Alterungsmechanismen von Bitumen und Simulation der Alterung im Labor

Verfasser:

Markus Hospodka Bakk. techn.

Masterarbeit für das Fachgebiet VERKEHRSWESEN

Betreuung:

Ronald Blab Univ.Prof. Dipl.-Ing. Dr. techn.

Bernhard Hofko Univ.Ass. Dipl.-Ing. Dr. techn.

Kurzfassung

Die Kenntnis der Alterung des Bitumens ist von großer asphalttechnologischer Bedeutung, da diese die mechanischen Eigenschaften des daraus hergestellten Asphalts wesentlich beeinflussen.

Diese Diplomarbeit enthält neben einer Literaturrecherche ein umfassendes Prüfprogramm mit einem polymermodifizierten Bitumen (Polymer: SBS) in verschiedenen Alterungsstufen zur Identifikation möglicher Alterungsvorgänge der Bindemittel. Die Literaturrecherche (Kapitel 2) umfasst neben einer allgemeinen Beschreibung betreffend Bitumen (Herkunft, Herstellung, Zusammensetzung, Eigenschaften und Arten) und Asphalt auch eine ausführliche Beschreibung der bekannten Alterungsmechanismen und den Folgen daraus.

An un-, kurz- und langzeitgealtertem Bitumen werden sowohl konventionelle als auch gebrauchsverhaltensorientierte Prüfmethoden angewendet (Kapitel 4). Die genannten Alterungsstufen umfassen nicht nur ein im Labor gealtertes, sondern auch eines aus Bohrkernen mit dem Lösemittel Toluol extrahiertes in einem Straßenaufbau unter Verkehr 7 Jahre lang gealtertes Bitumen ("Feldalterung").

Die Ergebnisse für Labor- und Feldalterung sind zunächst getrennt voneinander dargestellt, um die Veränderungen im Einzelnen in Folge Alterung zu zeigen (Kapitel 5.3 & 5.4). Anschließend wird Labor- und Feldalterung miteinander verglichen, um eine Aussage treffen zu können, ob und wie gut die Laboralterung die Alterungsmechanismen von polymermodifiziertem Bitumen im Feld simuliert (Kapitel 5.5).

Neben dieser Hauptfrage werden auch zwei weitere Fragestellungen behandelt. Einerseits, ob die 3-fach-RTFOT-Alterung eine mögliche Alternative zur RTFOT+PAV-Alterung ist (Kapitel 0) und andererseits, ob Bitumen in geschlossenen Metallbehältern ebenfalls Alterungserscheinungen zeigt (Kapitel 5.2).

Abstract

This master's thesis includes a literature review regarding bitumen aging mechanisms and a comprehensive test program including a polymer modified bitumen (polymer: SBS) at different aging levels. The literature review (chapter 2) is about a common description of bitumen (origin, manufacture, composition, properties, types) and it's mechanisms of aging and the consequences for the performance in road pavements.

Conventional and performance based test methods are used for different aging levels (unaged, short- and long-term aged) including laboratory (RTFOT, PAV) and a 7 year old field aged bitumen. As solvent Toluol has been used for the bitumen recovery from drilling cores.

In a first step the results for laboratory and field aging are shown separately from each other (chapter 5.3 & 5.4). The second step is to compare those results to discuss whether the laboratory and field aging is comparable for polymer modified bitumen (chapter 5.5).

In addition to this main question two further questions are answered. On one hand if the 3times-RTFOT-aging method is a suitable long-term aging alternative to RTFOT+PAV-aging (chapter 5.6) and on the other hand if bitumen suffers further aging, when it's stored in metal cans or buckets (chapter 5.2).

Vorwort

Die vorliegende Diplomarbeit wurde am Institut für Verkehrswesen an der Universität für Bodenkultur Wien verfasst und ist Abschluss meines *Landmanagement, Infrastruktur und Bautechnik* Studiums.

Ich möchte mich an dieser Stelle herzlich bei Herrn Univ. Prof. Dipl.-Ing. Dr. techn. Ronald Blab vom Institut für Verkehrswissenschaften der Technischen Universität Wien für die Bereitstellung dieses interessanten wissenschaftlichen Themas bedanken.

Ein besonderer Dank gilt meinem Betreuer Herrn Univ. Ass. Dipl.-Ing. Dr. techn. Bernhard Hofko für die ausgezeichnete Betreuung meiner Diplomarbeit.

Ich möchte auch herzlich dem ganzen Laborteam und besonders Herrn Thomas Riedmayer für die hervorragende Einschulung an den Laborgeräten danken.

Abschließend danke ich meinen Eltern, die mir das Studium ermöglicht haben.

Inhaltsverzeichnis

1	Einleitung und Aufgabenstellung7				
2	Literaturrecherche				
2.1	Was ist Bitumen?				
2.2	Gewir	nnung von Bitumen	9		
2.3	Bitumen-Zusammensetzung & Eigenschaften				
	2.3.1	Thermo-viskoses Verhalten	11		
	2.3.2	Visko-elastisches Verhalten	11		
	2.3.3	Relaxationsvermögen	12		
2.4	Bitum	nenarten	13		
	2.4.1	Straßenbaubitumen	13		
	2.4.2	Modifiziertes Bitumen	13		
2.5	Bitum	nenalterung	14		
	2.5.1	Alterungsmechanismen	14		
	2.5.2	Alterungsstufen	17		
	2.5.3	Labor- und Feldalterung	18		
2.6	S Asphalt				
	2.6.1	Gesteinskörnungen	19		
	2.6.2	Asphaltarten	19		
	2.6.3	Asphaltbezeichnung	21		
2.7	Bitum	nenextraktion und –rückgewinnung	22		
3	Untersu	chter Straßenabschnitt & Probenbezeichnung	23		
3.1	Streck	<pre>kenauswahl & Probenursprung</pre>	23		
3.2	Probenbezeichnung2				
4	Angewandte Prüfmethoden		27		
4.1	Simula	ation der Alterung im Labor	27		
	4.1.1	Rolling Thin Film Oven Test RTFOT (ÖNORM EN 12607-1:2007-06)	27		
	4.1.2	Pressure Aging Vessel PAV (ÖNORM EN 14769:2006-01)	29		
4.2	Konve	entionelle Prüfmethoden	30		
	4.2.1	Erweichungspunkt Ring & Kugel (ÖNORM EN 1427:2007-06)	30		
	4.2.2	Nadelpenetration (EN 1426:2007-06)	31		
	4.2.3	Brechpunkt nach Fraaß (EN 12593:2007-06)	32		

	4.2.4	Elastische Rückstellung (EN 13398:2010-10)	33	
	4.2.5	Duktilität (DIN 52013:2007-06)	34	
4.3	Gebra	uchsverhaltensorientierte Prüfmethoden	34	
	4.3.1	Rotational Viscometer RV (ÖNORM EN 13302:2003-07)	35	
	4.3.2	Dynamic Shear Rheometer DSR (ÖNORM EN 14770:2006-01)	36	
	4.3.3	Bending Beam Rheometer BBR (ÖNORM EN 14771:2005-06)	42	
5	Ergebnis	se & Interpretation	45	
5.1	Unters	schiede zwischen Straßenbaubitumen und PmB	45	
5.2	Verän	derungen in Folge Lagerung	46	
5.3	Verän	derungen in Folge Laboralterung		
5.4	Verän	derungen in Folge Feldalterung	53	
	5.4.1	Einfluss der Schichtüberdeckung	55	
	5.4.2	Einfluss der Mischgutlagerung im Labor	56	
	5.4.3	SBS-Degeneration	57	
5.5	Vergle	ich Labor- und Feldalterung	58	
	5.5.1	Vergleich der Kurzzeitalterung	58	
	5.5.2	Vergleich der Langzeitalterung	60	
5.6	3-fach	RTFOT-Alterung, eine Alternative zur RTFOT+PAV-Alterung?	65	
6	Zusamm	enfassung und Ausblick	66	
I.	Literatur	verzeichnis	69	
۱۱.	Abbildungsverzeichnis71			
III.	Tabellen	verzeichnis	73	
IV.	Anhang743			

Häufig verwendete Abkürzungen

IUPAC	International Union of Pure and Applied Chemistry
SHRP	Strategic Highway Research Program
SUPERPAVE	SUperior PERforming Asphalt PAVEments
RV	Rotational Viscometer
DSR	Dynamic Shear Rheometer
BBR	Bending Beam Rheometer
RTFOT	Rolling Thin Film Oven Test
PAV	Pressure Aging Vessel
SBS	Styren-Butadien-Styren

1 Einleitung und Aufgabenstellung

Diese Diplomarbeit wurde im Rahmen des Forschungsprojekts OEKOPHALT ("Chemischphysikalische Grundlagen von Bitumenalterung für ökonomisches Recycling von Asphaltmischgut") erstellt, welches im Zuge eines BRIDGE-Brückenschlagprojekts der FFG (Österr. Forschungsförderungsgesellschaft) am Institut für Verkehrswissenschaften der Technischen Universität Wien durchgeführt wird. Mit dieser Arbeit wird die notwendige Datengrundlagen für die in diesem Projekt geplante Verknüpfung von rheologischen mit chemischen Kennwerten des Bitumens geschaffen. Zu diesem Zweck wird ein umfangreiches Prüfprogramm mit 12 Bitumenproben unterschiedlichem Alterungsgrades und insgesamt 144 Versuchen durchgeführt. Die folgenden Fragestellungen werden behandelt:

- (1) Welche Auswirkungen hat die Alterung auf das Bitumen? (Kapitel 5.3 & 5.4)
- (2) Gibt es Unterschiede zwischen der Alterung in der Umwelt ("Feldalterung") und der simulierten Alterung im Labor? (Kapitel 5.5)
- (3) In weiterer Folge: Beschreiben die Alterungsmethoden RTFOT und PAV die Alterung von polymermodifiziertem Bitumen hinreichend genau? (Kapitel 5.5)
- (4) Ist die 3-fach-RTFOT-Alterung eine Alternative zur Langzeitalterung mittels RTFOT+PAV? (Kapitel 0)
- (5) Verändert sich Bitumen durch Lagerung in geschlossenen Metallbehältern? (Kapitel 5.2)

2 Literaturrecherche

2.1 Was ist Bitumen?

Bitumen ist ein schwerflüchtiges, dunkelfarbiges Gemisch verschiedener organischer Substanzen, das im Rahmen der Aufarbeitung geeigneter Erdöle als Rückstand des Raffinierprozesses anfällt. [1]

Bitumen ist somit praktisch geruchlos und sowohl gegen viele Chemikalien als auch gegen die Einwirkungen von Wasser unanfällig. Von technischer Bedeutung ist die Beständigkeit gegen Tausalzlösung (Winterdienst), Harnstoff (schnell wirkendes Enteisungsmittel für Flugbetriebsflächen) und Jauche (ländlicher Wegebau). [1] Generell gilt, je härter das Bitumen, desto widerstandsfähiger ist es gegenüber Chemikalien.

Auf die Terminologie von Bitumen und Asphalt wird in der ÖNORM EN 12597 [2] eingegangen. In Tabelle 1 sind die wichtigsten Begriffe auszugsweise aufgelistet:

Begriff	Definition
Bitumen	Nahezu nicht flüchtiges, klebriges und abdichtendes
(Abbildung 1 links)	erdölstämmiges Produkt, das auch in Naturasphalt
	vorkommt und das in Toluol (IUPAC: Methylbenzen)
	vollständig oder nahezu vollständig löslich ist. Bei
	Umgebungstemperatur ist es hochviskos oder nahezu
	fest.
Bitumenhaltiges Bindemittel	Bindemittel, das Bitumen enthält
	ANMERKUNG: Ein bitumenhaltiges Bindemittel kann in
	folgenden Formen vorliegen: rein; modifiziert; oxidiert;
	verschnitten; gefluxt; emulgiert. Zur Klarstellung ist
	möglichst immer der Begriff zu verwenden, der das
	betreffende Bindemittel genau beschreibt.
Straßenbaubitumen	Bitumen zur Herstellung von Asphalt für den Bau und die
	Erhaltung von Verkehrsflächen
Modifiziertes Bitumen	Bitumen, dessen rheologische Eigenschaften
	bei der Herstellung durch Verwendung chemischer
	Zusätze modifiziert worden ist
Polymermodifiziertes Bitumen	Mit einem oder mehreren organischen Polymeren
	modifiziertes Bitumen
Asphalt	Mischung von Gesteinskörnung mit einem
	bitumenhaltigen Bindemittel
Naturasphalt	Relativ hartes, in natürlichen Lagerstätten
(Abbildung 1 rechts)	vorkommendes Bitumen, das häufig mit feinen oder sehr
	feinen Mineralstoffanteilen gemischt ist und welches
	bei 25 °C praktisch fest, bei 175 °C jedoch eine viskose
	Flüssigkeit ist.

Tabelle 1: EN 12597: Bitumen und bitumenhaltige Bindemittel – Terminologie [2]

Bitumen hat das früher für die gleichen Verwendungszwecke (Straßenbau, Dachdichtungsbahnen u. ä.) eingesetzte Steinkohleteerpech (auch Teer genannt) gänzlich ersetzt. Der aus der Verkokung von Steinkohle gewonnene Teer enthält im erheblichen Umfang polyzyklische aromatische Kohlenwasserstoffe (PAK), die im menschlichen Körper cancerogen wirken. Der Einsatz von Steinkohleteerpech ist aus diesem Grund nicht mehr zulässig. [1]

Abbildung 1: links: Bitumen [3], rechts: Bruchstück von Naturasphalt [3]

2.2 Gewinnung von Bitumen

Bitumen gewinnt man technisch aus Erdölen. Mit Hilfe der fraktionierten Destillation nach ÖNORM EN 12591 werden aus dem Erdöl zunächst die hochwertigen Bestandteile wie Treibstoffe (Gas, Benzin, Diesel, Kerosin) sowie leichtere und schwere Öle gewonnen. In einer anschließenden Vakuumdestillation können dem verbliebenen Erdölrückstand weitere Produkte wie Gas- und Schmieröle entzogen werden. Danach verbleibt Bitumen als nicht mehr wirtschaftlich weiter aufbereitbarer Destillationsrückstand. [1]

Abbildung 2: Schematische Darstellung der Bitumenherstellung [ARBIT e.V.]

