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Summary

Due to recent advances in sequencing technology, an increasing number of dense marker maps

and fully sequenced genomes is becoming available for many populations in animal and plant

breeding. In this thesis we study recently developed methods for the estimation of breeding

values based on genomic data.

In the first part of the thesis, we present models which estimate genetic effects of markers,

hence genetic breeding values, based on phenotypic records from single traits. These models

differ in their assumptions on the genetic architecture of the trait, i.e., on the number of

quantitative trait loci (QTLs) and on their effect-sizes. Although the differences in accuracy

between the models are smaller than expected, we determine a strong model-dependent influ-

ence of the genetic architecture on the accuracy of breeding values. We show that Bayesian

models usually perform better than linear mixed models if a few QTLs determine the trait,

whereas the opposite may be true if many QTLs are underlying the trait. Further, we ex-

plore the influence of the density of markers, the heritability of the trait, and the number of

phenotypic records on the performance of the methods.

In the second part of the thesis, we review multi-trait models. These models use the

available data more efficiently than single-trait models by incorporating correlations between

traits. The multi-trait models increase the accuracy of breeding values for low-heritability

traits which are correlated to high heritability traits. Especially, if phenotypic records are

missing for low-heritability traits, the use of multi-trait models is strongly recommended.



Zusammenfassung

Aufgrund der schnellen Weiterentwicklung biochemischer Methoden ist die Entschlüsselung

von DNS Daten in den letzten Jahren sehr günstig geworden. Dadurch hat sich das Sequen-

zieren von Genomen als effizientes Hilfsmittel in der Pflanzen- und Tierzucht erwiesen. In

dieser Arbeit besprechen wir Methoden zur Zuchtwertschätzung, welche auf hochauflösenden

Marker-Arrays oder auf voll sequenzierten Genomen basieren.

Zuerst werden Modelle präsentiert, welche die Effekte von Genen, basierend auf phänotyp-

ischer Information an einem Merkmal, schätzen. Der Hauptunterschied zwischen den Mod-

ellen liegt in den unterschiedlichen Annahmen über die genetische Architektur des Merkmals,

welche durch die Anzahl und durch die Effektgrößen der zugrundeliegenden Loci gegeben

ist. Obwohl sich die Modelle weniger in deren Genauigkeit der Zuchtwertschätzung unter-

scheiden als man zunächst erwarten würde, konnte ein deutlicher Modell-abhängiger Effekt

der genetischen Architektur auf die Genauigkeit der Zuchtwertschätzung festgestellt werden.

Bayesianische Modelle treffen genauere Vorhersagen als gemischte Regressionsmodelle, wenn

das Merkmal durch wenige Loci bestimmt wird. Falls allerdings das Merkmal von sehr vie-

len Loci beeinflusst wird, schätzen die Regressionsmodelle den Zuchtwert besser. Schließlich

diskutieren wir den Einfluss der Anzahl an Markern, der Heritabilität und der Anzahl der

phänotypischen Messungen auf die Genauigkeit der Modelle.

Im zweiten Teil der Arbeit, verallgemeinern wir die Modelle auf mehrere Merkmale. Diese

Modelle nutzen die vorhandenen phänotypischen Informationen (meist) effektiver, da sie Kor-

relation zwischen den Merkmalen berücksichtigen. Die Genauigkeit der Zuchtwertvorhersagen

profitiert hier besonders, wenn ein Merkmal mit kleiner Heritabilität zu einem Merkmal mit

höherer Heritabilität korreliert ist. Auch wenn nur wenige phänotypische Messungen vor-

liegen, ist der Einsatz von Modellen mit mehreren Merkmalen gegenüber Modellen mit einem

Merkmal vorteilhaft.
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1 Introduction

Plant and animal breeding has a long tradition in human culture. Over the last few thou-

sand years, domesticated plants and animals have been constantly selected to secure human

nutrition. Artificial selection of breeding candidates is based on the evaluation of the genetic

breeding value. Once breeding values are assigned to individuals, the individuals with high-

est breeding values are chosen for reproduction. The key task in breeding is the accurate

assignment of breeding values which justifies the choice of selection candidates.

Over many centuries breeding values have been determined solely phenotypically, i.e.,

individuals with superior phenotypic values (e.g., yield, meat quality, disease resistance) were

chosen for reproduction. This approach has two major problems. First, the phenotypic

evaluation is often very time consuming and expensive. Second, low heritabilities of traits can

lead to poor selective gains.

Recent developments in sequencing technology have made it possible to incorporate genetic

information in the estimation of breeding values. The most prevalent sequencing technology

is ’next-generation’ sequencing which determines the exact order of nucleotide bases. Due to

that sequencing technology, a large number of fully sequenced genomes has become available

and the re-sequencing of complete genomes on the population scale is becoming increasingly

popular. These developments make the estimation of genetic breeding values an achievable

intent.

Fourteen years ago, Meuwissen et al. (2001) presented four statistical models to estimate

breeding values from genetic data. These models are based on least-squares regression, best

linear unbiased predictions (BLUP), and two similar Bayesian approaches. Due to their

different assumptions on the genetic basis of the traits, the models have different statistical

properties. Since real data usually does not satisfy all the assumptions of the models, there is

still considerable uncertainty which of the methods (or their extensions in recent literature)

is most appropriate. In general, this will depend on the genetic heritability and the genetic

architecture of the trait under selection, as well as on the number and the quality of phenotypic

and genotypic records.

In this thesis we present the models of Meuwissen et al. (2001) in a comprehensive way

(Section 3) and relate them to classical animal breeding models which are based on pedigree

information rather than on genetic data. In Section 4 we compare the accuracies of estimated

breeding values between the models, and explore their dependence on factors such as the

number of markers or the number of phenotypic records. We show that the differences in
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accuracy are smaller than intuitively expected. However, the performance of the methods

depends heavily on the genetic architecture, which influences BLUP and the Bayesian methods

in opposite ways. Results from more recent literature which extend the methods of Meuwissen

et al. (2001) are reviewed and the application of the models to real data is discussed. Whereas

the methods in Section 3 and Section 4 are concerned with the estimation of breeding values

reflecting fitness at a single trait, multi-trait models are presented in Section 5. These models

perform more accurately, especially if traits are correlated and have low heritability.

Estimating breeding values from genomic information rather than pedigree information

shortens the generation interval and is cheaper than phenotypic selection while maintaining

high levels of accuracy (Meuwissen et al. 2001; Schaeffer 2006). Therefore, genomic selection is

especially useful where phenotypic records are missing or are very expensive. Based on these

advantages, we are confident that genomic selection will pave the way for a new era in plant

and animal breeding. In the last few years genomic selection has already been successfully

implemented in various cattle breeding programs.

Finally, we note that the methods presented in this theses are of special interest to organic

agriculture. Organic farmers rely strongly on plants and animals which were selected to

perform well without chemical fertilizers and antibiotics. Accounting for these aims in breeding

programs, the term ’organic breeding value‘ has been shaped. The estimation of the ’organic

breeding value‘ benefits from the methods presented below.
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2 Basics

In this section we recapitulate the necessary terminology and concepts underlying the main

parts of the thesis.

2.1 Genetic basics

Quantitative traits

Most traits under consideration in animal and plant breeding are quantitative, i.e., their phe-

notypic values can be measured on a continuous scale. Usually, these traits are determined

by a large number of quantitative trait loci (QTLs). Despite of recent developments in se-

quencing technology, the QTLs influencing most traits are unknown and their determination

is subject to ongoing research.

It is a statistical task to determine whether the variation in certain regions of the genome

are associated with the phenotypic variation in the trait. If significant associations between a

marker and trait variation are detected, the marker is linked to (at least) one QTL. A central

concept for mapping QTLs is linkage disequilibrium.

Linkage disequilibrium

Linkage Disequilibrium (LD) is defined as the non-random association of alleles between two or

more loci. In the literature different definitions of LD have been proposed to capture different

aspects of that non-random association (see Slatkin (2008) for a review). In the following we

give a classical definition of LD between two biallelic loci A and B. For extensions to multiple

loci with multiple alleles we refer to Bürger (2000). Let us denote the alleles at A by A and

a, and those at B by B and b. The frequencies of the alleles A and B are denoted by p and q,

respectively, and the frequencies of the four gametes, AB, Ab, aB, ab are designated x1, x2,

x3, x4, respectively. One measure of LD is D, defined as

D = x1x4 − x2x3.

Therefore, D measures the difference of coupling genotypes AB/ab and repulsion genotypes

Ab/aB. Since the measure D depends strongly on allele frequencies, many authors have

investigated the squared correlation in allelic states

r2 =
D2

p(1− p)q(1− q)
, (1)

which tends to exhibit ‘better’ statistical properties.
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Linkage disequilibrium between loci is reduced by recombination. Let D(t) denote the

measure D at generation t, and let c denote the recombination rate between two loci. Then

we have

D(t+ 1) = (1− c)D(t). (2)

Factors which cause LD include selection, migration, and random genetic drift. In general, it

is difficult to determine which of these factors was dominating in the generation of observed

LD. In breeding however, random genetic drift may be the most important determinant of

the average LD in the genome since population sizes are rather small. Migration can often be

ruled out by the breeding design, and LD due to selection is mostly localized around specific

genes.

Whereas in infinite panmictic populations, neutral loci will eventually be in linkage equi-

librium (LE) (see eq. (2)), LD is maintained in finite populations. Sved (1971) showed that

the expectation of r2 in a finite population with an effective population size N is given by

E[r2] =
1

1 + 4Nc
. (3)

In breeding, the population size N is mostly known and E[r2] is usually observed. Therefore,

one could infer the recombination rate c from (3). If the parameters N,E[r2], and c do not

satisfy (3), selection will most likely have shaped the genotype frequencies.

Phenotypic variances

In quantitative genetics, phenotypic values are usually decomposed into genetic and environ-

mental components. Similarly, the phenotypic variance σ2p of a trait is decomposed into its

genetic component σ2g , its environmental component σ2e , and the interaction of both σ2g×e, i.e.,

σ2p = σ2g + σ2e + σ2g×e (4)

For simplicity, we neglect the genotype environment interaction in this manuscript, i.e., we

always assume σ2g×e = 0.

