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Abstract 

The established approach of separating up- and downstream development has evoked a 

bottleneck of downstream efficiency in pharmaceutical bioprocesses. Hence this bottleneck 

a real necessity for integrated bioprocess development regarding overall efficiency increase 

of protein production processes has yet to come in pharmaceutical industry. 

In this context this work tried to bridge the gap between USP and DSP development by trying 

to affect inclusion body properties in an E. coli process, namely solubility, purity as well as 

the specific product titer through physiological USP parameters. For approaching that 

problem controlled dynamic experimentation is used in terms of controlled oscillations in 

the specific substrate uptake rate qs. Control of qs was carried out using a first principle 

softsensor based on elemental balances and off-gas analysis. The oscillations were described 

by their qs mean, qs amplitude and frequency, which were used as factors in a 2 level full 

factorial design of experiment (DoE). As responses of this DoE the specific product titer, 

together with the solubility kinetics, the solubilisation yield and the IB purity were chosen. 

With the controlled qs oscillations a significant correlation between the decline in maximal 

physiological capabilities (qs crit) and the qs mean was shown. The knowledge about this 

correlation could potentially be used in novel control strategies limiting the danger of 

substrate accumulation. Regarding IB properties a correlation of the solubilisation kinetics 

and the amplitude of qs oscillations was shown within this thesis. Furthermore the qs mean 

of the oscillations negatively affected the specific product titer. 
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1. Introduction 

1.1. Motivation 

In the major part of bioprocesses downstream-processing (DSP) embodies a bottleneck for 

productivity which affects costs and time. This is a consequence of the faster technological 

advances in upstream-processing (USP)  compared to DSP (Gottschalk 2008). Hereby directly 

influencing product properties in USP might potentially yield a significant efficiency increase 

in DSP. For this debottlenecking of DSP through USP operating parameters or process state 

variables the identification of controllable quality attributes is critical (Lionberger et al. 

2008). 

Opposing to such an integrated approach for bioprocess development outlined above, 

efficiency increase in up- and downstream processing for industrial processes is nowadays 

performed separately as it’s far simpler (Gottschalk 2008). The demand for a holistic 

approach in bioprocess development is likely to be intensified by the market pressure 

applied by the manufacturing of biosimilars (Calo-fern & Mart 2012). 

A sound science based approach to bioprocess development is also motivated in the ICH 

Q8(R2) (ICH 2009) guideline which was elaborated as part of the Quality by Design initiative. 

The aim of bioprocess development based the QbD approach is to design bioprocesses 

ensuring a high quality product (FDA 2004). As quality cannot be tested into the product it 

should be an inherent part of the process design (ICH 2009). 

1.2. Framework of this study 

1.2.1. E. coli as production host for recombinant proteins as Inclusion Bodies 

In 2009 46% of the recombinant protein pharmaceutical products on the market were 

produced in microbial host organisms. These 46% are almost exclusively shared between the 

Yeast Saccharomyces cerevisiae (15%) and Eschericha coli (31%)(Walsh 2010).  

Although microbial cells as hosts for recombinant protein production lack for the molecular 

apparatus necessary for human-like post-translational modifications these expression 

systems come with some inherent advantages. Some of these advantages are: high growth 

rates, higher overall product yields and low media costs compared to mammalian cell 

culture production processes. 

A widely used strain is E. coli BL21 (DE3) for high cell density (>100 g*L-1 DCW) production 

processes (Choi et al. 2006). Furthermore the fact that Eschericha coli is one of the most 

intensively studied microorganisms eases even extensive genetic modifications of E. coli 

(Swartz 2001). The high growth rates used in E. coli processes are often accompanied with 

by-product formation – mostly acetate, which leads to suboptimal product yields (Heyland et 

al. 2011). Unlike K12, the tendency  of acetate production of E. coli BL21 (DE3) is very low 

(Waegeman et al. 2012). 
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Recombinant proteins produced in E. coli can either be located directly in the cytosol 

(Sørensen & Mortensen 2005) or directed to the periplasm by addition of a signal peptide 

sequence (Schlegel et al. 2013). Apart from their localisation recombinant proteins are 

differentiated by means of their solubility. As prokaryotic organism, E. coli lacks the ability to 

correctly fold complex secondary/tertiary molecule structures of eukaryotic derived 

recombinant proteins. This often results in the formation of intracellular protein aggregates 

– so called inclusion bodies (IB) (Williams 1982). 

Inclusion body formation is especially favourable in case of the expression of toxic proteins. 

By adding a fusion tag (called Npro) to the N-Terminus these toxic proteins aggregate in the 

cytosol. Upon protein aggregation toxicity is reduced. Upon a pH shift the Npro tag becomes 

native and acts as an auto-protease, cleaving itself off the target protein and leaving behind 

a native N-terminus (Dürauer et al. 2010). This Npro technology renders the advantages of E. 

coli processes accessible for a larger variety of recombinant protein products. 

IBs mostly consist of highly pure but inactive target protein. Inclusion body formation 

requires less purification but the necessary solubilisation and refolding significantly impacts 

the overall protein yield. Hereby, especially high concentrations of chaotrope reagents in the 

solubilisation step negatively affect the subsequent refolding yield. Since refolding is based 

on dilution of the chaotropic solution huge refolding tanks and high refolding times make 

the refolding step cost intensive and require complex engineering solutions (Pan et al. 2014). 

A broad spectrum of literature covering the linkage of USP process parameters with IB 

properties exists (Ami et al. 2006; Margreiter, Messner, et al. 2008; Margreiter, 

Schwanninger, et al. 2008; Upadhyay et al. 2012). Various authours elaborated the effect of 

temperature and expression levels on the secondary structure elements of IBs (Margreiter, 

Schwanninger, et al. 2008, Ami et al. 2006), which is of little relevance for increasing DSP 

efficiency. Another study of Margreiter et al (Margreiter, Messner, et al. 2008) measured IB 

size and density with sedimentation field flow fractionation and electron microscopy. 

Upadhyay et al (Upadhyay et al. 2012) investigated the susceptibility of IBs to denaturation 

agents and proteolysis in relation to their aggregation behaviour. Luo et al (Luo et al. 2006) 

showed that IB size varied with the cultivation temperature and the induction time, which 

seems reasonable as IB size ought to correlate with product titer. Summarizing most 

publications on IBs properties in general focus on method establishment and the study of IB 

as such than on directly trying to increase DSP efficiency through affecting IB attributes 

through USP parameters. 
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1.2.1. Physiological process control – a key to influence IB properties? 

As a biological phenomenon IB formation should underlie the stoichiometric restrictions 

imposed by the cellular framework. From a theoretical point of view IB properties should be 

controllable by physiological process control strategies. In respect of physiological process 

control Wechselberger et al (Wechselberger et al. 2012) demonstrated the initial specific 

substrate uptake rate at time point of induction qs init being the process parameter of 

highest importance for feeding profile optimizations. 

�� =	
����	
��


���∗�
  

Equation 1 

The specific substrate uptake rate qs (Equation 1) is defined as the amount of substrate 

which is fed per biomass and hour. Approaches for obligatory real time biomass estimation 

are discriminated into hardtype sensors or model based sensors. Hard type sensors measure 

physical properties e.g. absorbance, fluorescence, permittivity and make use of correlations 

of these physical properties with the biomass concentration (Kiviharju et al. 2008). Model 

based sensors are subdivided into first principle softsensors, which use elemental balances 

to estimate biomass from process data like off-gas measurements (Wechselberger & 

Sagmeister 2013), and data driven softsensors, which use historical training data sets for 

calibration of their underlying models (Lu 2006). 

The control scheme of qs control strategy using a so called first principle softsensor is 

depicted in figure 1 (Sagmeister et al. 2013). This softsensor uses the substrate feed rate and 

the carbon dioxide evolution rate (CER) to estimate the biomass formation rate rx under the 

assumption of a closing carbon balance. The closing carbon balance implies an absence of 

substrate accumulation. The elemental biomass composition, the substrate concentration in 

the feed as well as an initial biomass concentration are obligatory input parameters. 

According to biomass growth the feed supply is adapted in order to maintain the qs of 

interest.  
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Figure 1: Flow diagram depicting the qs  control based on first pr inciple softsensor; Constants (Biomass 
elemental composition, Substrate elemental composition, Feed concentration, Densit ies),  and online 
process signals (off-gas measurements and substrate inf low) are used as inputs for total biomass 
estimation; From this feed-rate set-points to maintain a certain qs  are calculated (Sagmeister et a l.  
2013).  

1.2.2. Dynamic experimentation – imposing physiological changes to investigate 

physiological differences 

Dynamic experiments are typically performed to estimate strain specific descriptors like the 

maximum specific growth rate, or maxima of cellular capacities like substrate- or oxygen 

uptake rates which are essential descriptors needed in bioprocess development (Dietzsch et 

al. 2011)(Lin et al. 2001). Another common motivation for dynamic experiments found in 

literature is to investigate inhomogeneities encountered upon reactor scale-up (Sunya et al. 

2013). The main distinguishing parameter is the frequency of the applied dynamics. 

Three general types of common dynamic experimental setups can be distinguished. Ramp 

experiments, pulse experiments and shift experiments. In ramp experiments like accelero- 

and decelerostats usually the specific growth rate µ follows a pre-defined ramp (Paalme et 

al. 1995). In pulse experiments shots of C-source are imposed upon an otherwise substrate 

limited culture that is run in fed-batch mode or as a chemostat (Sunya et al. 2013). For shift 

experiments sudden changes in e.g. temperature are performed to study the response of a 

culture (Soini et al. 2005). 

Recent studies of Sunya et al investigate the stress responses of E. coli to glucose pulses 

(Sunya et al. 2012; Sunya et al. 2013). These studies showed that the respiratory culture 

response differed in dependency of number pulses. They further illustrated a correlation of 

stress duration and pulse intensity, in terms of general stress related reporter gene 

activation. However the first response on a transcriptional level was triggered 2 minutes 
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after the perturbation, independent on pulse intensity. The same time ranges for the first 

response on a genetic level are also reported by Neubauer et al (Neubauer et al. 1995). In 

terms of full adaptation to new conditions Jozefczuk et al (Jozefczuk et al. 2010) investigated 

different stressors on a metabolomic/transcriptomic level. This study concluded that full 

metabolic adaptation require a time window of 10-40 minutes depending on the stress-type. 