2.3 Bitumen-Zusammensetzung & Eigenschaften

Bitumen bestehen aus einer sehr großen Anzahl verschiedener Kohlenwasserstoffe und Kohlenwasserstoffderivate. Je nach geographischer Herkunft des Rohöls können Bitumen nach Art und Menge der Substanzen sehr unterschiedlich zusammengesetzt sein. Einen Überblick gibt die Tabelle 2. Wegen der großen Anzahl der sie aufbauenden Stoffe haben sie aber dennoch nahezu gleiche Gebrauchseigenschaften. Diese hängen viel mehr von der Struktur als von der chemischen Zusammensetzung ab. [1]

Chemisches Element	Massenanteil [%]
Kohlenstoff	80 - 85
Wasserstoff	7 - 10
Sauerstoff	2 - 9
Stickstoff	0,1 - 1
Schwefel	0,5 - 7
Sonstiges (Übergangsmetalle)	< 0,1

Tabelle 2: Hauptbestandteile von Bitumen [1]

Die ÖNORM EN 12597 [2] beschreibt Bitumen weiters als ein kolloidales System, in dem eine dispergierte, in n-Heptan unlösliche Phase (Asphaltene) in einer kontinuierlichen, in n-Heptan löslichen Phase (Maltene) in stabiler Verteilung vorliegt. Diese beiden Phasen sind in Interaktion und verleihen dem Bitumen Eigenschaften einer Flüssigkeit, deren Fließverhalten besonderen Gesetzmäßigkeiten folgt (thermo-viskoses und visko-elastisches Verhalten). Die in geringen Spuren und stark von der Rohölquelle abhängig im Bitumen vorhandenen Übergangsgangsmetalle wie Eisen, Nickel und Vanadium liegen nach [4] hauptsächlich in Form von Komplexen mit den Asphaltenen vor. Asphaltene liegen bei Raumtemperatur als schwarzes Pulver vor, Maltene als hochviskose Flüssigkeit. Die Maltene lassen sich noch weiter in die Fraktionen Aromate (engl.: *aromatics*), Harze (engl.: *resins*) und Paraffine (engl.: *saturates*) trennen, weshalb man bei der Fraktionierung von Bitumen auch von SARA Fraktionen (*saturates, aromatics, resins, asphaltenes*) spricht.

Die Asphaltene verknüpfen sich mit zunehmendem Asphaltengehalt zu Clustern bis hin zu netzwerkartigen Strukturen, den sogenannten "Micellen". Man spricht daher auch von Sol-(nicht/wenig vernetzt) und Gel-Bitumen (hochvernetzt). Dabei handelt es sich um eine modellhafte Vorstellung, welche die typischen Eigenschaften von Bitumen und dessen Veränderungen durch Alterung erklären soll. Hinweise auf diese Struktur geben die Rasterkraftmikroskopie (Atomic Force Microscopy) und Rasterelektronenmikroskopie (Environmental Scanning Electron Microscope).

Die Konsistenz von Bitumen ist eine seiner wichtigsten Eigenschaften. Sie bestimmt zum einen die Randbedingungen bei der Verarbeitung, zum anderen das Verhalten des Baustoffs nach dem Einbau unter den vorherrschenden Umgebungsbedingungen. Bei tiefen

Temperaturen erscheint Bitumen äußerlich spröde und hart. Beim Erwärmen wird Bitumen langsam weicher, bis es schließlich zwischen 150 und 200 °C flüssig wird. Diese Erscheinung ist reversibel und verleiht dem Bitumen den Charakter eines thermoplastischen Werkstoffes. [1]

2.3.1 Thermo-viskoses Verhalten

Das thermoviskose Verhalten von Bitumen ist die Grundlage seiner Verarbeitung. Dabei hat jeder Arbeitsvorgang (Pumpen, Spritzen, Mischen, Einbauen, Verdichten) seinen bestimmten Viskositätsbereich. Die zugehörigen Verarbeitungstemperaturen sind von der Bitumensorte abhängig: Härtere Sorten müssen heißer verarbeitet werden als weiche. Nach Abkühlen auf normale Umgebungstemperaturen hat das Bitumen die, für die Belastbarkeit erforderliche Konsistenz erreicht. [1]

2.3.2 Visko-elastisches Verhalten

Die Steifigkeit eines Bitumens hängt in erster Linie von seiner Härte, also von seiner Viskosität, die sich in der Bitumensorte ausdrückt und grundsätzlich temperaturabhängig ist, ab. Der Verformungswiderstand von Bitumen ändert sich aber auch in Abhängigkeit von der Zeitdauer einer Belastung. Das Bitumen folgt einer spontanen Belastung sowohl durch reversible elastische als auch irreversible plastische Verformungsanteile. Bei sehr kurzen Belastungszeiten überwiegt dabei der elastische Anteil, das heißt, die aufgezwungene Verformung federt nach der Entlastung vollständig zurück. Je länger die Belastungszeit jedoch ist, desto größer wird der zeitabhängige viskose Anteil, welcher selbst wiederrum aus elastischen und plastischen Anteilen besteht. Der Verlauf von Deformation und Rückformung ist in Abbildung 3 dargestellt. [1] [5]

Abbildung 3: Deformation und Rückformung bei visko-elastischem Materialverhalten [5] Dabei ist:

(1) ϵ_0 die spontane, zeitunabhängige Deformation zum Belastungsbeginn t₀ bestehend aus einem reversiblen elastischen ($\epsilon_{elastic}$) und einem irreversiblen plastischen Anteil ($\epsilon_{plastic}$),

- (2) $\varepsilon_{viscoelast}$ und $\varepsilon_{viscoplast}$ sind die zeitabhängigen reversiblen elastischen und irreversiblen plastischen Verformungsanteile während der Belastungsdauer t₀ bis t₁.
- (3) Nach erfolgter Entlastung zum Zeitpunkt t₁ federt der spontan elastische Anteil sofort und der visko-elastische Anteil zeitabhängig zurück. Die beiden elastischen Anteile sind dabei als ε_{rev} und die beiden plastischen Anteile als ε_{irr} zusammengefasst dargestellt.

Die beschriebenen Verformungseigenschaften von Bitumen werden als "rheologische Eigenschaften von Bitumen" zusammengefasst. Die Rheologie ist die Lehre von Verformungen, die ein Stoff unter bestimmten Belastungsbedingungen erfährt. Die Rheometrie beschreibt dabei die Messmethoden und Messgeräte, die zur Erfassung rheologischer Daten erforderlich sind. Die Messgeräte, mit denen das rheologische Verhalten einer Substanz bestimmt wird, werden Viskosimeter (nur Viskositätsmessung möglich) oder Rheometer genannt. [1]

Auf das visko-elastische Verhalten von Bitumen wird im Kapitel 4.3.2 noch detaillierter eingegangen.

2.3.3 Relaxationsvermögen

Relaxation ist das Vermögen eines Werkstoffes, sich aufgrund seines visko-elastischen Verhaltens einer aufgezwungenen Beanspruchung durch viskose Verformung zu entziehen. Der Spannungsabbau erfolgt dabei nicht spontan, sondern zeitabhängig. Die Geschwindigkeit, mit der die Beanspruchungen abklingen, hängt von der Viskosität des Bitumens ab. Je weicher das Bitumen, desto schneller erfolgt der Spannungsabbau. Das Relaxationsvermögen von Bitumen ermöglicht es in der Baupraxis, dass daraus erstellte Bauteile beispielsweise bei starker Abkühlung in Verbindung mit thermischer Verkürzung nicht reißen. Die dabei entstehenden Zugspannungen im Bauteil können durch Relaxationsverformungen abgebaut werden, solange die Spannungen nicht zu groß werden und die Temperaturen nicht zu tief sinken. Somit können beispielsweise Asphaltstraßen im Gegensatz zu Betonstraßen ohne Fugen hergestellt werden. [1]

Die genaue Kenntnis der Bitumeneigenschaften ist von großer Bedeutung, da diese den daraus hergestellten Asphalt maßgeblich beeinflussen.

2.4 Bitumenarten

Je nach Art und Anzahl der, bei der Bitumenherstellung durchlaufenen Verfahrensschritte, ergeben sich viskose bis spröde Produkte. Die Unterscheidung der Bitumenarten erfolgt anhand der Herstellungsverfahren, der Anwendungsgebiete, sowie der Bitumenkonsistenz und sind in der ÖNORM EN 12597 [2] definiert. Die Abbildung 4 zeigt die Einteilung der verschiedenen Kohlenwasserstoff-Bindemittel. [1]

Abbildung 4: Terminologie der Kohlenwasserstoff-Bindemittel nach ÖNORM EN 12597 [2]

Da sich diese Diplomarbeit nur mit polymermodifiziertem Bitumen (PmB) beschäftigt, wird nur auf dieses bzw. dessen Ausgangsprodukt näher eingegangen.

2.4.1 Straßenbaubitumen

Straßenbaubitumen sind jene Bitumensorten, die zur Herstellung von Asphalt für den Bau und die Erhaltung von Verkehrsflächen und im Wasserbau eingesetzt werden. In Europa werden die am häufigsten verwendeten Sorten von Straßenbaubitumen durch ihre Nadelpenetration bei 25 °C (siehe 4.2.2) bis zu einem Höchstwert von 900 0,1 mm definiert. Weichere Sorten werden als **Weichbitumen** bezeichnet. Sorten der Härte 10/20, 15/25 und 20/30 werden üblicherweise als **hartes Straßenbaubitumen** bezeichnet. Eine genau definierte Abgrenzung zum normalen Straßenbaubitumen gibt es jedoch nicht. [2] In Österreich werden im Straßenbau hauptsächlich mittelharte Bitumen (50/70, 70/100) eingesetzt.

2.4.2 Modifiziertes Bitumen

Dabei handelt es sich um Bitumen, dessen rheologische Eigenschaften bei der Herstellung durch Verwendung eines oder mehrerer chemischer Zusätze modifiziert worden sind. Die chemischen Zusätze umfassen Naturkautschuk, synthetische Polymere, Schwefel und bestimmte Organometallverbindungen, aber nicht Sauerstoff (→ Oxidationsbitumen) oder Oxidationskatalysatoren. Fasern und anorganische Pulver (z.B. Füller) werden nicht als Bitumenmodifizierungsmittel angesehen. Modifizierte Bitumen können als solche oder verschnitten, emulgiert oder gemischt mit z.B. Naturasphalt verwendet werden. [2]

Die Modifizierung findet entweder im Anschluss der Raffination (Nassverfahren) oder im Asphaltmischwerk im Zuge der Mischung mit Gestein statt (Trockenverfahren). [4]

Einen Sonderfall bildet dabei das **polymermodifizierte Bitumen (PmB)**, welches typischerweise mit 3 bis 6 M.-% eines organischen Polymers modifiziert ist. Die Polymere bilden ähnlich den Asphaltenen netzwerkartige Strukturen aus und erhöhen insbesondere im hohen Temperaturbereich die Strukturviskosität des Bitumens. Es handelt sich dabei um Polymere aus der Gruppe der Thermoplaste und Elastomere (auszugsweise): [4]

- (1) PE Polyethylen
- (2) PP Polypropylen
- (3) SBR / SBS Styren-Butadien-Kautschuk / Styren-Butadien-Styren
- (4) EPDM Ethylen-Propylen-Dien-Monomer
- (5) EVM Ethylenvinylacetat
- (6) ACM Acrylester-Kautschuk

Die Beimengung von Polymeren, beispielsweise von SBS, stellt sich als nicht unproblematisch dar. Erfahrungen aus dem Raffinierbetrieb zeigen: Wird das Granulat unbehandelt in das Bitumen gerührt, kommt es zur Ausbildung von größeren Agglomerationen und zu einer Phasentrennung. Es ist daher notwendig, entweder sehr feine SBS Pulver zu verarbeiten oder das SBS vorab in Öl zu quellen. [6]

Ebenso zeigen Bitumen unterschiedlicher geographischer Herkunft nicht die gleiche Polymer-Kompatibilität. Vorhersagen über die Kompatibilität bestimmter Bitumen-Polymer-Kombinationen sind derzeit noch kaum möglich und bedürfen daher der empirischen Ermittlung mittels Laborversuche. [4]

Das Hauptziel der Polymermodifizierung liegt in der Verbesserung der Standfestigkeit bei hohen Temperaturen und dem Hinzufügen elastischer Eigenschaften. Die Elastizität des Bitumens gibt dem daraus gemischten Asphalt die Möglichkeit, sich nach einer erfolgten Belastung wieder in den Ursprungszustand rückformen zu können.

2.5 Bitumenalterung

2.5.1 Alterungsmechanismen

Unter dem Begriff *"Bitumenalterung"* sind alle Alterungsmechanismen zusammengefasst, die zu Veränderungen im Bitumen während des gesamten Lebenszyklus führen. Es kommt dabei zu einer Verschlechterung der Gebrauchseigenschaften, das Bitumen wird härter. Die maßgebenden Faktoren sind Temperatur, der Luftsauerstoff, Wasser, die Verkehrsbelastung (mechanische Belastung, als auch Schadstoffe) und die Sonneneinstrahlung. Je nach Eindringtiefe in den Asphalt lassen sich 3 Gruppen unterscheiden:

- (1) Auf die Oberfläche begrenzt: UV-Strahlung, Mineralstäube
- (2) Mehrere Zentimeter Eindringtiefe (abhängig vom Hohlraumgehalt): reaktive Gase
- (3) Vollständiges Durchdringen des Asphaltkörpers: gut wasserlösliche Gase

Zu den reaktiven Gasen zählen bodennahes Ozon (O_3), Stickoxide (NO_x) und Schwefeldi- und -trioxid (SO_2/SO_3). Durch Stickoxide, bodennahes Ozon und UV-Strahlung kommt es zur Bildung von OH-Radikalen. Durch Niederschläge werden diese Gase aus der Atmosphäre gewaschen und es kommt zur Bildung verschiedenster Säuren.