The genetic variance σ2g can further be partitioned into a component which is due to the

additive effects of the loci σ2a, a component emerging from dominance σ2d, and a component

due to all kind of genetic interactions σ2i (e.g., epistasis). Then, we have

σ2g = σ2a + σ2d + σ2i . (5)

For rigorous definitions of the variance components we refer to Bürger (2000) or Lynch and

Walsh (1998).
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Further, we recall the commonly used definition of the (narrow-sense) heritability of a

trait

h2 =
σ2a
σ2p
, (6)

which measures the proportion of the total phenotypic variance that can be explained by

additive effects.

If multiple traits are under consideration, their genetic variances are often correlated. If

the correlation between two traits is high, it is very likely that these traits are influenced by

the same set of genes. Then selection on one of the traits also influences the second trait.

Most commonly, genetic correlations between traits are summarized in the matrix Σg = (c(ij))

(often referred to as the G-matrix), where c(ii) is the additive genetic variance of trait i and

c(ij) is the additive genetic covariance between trait i and trait j. Similarly to considering

additive genetic covariances, one defines the environmental covariances Σe between traits (see

Section 5).

2.2 Linear models

In the following we introduce general linear models and mixed models which are common

tools from applied statistics for the estimation of breeding values. The presentation follows

Lynch and Walsh (1998, Chapters 8 and 26), where further examples and applications can be

found. Let p, q, and n be natural numbers. We denote the set of p × q matrices with real

entries by Mp,q and the identity matrix by Ip ∈Mp,p.

General linear models

We assume n > p. A general linear model can be written as

y = Xβ + e, (7)

where

y ∈Mn,1 is a vector of observations with mean E(y) = Xβ,

β ∈Mp,1 is a vector of fixed effects which shall be inferred,

X ∈Mn,p is an incidence matrix, relating the observations y to β,

e ∈Mn,1 is a vector of random error terms with mean E(e) = 0 and the (invertible) covariance

matrix R = Cov(e) ∈Mn,n.
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Since the underlying linear system in (7) is overdetermined, it usually has no solution in

β and β has to be estimated. A common estimation-method for β is the method of least

squares. The simplest version of it assumes that the residual effects are uncorrelated with

the same variance, i.e., R = ρIn, where ρ = σ2e will be the environmental variance (4) in

all applications considered here. Then, the minimization of the (unweighted) sum of squared

differences between the data values y and their corresponding modeled values is an unbiased

estimator for β:

β̂ = min
β
‖y −Xβ‖2. (8)

It can be easily shown that β̂ is given by

β̂ = (XTX)−1XTy, (9)

where for any matrix U, UT denotes the transposed matrix.

Example 1. Suppose that three sires are chosen randomly from a population and are mated

to three randomly chosen damns. Two, one, and three offspring are evaluated from these

matings, respectively. Let yij denote the phenotypic value of the jth offspring from the ith

sire, µ denote the phenotypic mean of the population, si denote the effect of the ith sire, and

eij the residual effects. We apply the general linear model (7) with p = 4, n = 6 to estimate

the average effect of each sire

y =



y11
y12
y21
y31
y32
y33

 , X =



1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

 , β =


µ
s1
s2
s3

 , e =



e11
e12
e21
e31
e32
e33

 .

The estimator β̂ is then obtained from (9). Numerical values for the yij may be milk yield or

indicators of meat quality.

Mixed models

A mixed model is given by

y = Xβ + Zu + e, (10)

where y, X, β, and e are as in (7) and

u ∈ Mq,1 is a vector of random effects which is independent of e, with mean E(u) = 0 and

with (invertible) covariance matrix Cov(u) = G ∈Mq,q,
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Z ∈Mn,q is an incidence matrix, relating the observations y to u.

The mixed model (10) partitions the residual effects from (7), e∗, into two components,

e∗ = Zu + e. Both models yield the same estimations of β, however, the mixed model

incorporates estimations of random effects in the vector u. The variables y, X, and Z are

known and the variables β and u have to be inferred. Here, we assume that the covariance

matrices R and G are known. However, usually these have to be inferred in a separate step; see

Lynch and Walsh (1998, Chapter 27), by methods such as ANOVA or REML. In the context

of breeding, the vector β typically contains the population mean, elements of population

structure, gender and treatment, whereas the vector u usually accounts for genetic effects.

The matrices X and Z, also called design matrices, often contain only 0 and 1 indicating

whether the corresponding effect is contributing to the phenotype.

For historical reasons, we refer to inferences of fixed effects as estimates, and to inferences of

random effects as predictions. A variety of methods has been developed to infer the estimates

and predictions in (10). We present and use the approach of Henderson, who found the best

linear unbiased estimator (BLUE) β̂ for β and the best linear unbiased prediction (BLUP) û

for u for (10). Assuming that β and u are independent, we infer β̂ and û as the solutions of

the following linear system(
XTR−1X XTR−1Z
ZTR−1X ZTR−1Z + G−1

)(
β̂
û

)
=

(
XTR−1y
ZTR−1y

)
. (11)

Alternatively, one can show that β̂ and û are given by

β̂ = (XTV−1X)−1XTV−1y, (12a)

û = GZTV−1(y −Xβ̂), (12b)

where

V = ZGZT + R (12c)

is the covariance matrix of y. Although equation (12) looks nicer than (11), the computation

of V−1 is usually computationally more demanding than the computation of G−1 and R−1.

Example 2. Suppose that three randomly chosen sires are mated with randomly chosen

dams. Two offspring from each mating are evaluated. However, in contrast to Example 1,

some offspring experience different treatments than others. Let yijl denote the phenotypic

value of the lth offspring from the ith sire with treatment j. In order to compensate for

different treatments we apply the general mixed linear model (10) to estimate the effect of the

12



sires on their offspring. Let us assume that the first offspring of the first and the third sire

was assigned to treatment 1, whereas the second offspring of the first and the third sire was

assigned to treatment 2. Further, both offspring of the second sire were assigned to treatment

1. This yields the following vectors of phenotypic observations, incidence matrices of fixed

and random effects, and the vectors of these effects, respectively

y =



y111
y122
y211
y212
y311
y322

 , X =



1 0
0 1
1 0
1 0
1 0
0 1

 , Z =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , β =

(
β1
β2

)
, u =

s1s2
s3

 .

The BLUE values (β̂1, β̂2) and the BLUP values for the sire effects (ŝ1, ŝ2, ŝ3) can be obtained

from equations (11) or (12). A numerical example is given by

yT = (9, 12, 11, 6, 7, 14), G = 2I6, R = 6I6,

wherefore

β̂ =

(
8.22
13.06

)
and û =

−0.056
0.111
−0.056.

 .

2.3 Bayesian statistics

In Section 3 we will use the following theorem of Bayes,

P (x|y) = P (y|x)
P (x)

P (y)
, (13)

where

x is a hypothesis which is effected by data y,

P (x) is the probability of x before y is observed, also called the prior probability,

P (y) is the probability of y independently of the hypothesis x,

P (x|y) is the probability of x given y, also called the posterior probability,

P (y|x) is the probability of y given x, also known as the likelihood.

Since P (y) is independent of x and therefore often considered to be constant, one also writes

P (x|y) ∝ P (y|x)P (x).
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In statistics, (13) is the foundation of a field called Bayesian inference which is often applied

in the analysis of genomic data. The key point of (13) is that it is often easier (but still

difficult) to calculate P (y|x) than P (x|y).

Example 3. We consider a set of coins, where 99% are fair coins and 1% are two-headed

coins. One flips a coin three times and obtains three heads. What is the probability that the

coin was two-headed?

Let y denote the observation that each flip results in a head and let x be the probability

that the coin was two-headed. Then we get P (x) = 0.01, P (y|x) = 1. Let further x∗ be the

probability that the coin was fair, P (x∗) = 1 − P (x) = 0.99 and P (y|x∗) = 0.53 = 0.125.

Because of P (y) = P (x)P (y|x) + P (x∗)P (y|x∗), we obtain

P (x|y) =
1 ∗ 0.01

(1 ∗ 0.01) + (0.99 ∗ 0.125)
= 0.075.

In practice, one often often applies Bayes’ rule iteratively. It is convenient to make an

educated guess for the prior, i.e., the distribution of P (x) and, subsequently, perform an

‘experiment’ to determine the posterior distribution, i.e., the distribution of P (x|y). This

posterior distribution may serve as a prior for the next step. In general, determining the

posterior distribution is difficult, since the likelihood is unknown. For some priors, e.g., for

conjugate priors, analytical results are available. Conjugate prior distributions have the prop-

erty that their posterior distributions belong to the same family of probability distributions

if the likelihood function fulfills certain properties. For example, normal distributed priors

yield normal distributed posteriors if the likelihood function is Gaussian.

A common numerical tool for inferring the posterior are Markov chain Monte Carlo al-

gorithms. In the following we describe Gibbs sampling, a simple, commonly used Markov

chain Monte Carlo algorithm. Gibbs sampling generates a sequence of observations from a

multivariate probability distribution f where direct sampling is difficult.

Assume that f(xj |x1, . . . , xj−1, xj+1, . . . , xn) is known (1 ≤ j ≤ n) but f(x1, . . . , xn)

is unknown. In order to obtain l samples from f(x1, . . . , xn), we choose an initial value

(x
(0)
1 , . . . , x

(0)
n ) and proceed iteratively. Let (x

(i)
1 , . . . , x

(i)
n ) denote the ith sample. The variable

x
(i)
j is sampled from the conditional distribution

f(xj |x(i)1 , . . . , x
(i)
j−1, x

(i−1)
j+1 , . . . , , x(i−1)

n ), (14)

i.e., we sample each variable from its distribution conditioned on all other variables. This

recurrently updates all variables.
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In order to obtain l independent samples (x
(i)
1 , . . . , x

(i)
n ), 1 ≤ i ≤ l, it is common practise

to ignore a number of samples at the beginning and then consider only every ith sample.