Caspeta et al (Caspeta et al. 2013) used a novel approach to induce process dynamics. They 

used a thermos-inducible promoter system for recombinant protein production and 

performed temperature oscillations (30 min - 2 h per temperature level) in combination with 

different post induction feeding profiles. Performing these temperature oscillations they 

were able to show improved productivities (Caspeta et al. 2013). Interestingly comparing 

their oscillation frequencies with the adaption times of 10-40 minutes found by Jozefczuk et 

al Caspeta chose time spans that allowed for cellular adaptation to the distinct temperature 

levels. 

Recapitulating, current literature on process dynamics is lacking an investigation of the 

timely decline of physiological maxima, although the methods for investigation of such are 

well established. Furthermore the use of controlled dynamics as an alternative to i.e. 

constant feeding strategies have thus far not been studied in respect of their effect on IB 

quality attributes. 

1.3. Goals 

The goal of this master thesis is to quantify the decline of physiological maxima by using 

oscillatory post induction qs profiles. This work is further striving to investigate the effects of 

these qs oscillations on inclusion body properties and the specific product titer. 

1.4. Hypotheses 

• physiological maxima are accessible and quantifiable by oscillating the culture 

discreetly between defined levels of qs during post induction 

• oscillatory post induction qs profiles influence the specific product titer 

• oscillatory post induction qs profiles influence IB Solubility & IB Purity 
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1.5. Roadmap / Approach 

The experiments performed to test the hypotheses of this work are conducted as a DoE 

(Design of Experiment). In this section the rationales for the experimental design are 

presented. 

The following descriptors are used to describe distinct qs oscillation trajectories: 

• qs mean:  

the arithmetic mean of the qs trajectory; To effectively oscillate the qs above and below 

the physiological maxima qs mean values ranging from 0.234 – 0.4 g/g/h were used. The 

high qs mean boundary was set in accordance with historical pulse experiments using the 

same strain (Keil 2014). 

• qs amplitude:  

The amplitude of the qs oscillations, defined as positive/negative deviation from the qs 

mean compared to the different qs levels are based on the error of the softsensor based 

qs control (10%). Based on the qs mean of the center points of 0.317 this error of 10% 

was triplicated to give the low qs amplitude level of 0.1 g/g/h and taken sixfold to give 

the high qs amplitude level of 0.2 g/g/h. 

• Frequency:  

The oscillation frequency ranging from 0.25 h-1 – 1 h-1allow for cellular adaptations to the 

distinct qs levels is based on the findings of Caspeta et al (Caspeta et al. 2013), ranging from 

0.25 h-1 – 1 h-1, allowing for cellular adaptations to the distinct qs levels. 

Figure 2 shows the DoE resulting from the above described factors. 

To assess the IB quality the following descriptors are chosen as responses of the DoE, apart 

from the specific product titer: 

• Solubility kinetic constant and solubilisation yield: 

As solubilisation is a critical process step in the DSP of inclusion bodies, the kinetics of IB 

solubilisation are assessed with a kinetic assay monitoring the solubilisation (Walther et al. 

2014). Furthermore the yield of this solubilisation will be a descriptor for the efficiency of 

the solubilisation. 

• Purity: 

Inclusion body purity as the ratio of target protein to host cell proteins makes up for a 

meaningful parameter for increasing DSP efficiency based on the fact that less host cell 

protein (HCP) in the IBs potentially reduces the effort needed for product purification. 
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An overview of the resulting experiments for the DoE can be found in the materials and 

methods section. 

 

Figure 2 Design of experiment. The resulting DoE to investigate the effects of oscillatory qs’ trajectories on IB quality 

attributes and the specific product titer. Factor scaling: qs mean: 0.234 – 0.4 g/g/h, qs amplitude: 0.1 – 0.2 g/g/h, 

frequency: 0.25 – 1 h
-1

. 

1.6. Novelties of this work 

• The novelty of this work lies in the use of a physiological process control to facilitate 

controlled oscillations of the post induction specific substrate uptake rate with the 

goal of assessing physiological maximas. 

• Investigation of the impact of USP PP associated with the qs oscillations on IB quality 

and product titer which represent DSP response variables, constitutes the second 

novelty of this work. 

2. Materials & Methods 

2.1. Design of Experiment 

The set-points of the experiments resulting from the rationales for DoE design outlined in 

the introduction (1.2.2) are shown in table 1. pH and temperature set-points were selected 

in accordance to point specifications of the former DoE project (pH 6.9, 29°C). The responses 

of the DoE are the specific product titer, the kinetic constant of IB solubilisation, IB 

solubilisation yield and the IB purity. 
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Table 1 Set-points of the DoE factors (qs mean, qs amplitude, frequency of the oscillations) as well as the set-points for pH 

and Temperature, for the fermentation experiments. 

Experiment 

No. 

qs mean 

[g/g/h] 

qs 

Amplitude 

[+/- qs] 

freq. [1/h] pH Temp [°C] 

1 0.234 0.1 1 6.9 29 

2 0.234 0.1 0.25 6.9 29 

3 0.234 0.2 1 6.9 29 

4 0.234 0.2 0.25 6.9 29 

5 0.4 0.1 1 6.9 29 

6 0.4 0.1 0.25 6.9 29 

7 0.4 0.2 1 6.9 29 

8 0.4 0.2 0.25 6.9 29 

9 0.317 0.15 0.625 6.9 29 

10 0.317 0.15 0.625 6.9 29 

11 0.317 0.15 0.625 6.9 29 

 

2.2. Fermentations 

2.2.1. Strain 

A modified E. coli BL21 DE3 (provided by an industrial partner) was used for the 

experiments. The strain features an IPTG inducible promoter) for production of a Npro-

fusion protein. The recombinant protein is expressed intracellular in the form of inclusion 

bodies. 

2.2.2. Reactor setup 

A special master slave reactor system, consisting of a 10 L working volume master reactor 

(Sartorius BIOSTAT® Cplus, Sartorius, Germany), equipped with a 3-way port for base and 

feed addition, pH probe (Mettler Toledo USA), Pt100 temperature an optical dO2 sensor 

(Mettler Toledo USA), a double jacket for temperature regulation and an off-gas cooler. 

Mixing was done with a 3 rushton turbine stirrer and 4 additional baffels inside of the 

reactor. Process control was done using Lucullus PIMS (Seucurecell Switzerland). The 4 (2L 

working volume) slave reactors (DASGIP® Parallel Bioreactor System, Eppendorf, Germany) 

each featured Pt100 temperature sensors, pH probes (Mettler Toledo USA), optical dO2 

sensors (Mettler Toledo USA), 3 rushton-turbine stirrers and 4 baffles for mixing, heating 

pads and cooling fingers for temperature control. Further they featured a 3-way port for 

base/feed addition and sampling. Reactor contents were monitored using 4 scales (Sartorius, 

Germany). Feed/base addition as well as off-gas analysis and in-gas mixing were done using 

the respective modules of the DASGIP® system (off-gas: GA4, temperature & stirrer: TC4SC4, 

gas-mixer: MX4/4, pH & pO2: PH4PO4, pumps: MP8). Process control was performed with 

DASGIP Control software (Eppendorf, Germany). 
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2.2.3. Preculture 

The preculture was obtained from shake flask cultures (100 ml, 3 1L Erlenmeyer flasks in 

total) inoculated with frozen cryo-stocks (-80 °C) using a chemically defined media (recipe 

not shown due to confidentiality constrains). After autoclavation of the prefilled flasks 

ampicillin (selective pressure), sterilised glucose glucose solution and trace element solution 

were added to the media before inoculation. Incubation was done in a shaker at 230 rpm 

and 30 °C. After reaching an OD600 of 1.5-3 (approx. 17h) the preculture was used for batch 

inoculation. 

2.2.4. Batch 

10L batch media (recipe not shown) was sterilized in situ. After autoclavation the pH of 6.7 

was set with NH4OH (~12,5% (w/w)) solution and sterile glucose solution was added to the 

media. 250 ml of the described preculture was added through a septum using sterile 

syringes to 10 L batch media. Temperature and pH was held constant at 30 °C and 6.7 

respectively. Aeration was done using pressurised air at a flow rate of 1.4 vvm. Stirrer speed 

was 400 rpm. Batch end was monitored by off-gas CO2 content analysis (duration approx. 10-

12h). Final biomass concentration was approx. 2.4 g/L. Batch end was indicated by a peak in 

CO2 offgas signal followed by a drop to 0% CO2. 

2.2.5. Fed-batch and induction phase 

After the batch phase 1 L of fermentation broth was transferred to each of the pre-sterilized 

slave reactors. Glucose feed solution was added using an exponential feeding profile with a 

specific growth rate of 0.2 h-1. pH and temperature were kept at 7 and 30 °C respectively, 

aeration was done using a flow rate of 1.4 vvm. Stirrer speed was kept at 1400 rpm. dO2 was 

controlled to stay above 30% by mixing pure oxygen to the in-gas using a step controller. 

At 30 g/L BM concentration (calculated based on a feed forward profile with a constant Yx/s 

‘yield of 0.4 g/g) an adaption phase of 30 minutes was started. During adaption phase pH 

and temperature were set according to the set-points (Table 1 Set-points of the DoE factors 

(qs mean, qs amplitude, frequency of the oscillations) as well as the set-points for pH and 

Temperature, for the fermentation experiments.. The feed rate was set to meet the 

intended qs  mean for induction phase. After adaption phase sterile IPTG solution was added 

(1mM final concentration) and the qs control script was started using a first principle 

softsensor (as described elsewhere(Wechselberger & Sagmeister 2013)). The code for data 

reconciliation of this softsensor is shown in the appendix. The oscillations were controlled 

using the following Visual Basic code: 

osc_time …  time of constant qs in hours 

.InoculationTime… timer started at induction 

 

if (.InoculationTime_H/osc_time) mod 2D > 1 

qs = qs low 
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else if (.InoculationTime_H/osc_time) mod 2D < 1 

qs = qs high 

end if 

Within induction phases 7-8 manual samples were taken for supernatant and product 

analytics. 

2.3. Analytics 

2.3.1. Biomass dry cell weight 

Throughout the induction phase BM samples were taken every 30 min using an automated 

sampling device consisting of 2 pump modules (2 tubes per module), and an autosampler 

with a cooling block holding up to 50 vials. This autosampler consisted of 4 tubes each 

connected to one sampling port of one of the slave reactors, 2 tube pumps (2 tubes per 

pump) and a robotic arm to manoeuvre the tubes to the corresponding sampling vials which 

have been placed in the cooling block. The sampling procedure featured a tube flushing step 

of 2 minutes followed by the actual sampling into the sampling vials (30 seconds). Upon 

activation the robotic arm automatically counted the number of previous samples and 

therefore moved to the next sampling vial for the subsequent sampling cycle. The 

automated sampling device was controlled using Lucullus PIMS. Samples were stored at 4 °C 

until the end of the fermentations. Vial volume was measured gravimetrically based on a 

density of 1 kg/m3, afterwards the suspension was centrifuged (5000 rpm) and the pellet 

was washed with deionized water, centrifuged again (5000 rpm) and finally dried at 110 °C 

for at least 72 h before weighing on an analytical scale. 

