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Abstract

Calculating metabolic intervention strategies that lead to desired outcomes
is an important goal in metabolic modeling and analysis. Intervention
strategies ensuring high growth-coupled product formation is of practical
relevance in industrial biotechnology. The concept of constrained minimal cut
sets (cMCS) is an valuable method in the arsenal of tools for manipulating
metabolic networks. cMCS are minimal sets of reactions, the removal of
which will force particular undesired �uxes to be blocked and some other
desired ones to function. Two methods (viz., GAMCS and PSOMCS) have
been developed in this work to calculate cMCS leading to optimal designs
satisfying set objectives. GAMCS does this by partitioning the set of
elementary �ux modes (EFMs) of a network using a genetic algorithm (GA)
and �nding their corresponding cMCSs. PSOMCS depends on the concept
of direct enumeration of cMCS and uses particle swarm optimization to �nd
cMCSs corresponding to the optimal design. GAMCS was tested on E. coli

metabolic networks of three di�erent sizes. Three di�erent engineering goals
were set up and intervention strategies optimizing these goals were calculated.
GAMCS had a superior performance against a method which enumerates
all cMCS optimizing for a particular engineering objective. PSOMCS was
also tested on a medium scale E. coli core metabolic network and shown to
be have a performance orders of magnitude better than GAMCS. PSOMCS
was also able to �nd intervention strategies leading to optimal designs in
the iAF1260 genome-scale model of E. coli metabolism. Such designs were
shown to be better than those produced by conventional strain design tools
OptKnock and RobustKnock. Both methods found solutions comparable
to previously published and experimentally veri�ed results. GAMCS is
capable of handling small and medium-scale metabolic networks within a
reasonable time period. PSOMCS marks an improvement over this as it
can handle genome-scale networks. Additionally, both methods are capable
of handling complex design goals encoded by non-linear objective functions.
The techniques presented here are capable of producing optimal designs
satisfying multiple objectives. As the metabolic models of more industrially
relevant organisms become available, these techniques will prove to be more
useful.

Keywords: Systems biology, metabolic networks, elementary �ux modes
(EFMs), minimal cut sets (MCS), strain optimization, knockouts





Kurzfassung

Die rechnergestützte Vorhersage von genetischen Veränderungen zur Opti-
mierung eines Produktionsstammes ist ein Hauptziel der metabolischen Mod-
ellierung und Analyse. Insbesondere die Vorhersage von Interventionsstrate-
gien, die zu wachstumsgekoppelten Produktionsprozessen führen, ist von
besonderer praktischer Relevanz für die industrielle Biotechnologie. Dies-
bezüglich erweist sich das Konzept der minimalen Schnittmengen unter
Zwangsbedingen (constrained Minimal Cut Set, cMCS) als besonders wertvoll.
cMCSs sind minimale Mengen von Reaktionen, die, wenn sie von einem Net-
zwerk entfernt werden, nur ungewünschte Funktionen unterdrücken, aber
gewünschte Funktionalität erhalten. In dieser Arbeit wurden zwei Metho-
den (GAMCS und PSOMCS) entwickelt, die es erlauben optimale cMCSs
vorherzusagen.

GAMCS verwendet einen genetischen Algorithmus zur Optimierung der
Partitionierung der elementaren Flussmoden, aus denen im Anschluss die cM-
CSs bestimmt werden.

PSOMCS berechnet cMCSs direkt und verwendet danach Partikelschwar-
moptimierung, um den besten cMCS zu �nden.

Beide Algorithmen wurden an drei unterschiedlich groÿen metabolis-
chen Netzwerken von E . coli mit drei unterschiedlichen Optimierungszie-
len getestet. Es konnte festgestellt werden, dass mit GAMCS eine leichte
Performance-Verbesserung gegenüber bereits vorhandenen Methoden erreicht
werden kann, die mit PSOMCS noch einmal deutlich gesteigert werden konnte.
Im Gegensatz zu GAMCS ist PSOMCS sogar auf Genom-weite metabolische
Netzwerke anwendbar. Insbesondere konnten mit PSOMCS erfolgreich opti-
male Interventionsstrategien in iAF1260, einem Genom-weiten metabolischen
Netzwerk von E. coli, vorhersagt werden. Vergleichbare Ergebnisse konnten
mit aktuellen state-of-the-art Methoden nicht erreicht werden. Auch im Ver-
gleich mit Literaturdaten lieferten die beiden Methoden korrekte Vorhersagen.

Ein groÿer Vorteil der neu entwickelten Methoden liegt darin, dass auch
komplexe, nicht-lineare Optimierungsziele einfach implementiert werden kön-
nen.

Schlagwörter: Systembiologie, Sto�wechselnetze, Elementar�ussmoden
(EFMs), Minimal Cut Sets (MCS), Dehnungsoptimierung, Knockouts
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Chapter 1

Introduction

1.1 Motivation

Models of metabolic networks are being increasingly used to predict manip-
ulations in industrially relevant organisms. Such manipulations are aimed at
optimizing the production of desired chemicals. A commonly used manipula-
tion strategy is through gene/reaction knockouts. Current tools for calculating
intervention strategies in metabolic networks su�er from some serious limita-
tions. These include one or more of the following - inability to account for
alternative optimal pathways, inability to guarantee that the predicted knock-
outs are minimal, inability to deal with larger networks in a short amount of
time and the need to manually specify desired yields of metabolites of interest.
Methods overcoming these limitations need to be developed to make knockout
prediction tools practically relevant.

1.2 Background

Cellular production systems like bacteria, yeast as well as insect and
mammalian cells are being used to produce a range of chemicals from
electrons in biofuel cells [Liu et al. 2004], biofuels and pharmaceuticals
[Causey et al. 2004, Misawa et al. 1991, Lee & Schmidt-Dannert 2002,
Martin et al. 2003, Nakamura & Whited 2003, Báez-Viveros et al. 2004,
Lee et al. 2008, Chen & Nielsen 2013, Stephanopoulos 2012], to sim-
ple/complex �ne chemicals and many other molecules [Chotani et al. 2000].
This follows an increasing trend which aims to replace chemical synthesis
with biotechnological production techniques owing to the bene�ts of envi-
ronmentally friendly processing and sustainability of the latter. Metabolic
engineering guided bio-based production has led to the industrial-scale
production of artemisinin, omega-3 eicosapentaeonic acid, and 1,4-butanediol
[Paddon & Keasling 2014, Xue et al. 2013, Yim et al. 2011].

Cellular production systems can thus be viewed as microbial factories.
Unfortunately most of such naturally occurring systems are not designed to
produce such chemicals at desired yields. This is because naturally occurring



2 Chapter 1. Introduction

organisms have evolved to survive and reproduce in their speci�c environ-
ments and not to satisfy human needs. Hence such naturally evolved systems
have to be modi�ed to support industrial chemical production needs. Such
modi�cations have indeed come a long way since the days of random mu-
tagenisis and screening, thanks mainly to the advent of genetic engineering
and increasing knowledge about the working of biological systems. Engineer-
ing microorganisms for overproducing chemicals is an important challenge in
biotechnology [Stephanopoulos et al. 1998]. This endeavor has been placed
on a rational footing by systems biology [Kitano 2002] which combines bio-
logical experiments with mathematical modeling and computer simulations
[Di Ventura et al. 2006]. Systems biology studies complex biological networks
involving many components and their interactions at di�erent biological levels.
Methods from systems biology are also used in the �eld of synthetic biology
to design and predict the behavior of assembled parts [Chandran et al. 2009,
Ellis et al. 2009, Purnick & Weiss 2009, Smolke & Silver 2011]. Cellular bio-
logical networks can be roughly divided into signal transduction, gene reg-
ulatory and metabolic networks. The observed cellular behavior is a re-
sult of the interaction of these networks. Signal transduction networks al-
low cells to monitor and respond to changes in their environment like nu-
trient availability, presence of pathogens, damage to cellular components,
etc. Information from various signals are detected, ampli�ed, integrated
and transmitted through a series of reactions, in response to which tran-
scription factors regulating the expression of speci�c genes will be activated.
Regulation of genes coding for enzymes will result in changes in the con-
centration of the corresponding enzymes. This change in enzyme concen-
trations may lead to changes in the rate at which metabolic reactions are
catalyzed. Regulatory networks consist of the genes, regulatory proteins and
their interactions. Metabolic networks are made up of all the metabolites
and reactions involved in cellular metabolism. Since all biologically produced
chemicals are the result of metabolic output, the ability to understand and
manipulate metabolic networks is a very important need of biotechnology.
Among the three biological network types, metabolic networks have been the
most studied. The �rst genome-scale metabolic model produced was that of
Haemophilus in�uenzae [Fleischmann et al. 1995]. Since then the metabolic
networks of many di�erent organisms have been mapped and experimentally
veri�ed [Feist et al. 2009, Broddrick 2017]. Detailed knowledge of signaling
and regulatory networks is also important and its application to biotechnol-
ogy has been steadily growing [Papin et al. 2005, Hecker et al. 2009]. This
transition of biology from a descriptive to predictive science is also being
enabled by the use of high-throughput technologies like next-generation se-
quencing [Behjati & Tarpey 2013] and novel analytical tools with incresing



1.2. Background 3

data handling capabilities. Large amounts of data generated by such tech-
nologies and also from published literature have been integrated to produce
metabolic pathways of many organisms [Feist et al. 2007, Förster et al. 2003,
Schilling et al. 2002, Poolman et al. 2009, Henry et al. 2009].

Given a detailed knowledge of metabolites and their interacting reac-
tions in a biological system, the �rst step in understanding its metabolic
network is by modeling its behavior. Modeling of metabolic networks is
done by employing a wide variety of analysis and simulation methods. Par-
ticularly successful have been the stoichiometric/structural analysis tech-
niques which use only the reaction stoichiometry and other constraints to
model cellular metabolism [Schuster & Hilgetag 1994, Schilling et al. 2000,
Schuster et al. 2002, Price et al. 2003].

Metabolic engineering aims to improve chemical production yields in cellu-
lar systems. Supporting this aim is an important goal of metabolic modeling.
Modeling is used to predict phenotypic outcomes of metabolic manipulations.
Conversely, it is also used to predict manipulations resulting in desired be-
havior. OptKnock [Burgard et al. 2003], a �ux balance analysis (FBA) based
method, was one of the �rst methods proposed for predicting intervention
strategies resulting in optimal product yield. This inspired the development
of other methods [Tepper & Shlomi 2010, Kim & Reed 2010] aimed at over-
coming the limitations of OptKnock as well as accounting for regulation.
Many such applications have been reviewed in [Zomorrodi et al. 2012]. These
methods however fail to account for alternate optimal solutions. The con-
cept of minimal cut sets (MCS) and constrained minimal cut sets (cMCS)
[Klamt & Gilles 2004, Klamt 2006, Hädicke & Klamt 2011], based on ele-

mentary �ux modes (EFM), overcomes this limit but is unable to han-
dle large metabolic networks. A method that will allow for the calcula-
tion of MCS/cMCS in large networks without using EFMs was proposed
in [Ballerstein et al. 2012] and improved upon in [von Kamp & Klamt 2014,
Mahadevan et al. 2015].

The large size of metabolic networks and the combinatorial nature of in-
terventions means that the corresponding search space is very large, prompt-
ing the development of metaheuristic approaches which intelligently nav-
igate through the space to �nd optimal solutions. These include ap-
proaches based on genetic algorithms [Patil et al. 2005], evolutionary algo-
rithms and simulated annealing [Rocha et al. 2008] and a hybrid bees algo-
rithm [Choon et al. 2014], all based on FBA.

There existed no metaheuristic strain design algorithms based on the con-
cept EFMs or the direct enumeration of cMCS. GAMCS, based on EFMs, was
designed to quickly �nd intervention strategies in small and medium-sized net-
works. PSOMCS, based on the direct enumeration of cMCS was developed to
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�nd optimal intervention strategies in genome-scale metabolic networks.
Finally it should be mentioned that this sophistication in biological under-

standing has been brought about by the foundation technologies of DNA se-
quencing [Shendure & Ji 2008], recombinant DNA technology [Baneyx 1999],
polymerase chain reaction (PCR) [Mullis et al. 1987], etc. The importance of
the world wide web with its border-less nature, quick access to information
and collaboration-enhancing structure cannot be understated in the ongoing
transformation of biotechnology into an engineering-based, rational �eld.



Chapter 2

Metabolic network modeling and

analysis

Cellular metabolism and indeed various other biological functions are the re-
sult of many interacting components which calls for a systems based anal-
ysis. This is challenging due the extreme complexity of biological systems.
Various analysis methods have been developed to overcome this challenge.
These include stoichiometric methods based on reaction stoichiometry and
other constraints, kinetic modeling methods using detailed kinetics, and hy-
brid methods.

2.1 Metabolic networks

Metabolism, through a network of interconnected reactions produce energy
and many organic compounds called metabolites from simple substrate
molecules like sugars. Energy is stored in molecules like ATP and used
to fuel various cellular functions. Metabolites may be used to build more
complex molecules. Thus understanding metabolism is central to the
understanding of cellular behavior. This is particularly important in the
areas of industrial biotechnology and biotechnology, where the quality and
quantity of many products depends on the underlying metabolism of the
organism used. Since metabolism is made up of several interconnected
reactions, it's behavior is determined by this network of reactions, including
their regulatory aspects. Understanding metabolic networks is thus key
to understanding and further manipulating metabolism. On-line repos-
itories contain such network maps of reactions in various organisms or
information on chemical molecules and enzymes. These include the BioCyc
database collection which includes MetaCyc and BioCyc [Caspi et al. 2016],
KEGG [Kanehisa et al. 2004] and Reactome [Fabregat et al. 2016], ERGOTM

[ERGO 2017], metaTIGER [metaTIGER 2017, Whitaker et al. 2009], EN-
ZYME [ENZYME 2017], BRaunschweig ENzyme Database (BRENDA)
[BRENDA 2017, Scheer et al. 2010], BioCarta [BioCarta 2017], Pub-
Chem [PubChem 2017], Universal Protein Resource (UniProt)
[UniProt 2017], Chemical Entities of Biological Interest (CHEBI)
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[ChEBI 2017, Degtyarenko et al. 2008], ExplorEnz [ExplorEnz 2017,
McDonald et al. 2009], Integrated relational Enzayme database (IntEnz)
[IntEnz 2017, Fleischmann et al. 2004], Protein ANalysis THrough Evolution-
ary Relationships (PANTHER) [PANTHER 2017, Mi et al. 2009], MetaNetX
[Ganter et al. 2013, MetaNetX 2017], BioModels [Le Novere et al. 2006,
BioModels 2017] and CellML [Lloyd et al. 2008, CellML 2017].

Metabolic networks are analyzed by using kinetic data, stoichiomet-
ric/structural modeling and hybrid modeling approaches [Tomar & De 2013].

2.2 Kinetic modeling

In kinetic modeling, biochemical reactions are modeled using ordinary dif-
ferential equations (ODEs) or partial di�erential equations (PDEs). This
requires detailed information on enzyme kinetics in the cellular environment.
As such data is limited by the measurement techniques used, construction
of kinetic models is not an easy task. Further complicating matters is the
presence of large number of heterogenous parameters, complex interactions
and its inherent non-linear nature. However, being a detailed representa-
tion of reaction dynamics, they are useful and kinetics models of small sys-
tems have been built. Kinetic models have been developed for glycolysis
[Teusink et al. 2000, Smallbone et al. 2013], the central carbon metabolism
in E. coli [Peskov et al. 2012, Chassagnole et al. 2002] and the central carbon
metabolism in red blood cells [Joshi & Palsson 1989]. New methods are be-
ing developed with the aim of constructing thermodynamically feasible kinetic
models of metabolic networks [Saa & Nielsen 2016]. However the construction
of detailed kinetic models from in vivo data remains a challenge. The cur-
rent challenges facing this area have been reviewed in [Vasilakou et al. 2016].
Various methods to overcome these challenges and kinetic modeling frame-
works that could lead to genome-scale kinetic models have been reviewed in
[Srinivasan et al. 2015].

2.3 Stoichiometric and structural modeling

Metabolic network function can also be modeled and understood based on
the stoichiometry of its constituent reactions. Using a stoichiometric matrix,
which contains the stoichiometric coe�cients of the metabolites for all the re-
actions, the structural invariants of the network can be analyzed [Milner 1964].
Stoichiometric network analysis (SNA) [Clarke 1988], based on the concepts of
convex geometry has been used to study the robustness of reaction networks.
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Such an approach also avoids the problem of measuring reaction �uxes which
is necessary for kinetic modeling.