The reason for this is that (i) it takes some iterations to reach the stationary distribution

of the underlying Markov chain and (ii) subsequent samples are not independent but exhibit

correlations.

2.4 Genome wide association studies

Genome wide association studies (GWAS) examine the correlation of genetic variability with

phenotypic variance. These studies compare two groups of individuals with different pheno-

types, e.g., individuals infected by a disease with healthy individuals. Both groups are either

fully sequenced or genotyped using arrays of single-nucleotide polymorphisms (SNPs). If a

marker is more frequent in one of the groups, one may conclude that this marker is associated

with a QTL influencing the trait which is differing between the groups.

For some traits, e.g., human height, GWAS have found hundreds of SNPs that are signifi-

cantly associated with the trait (Yang et al. 2010). However, in most cases the detected SNPs

only explain a small proportion of the heritability of the trait (missing heritability problem).

Hypothesis that could potentially resolve the missing heritability problem are subject to

ongoing investigation and debate. Two main hypotheses, which are opposed in Gibson (2012),

are:

A The SNPs used in GWAS explain all genetic variance, but the effect of each single SNP is

too small to be detected.

B The QTLs are not in perfect LD with any of the SNPs and are therefore undetected.

Hypothesis A suggests that an increase in sample size would resolve the missing heritability

problem, whereas hypotheses B demands an increase in the number of markers. A further

hypothesis is:

C Substantial amounts of quantitative genetic variation are due to epistasis (non-additive

gene-interaction), compromising the wide-spread assumption of additivity.

If hypothesis C was true, we would have to estimate the effects of haplotypes including SNPs

which are not necessarily neighbored. This would be much more demanding than the estima-

tion of effects at single SNPs.

In the following we present a simple method of testing for associations between markers

and phenotypes. We consider a sample of size n from a population. If m markers are available,
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the association of each marker i with a phenotype can be tested by using the linear models

y = µ1n + Xigi + e, 1 ≤ i ≤ m, (15)

where µ = 1
n

∑
l yl is the mean phenotypic value and 1n denotes a column vector with n 1s.

The gi = (gi1, . . . , giki)
T is a vector representing the ki genetic effects at marker i. Considering

a biallelic SNP with alleles A and a, we may estimate the effects of the three genotypes AA,

Aa, and aa, hence ki = 3 (or ki = 2 with appropriate scaling). If we are estimating a single

effect only, the gi = gi would be a scalar. With y∗ = y− µ1n and βi = gi, the model in (15)

is equivalent to the model in (7).

The null-hypotheses is that the marker is not associated with the trait. If the p-value

obtained from the estimator ĝi is less than the predetermined significance level α we reject

the null-hypothesis and conclude that the marker is associated with the trait. The power of

this test depends on

(i) the number of genotyped individuals n,

(ii) the magnitude of LD between the marker loci and QTLs,

(iii) the effect sizes of the QTLs on the trait,

(iv) the allele frequency distribution at the marker locus,

(v) the significance level α.

Testing the association of a single marker with the trait for large amounts of markers (up

to one million) with the model in (15) is problematic due to the multiple-testing problem.

Conservative corrections for the multiple-testing problem, such as the Bonferoni correction

do not take into account that the pairwise tests are not independent, since a pair of markers

is usually not in LE. Therefore, testing the association of haplotypes (instead of SNPs) with

the phenotype, or fitting of all markers simultaneously is usually a superior method. The

latter method has been applied successfully by Yang et al. (2010), who explained 45% of the

variance in human height. We will consider this method in more detail in the next chapter. It

has been proposed for genomic selection by Meuwissen et al. (2001) and has been successfully

applied ever since.

Finally, we note that missing information on population structure is a further severe

problem in GWAS. If not accounted for, population structure yields a significant increase in

false positives. If one has knowledge on the structure of the population, one can use mixed

models instead of linear models to account for it (compare Example 1 and Example 2).
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3 Genomic selection for single traits

A traditional way to use marker information for breeding is to perform GWAS (with the

model in (15)) and use the markers linked to beneficial genes for marker assistant selection. As

indicated in the previous section, a superior method would be to include all marker information

in one statistic. This idea was first explored by Meuwissen et al. (2001) and led to the concept

of genomic selection which we present in this section. Recent reviews on further developments

can be found in Lorenz et al. (2011), Hayes and Daetwyler (2013), Heslot et al. (2012), Hayes

et al. (2009a), and Mrode (2014).

The procedure of genomic selection requires a dense marker coverage of the whole genome.

Then, the genome is divided into chromosome segments to which a genomic value can be

assigned. Conceptually, genomic selection is performed in two steps. First, the genomic values

of chromosome segments are determined in a reference population. Second, genomic estimated

breeding values for selection candidates not in the reference population will be determined.

Here, we outline the methods for the first step by estimating effects of chromosome segments

based on phenotypic information from a single trait. Aspects of the second step are discussed

in Section 4.

Once the genomic values (gi) of chromosome segments have been estimated, the genomic

estimated breeding value (GEBV) of an individual is given by

GEBV =

m∑
i=1

Xigi, (16)

where m denotes the number of markers, gi = (gi1, . . . , giki)
T is the vector of genotypic effects

at marker i and Xi ∈M1,ki are entries of a design matrix which assigns markers to individuals.

The difficulty of estimating the gi in a reference population emerges from the fact that,

usually, we have many more markers than individuals. In the following we present four

different approaches to estimate the gi.

3.1 Least-squares estimation

In the least-squares (LS) estimation, marker effects are treated as fixed effects (cf. Section

2.2). The method proceeds in two steps.

First, we repeat the single marker regression from (15) in a group of n individuals. Based

on this analysis, we select the m most significant markers (out of the m̃ initial markers), where

m < n. This could be done by considering the log-likelihood of every marker, i.e., we take

17



the markers that satisfy

log(L(y|ê)) = −1

2

(
n log(σ̂2e) +

êT ê

σ̂2e

)
> α, 1 ≤ i ≤ m̃,

where log(.) denotes the natural logarithm, ê is an estimate for the vector of environmental

effects, σ̂2e = êT ê/(n−rank([1nXi])) is an estimate of the error variance, and α is a sufficiently

stringent significance level so that m < n.

In the second step, the effects of the non-significant markers are set to zero and a multiple

regression over all significant markers is performed to infer the gi = (gi1, . . . , giki)
T ∈Mki,1:

y = µ1n +

m∑
i=1

Xigi + e, (17)

where Xi = (Xiuv) ∈ Mn,ki . The model (17) is equivalent to a linear model of the form in

(7), i.e.,

y − µ1n = Xg + e, (18)

where

X =

 X111, . . . , X11k1 , . . . , Xi11, . . . , Xi1ki , . . . Xm11, . . . Xm1km
...

...
X1n1, . . . , X1nk1 , . . . , Xin1, . . . , Xinki , . . . Xmn1, . . . Xmnkm

 ∈Mn,k, (19a)

g = (g11, . . . , g1k1 , . . . , gi1, . . . , giki , . . . gm1, . . . gmkm)T ∈Mk,1, (19b)

and k =
∑m

i=1 ki. Therefore, the results derived for (7) can be applied. Some authors use the

notation of (18), whereas we stick to (17).

The procedure of LS exhibits two major problems. First, the choice of the significance

level α is problematic. It has to be stringent, since the the single marker regression requires

m < n. Otherwise the approach of LS cannot be performed. Further, due to multiple testing,

the effect sizes will usually be overestimated.

3.2 BLUP

Here, we treat the marker effects as random effects (cf. Section 2.2) and estimate them by

incorporating the mixed model (10) with X = 1n, and β = (µ, . . . , µ), wherefore Xβ = µ1n

and

y = µ1n +

m∑
i=1

Zigi + e (20a)

= µ1n + Zg + e, (20b)
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where Z or g are taken by merging the Zi or gi analogously to (19). We assume that the

marker effects are independently and identically normally distributed with variance σ2g = σ2gi

(1 ≤ i ≤ m), i.e., G = σ2gIm. Further, we assume that the residuals are independently and

identically normally distributed with variance σ2e , i.e., R = σ2eIn. We set λ = σ2e/σ
2
g and

obtain from (11) that (
µ̂
ĝ

)
=

(
1T
n1n 1T

nZ
ZT1n ZTZ + λIn

)−1(
1T
ny

ZTy

)
. (21)

In the following we give a short example which we adapted from Hayes and Daetwyler (2013).

Example 4. Let us consider five individuals and each individual has been genotyped for ten

biallelic markers with alleles A and a. The genotypes AA, Aa, and aa are encoded with 0, 1,

and 2 at each marker, respectively. We set ki = 1 and only estimate the (additive) effect of

allele a. The entry yi (component of y) gives the phenotypic value of the ith individual, gj

(component of g) denotes the effect of allele a at the jth marker, and zij (entry of Z) gives

the value of the jth marker at the ith individual. We choose the following numerical values

y =


0.19
1.23
0.86
1.23
0.45

 , Z =


0 0 0 0 0 0 1 2 0 2
1 0 0 1 1 1 2 1 0 1
1 0 0 1 0 0 1 1 1 1
1 1 1 1 0 1 2 1 1 1
0 1 1 1 1 1 2 1 0 1

 , λ = σ2e/σ
2
g = 1,

and obtain from (21) that

µ̂ = 0.47, ĝ = (0.29,−0.05,−0.05, 0.08,−0.02, 0.13, 0.13,−0.08, 0.11,−0.08)T . (22)

Therefore, the estimated effect of one copy of allele a at the first marker is 0.29, and so on. In

the following we use this information to predict the breeding value for two selection candidates.

We set Z̃ = (z̃ij), where z̃ij connects the jth marker and the ith selection candidate. Let us

assume that

Z̃ =

(
1 1 1 1 1 1 2 1 0 1
1 0 0 1 1 1 2 1 0 1

)
.

Then, equations (16) and (22) yield the GEBVs of the two selection candidates GEBV1 = 0.47

and GEBV2 = 0.57.