2.3.2. Manual fermentation samples 

6 ml aliquots of fermentation broth were centrifuged, 2 aliquots of 1 ml of supernatant 

stored in Eppendorf tubes (rest discarded) and both (Pellets and supernatant tubes) stored 

on -20 °C until further analysis. 

2.3.3. Supernatant analysis 

Glucose and acetate contents in fermentation supernatant were measured using enzymatic 

test kits for Cedex Bio HT Analyzer (Roche, Switzerland) for the manually taken fermentation 

samples. 

2.3.4. Product analytics 

Homogenisation and Inclusion body washing 

The pellets of 6 ml fermentation samples were thawed, and re-suspended in 40 ml of ice-

cold lysis buffer (100mM Tris, 10mM Na2EDTA, pH 7,4) and homogenized using a high-

pressure homogenizer (Avestin EmulsiFlex; Canada) at 1400 ±100 bar in 6 passages. The 

pellets of 15 ml homogenized samples (15 min, 13000 rpm) were resuspended in 15 ml 

washing buffer A (50 mM Tris, 0,5 M NaCl, 0,02% Tween 80 (w/v) pH 8), centrifuged again 
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(15 min, 13000 rpm) and finally resuspended in 1.5 ml washing buffer B (50 mM Tris, 5mM 

EDTA, pH 8). Samples were then stored at -20 °C until further usage. 

Solubilisation 

300 µl of washed IB samples (see 2.3.4) were mixed with 1.2 ml solubilisation buffer 

(endconcentration 6 M GHCl, 50 mM Tris, 100 mM DTT pH 8). The mixture was vortexed 

every 10 minutes for a total of 20 minutes and kept at room temperature. Afterwards the 

mixture was filtered through a 0.2 µm syringe filter into HPLC glass vials and stored on -20 

°C. 

RP-HPLC product quantification 

The product was quantified from the solubilized IB samples with HPLC (Thermo Scientific 

Dionex Ultimate 3000, USA) using a C8 column (NUCLEOSIL® 300-5 C8, Machery Nagel, 

Germany) and an acetonitrile gradient elution profile (Buffer A: MilliQ-H2O, 0.1% TFA; Buffer 

B: Acetonitrile HPLC grade, 0.1% TFA), with a flow rate of 3 ml/min. Detection was at 290 

nm. As calibration standard the target product was used (provided by Sandoz GmbH. 

Austria) (standard concentration range: 50-500 µg/ml). Quality control for HPLC runs was 

done using injections of one standard solution (225 µg/ml) after every fermentation sample 

injection (acceptance range +/- 10% peak area for these standard injections). Injection 

volume for samples was 10 µL, for standard solutions 2 different injection volumes were 

used (10 µL & 20 µL).Evaluation was done using Chromeleon 7 (Thermo Scientific Dionex, 

USA). 

IB solubilisation kinetic assay 

IB solubilisation kinetics as well as IB solubilisation yields were measured using an adapted 

version of a published (Walther et al. 2014) Tecan plate reader (Tecan Group AG, 

Switzerland) assay (Solubilisation buffer: 4 M Urea, 1 mM NaCl, 50 mM Tris, 5 mM EDTA, 0,1 

M DTT pH 8; Reference buffer: 6 M Urea, 1 mM NaCl, 50 mM Tris, 5 mM EDTA, 0,1 M DTT 

pH8). 50 µl of washed IB samples (highest titer samples for the individual fermentations) 

were therefor mixed with 200 µl solubilisation/reference buffer in a 96 well plate. OD600 

decline of the samples was monitored over 110 min. Evaluation of the assays was done using 

Matlab R2015a (MathWorks, USA) byfitting a logarithmic curve to the resulting OD600 curves 

(for kinetics). In order to calculate the solubilisation yield the OD600 difference over time was 

divided by the OD600 difference of the reference buffer. 
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IB purity measurements 

Purity was measured electrophoretically by analysing the samples after solubilisation 

(samples after IB solubilisation kinetic assays 2.3.4) with Agilent 2100 Bioanalyzer (Agilent 

Technologies, Inc., USA) on a p230 chip. Purity was calculated using Matlab R2015a 

(MathWorks, USA) by calculating the ratio of product peak area to whole electropherogram 

area. An example of the process is shown in this section: 

 

Figure 3 Protein Ladder Electropherogram and Gel of the Bioanalyzer. (A) shows the Electropherogram of the Protein 

Ladder (x-axis: Absorbance [mAU], y-axis: retention time). The corresponding molar masses for the protein ladder are (in 

ascending order): 4.5,6.0,7.0,15,28,46,63,95,150,240 kDa; (B) shows the digitally generated gel from the 

electropherogram data for one Chip (10 samples total). 

From the electropherogram data and the known molar masses of the protein ladder (Figure 

3) a quadratic regression is calculated for subsequent size identification of the sample 

proteins. The sizes for the target protein are ~16.7 kDa (for the standard) and 31.7 kDa (for 

the product in the solubilized IB samples). The size difference between standard and product 

can be attributed to the missing fusion protein (~18.4 kDa) in case of the standard. 

 

Figure 4 Electropherogram-example for the samples. (A) shows an electropherogram for a standard; (B) shows an 

electropherogram for the solubilized IBs from a fermentation sample. The red peaks are the standard protein and the 

target protein respectively. The high and low limits for integration of the product peaks were 13/18 kDa (standard) and 

29/37 kDa (sample). 

A B 

A B 
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The purity is calculated integrating the target peaks (red peaks in Figure 4) and divide the 

peak area by the total area beneath the electropherogram. For the total area calculation 

only peaks within regression range for the size/retention time regression are integrated. 

Additionally the first 3 peaks in the sample electropherograms are excluded from integration 

because they originate from the solubilisation buffer (data not shown). 

2.4. Data evaluation 

2.4.1. Fermentation data analysis 

Matlab R2015a (MathWorks, USA) was used for calculation of rates and yields from online 

data (feed rate, gassing rate, off-gas analysis) and offline data (BM dry cell weight, Glucose 

and acetate measurements in SN). Reaction rates were all normalized by the reaction 

volume. For calculation of rX a quadratic fit for the total biomass was used to minimize the 

effect of error propagation which could lead to artifacts caused by sampling interference 

(shown in Figure 5). The novel approach used for calculation of qs based on off-gas 

measurements and offline biomass is further discussed in the results section (3.1). 

 

Figure 5 Biomass fitting for rate smoothing. The plots show the quadratic fits used for total biomass (top row) and 

biomass concentration (bottom row) used to give a smoothened rX upon rate calculation. The red line shows the fit and 

the black dashed line shows the actual measured offline biomass. 

2.4.2. DoE evaluation and statistics 

DoE evaluation in terms of multiple linear regressions (MLR) was performed using MODDE 

10 (Umetrics, Sweden). Basic statistics (i.e. t-tests) were carried out using Matlab R2015a 

(MathWorks, USA). 
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3. Results & Discussion 

3.1. Fermentation data evaluation 

3.1.1. Profiles and calculation of qs 

Calculation approach for qs 

For qs and metabolized substrate calculation a novel approach was used. The textbook 

approach for calculation of qs (Equation 14) takes into account the feed flow rate ������(L/h), 

the substrate concentration in the feed solution ��(g/L), and the biomass � (g). 

�� =
��

�
=
���,� ×	��

�
 

Equation 14 

As long as physiological maximas are not exceeded and no accumulation occurs rS correlates 

to the feed flow rate. 

��� = �� 

Equation 15 

But physiological maximas are variable and a function of time (Lin et al. 2001). Exceeding 

qsmax consequently constitutes an increasing risk during fermentation. 

This risk prohibits a direct correlation between substrate flow F� � and the substrate 

conversion rate rs (Equation 16). 

��� ≠ �� 

��� = �� + �"##  

Equation 16 

Growth of E. coli on glucose as carbon source follows the reaction Equation 17. It can be 

seen that the carbon atoms of the substrate can be used for building biomass and for energy 

production (CO2). The ratios between these routes are defined by the yield coefficients. 

$%&' + ()* �⁄ ∙ '& ←
→(/)* �⁄ ∙ $'& + (0 �⁄ ∙ $%1,2&'3,4 + (5*) �⁄ ∙ %&' 

Equation 17 
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Concerning the calculation of qs the substrate conversion rate rs is critical. All possibilities for 

the substrate usage and consequently all means of calculation are outlined in Equations 5-7, 

with Equation 18 being the carbon balance equation. Wanting to quantify the oxidative 

metabolism Eq. 4 can be simplified since accumulated substrate is not oxidized. Hereby 

follows: 

�� = �/)* + �0  

Equation 18 

�/)* = (/)*
�

× �� 

Equation 19 

�0 = (0
�

× �� 

Equation 20 

Combing Equations 8, 5 and 6 via the C balance leads to: 

1 = (/)*
�

+ (0
�

	 

Equation 21 

So even if the yields are dynamically changing rs can be calculated from simple summing up 

rCO2 and rx. Consequently qs is calculated from Equation 22. 

�� =
�/)* + �0

�
 

Equation 22 

The qs calculated with Equation 22 is independent of accumulation resulting from an 

exceedance of qs crit with the qs setpoint as it only depends on off-gas CO2 measurement and 

the biomass. 

As the CO2 equilibrium between the liquid and the gas phase changes with pH the rCO2 is 

prone to error under highly dynamic experimental conditions that lead to pH changes. To 

prevent such errors rs can also be calculated from rO2 by taking into account the RQ 

(Equation 23). 

78 =9
�/)*
�)*

=

(/)*
�

()*
�

 

Equation 23 
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The YO2/S is calculated from the DoR balance if (also on a C-molar basis) if the biomass yield is 

known (Equation 24). 

()*
�

=

:� − (0
�

× :0

4
 

Equation 24 

With the known YO2/S the rCO2 can be substituted in Equation 22. Hereby follows for the qs: 

��	=>? =
�)* × 78 + �0

�
 

Equation 25 

 

3.1.2. Fermentation data of pH/Temp/dO2 affecting qs bal approach 

Figure 12 shows the dynamic response of the process data of temperature, dO2 and pH to 

the oscillations in feed rate (respectively qs). These real time data were used for quality 

control and subsequent selection of experiments for further analysis. The online data (offgas 

signals) as well as offline data (BM and Supernatant Measurements) was used for calculation 

of specific rates and yields is shown and discussed in the publication part of this thesis. 