2.3.1 Constraints based approaches

Given a stoichiometric model of a metabolic network, further constraints can
be set which limit their behavior. This makes biological sense since cells are al-
ways subject to some constraints, like rate of nutrient uptake. Mathematically
speaking, the �ux space representing possible metabolic network behaviors is
reduced by the addition of constraints. Consider the metabolic network shown
in Figure 2.1 (redrawn from [Hädicke & Klamt 2011]). A cell boundary lets
us distinguish between internal and external metabolites. Internal metabo-
lites have variable concentration while the external ones which serve as source
and sink points are assumed to have �xed concentrations. Let the number of
internal metabolites be m and the number of reactions (including exchange
reactions) be n. M and R are the vectors of metabolite and reaction names
respectively. The mass conversion of metabolites within such a system can be
described by

d

dt
c = N · r (2.1)

where c is the concentration vector of metabolites and N is the stoichiometric
matrix in Rm×n. An element Nij of N is the signed stoichiometric coe�cient
of metabolite i in reaction j. r is the vector of reaction �uxes in Rn where
rj gives the net rate of reaction j. Di�erent biological components operate
on di�erent time scales, for example, metabolic reactions are fast compared
to regulation. Realistically the concentrations of metabolites in a cell change
over time and depend on various factors including cell phase. However, for
the sake of simplicity, we will consider metabolite concentrations to remain
constant in the long-term. Thus, we assume that the system is in steady-state,
giving

N · r = 0. (2.2)

Further, irreversible reactions proceed in only one direction (rirr) while
reversible reactions can go in both directions (rrev). Thermodynamic laws
dictate that the rate of irreversible reactions be non-negative, that is rirr ≥ 0.
The space of feasible �ux vectors can thus be speci�ed by

C = {r ∈ Rn | N · r = 0 and rirr ≥ 0} (2.3)

which is a convex polyhedral cone. All possible �ux vectors ofN will lie within
this space.
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Figure 2.1: Toy network with one uptake reaction (R1) and three products
(P, D and E).
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Various methods have been developed to analyze this space. These meth-
ods can be divided into biased and unbiased methods. Biased methods search
for particular solutions in the �ux space without considering alternate solu-
tions. Unbiased methods on the other hand take into account all possible
solutions.

Many methods using constraint based methods have been developed,
some of which are available in the Constraint-based reconstruction and anal-
ysis (COBRA) toolbox [Becker et al. 2007, Schellenberger et al. 2011].
Flux balance analysis (FBA) is the most popular biased approach.
A variety of FBA algorithms are available under the Flux-balance
Analysis based SIMUlations (FASIMU) [Hoppe et al. 2011]. Other
popular constraint-based analysis methods include �ux variability
analysis (FVA) [Mahadevan & Schilling 2003], �ux coupling analysis
(FCA) [Burgard et al. 2004], minimization of metabolic adjustments
(MOMA) [Segre et al. 2002] and regulatory on-o� minimization (ROOM)
[Shlomi et al. 2005].

It has been shown that network functionality is dependent on its topology
[Stelling et al. 2002]. The �ux space of the metabolic network can be analyzed
using methods from convex analysis. A major unbiased approach which char-
acterize the �ux space using sets of convex vectors is elementary �ux modes
(EFM) analysis. Splitting up reversible reactions into two irreversible reac-
tions gives a �ux cone in the semi-positive orthant of the �ux space, the edges
of which were called extreme currents by Clarke [Clarke 1988]. Determining
this �ux cone without splitting of the irreversible reactions gives EFMs which
are the representative �ux vectors of this cone [Schuster & Schuster 1993].

The stoichiometric approaches used in this work are brie�y explained be-
low.

2.3.2 Flux balance analysis

Flux balance analysis (FBA) which was initially presented in
[Papoutsakis 1984, Watson 1984, Watson 1986] and further developed
in [Fell & Small 1986, Savinell & Palsson 1992, Varma & Palsson 1993] is a
constraint-based method which �nds particular solutions according to some
optimality criteria assuming that the cellular system is subject to several
governing constraints. Firstly, (2.2) provides a set of constraints linking
together certain �uxes and restrict the space of possible �ux distributions to
a subspace of Rn with each axis representing �ux through a single reaction.
Irreversible �uxes are constrained to be non-negative, thus

rj ≥ 0 ∀ j ∈ K, (2.4)
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Figure 2.2: A convex polyhedral cone. EFMs are the minimum set of vectors
describing this cone. Adapted from [Llaneras & Picó 2008]
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Figure 2.3: A polytope, which is a bounded convex polyhedral cone. The black
circle could represent the result of �ux maximization using FBA. Adapted
from [Llaneras & Picó 2008]
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where K is the index set of irreversible reactions. This space of �ux distribu-
tions formed by equations (2.2) and (2.4) is a convex polyhedral cone, Figure
2.2. Additionally, all �uxes are limited by upper and lower bounds,

rmin ≤ rj ≤ rmax, (2.5)

thereby converting the convex polyhedral cone into a polytope, Figure 2.3.
This is a bounded space where optimal solutions under a range of conditions
exist. Such solutions can be encoded in an objective function Z.

maximize Z = wT r

s.t. (2.2), (2.4) and(2.5)
(2.6)

where w is a weight vector applied to the �ux vector r. Solving equation (2.6)
will give the optimal �ux distribution which will (if the method traverses the
vertices of the polytope, see also Section 3.1) be a vertex of the polytope
(Figure 2.3). This is a linear programming (LP) formulation which can be
readily solved using software packages such as GAMS [Brooke et al. 1988],
MATLAB [MATLAB 2017], CPLEX [CPLEX 2017], GLPK [GLPK 2017], or
metabolic modeling packages like the constrained-based modeling and anal-
ysis (COBRA) toolbox [Becker et al. 2007, Schellenberger et al. 2011]. The
objective functions generally used have been energy maximization, prod-
uct maximization, growth maximization, etc [Palsson 2015]. FBA has used
in the following strain engineering applications - ethanol overproduction in
Saccharomyces cerevisiae [Bro et al. 2006, Hjersted et al. 2007] and E. coli

overproducing succinic acid [Lee et al. 2005], lactic acid [Fong et al. 2005],
lycopene [Alper et al. 2005a, Alper et al. 2005b], L-valine [Park et al. 2007],
and L-threonine [Lee et al. 2007].

Consider the network in Figure 2.1. FBA can be used to answer questions
like: given a particular uptake rate for metabolite A (e.g., 10 mmol/gDW/hr),
what is the maximum rate at which product P can be produced? This is
expressed by the following optimization problem

maximize R2
s.t.

0 ≤ R1 ≤ 10,

solving which gives R2 = 10 mmol/gDW/hr.
A major shortcoming of FBA is its inability to account for alternate opti-

mal solutions which may exist because �ux may be redirected through other
pathways not involved in the chemical of interest (D and E in Figure 2.1).
Also, it is not easy to apply to signaling or gene regulatory networks.
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2.3.3 Flux variability analysis

Flux variability analysis (FVA) [Mahadevan & Schilling 2003] was developed
to overcome a limitation of FBA, namely its inability to account for alternate
optimal solutions. FVA determines the range of �ux variability by calculating
the maximium as well as minimum of all �uxes for a given cellular objective.
Linear programming is used to solve the following two cases.

Case 1:

maximize ri
s.t.

0 ≤ r < rmax

∀ i = 1 . . . n

N · r = 0

wT r = Zobj.

(2.7)

Case 2:

minimize ri
s.t.

0 ≤ r < rmax

∀ i = 1 . . . n

N · r = 0

wT r = Zobj.

(2.8)

where Zobj is the value of the objective function obtained in (2.6). Solving
these 2n LP problems gives the maximum and minimum �ux bounds for each
�ux ri under a constant value for the original objective function.

FVA can be used to �nd the maximum and minimum �ux bounds for each
reaction in Figure 2.1 as shown in Table 2.1.

2.3.4 Elementary �ux modes

As stated before, the space of �ux distributions formed by equations (2.2)
and (2.4) is a convex polyhedral cone 2.3. Convex analysis shows that this
in�nite set of steady-state �ux distributions can be represented by a �nite
set of generating vectors. Elementary �ux modes (EFMs) are obtained by
extending the concept of generating vectors to include irreversible reactions
[Schuster & Hilgetag 1994, Schuster et al. 2002]. For a �ux vector e to be an
EFM, the following three conditions must be satis�ed.

i) steady-state constraints, N · e = 0

ii) thermodynamic constraints, ej ≥ 0 ∀ j ∈ K
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Table 2.1: Flux variability for the toy network
Reaction Minimum Maximum

R1 9.5 10
R2 9.5 9.5
R3 0 0.5
R4 0 9.5
R5 0 9.5
R6 0 0.5
R7 -9.5 0.5
R8 0 9.5
R9 0 0.5
R10 0 0.5

The maximum and minimum values for all the reactions of the network 2.1,
when �ux through R2 is constrained at 0.95 of the maximum.

iii) minimality, supp(r) ̸⊂ supp(e) for any r which satis�es i) and ii).

Or, a �ux vector is an EFM only if it operates at a steady state, has non-
negative �uxes and there exists no other �ux vector with a subset of non-zero
reaction rates ful�lling these conditions. Biologically speaking, EFMs repre-
sent unique non-decomposable pathways in a metabolic network connecting
inputs to outputs. The removal of a single reaction from such a pathway will
render the entire pathway non-functional. EFMs can also be thought of as
minimal sets of enzymes which need to be expressed for the functioning of a
particular pathway at a steady state.

EFMs are the generating vectors of the �ux cone (2.3). Hence, the con-
vex combination of EFMs spans the entire �ux space of a metabolic network
[Schuster et al. 2002]. Speci�cally, any feasible �ux r in (2.3) can be repre-
sented as a non-negative linear combination of its EFMs.

r =
∑
i

αiei (αi ≥ 0) (2.9)

Most algorithms used for calculating EFMs are variants of the double
description method [Fukuda & Prodon 1996], with further algorithmic im-
provements being introduced in [Gagneur & Klamt 2004, Klamt et al. 2005,
Terzer & Stelling 2008, Von Kamp & Schuster 2006, Terzer & Stelling 2006,
Urbanczik & Wagner 2005]. The double description method calculates
new EFMs from combining existing EFMs in a pairwise fashion and later
verifying that the new EFM candidate has not been previously identi-
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�ed. This is a time and memory consuming procedure and is further
complicated by the observation that the number of EFMs explode with
metabolic network size [Klamt & Stelling 2002]. Hence new methods are
being developed to overcome this problem. One strategy is to divide
the metabolic network into subnetworks by enforcing and suppressing
reaction �uxes [Jevremovi¢ et al. 2011, Hunt et al. 2014]. Using regula-
tory information can also place limits on the number of EFMs calculated
[Jungreuthmayer et al. 2013c]. tEFMA is a method which calculates only
thermodynamically feasible EFMs [Gerstl et al. 2015a, Gerstl et al. 2015b].
Approaches have also been developed to calculate a subset of EFMs
[De Figueiredo et al. 2009, Kaleta et al. 2009, Pey & Planes 2014,
Rezola et al. 2011, Quek & Nielsen 2014, Pey et al. 2014].

A method to use EFMs for calculating reaction knockouts leading to
e�cient biomass and energy producing cells was proposed by Carlson
and Srienc [Carlson & Srienc 2004, Carlson & Srienc 2004, Trinh et al. 2006].
This method has subsequently been used for the overproduction of chem-
icals of interest [Trinh & Srienc 2009, Unrean et al. 2010, Trinh et al. 2008,
Trinh et al. 2011]. This method however uses an iterative procedure where
the e�ect of subsequent knockouts on the desirable properties of the network
are calculated. The knockouts so obtained cannot be guaranteed to be mini-
mal.

The EFMs of the network in Figure 2.1, calculated using efmtool are shown
in Table 2.2 and Figure 2.4. EFMs are alternatively called elementary modes

(EMs) or just modes. In this text, both EFMs and modes will be used de-
pending on the convenience and intelligibility.

Table 2.2: Elementary �ux modes of the toy network
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

e1 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
e2 1.0 1.0 0.0 0.0 1.0 0.0 -1.0 1.0 0.0 0.0
e3 2.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0
e4 2.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0
e5 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0

The EFMs of the network in Figure 2.1, the corresponding pathways
through the network are displayed in Figure 2.4.
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EFM1 EFM2 EFM3

EFM4 EFM5

Figure 2.4: EFMs of the network in Figure 2.1 highlighted in purple. These
correspond to the ones in Table 2.2.
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2.3.5 Minimal cut sets

Since the complete set of EFMs represent all possible phenotypes of an or-
ganism, it can be used to identify particular characteristics. For example,
a set of EFMs would be linked to the production of a metabolite. Identify-
ing and knocking out the set of reactions common to the set of such EFMs
will necessarily block the production of that particular metabolite. A method
for �nding the minimal set of knockouts, called minimal cut sets (MCS) was
initially proposed by Klamt and Gilles [Klamt & Gilles 2004], with a general-
ized version in [Klamt 2006]. Suppose the entire set of EFMs of a metabolic
network are represented by E. Consider a set of T ⊂ E modes representing
undesired characteristics, also called target modes which we want to remove
from the network. Then, a cutset C is a set of reactions, the removal of which
ensures the removal of all T.

∀ T ∈ T : C ∩ T ̸= ∅ (2.10)

Further, a cutset C is a minimal cut set if no proper subset of C is also
a cut set. The concept of MCS was initially used to �nd reactions that bock
all �ux through a particular reaction. In engineering organisms, there often
arises situations where in addition to removing certain characteristics, certain
other desirable characteristics need to be preserved, i.e., prevented from being
removed from the network. Hädicke and Klamt introduced the concept of
constrained minimal cut sets (cMCS) which is a generalization of MCS. cMCS
account for the necessity to preserve certain desired EFMs while killing others.
Given a set of EFMs with desired characteristics D, a cMCS will hit all the
target EFMs T while ensuring survival of at least n EFMs of D. The set of
EFMs not hit by a MCS C can be designated by DC , a subset of D.

DC = {D ∈ D | C ∩D = ∅} (2.11)

We also need a minimum number n of D to survive, hence

|DC | ≥ n (2.12)

A cMCS satis�es (2.10), 2.11 and (2.12). There can of course be EFMs
which do not fall into either of the desired or target categories. Hence, the
sum of D and T might not give E.

cMCSs have been calculated using a modi�ed Berge algorithm
[Hädicke & Klamt 2011] and also using binary integer program (BIP)
[Jungreuthmayer & Zanghellini 2012]. It was shown that the mod-
i�ed Berge algorithm has a better performance compared to BIP
[Jungreuthmayer et al. 2013b]. The complexity of calculating a MCS was
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shown to be NP-hard in [Acuna et al. 2009], where also was presented a poly-
nomial approximation algorithm for �nding MCS and another algorithm for
checking if a given set of reactions constitutes an MCS. A method to �nd MCS
under a boolean model using a integer programming and feedback vector sets
(FVS) was proposed in [Tamura et al. 2012].

Coming back to the toy network in Figure 2.1, suppose the production of
metabolites D and E needs to be blocked. From table 2.2 it can be seen that
e1, e3 and e4 are the modes producing D and E. Killing these modes will block
the production of metabolites D and E, i.e., T = {e1, e3, e4}. The following
MCSs which will achieve this end:

Table 2.3: MCSs in the toy network
MCS

MCS1 R1
MCS2 R6
MCS3 R9 R10
MCS4 R2 R10
MCS5 R3 R10
MCS6 R4 R5 R10
MCS7 R5 R7 R10

Removal of these sets of reactions will completely block the production of
metabolites D and E.

Notice that some of the cutsets in Table 2.3 will also lead to the blocking
of production of metabolite P. If it is desired to preserve the production of P,
the problem becomes one of calculation of cMCS where T = {e1, e3, e4} and
D = {e2, e5} out of which at least one will need to survive. mhsCalculator

[Jungreuthmayer et al. 2013a] returns the following output

Table 2.4: cMCSs in the toy network
MCS

MCS1 R6
MCS2 R9 R10
MCS3 R3 R10
MCS4 R5 R7 R10

Removal of these sets of reactions will completely block the production of
metabolites D and E, while ensuring that the production of P is not a�ected.
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2.3.6 Direct enumeration of minimal cut sets

The similarity and interdependency between EFMs and MCSs was noted in
[Klamt 2006]. Here it was also shown that given an MCS, the correspond-
ing target EFMs can be obtained. Thus EFMs and MCSs can be converted
into each other. An approach based on the Joint-Generation Algorithm
[Fredman & Khachiyan 1996] was used to simultaneously calculate both the
EFMs as well as the MCS. The insights from these works was brought together
leading to the conceptual breakthrough in [Ballerstein et al. 2012] where an
algorithm to directly calculate MCS without the use of EFMs was presented.
This is of great advantage as the extra overhead of generating and using EFMs
is overcome . Also to be considered is the explosion in the number of EFMs
with network size [Klamt & Stelling 2002]. Ballerstein et. al., use the concept
of a dual network where MCS can be directly computed given the stoichiomet-
ric matrix [Ballerstein et al. 2012] and the sets of desired and target �uxes.
The methodological breakthrough came by using the system developed in
[Ballerstein et al. 2012] to calculate shortest MCSs in genome-scale metabolic
networks [von Kamp & Klamt 2014].