As mentioned in Section 2.2, σ2e and σ2g have to be inferred by independent methods; see

Lynch and Walsh (1998). Usually, the BLUP method performs better than LS, since multiple

testing and significance levels do not yield complications; see Section 4.
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Variations of the BLUP method have been proposed and are concerned with incorporating

different forms of regularizations to prevent overfitting. The most commonly used regulariza-

tion methods are the Tikhonov regularization (or ridge regression), the Lasso method, and the

elastic net method (see Ogutu et al. (2012) for a comparison). These methods yield different

estimators for µ̂ and ĝ by posing different penalizations on the marker effects. We note that

there exists a wide variety of possible regularizations, e.g., Schulz-Streeck and Piepho (2010)

proposed geostatistical methods where genetic distances are treated analogously to spatial

distances in geostatistics.

3.3 Bayesian method A

The following method shall relax the assumption on the distribution of marker effects made

by the BLUP method. There it was assumed that the effects of the markers are identically

(normally) distributed. For many traits there is considerable evidence that this is not true,

and that traits are often determined by a few loci with large effects and many with small

effects. The following Bayesian approach is accounting for these genetic architectures and

allows us to incorporate assumptions on the underlying genetics of the trait.

In the following we present a hierarchical model at two levels. We create one model at the

level of marker effects and a second model at the level of variances at each marker. The first

step is similar to BLUP. We assume that the marker effects at position j are independently

normally distributed with variance σ2gj
and infer µ and g from the model

y = µ1n + Zg + e. (23)

In contrast to Section 3.2 the variances for each segment j may differ, i.e., we do not assume

σ2gi
= σ2gj

for i 6= j. In order to estimate ĝi, we need some further information on these

variances. In contrast to the BLUP method where the σ2gi
were assumed to be known, here,

we infer the σ2gi
and the gi simultaneously.

In the second step, the distribution of the variances of marker effects is modeled by a

Bayesian approach (see Section 2.3). Following Meuwissen et al. (2001), we assume a scaled

inverted chi-square distribution as a prior for the distribution of variances of marker effects,

prior(σ2gi
) = χ−2(ν, S), (24)

where S is a scaling parameter and ν denotes the degrees of freedom. One can show that this

is a conjugate prior, i.e., that the resulting posterior distribution is also an inverted chi-square
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distribution if the data is normally distributed. It is given by

post(σ2gi
|gi) = χ−2(ν + ki, S + gT

i gi), (25)

where ki is the number of possible effects at marker i (if a single effect is estimated, we have

ki = 1).

The choice of the prior is in accordance with the results of Hayes and Goddard (2001),

who studied the distribution of marker effects. Meuwissen et al. (2001) used the parameters

v = 4.012 and S = 0.002, which were determined numerically to fit the mean and variance

of the prior to the simulated distribution of marker effects under mutation-drift balance. As

mentioned in Section 2.3, there is no such thing as a true prior but many choices could be

suitable; see Xu (2003) for the choice of a different prior.

We cannot use (25) directly to infer σ2gi
, since the σ2gi

depend on the unknown effects gi

and vice versa. Therefore, Meuwissen et al. (2001) used Gibbs sampling to estimate gi and

σ2gi
from (23) and (25). In order to apply the algorithm (see Section 2.3), we further assume

that the prior distribution of the error variance (assuming σ2e = σ2ei for 1 ≤ i ≤ n) is given by

prior(σ2e) = χ−2(−2, 0), (26)

which yields the posterior

post(σ2e |ei) = χ−2(n− 2, eTi ei). (27)

The algorithm proceeds as follows:

1. We choose initial values for the gi = (gi1, . . . , giki)
T and µ.

2. We sample the σ2gi
from (25).

3. Given g = (g1, . . . ,gm)T and µ, we calculate e = y−Xg−1n and sample σ2e from (27).

4. We sample the mean µ from the normal distribution

N
(

1T
ny − 1T

nXg

n
;
σ2e
n

)
, (28)

which includes the information on σ2e from step three.

5. Given the values for µ, σ2e , and σ2gi
, we sample the effects gi from the normal distribution

N

(
XT

ijy −XT
ijXg̃ij −XT

ij1nµ

XT
ijXij + λi

;
σ2e

XT
ijXij + λi

)
, (29)
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where Xij is the column of X corresponding the jth effect at marker i, g̃ij is equal to g

except that the jth effect at marker i is set to zero, and λi = σ2e/σ
2
gi

. We note that the

distributions (28) and (29) are of the form (14).

One repeats these steps for a large number of cycles until the sampled distributions of gi and

σ2gi
have converged. In Meuwissen et al. (2001) the algorithm ran for 10000 cycles, and the

first 1000 cycles were discarded as a burn in.

3.4 Bayesian method B

The following adaptation of Bayesian method A considers the fact that in reality there are

many markers with no genetic variance. The prior (24) in Bayesian method A, does not have

a peak at σ2gi
= 0, but instead is infinitesimally small. We adapt the Bayesian method A by

using the following prior:

σ2gi
= 0, with probability π, (30a)

σ2gi
= χ−2(ν, S), with probability 1− π. (30b)

The Gibbs sampling algorithm as described in Section 3.3 can not be used with the prior (30),

since the sampling of σ2gi
= 0 from (25) is impossible if gT

i gi > 0. Therefore, the Metropolis-

Hasting algorithm is proposed for sampling σ2gi
and gi simultaneously; see Meuwissen et al.

(2001) for details.

Meuwissen et al. (2001) used the parameters v = 4.234 and S = 0.0429 in (30), which were

determined numerically to fit the mean and variance of the simulated distribution of marker

effects conditioned on σ2gi
> 0. Assuming mutation-drift balance at all markers, 1 − π can

be determined as the expected proportion of segregating QTLs, using classical results from

theoretical population genetics (Appendix of Meuwissen et al. 2001).

Further developments

For practical applications it may not be very accurate to infer the parameters ν, S, and most

importantly π from neutrality, since background selection or demographic bottlenecks may

have influenced these parameters. Recent studies have taken that into account and improved

various aspects of Bayesian method A and B.

Jia and Jannink (2012) introduced an version of the Metropolis-Hasting algorithm which

re-estimates ν and S from the data rather than considering it to be fixed. Verbyla et al.

(2009) combined Bayesian method B with stochastic search variable selection (SSVS) which
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is an efficient algorithm for identifying SNPs with positive effects and, therefore, implicitly

estimates π. A different approach was chosen by Habier et al. (2011) whose models, Bayesian

method Cπ and Bayesian method Dπ, estimate π together with the variance of segregating

markers. These models perform slightly better than the Bayesian method B, but their main

advantage is the increase in computational performance.

3.5 Relation to standard animal models

In the following we elucidate the connection between the above models and the classical animal

model

y = µ1n + Z̃a + e, (31)

where a = (ai) and ai is the additive genetic effect of individual i. Similarly to (20), the model

(31) is a special case of (10), but now the vector of random effects consists of phenotypic

additive effects instead of marker effects. Incorporating the standard assumption on the

variance of residual effects Cov(e) = R = σ2eIn and recalling (12), the solution of (31)

depends only on the covariance matrix Cov(a) of additive effects.

It can be easily shown that the additive genetic covariance between individuals i and j is

given by 2θijσ
2
a, where θij is the probability that a particular allele in individual i is identical

by descent to a particular allele in individual j. Therefore, the covariance of additive effects

in the animal model (31) is given by

Cov(a) = σ2aA, where A = (2θij).

The matrix A denotes the classical relationship matrix which can be determined from pedigree

information.

Following Habier et al. (2007) we show that the coefficients of genetic relationships (given

by A) are closely related to marker information (given by the incidence matrix X in (18) or

Z in (20) and (23)). Let Z denote the incidence matrix and zTi the ith row of Z. Then the

element ij of ZZT is given by zTi zj . Treating zTi zj as a random variable, its expected value

is given by

E[zTi zj ] =

m∑
l=1

E[zilzjl] =

m∑
l=1

Cov[zilzjl] + E[zil] E[zjl],

where m is the number of markers. Defining the zil ∈ {0, 1, 2} as in Example 4, we obtain that

E[zil] = 2pl, where pl is the allele frequency at the lth locus. Further, we have Cov[zilzjl] =
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4θijpl(1− pl) and obtain

E[zTi zj ] = 4θij

m∑
l=1

pl(1− pl) + 4
m∑
l=1

p2l .

Consequently,

E[ZZT ] = A

(
2

m∑
l=1

pl(1− pl)

)
+ 4 1n1T

n

m∑
l=1

p2l ,

hence E[ZZT ] is proportional to A modulo a constant.

Since the matrix E[ZZT ] is proportional to the covariance matrix of marker effects G =

Cov(g), the matrix G is proportional to A modulo a constant. If the number of markers

approaches infinity, ZZT converges to E[ZZT ]. Therefore, for infinitely many markers the

BLUP-model (20) is equivalent to the classical animal model (31) (the constant is incorporated

into the mean µ).

This result holds independently of the LD between markers and QTLs. If markers are

in LD with QTLs, the matrix ZZT /
∑m

l=1 2pl(1− pl) includes variation in relationships (e.g.,

between full sibs) and, therefore, provides more information about the covariance between

relatives than A. Also for the least squares method and the Bayesian methods, the incidence

matrix Z reflects genetic relationships, wherefore the accuracy of GEBVs is positive even if

all markers are in LE with the QTLs.
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4 Accuracy of methods in genomic selection

Here, we present and review various investigations which compare the accuracy of the methods

presented in Section 3 under different scenarios. Except for the discussion in Section 4.4, the

results assume dense marker arrays rather than full sequence data.