The temperature profile (Figure 12B) shows temperature control limitations of the DASGIP 

system that were discovered during the dynamic experiments performed within this work. 

These cooling problems basically appeared at high cell densities (see BM DCW data in the 

appendix) together with high qs plateaus. 9 hours after induction an additional cooling device 

was set in place. The pH fluctuations (Figure 12D) are a result of the pH control strategy 

(only with base).The oscillations in dO2 are resulting from the control strategy for dO2 control 

as O2 was gradually increased in case of dO2 limitation (< 30%). 



21 
 

 

Figure 12: Online process data exemplary shown for one fermentation. Feed Rate [ml/h] (A), Temperature [°C] (B), dO2 

[%] (C) and pH (D) plotted over the time after induction. The plots show the dynamic behaviour of these process signals 

in response to the qs oscillations (oscillations can be deduced from the Feed Rate data). The complete data set for all 

experiments passing the quality control (see Marterial and Methods) is deposited in the appendix. 

 

  

A B 

C D 
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qs trajectories – qs from feed rate vs. qs bal 

The difference between the intended qs profiles and the actual achieved qs profiles are 

illustrated in Figure 13. The cause for the accumulation of glucose and acetate, namely the 

decline in the critical qs over process time and its dependency on qs mean is discussed in the 

publication part of this thesis. This accumulation (Figure 13B) caused an overestimation of 

biomass by the softsensor, which consequently overfed the culture even further. This effect 

is illustrated in the qs from feed rate in Figure 13A starting at 7 hours after induction. 

Owned to the decline the actual achieved qs amplitudes within the DoE strongly deviate from 

the set-points. The implications of this deviation on the design space of the DoE are further 

discussed in section 3.3.1. 

 

 

Figure 13: Exemplary qs trajectory. (A) shows the comparison of the qs calculated only from the Feed Rate and the offline 

Biomass (red line) and the qs calculated from the offgas-Signal and offline Biomass (yellow line), marks (x) depict the 

sampling points for offline Biomass. (B) shows the Accumulation in C-mol as the sum of Glucose and Acetate 

measurements in the supernatant; the data (in A&B) is plotted over time after induction. The whole data set is shown in 

the appendix. 

3.2. Publication part – quantification of the decline in qs crit 

In the following section the current draft of the publication covering one aspect of the 

results of this thesis, the decline in the critical specific substrate uptake rate qs crit, is 

deposited. The direct contributions of the work accompanied with the writing of this thesis 

to the following publication lie in the execution and evaluation of the oscillation 

experiments, calculation of the qs crit decline over time and it’s correlation with qs mean, re-

evaluation of the pulse experiments to quantify qs crit, preparation of all figures and figure 

captions and the preparation and description of the equations needed for the qs bal 

approach. 
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Introduction 

Motivation 

Escherichia coli is one of the most exploited organisms for industrial production of 
recombinant proteins (Terpe 2006, Walsh 2010). For a recently developed drug time to 
market plays a crucial role for success especially in a highly competitive environment as in 
pharmaceutical industry. As a consequence, besides productivity, transferability of the 
process knowledge from strain to strain as well as from scale of scale is of great interest. 
Hereby the usage of product independent platform technologies e.g. vector systems and 
strains have proven highly beneficial in comparison to process development from scratch. 
Unfortunately, despite congruent technical key-parameters different reactor scales often 
display different productivities, implying physiologic differences induced by the difference in 
scale. Concerning bioprocess development this circumstance substantiates why instead of 
addressing pure technical parameters a more physiological approach has emerged 
(Levisauskas, Simutis et al. 1996, Levisauskas 2001, Henes and Sonnleitner 2007, Gnoth, 
Jenzsch et al. 2008). Instead of focusing on technical parameters this physiological bioprocess 
development approach puts the physiology of the actual producer into focus - the cells. 

 

Problem statement 

Physiology can be described in time dependent manner using physiological variables e.g. 
rates and yields or process phase specific using physiological descriptors (cite). To elucidate 
the role of physiologic variables in a bioprocess, physiologic variables have to be controlled at 
discrete levels within the physiological design space. Of all physiological variables specific 
rates are most frequently target of control approaches, since specific assure biomass 
independent comparability and transferability. An increasing number of scientific 
contributions has been using physiological feeding profiles for the control of specific rates 
(Levisauskas, Simutis et al. 1996, Levisauskas 2001, Henes and Sonnleitner 2007, Gnoth, 
Jenzsch et al. 2008). But regardless of the specific rate of interest e.g. the specific substrate 
uptake rate (qs) or specific growth rate (µ), the physiological process development approach 
elicits two main challenges: (1) physiological control and (2) physiologic design space 
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(1) Physiological process control 

For accurate control of specific rates during induction phase, real time biomass estimation 
is obligatory. Especially in industrial relevant high cell density fermentations monitoring of 
biomass growth is challenging. In general literature favors data driven models or hybrid 
models for real time biomass estimation (de Assis and Filho 2000, Jenzsch, Simutis et al. 
2006). Nevertheless, in the setting of bioprocess development, historic process data is 
scarce, which impairs the use of data based algorithms. Consequently, hard type sensor or 
first principle mass balance based approaches are more feasible by means of transferability 
and simplicity of the control approach (Reichelt et al 2015). 

 

(2) Physiologic design space: Maximum physiologic capacities 

Experiments are commonly designed within the common space of the technical and 
physiological feasible space. Hereby, the technical feasible space is scale specific but 
indifferent towards product changeover, while the physiological feasible space is product 
specific but indifferent towards scales. The impact of technical process parameters (e.g. pH, 
temperature) on the physiological space is known on a qualitative level but the quantitative 
impact on the physiological space remains to be investigated. Consequently the quantitative 
strain characterization as a response to the technical process parameters is obligatory for 
each product setting up a physiology based design of experiment.  

Maximum productivity is more often correlated to high specific growth rates (de Hollander 
1993). High specific growth rates in turn require high substrate supply (Varma, Boesch et al. 
1993) increasing the risk of exceeding the physiologic capacities. But exceeding physiologic 
capacities leads to accumulation of substrate or metabolites, which inhibits growth (Luli and 
Strohl 1990) and protein production (Jensen and Carlsen 1990). Physiologic capacities 
feature two definitions: qsmax defines the total cellular capacity to metabolize substrate. qscrit 
is defined as the cellular capacity of metabolism without accumulation (Åkesson, Hagander, 
& Axelsson, 1999) therefore, a combination of anabolism and oxidative catabolism. 
Subsequently the physiological feasible space is defined by qscrit, as within this border 
substrate and metabolite accumulation is avoided.  

To quantify physiologic capacities various approaches have been outlined; all aiming to 
generate a spontaneous perturbation of C-source availability in an otherwise C-source 
limited process (Hunter and Kornberg 1979, Åkesson, Hagander et al. 1999, Lin, Mathiszik et 
al. 2001, Henes and Sonnleitner 2007). In a setting of a fixed yield exponential feed forward 
strategy Åkesson et al used periodical “up-pulsing” of the feed rate to trigger a transient 
surplus of C-source. On the basis of the response of the DO2 signal the exponential feed rate 
was adapted (Akesson, Karlsson et al. 1999). This approach did not yield a saturation of the 
glucose uptake system (Lin, Mathiszik et al. 2001) and only allows qualitative conclusions 
towards the qscrit. This problem was tackled by Lin et al by using the DO2 response on C-
source shots imposed on an otherwise volumetric constant feeding rate, leading to a 
metabolic saturation. But the inherent time dependent decline of µ in the context of a 
volumetric constant feeding rate raises questions concerning the conclusion of a correlation 
of µ and qscrit (Lin, Mathiszik et al. 2001). Using a fixed yield exponential intermittent feed 
forward strategy “down-pulsing” and an DO2 response has been used for process control 
(Henes and Sonnleitner 2007). Hereby, the question remains unanswered whether the 
observed decline in µcrit is actually correlated to time or more to an overestimation of 
produced biomass as a result of the assumption of a constant biomass yield. More recently 
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an approach based on a DO2 response and a dynamic feeding profile “up-pulsing” has led to 
the conclusion that physiological capacities decline over induction time. The outlined 
approach has consequently been used to timely resolve the trajectory of the maximum 
physiologic capacities of a respective strain. The illustrated decline in qscrit was attributed to 
the metabolic load, imposed gradually by heterologous protein expression over induction 
phase (Schaepe, Kuprijanov et al. 2014). Ultimately, the question of the fundamental cause 
of the observed physiologic limitations is of less concern than the timely resolution of this 
trajectory and the interrelation with other process parameters.  

 

Goals 

Summarizing, published work on the quantification of physiologic capacities is relies widely 
on the highly sensitive DO2 signal as response while biomass estimation was either 
neglected, inaccurate or based on data driven models. Within this contribution we want to 
assess the workflow of investigating and quantifying the physiological feasible space. 
Moreover, we want to demonstrate the cross correlation of physiological variables at hand of 
qsmean and the decline in qscrit. 

 

 

Materials and methods 

Bioreactor system 

Fed-batch experiments conducted out in a DASGIP multi-bioreactor system with a working 
volume of 2 l each (Eppendorf; Hamburg, Germany). The reactors are equipped with baffles 
and three disk impeller stirrers. The DASGIP control software v4.5 revision 230 was used for 
control: pH (Hamilton, Reno, USA), pO2 (Mettler Toledo; Greifensee, Switzerland; module 
DASGIP PH4PO4), temperature and stirrer speed (module DASGIP TC4SC4), aeration (module 
DASGIP MX4/4) and pH (module DASGIP MP8). CO2, O2 concentrations in the off-gas were 
quantified by a gas analyzer (module DASGIP GA4) using the non-dispersive infrared and 
zircon dioxide detection principle, respectively.  

 

Cultivations 

A recombinant BL21 DE3 E.coli strain was cultivated, producing an intracellular protein (~30 
kDa) in form of inclusion bodies, after a one-time induction with IPTG (1 mM). The synthetic 
media was based on the recipe of Korz, Rinas et al. (Korz, Rinas et al. 1995), where the 
limiting C-source was glucose. 

The starting feed rate (F0) was set using a constant biomass yield (YX/S), the formula 
F3reactor volume (V0), the starting biomass (x0) calculated from a feed forward profile and 
the concentration of the feed solution (cfeed). 