The set of undesired �uxes for t reactions can be de�ned by

Tr ≤ t (2.13)

where T ∈ Rt×n and t ∈ Rt×1. Similarly, the set of desired �uxes for d

reactions can be de�ned by

Dr ≤ d (2.14)

with D ∈ Rd×n and d ∈ Rd×1.
MCS are minimal sets of reactions which when set to zero will satisfy (2.2)

and (2.13), i.e., block the target �uxes. cMCS are MCS which additionally
satisfy (2.14).

Ballerstein et. al., showed that MCS of the system (2.2) and (2.13) corre-
sponds to the irreducible inconsistent subsets IIS of the inconsistent system
made by combining (2.2) , (2.13) and the equality constraints

Ir = 0 (2.15)

where I is an n×n identity matrix. Such a system is inconsistent because the
equality constraints in (2.15) contradict the inequality constraints in (2.13).
The IIS of such a system is an inconsistent subsystem which cannot be further
reduced into proper inconsistent subsystems. Thus, for �nding MCS, all we
need to do is to �nd the IIS of the given inconsistent system. The following
system is inconsistent,
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N

I

−Īirr
T

 r ≤


0

0

0

t

 (2.16)

where the identity matrix I ∈ Rn×n and Īirr ∈ Rn×|irr| having 0 rows corre-
sponding to all rrev.

It was shown by Gleeson and Ryan that the IIS of an inconsistent system
can be calculated by enumerating the extreme rays of a particular polyhe-
dron [Gleeson & Ryan 1990]. This polyhedron is obtained by applying Farkas
Lemma [Farkas 1902] to the inconsistent system (2.16) to obtain a dual sys-
tem, which is ensured to be consistent.

Lemma 1 (Farkas Lemma) Given a matrix A ∈ Rm×n and b ∈ Rm,
exactly one of the following two statements is true

i) There exists x such that Ax ≤ b.

ii) There exists y ≥ 0 such that yTA = 0 and yTb < 0.

Which means that given a point b and a cone P, either b lies inside P

or there exists a hyperplane passing through the origin separating b from P.
Since (2.16) doesn't exist, we know from Farkas Lemma that (ii) above is true.
Hence, the following system is consistent(

NT I − Īirr T
T
)
y = 0(

0 0 0 tT
)
y ≤ −c

y ≥ 0

c > 0.

(2.17)

According to Gleeson and Ryan [Gleeson & Ryan 1990], the minimal in-
feasible subsystems of (2.16) correspond to the vertices of the polyhedron
given by (2.17). Ballerstein et. al., show that all MCSs of the system given by
(2.2) and (2.13) relate to distinct IISs of (2.16). Hence MCSs can be found by
enumerating the vertices of (2.17). Splitting the vector y into a u correspond-
ing to NT , a v associated with I, z associated with Īirr and w associated with
TT , we get

(
NT I − Īirr T

T
)

u

v

z

w

 = 0

tTw ≤ −c

u ∈ Rm,v ∈ Rn,w ∈ Rt, z ∈ R|irr|, c ∈ R
w ≥ 0, z ≥ 0, c > 0.

(2.18)
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IISs and hence MCSs correspond to those vertices of this system with min-
imal support in v. von Kamp and Klamt [von Kamp & Klamt 2014] restated
(2.18) as a mixed integer system. They split the v variables into positive
and negative values, vp and vn and attach indicator variables zp and zn

respectively to these. Also the fact that z ≥ 0 is directly incorporated into
the system giving

(
NT

rev Irev −Irev TT
rev 0

NT
irr Iirr −Iirr TT

irr 0

)
×


u

vp

vn

w

 =

≥

(
0

0

)
tTw ≤ −c

u ∈ Rm,vp,vn ∈ Rn,d ∈ Rd,vp,vn,w, c > 0.

(2.19)

The matrices N and T have been split into reversible (subscript rev) and
irreversible parts (subscript irr). Similarly, for the identity matrix giving Irev
and Iirr. cMCS are directly calculated by �nding solutions with minimum
number of non-zero entries in vp,vn. This system ((2.19)) was augmented by
Mahadevan and Klamt [Mahadevan et al. 2015] to include the desired �uxes
de�ned by (2.14), resulting in the following system


NT

rev Irev −Irev TT
rev 0

NT
irr Iirr −Iirr TT

irr 0

0 0 0 0 N

0 0 0 0 D

×


u

vp

vn

w

r


=

≥
=

≤


0

0

0

d


tTw ≤ −c

u ∈ Rm,vp,vn ∈ Rn,d ∈ Rd,vp,vn,w, rirr ≥ 0, c > 0

(2.20)

The binary indicator variables zp and zn are introduced such that zpi =
0 if vpi = 0 and zpi = 1 if vpi > 0 and zni = 0 if vni = 0 and zni = 1 if vni >

0. Only one of vpi and vni can be active since vi can be active in only one
direction,

zpi + zni ≤ 1. (2.21)

cMCS of the system given by (2.2), (2.13) and (2.14) are the reactions
corresponding to positive zpi,zni values obtained after solving the following
optimization problem

minimize
∑n

i=1(zpi + zni)

s.t. (2.20), (2.21)
(2.22)
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with the additional constraint that the �ux through a reaction is turned
o� if it is part of a cMCS, i.e., ri = 0 if zpi = 1 || zni = 1.

{cMCS} = {Ri}
∀ i s.t. zpi = 1 || zni = 1

s.t. (2.22)
(2.23)

Note that EFMs and MCSs are similar, viz, both are the vertices of polyhe-
drons. Hence, the same methods could be used for calculating them. Metatool
[Von Kamp & Schuster 2006] - a double-description algorithm based method
originally developed for calculating EFMs was used in [Ballerstein et al. 2012]
to �nd growth-disabling MCSs in a model of E. coli metabolism. Follow-
ing a similar line of thought, the K-shortest algorithm developed for enu-
merating the shortest EFMs [De Figueiredo et al. 2009] was adapted for enu-
merating MCSs [von Kamp & Klamt 2014]. The dual representation is used
in [Tobalina et al. 2016] to �nd MCS involving a speci�c reaction. They
also state that not every vertex of the dual system corresponds to a valid
MCS of th primal system. The direct enumeration of cMCS been used in
the metabolic engineering of E. coli for high yield itaconic acid production
[Harder et al. 2016].

Coming back to the toy network in Figure 2.1, given an uptake on metabo-
lite given by R1 ≤ 10 mmol/gDW/hr, we can specify a design with the fol-
lowing target and desired �uxes,

Desired �uxes

0.6R1− R2 ≤ 0.

Target �uxes

−0.6R1+ R2 ≤ 0.

which constrains the yield of P to ≥ 0.6. Integrating this into the system
(2.20) and solving (2.22) returns the cutsets shown in Table 2.5.

Table 2.5: Direct enumeration of cMCSs in the toy network
MCS

MCS1 R6
MCS2 R9 R10
MCS3 R3 R10
MCS4 R5 R7 R10

Removal of these sets of reactions will ensure that P is produced at a yield
≥ 0.6.
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Mathematical optimization

In metabolic engineering, we seek optimal behavior, like maximum product
yield, maximum growth rate, minimal nutrient uptake, etc and also seek op-
timal ways of achieving such goals. The �rst step in this is to mathemati-
cally model the phenomenon under consideration. In the previous chapter,
we model �ux in a metabolic network using a system of linear equations at
steady state. After having set up the required constraints, the next step is to
�nd the best solution as speci�ed by some well-de�ned optimization criteria.
Mathematical optimization provides the tools and techniques for �nding such
solutions. This in itself is a huge subject spanning di�erent areas of mathe-
matics. Mathematical optimization problems have the following general form

minimize f0(x)
subjext to fi(x) ≤ ai ∀ i = 0, . . . , k

(3.1)

where x ∈ Rn is the variable being optimized using the function f0 : Rn 7→
R, also called the objective function. The optimization is subject to k con-
straints speci�ed by the constraint functions fi and the associated bounds bi
for all i = 0, . . . , k. A solution x̂ is the optimal solution if f0(x̂) ≤ f0(y) for
any y ∈ Rn. Mathematical optimization can be divided into di�erent cate-
gories depending on the nature of the functions f0, . . . , fk. If all the functions
are linear, the program is called a linear program, otherwise it is a nonlinear

program.
In the present work, we use the techniques of linear programming LP,

mixed integer linear programming MILP, genetic algorithm GA and particle

swarm optimization PSO for which we provide a brief introductions here.

3.1 Linear programming

This is an important subclass of mathematical optimization programs where
the objective as well as the constraint functions are linear.

maximize cTx
s. t. Ax ≤ b

x ≥ 0

(3.2)
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where c and b are vectors of known constants and A is a matrix of coef-
�cients. Here the objective function is cTx and the constraints are speci�ed
by Ax ≤ b and x ≥ 0.

Many algorithms have been proposed to solve LPs. These include basis
exchange algorithms like the simplex algorithm by George Dantzig and the
criss-cross algorithm which �nd the solution by visiting the vertices of the
polytope formed by the feasible region. Interior point methods move through
the interior of the feasible region. These include the landmark ellipsoid algo-

rithm by Leonid Khachiyan, projective algorithm of Karmarkar, a�ne scaling

and path-following algorithms. Although these algorithms may have similar
e�ciency in solving general LP problems, some algorithms may be better
suited for particular problems. Nowadays large LP problems with thousands
of variables can be easily solved on common computers. Many commercial
and freely available solvers exist for solving LPs. LPs spring up in diverse
situations, from simple ones like scheduling classes for teachers to complex
ones like optimizing the national budget. In this work for example, FBA and
FVA are LPs. Although a lot of work has been done to improve the e�-
ciency of solving LPs, there exist many open problems which when solved
could enhance our ability to solve large LPs. Such open problems relating
to strongly polynomial-time solvability of LPs are also of fundamental impor-
tance in mathematics [Smale 1998].

3.2 Mixed integer linear programming

If some of the variables in (3.2) are required to have integer values, then
the resulting problem is called a mixed integer linear program. In (3.3) C is
a set of indices corresponding to the continuous variables xC in x and I is
the set of indices on x corresponding to integer variables xI . cC and cI are
the respective objective coe�ecients for the continuous and integer variables.
Similarly, the constraint coe�ecients are split into AC and AI . If all the
variables are required to have integer values (cC ,A and xC do not exist) then
it is an integer program. Additionally if the integer values take only 0 − 1

values (xI is binary), then it is a binary problem. But if cC ,A and xC exist
and xI is binary, it is a mixed binary problem.

minimize cTCxC + cTI xI

s. t. ACxC +AIxI ≤ b

xC ,xI ≥ 0, xI integer
(3.3)

These problems are generally NP-hard. Algorithms used for solving prob-
lems represented by (3.3) are branch-and-bound, branch-and-cut, branch-and-
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price, cutting-plane-method and column generation. All modern MILP solvers
use the branch-and-bound (B&B) algorithm or variations of it. Various tech-
niques like tuning of the algorithm parameters to additional processing tools
depending on the problem structure have been employed alongside B&B to
make NP-hard combinatorial optimization problems more tractable. The
state of the art in MILP solvers have been covered in the following review
[Lima & Grossmann 2011]. A practical set of ideas for solving di�cult MILPs
has been presented in [Klotz & Newman 2013]. In this work a MILP is used
for the direct enumeration of cMCS in section 7.2.1.

3.3 Metaheuristics

A mathematical optimization problem could also be solved by i) guessing po-
tential solutions and ii) evaluating these solutions based on some measurement
criteria. Thus one can sample the solution space till a desirable solution is
found.

3.3.1 Genetic algorithms

One intelligent way of sampling the solution space is by using a genetic algo-
rithm (GA). GAs are population-based metaheuristics based on the principles
of Darwinian evolution. GAs have been used to solve hard optimization prob-
lems, especially where the objective is non-linear or where the solution space
is very large. In a GA candidate solutions are encoded in a chromosome. A
chromosome can be imagined as a string of connected units where each unit
corresponds to the value of a particular problem variable. In the most com-
mon representation used, the units take a value of 0 or 1 which relates to the
corresponding variable being turned o� or on.

A GA follows the following basic steps

1. Initialization A population of candidate solutions is randomly gener-
ated.

2. Selection Each candidate solution is evaluated based on some criteria,
usually a �tness function which will assign it a �tness. Fitness indi-
cates the quality of the solution. The higher or better quality solutions
are then selected. Selection can be done using a variety of methods -
roulette wheel selection, tournament selection, etc. The basic idea is to
make more copies of the better solutions while discarding/eliminating
the worse ones. This is akin to the �survival of the �ttest� concept.
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3. Variation This step is intended to change the candidate solutions so
that a new area of the solution space is explored. It is hoped that by
modifying the best candidate solutions obtained in the previous step,
better solutions may be obtained. The commonly used variation op-
erators are crossover and mutation which as their names indicate are
biologically inspired.

4. Replacement The newly generated candidate solutions from the previ-
ous step become the current population and are subsequently evaluated
for their �tness.

5. Termination The steps of selection, variation and replacement are it-
erated until a termination criteria is met. Each iteration is called a
generation. The termination criteria used can be solutions matching
some criteria, �xed number of generations, stability of the best solution
over generations or a combination of these.

By following these steps, a GA is expected to evolve towards the optimal
solution. However, by design a GA is not guaranteed to �nd the optimum.
Generally, if the objective function is speci�ed well, GAs �nd near optimal or
good enough solutions. GAs may also get stuck at a local optimum. Another
issue facing GAs is the number of parameters which need to be adjusted for
the GA to function properly. GAs also generally need to run over many hun-
dreds of generations before �nding an optimum. Nevertheless they are inher-
ently parallelizable making them suitable for running on multi-cored CPUs
and computer clusters. Part of the reason these problems exist is because
of a lack of good theoretical understanding of GA behavior. Attempts to
theoretically analyze GAs were �rst attempted using the schema theorem in
[Holland 1975]. The building block hypothesis was proposed in [Golberg 1989]
to overcome the limitations of schema theorem and continues to be used to-
day albeit with criticisms . GAs have been successfully used in a number of
applications covering a range of �elds. For better understanding of the work-
ing and implementation of GAs and applications, the interested reader should
refer to [Mitchell 1998, Whitley 1994]. A detailed explanation of the GA used
in this work can be found in Chapter 6 under 6.2.2.

3.3.2 Particle swarm optimization

It has been observed that naturally occurring swarms, like �ocks of birds,
schools of �shes, colonies of ants and swarms of bees have a collective behavior
and achieve objectives like �nding food sources and responding to predators.
It is also known that there is no central authority in such natural groups.
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Each member of the swarm follows certain simple rules which taken together
translate into the observed complex behavior of the swarm. The modeling of
such swarm behaviors led to the development of particle swarm optimization
(PSO), a powerful optimization method. The basic idea is that particles dis-
tributed in the search space of a problem behave like a swarm and collectively
move towards the global optimum. The �rst PSO algorithm was developed
by Kennedy and Eberhart [Kennedy & Eberhart 1995] which has since been
improved upon by many other workers.

A typical particle is made up of the following three components,

• Current position This is a set of coordinates representing a point in
the search space. This point will have a corresponding �tness.

• Previous best position This is the set of coordinates corresponding
to the point with the highest �tness encountered by the particle during
its movement. This functions as the particle's memory.

• Velocity This component directs the particle to a new position. Un-
derstandably its value is a function of the positions of other particles in
the swarm, i.e., the knowledge of the swarm.

Additionally, there exists a Global best position which is the the set of
coordinates corresponding to the point with the highest �tness encountered
by the entire swarm. Depending on implementation, this value may be re-
stricted to particles in its immediate neighborhood and not the entire swarm.
This leads to the important concept of swarm topology which speci�es the
information a particle has about other particles. In a natural swarm, an en-
tity will be aware of the positions of only its immediate neighbors. Many
di�erent topologies have been proposed and have been found to greatly a�ect
the behavior of the swarm and consequently the optimization performance
[Poli et al. 2007].

A typical PSO algorithm consists of the following steps.

1. Initialization The particles are randomly initialized such that they are
uniformly distributed throughout the search space.

2. Evaluation and movement Particles are evaluated based on a �tness
function. Particle velocity is next calculated based on the previous
best position and the global best position. The new particle posi-
tion is a sum of the current position and velocity. This step is iterated
till a termination condition is met.