4.1 Results from Meuwissen et al. (2001)

In Meuwissen et al. (2001) the four methods presented in Section 3 were compared by applying

them to simulated data. The simulation model was set up as follows. A finite neutrally

evolving population with effective population size N = 100 evolved until it reached mutation-

drift balance. The genome had a length of 1000 centi-Morgan (cM) and a marker each cM. In

the middle of each pair of markers a QTL was located. The mutation rates at the QTLs and

at the marker loci were u1 = 2.5 ∗ 10−5 and u2 = 2.5 ∗ 10−3, respectively. Mutational effects

were drawn from a gamma distribution with shape parameter β = 0.4 and scale parameter

1.66. The heritability of the trait was fixed to h2 = 0.5.

The population was simulated for 1000 generations, after which it reached mutation-

drift balance. In generations 1001 and 1002 the population size was expanded to 2000, and

genotypic and phenotypic values were recorded. The individuals from generation 1003 were

supposed to be juveniles (not having phenotypic records) whose breeding values were estimated

with the methods from Section 3. The true breeding value (TBV) of each individual was

recorded in the simulation. Table 1 shows the correlation rBV of the TBV and the GEBV as

well as the regression bBV of the TBV on the GEBV. Both, rBV and bBV, are measures for

the accuracy of genomic selection. The regression bBV would be equals 1 if the estimations

were unbiased.

rBV bBV

LS 0.318± 0.018 0.285± 0.024
BLUP 0.732± 0.030 0.896± 0.045
Bayesian method A 0.798 0.827
Bayesian method B 0.848± 0.012 0.946± 0.018

Table 1: The correlation rBV of the TBV and the GEBV and the regression bBV of the TBV
on the GEBV for the different methods presented in Section 3. The means and standard
deviations were taken over five replicates (which is rather low). For BLUP, the value σ2gi

=
0.0028 was used, whereas 1 − π = 0.053 was used in Bayesian method B. (The values are
taken from Table 2 in Meuwissen et al. (2001).)
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The LS method performs most poorly, which is probably due to the poor detection of

QTLs (cf. Figure 1 in Meuwissen et al. 2001) and the high false positive rate. BLUP and the

Bayesian methods resulted in a rather high accuracy but the Bayesian methods performed

slightly better.

We recall that BLUP assumes the same variance of the distribution of marker effects at

all markers, whereas the Bayesian methods incorporate different variances at each marker.

Therefore, it seems surprising that in despite of these very different assumptions, BLUP,

Bayesian method A and Bayesian method B exhibit rather similar performance.

In some sense, the results in Table 1 give the optimal accuracy of the methods, because

parameters such as the mutation rate, the variance of genetic and environmental effects could

be obtained from the simulation design, whereas in practical applications they have to be

estimated.

4.2 The methods with real data

For real data, even smaller differences between the accuracy of BLUP and the accuracy of

the Bayesian methods than in Table 1 are often observed. For example, Verbyla et al. (2009)

compared BLUP, Bayesian method A and a variant of Bayesian method B (SSVS) for the

relative and absolute protein and fat content of meat in cattle. Approximately 1500 bulls

were genotyped for 39000 markers and their phenotype was the average performance of their

offspring for the trait. The GEBVs of the bulls were compared with the phenotypically

evaluated breeding values (PEBVs). The results are displayed in Table 2.

Protein kg Fat kg Protein % Fat %

rBV bBV rBV bBV rBV bBV rBV bBV

BLUP 0.60 1.06 0.56 0.99 0.66 0.89 0.65 0.93
Bayesian method A 0.57 1 0.53 0.86 0.64 1 0.72 0.86
Bayesian method B (SSVS) 0.58 0.99 0.56 0.9 0.67 0.97 0.74 0.87

Table 2: The correlation rBV of the PEBV and the GEBV and the regression bBV of the
PEBV on the GEBV for the different methods for real data from 1800 bulls. (The values are
taken from Table 3 in Verbyla et al. (2009).)

The relative fat content is the trait with the highest deviations between different methods.

This is in accordance with evidence that this trait is determined mainly by one mutation with

large effect, which contradicts the assumption of BLUP that all marker effects are identically

distributed. Therefore, BLUP shrinks the effect of this mutation which results in a loss of
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accuracy. The Bayesian methods are more flexible and can capture the concentrated genetic

architecture more accurately.

4.3 Factors determining the accuracy

Above we have seen that the methods presented in Section 3 perform rather similarly, both in

simulations and with real data. In this section we will explore the underlying reason, but also

discuss many general aspects determining the performance of all methods. The accuracy of

genomic selection may be defined in several ways. As in Section 3, here, we measure accuracy

by the correlation of the true to the estimated breeding value rBV.

Although we will not give further details on other measures of accuracy, we note that in

praxis the true breeding value is unknown (it can only be determined in simulation studies)

and, therefore, our definition of rBV may be of limited use. Then, the definition of accu-

racy depends on the chosen predicant which may be individual phenotypic values or average

offspring performance, or something else.

Next, we discuss the influence of the following factors on the accuracy of genomic selection:

(i) the level of LD between markers and QTLs,

(ii) the number of markers capturing genetic relationships,

(iii) the number of phenotyped individuals in the reference population and the heritability

of the trait,

(iv) the genetic architecture of the trait,

(v) the divergence between breeding and reference population, and

(vi) the time between estimation and application of marker effects.

(i) Linkage disequilibrium between markers and QTLs

In order to obtain accurate genomic breeding values at least one marker shall be in LD with

each QTL. The higher the average LD along the genome, the less markers are required.

For the results shown in Table 1, one marker was positioned at each cM (see text above

Table 1). Table 3 shows the change in accuracy if there would have been marker distances

of 2cM and 4cM. For BLUP and Bayesian method B, as expected, the accuracy declines as

the number of markers decreases. In the LS method the accuracy slightly increases with less
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markers, which is probably due to the fact that less effects have to be estimated with less

markers, which reduces the problem of overfitting.

Table 3 and Table 5 do not show results for Bayesian method A, since Bayesian method

A has high computational costs and is supposed to perform worse than Bayesian method B

in any case.

Marker Spacing (cM)

1 2 4

LS 0.318 0.354 0.363
BLUP 0.732 0.708 0.668

Bayesian method B 0.848 0.810 0.737

Table 3: The accuracy of genomic selection (measured by rBV) for different marker spacings
in the simulation study of Meuwissen et al. (2001) which was described in Section 4.1. For
BLUP with the marker spacings of 1cM, 2cM, and 4cM, the values σ2g = 0.0028, σ2g = 0.0056,
and σ2g = 0.0112 were used for the genetic variances, respectively. For Bayesian method B,
1− π = 0.053, 1− π = 0.106, and 1− π = 0.212 were used for the different marker spacings.
(The values are taken from Table 4 in Meuwissen et al. (2001).)

Table 3 shows that high accuracies can be obtained if a marker is positioned every cM,

i.e., two neighbored markers recombine at rate c = 0.01. Then, the expected r2 (see eq.

(3)) between two neighbored markers is E[r2] = 0.2 (assuming an effective population size

of N = 100 as in Meuwissen et al. (2001); see Section 4.1). This is in accordance with the

findings of Calus et al. (2008), who showed that an average value of r2 ≈ 0.2 is sufficient to

predict genomic breeding values accurately.

In Meuwissen et al. (2001) the prediction individuals were offspring of the training indi-

viduals. Meuwissen (2009) showed that that if the prediction individuals and the training

individuals are unrelated, the number of required markers for accurate genomic predictions is

much higher. It is given by 10NL, where L is the length of the genome in Morgans. Therefore,

with N = 100 and L = 10 (as assumed in Meuwissen et al. 2001) ten markers per cM would

be necessary if the prediction individuals and the training individuals were unrelated.

In Holstein Friesian cattle the effective population size is N ≈ 100 and the length of the

genome is L ≈ 30. Following Meuwissen (2009), 10NL ≈ 30000 markers should be sufficient

to predict genomic breeding values accurately. Complementary, we could aim for E[r2] = 0.2

between neighbored markers, following the result of Calus et al. (2008). In Holstein Friesian

cattle a r2 of 0.2 occurs every 100kb (kilobases). Since the genome has an approximate

length of 3000Mb (megabases), we also conclude that 30000 markers are required for accurate
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genomic predictions.

(ii) The number of markers and genetic relationships

As pointed out in Section 3.5, a higher number of markers does not only increase the proba-

bility of associations with QTLs, but also captures the genetic relationships more accurately.

The different methods differ in their capability to capture these relationships, since the

fitted number of markers in LE varies between the methods. Habier et al. (2007) analyzed

the average number of markers in LE which are captured by the models (Table 4). The least

squares method fits only a few markers and captures genetic relationships the least. Bayesian

method B includes more markers in LE, but much less than the BLUP method which captures

all markers. We note that the results for Bayesian method B depend on the choice of the

parameter 1− π, i.e., the proportion of markers which are assumed to have positive variance.

Number of markers in LE

100 1000 2000

LS 1.9± 1.0 7.4± 2.8 11.0± 3.0
BLUP 100 1000 2000

Bayesian method B 12.6± 2.0 20.3± 3.1 21.4± 2.3

Table 4: The average number of markers in LE captured by the methods LS, BLUP, and
Bayesian method B. The standard deviation was obtained from 96 replicates. For Bayesian
method B the parameter 1 − π was set to the number of QTLs (ten QTLs were assumed)
divided by the number of markers in LE, i.e., 1− π = 0.1, 1− π = 0.01, and 1− π = 0.02 in
the left, middle, and right column, respectively. (The values are taken from Table 2 in Habier
et al. (2007).)

Whereas the BLUP method reflects the relationships in the population most accurately

(Table 4), the overall accuracy is often highest with the Bayesian methods (Table 3), since

the Bayesian methods utilize information on LD better. Zhong et al. (2009) found that there

is usually a trade-off between the capability of models in capturing the LD between markers

and QTLs, and their capability of capturing the genetic relationships.

(iii) The number of phenotyped individuals and the heritability of the trait

How does the number of phenotypic records in the initial experiment influence the accuracy

of GEBV? The results shown in Table 1 assume 2000 phenotypic records. Table 5 shows

that the accuracy reduces by 67%, 21%, and 17% for the methods LS, BLUP, and Bayesian

method B, respectively, if the number of records decreases from 2000 to 500.
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Phenotypic Records

500 1000 2000

LS 0.124 0.204 0.318
BLUP 0.579 0.659 0.732

Bayesian method B 0.708 0.787 0.848

Table 5: The accuracy of genomic selection (measured by rBV) for different numbers of phe-
notypic records in the simulation study of Meuwissen et al. (2001). We recall from Section
4.1 that h2 = 0.5. (The values are taken from Table 3 in Meuwissen et al. (2001).)

