 148 149 150
## 3 3 3 3 3 3
##
## $medoid
## [1] 8 95 148
##
## $minimum_distance
## [1] 48.76718

Then, a classification table can be obtained.
(sfkmtable <- table(sfkm$cluster, iris[,5]))

##
## setosa versicolor virginica
## 1 50 0 0
## 2 0 39 3
## 3 0 11 47

Applying the SFKM algorithm in iris data set with the Manhattan weighted by range,
the misclassification rate is
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(3+11)/sum(sfkmtable)

## [1] 0.09333333

(Back to Intoduction)

3.B. K-medoids algorithm

Reynolds et al. (2006) has been proposed a k-medoids (KM) algorithm. It is similar to
the SFKM such that the fastkmed can be applied. The difference is in the initial medoid
selection where the KM selects the initial medoid randomly. Thus, the KM algorithm for
the iris data set by setting the init is
#set the initial medoids
set.seed(1)
(kminit <- sample(1:nrow(iris), 3))

## [1] 40 56 85
#run the km algorihtm on iris data set with mrw distance
(km <- fastkmed(mrwdist, ncluster = 3, iterate = 50, init = kminit))

## $cluster
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 2
## 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2
## 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## 2 2 2 3 2 3 2 2 2 2 2 2 2 2 3 2 2 2
## 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 3
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## 145 146 147 148 149 150
## 3 3 3 3 3 3
##
## $medoid
## [1] 8 100 148
##
## $minimum_distance
## [1] 48.8411
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The classification table of the KM algorithm is
(kmtable <- table(km$cluster, iris[,5]))

##
## setosa versicolor virginica
## 1 50 0 0
## 2 0 41 3
## 3 0 9 47

with the misclassification rate
(3+9)/sum(kmtable)

## [1] 0.08

Compared to the SFKM algorithm, which has 9.33% misclassification, the misclassification
of the KM algorithm is slightly better (8%).

(Back to Intoduction)

3.C. Rank k-medoids algorithm (rankkmed)

A rank k-medoids (RKM) has been proposed by Zadegan, Mirzaie, and Sadoughi (2013).
The rankkmed function runs the RKM algorithm. The m argument is introduced to calculate
a hostility score. The m indicates how many closest objects is selected. The selected objects
as initial medoids in the RKM is randomly assigned. The RKM algorithm for the iris
data set by setting m = 10 is then
#run the rkm algorihtm on iris data set with mrw distance and m = 10
(rkm <- rankkmed(mrwdist, ncluster = 3, m = 10, iterate = 50))

## $cluster
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
## 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2
## 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2
## 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3
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## 145 146 147 148 149 150
## 3 3 3 3 3 3
##
## $medoid
## [1] "50" "92" "128"
##
## $minimum_distance
## [1] 56.71822

Then, a classification table is attained by
(rkmtable <- table(rkm$cluster, iris[,5]))

##
## setosa versicolor virginica
## 1 50 0 0
## 2 0 47 3
## 3 0 3 47

The misclassification proportion is
(3+3)/sum(rkmtable)

## [1] 0.04

With 4% misclassification rate, the RKM algorithm is the best among the three previous
algorithms.

(Back to Intoduction)

3.D. Increasing number of clusters k-medoids algorithm (inckmed)

Yu et al. (2018) has been proposed an increasing number of clusters k-medoids (INCKM)
algorithm. This algorithm is implemented in the inckmed function. The alpha argument
indicates a stretch factor to select the initial medoids. The SFKM, KM and INCKM are
similar algorithm with a different way to select the initial medoids. The INCKM algorithm
of the iris data set with alpha = 1.1 is
#run the inckm algorihtm on iris data set with mrw distance
#and alpha = 1.2
(inckm <- inckmed(mrwdist, ncluster = 3, alpha = 1.1, iterate = 50))

## $cluster
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 1
## 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
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## 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1
## 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1
## 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
## 145 146 147 148 149 150
## 2 2 2 2 2 2
##
## $medoid
## [1] 100 148 8
##
## $minimum_distance
## [1] 48.8411

Then, the classification table can be attained.
(inckmtable <- table(inckm$cluster, iris[,5]))

##
## setosa versicolor virginica
## 1 0 41 3
## 2 0 9 47
## 3 50 0 0

The misclassification rate is
(9+3)/sum(inckmtable)

## [1] 0.08

The algorithm has 8% misclassification rate such that the RKM algorithm performs the
best among the four algorithms in the iris data set with the mrw distance.