- (1) $NO_x \rightarrow$ Salpetrige Säure (HNO₂) und Salpetersäure (HNO₃)
- (2) $SO_2/SO_3 \rightarrow$ Schwefelige Säure (H₂SO₃) und Schwefelsäure (H₂SO₄)
- (3) OH \rightarrow Wasserstoffperoxid (H₂O₂)

Die Herkunft der Schadstoffe ist unterschiedlich. Stickoxide stammen hauptsächlich vom Kfz-Verkehr, Schwefeldi- und -trioxid aus dem Hausbrand und Industrie. Die Bildung, der Ab- und Umbau der Schadstoffe laufen in der Atmosphäre parallel ab und müssen daher in ihrer Gesamtheit betrachtet werden. Die Abbildung 5 zeigt dies anhand des Kreislaufs für das OH-Radikal.

Abbildung 5: Kreislauf Ozonbildung [7]

Es lassen sich drei Alterungsmechanismen unterscheiden:

- (1) Destillative Alterung
- (2) Oxidative Alterung
- (3) Alterung durch Strukturveränderung

Bei der **destillativen Alterung**, kommt es zum Abdampfen niederviskoser Ölanteile aus dem Bitumen. Es handelt sich dabei um einen rein physikalischen Vorgang. Sie tritt praktisch nur bei hohen Temperaturen, wie sie bei der Asphaltherstellung und –verarbeitung auftreten, auf, kann aber eine anschließende weitergehende Alterung verursachen. Der Grad der Alterung hängt dabei von der Bitumensorte, der Temperatur und der spezifischen Oberfläche ab. Je weicher das Bitumen, desto mehr niederviskose Ölanteile sind enthalten welche verdampfen können. Mit steigender Temperatur steigt auch der Dampfdruck und damit die Menge der verdampfenden Ölanteile. Ebenfalls steigt die Verdampfungsgeschwindigkeit mit steigender spezifischer Oberfläche. Die destillative Alterung nimmt bei konstanten Bedingungen mit fortschreitender Bitumenverhärtung ab. [1]

Bei der **oxidativen Alterung**, reagiert das Bitumen nicht nur mit dem Sauerstoff der Luft, sondern auch mit Ozon, Radikalen und in Wasser gelösten Radikalen wie OH⁻. Es handelt sich dabei um einen rein chemischen Vorgang. Die Geschwindigkeit und Ausmaß der Oxidation hängen von der Temperatur, der spezifischen Oberfläche, der Luftzutrittsmöglichkeit und der Sonnenlichteinstrahlung ab. Je höher die Temperatur, spezifische Oberfläche und Intensität der Lichteinstrahlung, desto schneller verläuft die Oxidation. Die Eindringtiefe des Sonnenlichts ist mit rund 5 µm nur auf die Oberfläche begrenzt. Es kann jedoch, wie oben bereits erläutert, zur Bildung von Radikalen führen, die in tiefere Schichten eindringen. Von zentraler Bedeutung ist die Luftzutrittsmöglichkeit, denn ohne Sauerstoffnachlieferung findet auch keine Oxidation statt. [1] Der Zuwachs von Oxidationsprodukten und damit der Nachweis der oxidativen Alterung, lässt sich unter anderem mit der FT-IR Spektroskopie (Fourier-Transform-InfraRot-Spektroskopie) erbringen.

Die **Strukturalterung** beschreibt die Veränderungen der kolloidalen Struktur des Bitumens und ist als strukturelle Betrachtungsweise der destillativen und oxidativen Alterung und weniger als eigenständige Alterungsform zu sehen. Durch Alterung werden die kolloidal dispergierten Teilchen vergrößert und koagulieren zu größeren Aggregaten. Das Bitumen geht vom Sol- zum Gel-Zustand über. Der Gehalt an Asphaltenen nimmt zu, jener der Maltene nimmt ab. Durch die fortschreitende Strukturierung gewinnt das Bitumen an Strukturviskosität, es wird härter. [4]

Als eigenständigen Effekt kann das sogenannte *"physical hardening"* gesehen werden. *Physical hardening* basiert auf dem Auskristallisieren der im Bitumen enthaltenen Paraffine und Paraffin-ähnlichen Bestandteile (< 5 M.-%). Dabei nimmt das Bitumen an Steifigkeit zu. Dieser Effekt tritt nicht nur wie weitreichend bekannt bei Temperaturen unter null, sondern bereits ab Temperaturen ab unter 90 °C auf. Der Kristallisationsvorgang ist ein exothermer Prozess. Die dabei frei werdende Energie kann mit Hilfe der Differential Scanning Calorimetry (DSC) gemessen werden. Dieser Prozess ist durch abermaliges Aufschmelzen reversibel. [4]

Bei polymermodifizierten Bitumen ist zusätzlich die Degeneration der Molekülkolloide des verwendeten Polymers zu berücksichtigen. Die im Ursprungszustand langkettigen Polymere werden durch zunehmende Alterung zu immer kurzkettigeren Polymeren zerteilt und verlieren dadurch ihre vernetzenden Eigenschaften. Neben der Verkürzung der Polymerketten kann es in Folge chemischer Veränderungen auch zu Abstoßungsreaktionen zwischen Polymer und Bitumen und in weiterer Folge zu Verklumpungen kommen. Die genauen Alterungsmechanismen sind wissenschaftlich nicht geklärt und derzeit Gegenstand der Forschung. Die Polymeralterung kann der Strukturalterung des Bitumens zugeordnet werden. [4]

Alle Alterungsmechanismen, mit Ausnahme des *physical hardening*, sind **irreversible** Prozesse.

2.5.2 Alterungsstufen

Bitumen wird in 3 Alterungsstufen eingeteilt:

(1) "Ungealtert":

Der ungealterte Zustand, in weiterer Folge auch als Frischbitumen bezeichnet, ist unverwendetes gebrauchsfertiges Bitumen aus der Raffinerie.

(2) "Kurzzeitgealtert":

Der kurzzeitgealterte Zustand soll den Bitumentransport zum Asphaltmischwerk, die Heißlagerung, Pumpvorgänge, das Mischen mit Mineralstoffen, den Asphalttransport zur Baustelle und den Mischguteinbau abbilden.

(3) "Langzeitgealtert":

Der langzeitgealterte Zustand vereint die Kurzzeitalterung mit einer langjährigen Liegedauer auf der Straße. Der langzeitgealterte Zustand ist nach 5 bis 10 Jahren Liegedauer erreicht. Eine genauere Angabe ist aufgrund der Abhängigkeit von den Umweltbedingungen nicht möglich.

Die Abbildung 6 zeigt den schematischen Verlauf der Alterung über die Zeit. Der genaue Alterungsverlauf in der Realität ist abhängig von der Bitumensorte, Verarbeitung und Umwelteinflüsse im eingebauten Zustand.

Abbildung 6: Schematische Darstellung des Alterungsverlaufs [8]

2.5.3 Labor- und Feldalterung

Die **Feldalterung** bezeichnet die "natürliche" Alterung des Bitumens in der Umwelt wie in Kapitel 2.5.2 (2) und (3) erläutert.

Das Ziel der **Laboralterung** ist die zeitraffende Alterung des Bitumens um die Eigenschaften nach Kurz- und Langzeitalterung durch weiterführende Prüfmethoden (siehe Kapitel 4.2 und 4.3) abzubilden. Anhand dieser Ergebnisse lässt sich die Eignung eines bestimmten Frischbitumens für ein geplantes Straßenbauprojekt feststellen.

Für die Laboralterung kommen verschiedene Alterungsmethoden zum Einsatz [9]:

- (1) Kurzzeitalterung:
 - a. Rolling Thin Film Oven Test RTFOT (siehe Kapitel 4.1.1)
 - b. Modified Rolling Thin Film Oven Test MRTFOT
 - c. Thin Film Oven TFOT
 - d. Rotating Flask Test RFT
- (2) Langzeitalterung:
 - a. Pressure Aging Vessel PAV (siehe Kapitel 4.1.2)
 - b. Rotating Cylinder Aging Test RCAT
 - c. Long-Term Rotating Flask Test LTRFT

Die in Österreich am häufigsten verwendeten Methoden sind RTFOT und PAV.

Aufgrund der verwendeten Alterungsmethoden wird in weiterer Folge das kurzzeitlaborgealterte Bitumen auch als "RTFOT-gealtert" und das langzeitlaborgealterte Bitumen als "RTFOT+PAV-gealtert" bezeichnet.

2.6 Asphalt

Asphalt ist ein Gemisch aus Bitumen oder bitumenhaltigen Bindemitteln und Gesteinskörnungen. Überwiegend werden die aus Gesteinskörnungen und Bitumen differenziert zusammengesetzten technischen Asphalte als sogenanntes Asphaltmischgut zur Befestigung von Straßen und anderen Verkehrsflächen (Radwege, Parkflächen, Flugplätze usw.) in großen stationären Mischwerken (siehe Abbildung 7) hergestellt. [1]

Abbildung 7: Schema eines stationären Asphaltmischwerks der Fa. Ammann [10]

Asphalte für den Straßenbau bestehen zu etwa 95 M.-% aus Gesteinskörnungen. Ihre Aufgabe ist es, die durch den Verkehr auftretenden Kräfte aufzunehmen und über die ausgebildete Kornstruktur im Mischgut auf die unteren Schichten abzuleiten. Auf der Straßenoberfläche sind die Gesteinskörnungen der Teil der Asphaltmischung, welcher dem Verschleiß entgegenwirkt und eine dauerhafte Griffigkeit des Belags gewährleistet. Folglich sind die Eigenschaften einer Straßenbefestigung, und dort insbesondere der Fahrbahnoberfläche, ganz entscheidend von der Beschaffenheit und Zusammensetzung dieser Gesteinskörnungen abhängig. [1]

2.6.1 Gesteinskörnungen

Die Anforderungen an die Gesteinskörnungen sind in der ÖNORM EN 13043 [11] geregelt. Sie gelten sowohl für natürliche (Kies, Sand, Schotter, Splitt) als auch für rezyklierte Gesteinskörnungen, also für Gesteinskörnungen, die bereits zuvor als Baustoff eingesetzt wurden, und für industriell hergestellte Gesteinskörnungen. Als industriell hergestellte Gesteinskörnungen werden in Österreich im Straßenbau Hochofenstückschlacken (HOS) verwendet. [1] [11]

Gehandelt werden sie in Lieferkörnungen (Korngruppen einschließlich etwaiger Über- und Unterkornnateile), für die in der ÖNORM EN 13043 [11] geometrische, physikalische und chemische Anforderungen. [1] [11]

2.6.2 Asphaltarten

Die zahlreichen handelsüblichen Mischgutarten lassen sich im Wesentlichen nach dem Hohlraumgehalt der fertig eingebauten Schicht in zwei grundsätzlich verschiedene Mischguttypen unterscheiden. Aus diesem andersartigen Aufbau ergeben sich nicht nur unterschiedliche mechanische Eigenschaften, sondern die verschiedenen Typen erfordern auch andere Einbautechniken und andere Prüfmethoden zur Bestimmung von mechanischen Kennwerten. Ein weiteres Unterscheidungsmerkmal ist der Temperaturbereich für die Verarbeitung. [1]

2.6.2.1 Walzasphalt

Walzasphalt besitzt einen Bindemittelanteil, welcher den Haufwerkshohlraum im verdichteten Zustand bis auf einen geringen verbleibenden Restporenraum ausfüllt. Die verwendete Bindemittelmenge muss also so bemessen werden, dass alle Kornoberflächen gleichmäßig umhüllt sind, möglichst viele Punkte verklebt werden und dass, für den Einbau und die Verdichtung ausreichend "Schmiermittel" vorhanden ist, andererseits die Bitumenfilme aber so dünn bleiben, dass nur kleinste Verformungsmöglichkeiten bestehen und damit die auftretenden Spannungen durch die Verkehrslast über kleinste Wege – von Korn zu Korn übertragen werden. Der Walzasphalt besitzt somit 3 Phasen: [1]

- (1) Gestein
- (2) Bindemittel
- (3) Luft

Als Zuschlagsstoff werden dichte und feste Haufwerke mit einer, durch stetige Größenabstufungen zu erzielenden, guten Verarbeitbarkeit eingesetzt. Das Mischgut liegt beim Einbau anfangs relativ locker und muss daher verdichtet werden. Dies geschieht durch die Kombination von Vorverdichtung durch eine auf dem Mischgut "schwimmende", im Allgemeinen beheizte Einbaubohle als Teil des Fertigers und die nachfolgende Endverdichtung durch dynamisches Verdichten mittels Walzen. Danach stellt das Mischgut vom Typ her ein fest verspanntes, mit einem aus dem Feinkornanteil (="Füller", < 0,063 mm) und dem Bindemittel gebildeten Mörtel, auch Mastix genannt (Füller/Bitumen-Verhältnis etwa 1:1 bis 2:1), verklebtes Korngerüst dar. Der Verformungswiderstand dieses Systems beruht auf der Viskosität der Mastix und auf der inneren Reibung des Gesteinskorngerüsts und erreicht sein Maximum, wenn beim Verdichten die optimale Raumdichte erzielt wird. Da in diesem Material das Korngerüst einen wesentlichen Teil der Spannungsverteilung übernehmen soll, kann man ein relativ weiches Bindemittel wählen, wodurch der Verdichtungsvorgang erleichtert wird. Zu diesem Mischgut zählen folgende handelsübliche Mischgutarten: [1]

- (1) Asphaltbeton (AC)
- (2) Splitmastixasphalt (SMA)

Splittmastixasphalte bestehen aus einem Gesteinskorngemisch mit Ausfallkörnung. Vom Asphaltbeton für Deckschichten unterscheidet den Splittmastixasphalt weiters die vor allem hohe Standfestigkeit, die neben der Verwendung von hochwertigen Gesteinskörnungen mit einem hohen Anteil gebrochener Gesteinsoberflächen, hohen Polierwiderständen und Schlagzertrümmerungswerten positiv unterstützt wird. Infolge des hohen Mastixanteils sind Deckschichten aus Splittmastixasphalt ausgesprochen witterungs- und ermüdungsbeständig. Zur Erzielung einer angemessenen Oberflächenrauhigkeit, insbesondere der Anfangsgriffigkeit, sind Abstumpfungsmaßnahme, wie beispielsweise durch Abstreuen und Einwalzen von rohen oder bindemittelumhüllten gebrochenen Gesteinskörnungen 1/3 oder 2/5, vorzusehen. [1]

(3) Offenporiger Asphalt (PA)

Das Mischgut für offenporige Asphalte ist durch eine extreme Form der Korngrößenverteilung gekennzeichnet. Neben einer feinen Gesteinskörnung dominiert der Anteil grober Anteile, was zu einem hohen Hohlraumgehalt führt. Die Anwendung beschränkt sich auf Straßenabschnitte mit besonderen Anforderungen beim Lärmschutz und der schnellen Ableitung von Niederschlagswasser. Problematisch sind die Auswirkungen von eindringendem Sonnenlicht und Sauerstoff, die zu einer beschleunigten Bitumenalterung führen. Ein besonderes Augenmerk ist daher auf die Wahl des Bitumens zu legen. [1]

(4) Asphaltbeton für sehr dünne Schichten (BBTM)

Dabei handelt es sich um eine Sonderform des Asphaltbetons zur Sanierung von Deckschichten. Es werden sehr dünne Schichten (etwa 1 bis 2 cm) auf eine bestehende Deckschicht aufgetragen. Die Gesteinskörnung ist auf ein Größtkorn von 5 oder 8 mm begrenzt. Dünnschichtdecken sind eine kostengünstige Möglichkeit die Gebrauchsdauer einer Straße zu verlängern.