3. Termination The algorithm stops when a speci�ed termination condi-
tion is met, e.g., number of iterations, acceptable �tness value, etc.
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In a PSO, the swarm moves cooperatively towards the global optima. The
relatively few parameters involved and their simplicity make PSOs easy to
implement. However, like metaheuristic methods in general, PSOs are not
guaranteed to �nd the optimum and the swarm may get trapped at a local
optima. There is also a de�cit in its theoretical understanding. Building a
mathematical model of PSO has proven challenging because of the presence of
interacting particles which are endowed with memory and the ability to decide
the direction of movement, and the stochastic nature of the forces governing its
behavior [Poli et al. 2007]. It is also critically a�ected by the structure of the
�tness function [Poli et al. 2007]. An excellent review of the current theoret-
ical understanding of PSOs can be found in [Bonyadi & Michalewicz 2016].
PSO is a relatively new optimization technique and hence improvements
and new applications are being continuously proposed. A survey of PSO
applications can be found in [Zhang et al. 2015]. These excellent reviews
[Poli et al. 2007, Banks et al. 2007, Banks et al. 2008], cover all the basics of
particle swarm optimization and should be referred to by anyone interested in
it. Working and implementation of the PSO used in this work can be found
in Chapter 7 under 7.2.2.



Chapter 4

Results

The aim of this work has been to develop methods for �nding metabolic in-
tervention strategies resulting in high product yield. Two metaheuristic algo-
rithms were developed to tackle this problem. GAMCS is a genetic algorithm
which explores partitions in the EFM space to �nd one corresponding to the
optimal design. PSOMCS is a particle swarm optimization algorithm which
searches the feasible �ux space and uses the method of direct enumeration
of cMCSs to �nd the optimal design. Additionally, recognizing the imprac-
ticality of a large number of knockouts, both methods place an emphasis on
�nding smaller sized intervention strategies.

4.1 Prediction of intervention strategies using

GAMCS

Here the concepts of EFMs and cMCSs were used for the rational identi�ca-
tion of optimal engineering strategies. EFMs are minimal functional building
blocks in a metabolic network. EFMs allow one to identify all desired and un-
desired network states in an organism. Based on this classi�cation, minimal
intervention strategies (cMCSs) can be calculated that eliminate all undesired
states from the organism but keep at least some of the desired properties.
However, even for small sized networks, the possible partitions of EFMs ex-
plode combinatorially, making it computationally extremely challenging to
�nd a classi�cation of EFMs which optimizes the engineering objective yet
minimizes the number of knockouts required. This problem of sifting through
all possible EFM partitions is addressed by applying a genetic algorithm (GA)
to quickly �nd optimal EFM partitions and their corresponding cMCSs. The
GAMCS algorithm was implemented in Perl and various tests were carried
out to validate its correctness, comparative performance against other strain
design methods and its ability to produce good designs. Three di�erent de-
sign criteria were considered using models of three di�erent sizes - M1, 5010
EFMs, M2, 38001 EFMs and M3, 429275 EFMs, all obtained from the model
used in [Trinh et al. 2008].

GAMCS solutions were compared against those obtained using the auto-
matic partitioning method (APM) [Ruckerbauer et al. 2014]. AMP enumer-
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ates all cMCS leading to an optimal design and hence is designed to �nd the
global optimum. While maximizing for e�ciency, GAMCS was able to �nd
the global optimum for M1 and near optimal solutions for M2 and M3, Table
4.1. While maximizing for ethanol yield, GAMCS found the global optima
for all the three models, Table 4.2. GAMCS also retrieved many other non
optimal solutions during its search path. It was observed that 100% of the
lower cardinality cMCSs were retrieved under both cases. This is attributed
to the design of the objective function which favored lower cardinality cut sets.
In terms of performance, GAMCS found near optimal solutions in 25% and
2.5% of the time taken by APM to �nd the same solutions for M2 and M3.
However, in the smaller model M1, APM outperformed GAMCS. When used
to maximize for ethanol yield, GAMCS found the globally optimal solution
for all three models. It was also much faster than APM every time. Again,
all lower cardinality cMCSs were retrieved, owing possibly to the objective
function design. Also, APM is more resource intensive compared to GAMCS.

A �tness function was designed to �nd EFM partitions which included
both the maximum ethanol producing mode plus modes with high e�ciency.
Its application to all three models produced similar designs, all with a cMCS
cardinality of 5. The time taken to �nd the solutions ranged from a few
minutes for M1 and M2 to a few hours for M3. These designs were similar to
the ones used in the experimentally veri�ed [Trinh et al. 2008].

In conclusion, it can be said that in large metabolic networks GAMCS
outperforms alternative approaches by orders of magnitude in terms of run-
time. It is naturally and easily parallelized to gain further runtime gains on
current computing infrastructure or computer clusters. Moreover, it has no
restrictions on the form of the engineering objective, which for the prediction
of cMCSs was previously restricted only to linear functions.

As the method deals with the complete set of EFMs of a network, it is
limited by the number of EFMs. GAMCS can handle small and medium scale
networks. Genome-scale networks are however outside of its scope. Like all
metaheuristics, GAMCS cannot guarantee that the global optimum will be
found, a fact re�ected by its inability to �nd the most e�cient design for M2
and M3. A more detailed analysis of the above can be found in Chapter 6,
Section 6.3.

4.2 Prediction of intervention strategies using

PSOMCS

Calculation of intervention strategies based on EFMs are limited to small
and medium scale networks. On the other hand, strategies based on other
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Table 4.1: E�ciency values GAMCS
Model Maximum

e�ciency

Design

e�ciency

M1 0.1340 0.1340
M2 0.1542 0.1497
M3 0.1521 0.1374

The designed strains attain e�ciency very close to the maximum possible
e�ciency.

Table 4.2: Ethanol yield values GAMCS
Model Maximum

ethanol

Design

ethanol

M1 2.00 2.00
M2 2.00 2.00
M3 2.00 2.00

Designs for all the models are capable of producing ethanol at the highest
possible yield.

methods like FBA can not guarantee the minimality of the interventions
and do not account for alternative optima. This problem was solved by
the rigorous approach of directly calculating cMCSs given a speci�c design
[von Kamp & Klamt 2014] which made possible the calculation of interven-
tion strategies even in genome-scale metabolic networks. However, there was
a need for a method which can not only �nd the optimal intervention strategy
for a given design but also the best possible design. PSOMCS was developed
to address this need. PSOMCS uses particle swarm optimization (PSO) to
�nd optimal cMCSs satisfying multiple design objectives. PSOMCS was writ-
ten in Perl and the IBM ILOG CPLEX Optimization studio was used to solve
the LPs and MILPs. The tests were done on model M3 and the iAF1260
genome-scale model of E. coli metabolism. The iAF1260 model was reduced
by removing reactions and metabolites so that it was capable of growing anaer-
obically on glucose as the sole carbon source. The aim was to �nd designs
guaranteeing a high ethanol yield with the additional requirement that the
ethanol production be growth-coupled.

Intervention strategies optimizing for the same objective function were
calculated using both PSOMCS and GAMCS. Both methods reached the same
maximum �tness and returned the same optimal design with the same minimal
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ethanol yield and growth rate (see Figure 7.4 in Chapter 7). This design of
5 reaction knockouts is similar to the design presented in [Trinh et al. 2008]
which has been experimentally veri�ed. Since both methods generally return
multiple solutions, multiple cMCSs resulting in the same design were obtained.
In terms of performance PSOMCS was over 23 times faster than GAMCS at
reaching this optimum.

PSOMCS was used to optimize ethanol production in the genome-scale
iAF1260 model. This model has 1413 reactions and 971 metabolites. Two
routinely used strain design algorithms, OptKnock [Burgard et al. 2003] and
RobustKnock [Tepper & Shlomi 2010] were used for comparison. PSOMCS
produced a better design than the ones produced by OptKnock and Robust-
Knock (see Figure 7.5 in Chapter 7). Although the designs produced by
OptKnock and RobustKnock allowed for high ethanol yield, the minimum
possible yield was 0. In contrast, the design output by PSOMCS guarantees
a minimal yield of 0.9. The maximum possible ethanol yield is 2 for all the
three methods. In the PSOMCS design ethanol production was also more
strongly growth-coupled compared to the other designs. PSOMCS runtime
for �nding this design was 74 hours. OptKnock and RobustKnock took only
a few minutes and just over an hour respectively for their respective designs.
Both of these methods require a minimal biomass production to be manually
set before running the program. Although OptKnock took a few minutes for
all biomass levels tested, RobustKnock ran for over 90 hours with a biomass
level of 0.001 and for over 24 hours with a biomass level of 0.005 before being
manually terminated. For the purposes of this test, the minimally required
biomass production was set to 0.006 for both OptKnock and RobustKnock.
PSOMCS on the other hand does not require any manual intervention and
�nds the optimum solely depending on the �tness function.

This was the �rst successful demonstration of PSO for strain design. We
showed that PSOMCS is orders of magnitude faster than other comparable
methods and can calculate optimal designs even in genome scale metabolic
networks. Metaheuristic strategies for �nding optimal designs using �ux bal-
ance analysis (FBA) and elementary �ux modes (EFMs) exist but this was
the �rst attempt at using the concept of direct calculation of cMCSs to do so.

Although the direct enumeration of cMCS gets around the problem of
enumerating EFMs, it is not immune to the issue of memory requirements
imposed by larger network sizes. Consequently, this is a limiting factor for
PSOMCS too. This memory issue comes into play while solving the MILP
represented by (7.5). The search tree constructed by the CPLEX Branch and
Cut algorithm can quickly consume a large amount of memory. For example,
with a knockout size limit of 6, the search tree produced while solving one of
the MILPs exceeded 130 GB.
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4.3 Comparison of GAMCS and PSOMCS

Both the GAMCS and PSOMCS algorithms were developed to achieve the
same end result. Albeit both being metaheuristic methods, the approach fol-
lowed by each is completely di�erent from the other. The other similarities
between them is that both are network based approaches capable of paral-
lel computational execution and with the ability to produce designs guaran-
teed minimal product yield. It has been shown that PSOMCS outperforms
GAMCS (see Section 7.3 in Chapter 7). The other major di�erences between
the two are highlighted in Table 4.3.

Table 4.3: Di�erences between the two approaches presented here
GAMCS PSOMCS

Optimization done using a genetic al-
gorithm.

Particle swarm algorithm is used for
optimization.

Based on the concept of EFMs. Based on the concept of direct enumer-
ation of cMCS.

Works only on small and medium-scale
networks.

Capable of handling all network sizes
including genome-scale networks.

Slower than PSOMCS. Orders of magnitude faster than
GAMCS.

Multiple solutions (cMCS) are re-
trieved for each individual problem
solved.

Each individual problem solved returns
only a single solution.

Has 14 parameters. Has 3 parameters.
Parameter adjustment is di�cult and
slight changes in them a�ects the per-
formance of the algorithm.

Algorithm is robust in the face of small
changes in parameter values.

PSOMCS was developed with the aim of improving upon the performance
of GAMCS and it clearly delivers on this aim.





Chapter 5

Conclusion and outlook

The goal of this work was to develop tools for calculating intervention strate-
gies in metabolic networks leading to optimal production of the chemical of
interest. The desired characteristics of the system resulting from such inter-
vention strategies were i) a guaranteed minimal yield of the product ii) growth-
coupled product formation iii) achieving this through a minimum number of
knockouts. Two metaheuristic algorithms were developed towards ful�lling
this goal. The large search space of metabolic intervention strategies along
with the combinatorial nature of the problem make metaheuristics an ideal
tool for attacking this problem. GAMCS is a genetic algorithm based tool and
PSOMCS is based on particle swarm optimization. Using the metabolic net-
work model of E. coli and ethanol as the chemical of interest, both GAMCS
and PSOMCS were shown to satisfy the aforementioned goal. Additionally,
their performance was compared to other methods aiming for similar out-
comes. GAMCS was shown to be much faster that APM for larger models. It
also o�ers more �exibility in terms of design. PSOMCS was shown to be orders
of magnitude faster than GAMCS while producing better designs compared
to standard strain design tools, OptKnock and RobustKnock. PSOMCS also
represents an advancement in the size of networks that can be handled.

Knowledge gained from the increasing number of genome-scale sequences
and the availability of high-throughput data sets have made it possible to in-
tegrate biological knowledge beyond the identi�cation of genes in the genome.
Bioinformatic tools and databases can be used to produce protein-protein in-
teraction data, regulatory data and metabolic network reconstructions from
the sequence data [Reed et al. 2006]. These capabilities are predicted to grow.
Not only are metabolic networks of more and more organisms becoming avail-
able but the quality and size of existing networks are improving. This means
more organisms will be available for industrial exploitation. Tools for cal-
culating intervention strategies will remain important not only for industrial
purposes but for enhancing basic understanding of cellular functions. Ideally
tools must be scalable in the face of such increasing demands. The time taken
for calculating optimal intervention strategies in metabolic networks can be
considerably shortened using the methods presented in this work. These meth-
ods are also capable of searching for complex designs encoded by �exible/non-
linear objective functions.
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The main limitation of GAMCS is its dependence on the complete set
of EFMs of a metabolic network. One can get around this by reduc-
ing the set of EFMs to a relevant subset. Many techniques have been
proposed for calculating a smaller set of EFMs [De Figueiredo et al. 2009,
David & Bockmayr 2014, Jungreuthmayer et al. 2013c, Machado et al. 2012,
Kaleta et al. 2009, Gerstl et al. 2015a]. Working with a smaller set of EFMs
will certainly reduce the time taken by GAMCS to �nd intervention strategies.
It will also make it easier to be applied to larger networks. However the validity
of such results have yet to be tested. PSOMCS is mainly limited by the MILP
used to calculate cMCS. Particularly, having many variables with possible in-
teger values leads to the MILP solver constructing a large solution tree which
not only takes memory but time to parse. Hence, a straightforward approach
to improving PSOMCS performance is by allowing only a few reactions to be
knocked out i.e., take integer values. in [Mahadevan et al. 2015] FAV was used
to identify 10 knockable reactions and knockouts up to size 6 were calculated
from these. GA based techniques could also be used to automatically �nd
reactions not to be considered for knockouts, thereby reducing the size of the
knockable reaction set. PSOMCS may also be extended to incorporate regu-
latory interventions using the approach presented in [Mahadevan et al. 2015].

Most tools for �nding metabolic intervention strategies do so given a par-
ticular design. This in turn introduces the problem of having to �nd the
best design. The methods presented in this work solve both of these using
a single tool. That is, they are capable of not only �nding minimal knock-
outs for a particular design but also of �nding the best design. Produc-
tion at zero-growth is an important development garnering increasing interest
[Lange et al. 2016, Rebnegger et al. 2016]. This lets all the carbon source,
barring some for maintenance, to be converted to the product of interest.
The tools presented in this work already allow for such designs by considering
the entire range of product formation and growth. Furthermore the designs
presented ensure a high minimal product yield even at zero-growth.

The calculation of knockouts is based on a strong theoretical foundation of
constraint based modeling. Metabolic engineering however also relies on gene
over expression. Predicting over expression targets requires understanding
of correlations among genes, mRNAs, transcriptional or translational regu-
lations, proteins, and metabolic �uxes [Park et al. 2012]. This makes over
expression target prediction much more di�cult than calculation of knock-
outs. It also highlights the limited scope of constrained based methods in
modeling cell behavior. Although some methods have been proposed for iden-
tifying over expression targets [Kim & Reed 2010, Ranganathan et al. 2010,
Park et al. 2012, Jian et al. 2016], the theoretical foundations on which these
methods are based are not strong enough. Critical breakthroughs are needed
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in this area to make computational modeling approaches more useful in
metabolic engineering.





Chapter 6

Designing minimal microbial

strains of desired functionality

using a genetic algorithm

This chapter was publish by Govind Nair, Christian Jungreuthmayer, Michael
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• Background The rational, in silico prediction of gene-knockouts to
turn organisms into e�cient cell factories is an essential and compu-
tationally challenging task in metabolic engineering. Elementary �ux
mode analysis in combination with constraint minimal cut sets is a par-
ticularly powerful method to identify optimal engineering targets, which
will force an organism into the desired metabolic state. Given an engi-
neering objective, it is theoretically possible, although computationally
impractical, to �nd the best minimal intervention strategies.

• Results We developed a genetic algorithm (GA-MCS) to quickly �nd
many (near) optimal intervention strategies while overcoming the above
mentioned computational burden. We tested our algorithm on E. coli

metabolic networks of three di�erent sizes to �nd intervention strategies
satisfying three di�erent engineering objectives.