F3 =	
x3 	 ∗ 	V3 	 ∗ 		μ

cDEEF ∗ 	YHI
 

Equation 1: Start feed rate for µ maintanance 

Subsequently an exponential feeding profile given by F(K) = F3 ∗ e
N∙K was used for feed rate 

adaption (F(t)). 
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F(K) = F3 ∗ e
N∙K 

Equation 2: Exponential feed rate adaption according to µ set point 

The qs(t) for a given feed rate is calculated via the feed concentration and the biomass at a 
given time point (Equation 3). The biomass X(t) needed for qs calculation was estimated using 
a first principle softsensor based on carbon and DoR-balance as described elsewhere (CITE). 
With this biomass estimation qs was controlled to follow a predefined trajectory using a feed 
forward control strategy. 

qs(K) =
F(K) ∗ 	cDEEF

X(K)
 

Equation 3: Specific substrate uptake rate at t 

 

Pulse experiments 

 

Process parameters 

Precultures were incubated at 30°C and 170 rpm to an OD600 of approx. 1.5 in 150 mL batch 
media and 2.5% batch volume aliquots were used for inoculation. Both strains were 
cultivated at controlled pH (7), DO2 (>30 %) and temperature (A = 30°C and B = 35°C). After 
depletion of the C-source in an initial batch phase, the pre-induction fed-batch was started. 
The pre-induction feeding strategy was based on an exponential feed forward profile 
(Equation 2) to maintain a predefined growth rate. On attainment of the predefined biomass 
the cultures were induced after 30 min adaption time and the feed forward qs control 
(Equation 3) was started. Stirrer speed was set to 1400 rpm and aeration to 1.4 v/v/m for the 
whole process. The pH was maintained by adding 12.5% NH4OH, which also served as 
nitrogen source. The dissolved oxygen (DO2) was kept over 30% by supplementing oxygen to 
the air.  

 

Data processing and Data Analysis 

Metabolic rates and yield coefficients were calculated with matlab r2013 b (Mathworks; 
Natick, Massachusetts, USA). Software was used for the calculation of specific rates and yield 
coefficients, as we described elsewhere (Sagmeister, Wechselberger et al. 2012).  

For quantitative analysis of estimation accuracy the coefficient of variation of the root 
mean squared error (cvRMSE) was used (Willmott 1981). Analysis of variance (Anova) was 
used for the assignment of significances in the differences of the average cvRMSE from 
experimental sets. Several biomass estimation methodologies were combined by using a 
weighted average including the determined error of the single methodology (Aehle, Simutis 
et al. 2010). 

 

Analytics:  

Biomass dry weight (CDW) 

Biomass concentrations were gravimetrically quantified after drying at 105°C for min. 72 h. 
Therefore 2 mL of culture broth were centrifuged (4500 x g, 10 min, 4°C) in a pre-weighted 
glass tube and the pellet was washed once with 5 mL RO water. The determination was done 
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in duplicates. After drying in the drying oven the biomass dry weight was measured on a 
scale.  

 

Substrate conc. and small metabolites 

The C-source concentration in the feed media was calculated using the gravimetrically 
determined density. NH4OH concentration was determined by titration with 1 M HCl. Acetate 
concentrations were quantified from the supernatant by enzymatic photometric principle in 
a robotic system (Cedex BioHT, Roche, Switzerland). The analysis was used as a quality 
control to exclude possible acetate production due to oxygen limitation or overflow 
metabolism.  

 

biomass specific substrate uptake rate calculated with C-Balance and DoR-Balance: qs bal 

For qs and metabolized substrate calculation a novel approach was used. The textbook 

approach for calculation of qs (Equation 4) takes into account the feed flow rate F� feed(L/h), 

the substrate concentration in the feed solution cs(g/L), and the biomass X (g). 

qI =
r�

X
=
F� �,U ×	c�

X
 

Equation 4: Specific substrate uptake rate from feed flow rate 

As long as physiological maxima are not exceeded and no accumulation (racc) occurs the 
substrate conversion rate rS correlates to the feed flow rate. 

 

But physiological maxima are variable and a function of time and qsmean. The prediction 
of qscrit(t) is challenging and in real time prone to errors. Exceeding qscrit consequently 
constitutes an increasing risk of accumulation (racc) during fermentation. This risk prohibits a 

direct correlation between the molar substrate flow F�S  and the substrate conversion rate rs 
(Equation 5). 

F� � = r� + rWXX 

Equation 5: Partition of the molar feed rate into metabolized substrate and accumulation 

Growth of E. coli on glucose as carbon source follows the reaction specified by Equation 6. 

CH&O + Y\* �⁄ ∙ O& ←
→Y]\* �⁄ ∙ CO& + Y^ �⁄ ∙ CH1,2&O3,4 + Y_*\ �⁄ ∙ H&O 

Equation 6: E. coli growth equation for carbon 

Nitrogen and other elements are negligible as further considerations only elaborate on the 
carbon balance. From the reaction equation it can be seen that the carbon atoms of the 
substrate can be used for building biomass and for energy production (CO2). The ratios 
between these routes are defined by the yield coefficients. 

 

Looking at the substrate conversion rate rs (Equation 7) needed for qs calculation all 
possibilities for the substrate usage are given by r� = r]\* + r^. oxidation to carbon dioxide 

(rCO2) and biomass growth (rX).Wanting to quantify the oxidative metabolism accumulation 
must not be considered in this equation. Hereby follows that the CO2 (YCO2/S) and biomass 
yields (YX/S) sum up to 1(Equation 8). 
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r� = r]\* + r^ 

Equation 7: Partition of the substrate conversion rate into carbon dioxide production and 

biomass growth 

1 = Y]\*
�

+ Y^
�

	 

Equation 8: Sum of the yield coefficients according to the carbon balance 

So even if the Yields are dynamically changing rs can be calculated from simple summing up 
rCO2 and rx. Consequently qsbalqs is calculated from dividing (Equation 9) by biomass (X). 

?? 

qI =
r]\* + r^

X
 

Equation 9: Molar specific substrate uptake rate from balancing approach 

The CO2 equilibrium between the liquid and the gas phase changes with pH the rCO2 is 
prone to error under highly dynamic experimental conditions that lead to pH changes. To 
prevent such errors, rs can also be calculated from rO2 by taking into account the RQ. The RQ 
(Equation 10) as the ratio between CO2 production and O2 consumption and can be 
expressed by the respective rates (rCO2, rO2) as well as well as by the corresponding molar 
yields (YCO2/S, YO2/S). 

RQ =9
r]\*
r\*

=

Y]\*
�

Y\*
�

 

Equation 10: Respiratory quotient from rates and from yields 

The oxygen yield on substrate (YO2/S) is calculated from the DoR balance if the biomass yield 
(YX/S) is known (Equation 11). 

Y\*
�

=

γ� − Y^
�

× γ^

4
 

Equation 11: Correlation of the biomass yield with the oxygen yield on basis of the DoR 

balance 

Hereby follows a calculation approach (Equation 12) for the specific substrate uptake rate 
(qs) which uses on an oxygen uptake rate derived from off-gas measurements (rO2) and 
offline biomass (X) as inputs. 

qI =
r\* × RQ + r^

X
 

Equation 12: Molar specific substrate uptake rate from oxygen uptake, respiratory 

quotient and biomass 

 

List of Symbols 

 
Abbreviations: 
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HCD 
 
Variables 
CH&O   c-molar substrate composition 
CH1,2&O3,4  c-molar biomass composition without nitrogen 
cfeed …   substrate concentration in feed [g/L] 
dSn(t) …   fed substrate normalized by the CDW at the end exp. fed-batch 
[g/g] 
F(t) …    feed flow rate [L/h] after time (t) 
FS,V …   flow rate of feed solution [L/h] 
FS …   substrate feeding rate [c-mol/h] 
qS…   biomass specific substrate uptake rate [c-mol/c-mol/h] or [g/g/h] 
qS(t)…   biomass specific substrate uptake rate [g/g/h] at time point (t) 
qsmean …   average qs within a predefined window of dSn or time [g/g/h] 
qS bal … biomass specific substrate uptake rate calculated with C-Balance and 

DoR-Balance  
[c-mol/c-mol/h] 

qScrit ... the critical specific substrate uptake rate as defined by Åkesson, 
Hagander, & Axelsson, 1999 [g/g/h] 

qsglc specific substrate uptake rate calculated from the glucose 
concentration gradients in the pulse experiments [g/g/h] 

qsglc fit linear fit to determine the slope of the decline in qs glc of the pulse 
experiments 

RQ … respiratory quotient [mol/mol] 
racc … rate of accumulating substrate and acetate [c-mol/h] 
rCO2   CER, carbon dioxide evolution rate [mol/ h] 
rs   substrate conversion rate [c-mol/h] or [g/h] 
rO2 …   OUR, oxygen uptake rate [mol/h] 
rx   biomass conversion rate [c-mol/h] 
γS …   Degree of Reduction (DoR) of substrate [mol/mol] 
γX …   Degree of Reduction (DoR) of biomass [mol/mol] 
µ …   specific biomass growth rate [1/h] 
V0 …   volume at t = 0 [L] 
X…   CDW [g] at (0) batch end or after time (t) 
x…   CDW concentration [g/L] at (0) batch end or after time (t) 
YX/S…   biomass yield on substrate [g/g] or [c-mol/c-mol] 
YCO2/S…   carbon dioxide yield on substrate [c-mol/c-mol] 
YO2/S…   oxygen yield on subtrate [c-mol/c-mol]  
YH2O/S…   water yield on subtrate [mol/c-mol]  
 
 
 
indices: 
t…    process time [h] 
SP …   setpoint; the intended value of a given process parameter 
PV …   process value; the actual value of a given process parameter based on 
measured quantities 
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w SN … addition of w SN indicates values calculated with taking glucose and 
acetate measurements in 
supernatant into account 

w/o SN … addition of w/o SN indicates values calculated without taking glucose 
and acetate measurements in 
supernatant into account 

bal …   denotes values calculated with the balancing approach (Equation 5 - 
Equation 12) 
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Results 

Physiological maxima for physiologic DoE design 

Targeting a physiological experimental design (qs/T), physiological capacities (qscrit) have to 

be known, since exceeding the physiologic feasible space causes unwanted substrate 

accumulation. Investigating the physiological feasible space for the extreme points of the 

design FIGURE 1 displays the residual glucose concentration in the supernatant of repetitive 

pulse experiments. Compared at the start of induction the results indicate an qscrit of 0.33 

[g/g/h] for 20°C (FIGURE 1 A) while for 35°C qscrit is reached at 0.55 [g/g/h] (FIGURE 1 B). The 

results indicate that qscrit is heavily impacted by the process parameter temperature and 

time after induction. In accordance to literature the maximum physiological capacity of the 

oxidative metabolism is a function of time and dependent on the conventional process 

parameter: temperature.  