2.6.2.2 Gussasphalt

Im Gegensatz zum Walzasphalt zeichnet sich Gussasphalt durch einen Bindemittelüberschuss aus, das heißt er besitzt einen Bindemittelanteil, welcher den Haufwerkshohlraum geringfügig übersteigt. Gussasphalt besteht daher nur aus 2 Phasen: [1]

- (1) Gestein
- (2) Bindemittel

Auf diese Asphaltsorte wird nicht näher eingegangen, da sie für diese Arbeit nicht weiter relevant ist.

2.6.3 Asphaltbezeichnung

Hinsichtlich der Bezeichnung der einzelnen Asphalte werden sie nach RVS 08.97.05 [12] zunächst nach der grundsätzlichen Art der Zusammensetzung des Mischguts in Asphaltbeton (AC), Splittmastixasphalt (SMA), Offenporigem Asphalt (PA) und Gussasphalt (MA) unterschieden. Die Gesamtbezeichnung eines Asphalts erfolgt durch die Angabe des Größtkorns und verwendeten Bindemittels, bei Asphaltbeton zusätzlich die jeweilige Anwendungsschicht ("trag", "binder", "deck"), sowie einem Zusatz für den Sieblinientyp und die Gesteinsklasse.

2.7 Bitumenextraktion und -rückgewinnung

Unter Bitumenextraktion versteht man die Trennung von Bitumen und Gestein. Dies dient einerseits zur Ermittlung des Bindemittelgehalts im Asphalt nach ÖNORM EN 12679-1 [13] (zur Qualitätssicherung) und andererseits zur Rückgewinnung des Bitumens für weitergehende Prüfungen. Zur Trennung des Bitumens vom Gestein kommen verschiedene organische Lösemittel zum Einsatz. Zu den häufigsten zählen Toluol, Tetra- und Trichlorethen. In Österreich wird fast ausschließlich Tetrachlorethen verwendet. Der Füller-Anteil im Asphalt wird durch eine, im Extraktor integrierte Zentrifuge vom Bitumen-Lösemittel-Gemisch abgetrennt. Das Bitumen-Lösemittel-Gemisch wird nach der Extraktion mit Hilfe eines Rotationsverdampfers nach ÖNORM EN 12697-3 [14] destilliert. Übrig bleibt das Bitumen und ein, vom verwendeten Lösemittel abhängiger Lösemittelrestgehalt von < 1 M.-%. Da es sich bei den genannten Lösemitteln um Umweltgifte handelt, müssen die Extraktionsanlagen entsprechend geschützt und die Abluft gereinigt werden. Als Alternative wurden Verbrennungsöfen entwickelt. Damit kann jedoch nur der Bindemittelgehalt ermittelt werden. Problematisch ist der toxische Lösemittelrestgehalt auch, wenn es in Zukunft zum großtechnischen Asphaltrecycling mit Bitumenrückgewinnung kommt. Deshalb sind alternative, nicht giftige Lösemittel (Fettsäureester) und dazu passende Extraktions- und Destillationsverfahren in Entwicklung. [15]

3 Untersuchter Straßenabschnitt & Probenbezeichnung

3.1 Streckenauswahl & Probenursprung

Um das Alterungsverhalten im Feld aussagekräftig untersuchen zu können, war es notwendig eine Strecke zu wählen, von der sowohl Bitumen im Ausgangszustand (Frischbitumen) als auch Rückstellproben vom Mischgut zum Zeitpunkt des Einbaus (kurzeitfeldgealtertes Bitumen) vorhanden waren. Solch eine Strecke war mit der B1 Wiener Straße "Umfahrung Enns" gegeben, die im Sommer 2005 errichtet wurde. Die eingebauten Mischgüter wurden damals bereits nach dem neuen GVO-Ansatz (Gebrauchsverhaltensorientiert) optimiert.

Am 14. April 2012 erfolgte eine Begehung der Strecke, wobei sich der Aufbau nach 7 Jahren Liegedauer in einem visuell ausgezeichneten Zustand zeigt. Trotz eines erheblichen Schwerverkehrsanteils (siehe Abbildung 8) ist es bis dato zu keiner visuell erkennbaren Spurrinnenbildung gekommen. Auch Rissbildungen durch Kälte- und Verkehrseinwirkung sind augenscheinlich nicht vorhanden.

Abbildung 8: Verkehrsdaten 2008 bis 2012 [Land OÖ]

Der Straßenoberbau der B1 "Umfahrung Enns" wurde in Lastklasse I, Bautype 1 gemäß RVS 03.08.63 (2005) ausgeführt. Der Aufbau ist in Tabelle 3 ersichtlich.

3 cm	SMA 11 deck	PmB 45/80-65
10 cm	AC 32 binder	PmB 45/80-65
10 cm	AC 32 trag	PmB 45/80-65

|--|

Bei dem Bitumen handelt es sich um ein PmB 45/80-65 (Ausgangsbitumen 70/100 mit SBS modifiziert), welches sowohl in der Deckschicht als auch in Binder- und Tragschicht eingebaut wurde.

Die Tabelle 4 gibt einen Überblick über die vorhandenen Rückstellproben:

Stoff	Sorte	Laborcode	Menge
Bitumen	PmB 45/80-65	B029A	10 kg
Bitumen	PmB 45/80-65	B029C_LPAV_2005	100 g
Mischgut	SMA 11 deck PmB 45/80-65	A034	2 Säcke á 25 kg

Tabelle 4: Übersicht der Rückstellproben

Aus dem Oberbau wurden am 5./6. Juni 2012 durch die Fa. Nievelt Labor GmbH insgesamt 13 Stück DN 200 Bohrkerne aus beiden Richtungsfahrbahnen (St. Valentin / Linz km 173,650) jeweils aus der Mitte des Fahrstreifens entnommen. Aus den Bohrkernen wurde das Bitumen (langzeitfeldgealtert) ebenfalls durch die Fa. Nievelt Labor GmbH extrahiert. Von den Bohrkernen wurden jeweils nur die obersten 4 cm der Binder- und Tragschicht sowie die komplette Deckschicht verwendet, wie in Abbildung 9 veranschaulicht ist.

3 cm	SMA 11 deck	PmB 45/80-65
10 cm	AC 32 binder	PmB 45/80-65
10 cm	AC 32 trag	PmB 45/80-65

Abbildung 9: Verwendete Lagen zur Bindemittelrückgewinnung

Für die Extraktion kam die Extraktionsanlage Type 20-1130 der Fa. Infratest zum Einsatz. Die Rückgewinnung des Bitumen-Lösemittelgemisches erfolgte mittels Rotationsverdampfer nach ÖNORM EN 12697-03:2005. Als Lösungsmittel wurde Toluol verwendet.

Das Bitumen im rückgestellten Mischgut wurde ebenfalls durch die Fa. Nievelt Labor GmbH extrahiert.

3.2 Probenbezeichnung

Nachdem eine große Anzahl an unterschiedlichen Proben geprüft wird, wurde ein eigener Laborcode entwickelt, um das Arbeiten mit den Proben zu erleichtern. Dieser Laborcode wird in weiterer Folge auch für die Darstellung und Auswertung der Ergebnisse verwendet. Die folgenden beiden Tabellen geben eine Übersicht über die Nomenklatur des Laborcodes:

Tabelle 5: Laborcodierung für Proben der Laboralterung

Laborcode	Alterungszustand	Laboralterung	Methode
	А		
Daar	В		RTF
BXXX	C	L	PAV
	L		3RT

Tabelle 6: Laborcodierung für Proben der Feldalterung

Laborcode	Alterungszustand	Feldalterung	Liegedauer	Schicht	Richtungsfahrbahn
	В	F	MMM		
Duou	С			DS	
BXXX				BS	R1, R2
				TS	

Legende:

A	Frischbitumen	F	Feldalterung
В	kurzzeitgealtert	MMM	Liegedauer in Monaten
С	langzeitgealtert	DS	Binderschicht
RTF	RTFOT-gealtert	BS	Binderschicht
PAV	RTFOT+PAV-gealtert	TS	Tragschicht
3RT	3-fach RTFOT-gealtert	R1	Richtungsfahrbahn Enns
L	Laboralterung	R2	Richtungsfahrbahn St. Valentin

Die im Jahr 2005 im Zuge der Eignungsprüfung für den Neubau der B1 "Umfahrung Enns" erhobenen Messwerte, welche ebenfalls eingearbeitet werden, sind mit dem Zusatz "_2005" gekennzeichnet (B029B_LRTF_2005 und B029C_LPAV_2005). Weiters wird die noch vorhandene langzeitlaborgealterte Probe aus dem Jahr 2005 nochmals gemessen und der Laborcode dieser Probe mit "_WH2012" erweitert (B029C_LPAV_2005_WH2012).

Dies ergibt einen Gesamtumfang von 14 Proben:

Frischbitumen/Laborgealtert	Feldgealtert
B029A	B029B_F084
B029B_LRTF	B029C_F084_DS_R1
B029B_LRTF_2005	B029C_F084_BS_R1
B029C_LPAV	B029C_F084_TS_R1
B029C_LPAV_2005	B029C_F084_DS_R2
B029C_LPAV_2005_WH2012	B029C_F084_BS_R2
B029C_L3RT	B029C_F084_TS_R2

Tabelle 7: Proben	Gesamtumfang
-------------------	--------------

4 Angewandte Prüfmethoden

4.1 Simulation der Alterung im Labor

Ziel der simulierten Alterung im Labor ist die zeitraffende Alterung des Bitumens, um die Eigenschaften nach mehreren Jahren Liegedauer durch weiterführende Prüfmethoden (siehe Kapitel 4.2 und 4.3) abzubilden. Anhand dieser Ergebnisse lässt sich die Eignung eines bestimmten Frischbitumens für ein geplantes Straßenbauprojekt feststellen.

4.1.1 Rolling Thin Film Oven Test RTFOT (ÖNORM EN 12607-1:2007-06)

Die Simulation der Bitumenalterung mit Hilfe des RTFOT soll folgende Vorgänge abdecken:

- (1) Bitumentransport
- (2) Heißlagerung
- (3) Pumpvorgänge
- (4) Mischen im Asphaltmischwerk
- (5) Asphalttransport zur Baustelle
- (6) Mischguteinbau

Während dieser Vorgänge herrschen meist hohe Temperaturen (etwa 120 °C bis 185 °C) und das Bitumen hat Kontakt mit dem Sauerstoff der Luft. Es kommt zu destillativen und oxidativen Prozessen. Der RTFOT ist daher dahingehend entwickelt worden, diese Prozesse in Sachen Qualität und Quantität abzubilden.

Der RTFOT (siehe Abbildung 10 links) besteht aus einem speziellen elektrischen Ofen und acht Quarzglasflaschen, in weiterer Folge "RTFOT-Flaschen" genannt. Im Ofen befinden sich ein Ventilator zur gleichmäßigen Temperaturverteilung, eine vertikale Trommel, in welche die, mit jeweils 35 g Bitumen gefüllten RTFOT-Flaschen gesteckt werden und eine Luftlanze (siehe Abbildung 10 rechts oben). Die mit 15 Umdrehungen pro Minute drehende Trommel in Verbindung mit den darin horizontal liegenden RTFOT-Flaschen ergeben eine große Reaktionsoberfläche. In Abbildung 10 rechts unten sieht man, von links nach rechts, eine leere, eine befüllte und eine RTFOT-Flasche nach der Versuchsdurchführung. Die beschleunigte Oxidation erfolgt durch zwei Mechanismen: Einerseits durch die hohe Temperatur von 163 °C und andererseits durch eine Luftlanze, welche auf 163 °C vorgeheizte Luft mit 4 Liter pro Minute in die RTFOT-Flaschen bläst. Nach 75 (+10) Minuten Versuchsdauer wird die Rotation der Trommel gestoppt, die RTFOT-Flaschen nacheinander entnommen und das Bitumen in eine Metalldose geleert.

Abbildung 10: links: Rolling Thin Film Oven, rechts oben: Luftlanze und vertikale Drehtrommel, rechts unten: RTFOT-Flaschen

Neben der Alterung selbst, kann auch der Masseverlust bestimmt werden. Dazu müssen 2 RTFOT-Flaschen auf 0,001 g genau befüllt werden. Nach Versuchsdurchführung und Abkühlung der RTFOT-Flaschen erfolgt die Auswaage und der Masseverlust wird nach folgender Formel berechnet:

$$M_{Verlust} [\%] = \frac{M_{Einwaage}[g] - M_{Auswaage}[g]}{M_{Einwaage}[g]} \cdot 100$$
 nach ÖNORM EN 12607-1 [16]

Die Bestimmung des Masseverlustes und die Limitierung der flüchtigen Bestandteile auf 1 M.-% dienen primär der Arbeitssicherheit auf der Baustelle.

Die Bestimmung des Masseverlustes wurde im Zuge dieser Diplomarbeit nicht durchgeführt.