• Conclusions We show that GA-MCS �nds all practically relevant tar-
gets for any (non)-linear engineering objective. Our algorithm also found
solutions comparable to previously published results. We show that for
large networks optimal solutions are found within a fraction of the time
used for a complete enumeration.

1JZ and CJ conceived and designed the study. GN, MH, JZ and CJ designed the

algorithm. GN implemented the algorithm, ran the analysis and validated the results. All

authors were involved in the analysis of the results and read, reviewed and approved the

manuscript.
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Background

The availability of high amount of biological data has led to the reconstruction
of genome-scale metabolic networks for many organisms [Covert et al. 2001,
Durot et al. 2009, Henry et al. 2010, Thiele & Palsson 2010] which can be
analysed and probed using mathematical and computational methods
[Oberhardt et al. 2009, Tenazinha & Vinga 2011]. Prominent among these
are constraint based modelling approaches which depend on the stoichiom-
etry of the reactions. These include methods like �ux balance analy-
sis, FBA, [Orth et al. 2010] and elementary �ux mode analysis, EFMA

[Schuster & Hilgetag 1994, Schuster et al. 2000]. The major di�erence be-
tween these approaches is that FBA seeks particular �ux solutions whereas
EFMA seeks to describe the entire �ux space by enumerating all its elemen-
tary and balanced pathways which are called elementary �ux modes, EFMs.
Thus, the complete set of EFMs describes all possible cellular states. The
disadvantage is that enumerating all the EFMs of a metabolic network is
computationally very demanding as the number of EFMs explodes with net-
work size [Klamt & Stelling 2002]. However, the ability to enumerate EFMs
has been steadily improving [Gagneur & Klamt 2004, Terzer & Stelling 2008,
Jungreuthmayer et al. 2013c, David & Bockmayr 2014].

An important application of an EFMA is the prediction of gene knock-
outs to turn wild-type organisms into e�cient minimal cell factories [?].
The design of e�cient cell factories is based on the concept of networks
of minimal functionality. These are derived from wildtype metabolic net-
works by keeping typically very few, speci�cally selected metabolic func-
tions, e.g., EFMs with high yields of products of interest, while diminish-
ing all other unwanted (wildtype) functionality by appropriately selected
gene/reaction knockouts. These interventions channel the available car-
bon �ux towards the product of interest. Based on EFMA the concept
of constrained minimal cut sets, cMCS can be used to redirect cellular
resources towards the product of interest [Hädicke & Klamt 2011]. cMCS
are minimal (reaction) knock-out strategies, that disable unwanted EFMs
(e.g., low product yield/growth) while the desired EFMs (e.g., high prod-
uct yield) are preserved. In particular, cMCSs of minimal cardinality are
important as these solutions minimize the experimental e�ort when knock-
outs are actually implemented in vivo. Several methods for the computation
of cMCS based on a given EFM spectrum are known [Hädicke & Klamt 2011,
Jungreuthmayer & Zanghellini 2012, Jungreuthmayer et al. 2013b]. Alterna-
tively, cMCS can also be calculated directly without �rst calculating EFMs
[Ballerstein et al. 2012, von Kamp & Klamt 2014, Mahadevan et al. 2015].
However, in all these methods, explicit design criteria must be used (e.g.
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by providing boundaries for the desired minimal product yield). This is prob-
lematic in so far as a slight change in the design criteria might lead to large
changes in the minimal cardinality of the cMCSs, i.e. the minimal number of
required knockouts. For example, Trinh et al. [Trinh et al. 2008] optimized E.
Coli for ethanol production with seven reaction knockouts. Jungreuthmayer
et al. [Jungreuthmayer et al. 2013d] on the other hand, were able to design
a strain with identical key features and almost identical overall functionality,
which required only �ve reaction knockouts.

If the EFMs are known it is theoretically possible but generally im-
practical to �nd all optimal partitions of EFMs and their corresponding
cMCSs (of minimal cardinality). In a recent work Ruckerbauer et al.

[Ruckerbauer et al. 2014] approach this problem by �rst �nding the small-
est possible cMCS which contributes towards the engineering objective. Then
cMCSs of higher cardinality are successively enumerated such that the engi-
neering objective value is greater than or equal to that of the previous smaller
cMCS. This circumvents the problem of large number of binning possibilities
but will work, in a reasonable amount of time, only for small scale networks.

Here we present a novel approach which uses a genetic algorithm, GA
to �evolve� near optimal solutions from starting sets of randomly partitioned
modes. This results in minimal strains such that only that fraction of the
total EFMs which contribute towards the design objective are active after
deletion of the predicted cMCSs. This approach combines the simplicity of a
GA with the power of EFMA and cMCS. The GA not only circumvents the
manual partitioning of EFMs but also �nds increasingly better solutions in
a relatively short amount of time. This method can be used to satisfy not
only traditional design objectives like product yield and growth but can also
incorporate more complex design objectives like high growth-coupled product
yield using minimal number of knockouts or even non-linear objectives.

6.1 Preliminaries

6.1.1 Elementary �ux modes, EFMs.

The material balances in a metabolic network with m internal metabolites
and r reactions in steady state can be represented by

N · v = 0. (6.1)

where N is the m× r stoichiometric matrix and v is a �ux vector containing
the �uxes through the network and v ∈ Rr, i.e., v = (v1, . . . , vr)

T . The set
of reactions can be partitioned based on thermodynamic constraints into sets
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of reversible and irreversible reactions. If Irrev is the index set of irreversible
reactions,

vj ≥ 0 ∀ j ∈ Irrev. (6.2)

The support of the �ux vector v can be de�ned as supp(v) = {j|vj ̸= 0},
which is the set of reaction indices in v with non-zero �ux values. An EFM,
e, is a �ux vector v ̸= 0 which satis�es (6.1), (6.2) and a non-decomposability
condition which states that, there is no non-trivial �ux vector w satisfying
(6.1), (6.2) and whose support is a proper subset of e, i.e., supp(w) ⊂ supp(e).
The non-decomposability condition means that the removal of any supporting
reaction in an EFM will block a steady state �ux through it. The set of all
EFMs of a network completely describes the entire metabolic capabilities of
the network. Every possible �ux through the network can be expressed as
a non-negative weighted combination of EFMs without cancellation. This
means that if the �ux through a reaction is 0, then all the contributing EFMs
necessarily will have 0 �ux through that reaction. For more information on
EFMs, see [Zanghellini et al. 2013].

We will use the following notation henceforth, E = supp(e). Let E =

{E1, . . . , En} represent the full set of all n EFMs in support notation.

6.1.2 Constrained minimal cutsets, cMCSs.

Suppose there are certain network states which need to be suppressed. These
states can be represented by a set of EFMsT, whereT ⊂ E. The problem then
becomes one of �killing� all the EFMs inT. This can be done by �knocking-out�
a cutset C of reactions which will �hit� all of T. That is,

∀ T ∈ T, C ∩ T ̸= ∅, (6.3)

C will be a minimal cut set, MCS, if there is no proper subset B ⊂ C which
satis�es (6.3) [Klamt & Gilles 2004].

Suppose that in addition to network states which need to be suppressed,
there are certain states which we need to preserve when knockouts are applied
(e.g. biomass production and product formation). This can be done using
the concept of cMCS [Hädicke & Klamt 2011]. The set of desired EFMs D
corresponds to the network states to be preserved. Since in general it cannot
be expected that an MCS will not hit any of D, we will say that we would
like to have at least k EFMs untouched by an MCS where k ≤| D |. Given an
MCS C, let the set of EFMs DC represent D ∈ D which survive after applying
C,

DC = {D ∈ D | C ∩D = ∅}. (6.4)
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An MCS which satis�es (6.3) and the following constraint is a cMCS

|DC | ≥ k. (6.5)

Thus an intervention problem

I = I(T,D, k) (6.6)

is de�ned by a set of target EFMs T which need to be �killed� and
a set of desired modes D of which at least k have to be �kept�.
Several methods to solve (6.6) are available [Hädicke & Klamt 2011,
Jungreuthmayer & Zanghellini 2012, Jungreuthmayer et al. 2013b]. Note
that D ∪ T does not necessarily unite to the full set of EFMs since there
could be EFMs which we do not want to either kill or keep but instead have
a �don't care� status. However, we do not need to specify such an association
since we will not operate on these EFMs. We will operate only on the EFMs
we are interested in (D & T) and do not bother with what happens to the
EFMs with �don't care� status because by de�nition it wouldn't matter to us
if these EFMs survive or are killed.

In the following we describe a GA to solve the intervention problem (6).
For simplicity our implementation partitions the complete set of EFMs into
D and T and does not make use of the �don't care� option.

6.2 Methods

6.2.1 The EFM kill/keep problem.

Equation (6.6) allows to search for cMCS which keep certain EFMs and kill
others. However, it is not intuitive which EFMs to keep and which to kill
in order to minimize the cardinality of the cMCSs. Thus the question arises:
What is the best partitioning of EFMs in order to reach a speci�c engineering
objective? Even in a modest sized network, the possible combination of EFMs
to keep or kill is very large. For example, in a small scale network with 5,000
EFMs, the number of possible kill/keep combinations is 25,000. It is practically
impossible to explore all points in such a large solution space. Therefore, it
makes sense to utilize a program that �nds the best set of EFMs to keep, and
the corresponding cMCSs which will achieve this for a given an engineering
objective [Ruckerbauer et al. 2014]. We do this using a GA, the working of
which is described below.



44
Chapter 6. Designing minimal microbial strains of desired

functionality using a genetic algorithm

6.2.2 The Genetic algorithm, GA.

GAs are heuristics inspired by the theory of evolution, generally used when
the extreme of the function cannot be analytically established or when it
is impractical to search the whole solution space. GAs work on problems
by encoding possible solutions into a population of individuals. These indi-
viduals are chromosome like data structures which are iteratively re�ned to
�evolve� better solutions by applying strategies inspired by Darwinian evolu-
tion [Whitley 1994, Beasley et al. 1993, Li & Yunfei 2002, Mitchell 1998]. In
our implementation each individual represents an intervention problem (6.6).

Given a population size p, we randomly generate individuals Si =

{s1i , . . . , sni }, 1 ≤ i ≤ p, where each element sji of Si indicates if the EFM
Ej is present (s

j
i = 1) in the individual Si or not (s

j
i = 0). Thus each individ-

ual Si codes an intervention problem (6.6) with

Ii = Ii[T(Si),D(Si), k(Si)],

with T(Si) = {Ej|sji = 0},
D(Si) = {Ej|sji = 1},
k(Si) = wk|D(Si)|

1 ≤ i ≤ p, 1 ≤ j ≤ n (6.7)

where wk ∈ [0, 1] is a freely adjustable GA parameter. sji -values are assigned
randomly but we provided for the possibility to pre-process EFMs such that
EFMs with desirable characteristics have a higher chance of being 1. For ex-
ample, suppose a cell is described by the following set of EFMs {E1, . . . , E7},
where only E1, E3 and E7 support product formation. If we want to optimize
for product formation, we clearly do not want to keep the non-producer. So
we choose sji such that undesirable states never get selected. In our example
possible randomly selected individuals could look like S1 = {1, 0, 1, 0, 0, 0, 1},
S2 = {1, 0, 1, 0, 0, 0, 0}, etc. while {1, 1, 1, 0, 0, 0, 1} would not be generated
because it includes E2 which we want to eliminate. This leads to a signi�-
cant reduction in the search space. Finally, for each individual Si, cMCS are
calculated using the MHScalculator [Jungreuthmayer et al. 2013a].

GAs aim to proceed towards better solutions by evaluating each individual
Si against a �tness function F and selecting the top-performers for procre-
ation. The �tness function re�ects the design objective since those are the
traits we want to improve. In our implementation individuals are selected
for mating using a �tness proportionate selection [Goldberg & Deb 1991].
In addition, we use the concept of �elitism� where a pre-speci�ed percent-
age of top-performers will propagate into the next generation without any
modi�cation as shown in Figure 6.2C. This guarantees that the popula-
tion's maximum �tness does not decrease. We use crossover, mutation
[Beasley et al. 1993, Whitley 1994], and random selection based on previous
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information about surviving EFMs to produce a new generation of individuals.
These mechanisms are explained below.

6.2.2.1 Crossover.

We take two parent individuals, S1 and S2, and randomly exchange their
elements to create two new o�spring S3 and S4. We implemented the fol-
lowing three standard types of crossovers. For 1point crossover, generate a
random integer rc, 1 ≤ rc < n for each pair of parents, then the o�spring
of crossover are S3 = {s11, ...src1 , src+1

2 , ...sn2} and S4 = {s12, ...src2 , src+1
1 , ...sn1},

(see Figure 6.2A). In 2point crossover, two random integers rc1, rc2, 1 ≤
rc1 < rc2 < n are generated for each pair of parents. The o�spring
in this scenario are S3 = {s11, ...s

rc1
1 , src1+1

2 , ...src22 , src2+1
1 , ...sn1} and S4 =

{s12, ...s
rc1
2 , src1+1

1 , ...src21 , src2+1
2 , ...sn2}. In uniform crossover, for each EFM a

random number 0 ≤ rju < 1 is generated and the o�spring are S3 = {sj1 if rju <

0.5 else sj2} and S4 = {sj2 if rju < 0.5 else sj1}.

6.2.2.2 Mutation.

Given an individual S1 and a random integer r, 1 ≤ r < n, the mutated
individual is S2 = {si1if i ̸= r, else 1 − si1}. The absolute number of such
random integers generated for each individual is given by ρrm, where rm is
a freely adjustable GA parameter, the mutation rate, 0 ≤ rm < 1 and ρ the
maximum number of EFMs with desirable characteristics, ρ ≤ n (see Figure
6.2A).

6.2.2.3 Pattern-based individual generation.

In addition to mutation and crossover we create new individuals based on
the �ttest patterns. For each individual S, whose corresponding intervention
problem has solution(/s), we generate a �design pattern�, which contains only
the surviving EFMs,

P = {pj | pj = 1 if Ej ∈ DC else pj = 0}. (6.8)

Given a binary individual S = 1010001, if only EFM 3 and 7 survive the in-
tervention, the resulting pattern will be 0010001. Thus a pattern is a speci�c
strain design for an intervention problem. A solvable intervention problem
typically produces more than one solution. Therefore, one individual will
usually have more than one pattern associated with it. Since the �tness de-
pends on the surviving EFMs, each pattern will have its own �tness value.
Thus one individual may be associated with more than one �tness value. Here,
the �tness of an individual S is de�ned as the �tness of the �ttest pattern P .
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To create the new individuals, we start by weighting each EFM propor-
tional to the number of times the EFM survived in all previous patterns. Let
P t represent the entire set of patterns found until a given generation t. The
weight wi

t for an EFM Ei is calculated by

wi
t =

|P t|∑
j=1

(P t)
i
j. (6.9)

Next we generate a set of desired candidate EFMs by randomly selecting
a random number of EFMs with non-vanishing wi

t. Out of these desired
candidate EFMs new individuals were composed by including those candidate
EFMs for which a randomly selected number ri was not larger than the weight
of the corresponding candidate EFM, 0 ≤ ri < maxwt and maxwt is the
maximum of all such weights (see Figure 6.2B),

Snew = {sinew| if wi
t ≥ ri, s

i
new = 1 else sinew = 0}. (6.10)

The number of individuals generated by this method can be controlled by the
GA parameter `new_S', Table 6.1. It is a way to consider all good solutions
obtained so far and ensures that more EFMs with desirable properties �nd
their way into the set of desired EFMs. This helps the GA to reach the
optimum faster.

The GA stops after reaching a pre-speci�ed number of generations or when
the maximum �tness doesn't improve for a given number of generations, out-
putting all MCSs of minimal cardinality associated with each desired pattern.
The schematic of the GA implemented and used here is shown in Figure 6.1
along with a small illustrative example in Figure 6.2.

6.2.3 Implementation.

The GA was implemented in Perl http://www.perl.org/. cMCSs were
calculated with MHScalculator which is an open source C-program that is
freely available [Jungreuthmayer et al. 2013a]. EFMs were calculated using
the regEfmtool [Jungreuthmayer et al. 2013c]. All runs were performed on a
machine with the following speci�cations - 2 CPUs, 12 cores, Intel Xeon X5650
2.67 GHz and an Ubuntu 14.04 LTS operating system, allowing the used pro-
grams to utilise 10 threads in parallel. Caching in form of look-up tables is
employed to store previously obtained MCS, patterns and corresponding �t-
nesses, to avoid repetition of calculation. We also use tmpfs, a temporary �le
storage created on the RAM, for faster i/o on intermediate �les. A general
description of the parameters used for controlling the GA are shown in Table
6.1. Speci�c parameter values for the individual runs are shown in Table 6.2.

http://www.perl.org/
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6.2.4 Validation.