 

 

FIGURE 1: The maximum physiologic capacity for the oxidative metabolism (qscrit) declines 

as function of time qs=f(t); 

 three repetitive substrate pulses (20 g/L) were administered to fully saturate the oxidative 

metabolism; in between pulses a time delay of 30 min was scheduled to facilitate full 

clearance of accumulated substrate; offline samples are indicated as (x) and were fitted by a 

linear function; Acetate accumulation was at all times below 0.3 g/L (data not shown); (A) 

20°C (qsglcfit = -0.004*t+0.33) indicating a maximum qscrit at start of induction of 0.33 

[g/g/h]; (B) 35°C (qsglcfit = -0.0066*t+0.55) indicating a maximum qscrit at start of induction 

of 0.55 [g/g/h]; Hereupon a trajectory for 29°C was deducted mathematically (qsglcfit = -

0.0056*t+0.46) 

 

 

Sample interval independent data evaluation based on oxidative metabolism 

Based on the positive correlation of qs and productivity (data not shown) the qs 

maximization leads to maximum productivity. In accordance to the function of qs as of time 

(FIGURE 1) the experiment was designed not to exceed qscrit within 10 h of induction phase 

(FIGURE 2). Accumulation occurred in the first phase of induction phase already 6 hours after 

induction (FIGURE 2 A), despite careful experimental design and tightly controlled qs. While 
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over 5 g/L glucose was accumulated, acetate was at all times below 0.3 g/L. This finding 

challenges the preciously deducted qscrit trajectory of FIGURE 1 and raises the question of 

transferability and scope of such a trajectory.  

The ill closing mass balance based on substrate rs, rx and rCO2 (FIGURE 2 A) indicates an 

accumulation of C-source elsewhere. This substrate accumulation hinders data processing, 

since the substrate accumulation needs to be accounted for. As a consequence the balancing 

approach grows increasingly dependent on the sampling interval. Calculating qsbal based on 

our model instead of the conventional qs, takes accumulation into account and leads to a 

better closing mass balance (FIGURE 2 B). Using the available high resolution off gas data to 

calculate the rate of oxidative metabolism (rox) makes data processing less dependent on 

offline sampling and consequently reduces the noise inflicted by analytical errors. 

Subsequently, on the basis of rox , qsbal as well as mass balances were calculated FIGURE 2 B.. 

 

 

 

FIGURE 2: Exemplary process supposedly beneath the qscrit displays accumulation; 

A: Negative qs ramp experiment (qssp = -0.009*t+0.4) On the left x-axis qs (x) & carbon 

balance (+) calculated without taking supernatant measurements (SN) into account, on the 

right x-axis the glucose concentration (circles) is shown. Glucose is accumulating ongoing 

from 6 hours after induction– consequently the C-balance without SN measurements (C-

Balance w/o SN) does not close to 1; Acetate accumulation throughout the process was 

below 0.3 g/L (data not shown); B: qs (solid lines) & C-balance (dashed lines) for the same 

process; Both (qs & C-balance) are calculated with the balancing approach (+ and circles) as 

well as with taking into account SN measurements (x and triangles). 

 

 

Better closing C-balances substantiate qsbal approach 

To quantify the benefit of the qsbal approach we analyzed the average level as well as the 

noise of C-balance and compared them by statistical means. The mean level of C-balance 

(FIGURE 3 A) as well as the average standard deviation (FIGURE 3 B) were calculated and 

averaged over induction phase. By calculating rs via the off-gas data the mean C-balance 

value significantly increased indicating a better defined system. Additionally the standard 

deviation was significantly decreased (p(f)=XXX) which indicates a lower level of noise and 

consequently substantiates the benefit of the approach.  
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FIGURE 3 Massbalance calculation based on the model approach yields a better defined 

system; 

A: The boxplots show the mean values of the C-balance calculated at every offline BM 

(n=10). (from OUR) corresponds to the C-balance based on the model approach; (with SN 

measurements) corresponds to the C-balance including SN measurements. The means for 

latter is significantly (p= 7.9*10
-5

) lower than for the model based approach. This can be 

explained by not quantified components in the SN (refer to Supplemental 1). B: Comparison 

of the standard deviation of the two balancing approaches; the STD is significantly 

(p=0.0023) lower for the balancing approach (from OUR) compared to the C-balance 

including SN measurements. This can be attributed to analytical error of offline 

measurements which impact the conventional calculation to a greater extend.  

 

 

Offgas data quality is critical for qsbal 

The consecutive experiment was designed to challenge the robustness of the outlined 

approach. The experiments illustrated in FIGURE 4 underline the sensitivity of the model 

based approach to highly dynamic process conditions. The comparison of the steady feeding 

profile (FIGURE 4 A) to the oscillatory feeding profile (FIGURE 4 B) to shows a substantial 

difference in noise of the c-balance. This phenomenon can be attributed to controller actions 

to maintain DO2 within bounds FIGURE 4 A/C). The regulation of the oxygen partial pressure 

leads to spikes in OUR. This technical cause hinders the correct estimation of rox and 

consequently leads to increased noise on the C-balance. 
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FIGURE 4 Process dynamics calling for frequent DO2 controller action cause noise in C-

balance 

A/B: C-balance calculated with balancing approach (left y-axis), qs and CER (right y-axis) for 

two different processes showing the limitations of the balancing approach, offline sampling 

points are indicated as (x); C/D: The OUR (right y-axis) as well as the change in partial 

pressure of O2 by the step controller ((left y-axis) is displayed. A/C: Dynamic qs profile of low 

dynamics displays little noise on the C-balance; B/D A highly dynamic process (oscillatory qs 

profile) is shown spikes in OUR directly affect the C-balance. The respective spikes coincident 

step controller actions for the partial pressure of n=2 in the gassing.  

 

qsbal can predict accumulation of unknown metabolites 

FIGURE 5 illustrates the benefit of estimating the oxidative metabolism in terms of 

sampling interval and metabolite identification. Offline metabolite quantification thereby is 

limited in temporal resolution by the sampling interval of supernatant. In general it is 

regarded as more feasible to sample biomass in high frequency than supernatants, given the 

biologically dynamic nature of metabolites. In comparison to the conventional approach, 

estimating the oxidative metabolism relieves from the dependency of supernatant sampling 

interval granting a higher temporal resolution (FIGURE 5 A/B. Additionally the use of the 

model consistently predicted a higher level of accumulation than substantiated by measuring 

the expected metabolites as acetate and accumulating substrate (FIGURE 5 A). Only further 

going analysis of the supernatant revealed the release of additional C sources as organic 
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acids (Supplemental 2). This difference in accumulation is the presumed reason for the 

difference of the average level of the C-balances. Owned to the higher level of estimated 

accumulation rox is smaller which in turn affects the yields of biomass and of CO2 (FIGURE 5 
B). While in the offline calculation of each yield (Yxs/YCO2) the error of two offline 

measurements is propagated, in case of the estimation only one offline measurement is 

used. The consequent reduction in noise in combination with the higher level of 

accumulation leads to a better closing C-balance. 

 

FIGURE 5: Model leads to overall improvement of data quality and indicates accumulation of 

a not quantified metabolite 

A: Comparison of the theoretical accumulation calculated using the balancing approach (x 

depicts the offline BM sampling points) and actual measured accumulation (acetate and 

glucose) in the SN (triangles are the SN sampling points) for the two processes displayed in 

Fig. 4. The calculated accumulation is constantly higher than the actual measured one, this 

can be attributed to the non-quantified compounds in the SN (see Supplemental 2). B: 

cumulative molar yields (Yx/s; Yco2/s) as well as C-balance calculated cumulatively with both 

methods (balancing approach and SN measurements).  

 

 

qsbal reveals dynamic decline of physiologic maxima 

At hand of FIGURE 6 the dependency of qscrit on time and moreover on metabolic activity 

(qsmean) shall be brought to the reader’s attention. Based on the outlined strategy of 

quantifying the oxidative metabolism, the qs sp can be put in relation to a qs pv (FIGURE 6 

A/C). In any case the pv of qs is not congruent with the sp the metabolic state of the culture 

is not in control. If the sp is smaller than the pv accumulated C Source is being oxidized. If the 

sp is greater than the pv the maximum physiological capacity to metabolize substrate (qscrit) 

is exceeded. Under the circumstance qscrit is trespassed, substrate/metabolites are being 

accumulated. By fitting a linear function a time dependent decline of qscrit becomes 

apparent (FIGURE 6 A/C; Supplemental 3). Nevertheless, this time dependent decline does 

not appear to be transferable, indicating a further significant but underlying variable. FIGURE 

6 C illustrates the significant (p=0.00065) correlation of the qscrit slope in dependency 

qsmean.  
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FIGURE 6: The critical specific substrate uptake rate is a function of time and metabolic load 

(qsmean) 

A & C: Two different qs profiles of oscillation processes, to determine the qs max trajectories, 

are shown. Marks (x) depict the data points used for calculation of the qs max trajectories. 

The used data points are all corresponding to offline samples for which the qs calculated 

from the balancing approach is lower (including a safety margin) than the qs calculated from 

the feeding rate. A linear curve was fitted into these data points describing the decline of qs 

max – quality criteria for this fit was R
2
 > 0.8. B: Dependency of the decline of the maximum 

qs on the qs mean for 9 different oscillation experiments (with different qs means). The slope 

of the qs max trajectories (y-axis) has units of an acceleration (g/g/h
2
) which is negatively 

correlated with the qs mean (g/g/h) of the culture (x-axis), using the same analogy the qs 

mean stands for the speed of cellular metabolism.  
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Discussion 

To quantify the physiological capacity of the cellular metabolism repetitive up-pulsing 
experiments have been utilized for the experimental part of the workflow. The pulse 
experiments (FIGURE 1) substantiated the impact of time of induction as well as the impact 
of the process parameter temperature on qscrit. Nevertheless, in an experiment to maximize 
qs the deducted trajectory of qscrit lead to substrate accumulation 4 h earlier than 
predicted. Subsequently qscrit is a function of time but the decline over time displays a 
dependency on the historic metabolic activity during induction phase. This impact of the 
physiologic descriptor of qsmean infers a descriptive function towards the memory effect. 
Presumably qscrit was overestimated in the up-pulsing experiments since in accordance to 
literature only glucose and acetate had been quantified (Akesson, Karlsson et al. 1999, 
Schaepe, Kuprijanov et al. 2014) while the accumulation of other organic acids as oxalic acid 
and ketoglutarate weren`t quantified. Potentially the continuously high metabolic activity 
during the ramp (FIGURE 2) experiment led to a faster decline in qscrit in comparison to the 
repetitive pulse experiments which comprise phases of recovery in-between pulses. 