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: MATEST B066-01
- (2) Temperatur: 163 °C
- (3) Alterungsdauer: 75 (+10) Minuten
- (4) Drehzahl RTFOT-Flaschentrommel: 15 U/Min.
- (5) Luftmenge: 4 Liter/Min.
- (6) Bitumenmenge: 8x 35 g = 280 g
- Prüfergebnis(se):Die Bitumenkonditionierung mit dem RTFOT liefert kein Ergebnis,
sondern kurzzeitlaborgealtertes Bitumen für weiterführende
Prüfmethoden.

4.1.2 Pressure Aging Vessel PAV (ÖNORM EN 14769:2006-01)

Die Bitumenalterung durch den PAV soll die Bitumenveränderungen während einer Asphaltliegedauer von etwa 5 bis 10 Jahren abdecken. Die genaue Angabe der Liegedauer ist nicht möglich, da die Veränderungen einerseits vom verwendeten Frischbitumen und andererseits von den Umwelteinflüssen wie Temperatur, Luft (Sauerstoff, Ozon), Wasser, Salz, Verkehrsbelastung und Sonneneinstrahlung abhängen.

Eingebauter Asphalt kann als starrer, dichter Körper betrachtet werden, daher können hier keine flüchtigen Bestandteile mehr verdampfen. Dem wird mit der Beaufschlagung von 300 PSI (entspricht 20,7 bar) bei einer Temperatur von 110 °C während der Alterung im PAV Rechnung getragen. Damit die Alterung dem tatsächlichen "Lebenslauf" entspricht, wird das zuvor im RTFO gealterte Bitumen verwendet.

Der PAV besteht aus einem elektrisch beheiztem Druckkessel, zehn Blechschalen und einem Schalenhalter (siehe Abbildung 11).

Abbildung 11: links: Pressure Aging Vessel, mitte: Druckkessel, rechts: Schalenhalter mit befüllten Schalen

Das RTFOT-gealterte Bitumen wird zu je 50 g in die Blechschalen gefüllt und in den Schalenhalter eingelegt. Dieser Schalenhalter wird in den bereits auf 110 °C vorgeheizten Druckkessel gestellt. Dieser Vorgang muss rasch erfolgen um den Temperaturabfall im Kessel so gering als möglich zu halten. Anschließend wird der Deckel geschlossen, verschraubt und mit 20,7 bar Druck beaufschlagt. Da Druck und Temperatur voneinander abhängen (Thermische Zustandsgleichung idealer Gase; Gesetz von Amontons) bedarf es einer entsprechenden Druck- und Temperaturregelung. Sobald die Kesselinnentemperatur auf ±2 °C erreicht ist, startet die Zeit des Alterungsvorgangs von 20 Stunden. Die Temperatur von 110 °C, der Druck von 20,7 bar in Verbindung mit dem etwa 3 mm Bitumenfilm in den Blechschalen und die Dauer von 20 Stunden sorgen für eine verstärkte Oxidation. Nach den 20 Stunden wird der Druck langsam abgelassen (8-10 Minuten), um eine Schaumbildung, durch die aus dem Bitumen entweichende Luft, zu verhindern. Wird der Druck zu schnell abgelassen, kann es zu einer schlagartigen Schaumbildung und in weiterer Folge

regelrechten Explosion kommen, wodurch sich das Bitumen am Schalenhalter und Kesselraum verteilt. Nach dem Ablassen des Drucks werden die Blechschalen noch 30 Minuten bei 163 °C in den Trockenschrank gestellt, damit die restliche Luft entweichen kann. Anschließend wird das Bitumen mit Hilfe einer Spachtel in Dosen geleert.

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: PRENTEX 9300PAV + 9300SC PAV System Controller
- (2) Temperatur: 110 °C
- (3) Luftdruck: 300 PSI = 20,7 bar
- (4) Alterungsdauer: 20 Stunden
- (5) Nacherhitzung: 163 °C, 30 Minuten
- (6) Bitumenmenge: 10 x 50 g = 500 g

Prüfergebnis(se):Die Bitumenkonditionierung mit dem PAV liefert kein Ergebnis sondern
langzeitlaborgealtertes Bitumen für weiterführende Prüfmethoden.

4.2 Konventionelle Prüfmethoden

Die konventionellen Prüfmethoden sind einfach, kostengünstig und bieten eine schnelle Möglichkeit Bitumen zu Klassifizieren. Der Klassifizierung dienen der Erweichungspunkt Ring & Kugel und die Eindringtiefe der Nadelpenetration. Diese beiden Prüfgeräte sind daher in fast jedem Bitumenlabor vertreten.

Hauptkritikpunkt an den konventionellen Prüfmethoden ist, dass sie keine Aussagen über die physikalischen Materialparameter wie Steifigkeiten oder Festigkeiten machen, weshalb diese auch als empirische Prüfmethoden bezeichnet werden. Zudem beanspruchen diese Prüfmethoden das Bitumen nicht so, wie unter Klima- und Verkehrsbelastung im Feld.

4.2.1 Erweichungspunkt Ring & Kugel (ÖNORM EN 1427:2007-06)

Der Erweichungspunkt Ring & Kugel (Gerät siehe Abbildung 12 links) legt den oberen Bereich der Plastizitätsspanne, auch Gebrauchsspanne genannt, fest. Dazu wird Bitumen in einen Messingring mit einem Durchmesser von 15,7 mm gegossen, der Überstand abgeschnitten (siehe Abbildung 12 rechts unten) und anschließend mit einer 3,50 g schweren Stahlkugel belastet. Der Versuch wird in einem Wasserbad durchgeführt und beginnt bei einer Temperatur von 5 °C. Die beiden vorbereiteten Messingringe und das Prüfgestell sind vorab im Kühlschrank auf 5 °C zu temperieren. Die Temperatur wird während des Versuchs mit 5 K/Min. gesteigert. Die Stahlkugel sinkt in Folge der Schwerkraft und dem, mit der Temperatur weicher werdendem Bitumen nach unten und es bildet sich ein Bitumensack aus (siehe Abbildung 12 rechts oben). Sobald die Verformung eine Länge von 1 Zoll (entspricht 2,54 cm) erreicht hat, ist der Versuch zu Ende und die Temperatur wird notiert bzw. vom Gerät automatisch aufgezeichnet. Der Versuch wird als Doppelbestimmung durchgeführt.

Abbildung 12: links: Ring & Kugel Automat, rechts oben: Bitumensack, rechts unten: Messingringe

Mit dem Erweichungspunkt Ring & Kugel können Bitumen geprüft werden, die ihren Erweichungspunkt zwischen 25 °C und 160 °C haben. Bei einem Erweichungspunkt größer 80 °C ist Glycerol statt Wasser zu verwenden und der Versuch beginnt bei einer Temperatur von 25 °C.

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: FRÖWAG Ring und Kugelautomat 1.640
- (2) Temperatur: beginnend bei 5 °C (Wasser) bzw. 25 °C (Glycerol), Steigerung 5 K/Min.
- (3) Belastung durch 3,5 g Stahlkugel
- (4) Bitumenmenge: 2x 3 g = 6 g

Prüfergebnis(se): Erweichungspunkt Ring & Kugel [°C]

Je größer der Erweichungspunkt Ring & Kugel, desto härter das Bitumen.

4.2.2 Nadelpenetration (EN 1426:2007-06)

Mit der Nadelpenetration (Nadelpenetrometer siehe Abbildung 13 links) wird die "Härte" eines Bitumens bestimmt. Dabei wird das in einem Tiegel und auf 25 °C temperierte Bitumen mit einer 100 g Nadel (siehe Abbildung 13 rechts) über 5 Sekunden belastet. Die Nadel dringt dabei in das Bitumen ein. Die Beprobungsstellen müssen dabei mindestens 1 cm vom Rand des Tiegels und voneinander entfernt liegen. Die Eindringtiefe wird in Zehntelmillimeter angegeben und ist die Grundlage für die Bitumenklassifizierung. Ein Bitumen der Sorte 70/100 hat eine Eindringtiefe zwischen 70 und 100 Zehntelmillimeter.

Abbildung 13: links: Nadelpenetrometer, rechts: Penetrationsnadeln und -tiegel

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: FRÖWAG Nadelpenetrometer Typ 1.571
- (2) Prüfnadel: 100 g
- (3) Temperierung: 1 Stunde abkühlen im Tiegel, 1 Stunde im Wasserbad bei 25 °C
- (4) Belastungsdauer: 5 Sekunden
- (5) Bitumenmenge: abhängig von der Eindringtiefe (hier: immer 100 g verwendet)

Prüfergebnis(se): Eindringtiefe [1/10 mm]

Je geringer die Eindringtiefe, desto härter das Bitumen.

4.2.3 Brechpunkt nach Fraaß (EN 12593:2007-06)

Der Brechpunkt nach Fraaß legt den unteren Bereich der Plastizitätsspanne fest. Dabei werden 0,41 g Bitumen auf ein 41 x 21 x 0,15 mm Plättchen aus angelassenem Federstahl aufgeschmolzen oder aufgepresst. Das Metallplättchen wird während kontinuierlicher Abkühlung (1 K/Min.) dynamisch belastet (das Metallplättchen wird wiederholt gebogen, siehe Abbildung 14 rechts). Sobald die Biegezugfestigkeit des Bitumenfilms überschritten wird, bricht dieser und die Temperatur wird notiert bzw. vom Brechpunktautomaten (siehe Abbildung 14 links) aufgezeichnet.

Abbildung 14: links: Brechpunktautomat, rechts: Biegevorrichtung mit Bitumenplättchen

Der Brechpunkt nach Fraaß gibt Auskunft über das Tieftemperaturverhalten. Durch das Abkühlen des Asphalts und der behinderten Kontraktion bauen sich Zugspannungen auf. Sobald die maximale Zugfestigkeit des Asphalts überschritten wird, kommt es zu Tieftemperaturrissen. Das Ergebnis spiegelt jenen Bereich wieder, in welchem Tieftemperaturrisse im Asphalt zu erwarten sind.

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: IWS BPA (Brechpunktautomat)
- (2) Bitumenmenge: 2x 0,41 g (2 Metallplättchen)
- (3) Belastung: dynamisch (Biegezug)
- (4) Temperatur: kontinuierliche Abkühlung mit 1 K/Min.

Prüfergebnis(se): Brechpunkt nach Fraaß [°C]

Je höher die Temperatur, desto härter das Bitumen.

Die Plastizitätsspanne wird wie folgt berechnet: $T_{EPRuK} - T_{BP}$

4.2.4 Elastische Rückstellung (EN 13398:2010-10)

Die elastische Rückstellung ist eine Prüfmethode für die Bestimmung des Modifizierungsgrades von mit Polymeren modifiziertem Bitumen. Das Bitumen wird in eine Form eingegossen, plan abgeschnitten und in einem Wasserbad bei 25 °C auf 20 cm ausgezogen (siehe Abbildung 15). Der Bitumenfaden wird in der Mitte mit einer Schere durchgeschnitten und die beiden entstandenen Halbfäden können sich rückformen. Nach 30 Minuten Wartezeit erfolgt die Messung der entstandenen lichten Weite L. Die elastische Rückstellung wird mit folgender Formel berechnet:

Elastische Rückstellung [%] = $\frac{L[mm]}{200[mm]} \cdot 100$

nach ÖNORM EN 13398 [17]

Abbildung 15: Elastische Rückstellung

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: BUEHL+FAUBEL
- (2) Bitumenmenge: 2x 20 g = 40 g (für 2 Formen)
- (3) Belastung: Zugbelastung durch Ausziehen
- (4) Temperatur: 25 °C

Prüfergebnis(se): Elastische Rückstellung [%]

4.2.5 Duktilität (DIN 52013:2007-06)

Die Duktilitätsprüfung ist ähnlich der elastischen Rückstellung mit dem Unterschied, dass das Bitumen solange ausgezogen wird bis es reißt. Im Gegensatz zur elastischen Rückstellung ist das Wasserbad mit 5 °C temperiert.

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: INFRATEST 20-2346 Duktilometer
- (2) Bitumenmenge: 2x 20 g = 40 g (für 2 Formen)
- (3) Belastung: Zugbelastung
- (4) Temperatur: 5 °C

Prüfergebnis(se): Duktilität (Streckbarkeit) [cm]

4.3 Gebrauchsverhaltensorientierte Prüfmethoden

Durch zunehmende Verkehrsbelastung und damit immer höheren Anforderungen an die im Straßenbau verwendeten Bitumen, wurde die Entwicklung gebrauchsverhaltensorientierter (GVO) Prüfmethoden notwendig. Die GVO-Prüfmethoden sollen im Gegensatz zu den konventionellen das Bitumen möglichst realitätsnah prüfen. Entwickelt wurden sie im Rahmen des US-amerikanischen Straßenforschungsprogramms SHRP (Strategic Highway Research Program) unter dem Namen SUPERPAVE (SUperior PERforming Asphalt PAVEments).

4.3.1 Rotational Viscometer RV (ÖNORM EN 13302:2003-07)

Mit dem Rotational Viscometer (siehe Abbildung 16 links) wird die dynamische Bitumenviskosität gemessen. Die SUPERPAVE-Richtlinie setzt hier eine Grenze von 3000 mPa*s bei einer Temperatur von 135 °C. Diese Grenze limitiert die Zähigkeit des Bitumens damit die Verarbeitbarkeit garantiert ist. Eine zu hohe dynamische Viskosität bedeutet hohen Energieeinsatz beim Pumpen und die Gefahr der schlechten Mischbarkeit mit Gestein. Im Zuge dieser Diplomarbeit wurde die dynamische Viskosität nicht nur bei 135 °C, sondern in 15 K Schritten von 120 °C bis 180 °C gemessen.