We ran the GA on an E. coli core model, M3, [Trinh et al. 2008] and two
smaller models, M1 and M2, which were derived from the parent model, M3,
by removing several reactions. M3 describes the central carbon metabolism
of E. coli including the uptake and utilization of several hexose and pentose
sugars. Compared to M3, M2 is restricted to model only glucose utilization
(all other carbon uptake relations were removed). Finally, M1, the smallest
model of the three, describes glucose utilization under anaerobic conditions.
The main topological properties of the three models are summarized in Table
6.3.

6.3 Results

Our aim is to design optimised E. coli strains for ethanol production. The
optimization objectives considered in this study were ethanol yield (YEtoh),
substrate speci�c productivity which is the product of normalised speci�c
ethanol production and normalised biomass production [Feist et al. 2010] also
called �e�ciency� (ηEtoh = YEtoh×YBiomass), and an objective which considers
both the yield and e�ciency together. In all objectives, we favor solutions
with low cardinalities (for details see Table 6.4).

6.3.1 Benchmarking

We tested the performance of the GA against the automatic partitioning
method, APM developed by Ruckerbauer et al. [Ruckerbauer et al. 2014]
using the models M1, M2 and M3. The APM was selected for comparison,
as for any given, linear engineering objective APM enumerates all optimal
knockout strategies without requiring any manual interference. We tested for
maximum e�ciency and ethanol production using the �tness function F1 and
F2, respectively as given in Table 6.4. For the three models used we listed
the main characteristics of the optimal solutions with respect to the �tness
functions in Table 6.3. All simulations were run �ve times. In the following
we reported averages over these �ve runs, unless otherwise stated.

6.3.1.1 Maximizing for e�ciency

We used the �tness function F2 (Table 6.4) with the parameters shown in
Table 6.2 to optimize for e�ciency. The GA was terminated when the �tness
function remained unchanged for 15 generations.
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The GA found all optimal solutions for the small model M1 (see Figure
6.3a). In the bigger models M2 and M3 the GA did not �nd the best solutions
but got within 3% and 1.2% of the maximum �tness, respectively.

In M2 and within the selected runtime, the GA mostly found near optimal
solutions (see Figure 6.3b), and rarely converged to the optimal solution. In
the case of M3 the GA got stuck in a local optimum (see Figure 6.3c).

While the GA does not necessarily identify the absolute best solutions,
it generally �nds near-optimal solutions extremely quickly. In M2 and M3
near-optimal solutions are found in about 25% and 2.5% of the time taken by
the APM, respectively (see Figure 6.3). Only in the small-scale model M1,
which is easy to enumerated fully, the GA is slower than the APM.

Comparing the MCSs obtained with the GA to the ones obtained with
the APM, as shown in Figure 6.4 a, b and c, reveals that our algorithm
retrieves 100% of all low cardinality MCS. The number drops with increasing
MCS' cardinality. This behavior is expected as our �tness functions favors low
cardinality solutions. Thus it is very unlikely that the GA will identify many
high cardinality solutions. In fact, this explains the non-monotonic behavior
of the line of maximum e�ciency in Figure 6.3c. Because the �tness function
F2 allows for a trade o� between cardinality and maximum e�ciency, the
e�ciency might decrease. Yet the �tness function still increases.

6.3.1.2 Maximizing for ethanol production

We used the �tness function F1 (Table 6.4) with the parameters shown in
Table 6.2 to maximise for ethanol yield. The GA was terminated when the
�tness function remained unchanged for 15 generations.

Unlike the previous case, here our algorithm found all optimal solutions
for all models. Also, we were faster than the APM in reaching the optimum
for all models (see Figure 6.3d, e and f).

Again, like in the case of maximising for e�ciency, the GA retrieves 100%
of lower cardinality MCSs (Figure 6.4 d, e and f), and not many of the higher
cardinality solutions, when compared to the solutions obtained using APM.
This is a result of the �tness function, F1, which favors towards lower cardi-
nality MCSs. The e�ect of this can be observed in Figures 6.3d and e where
the GA �rst �nds higher cardinality solutions for the optimal ethanol yield
and settles down to the lowest possible cardinality in subsequent generations.

6.3.2 Optimizing for a complex design

Although maximising for ethanol yield and e�ciency, produces sub-optimal
to optimal designs, these designs may not be the best to implement in vivo.
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For example, the EFMs which result in the maximum ethanol yield do not
support growth. However, two of these EFMs provide maintenance energy.
On the other hand, designs with maximum e�ciency do not include maximum
ethanol producing EFMs. It would be preferable to have a design which
combines these features. We used the �tness function F3 (Table 6.4) with the
parameters shown in Table 6.2 to �nd optimal designs.

A similar problem was looked at in [Ruckerbauer et al. 2014] where the
authors optimised M1 for e�ciency while ensuring that at least one of the
maximal ethanol producing EFMs survive in the �nal design. Their design
included the most e�cient ethanol producing EFMs as well as EFMs with
maximum ethanol yield, achieved with an MCS cardinality of 6. A similar
design was used by Trinh et al. [Trinh et al. 2008] using 7 reaction knockouts.
Our algorithm produces designs of similar functionality with MCSs of cardi-
nality 5, Figure 6.5b. Similar results were obtained for M2, and M3 as shown
in Figure 6.5d and f respectively, both with MCS cardinalities of 5. Also, our
algorithm was very quick in �nding these designs, taking a few minutes for
M1 and M2 and a few hours for M3.

6.4 Conclusion

We have presented a method for the design of minimal microbial strains of
desired functionality. The designs are minimal in the sense that only a few of
the total number of pathways (EFMs) are active after deletion of the predicted
cMCSs. Our GA uses the MHScalculator [Jungreuthmayer et al. 2013a] to
�nd cMCSs for a given set of desired and target EFMs. However, the optimal
selection of such sets is non-intuitive. Hence, the aim was �nding the best
possible set of pathways which maximize a given engineering objective.

Another GA, called the OptGene method has been previously reported
which �nds reaction cuts to achieve a design objective [Patil et al. 2005]. This
algorithm works by testing di�erent combinations of reaction knockouts. In
contrast, we test partitions of EFMs. Thus our search space is by orders of
magnitude larger than theirs. OptGene �nds many solutions too, but it cannot
be guaranteed that these are minimal. Also, the knockout cardinalities are
restricted to 1 - 10. Our approach is based on the concept of EFMs which
enumerate all possible network states. OptGene however uses methods like
FBA, MOMA [Segre et al. 2002], etc. to calculate the �tness which, unlike
EFMs do not account for alternative pathways. Although methods which use
FBA and MOMA predict optimal solutions, there is no guarantee that the
predicted optimum will be achieved. In a similar vein, the method presented
here has advantages over other methods which use a biased biological objective
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like OptKnock [Burgard et al. 2003], RobustKnock [Tepper & Shlomi 2010]
and tilting of the objective function [Feist et al. 2010].

Boghigian et al. [Boghigian et al. 2010] also use a GA and EFMs to design
strains with higher product yields. Their approach however di�ers from the
method presented in this paper in a few major ways. First, the aim of the GA
presented in [Boghigian et al. 2010] is to only improve product yields without
considering the minimality of the knockouts. Hence, in contrast to us their
predicted knockouts are not guaranteed to be minimal. Second, the basic
problems considered by both methods are di�erent, although the �nal aim
is the same, namely strain improvement. Boghigian et al. look for reaction
knockouts which will improve product yields. Our GA not only maximizes
the product yield but also simultaneously searches for optimal partitions in
the set of EFMs. Finally, we deal with networks where the number of EFMs
are one order of magnitude larger than that used in [Boghigian et al. 2010].

Tools which use EFMs to �nd intervention strategies include the MHScal-
culator [Jungreuthmayer & Zanghellini 2012, Jungreuthmayer et al. 2013a]
and a tool to calculate cMCSs as part of the CellNetAnalyzer, a MATLAB
package providing comprehensive structural and functional analysis of bio-
chemical networks [Klamt et al. 2007]. These methods use EFMs and hence
consider the entire metabolic landscape of the organism. The limitation of
these methods is that the EFMs which must survive or be killed by an inter-
vention have to be manually partitioned.

A recent method (APM [Ruckerbauer et al. 2014]) overcomes this issue by
calculating all partitions of EFMs for MCSs of increasing cardinality such that
the objective is higher than that corresponding to the previous smaller MCS
size. This is an exhaustive and exact method for �nding intervention strategies
in metabolic networks. However, this method is impractical for large networks
given current computational capabilities. Although the GA is not faster than
the APM at very small network sizes like M1, its comparative performance
improves with increasing network sizes, Figure 6.3. Also, when optimizing for
e�ciency, the GA does not reach the global optimum when APM does, Figure
6.3 b,c. Note that however, an exact comparison to APM is not possible since
APM tries to �nd all MCS whereas the GA tries to �nd the best cut set for
a particular objective. Our method also incorporates the freedom to encode
complex design criteria, which is not possible with the APM. Also, since the
APM is based on linear programming, it is limited to linear objective functions
whereas we can implement non-linear objective functions as well.

An important new approach initially proposed by Baller-
stein et al. [Ballerstein et al. 2012] with further improvements in
[von Kamp & Klamt 2014, Mahadevan et al. 2015] is able to directly
�nd MCSs without �rst needing to calculate the EFMs by using the concept
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of hypergraph dualisation. This gets rid of the problem of explosion in
the number of EFMs with increasing network sizes, allowing for prediction
of intervention strategies in genome-scale metabolic networks. However,
these methods have to specify design criteria like minimal product yield
[von Kamp & Klamt 2014]. This is a limitation in that slight changes in the
value of the speci�ed design criteria may lead to di�erent MCSs. In contrast,
our algorithm tries to automatically �nd the best design criteria.

The GA implemented here is able to predict numerous good solutions to
problems of product maximization which are comparable to experimentally
veri�ed designs [Trinh et al. 2008]. One advantage of this method is the short
time taken while dealing with bigger systems. The biggest advantage though
is the �exibility in the selection of the design criteria using the �tness function.
The �tness function can be arbitrarily complex to accurately re�ect the design
criteria. Here it has allowed us to produce good designs without knowing the
speci�c properties of EFMs which need to survive.

Since our approach mainly relies on a GA, it may be a�ected by inherent
limitations of GAs, including the possibility of getting stuck at a local opti-
mum. This may be overcome by employing multiple runs or changing the GA
parameters. Note that we have considered reaction knockouts here but this
can be easily translated into gene knockouts using gene-reaction associations.

Finally, we provide a brief description of the parameter values used. The
mutation rate was set such that only two to four positions in an individual
are a�ected, an increase in this number resulted in the GA not producing any
good solutions. Decreasing this number resulted in a slower rate of improve-
ment in �tness (data not shown). It is also possible to completely turn o�
mutation by setting rm to 0. In any case the performance of the GA can be
improved with pattern-based individual generation rather than relying solely
on mutation and crossover. The number of such individuals can be adjusted
with the `new_S' parameter. However, too high `new_S' values led to a
comparatively worse GA performance (data not shown). The parameter wk

speci�es the minimum number of EFMs which should survive an intervention.
The lesser this value, the higher the probability of �nding better solutions
- because typically, optimal solutions have very few surviving EFMs, Table
6.3. However, small wk also produces more solutions which in turn takes
more time for pattern and �tness calculations. In order to reach the opti-
mum with as few solutions as possible, we found that in general, wk can be
large for small models (e.g., M1) and must decrease for growing models (e.g.,
M2 and M3) (for exact values see 6.2). `min_1s' determines the minimum
number of possible good EFMs that will end up in the set of desired EFMs
D in the initial population. Because the EFMs are randomly selected to be
in D, not all individuals will generate viable solutions. Also, it is important
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that the union of Ds in the whole population nearly covers the set of good
EFMs. The EFMs which are not covered must otherwise rely on mutation to
be transferred from T to D. The probability of this happening decreases with
increasing individual size. Hence, `min_1s' was set to a high value of 0.9 for
all of the runs. A future direction of this work would be to study the e�ect
of these parameters in detail. This will help get rid of the empirical setting
of parameters in our GA and allow for the implementation of a protocol to
automatically determine these values during the running of the GA.

In summary, our algorithm is able to quickly �nd (near) optimal interven-
tion strategies satisfying non-linear engineering objectives in large metabolic
networks. However, EFMs are still necessary for our method which is a sig-
ni�cant bottleneck when it comes to genome-scale networks. We expect that
combining the dual method [Ballerstein et al. 2012, von Kamp & Klamt 2014,
Mahadevan et al. 2015], which will allow for the calculation of cMCS directly
from the stoichiometric matrix, with a GA will overcome this hurdle.
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Figure 6.1: Flowchart of the GA. The GA stops when a stopping condition
is met, which here is if the number of generations reaches a pre-speci�ed
maximum or if the maximum �tness remains unchanged for a pre-speci�ed
number of generations (Table 6.1).
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Complete EFMs of the network

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

E1 0.0 1.0 0.0 0.25 0.0 0.5 1.0 0.0 0.25 0.5 0.0

E2 0.0 1.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0

E3 0.0 0.0 1.0 0.5 0.0 1.0 1.0 0.0 0.5 1.0 0.0

E4 0.5 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

E5 1.0 0.0 0.0 1.0 0.0 0.0 -1.0 1.0 0.0 0.0 0.0

E6 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

E7 0.0 1.0 0.0 0.25 0.5 0.0 0.5 0.0 0.25 0.0 0.5

E8 0.5 1.0 0.0 0.5 1.0 0.0 0.0 0.0 0.5 0.0 1.0

E9 0.0 0.0 1.0 0.5 1.0 0.0 0.0 0.0 0.5 0.0 1.0

E10 1.0 0.0 0.0 0.5 1.0 0.0 -1.0 0.0 0.5 0.0 1.0

E11 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.5 1.0 0.0

Initial population and results

i Ei ∈ D Si Ci Pi YR4,i Ci Fiti

1 E2, E5, E7, E11 01001010001 R2 R3 R9 00001000000 1 3 1.73

2 E4, E5, E8, E9 00011001100 R3 R7 R9 00010000000 1 3 1.73

3 E2, E3, E4, E5, E8, E9, E11 01111001101 R3 R7 00010001001 0.5 2 1.32

4 E2, E3, E4, E5, E6, E9, E11 01111100101 R9 01011100000 0.5 1 1.4

EFMs are randomly selected encoding GA individuals Si such that a 1 & 0 indicates inclusion of the corresponding EFM in D & T respectively.
Searching for cMCS such that at least one EFM of D survives results in patterns Pi. YR4,i is the least value corresponding to R4 in the surviving
EFMs. Fiti = YR4,i + 1− (Ci/n).

Creating second generation individuals

A
RWS crossover mutation n1

S1

S2

01001010001

00011001100

01001011100

00011000001

00111001100

01011001100

00111001100

01011001100

S1new

S2new

B

patterns n2

00001000000

00010000000

00010001001

01011100000

wt 01032101001 00011100000 S3new

C

Fittest individuals n3

01001010001

00011001100

01001010001 S4new

n1 is generated by randomly selecting from Si based on F and subjecting these to GA operations. n2 is generated by randomly selecting EFMs
based on wt, which represents survival of corresponding EFMs in the previous generations. n3 is for elitism. A, B and C correspond to sections
in the flowchart in Figure 1 with the same names.

Second generation and results

i Ei ∈ D Si Ci Pi YR4,i Ci Fiti

1new E3, E4, E5, E8, E9 00111001100 R3 R7 R9 00010000000 1 3 1.73

2new E2, E4, E5, E8, E9 01011001100 R3 R9 01011000000 0.5 2 1.32

3new E4, E5, E6 00011100000 R7 R9 00010100000 1 2 1.81

4new E2, E5, E7, E11 01001010001 R2 R3 R9 00001000000 1 3 1.73

Figure 6.2: GA example. Running the GA on the given toy network of 11
EFMs with the aim of maximizing production of P. The initial individuals Si

and the e�ect of applying the mutation, crossover and elitism operators to
generate new individuals are shown. Here the GA �nds the best solution with
a �tness of 1.81 and yield (YR4) of 1 in the second generation.
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Table 6.1: The GA parameters
No: GA

parameter

Description

1 t This parameter is used to specify the number of generations
for which the GA will run.

2 p This parameter is used to specify the number of individuals S
present in one generation of the GA.

3 rm This parameter is used to set the mutation rate which speci�es
the number of bits in an individual S that will be �ipped from
0 to 1 or vice versa.

4 cross This parameter is used to select among the three types of
crossover operations possible here: 1point, 2point and uniform.

5 elit This parameter is used to specify the fraction of the number
of total individuals from the previous generation which will be
retained in the subsequent generation.

6 new_S This parameter speci�es the number of new individuals which
will be generated in each generation, based upon information
from previous generations.