(Back to Intoduction)

4. Cluster validation

The clustering algorithm result has to be validated. There are two types of validation
implemented in the kmed package. They are internal and relative criteria validations.
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4.A. Internal criteria

4.A.1. Silhouette (sil)

Rousseeuw (1987) has proposed a silhouette index as an internal measure of validation. It
is based on the average distance of objects within a cluster and between the nearest cluster.
The sil function calculates the silhouette index of clustering result. The arguments are a
distance matrix or distance object, id medoids, and cluster membership. It produce a list
of silhouette indices and sihouette plots.

The silhouette index and plot of the best clustering result of iris data set via RKM is
presented.
#calculate silhouette of the RKM result of iris data set
siliris <- sil(mrwdist, rkm$medoid, rkm$cluster,

title = "Silhouette plot of Iris data set via RKM")

The silhouette index of each object can be obtained by
#silhouette indices of objects 49 to 52
siliris$result[c(49:52),]

## silhouette cluster
## 49 0.78952089 1
## 50 0.82084673 1
## 51 0.07607567 2
## 52 0.22234719 2

Then, the plot is presented by
siliris$plot

1 2 3

0.0

0.5

1.0

Silhouette plot of Iris data set via RKM
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(Back to Intoduction)

4.A.2. Centroid-based shadow value (csv)

An other way to measure internal validation with its corresponding plot is by presenting
the centroid-based shadow value (Leisch 2010). The csv function calculates and plots the
shadow value of each object, which is based on the first and second closest medoids. The
centroid of the original version of the csv is replaced by medoids in the csv function to
adapt the k-medoids algorithm.

The required arguments in the csv function is identical to the silhouette (sil) function.
Thus, the shadow value and plot of the best clustering result of iris data set via RKM
can be obtained by
#calculate shadow value of the RKM result of iris data set
csviris <- csv(mrwdist, rkm$medoid, rkm$cluster,

title = "Shadow value plot of Iris data set via RKM")

The shadow values of objects 49 to 52, for instance, are presented by
#shadow values of objects 49 to 52
csviris$result[c(49:52),]

## shadval cluster
## 49 0.2955819 1
## 50 0.0000000 1
## 51 0.7923323 2
## 52 0.7705314 2

The shadow value plot is also produced.
csviris$plot
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Shadow value plot of Iris data set via RKM
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(Back to Intoduction)

4.B. Relative criteria

The relative criteria evaluate a clustering algorithm result by applying re-sampling strategy.
Thus, a bootstrap strategy can be applied. It is expected that the result of the cluster
bootstraping is robust over all replications (Dolnicar and Leisch 2010). There are three
steps to validate the cluster result via the boostraping strategy.

Step 1 Creating a matrix of bootstrap replicates

To create a matrix of bootstrap replicates, the clustboot function can be applied. There
are five arguments in the clustboot function with the algorithm argument being the
most important. The algorithm argument is the argument for a clustering algorithm that
a user wants to evaluate. It has to be a function. When the RKM of iris data set is
validated, for instance, the RKM function, which is required as an input in the algorithm
argument, is
#The RKM function for an argument input
rkmfunc <- function(x, nclust) {

res <- rankkmed(x, nclust, m = 10, iterate = 50)
return(res$cluster)

}

When a function is created, it has to have two input arguments. They are x (a distance
matrix) and nclust (a number of clusters). The output, on the other hand, is a vector
of cluster membership (res$cluster). Thus, the matrix of bootstrap replicates can be
produced by
#The RKM algorthim evaluation by inputing the rkmfunc function
#in the algorithm argument
rkmbootstrap <- clustboot(mrwdist, nclust=3, nboot=50,

algorithm = rkmfunc)

with the objects 1 to 4 on the first to fifth replications being
rkmbootstrap[1:4,1:5]

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0 0 0 1 1
## [2,] 2 0 1 1 1
## [3,] 2 0 0 0 0
## [4,] 1 0 0 1 0

The rkmbootstrap is a matrix of bootrstrap replicates with a dimension of 150 x 50, i.e.
n x b, where n is the number of objects and b is the number of bootstrap replicates. Note
that the default evaluated algorithm is the SFKM algorithm such that if a user ignores the

139



algorithm argument, the matrix of bootstrap replicates can still be produced. However, it
misleads because it does not evaluate the user’s own algorithm.