Abbildung 16: links: Rotational Viscometer, rechts: Aluminiumhülse & Spindeln

Das Rotational Viscometer ist ein koaxiales Zylindersystem mit einem stillstehendem äußeren Zylinder (Aluminiumhülse) und einem rotierenden inneren Zylinder (Spindel), siehe Abbildung 16 rechts. Die Spindeldrehzahl ist mit 20 Umdrehungen pro Minute vorgegeben. Aufgrund der vorgegebenen Drehzahl, der mit zunehmender Alterung steigenden Viskosität und der Gerätelimitierung beim Drehmoment, finden zwei Spindelgrößen Anwendung. Die große Spindel (SC4-24) für ungealtertes und die kleine Spindel (SC4-27) für kurzzeit- und langzeitgealtertes Bitumen. Je kleiner die Spindel, desto größer der Spalt zwischen Spindel und Aluminiumhülse und desto geringer die Scherkraft und das in weiterer Folge vom Viscometer aufzubringende Drehmoment. Da die unterschiedlich großen Spindeln nicht gleich viel Bitumen verdrängen und die Bitumenfüllhöhe ein definiertes Maß erreichen muss,
werden die Aluminiumhülsen mit unterschiedlich viel Bitumen befüllt. Die Messung erfolgte mit jeweils 8,0 g bei der großen und 10,5 g bei der kleiner Spindel.

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: BROOKFIELD DV-III Programmable Rheometer
- (2) Temperatur: 120 °C bis 180 °C in 15 K Schritten
- (3) Drehzahl: 20 U/Min.
- (4) Bitumenmenge: 8,0 bzw. 10,5 g abhängig von Spindelgröße

Prüfergebnis(se): dynamische Viskosität [mPa*s]

Je höher die dynamische Viskosität (bei einer definierten Temperatur), desto härter das Bitumen.

4.3.2 Dynamic Shear Rheometer DSR (ÖNORM EN 14770:2006-01)

Wie in Kapitel 2 erläutert, zeigt Bitumen neben dem thermo-viskosen, auch ein viskoelastisches Verhalten. Um Bitumen nicht nur in seinem viskosen Fließverhalten, sondern auch in seinen elastischen Eigenschaften zu beschreiben, bedarf es Relaxations- oder Schwingungsversuche. Schwingungsversuche, auch Oszillationsversuche genannt, haben im Gegensatz zu Relaxationsversuchen den Vorteil, dass im Zuge eines Versuchs einzelne Messparameter verändert werden können. Abhängig vom variierten Parameter spricht man von Temperatur-, Amplituden- oder Frequenzsweep. Oszillationsversuche sind daher sogenannte "Mehr-Punkt-Messungen".

Abbildung 17: links: Dynamic Shear Rheometer, rechts oben: Versuchsdurchführung, rechts unten: Messköpfe

Der DSR besteht aus dem Rheometer mit Peltier-Element Temperierung (siehe Abbildung 17 links) und Messköpfen verschiedener Geometrien. Zum Einsatz kommen die beiden Messköpfe "PP08" und "PP25". Die Zahl bezeichnet jeweils den Durchmesser der Platte in Millimeter (siehe Abbildung 17 rechts unten). Wie man anhand der Messkopfbezeichnung "PP" erkennen kann, handelt sich um ein Platte-Platte-Messsystem wie in Abbildung 18 dargestellt. Während sich die obere Platte (= der Messkopf) oszillierend bewegt, steht die untere Platte still und das zwischen den beiden Platten kraftschlüssig "eingespannte" Bitumen wird deformiert, siehe Abbildung 17 rechts oben.

Abbildung 18: Platte-Platte Messsystem [18]

Die in der Abbildung 19 dargestellte Punktfolge A-B-A-C-A wird als 1 Zyklus bezeichnet.

Abbildung 19: Oszillationszyklus [18]

Die Deformation ist beim Platte-Platte-Messsystem wie folgt definiert:

$$\gamma = \frac{s}{h} \cdot 100$$

γ...Scherdeformation [%]

s...Auslenkung am äußersten Umfang des Messkopfes [mm]

h...Spalt zwischen unterer Platte und Messkopf

Eine Deformation von 100 % beim Messkopf PP25 mit 1 mm Messspalt bedeutet am Umfang eine Auslenkung von 1 mm. Die für die Messung zu wählende Deformation ist material- und geräteabhängig. Einerseits darf der linear visko-elastische Bereich des Bitumens nicht überschritten werden, da der Zusammenhang zwischen Spannung und Dehnung nicht mehr linear wäre und es bis zum Abreißen der Probe kommen kann, andererseits ist eine gewisse Mindestdeformation aufgrund der Messgenauigkeit (Winkelauflösung) des verwendeten Rheometers notwendig. Aufgrund der hohen Messgenauigkeit des verwendeten Rheometers ist eine Deformation von 1 % bereits ausreichend. Eine weitere Grenze stellt das mögliche Rheometerdrehmoment dar, weshalb auch zwei verschiedene Messköpfe durch die ÖNORM EN 14770 definiert sind. Den Messkopf PP25 mit 1 mm Messspalt für ungealtertes und kurzzeitgealtertes Bitumen und den Messkopf PP08 mit 2 mm Messspalt für langzeitgealtertes Bitumen.

Eine durch die oszillierende Bewegung aufgebrachte Scherspannung verursacht eine Deformation der Probe, das Material "antwortet". Abhängig vom Verlauf der Scherspannung im Vergleich zum Verlauf der Deformation lassen sich zwei Extremsituationen unterschieden:

- (1) Ideal elastisches Verhalten nach HOOKE
- (2) Ideal viskoses Verhalten nach NEWTON

Die beiden Extreme sind in Abbildung 20 dargestellt:

Während Scherspannung und Deformation bei ideal elastischem Verhalten in direktem Zusammenhang stehen, gibt es beim ideal viskosen Verhalten eine maximale Zeitverschiebung, Scherspannung und Deformation stehen in indirektem Zusammenhang. Diese Zeitverschiebung wird durch den sogenannten Phasenverschiebungswinkel (auch Phasenwinkel genannt) δ ausgedrückt. Ein Phasenverschiebungswinkel von 0° entspricht dabei ideal elastischem, ein Phasenverschiebungswinkel von 90° ideal viskosem Verhalten. Dazwischen befindet sich der für Bitumen gebrauchsrelevante visko-elastische Bereich wie in Abbildung 21 dargestellt.

Abbildung 21: visko-elastisches Verhalten [18]

Der Phasenverschiebungswinkel wird wie folgt berechnet:

$$\delta = \frac{\Delta t}{t} \cdot 360^{\circ}$$

δ...Phasenverschiebungswinkel [°] Δ t...Zeitverschiebung zwischen τ_{max} und γ_{max} [s] t...Zeit für eine Schwingung [s]

mit

$$t = \frac{1}{f}$$

t...Zeit für eine Schwingung [s] f...Frequenz [Hz]

Neben dem Phasenverschiebungswinkel δ [°] wird der komplexe Schubmodul |G*| [Pa] gemessen. Das ist jene Spannung die notwendig ist, um eine bestimmte Deformation zu erreichen oder die bei einer vorgegebenen Deformation auftritt. Entsprechend wird in CS-Rheometer (**C**ontrolled **S**tress \rightarrow Spannungsvorgabe und Deformationsmessung) und CD-Rheometer (**C**ontrolled **D**eformation \rightarrow Deformationsvorgabe und Spannungsmessung) unterschieden. Die Berechnung des komplexen Schubmoduls erfolgt nach folgenden Formeln:

$$|G^*| = \frac{\tau_{\max}}{\gamma_{\max}}$$

 $|G^*|$...komplexer Schubmodul [Pa] τ_{max} ...Scherspannung [Pa] γ_{max} ...Deformation []

und

Mit

 $\tau_{\max} = \frac{2 \cdot M_{\max}}{\pi \cdot r^3}$

 $\gamma_{\max} = \frac{\alpha_{\max} \cdot r}{h}$

τ_{max}...Scherspannung [Pa] M_{max}...maximales Drehmoment [Nm] r...Radius Messkopf [m] γ_{max}...Deformation [] α_{max}...Verdrehwinkel [rad] r...Radius Messkopf [m] h...Messspalt [m]

Der komplexe Schubmodul $|G^*|$ lässt sich mit Hilfe des Phasenverschiebungswinkel δ in einen elastischen und in einen viskoses Anteil aufteilen. Der elastische Anteil G' wird auch als Speichermodul oder Realteil von $|G^*|$, und der viskose Anteil G' als Verlustmodul oder Imaginärteil von $|G^*|$ bezeichnet. Wie in Abbildung 22 zu sehen können zwei unterschiedliche Materialien den gleich großen komplexen Schubmodul besitzen und dabei jeweils andere elastische bzw. viskose Eigenschaften haben.

Abbildung 22: Phasenverschiebungswinkel [18]

Die Berechnung der beiden Anteile erfolgt nach folgenden Formeln:

$$G' = |G^*| \cdot \cos \delta$$
$$G'' = |G^*| \cdot \sin \delta$$

G'...elastischer Anteil [Pa] G'...viskoser Anteil [Pa] δ ...Phasenverschiebungswinkel [°]

Die SUPERPAVE-Richtlinie definiert zwei Messbereiche:

- (1) Temperatursweep: 4 °C bis 40 °C in 6 K Schritten Frequenz: 1,592 Hz (10 rad/s) Messgeometrie: PP08 Bitumenspalt: 2 mm
- (2) Temperatursweep: 46 °C bis 82 °C in 6 K Schritten Frequenz: 1,592 Hz (10 rad/2) Messgeometrie: PP25 Bitumenspalt: 1 mm

Damit einerseits ein größerer Temperatur-, als auch Frequenzbereich abgedeckt wird und andererseits eine größere Datenbasis geschaffen wird, wurde ein Versuchsprogramm mit folgenden Parametern realisiert:

Temperatursweep: -10 °C bis 80 °C in 10 K Schritten Frequenzsweep: 0,1 Hz; 1 Hz; 10 Hz Messgeometrie: PP25 Bitumenspalt: 1 mm

Zusammengefasste Prüfbedingungen:

- (1) Gerätehersteller, -modell: HAAKE MARS II Modular Rheometer
- (2) Prüfbedingungen siehe Seite 41

Prüfergebnis(se):Komplexer Schubmodul $|G^*|$ [Pa]Phasenverschiebungswinkel δ [°]

Je höher der komplexe Schubmodul, desto höher der Widerstand gegen Verformungen.

Je höher der Phasenverschiebungswinkel, desto viskoser reagiert das Bitumen.

4.3.3 Bending Beam Rheometer BBR (ÖNORM EN 14771:2005-06)

Das Bending Beam Rheometer (siehe Abbildung 23) ist wie der Brechpunkt nach Fraaß eine Prüfmethode für den Tieftemperaturbereich.

Abbildung 23: Bending Beam Rheometer

Die Prüfmethode basiert auf der Balkentheorie. Dabei wird in der Mitte eines Bitumenbalkens eine Auflast von 0,981 N mit einem luftgelagertem Stempel aufgebracht (siehe Abbildung 24). Diese Auflast wird über 240 Sekunden aufrechterhalten, wodurch sich der Bitumenbalken durchbiegt. Die Durchbiegung wird in Folge des Kriechens des Bitumens immer größer und wird durch einen Wegaufnehmer gemessen. Damit lässt sich die Steifigkeit S zu jedem beliebigen Zeitpunkt wie folgt berechnen:

$$S(t) = \frac{P \cdot l^3}{48 \cdot f(t) \cdot I}$$

nach ÖNORM EN 14771 [19]

S...Steifigkeit [Pa] P...Auflast [N] I...Abstand zwischen den Auflagern [m] f...Durchbiegung [m] I...Trägkeitsmoment des Bitumenbalkens [m⁴]

Abbildung 24: BBR Versuchsanordnung

Neben der Steifigkeit wird auch ein sogenannter m-Wert berechnet. Der m-Wert ist die Steigung der Steifigkeitskurve und beschreibt die Kriechfähigkeit bzw. Relaxationsfähigkeit des Bitumens. Je geringer die Steifigkeit und je höher der m-Wert, desto besser das Tieftemperaturverhalten des aus dem Bitumen hergestellten Asphalts.

Diese Prüfmethode wurde auf Basis einer Abkühlrate von 10 K/h während einer Dauer von zwei Stunden entwickelt (in Österreich bis zu 7 K/h). Um die Prüfzeit im Labor zu verkürzen, macht man sich das "Zeit-Temperatur-Superpositionsprinzip" zu nutze. Die Kriechsteifigkeit bei einer Prüftemperatur ($T_{min+10^{\circ}C}$) von beispielsweise -12 °C nach 60 Sekunden Belastungsdauer ist die gleiche, wie bei Bemessungstemperatur (T_{min}) -22 °C und 2 Stunden Belastungsdauer. Um einen ausreichenden Zusammenhang zwischen Kriechsteifigkeit und Belastungsdauer zu bekommen, ist eine Gesamtversuchsdauer von 240 Sekunden notwendig, wobei die Kriechsteifigkeit bei 60 Sekunden maßgebend ist.

Im Zuge dieser Diplomarbeit wurden die Messungen bei Prüftemperaturen von -12, -18 und -24 °C durchgeführt. Ebenso wurden alle Bitumenproben und nicht nur die Langzeitgealterten, wie sonst beim BBR-Versuch üblich, geprüft.

Versuchsdurchführung:

Als erstes werden die Formen (Für jeden Versuch werden zwei Biegebalken benötigt) in die das Bitumen eingegossen wird, vorbereitet. Eine Form besteht aus 3 Aluminiumbalken, 3 Kunststofffolien und 2 Gummiringen (siehe Abbildung 25). Die Kunststofffolien dienen als Trennmittel zwischen Bitumen und Aluminiumbalken und sorgen für einfaches Ausformen, um Deformationen am Bitumenbalken zu vermeiden. Bei den Gummiringen handelt es sich um konventionelle Gummidichtungsringe. Das Bitumen wird in die fertig zusammengebaute Form mit Überstand eingefüllt. Nachdem das Bitumen auf Raumtemperatur abgekühlt ist, wird der Überstand abgeschnitten.

Abbildung 25: Bitumenbalkenform [18]

Erst unmittelbar bevor die Bitumenbalken in das, bereits auf Prüftemperatur gekühlte Ethanolbad gelegt werden, erfolgt das Ausformen. Bei sehr weichem Bitumen darf die Form in ein Eiswasserbad getaucht werden, das erleichtert das Ausformen. Die ausgeformten Bitumenbalken werden unverzüglich in das Ethanolbad gelegt und für 60 Minuten temperiert. Die Temperierungsdauer muss auf ± 2 Minuten genau eingehalten werden, da die Steifigkeit des Bitumens aufgrund des *physical hardening* Effektes mit zunehmendem Verweilen im Ethanolbad zunimmt und damit die Messung verfälscht. Daher ist es empfehlenswert, den zweiten Bitumenbalken erst 6-7 Minuten nach dem Ersten in das Ethanolbad zu legen. Die Ergebnisse beider Messungen werden unter Berücksichtigung der erlaubten Abweichungen gemittelt.