7 t_stop This parameter is used to set the maximum number of gener-
ations after which the GA terminates if the maximum �tness
remains unchanging.

8 min_1s This parameter speci�es the fraction of maximum number of
possible good modes which must be present in the initial pop-
ulation.

8 wk This parameter is used by the MHSCalculator to specify the
minimum number of EFMs which have to survive in given a
set of desired modes D (provided as fraction of the number of
EFMs in D).

9 threads This parameter speci�es the maximum number of threads to
be used by the program.

These parameters are used to control the running of the GA and also to get
more speci�c results.
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Table 6.2: GA parameters for di�erent runs
GA

parameter

M1

ethanol

M1

e�ciency

M1

complex

M2

ethanol

M2

e�ciency

M2

complex

M3

ethanol

M3

e�ciency

M3

complex

w1 1 0 1 1 0 1 2 0 1

w2 0 50 50 0 50 50 0 10 50

w3 1 1 1 1 1 1 1 1 1

w4 1 1 1 1 1 1 1 1 1

t 100 100 100 100 100 100 100 100 100

p 50 50 50 50 50 50 50 50 50

rm 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.000025 0.000025 0.000025

cross 1point 1point 1point 1point 1point 1point 1point 1point 1point

elit 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

wk 0.03 0.017 0.04 0.025 0.01 0.03 0.01 0.0075 0.03

new_S 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

t_stop 15 15 15 15 15 15 15 15 15

min_1s 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

threads 10 10 10 10 10 10 10 10 10

Parameters used in the various runs.
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Table 6.3: Features of models used
Model M1 M2 M3

model source [Trinh et al. 2008] [Trinh et al. 2008] [Trinh et al. 2008]
growth conditions anaerobic, glu-

cose + minimal
media

aerobic, glucose
+
minimal media

aerobic, xylose,
arabinose, glu-
cose, galactose
and mannose +
minimal media

no: reactions 59 60 71
no: metabolites 47 49 68
total no: EFMs 5010 38001 429275
F1

- maxYEtoh

- MCS cardinality
- number of MCSs
- number of EFMs

1.6170 1.6103 2.2770
0.6667 0.6667 0.6667
3 4 4
22 82 76
14 28 62

F2

- max ηEtoh

- MCS cardinality
- number of MCSs
- number of EFMs

7.7860 8.5283 2.3169
0.1390 0.1542 0.1542
10 13 16
240 240 2880
4 2 6

Features of the networks on which the GA was tested. The maximum
possible values for ethanol yield, YEtoh and e�ciency, ηEtoh are presented.
The minimal cardinality of MCSs which will force the network into these
optimal values are also shown along with the total number of such MCSs
and the number of EFMs which will survive after application of these MCSs.
The corresponding �tness values, Fi have been obtained using the �tness
functions presented in Table 6.4.
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Table 6.4: Fitness functions used
i Design objective Fitness function Fi

1 Ethanol production with mini-
mal MCS size

w1minYEtoh + w3(1− |C|/n)

2 Substrate speci�c productivity
with minimal MCS size

w2min ηEtoh + w3(1− |C|/n)

3 Growth coupled product yield
with minimal MCS size and
maximum number of surviving
modes

w1minYEtoh × w2max ηEtoh + w3(1 −
|C|/n) + w4|DC |/|E|

Fitness functions used, where, w1, w2, w3 and w4 are weights associated with
ethanol yield (YEtoh), ethanol e�ciency (ηEtoh), MCS cardinality (|C|) and
number of surviving modes (|DC |) respectively. These weights are used
primarily to ensure desired contribution of the di�erent variables towards
the �tness function. They can also be used to give higher preference to a
particular variable. C is the MCS, n the total number of reactions and E the
set of all EFMs in a network. All �tness functions were maximised.
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Figure 6.3: GA performance comparison. Comparing the performance of GA-
MCS against APM [Ruckerbauer et al. 2014] using a single representative run
for each model. The best solution in each generation was used to represent the
performance of the GA. The numbers under the lines represent the cardinality
of MCS corresponding to the objective value plotted. The time axes in c) and
f) is in logarithmic scale. The �tness functions used are given in Table 6.4.
Note that for the same objective with a lesser cMCS cardinality, the �tness
will be higher.
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Figure 6.4: Number of solutions retrieved by the GA. Boxplots representing
the number of matches between MCS retrieved using GA-MCS and APM
broken down by cutset cardinality across �ve runs. Boxes have been drawn
around the �rst and third quartile values, with the median being represented
by the horizontal line within the box. Points represent outliers or data with
three or lesser number of points. The numbers shown at the top of each plot
indicate the total number of MCSs of the given cardinality as found by APM.
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Figure 6.5: Complex designs optimized by the GA.Figures (a), (c) and (e)
show the complete set of EFMs of the M1, M2 and M3 models respectively
and (b), (d) and (f) represent corresponding solutions obtained using the GA
which were obtained in 22 minutes, 28 minutes and 8 hours, 48 minutes respec-
tively. EFMs are represented as a function of ethanol and biomass production.
Each circle represents a set of EFMs with the same yield and e�ciency. The
diameter of the circle re�ects the number of EFMs represented. The colour
of the EFMs indicates their e�ciency as speci�ed by the index on the right
hand side of each graph. R_ETOHt2r, R_BIOt and R_GLCpts represent
the ethanol secretion, biomass and glucose uptake reactions in the model.
In (b), the cutset corresponding to the solution is ({R_G6PDH2r R_FRD7
R_LDH_D R_ACt2r R_SUCCt3}), in (d), the modes represented are the
ones which survive after applying the cutset ({R_GND R_FUM R_ACt2r
R_D_LACt2 R_SUCCt3}) and in (f) the cutset corresponding to the so-
lution is ({R_GND R_SUCOAS R_MALS R_ACt2r R_D_LACt2}). In
e) and f) R_norm = R_GLCpts + R_MAN1 + R_TRA8 + R_TRA9 +
R_TRA10.
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This chapter was publish by Govind Nair, Christian Jungreuthmayer and
Jürgen Zanghellini in BMC Bioinformatics 18:78, 2017, DOI: 10.1186/s12859-
017-1483-5. 1

• Background Knockout strategies, particularly the concept of con-
strained minimal cut sets (cMCSs), are an important part of the arsenal
of tools used in manipulating metabolic networks. Given a speci�c de-
sign, cMCSs can be calculated even in genome-scale networks. We would
however like to �nd not only the optimal intervention strategy for a given
design but the best possible design too. Our solution (PSOMCS) is to
use particle swarm optimization (PSO) along with the direct calcula-
tion of cMCSs from the stoichiometric matrix to obtain optimal designs
satisfying multiple objectives.

• Results To illustrate the working of PSOMCS, we apply it to a toy net-
work. Next we show its superiority by comparing its performance against
other comparable methods on a medium sized E. coli core metabolic
network. PSOMCS not only �nds solutions comparable to previously
published results but also it is orders of magnitude faster. Finally, we
use PSOMCS to predict knockouts satisfying multiple objectives in a
genome-scale metabolic model of E. coli and compare it with OptKnock
and RobustKnock.

• Conclusions PSOMCS �nds competitive knockout strategies and de-
signs compared to other current methods and is in some cases signi�-
cantly faster. It can be used in identifying knockouts which will force
optimal desired behaviors in large and genome scale metabolic networks.

1JZ and GN conceived and designed the study. CJ and GN implemented the algorithm.

GN designed the algorithm, ran the analysis and validated the results. All authors were

involved in the analysis of the results and read, reviewed and approved the manuscript.
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It will be even more useful as larger metabolic models of industrially rel-
evant organisms become available.

Availability: https://github.com/gogothegreen/PSOMCS

7.1 Background

Metabolic engineering aims to improve product yields in cellular systems
by applying a variety of tools. Constraint based methods which use only
the stoichiometry of metabolic reactions have been particularly successful in
the development of strategies towards ful�lling this aim [Stelling et al. 2002].
One important application is the prediction of knockouts to enforce desired
metabolic behaviors in an organism. A method that allows one to pre-
dict e�cient intervention strategies using the concept of minimal cut sets
MCSs, was developed by Klamt and Gilles [Klamt & Gilles 2004]. This
was generalized to constrained minimal cut sets cMCS, where in addi-
tion to blocking undesired �uxes, survival of some desired �uxes is possible
[Hädicke & Klamt 2011, Jungreuthmayer et al. 2013b]. The automatic parti-
tioning method APM uses an objective function to specify the design ob-
jectives and the partitioning of �uxes into desired/undesired is done auto-
matically to �nd successively larger cMCS till a global optimum is reached
[Ruckerbauer et al. 2014]. Previously we showed that a genetic algorithm
could reach the global optimum faster than than APM [Nair et al. 2015].
However, all these methods are applicable only to small and medium-scale
metabolic networks.

In a recent work by Ballerstein et al, it was shown that cMCS can be di-
rectly calculated from the stoichiometric matrix [Ballerstein et al. 2012]. Us-
ing this method, it is possible to calculate intervention strategies even in
genome-scale metabolic networks [von Kamp & Klamt 2014]. Another work
extended this concept to include regulation [Mahadevan et al. 2015]. A limi-
tation of this method is that the desired �ux or �ux ratio of a metabolite has
to be manually speci�ed to get corresponding cMCS.

There exist other constraint based methods for predicting interven-
tion strategies. OptKnock solves a bi-level optimization problem, to pre-
dict knockouts leading to maximal product formation at maximal growth
[Burgard et al. 2003]. A three-level optimization problem is used to max-
imize minimal product formation in RobustKnock [Tepper & Shlomi 2010].
OptGene uses a genetic algorithm to predict knockouts [Patil et al. 2005].
Similarly, evolutionary algorithms and simulated annealing have been used in
[Rocha et al. 2008]. Another metaheuristic approach was using a hybrid of
bees algorithm with �ux balance analysis FBA [Choon et al. 2014]. While

https://github.com/gogothegreen/PSOMCS
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these methods optimize for design goals, doing so with a minimal number of
knockouts is not necessarily guaranteed.

From an engineering perspective, we would like the organism to have a
guaranteed high yield for the product of interest. Given that even in the
face of genetic perturbations microorganisms redirect metabolic �ux towards
maximizing cellular growth [Ibarra et al. 2002], this high yield must be main-
tained at high growth rates. Additionally, the number of knockouts should be
as small as possible to facilitate easy implementation in the laboratory.

Here we present a new method, PSOMCS, which uses particle swarm op-
timization PSO along with the method developed in [Ballerstein et al. 2012,
von Kamp & Klamt 2014, Mahadevan et al. 2015] to calculate cMCS while
overcoming the mentioned limitations of other methods. Our basic motiva-
tion is to combine the computational rigour of cMCS with the �exibility of
the optimization-based approaches in order to solve (non-linear) intervention
problems e�ciently. We aim to �nd not only the optimal intervention strategy
for a given design but also the best possible design. In addition, we show that
PSOMCS is also faster than other methods which try to �nd cMCS leading
to optimal design objectives.

7.2 Methods

7.2.1 Calculating cMCS

A metabolic network of m internal metabolites connected by n reactions in
steady state is represented by the set of linear equations

Nr = 0 (7.1)

where N is a m × n matrix consisting of stoichiometric coe�cients of
all participating reactions such that each column represents one reaction. r

is a vector of reaction �uxes. Reactions can be both reversible (Rev) and
irreversible (Irrev), thereby imposing the constraint

ri ≥ 0 ∀ i ∈ Irrev. (7.2)

(7.1) and (7.2) de�ne a �ux space. Depending on the desired outcome,
an intervention problem can be set up dividing this space into desired and
undesired �uxes. The set of undesired �uxes for t reactions can be de�ned by

Tr ≤ t (7.3)

where T ∈ Rt×n and t ∈ Rt×1. Likewise, the set of desired �uxes for d

reactions can be de�ned by
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Dr ≤ d (7.4)

with D ∈ Rd×n and d ∈ Rd×1.
In [von Kamp & Klamt 2014], cMCS are calculated by �rst solving a se-

ries of mixed integer linear programming MILP problems representing (7.1)
and (7.3) and then �ltering those solutions which also satisfy (7.4). In
[Mahadevan et al. 2015], this is combined into a single system represented
as (cf. equation (5) in [Mahadevan et al. 2015])


NT

rev Irev −Irev TT
rev 0

NT
irr Iirr −Iirr TT

irr 0

0 0 0 0 N

0 0 0 0 D

×


u

vp

vn

w

r


=

≥
=

≤


0

0

0

d


tTw ≤ −c

u ∈ Rm,vp,vn ∈ Rn,d ∈ Rd,vp,vn,w, rirr ≥ 0, c > 0.

(7.5)

Note that the N and T matrices have been split into reversible (sub-
script rev) and irreversible submatrices (subscript irr). Similarly, identity
submatrices for reversible and irreversible reactions are represented by the
matrices Irev and Iirr respectively. cMCS are directly calculated by �nd-
ing solutions with minimum number of non-zero entries in vp,vn. Ad-
ditionally binary indicator variables zp and zn are introduced such that
zpi = 0 if vpi = 0 and zpi = 1 if vpi > 0 and similarly for zn, vn. Only
one direction of v (either vpi or vni) can be active, hence

zpi + zni ≤ 1. (7.6)

We set up the following optimization problem

minimize
∑n

i=1(zpi + zni)

s.t. (7.5), (7.6)
(7.7)

with the additional constraint that the �ux through a reaction is turned o� if
it is part of a cMCS, i.e., ri = 0 if zpi = 1 || zni = 1.

With this system it is possible to �nd cMCS which will result in designs
satisfying constraints on yields/�uxes speci�ed by (7.3), (7.4). However, we
would like to have a method which given some design objectives (e.g., high
product yield even at high growth rates) calculates cMCS corresponding to
optimal values for the design objectives. Since any design can be represented
as a function of T,D, t and d, the optimization problem can be stated as

max f(T,D, t,d)

s.t. (7.7).
(7.8)
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In other words, the problem is to �nd optimal combinations of
{target/desired} yields for all reactions to be optimized. This is not easy
for a few reasons. In general, this is a non-linear optimization problem.
Non-linear optimization is known to be inherently complex with general
deterministic solutions being impossible to �nd. Secondly, slight adjust-
ments in (7.3), (7.4) could result in completely di�erent cMCS with di�er-
ent cardinalities. Finally, not all such combinations will result in cMCS.
These issues become acute when the search space is more dense with many
possible combinations, as in large and genome-scale metabolic networks.
We attack this problem using PSO as it has been successfully used to
�nd solutions to complex non-linear optimization problems in other �elds
[Poli et al. 2007, Banks et al. 2008, Del Valle et al. 2008].

7.2.2 Particle swarm optimization

PSO is a metaheuristic inspired by the �ocking behavior of birds
[Kennedy & Eberhart 1995]. In PSO, particles distributed within a multi-
dimensional space collectively move towards an optimum guided by a �t-
ness function. Particle �tness is determined by its position in the search
space. The motion of a particle is in�uenced by its neighbours and the cur-
rently known �ttest particle. More information on PSO can be found in
[Poli et al. 2007, Banks et al. 2008, Del Valle et al. 2008, Banks et al. 2007].

corresponding
velocities (v)

previous best objective values (p)

current objective values (x)

Figure 7.1: Schematic of the PSO particle. A particle stores three types
of information: the current values, values corresponding to its own previous
�tness and velocities corresponding to each objective.

Typically, a particle is made up of three j-dimensional vectors, where j is
the dimensionality of the search space. These represent the current position x,
its previous best position p which is the position corresponding to the highest
�tness achieved by the particle and the velocity v, Figure 7.1. Particle motion
is guided by the following equations,

vi(t+ 1) = χ{vi(t) + φ1 β1 [pi(t)− xi(t)] + φ2 β2 [gi(t)− xi(t)]} (7.9)

xi(t+ 1) = xi(t) + vi(t+ 1) (7.10)
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i ∈ {1..j}.

g is the position corresponding to the global best �tness of the en-
tire swarm till the current t. φ1,2 are called �acceleration constants� and
determine the relative in�uence of the particle's own knowledge and that
of the group, both of which are commonly set to 2 [Del Valle et al. 2008,
Banks et al. 2007]. β1,2 are uniformly generated random numbers within the
range (0, 1] for each i,t. χ is the constriction coe�cient �rst introduced in
[Clerc & Kennedy 2002] and generally has a value of 0.7298 in the literature
[Poli et al. 2007, Del Valle et al. 2008]. This dampens the dynamics of the
particles, preventing the velocity from rapidly increasing beyond the problem
bounds. The amount of information available to a particle depends on its
access to information of other particles. Access to a limited number of other
particles is closer to the behaviour of natural swarms. In our implementation
each particle is connected to four other particles, which has a comparatively
better performance than other choices[Kennedy & Mendes 2002]. Addition-
ally, we borrow a concept from [Gong & Zhang 2013], where in addition to its
�xed neighbours, a particle also establishes connection with another randomly
selected particle.