Step 2 Transforming the bootstrap matrix into a consensus matrix

The matrix of bootstrap replicates produced by the clustboot in the step 1 can be
transformed into a consensus matrix with a dimension of n x n via the consensusmatrix
function. An element of the consensus matrix in row i dan column j is an agreement value
between objects i and j to be in the same cluster when they are taken as a sample at the
same time (Monti et al. 2003).

However, it requires an algorithm to order the objects in such a way that objects in the
same cluster are close to each other. The consensusmatrix function has the reorder
argument to comply this task. It is similar to the algorithm argument in the clustboot
function in the step 1 where the reorder has to be a function that has two arguments and
a vector of output.

Transforming the rkmbootstrap into a consensus matrix via the ward linkage algorithm
to oder the objects, for example, can obtained by
#The ward function to order the objects in the consensus matrix
wardorder <- function(x, nclust) {

res <- hclust(as.dist(x), method = "ward.D2")
member <- cutree(res, nclust)
return(member)

}
consensusrkm <- consensusmatrix(rkmbootstrap, nclust = 3, wardorder)

The first to fourth rows and columns can be displayed as
consensusrkm[c(1:4),c(1:4)]

## 1 1 1 1
## 1 1.0000000 0.9583333 0.9130435 0.8421053
## 1 0.9583333 1.0000000 1.0000000 0.9565217
## 1 0.9130435 1.0000000 1.0000000 0.9500000
## 1 0.8421053 0.9565217 0.9500000 1.0000000

Step 3 Visualizing the consensus matrix in a heatmap

The ordered consensus matrix in the step 2 can be visualized in a heatmap applying the
clustheatmap function. The agreement indices in the consensus matrix can be transformed
via a non-linear transformation (Hahsler and Hornik 2011). Thus, the consensusrkm can
visualize into
clustheatmap(consensusrkm,

"Iris data evaluated by the RKM, ordered by Ward linkage")
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Iris data evaluated by the RKM, ordered by Ward linkage

(Back to Intoduction)

5. Cluster visualization

A cluster visualization of the clustering result can enhance the data structure understanding.
The biplot and marked barplot are presented to visualize the clustering result.

A. Biplot

The pcabiplot function can be applied to plot a clustering result from a numerical data
set. The numerical data set has to be converted into a principle component object via
the prcomp function. The x and y axes in the plot can be replaced by any component of
the principle components. The colour of the objects can be adjusted based on the cluster
membership by supplying a vector of membership in the colobj argument.

The iris data set can be plotted in a pca biplot with the colour objects based on the
RKM algorithm result.
#convert the data set into principle component object
pcadat <- prcomp(iris[,1:4], scale. = TRUE)
#plot the pca with the corresponding RKM clustering result
pcabiplot(pcadat, colobj = rkm$cluster+5, o.size = 2)
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The second principle component can be replaced by the third principle component.
pcabiplot(pcadat, y = "PC3",colobj = rkm$cluster+5, o.size = 1.5)
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(Back to Intoduction)

B. Marked barplot

A marked barplot has been proposed by Dolnicar and Leisch (2014); Leisch (2008) where
the mark indicates a significant difference between the cluster’s mean and population’s
mean in each variable. The barplot function creates a barplot of each cluster with a
particular significant level. The layout of the barplot is set in the nc argument.
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The barplot of iris data set partitioned by the RKM algorithm is
barplotnum(iris[,1:4], rkm$cluster, alpha = 0.05)
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while the layout is changed into 2 columns and the alpha is set into 1%, it becomes
barplotnum(iris[,1:4], rkm$cluster, nc = 2, alpha = 0.01)
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(Back to Intoduction)
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Table of abbreviations

GDF Generalized distance function
GSDF Generalized spatial distance function
INCKM Increasing number of cluster k-medoids
KM K-medoids
PAM Partitioning around medoids
RKM Rank k-medoids
SFKM Simple and fast k-medoids
SKM Simple k-medoids
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