Zusammengefasste Prüfbedingungen:

- (3) Gerätehersteller, -modell: COESFELD Materialtest Bending Beam Rheometer
- (4) Temperierdauer: 60 Minuten (± 2 Minuten)
- (5) Temperatur: T_{min+10°C} (-12, -18, -24 °C)
- (6) Belastungsdauer: 60 Sekunden (240 Sekunden)
- (7) Belastung: 0,981 N

Prüfergebnis(se): Kriechsteifigkeit S [MPa] m-Wert []

5 Ergebnisse & Interpretation

5.1 Unterschiede zwischen Straßenbaubitumen und PmB

In diesem Kapitel werden die Auswirkungen der SBS Modifizierung anhand der beiden Versuche, DSR und elastische Rückstellung an einem Straßenbaubitumen und PmB gezeigt. Das Prüfprogramm wurde dafür um weitere 2 Proben und 2 ausgewählte Prüfmethoden (insgesamt 4 zusätzliche Einzelversuche) ergänzt. Um Einflüsse aus unterschiedlichem Rohöl und Produktionstagen auszuschließen, handelt es sich jeweils nicht nur um die gleiche Grundbitumensorte (70/100), sondern um exakt das gleiche Frischbitumen. Ein Teil davon wurde anschließend mit 4,3 % SBS modifiziert. Dies ergibt die Bitumensorte PmB 45/80-65.

Bei beiden Prüfmethoden zeigen sich die Auswirkungen der SBS Modifizierung deutlich. Während die elastische Rückstellung beim Straßenbaubitumen bei nur 13 % liegt, formt sich das PmB mit 92 % beinahe auf den Ausgangszustand zurück (siehe Abbildung 26).

Abbildung 26: Elastische Rückstellung, Straßenbaubitumen vs. PmB

Die Auswertung der DSR-Messung (siehe Abbildung 27) gestaltet sich gegenüber der elastischen Rückstellung komplexer. In einem DSR Diagramm sind 2 Werte dargestellt, der komplexe Schubmodul G* in [Pa] und der Phasenwinkel δ in [°]. Der komplexe Schubmodul beschreibt den Widerstand gegen Verformung des Bitumens, der Phasenwinkel die Größe des elastischen bzw. viskosen Anteils. Je größer der Phasenwinkel desto viskoser reagiert das Bitumen.

Während das Straßenbaubitumen bei 80 °C in den flüssigen Zustand übergeht und beinahe keine Steifigkeit mehr aufweist, zeigt das PmB ab einer Temperatur von etwa 25 °C höhere Steifigkeiten und damit auch eine höhere Standfestigkeit. Der Grund dafür liegt in der vernetzenden Eigenschaft des SBS, welches sich beim Phasenwinkel ab einer Temperatur von etwa 30 °C im dafür typischen Verlauf eines Plateaus zeigt. Neben der höheren

Standfestigkeit bedeutet dies auch elastische Eigenschaften, die lastbedingte irreversible Verformungen verhindern bzw. verringern. Zur besseren Erfassung zeigt die Abbildung 28 links die relative Veränderung des PmB Schubmoduls und rechts die absolute Veränderung des PmB Phasenwinkels im Vergleich zum Grundbitumen 70/100.

Abbildung 27: DSR -10 bis +80 °C – Vergleich 1 Hz – Straßenbaubitumen vs. PmB

Abbildung 28: links: Relative Veränderung des PmB Schubmoduls zum 70/100 rechts: Absolute Veränderung des PmB Phasenwinkels zum 70/100

5.2 Veränderungen in Folge Lagerung

Das Frischbitumen (B029A), welches für die Simulation der Bitumenalterung im Labor verwendet wird, ist bereits 7 Jahre lang in geschlossenen Metallkübeln gelagert worden. Um eine etwaige Verfälschung durch die Lagerung auszuschließen, werden die, im Jahr 2005 im Zuge der Eignungsprüfung für den Neubau der B1 "Umfahrung Enns" durchgeführten Messungen wiederholt. Es sind neben den Messwerten vom Frischbitumen, auch Messwerte vom kurzzeit- (B029B_LRTF_2005), als auch langzeitgealtertem Bitumen (B029C_LPAV_2005) vorhanden. Zusätzlich wird die Rückstellprobe des 2005 langzeitgealterten Bitumens nochmals gemessen.

Abbildung 30: links: Brechpunkt nach Fraaß, Mitte: Elastische Rückstellung, rechts: Duktilität Vergleich 2005/2012

Abbildung 31: links: Dynamische Viskosität, rechts: DSR SHRP +4 bis +40 °C bei 1,59 Hz Vergleich 2005/2012

Abbildung 32: DSR SHRP +46 bis +82 °C bei 1,59 Hz – links: G*, rechts: δ Vergleich 2005/2012

Wie Anhand der Ergebnisse in Abbildung 29 bis Abbildung 32 zu erkennen ist, liegen die Werte innerhalb der Wiederholbarkeit der jeweiligen Prüfmethode. Es ist davon auszugehen, dass es keine Veränderungen durch die 7 Jahre lange Lagerung gibt.

Auf die Ergebnisse bzw. die Interpretation dieser, wird in den nachfolgenden Kapiteln näher eingegangen.

5.3 Veränderungen in Folge Laboralterung

Die in der Literatur beschriebene Verhärtung des Bitumens mit den daraus resultierenden Folgen wird bei beiden Alterungsstufen in allen Prüfungen (Abbildung 33 bis Abbildung 37) bestätigt:

(1)	Erweichungspunkt Ring & Kugel	steigt	Abbildung 33 links
(2)	Nadelpenetration	sinkt	Abbildung 33 rechts
(3)	Brechpunkt nach Fraaß	steigt	Abbildung 34 links
(4)	Elastische Rückstellung	sinkt	Abbildung 34 rechts
(5)	Duktilität bei 5 °C	sinkt	Abbildung 35 links
(6)	Dynamische Viskosität	steigt	Abbildung 35 rechts
(7)	DSR komplexer Schubmodul	steigt	Abbildung 36
	DSR Phasenwinkel	muss differen	ziert betrachtet werden
(8)	BBR Biegekriechsteifigkeit	steigt	Abbildung 37 links
	BBR m-Wert	sinkt	Abbildung 37 rechts

Abbildung 33: links: Erweichungspunkt Ring & Kugel, rechts: Nadelpenetration Laboralterung

Abbildung 34: links: Brechpunkt nach Fraaß, rechts: Elastische Rückstellung - Laboralterung

Abbildung 35: links: Duktilität bei 5 °C, rechts: Dynamische Viskosität - Laboralterung

Abbildung 37: BBR bei -12, -18 und -24 °C, links: Biegekriechsteifigkeit, rechts: m-Wert Laboralterung

Die BBR Messungen zeigen eine höhere Biegekriechsteifigkeit (Abbildung 37 links) mit zunehmender Temperatur und Alterung. Die Relaxationsfähigkeit (m-Wert, Abbildung 37 rechts) verändert sich durch die RTFOT-Alterung kaum, durch die RTFOT+PAV-Alterung jedoch deutlich.

Bei den DSR Messungen (Abbildung 36) zeigen sich neben der reinen Bitumenverhärtung auch noch andere Effekte:

Je höher die Belastungsfrequenz (siehe Abbildung 38 links) und je stärker gealtert das Bitumen ist, desto steifer (|G*| steigt) und elastischer (der Phasenwinkel sinkt) reagiert es.

Mit zunehmender Alterung verliert das SBS bzw. der Verbund mit dem Bitumen seine Wirkung, die Elastizität im hohen Temperaturbereich nimmt ab. Je geringer die Belastungsfrequenz und damit die Steifigkeit desto größer die Auswirkungen der Degeneration. Während bei einer Frequenz von 0,1 Hz der Phasenwinkel im hohen Temperaturbereich des langzeitgealterten Bitumens deutlich über dem des Frischbitumens liegt (bei 80 °C plus 18 ° = 37 %, Abbildung 36 links), hebt sich die Wirkung der SBS Degeneration aufgrund der höheren Steifigkeit bei 10 Hz sogar wieder auf bzw. verschiebt sich der Schnittpunkt auf über 80 °C (Abbildung 36 rechts). Dies bedeutet, dass je steifer das Bitumen ist bzw. reagiert, desto weniger kommt das SBS innerhalb der typischen Gebrauchsspanne zu tragen.

Abbildung 38 rechts zeigt die relative Veränderung der Schubmoduli von RTFOT- und RTFOT+PAV-gealterten Bitumen gegenüber Frischbitumen. Mit einer Steifigkeitszunahme im mittleren Temperaturbereich von mind. 70 % beim kurzzeitgealterten und mind. 400 % beim langzeitgealterten Bitumen zeigt sich eine große Spreizung zwischen den einzelnen Alterungsstufen. Das ist von großem Vorteil, da so bereits kleine Veränderungen signifikant erfassbar sind. Der relative Zuwachs an Steifigkeit gegenüber dem Frischbitumen sinkt mit steigender Frequenz. Nicht, weil das RTFOT- und RTFOT+PAV-gealterte Bitumen mit zunehmender Frequenz weniger steif reagieren, sondern weil das Frischbitumen im relativen Vergleich dazu umso stärker an Steifigkeit gewinnt. Eine steigende Belastungsfrequenz hat also eine glättende Wirkung.

Abbildung 38: links: DSR Steifigkeitszunahme mit Erhöhung der Frequenz bei B029A rechts: Relative Veränderung der Schubmoduli von RTFOT und RTFOT+PAV zum Frischbitumen

In Abbildung 39 links ist die relative Veränderung der Phasenwinkel vom RTFOT- und RTFOT+PAV-gealterten Bitumen zum Frischbitumen dargestellt. Es zeigt die Zunahme des elastischen Anteils bei geringen und das Absinken des elastischen Anteils bei hohen Temperaturen in Folge Alterung. Die Frequenz verursacht dabei ein sogenanntes "Kurven-Shifting". Die Abbildung 39 rechts zeigt die relativen Veränderungen aufgetragen über die Schubmoduli und es ist zu erkennen, dass der Verlauf der Phasenwinkel nicht von der Frequenz abhängt. Die größte Zunahme des Phasenwinkels zeigt sich bei geringen

Steifigkeiten (entspricht hohen Temperaturen) und einer Frequenz von 0,1 Hz. Die Phasenwinkel erhöhen sich durch die Alterung um bis zu 40 % bei hohen Temperaturen und verringern sich um bis zu 60 % bei tiefen Temperaturen. Der abermalige Anstieg bei sehr tiefen Temperaturen (in der Abbildung ganz rechts) ist zu verwerfen, da hier der verwendete Rheometer zusammen mit der Messgeometrie PP25 bereits an seine Leistungsgrenzen stößt. Das Zusammenlaufen der Schubmodulkurven bei -10 °C entspricht nicht dem tatsächlichen Materialverhalten. Dies ist der Grund, weshalb die relative Veränderung der Phasenwinkel gegen Null geht. Die anschließende Auswertung der BBR Messungen belegt diesen Umstand (Stichwort: "Glasübergangspunkt"). Für zukünftige Versuche mit Messtemperaturen unter 0 °C ist daher die Verwendung einer Messgeometrie mit kleinerem Durchmesser empfehlenswert.

Abbildung 39: links: Absolute Veränderung der Phasenwinkel von RTFOT und RTFOT+PAV zu Frischbitumen, rechts: Absolute Veränderung der Phasenwinkel von RTFOT und RTFOT+PAV zu Frischbitumen aufgetragen über den komplexen Schubmodul

Der Versuch der elastischen Rückstellung (Abbildung 34 rechts) zeigt auf den ersten Blick eine, zum DSR Ergebnis konträre Entwicklung der Elastizität. Während der DSR eine mit der Alterung steigende Elastizität bei 25 °C zeigt, wird die elastische Rückformung geringer. Der Grund dafür liegt in der Art der Beanspruchung. Die DSR Messungen werden mit sehr geringen Verzerrungen durchgeführt (1 %) und finden innerhalb des linear visko-elastischen Bereichs statt. Dieser Bereich wird bei der elastischen Rückstellung mit einer Deformation von 660 % deutlich überschritten. Dabei wirkt die höhere Steifigkeit des Bitumens der Rückformung entgegen. Mit der elastischen Rückstellung lässt sich daher kein Rückschluss auf den Zustand oder Funktionalität des SBS im Bitumen ziehen, wohl aber zeigt sie die gemeinsame Wirkung von SBS und dem steifer werdenden Bitumen (bei 25 °C). Der Versuch ist dennoch nicht gebrauchsverhaltensorientiert, da in Realität keine Deformationen in dieser Größenordnung auftreten.

Die Abbildung 40 zeigt die Veränderungen der Biegekriechsteifigkeit im Biegebalkenrheometer durch Laboralterung. Hier zeigt sich, dass die Steifigkeitsunterschiede bei tiefen Temperaturen abnehmen und sich die Steifigkeit von Kurz- und Langzeitalterung bei -25 °C annähern. Dies ist mit dem Glasübergangspunkt des Bitumens zu erklären, der in diesem Temperaturbereich (abhängig vom Rohöl bei +5 bis -40 °C [4]) zu finden ist und wodurch kein weiterer Steifigkeitsanstieg zu erwarten ist. Extrapoliert man die beiden Kurven gegen Null, ergibt sich für das geprüfte Bitumen ein Glasübergangspunkt von rund -30 °C.

Abbildung 40: Relative Änderung der Biegekriechsteifigkeit von Frischbitumen zu RTFOT und RTFOT+PAV

5.4 Veränderungen in Folge Feldalterung

Die nachfolgenden Abbildungen zeigen die Ergebnisse der, aus dem Mischgutsack und den gezogenen Bohrkernen rückgewonnenen Bitumen. Aufgrund der hohen Probenanzahl und der damit verbundenen schlechten Übersicht, wird auf die DSR Ergebnisdiagramme wie sie im vorherigen Kapitel zu sehen sind, verzichtet. Diese sind, wie auch alle anderen Versuche, als Laborprotokoll im Anhang zu finden. Stattdessen wird direkt auf die Auswertung der relativen Veränderungen der Schubmoduli und Phasenwinkel in den Unterkapiteln eingegangen. Als Bezugsniveau sind auch immer die Werte des Frischbitumens in den Abbildungen dargestellt.