The MILP given by (7.7) needs constraints speci�ed by (7.3), (7.4) to
calculate corresponding cMCS. For example, consider a network which has,
among other reactions, a substrate uptake reaction RS, a reaction for the
product secretion RP and one for biomass RBio. An optimal design could be
stated as having RP/RS ≥ x1 and also that biomass �uxes of RBio/RS ≥ x2

exist. However, we don't know the combinations of x1, x2 resulting in optimal
design. This is where a PSO can be useful. After initializing x,v, the set of
positions and velocities for all particles, within the range of values for {x1, x2}
on some constant RS, the PSO iteratively �nds increasingly better solutions
for (7.8) using (7.9) and (7.10) and moves towards the global optimum. The
PSOMCS �owchart is shown in Figure 7.2.

The �tness function will depend on the nature of the desired optimum.
Considering that our objective is to have a design with high yields and minimal
knockouts, the following �tness function was used,

F (x) =

(
1− |cMCS|

n

)
·
∏
i

xi

xi(max)
. (7.11)



7.3. Results 69

7.3 Results

To clarify the working of PSOMCS, we �rst apply our method to a small
toy network, optimizing for only a single reaction. Next, to con�rm the ac-
curacy of our predictions, we compare our method against another method
based on a genetic algorithm (GAMCS) which we had previously developed
[Nair et al. 2015]. The model used is the medium-scale E. coli core model
presented in [Trinh et al. 2008]. Finally we �nd optimal intervention strate-
gies for maximizing the minimal product yield in a genome-scale metabolic
network. FBA was used to calculate the range of yields [min:max] for each
objective and particles were initialised within this range. Only one solution is
calculated for a MILP. The parameters used are shown in Table 7.1. Imple-
mentation of PSOMCS was done using Perl http://www.perl.org/. For the
performance critical parts of the program, i.e., solving the MILP and also the
LP, the IBM ILOG CPLEX Optimization Studio - a commercial optimization
package - was used through the Math::CPLEX Perl module. Also, our algo-
rithm is designed to make use of modern CPU architectures and can be run
in parallel on multiple cores.

Table 7.1: PSOMCS parameters
Model No: particles No: itera-

tions

toy network 4 2
E. coli core 10 40
iAF1260 10 40

Details of parameters used for the di�erent models.

Consider the network given in Figure 7.3. We wish to �nd minimal knock-
outs which will ensure the highest possible yield for reaction R4. In the �rst
iteration, cMCS corresponding to low yields are found. In the second itera-
tion, all particles move towards higher yields. One particle, on the solution of
its dual system gives the cMCS of `R2 R9'. Removal of R2 and R9 from the
network blocks all �ux through R5 and R6, thus redirecting the network �ux
through R4. This corresponds to the highest minimal yield of 1 for R4.

We apply PSOMCS to generate designs in an E. coli core network which
will ensure high yield of ethanol even in the face of high growth. This net-
work was previously used to design a high yield ethanol producing strain in
[Trinh et al. 2008]. This model has 71 reactions and 68 metabolites. We had
previously used this model to predict optimal intervention strategies using a
genetic algorithm (GAMCS), which we had shown to be faster than other

http://www.perl.org/
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current approaches [Nair et al. 2015], particularly compared to APM, which
is guaranteed to �nd the optimal solution [Ruckerbauer et al. 2014]. Here we
compare our approach with GAMCS in terms of speed and accuracy of re-
sults. The machine used had the following speci�cations − 2 CPUs, 12 cores,
Intel Xeon X5650 2.67 GHz, running an Ubuntu 14.4 LTS operating system.
The time taken for a typical PSOMCS and GAMCS run is plotted in Figure
7.4a. The superiority of our method in terms of speed can be clearly observed.
GAMCS takes 34,857 seconds to reach the maximum �tness. PSOMCS takes
only 1,493 seconds for the same. This is an over 23 fold improvement in per-
formance. In comparison, APM would not only require that the desired EFMs
be assigned weights, but also the time taken by it would have been outside the
boundaries of this plot. The cMCS corresponding to the optimum obtained
by both GAMCS and PSOMCS are exactly the same. Figure 7.4b is one of
the designs corresponding to a high �tness. This design was in the solution
pool of both the PSO and GA methods. In this design, a minimum ethanol
yield of 1.33 is guaranteed even when the growth rate is 0.044. Also, as can
be expected, production of competing by-products: acetate, lactate and suc-
cinate is blocked. Additionally, �ux through the oxidative part of the pentose
phosphate pathway is blocked and so is the pyruvate-malate cycling. Multiple
cMCS resulting in similar design characteristics were returned by our method.

To test the capabilities of our method we applied it to the genome-scale
model of E. coli presented in [Feist et al. 2007]. Our aim was to �nd cMCS
that result in an scenario of growth-coupled ethanol yield. A few strategies
were used in [von Kamp & Klamt 2014, Mahadevan et al. 2015] to reduce the
network size. These strategies are aimed at reducing the network size and
improving computational e�ciency, which takes real growth conditions into
account and removing all super�uous components. First, the network was
reduced to grow anaerobically on glucose as the only carbon source. The
resulting network has 1413 reactions and 971 metabolites. Network compres-
sion was done by combining reactions operating at �xed ratios into reaction
subsets. Exchange reactions, spontaneous reactions and reactions essential
for the ethanol and biomass production were excluded from participating in
cMCS by setting their corresponding zp, zn variables to zero. The machine we
used for this test had 24 CPUs, 396GB RAM, Intel Xeon E5-2667 2.90 GHz
processor, running on Ubuntu 14.4 LTS. The cMCS cardinality was limited
to 5. With 4 particles being processed in parallel, the program was run for
40 iterations. It took 14 iterations (∼ 74 hours) to �nd the optimal design.
One of the designs is shown in Figure 7.5 along with designs obtained using
OptKnock and RobustKnock on the same machine. The envelope of the strain
speci�c phenotypic solution space was calculated with �ux variability analysis
FVA [Mahadevan & Schilling 2003] of the iAF1260 network while considering
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the respective knockouts predicted by each method. The minimally required
biomass production was set at 0.006 and both were limited by unit glucose
uptake and a maximum knockout size of 5. OptKnock took 4 minutes to run
while RobustKnock ran for 71 minutes. The minimal ethanol yields were 0
in both cases. As can be observed, PSOMCS o�ers a better design with the
ethanol production being strongly coupled to biomass production and at no
point falls below a yield of 0.9.

7.4 Discussion

Here we have presented a method, PSOMCS, to design strains with high
minimal product yield using knockouts of minimal possible size. To do this,
we employ a PSO together with the direct enumeration of cMCS developed
in [Ballerstein et al. 2012, von Kamp & Klamt 2014, Mahadevan et al. 2015].
This method has made it possible to �nd cMCS in large and genome-scale
networks. However, it is not designed to optimize engineering goals. That
is, we we would like to �nd not only the optimal intervention strategy for a
given design but the best possible design too. Finding intervention strategies
that achieve this is an important goal of metabolic engineering, especially in
the production of industrially important chemicals. We deliver on this goal
by using a PSO built on top of the base provided by the direct enumeration
of cMCS. Our method thus expands the utility of this method. Additionally
we would like to point out that in the case of optimizing for a single reaction,
solving (7.5) with continuous values within the [min:max] range for that re-
action would su�ce. However, in the presence of multiple objectives this task
becomes computationally exhaustive and infeasible, thereby justifying the use
of a metaheuristic approach such as the one used here.

There have been other methods with a similar strategy as ours, which
is the use of a metaheuristic in combination with another method like
linear programming. Most methods have relied on genetic algorithms
[Patil et al. 2005, Nair et al. 2015, Boghigian et al. 2010], evolutionary algo-
rithms and simulated annealing [Rocha et al. 2008] and also an arti�cial bees
algorithm [Choon et al. 2014]. Ours is the �rst attempt at using the dual
method in a similar fashion, along with the use of a PSO.

As shown by the comparison with OptKnock and RobustKnock in Figure
7.5, although all designs have the same highest ethanol yield of 2, PSOMCS
provides a design with the highest guaranteed minimal ethanol yield. Robust-
Knock was developed to overcome the 'too-optimistic' nature of OptKnock
and this is re�ected in the nature of their respective designs. Also of note
is the fact that both OptKnock and RobustKnock need a minimal level of
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biomass production to be manually speci�ed while PSOMCS does not. In
fact, if we reduce the minimal biomass production requirement to 0.001 (in
order to mimic the PSOMCS settings), RobustKnock runs for over 90 hours
without �nding the optimum. Running OptKnock and RobustKnock multiple
times with di�erent biomass levels will result in di�erent solutions, some of
which will be better than others. PSOMCS eliminates this need to manually
set reaction �uxes and searches the entire feasible space of biomass yields to
�nd the optimal one. Growth-coupling is a key principle in metabolic engi-
neering. It requires that growth should only be feasible if a desired compound,
like ethanol, is mandatorily produced as by-product. It can be seen in Fig-
ure 7.5 that PSOMCS achieves this with a growth rate about one third of
the wild-type. However, growth-coupling does not enforce nor require that
the maximal product yield is attained at a non-zero growth rate. In fact
Figure 7.5 illustrates the rule rather than the exception, as typically the
maximum product yield is achieved at zero growth [Campodonico et al. 2014,
Klamt & Mahadevan 2015]. Furthermore, an ideal production state will be
characterized by zero growth, where all available resources are used for prod-
uct formation. In this senses, biomass production can be seen as an �un-
wanted� by-product. Recent advances in fermentation processes employ zero-
growth approaches [Lange et al. 2016, Rebnegger et al. 2016]. However, these
approaches are associated with many challenges which go far beyond the scope
of the presented work. Nevertheless, Figure 7.5 indicates that the presented
designs retain their wild-type behavior to be operated as optimal zero-growth
factories.

In heuristic search algorithms, performance comes at the cost of being too
speci�c to the problem being solved [Wolpert & Macready 1997]. By virtue
of having few parameters, PSOs are less a�ected by this problem. In our
implementation, we have used parameter values as found in the general PSO
literature without the need to adjust them. The only parameters that we ad-
justed were the number of particles and the number of iterations. We clearly
use fewer particles than is typical. This is because we found a population
size of 10 to be su�cient for our needs (see Figure 7.6). Although we have
sampled the entire solution space, particles can easily be forced to explore a
subspace. Certain reactions can be excluded from being considered for knock-
outs by forcing their corresponding indicator variables in the dual system to
be 0. Our �tness function is speci�c to our target design, however new �tness
functions can be thought of depending on the desired �nal objective. Our
method produces cMCS leading to designs with similar characteristics as the
one used in [Trinh et al. 2008]. Our method also returns multiple solutions.
The limiting factor in our method is the MILP for the dual system.

MILPs are more di�cult to solve than LPs and may consume large
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amounts of time as well as memory [Cornuéjols et al. 2006]. During our runs,
the search tree generated by CPLEX's Branch and Cut algorithm for a single
MILP grew to consume over 130 GB of memory when limited to a knockout
size of 6. This memory consumption grows quickly with increasing knockout
size, thereby limiting the ability of PSOMCS to �nd the optimal solution.

Improvements in run time can be made by forcing PSOMCS to explore
only a part of the �ux space leading to a smaller solution space to be ex-
plored. For instance lets consider the design in Figure 7.5, with a minimal
biomass yield of 0.01, the optimal design presented here was found within
24 hours. Further improvements to performance could be obtained by fol-
lowing the strategies outlined in [Klotz & Newman 2013]. Also, algorithmic
improvements in solving MILPs could be useful in this regard.

Here we have dealt only with knockout strategies to design better strains.
It can easily be extended to include the concept of regulatory MCS introduced
in [Mahadevan et al. 2015] which combine reaction up/downregulation with
knockouts. There are other constraint based methods dealing with interven-
tion strategies like gene knock-ins and up/downregulation. PSOs and swarm
intelligence algorithms in general may be used to compliment these methods.

7.5 Conclusion

PSOMCS �nds the best possible design in metabolic networks given multiple
objectives with the corresponding cMCS. We have demonstrated its capability
in �nding optimal knockouts and designs in genome-scale metabolic networks.
It �nds competitive designs compared to standard tools and is orders of magni-
tude faster than EFM based tools in �nding the optimal solution. PSOMCS
could be used to predict minimal knockouts resulting in optimal yields in
industrially important microorganisms. As the size and quality of metabolic
models increase, methods like the one presented here will be even more useful.



74
Chapter 7. Optimal knockout strategies in genome-scale

metabolic networks using particle swarm optimization

Start

FBA to determine
min/max of Objectives

Randomly initialize
particles with values

[x(min) : x(max)]

Particle id = 1

Create dual system
and calculate cMCS

Evaluate fitness F(x)

F(x) > F(p)

F(x) > F(g)

p = x

g = x

All particles
processed?

Increment
particle id

Iteration
number reached?

Print cMCS

Stop

Update particle velocity 
and position using 
equations (9) & (10)

Yes

Yes

Yes

Yes

No

No

No

No

Figure 7.2: Flowchart of PSOMCS. p and g are the current particle best
and global best respectively. The algorithm stops when the number of iter-
ations reaches a pre-speci�ed maximum or if the maximum �tness remains
unchanged for a pre-speci�ed number of iterations.
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Iteration 1
Id x p v cMCS F (x)

1 0.19572 undef 0.29870 - 0

2 0.27584 undef 0.33256 R7 0.25076

3 0.27540 undef 0.44428 R7 0.25036

4 0.33756 undef 0.23672 R9 0.30687

Iteration 2
Id x p v cMCS F (x)

1 0.69188 undef -0.16052 R2 R9 0.56608

2 0.42140 0.27584 -0.27577 R9 0.38309

3 0.28611 0.27540 0.01071 R7 0.2601

4 0.97936 0.33756 -0.10257 R2 R9 0.80129

Figure 7.3: PSOMCS small example. Running the PSOMCS on a toy
network. This network has three input reactions, which can be assumed to
be substrates and three secretion reactions, which can be assumed to be three
di�erent products. We want to maximise the yield of R4, that is maximize
(R4/(R1 + R2 + R3)). Note that the particles operate in a single dimensional
search space and x represents the yield for R4. After performing FBA to
determine the maximum and minimum yields for R4 given unit substrate
uptake, four particles are initialised within this range. Initial velocities are also
assigned. cMCSs are calculated after creating and solving the dual system.
Fitness is a function of x and the cardinality of the cMCS. g corresponds to
x with the highest �tness which is particle 4 after both the �rst and second
iterations. After the �rst iteration, every particle except the �rst has a value
for p. Note that for particle 4 a yield higher than 0.98 is guaranteed. In
reality, the minimal yield with the corresponding cMCS is 1, which is also the
case for particle 1. This is the value the algorithm will return if allowed to
run for a few more iterations.
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Figure 7.4: Comparing the runtimes of PSOMCS and GAMCS. a)
Plotting the runtimes of PSOMCS and the GA we had previously implemented
clearly shows PSOMCS is orders of magnitude faster than GAMCS. Note that
the time axis is logarithmic and that both algorithms reach the same maximum
�tness. b) Both methods also produce similar designs, an example of which
is shown. This design is obtained with 5 knockouts (R_GND R_SUCOAS
R_MALS R_ACt2r R_LDH_D). The plot was generated by applying the
knockouts on the complete set of 429275 EFMs of the Escherichia coli core
model. R_norm is the sum of uptake rates for the �ve carbon substrates,
glucose, galactose, mannose, arabinose and xylose under aerobic conditions.
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Figure 7.5: Design for a genome-scale E. coli model. E. coli was
designed for enhanced ethanol production using the genome-scale iAF1260
model. For comparison, designs obtained using OptKnock and RobustKnock
are also presented. The design using PSOMCS guarantees a minimal ethanol
yield of 0.9, in contrast this is 0 for both RobustKnock and OptKnock. All de-
signs have a maximum biomass production rate greater than 0.01 with the one
for PSOMCS being comparatively lower. The maximum yield for all the de-
signs is 2. The given plots have been generated by using FVA on the iAF1260
model while considering the respective knockouts produced by each method.
The FBA solution space at maximum growth is highlighted, with crosses in-
dicating the maximum and squares the minimum ethanol yield. All designs
involve 5 knockouts - (R_ACALD R_GLUDy R_Htex R_PGI R_TKT2)
for PSOMCS, (R_ACALD R_H2tex R_PHEt2rpp R_PPKr R_TYRtex)
for OptKnock and (R_ACKr R_F6PA R_FBA R_GLCptspp R_PGCD)
for RobustKnock.
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