In Meuwissen et al. (2001) and Table 5 the heritability of the trait was set to h2 = 0.5. In a

more recent study, Goddard (2009) derived analytical results determining the influence of the

heritability on the accuracy in dependence on the number of phenotypic records. Assuming

that the QTL effects are normally distributed and that the number of QTLs Q is equal to the

number of independent chromosome segments Me, he derived that with BLUP

rBV =

√
1− λ

2n
√
a

log(1 + a+ 2
√
a)

1 + a− 2
√
a

, (32a)

where

a = 1 +
2λ

n
, λ =

Mek

h2
, k =

1

log(2N)
, Me = Q = 2NL, (32b)

h is the heritability of the trait (6), n is the number of phenotyped individuals in the reference

population, N is the effective population size in the breeding population, and L is the length

of the genome in Morgans.

Equation (32) shows that large reference populations are necessary for high accuracy if the

heritability of the trait is small; see Figure 1. Although (32) is based on the assumptions of

normally distributed QTL effects, (32) predicts the accuracy of genomic selection well, both

with simulated data (Hayes et al. 2009a) and with real data (Hayes et al. 2009b).
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Figure 1: The number of phenotypic records necessary to achieve an accuracy of 0.6 (M) or 0.8
(�) for the GEBV. The plot is based on equation (32), which assumes that the QTL effects
are normally distributed with the same variance at all positions, i.e., the BLUP method. The
population size was N = 1000 and L = 29. (The Figure is taken from Hayes et al. (2009a).)

(iv) The genetic architecture of the trait

Since different assumptions on the genetic architecture of the trait are made in BLUP and the

Bayesian models, the genetic architecture will influence the relative accuracy of the methods.

In the BLUP model we assume that the effects at all markers are normally distributed with the

same variance (Section 3.2), whereas the Bayesian methods are more flexible by incorporating

different distributions of effect sizes at markers (Sections 3.3 and 3.4). In the following we

elucidate the impact of these assumptions.

Daetwyler et al. (2010) used an approach similar to Hayes et al. (2009a), for determining

the accuracy of BLUP and Bayesian method B. For the BLUP model they found that

rBV =

√
nh2

nh2 +Me
, (33)

where Me is the number of independent chromosome segments. In practical applications Me

is hard to determine. Incorporating different assumptions on the coalescent process, Goddard

(2009) and Hayes et al. (2009b) suggested that 2NL
log(4NL) ≤ Me ≤ 2NL. The numerical study

of Daetwyler et al. (2010) suggests that 2NL
log(4NL) is the better approximation (Table 5 in

Daetwyler et al. 2010). If Me ≈ 2NL, equation (33) approximates (32). An important

conclusion from (33) is that the accuracy in BLUP does not depend on the number of QTLs

Q (Figure 2). In contrast, it was assumed in (32) that Q = Me.
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Daetwyler et al. (2010) conjectured that if Q is sufficiently large, the accuracy of Bayesian

method B should converge to the accuracy of BLUP. Indeed, they could show that for Bayesian

method B

rBV =

√
nh2

nh2 + min(Q,Me)
. (34)

Therefore, the Bayesian method performs better than BLUP if and only if if the number of

QTLs is smaller than the number of independent chromosome segments, i.e., Q < Me (Figure

2).

The validity of the analytical approximations (33) and (34) was tested with simulations.

It was confirmed that the accuracy of BLUP is independent of the number of QTLs Q (Figure

2). For Bayesian method B the accuracy is highest with low Q and decreases as Q increases.

For large Q the accuracy with Bayesian method B reaches a plateau which is a bit lower than

the accuracy of BLUP. (Equations (33) and (34) predict the same accuracy for Q ≥Me.) All

lines in Figure 2 increase with the number of phenotypic records n and the heritability h2

(results not shown). The critical number of QTLs where the accuracy of BLUP and Bayesian

method B are identical (at the intersections of solid and dashed lines in Figure 2) also increases

with n, N , and h2. If Q is very large (Q � Me), the difference in accuracy between the two

methods decreases to zero as n goes to infinity.

Figure 2: The accuracy of genomic selection rBV for the BLUP model (empty symbols) and
Bayesian method B (full symbols). Heritabilities are h2 = 0.1 (2), h2 = 0.3 (4), and
h2 = 0.5 (♦). The number of independent chromosome segments was Me = 1887. The
parameter π for Bayesian method B was simply inferred from the simulation. (The Figure is
taken from Daetwyler et al. (2010).)
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(v) Genomic selection across breeds

Genomic selection is always applied to populations different to the reference population in

which the marker effects were estimated. Often, the breeding population even origins from

different lines or breeds than the reference population. Furthermore, the age and the envi-

ronment may differ between the two populations.

The accuracy of genomic selection relies on the LD between the markers and the QTLs.

Increasing divergence between the two populations reduces the probability that predictions

on LD persist. One possibility to measure the divergence between populations is the average

correlation of LD between breeds, which will increase with an increasing number of markers.

De Roos et al. (2008) investigated the minimum number of markers between cattle breeds

to obtain an average correlations of 0.9 between r2 values. For example, they found that

between Jersey and Angus cattle 300 000 markers are necessary. We note that this is a factor

ten higher than the estimation we presented in (i).

A further problem is that the effect sizes of QTLs may differ between breeds. Recently, a

series of examples has been documented where the number of QTLs and their effects differed

between Holstein and Jersey cattle (e.g., Hayes et al. 2009a). Compensating for that, the idea

was brought up to use multi-breed reference populations in breeding programs (Pryce et al.

2011; Erbe et al. 2012). However, these studies found very limited increase in the accuracy of

genomic predictions when multi-breed reference populations were used instead of single-breed

reference populations.

Finally, we note that the presence of genotype by environment interactions may limit

genomic predictions across breeds.

(vi) How often shall the breeding value be re-estimated?

Linkage disequilibrium between the markers and the actual QTLs decays over time due to

recombination; see equation (2). Therefore, it is necessary to re-estimate the effect of each

marker after some generations. If a marker would coincide with a QTL this would not be

necessary for short evolutionary timescales. With an increasing number of markers, the time

period between re-estimations can be reduced.

In the study of Meuwissen et al. (2001) it was shown that the accuracy of estimated

breeding values was strongly reduced after five generations. It was suggested to re-estimate

breeding values every third generation (see Table 6). Whereas Table 6 shows the decay in

accuracy only for Bayesian method B, it was shown in Habier et al. (2007) that the decay in

accuracy is faster with BLUP than with the Bayesian methods.
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Generation rBV

1003 0.848
1004 0.804
1005 0.768
1006 0.758
1007 0.734
1008 0.718

Table 6: Accuracy (measured by rBV) for successive generations after the estimation of breed-
ing values in generation 1002. Results are based on the simulation study described in Section
4.1 for Bayesian method B. (The values are taken from Table 5 in Meuwissen et al. (2001).)

In De Roos et al. (2008) this issue was investigated for real data from Holstein bulls

with 20000 markers. The authors found that after two generations, accuracy is reduced by a

factor of 0.1, which is consistent with Table 6. Muir (2007) showed that the accuracy persists

longer if the reference population is genotyped for more generations rather than for a single

generation.

4.4 Full sequence data vs. marker data

We have seen that the accuracy of genomic selection increases with the number of markers,

because an increasing number of markers captures genetic relationships and the LD more

accurately. However, it is not immediately clear, whether full sequence data will further

increase the accuracy compared to SNP arrays which already contain sufficiently many markers

so that several SNPs are in high LD with each QTL.

Meuwissen and Goddard (2010) tackled this question with simulations and revealed the

following aspects which encourage the use of full sequence data compared to high density

SNP arrays. First, they found that accuracy increases approximately linearly with log(m),

i.e., with the log of the number of markers. It is a pity that this conclusion was based on

simulations for m ≤ 33000, because recent SNP arrays contain up to 106 markers. Therefore,

further investigations on the dependence of accuracy on m would be desirable if m is very

large.

Second, with full sequence data it is much more likely than for SNP arrays that causative

mutations are included in the data set. If a causative mutation was included in the analyzed

data, accuracy increased by 5% (Meuwissen and Goddard 2010). More importantly, the

inclusion of the causative mutation prevents the rapid decline in accuracy over the generations

after the estimation of marker effects (cf. Table 6).

In the simulations of Meuwissen and Goddard (2010), who assumed 3 or 30 QTLs, Bayesian
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method B performed almost twice as good as BLUP for full sequence data. Although we

already know from above (e.g., Figure 2) that Bayesian method B outperforms BLUP if

the number of QTLs is low, the relative difference between Bayesian method B and BLUP

increases as the marker density increases. The reason is that with an increasing number of

markers, the proportion of markers accounting for no genetic variance decreases. By modifying

the parameter π, Bayesian method B is able to adapt to an increasing number of markers,

whereas BLUP cannot.
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5 Genomic selection for multiple traits

In Section 3 we presented methods for the estimation of GEBVs in single traits. Applying

these methods separately to a set of traits one could apply classical index selection to select for

multiple traits. However, many traits are genetically correlated and it may be more efficient to

determine a GEBV for multiple traits simultaneously. Multiple-trait models for this purpose

have been investigated only very recently by Jia and Jannink (2012), Guo et al. (2014), Calus

and Veerkamp (2011), and Hayashi and Iwata (2013). (Also in the context of GWAS similar

approaches have been used lately; see Korte et al. (2012) and Segura et al. (2012)).

5.1 Models

We introduce a multivariate version of BLUP (cf. Section 3.2) and a multivariate version of

Bayesian method A (cf. Section 3.3). For notational simplicity, we assume that each marker

i has only a single effect, i.e., ki = 1.

Multivariate BLUP

Let n be the number of phenotypic records per trait (we assume that n is independent of the

trait) and let o be the number of traits. Furthermore, let y(j) be the vector of observations

at trait j and let y = (y(1), . . . ,y(o))T be the full vector of observations. Similarly to (20), we

assume that each trait j follows the model

y(j) = µ(j)1n + Z(j)g(j) + e(j), 1 ≤ j ≤ o, (35)

wherefore
y(1)

y(2)

...

y(o)

 =


1n 0 . . . 0
0 1n . . . 0
...