In differentiation to literature (Akesson, Karlsson et al. 1999) a higher final pulse 
concentration of 20 g/L glucose was utilized. The pulse concentration was 50% in comparison 
to Phue et al (Phue and Shiloach 2005) to assure saturation while minimizing pule duration. 
DO2 levels below 30% have been reported to alter transcription and impact the metabolism 
(Phue and Shiloach 2005). In this respect a drop of DO2 below 15%, as occurred during up-
pulsing of Lin et al (Lin, Mathiszik et al. 2001), can significantly impact qscrit, since the 
metabolism is restrained by oxygen availability. This fragile metabolic state in-between 
glucose saturation (Akesson, Karlsson et al. 1999) and oxygen limitation (Lin, Mathiszik et al. 

2001) questions the experimental setup of up-pulsing while relying on DO2 as response. This 
problem can be avoided by down pulsing (Henes and Sonnleitner 2007) or by decoupling data 
analysis from DO2. 

Regarding the workflow of quantifying the physiologic capacities the subsequent step of 
data evaluation is crucial and highly dependent on data quality. Especially in the setting of 
HCD bioprocesses, transitions from growth to limitation can occur within 15-30 s (Schaepe, 

Kuprijanov et al. 2014) which emphasizes the necessity of high frequency sampling. In 
contrast to biomass quantification the volatility of metabolites and substrate in the 
supernatant constitutes a significant risk for metabolite/substrate quantification. Irrespective 
of the frequency, in-between offline samples data can merely be interpolated. This 
circumstance impairs proper physiological characterization in-between sampling points. 
Errors imposed by sample handling and analytical errors cannot be fully avoided, 
consequently a certain level of uncertainty remains. By basing data evaluation on biomass 
and off-gas data as model inputs only verified by analytical data, noise is reduced and overall 
data quality is increased (FIGURE 3). Since the model provides an estimate of the total 
accumulation of C-source the necessity of identification and quantification of each 
metabolite is reduced. 

Model performance was challenged at hand of a dynamic oscillation of the feeding rate 
(FIGURE 4). The clear correlation of model disturbance with DO2 controller actions, 
illustrates the limits of the model for qsbal quantification, as adaptations of pO2 lead to 
perturbations gas equilibrium. These controller actions should either be avoided or 
accounted for by the means of correction algorithms. Since such process dynamics are not 
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completely avoidable in HCD fermentations with high metabolic activity, any approach based 
on the DO2 signal appears too sensitive for robust process development and process control. 

By controlling the qs within the oscillation experiments we facilitated the correlation of 
qsmean and qscrit slope. A positive correlation of qscrit and the specific growth rate has 
been suggested before (Lin, Mathiszik et al. 2001). But in the latter contribution C-source 
was provided by a constant feeding rate. Consequently the growth in biomass leads to an 
inevitable time correlated decline in µ. Not controlling the physiology in terms of µ hereby 
makes the differentiated identification of the cause of qscrit decline between time and µ 
impossible. A sound science based identification of the cause requires the control of one of 
the two variables of interest. This generally applicable principle emphasizes the necessity for 
physiological process control in the context of physiological process development. 

 

 

Conclusions 

The goal of this paper was to outline a workflow enabling the quantification physiological 
capacities which are a pre-requisite for the design of experiment within physiological process 
development. 

In accordance to the state of the art pulse up-pulsing experiments were conducted which 
were decoupled from the DO2 signal as response. Within this workflow the following points 
were made: 

 

� According to the conducted up-pulsing experiments qscrit is dependent on induction 
time and on the process parameter temperature. Changing the objective of the 
workflow to define a time dependent trajectory of qscrit. 

� Model based data evaluation with off-gas and biomass as only time resolved input 
parameters increases data quality and decreases dependency on offline sample 
handling. 

� Owned to the model based approach we found for the first time that the decline of 
qscrit is closely correlated to metabolic activity as qsmean, suggesting a metabolic 
memory effect induction phase. 

� Based on the impact of qsmean on the decline of qscrit we propose to utilize qsmean 
as descriptor for the metabolic memory effect. 

 

The latter findings change the initial objective of the workflow to quantify the physiologic 
capacity of respective strain. The time dependency of qscrit calls for a time resolved qscrit 
trajectory instead of a single numeric value. But since this trajectory is additionally 
dependent on process parameters and memory effects a large number of pre-curser 
experiments is required in order to avoid accumulation. As a consequence we propose to 
utilize the outlined model for a real time feedback control on physiological variables. Hereby 
the model would require real biomass estimation and offgas analysis as input and deliver a 
process value of the current qs as output. Thereby a simple step controller would facilitate 
the feedback control of qs while sensing qscrit in real time. This would eliminate the need for 
pre-curser experiments to determine the qscrit trajectory for each setting of process 
parameters as whole. 
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Supplemental 1: Controller actions for DO2 control are the cause of noise in OUR. The 

discrepancy between OUR and CER leads to a misestimation of rox and consequently to a 

ill-closing C-balance 

 

Supplemental 2: Supernatant chromatogram using a HPLC method for determination of 

organic acids. Various organic acids/intermediates of metabolism are present in the SN: 1: 

Oxalic acid, 2: Oxalacetic acid, 3: Ketoglutaric acid, 4: Glyceric acid, 5: Methyl-Succinic acid. 
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Supplemental 3: decline of qscrit over time (all included experiments)  
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Summarizing discussion - decline of qs crit 

The dependency of the decline of qs crit on the qs mean of the culture is a novel finding of 

this work, although a principal decline of maximum physiological capabilities is already 

published by other researchers (Schaepe et al. 2014; Lin et al. 2001). In comparison to these 

previous publications on declining physiological capabilities this work offers a more 

comprehensive investigation of the decline of qs crit. 

The fitness of the culture decreases with process time, especially for an IB production 

process – as IB formation imposes a high level of stress to the cells (Fahnert et al. 2004). Also 

for non IB processes induction of product formation withdraws energy and carbon from 

other physiological pathways (metabolic burden)(Heyland et al. 2011). The dependency of 

the qs crit decline on the qs mean of the culture could furthermore be explained by the 

increase in overall physiological activity at higher qs mean values. 

The decline of qs crit is associated with a decline in rx and µ respectively as the calculation 

approach for rs presented is based on the summation of the oxidized substrate and the 

substrate used for building biomass (Equation 25). This implies a declining biomass yield over 

process time and therefore dynamic changes in the underlying stoichiometry. 
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3.3. Evaluation of the DoE to investigate the effects of the qs oscillations on 

IB quality attributes and the specific product titer 

3.3.1. Calculation of DoE factors & factor variability 

For DoE evaluation the actual process values instead of the set-points were used. Figure 14 

illustrates the calculation of the qs amplitude and qs mean. The qs amplitude levels (red 

dashed lines) are calculated as the mean of qs values 15% higher/lower than the qs mean 

(pink dashed line). The qs amplitude is consequently calculated as the average of the qs 

process values above/below the latter limits. For experiments that show no real oscillation 

profile of qs the calculated amplitude can thus be regarded as over time steadily declining qs. 

The frequency was calculated from the time intervals of the feed rate changes between low 

and high qs levels. 

 

 

Figure 14: Calculation of the DoE factors qs mean and qs amplitude. The Figure shows the qs calculated from the offgas 

Signal and offline BM (black line) over time after induction. The pink and red dashed lines show the qs mean (pink) and 

the low and high qs amplitude levels (red) used for qs amplitude calculation. 

Figure 15 shows set-points and process values of the DoE factors. By not reaching the 

intended qs amplitude levels this dimension of the DoE is clipped, spanning only ~50% of the 

intended factor scaling in this dimension (from 0.1-0.2 clipped to 0.05-0.11). Furthermore 



46 

 

the qs amplitude only reaches the intended lower boundary of 0.1 g/g/h as the actual high 

boundary. This is a consequence of the qs crit decline over time and it’s relation to qs mean 

as shown in the publication part. 

The achieved qs mean values cover the whole setpoint range, but are generally lower (mean 

at high level: 0.35 g/g/h, mean at low level 0.21 g/g/h) and also have a relative error of ~12% 

(std/mean) at the low and high level of the DoE. As the frequency is calculated from the feed 

rate change the process values are equal to the set-points for this DoE factor. 

The lacking orthogonality of the design caused by the declining qs crit is reflected in the 

relatively high condition number of 13.14. 

 

Figure 15: Comparison of the set-points and process values of the DoE factors. The figure shows the combination of the 

set-points (red x) and process values (black x) for 2 out the DoE factors qs mean, qs amplitude and frequency at a time. (A) 

qs amplitude over qs mean. (B) Frequency over qs mean. (C) Frequency over qs amplitude. The condition number of the 

DoE is 13.14 which indicate the lack in orthogonality of the design. There are no center point replicates (selection 

criteria: within a 10% range of the middle of the factor scaling for all factors) 

  

A 

B 

C 
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3.3.2. DoE evaluation 

Table 2 shows the Set-points and process values of the DoE factors as well as the responses 

(Specific product titer [g/g/h], solubility kinetic constant [OD/min], IB Purity [%] and 

Solubility Yield [%]). 

Table 2: Process values and set-points of the DoE factors & responses. 

qs 

mean 

[g/g/h] 

PV 

qs 

mean 

[g/g/h] 

SP 

qs 

amp 

[g/g/

h] 

PV 

qs 

amp 

[g/g/

h]  

SP 

Freq. 