...
. . .

...
0 0 . . . 1n



µ(1)

µ(2)

...

µ(o)

+


Z(1) 0 . . . 0

0 Z(2) . . . 0
...

...
. . .

...

0 0 . . . Z(o)




g(1)

g(2)

...

g(o)

+


e(1)

e(2)

...

e(o)

 . (36)

In the following, we analyze the covariance matrices R ∈ Mno,no and G ∈ Mmo,mo of envi-

ronmental and genetic effects, respectively, by incorporating commonly used assumptions of

BLUP (m denotes the number of markers).

We assume that the covariances of environmental effects between individuals are indepen-

dent of the trait and are given by the matrix R̃ ∈ Mn,n. Let e(ij) denote the environmental
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covariance between trait i and j within an individual and Σe = (e(ij)) ∈Mo,o. Then

R = R̃⊗Σe =


R̃e(11) R̃e(12) . . . R̃e(1o)

R̃e(21) R̃e(22) . . . R̃e(2o)

...
...

. . .
...

R̃e(o1) R̃e(o2) . . . R̃e(oo)

 ,

where ⊗ denotes the Kronecker product.

Similarly, we assume that the covariances of marker effects (relationships) between indi-

viduals are independent of the trait and are given by the matrix G̃ ∈ Mm,m. With c(ij)

we denote the covariance of breeding values between trait i and j within an individual,

Σg = (c(ij)) ∈Mo,o (cf. Section 2.1). Then,

G = G̃⊗Σg =


G̃c(11) G̃c(12) . . . G̃c(1o)

G̃c(21) G̃c(22) . . . G̃c(2o)

...
...

. . .
...

G̃c(o1) G̃c(o2) . . . G̃c(oo)

 . (37)

With these considerations and taking into account that (A ⊗ B)−1 = A−1 ⊗ B−1, the

solution of (36) is easily obtained from (11). As in the univariate case, it is usually assumed

for (36) that the environmental and genetic effects are independently and identically normally

distributed, i.e., R̃ = σ2eIn and G̃ = σ2gIm.

Multivariate Bayesian method A

Here, we outline the multivariate Bayesian method A following the presentation of Jia and

Jannink (2012). The model is similar to the univariate case, wherefore we proceed in close

analogy to Section 3.3.

Instead of (23) we use the multivariate model (36). We denote the vector of effects of

marker i on the o traits with gi = (g
(1)
i , . . . , g

(o)
i ) ∈ M1,o and assume that the marker effects

at position i are independently (multivariate) normally distributed with covariance matrix

Σgi ∈ Mo,o. As in the univariate Bayesian approach, we allow for Σgi 6= Σgj if i 6= j which

is ignored in BLUP.

The prior distribution of the covariance matrix of marker substitution effects Σgi is sup-

posed to be the inverse of the multivariate version of the χ2-distribution, i.e., the inverse of

the Wishart distribution. Thus, instead of (24), we have

prior(Σgi) = inv-Wis(ν,S), (38)
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where ν denotes the degrees of freedom and S ∈Mo,o is a positive definite scale matrix. The

multivariate version of the conditional distribution (25) is given by

post(Σgi |gi) = inv-Wis(ν + 1,S + gT
i gi),

where we assumed that each marker i has only a single effect (ki = 1). Concerning the

environmental effects, (26) generalizes to

prior(Σe) = inv-Wis(−2,0),

where 0 ∈Mo,o in the zero matrix. This yields the conditional distribution

post(Σe|e) = inv-Wis(n− 2, eTe),

where e = (e(1), . . . , e(o)) ∈Mn,o.

A detailed description of the multivariate sampling algorithm is given in the Appendix of

Jia and Jannink (2012). Note that the algorithm in Jia and Jannink (2012) also samples ν

and S whereas Meuwissen et al. (2001) and our presentation consider the parameters to be

fixed.

The generalization to the multivariate case of Bayesian method B (and its variants) or

Bayesian method Cπ is similarly; see Jia and Jannink (2012) for a short presentation.

5.2 Accuracy compared to single-trait methods

Jia and Jannink (2012) compared the accuracy of single-trait models (STMs) to the accuracy

of multi-trait models (MTMs) using simulated data. The genome had seven chromosomes

(150cM each) with 5000 SNPs. Out of those SNPs, 20 or 200 QTLs were selected at random.

All QTLs affected two traits and were assumed to be pleiotropic. The effects of the QTLs were

drawn from a bivariate normal distribution with correlation 0.5. Trait I had low heritability,

whereas trait II had high heritability.

A univariate and multivariate version of the pedigree-BLUP model (31), the genomic-

BLUP model (20)(36), Bayesian method A, and Bayesian method Cπ (see Section 3.4) was

analyzed: The MTMs performe much better than the STMs at trait I (low heritability) if

the trait is determined by 20 QTLs (instead of 200). Then, the accuracy at trait I increases

from the STMs to the MTMs by 5%, 4%, 22%, and 36%, in the pedigree-BLUP model, the

genomic BLUP model, Bayesian method A, and Bayesian method Cπ, respectively (Figure

3a). However, the accuracies of the STMs and the MTMs at trait II (high heritability) are

rather similar (Figure 3b,c). Furthermore, if 200 QTLs determine the traits, the prediction
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accuracy of the STMs and the MTMs are almost the same (Figure 3c,d). Finally, we note

that the accuracy increases from the pedigree-BLUP model to the genomic BLUP model to

Bayesian method A and to Bayesian method Cπ if there is a low number of QTLs (Figure

3a,b), which is in accordance with our findings from Section 4.3(iv). If a large number of

QTLs determines the trait, the genomic BLUP model performs best (Figure 3c,d).

Figure 3: The STMs (gray) and the MTMs (black) are compared for two correlated traits
with correlation factor 0.5 and different numbers of QTLs, i.e., different genetic architectures.
(The Figure is taken from Jia and Jannink (2012).)

Jia and Jannink (2012) mention that the performance of the MTMs was slightly inferior to

the performance of the STMs if the two traits were uncorrelated. The authors think that this

arises from the sampling process in the training population, which may suggest correlations

between traits where there are none. Similar issues can also occur if the traits are correlated;

see Figure 3c where the MTM performed slightly worse than the STM in Bayesian method A.

We note that the results in Figure 3 for Bayesian method A were generated with a version

of the method which is slightly different to the one presented in Section 3.3 and Section 5.1.

For the results in Figure 3 the shape and scale parameter ν and S of the prior distribution

(38) were assumed to be unknown. Therefore, they were sampled in the Metropolis-Hasting

algorithm which slightly improved Bayesian method A (see Appendix of Jia and Jannink

2012).
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The influence of heritability

If the heritability at trait I is low (h2 = 0.1 in Table 7), higher heritabilities at trait II increase

the accuracy of GEBVs at trait I. However, if the heritability of trait II is high (h2 = 0.8

in Table 7), an increase of heritability at trait I does barely increase the accuracy at trait

II. The results in Table 7 were obtained for the MTMs with Bayesian method Cπ. However,

qualitatively, the conclusions also hold for the other models.

Heritability rBV

Trait I Trait II Trait I Trait II

0.1 0.5 0.63± 0.10 0.86± 0.05
0.1 0.8 0.70± 0.08 0.94± 0.02
0.5 0.8 0.89± 0.04 0.93± 0.03
0.8 0.8 0.93± 0.03 0.94± 0.03

Table 7: The accuracy of the multivariate Bayesian method Cπ for different heritabilities at
trait I and trait II. The accuracy of the STM for trait I with h2 = 0.1 in this simulation was
0.49. The genetic correlation between the traits was 0.5. (The Table is obtained from Table
2 in Jia and Jannink (2012).)

The influence of correlations between traits

As the genetic correlation between the traits increases, the accuracy increases for trait I (low

heritability), whereas the accuracy at trait II (high heritability) is barely affected (Figure 4).

Figure 4: The accuracy of trait I (N) and trait II (•) as a function of the genetic correlation
for the multivariate Bayesian method Cπ. The heritabilities at trait I and trait II were set to
h2 = 0.1 and h2 = 0.5, respectively. (The Figure is taken from Jia and Jannink (2012).)
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The consequences of missing phenotypic records

Guo et al. (2014) compared the accuracy of the single-trait BLUP model (20) with the accuracy

of the multi-trait BLUP model (36) with two traits. To reflect the common practical problem

of missing phenotypic records, the authors considered three scenarios with and without missing

phenotypic data: (i) no missing data, (ii) 90% missing data for trait I, (iii) 90% missing data

for trait II.

Trait I had high heritability (h2 = 0.3), whereas trait II had low heritability (h2 = 0.05).

A genome consisting of five chromosomes (100 cM each) with 5000 biallelic SNPs at distances

of 0.1cM was simulated. Three hundred randomly located QTLs were assumed and divided

randomly into three groups: A hundred QTLs affected only trait I, 100 affected only trait

II, and 100 affected both traits. The latter pleiotropic QTLs were assumed to have the same

effect on both traits, wherefore the traits were correlated with factor 0.5. As in Meuwissen

et al. (2001) the QTL effects were drawn from a Gamma distribution but slightly different

shape parameters were assumed.

The main finding of Guo et al. (2014) was that the MTMs gave more accurate GEBVs than

the STMs for the trait with missing phenotypic records (Table 8). When no data was missing,

Table 8 shows barely an increase in accuracy when switching from the STM to the MTM,

even for the low heritability trait. This is in contrast to the results from Jia and Jannink

(2012) displayed in Figure 3a. One reason may be that the two authors assumed different

genetic architectures. In contrast to Guo et al. (2014), Jia and Jannink (2012) assumed that

all QTLs affected all traits.

Trait Data rBV of the STM rBV of the MTM

I No missing data 0.873± 0.002 0.874± 0.001
I Missing data for trait I 0.473± 0.008 0.616± 0.004
II No missing data 0.723± 0.006 0.725± 0.001
II Missing data for trait II 0.338± 0.013 0.554± 0.009

Table 8: The accuracy of the univariate and multivariate BLUP model for two traits in the
study of Guo et al. (2014). Heritability for trait I and trait II were h2 = 0.3 and h2 = 0.05,
respectively, and the correlation between the traits was 0.5. (The Table is obtained from
Table 2 in Guo et al. (2014).)