[1/h]  

SP/PV 

Specific 

titer [g/g] 

Solubility 

kinetic 

constant 

[OD/min] 

Purity 

[%] 

Solubility 

Yield [%] 

0,41 0,40 0,08 0,20 0,25 0,03 -0,0007 90,6 67,8 
0,23 0,23 0,06 0,10 0,25 0,08 -0,0008 86,2 74,3 
0,23 0,23 0,06 0,10 1 0,07 -0,0003 84,8 112,7 
0,24 0,32 0,05 0,15 0,625 0,08 -0,0003 74,0 74,6 
0,18 0,23 0,07 0,20 1 0,06 -0,0026 88,3 72,7 
0,19 0,23 0,08 0,20 0,25 0,07 -0,0036 74,1 92,1 
0,28 0,32 0,07 0,15 0,625 0,06 -0,0046 39,2 57,7 
0,27 0,32 0,07 0,15 0,625 0,06 -0,0030 75,3 78,3 
0,31 0,40 0,09 0,10 1 0,06 -0,0031 77,6 62,9 
0,34 0,40 0,11 0,10 0,25 0,05 -0,0028 76,3 44,0 
0,34 0,40 0,11 0,20 1 0,05 -0,0054 86,3 50,8 
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Investigation of the effects of the qs oscillations on IB quality attributes and specific 

product titer 

The coefficients for all responses of the MLR models are shown in Figure 16. The effect of a 

given factor on a response is significant if the estimated scaled and centered coefficient is 

bigger than its confidence interval (at α =0.05). 

Two significant (confidence level = 0.95) correlations were found in the DoE evaluation 

(Figure 16A & B), which are a negative correlation between qs mean and the product titer as 

well as a negative correlation of qs amplitude and the solubility kinetic constant. 

 

Figure 16: Coefficient plot for the DoE evaluation. The plot shows the scaled and centred coefficients (and the 0.95 

confidence interval as error bars) for the MLR of the DoE factors (qs mean…qsm, qs amplitude…qsa and frequency…qsf) 

with the responses (A) specific product titer, (B) solubility kinetic constant, (C) purity and (D) solubilisation yield. R
2
 

values, number of experiments and degrees of freedom of the models are written below the graphs. 

  

A B 

C D 
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The significant correlations are shown in more detail in Figure 17. Figure A shows the 

negative correlation between the qs mean and the specific product titer. In Figure 10 B the 

correlation between the qs amplitude and the solubility kinetic constant is shown. 

The found correlation between the qs amplitude and the solubility kinetic constant, implying 

that higher amplitudes lead to slower solubilizing IBs, has a relatively low R
2
 (0.57) as well as 

Q
2 

(0.21). 

 

Figure 17: Significant correlations found in the DoE evaluation. (A) Specific product titer vs qs mean; (B) Solubility kinetic 

constant vs qs amplitude. 

 

  

A 

B 
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Summarizing discussion - effects of qs oscillations on product quantity and IB quality 

• negative correlation of the specific product titer with the qs mean 

In literature examples for positive  (Hollander 1993; Cheng et al. 2003) and for negative 

correlations (Norsyahida et al. 2009) of qs, and respectively the specific growth rate µ extist. 

In this thesis a negative correlation between qs mean and the specific product titer was 

found for qs oscillation experiments, whereas for constant and qs ramp experiments a 

positive correlation has been found beforehand.  

The reason for these opposing findings could either lie in the pH fluctuations or in the higher 

accumulation for oscillation experiments. This higher accumulation is based on the biomass 

overestimation as a result of substrate accumulation in the supernatant shown in Figure 13 

together with timely recurring high qs phases. 

• negative correlation of the solubility kinetic constant and the qs amplitude 

Known correlations between USP parameters and IB attributes are correlations of the 

induction regime with secondary structure motives (Margreiter, Schwanninger, et al. 2008) 

and induction time and temperature with the IB size (Luo et al. 2006). A direct investigation 

of the effect of process dynamics on IB properties has not been done yet. 

 The linkage of the qs amplitude, which represents the dynamic changes in the qs, with the IB 

solubility is thus a novel finding in contrast to current literature linking USP parameters to IB 

properties. 
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4. Conclusion & Outlook 

Decline of qs crit 

The first goal of this master thesis was to quantify the decline of physiological maxima by 

using oscillatory post induction qs profiles. 

By conducting controlled oscillatory qs profiles at different qs mean and qs amplitude levels 

this work found and quantified a dependency of the physiological process descriptor qs mean 

on the decline in qs crit over the time after induction. The quantification of the decline of 

physiological maxima at different qs mean levels by utilising physiological process control 

embodies the novelty of this work. 

The found dependency of the qs crit decline on qs mean must be considered for future DoE 

designs and strain characterizations, as the gained knowledge about the strain specific 

decline of qs crit would limit the danger of running into substrate accumulation and by-

product formation. 

The presented approach of comparing qs bal with qs calculated from feed rate could 

furthermore be used for real-time recognition of potential exceedances of qs crit and a 

respective control approach. The sensitivity of the presented approach to the dO2 control 

should be decreased for such a potential control strategy. 

Effect of oscillations on product quantity and IB quality 

The second goal of this thesis was the investigation of the effects of the qs oscillations on 

inclusion body properties and the specific product titer. 

In this regard a negative correlation between the qs mean and the specific product titer was 

found as well as a negative correlation of the qs amplitude and the solubility kinetic 

constant. 

An impact of dynamics in an USP parameter on an IB quality attribute, the solubility kinetic 

constant has thus far not been investigated in literature. Directly influencing the IB solubility 

kinetics could potentially be of high value for increasing DSP efficiency. 

Further experiments for verification and reproducibility regarding the correlation of the 

solubility kinetic constant and the qs amplitude would be beneficial as there might be an 

underlying effect of the pH fluctuations on the solubility kinetics which could potentially be 

the reason for the low R2 and Q2. 

Regarding the correlation of qs mean and the specific product titer further experiments 

would lead to a more reliable conclusion as an explanation for the opposite findings in qs 

ramp and qs constant experiments is still lacking. These additional experiments should focus 

on an investigation of the effect of pH fluctuations and the substrate accumulation on the 

specific product titer. 
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5. Appendix 

List of Symbols 

CH&O   c-molar substrate composition 

CH1,2&O3,4  c-molar biomass composition without nitrogen 

cfeed …   substrate concentration in feed [g/L] 
dSn(t) …   fed substrate normalized by the CDW at the end exp. fed-batch [g/g] 
F(t) …    feed flow rate [L/h] after time (t) 
FS,V …   flow rate of feed solution [L/h] 
FS …   substrate feeding rate [c-mol/h] 
qS…   biomass specific substrate uptake rate [c-mol/c-mol/h] or [g/g/h] 
qS(t)…   biomass specific substrate uptake rate [g/g/h] at time point (t) 
qsmean …   average qs within a predefined window of dSn or time [g/g/h] 
qS bal … biomass specific substrate uptake rate calculated with C-Balance and DoR-

Balance  
[c-mol/c-mol/h] 

qS crit ... the critical specific substrate uptake rate as defined by Åkesson, Hagander, & 
Axelsson, 1999 [g/g/h] 

qsglc specific substrate uptake rate calculated from the glucose concentration 
gradients in the pulse experiments [g/g/h] 

RQ … respiratory quotient [mol/mol] 
racc … rate of accumulating substrate and acetate [c-mol/h] 
rCO2   CER, carbon dioxide evolution rate [mol/ h] 
rs   substrate conversion rate [c-mol/h] or [g/h] 
rO2 …   OUR, oxygen uptake rate [mol/h] 
rx   biomass conversion rate [c-mol/h] 
γS …   Degree of Reduction (DoR) of substrate [mol/mol] 
γX …   Degree of Reduction (DoR) of biomass [mol/mol] 
µ …   specific biomass growth rate [1/h] 
t…    process time [h] 
V0 …   volume at t = 0 [L] 
X…   CDW [g] at (0) batch end or after time (t) 
x…   CDW concentration [g/L] at (0) batch end or after time (t) 
YX/S…   biomass yield on substrate [g/g] or [c-mol/c-mol] 
YCO2/S…   carbon dioxide yield on substrate [c-mol/c-mol] 
YO2/S…   oxygen yield on subtrate [c-mol/c-mol]  
YH2O/S…   water yield on subtrate [mol/c-mol]  
SP …   setpoint; the intended value of a given process parameter 
PV … process value; the actual value of a given process parameter based on 

measured quantities 
w SN … addition of w SN indicates values calculated with taking glucose and acetate 

measurements in 
supernatant into account 

w/o SN … addition of w/o SN indicates values calculated without taking glucose and 
acetate measurements in 
supernatant into account 

bal …   denotes values calculated with the balancing approach 
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Figure 1: Complete data set of online data used for Quality control as well as the Feed rate. (A) Feed rate [ml/h]; (B) 

Temperature [°C]; (C) pH; (D) dO2 [%] 

A B 

C D 
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Figure 2: Offline BM and Product titer. (A) Biomass dry cell weight [g/L]; (B) Product titer [g/L] 

A 

B 
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Figure 3: qs trajectories and accumulation for all experiments. (A) qs calculated with Feed rate and offline Biomass (red 

line) & qs calculated with offgas signal and offline Biomass (yellow line), blue dots indicate the sampling points for offline 

Biomass; (B) Accumulation of Glucose and Acetate in the Supernatant (sum) [C-mol] 

A 

B 



57 

 

 

Figure 4 Calculation of the DoE factors qs mean and qs amplitude for all experiments. qs calculated from offgas signal and 

offline Biomass (black line) over the time after induction, qs mean (pink dashed line) and qs amplitude levels (low/high) 

(red dashed line). 

Data reconciliation for K2S1 softsensor 

% reconcilation 
for  j=1:size(calc.(Fexn).time)  
xm=[r_s; r_o2; r_co2];  
  
E=[+1 0 +1 +1;gamma_s gamma_o2 gamma_x 0];  
Em=[+1,0,+1;gamma_s,gamma_o2,0]; % First row C balance 2nd row DR balance  
Ec =[1; gamma_x]; % Biomass Estimation  
  
e_s=0.03;  
e_o2=0.03;  
e_co2=0.03; 
  
Xi=[e_s 0 0;0 e_o2 0 ;0 0 e_co2];  
    
Ec_star=(inv(Ec'*Ec))*Ec';  
  
R=Em-Ec*Ec_star*Em;  
[U,S,V]=svd(R); 
Sconv=[1 0]; 
C=Sconv*S;  
K=C*S'*U';  
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Rred=K*R;  
eps = Rred * xm;  
sai = diag(diag(xm * xm' * Xi * Xi'));  
Phi = Rred * sai *Rred';  
delta = (sai*Rred'*inv(Phi) * Rred)* xm;  
xmbest=xm-delta;calc  
xcbest = -Ec_star*Em*xmbest;  
h = eps' * inv(Phi) * eps;  
  
calc.(Fexn).rS_rec(j,2)=xmbest(1);  
calc.(Fexn).OUR_rec(j,2)=xmbest(2);  
calc.(Fexn).CER_rec(j,2)=xmbest(3);  
calc.(Fexn).rX_rec(j,2)=xcbest;  
calc.(Fexn).h_value(j,2)=h;  
  
end  
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