Real data

A few authors have applied MTMs to real data. Jia and Jannink (2012) considered two

disease-resistance traits in pines. They found that STMs and MTMs, as well as BLUP and
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the Bayesian methods, performed similarly. This would imply that both traits have high

heritability and a moderate number of underlying QTLs.

Aguilar et al. (2011) used the multivariate BLUP model to predict GEBVs for fertility

traits in Holstein cattle. Low heritability in the selected traits led to moderate improvements

of accuracy when using a MTM compared to a STM (see Table 4 in Aguilar et al. 2011).

Similarly, Tsuruta et al. (2011) selected for 18 traits in Holsteins and observed that the

increase of accuracy depends strongly on the trait when switching from STMs to MTMs.

Conclusion

Multi-trait models (MTMs) have the potential to increase the accuracy of genomic selection,

since they use the available data more efficiently than single-trait models (STMs) by incorpo-

rating correlations between traits into the model. It was shown that MTMs outperform the

STMs for low-heritability traits and traits with missing phenotypic records.
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6 Discussion

In genomic selection one determines the breeding values of selection candidates solely from

genetic data. Beforehand, genetic effects have to be assigned to markers by phenotyping a

reference population and associating genetic with phenotypic variants. To this aim a variety

of methods has been developed which estimate genomic breeding values. In Section 3 we

presented four of these methods which were developed by Meuwissen et al. (2001) and assume

that fitness is determined by a single trait. Mainly they differ in their assumptions on the

underlying genetic architecture of the trait. On the one hand, the BLUP model assumes that

the effects of the markers are independently normally distributed with the same variance,

whereas on the other hand, the Bayesian methods allow for different variances of effect sizes

at each SNP. Bayesian method B also incorporates the possibility that SNPs have zero effects,

which is the reason that Bayesian method B usually performs slightly better than Bayesian

method A.

In Section 4 we compared the accuracy of genomic estimated breeding values obtained

from the different methods. The overall accuracy can be split into two components. First,

the accuracy of a method depends on its capability to reflect genetic relationships between

individuals (Section 3.5, Section 4.3(ii)). Second, the accuracy depends on the amount of LD

between markers and QTLs, which is captured by the models with variable precision.

We found that the least-squares method performs worst in almost all aspects and thus

focused on the comparison of BLUP with the Bayesian methods. Most factors, such as the

number of marker loci (Table 3) or the number of phenotypic records (Table 6) have a similar

influence on the accuracy of all methods. The genetic architecture of the trait (in particular

the number of QTLs), however, affects BLUP and the Bayesian methods differently, which is

in accordance with the assumptions posed in the models. Following Daetwyler et al. (2010) we

documented that the accuracy of Bayesian method B clearly exceeds the accuracy of BLUP

if only a few QTLs determine the trait (see Figure 2 and equations (32), (33)). If the trait

is determined by many loci with small effects, BLUP has the potential to outperform the

Bayesian methods.

This behavior reflects the fact that BLUP assigns positive effects to all chromosome seg-

ments, irrespective of whether they contribute to the trait, whereas Bayesian method B tries

to determine the set of chromosome segments with an effect on the trait via the parameter π.

When the number of QTLs is lower than the number of independent chromosome segments
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(Q < Me), the advantage of choosing a subset is clear, whereas it vanishes otherwise.

In Meuwissen and Goddard (2010) it was shown that the difference in accuracy between

BLUP and Bayesian method B increases with an increasing number of markers (or when full

sequence data is used instead of SNP arrays). In contrast, the difference in accuracy between

the two methods decreases with the number of QTLs (Goddard 2009). It would be interesting

to combine the two studies and to investigate the performance of BLUP and Bayesian method

B, both, as a function of the number of markers and the number of QTLs.

When examining the accuracy of the methods on real data, the differences between the

methods are often even smaller than in simulation studies (Section 4.2, Hayes et al. 2009a).

This suggests that the number of QTLs assumed in simulations is usually too small (most

studies assume 50 or fewer QTLs; see Habier et al. 2007), which makes it likely that the

Bayesian methods perform better than BLUP (e.g., see Zhong et al. (2009) for a study with

barely). An exception is the relative fat content in cattle (Table 2) for which we know that it

is determined by a few QTLs with large effects.

In Section 5 we generalized BLUP and Bayesian method A to a multivariate version,

estimating genetic effects of markers for multiple traits. The MTMs can deal with the phe-

notypic data in a more efficient way than the STMs by incorporating genetic correlations

between traits. Especially the estimation of breeding values at low heritability traits which

are correlated to high heritability traits profits from the MTMs. Second, Guo et al. (2014)

showed that MTMs increase the accuracy of GEBVs at traits with few phenotypic records

which are correlated to traits with many phenotypic records.

In Figure 3a it was shown that the relative benefit of MTMs to STMs is highest for the

Bayesian methods. This suggests that the MTMs can capture the correlations between traits

best if a few major QTLs are underlying the traits. However, in contrast to the STMs there is

not much literature on MTMs and the joint dependence of accuracy on correlations between

traits, heritability, and the genetic architecture is not well understood. Therefore, it would

be desirable to generalize the approaches of Daetwyler et al. (2010) and Hayes et al. (2009b)

(see Section 4.3 (iii, iv)) to multiple traits.

All methods presented in this thesis are concerned with estimating additive gene effects.

However, the proportion of the additive genetic variance to the total genetic variance is sub-

ject to ongoing discussion and investigation. Multiple studies suggested that epistasis plays

a crucial role in maintaining quantitative genetic variation (e.g., Carlborg and Haley 2004),
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wherefore it may be necessary to estimate haplotype effects instead of additive gene effects.

Gianola et al. (2006) pursued this direction by including nonlinear terms in the genotype-

phenotype map of the models presented in Section 3.

In this thesis we focused on theoretical aspects of genomic selection by comparing the

accuracy of the genomic estimated breeding value for different methods. In the following we

note a few practical issues which should be kept in mind when implementing genomic selection

into breeding programs.

(i) In applications it is often not the absolute accuracy that matters, but rather the

accuracy per year or accuracy per Euro which is of most interest. Therefore, even if the

selective gain of genomic selection is lower than the selective gain of phenotypic selection, it

may be economically advantageous.

(ii) Until now, GEBVs are rarely the only source for the choice of selection candidates but

are combined with pedigree or phenotypic information. One method to combine traditional

selection methods with genomic selection is to calculate breeding values bases on phenotypic

and pedigree information, determine GEBVs, and combine both breeding values in a selection

index.

(iii) When implementing methods for genomic selection, one should keep in mind that

the models come with different computational costs. As reported by Verbyla et al. (2009),

the BLUP model has usually the lowest computational costs and is also easiest implemented.

Bayesian method A is slightly slower but Bayesian method B is much slower. Increasing the

speed of Bayesian method B was also the motivation for combining the Bayesian method with

variable selection algorithms (e.g., Bayesian method SSVS; see Verbyla et al. 2009).

(v) Although the costs for genotyping and full genome sequences have rapidly declined

in the last years and are supposed to decline further, it is unlikely that the whole reference

population can be sequenced. Therefore, it is necessary to take a sample (of size l) from the

reference population which should maximize the accuracy of genomic predictions. To this aim,

algorithms have been developed which choose individuals based on the relationship matrix A

and intend to capture the largest proportion of the genetic variance which can be explained

by l individuals.

(iv) Finally, we note that genomic selection brings along bioinformatical problems such

as the the determination of haplotypes from a pool of sequences or the imputation of missing

genotypic records (arising from sequencing errors). Statistical models for the imputation of

data are reviewed in Marchini and Howie 2010.
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Glossary

We provide a glossary of symbols and abbreviations that occur in multiple sections. Roman

and Greek letters are listed separately. Uppercase letters precede lower case ones and listing

is in alphabetical order. The plus + refers to the text below the equation.

Symbol Reference Definition

1l (15) A column vector with l 1s
bBV Sec. 4.1 The regression of the TBV (or the PEBV) on the GEBV
c (2) Recombination rate between two loci
e (7) Vector of environmental effects
G (10) Covariance matrix of random (genetic) effects
gi (16) Vector of genotypic effects at marker i
h2 (6) Heritability of the trait
Il Sec. 2.1 l × l identity matrix
ki (15)+ Number of effects at a marker i
Ml,p Sec. 2.1 Set of l × p matrices
Me (32)+ Number of independent chromosome segments
m (15) Number of markers
N (3) Effective population size
n (7) Number of (phenotypic) observations
L Sec. 4.3(i) Length of the genome in Morgans
o (5.1) Number of traits
Q (32) Number of QTLs
R (7) Covariance matrix of residual effects
r2 (1) Measure of LD
rBV (4.1) Correlation of the TBV (or the PEBV) and the GEBV
S (24) Scale parameter for the inverted chi-square distribution
X, Xi (7), (16) Incidence matrices
y (7) Vector of (phenotypic) observations
Z, Zi (10), (20) Incidence matrices

µ (15) Mean value of the phenotypic records
ν (24) Degrees of freedom in the inverted chi-square distribution
π (30) Proportion of markers with vanishing variance
Σg, Σe (6)+ The o× o covariance matrices between traits
σ2g (4) Genetic variance

σ2e (4) Environmental variance
σ2a (5) Additive genetic variance

ˆ (8) Indicates an estimator
T (9) Indicates a transposed matrix
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Abbreviation Full term

cM Centi-Morgan
BLUP Best linear unbiased prediction
GEBV Genomic estimated breeding value
GWAS Genome wide association studies
LE Linkage equilibrium
LD Linkage disequilibrium
LS Least-squares
QTL Quantitative trait locus
MTM Multi-trait model
PEBV Phenotypically evaluated breeding value
SSVS Stochastic search variable selection
SNP Single-nucleotide polymorphism
STM Single-trait model
TBV True breeding value
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