Die Ergebnisse der Tragschicht der Richtungsfahrbahn 1 (B029C_F084_TS_R1) sind zu verwerfen, da es im Zuge der Rückgewinnung nicht ausreichend destilliert wurde und der hohe Lösemittelrückstand (Toluol) die Eigenschaften des Bitumens verfälscht (es ist zu weich). Der hohe Toluol-Gehalt ist olfaktorisch deutlich wahrnehmbar und wurde durch eine versuchsweise Nachdestillation von 50 g der Bitumenprobe nachgewiesen. Die Ergebnisse sind dennoch dargestellt, um die Einflüsse einer nicht normkonformen Destillation zu zeigen.

Abbildung 41: links: Erweichungspunkt Ring & Kugel, rechts: Nadelpenetration - Feldalterung

Abbildung 42: links: Brechpunkt nach Fraaß, rechts: Elastische Rückstellung - Feldalterung

Abbildung 43: links: Duktilität bei 5 °C, rechts: Dynamische Viskosität - Feldalterung

Abbildung 44: BBR bei -12, -18 und -24 °C, links: Biegekriechsteifigkeit, rechts: m-Wert

5.4.1 Einfluss der Schichtüberdeckung

Dieses Kapitel zeigt, ob und welchen Einfluss die Schichtüberdeckung auf die Bitumenalterung hat. Der untersuchte Straßenabschnitt besteht, wie in Kapitel 3 beschrieben, aus einer 3 cm dicken Deck- und einer jeweils 10 cm dicken Binder- und Tragschicht. Bezugnehmend auf die Deck-, Binder- und Tragschicht beider Richtungsfahrbahnen zeigen die Prüfergebnisse in Abbildung 41 bis Abbildung 44, dass die Alterung umso weiter fortgeschritten ist, je stärker exponiert die betrachtete Schicht zur Umwelt liegt. Dies trifft auf beide Richtungsfahrbahnen gleichermaßen zu.

Die Abbildung 45 zeigt die relative Veränderung der Schubmoduli von Trag-, Binder- und Deckschicht zu Frischbitumen bei einer Frequenz von 1 Hz. Die dargestellten Werte der Deck- und Binderschicht sind die Mittelwerte beider Richtungsfahrbahnen. Bei den Werten der Tragschicht handelt es sich ausschließlich um die Werte der Tragschicht der Richtungsfahrbahn 2. Die Trag- und Binderschicht weisen dabei eine ähnlich starke Alterung auf, während die Deckschicht deutlich stärker gealtert ist. Diese Information ist insbesondere für das Recycling von Altasphalt von Bedeutung.

Abbildung 45: Relative Veränderung der Schubmoduli von Trag-, Binder- und Deckschicht zu Frischbitumen bei 1 Hz

Der Erweichungspunkt Ring & Kugel (Abbildung 42 links) spiegelt im Gegensatz zu allen anderen Versuchen nicht das tatsächliche Gebrauchsverhalten wider. Der Grund dafür liegt in der entgegengesetzten Wirkung von Bitumenverhärtung und SBS-Degeneration. Während die Verhärtung zu einer Erhöhung des Erweichungspunkts führt, sinkt dieser mit fortschreitender Degeneration des SBS-Netzwerks. Deshalb wird im weiteren Verlauf nicht weiter auf die Ergebnisse des Erweichungspunkts Ring & Kugel eingegangen.

5.4.2 Einfluss der Mischgutlagerung im Labor

Unerwartete Ergebnisse bringt das rückgewonnene Bitumen aus dem Mischgutsack (B029B_F084). Die Versuche (Abbildung 41 bis Abbildung 44) zeigen eine ähnlich starke Alterung wie das langzeitfeldgealterte Bitumen der Deckschicht (B029C_F084_DS). Die Abbildung 46 zeigt die relative Veränderung der Schubmoduli von Trag-, Binder-, Deckschicht und dem Mischgutsack im Vergleich zu Frischbitumen. Damit bestätigen auch die DSR Messungen die starke Verhärtung.

Abbildung 46: Relative Veränderung der Schubmoduli von Trag-, Binder-,Deckschicht und dem Mischgutsack zu Frischbitumen bei 1 Hz

Im Normalfall stimmen Labor- und Feldkurzzeitalterung überein. Aus früheren Untersuchungen stehen auch Daten einer aus dem Mischgutsack rückgewonnenen Probe zur Verfügung, die bereits ein Jahr nach Fertigstellung (2006) rückgewonnen und mit dem DSR geprüft wurde. Die Abbildung 47 zeigt den DSR Schubmodul über den Temperaturbereich von +46 bis +82 °C dieser, und der aktuellen Probe im relativen Vergleich zu RTFOT und RTFOT+PAV-gealtertem Bitumen. Je näher die Kurven beim jeweiligen Zustand liegen, desto mehr entsprechen sie diesem. Das Ergebnis aus dem Jahr 2006 entspricht der RTFOT-Alterung sehr gut.

Abbildung 47: Vergleich, der aus dem Mischgutsack 2005 und 2012 rückgewonnenen Bitumen im relativen Vergleich zu RTFOT und RTFOT+PAV

Der Grund für die starke Verhärtung ist derzeit noch Gegenstand der Klärung. Es scheint, dass eine lange Lagerung einer Mischgutprobe im Labor offensichtlich ähnlichen Alterungsmechanismen unterworfen ist, wie Bitumen aus der Deckschicht. Lässt sich dies dieses Ergebnis durch weitere, ähnlich alte Mischgutsäcke bestätigen, ließe sich ein Großteil der Alterung auf die Oxidation der Umgebungsluft oder den Kontakt mit dem Gestein eingrenzen. Eine fehlerhafte Rückgewinnung kann jedenfalls ausgeschlossen werden.

5.4.3 SBS-Degeneration

Im Gegensatz zur unterschiedlich starken Verhärtung zwischen Trag- und Binderschicht zur Deckschicht verläuft die SBS-Degeneration. Wie anhand der absoluten Veränderungen der Phasenwinkel in Abbildung 48 zu erkennen ist, verläuft der Phasenwinkel im oberen Temperaturbereich, also dort, wo das SBS zu Tragen kommt, bei allen 3 Schichten nahezu gleich. Im Temperaturbereich zwischen 0 und +30 °C spiegelt sich die höhere Steifigkeit und die daraus folgende höhere Elastizität des Bitumens der Deckschicht wieder.

Abbildung 48: Absolute Veränderung der Phasenwinkel von Trag-, Binder-, Deckschicht und Mischgutsack zu Frischbitumen bei 0,1 Hz

Entsprechend dem Ergebnis muss es einen Faktor geben, der alle 3 Schichten und den Mischgutsack gleichermaßen betrifft. Dafür kommen drei Gründe in Frage:

- (1) Es gibt Umwelteinflüsse, die durch alle drei Schichten gleichermaßen wirken und gezielt das SBS bzw. dessen Verbund mit dem Bitumen angreifen,
- (2) die Ursache liegt an der Rückgewinnung des Bitumens (Extraktion und Destillation) selbst; oder
- (3) das SBS erfährt die Degeneration durch den Kontakt mit dem Gestein (Katalyse).

Die genaue Ursache lässt sich mit der vorhandenen Datenbasis an dieser Stelle nicht klären und ist Gegenstand weiterreichender Forschung.

5.5 Vergleich Labor- und Feldalterung

5.5.1 Vergleich der Kurzzeitalterung

Mit der Auswertung des kurzzeitfeldgealterten Bitumens aus dem Mischgutsack wurde bereits im letzten Kapitel begonnen und wird in diesem Kapitel noch detaillierter fortgesetzt. Zur besseren Orientierung wird zusätzlich auch das langzeitlaborgealterte (RTFOT+PAV) Bitumen in den Diagrammen dargestellt.

Die im letzten Kapitel beschriebene starke Verhärtung des Bitumens aus dem Mischgutsack zeigt sich ebenfalls im Vergleich mit den laborgealterten Bitumen. Die Verhärtung betrifft jedoch nicht alle Temperatursegmente gleichermaßen. Während es bei tiefen Temperaturen sogar steifer als das langzeitlaborgealterte Bitumen ist (siehe BBR Abbildung 51 rechts), zeigt es bei sehr hohen Temperaturen ähnliche Konsistenz wie das kurzzeitlaborgealterte Bitumen (siehe RV Abbildung 51 links). Die höhere Steifigkeit wird durch den höheren Brechpunkt nach Fraaß (Abbildung 49 rechts) bestätigt. Obwohl das Bitumen auf unterschiedliche Materialkenngrößen geprüft wird, lässt sich ein Verlauf des Gebrauchsverhaltens von BBR/Fraaß und RV über die DSR Messung (Abbildung 52) erkennen. Die DSR Messung zeigt den Verlauf von RTFOT+PAV-Niveau bei niedrigen zu RTFOT-Niveau bei sehr hohen Temperaturen. Der Schnittpunkt von Mischgutsack und langzeitlaborgealterten Bitumen im DSR Diagramm deckt sich mit den Ergebnissen der Nadelpenetration (Abbildung 49 links).

Abbildung 49: links: Nadelpenetration, rechts: Brechpunkt nach Fraaß Kurzzeitalterung Feld/Labor

Abbildung 50: links: Elastische Rückstellung, rechts: Duktilität bei 5 °C Kurzzeitalterung Feld/Labor

Abbildung 51: links: Dynamische Viskosität, rechts: Biegekriechsteifigkeit bei -12, -18 und -24 °C – Kurzzeitalterung Feld/Labor

Abbildung 52: links: BBR m-Wert bei -12, -18 und -24 °C, rechts: DSR von -10 bis +80 °C bei 1 Hz – Kurzzeitalterung Feld/Labor

5.5.2 Vergleich der Langzeitalterung

Die Abbildung 53 zeigt eine kompakte Übersicht (qualitative Darstellung) der langzeitfeldgealterten Bitumen im relativen Vergleich zum Frischbitumen, RTFOT- und RTFOT+PAV-gealterten Bitumen. Die Prüfmethoden sind durch unterschiedliche Symbole gekennzeichnet. Je näher ein Symbol bei der jeweiligen Alterungsstufe (ungealtert, RTFOT, RTFOT+PAV) liegt, desto mehr entspricht es diesem Zustand. Wie der Abbildung zu entnehmen ist, bildet vor allem die Penetration die Veränderungen durch die Feldalterung im Vergleich zur Alterung im Labor sehr gut ab. Dabei ist zu beachten, dass die Penetration nur eine Aussage über die Bitumenverhärtung, jedoch nicht über den Zustand des SBS zulässt. Ebenfalls zeigt sich die, bereits in Kapitel 5.4.1 beschriebene geringere Alterung mit zunehmender Schichtüberdeckung.

Abbildung 53: Vergleich von Feld- und Laboralterung mit konventionellen Prüfmethoden anhand der Richtungsfahrbahn 2

Im Vergleich der Langzeitalterung zwischen Feld und Labor zeigt das RTFOT+PAV-gealterte Bitumen abhängig von der betrachteten Temperatur ähnliche Werte wie das Feldgealterte. Bei tiefen Temperaturen ist es weniger steif (siehe BBR, Abbildung 56 rechts), bei hohen Temperaturen ist es hingegen deutlich steifer (siehe RV, Abbildung 56). Dieser Verlauf wird durch den Kurvenlauf des DSR Ergebnis und dem geringeren Brechpunkt nach Fraaß (Abbildung 54 rechts) bestätigt. Die Relaxationsfähigkeit (Abbildung 58) des RTFOT+PAVgealterten Bitumens liegt wie die Biegekriechsteifigkeit etwa zwischen Binder- und Deckschicht.

Abbildung 54: links: Nadelpenetration, rechts: Brechpunkt nach Fraaß Langzeitalterung Feld/Labor

Abbildung 55: links: Elastische Rückstellung, rechts: Duktilität bei 5 °C Langzeitalterung Feld/Labor

Abbildung 56: links: Dynamische Viskosität, rechts: BBR Kriechsteifigkeit Langzeitalterung Feld/Labor

Abbildung 57: BBR m-Wert bei -12, -18 und -24 °C – Langzeitalterung Feld/Labor

Die Abbildung 58 zeigt die BBR Ergebnisse der feldgealterten Bitumen im Vergleich zu den laborgealterten Bitumen. Je näher die Kurven am jeweiligen Niveau liegen, desto mehr entsprechen sie diesem Alterungszustand. Trag- und Binderschicht entsprechen etwa der RTFOT- und die Deckschicht der RTFOT+PAV-Alterung, wobei die Deckschicht bei -24 °C deutlich steifer ist.

Abbildung 58: BBR Biegekriechsteifigkeit – Vergleich Feld/Labor

Die Abbildung 59 zeigt den Vergleich zwischen Feld- und Laboralterung detailliert für das gesamte Temperaturspektrum und dem Schubmodul. Je näher die jeweiligen Punkte beim RTFOT- bzw. RTFOT+PAV-Niveau liegen, desto mehr entspricht es diesem. Es ist zu erkennen, dass die Deckschicht eher der RTFOT+PAV-Alterung entspricht und Binder- und Tragschicht eher der RTFOT-Alterung. Dies gilt jedoch nur für mittlere und tiefe Temperaturen. Bei hohen Temperaturen (geringe Steifigkeiten, in der Abbildung ganz links) zeigt feldgealtertes Bitumen wesentlich geringere Steifigkeiten. Dies ist ein Indiz, dass im hohen Temperaturbereich, in dem das SBS wirksam wird, die Laboralterung nicht das abbildet, was im Feld passiert. Die Abbildung 60 geht detailliert auf diesen Umstand ein und zeigt die Veränderung des Phasenwinkels im DSR für labor- und feldgealtertes Bitumen. Dabei sind in der linken Abbildung die Daten für das gesamte Temperaturspektrum, in der rechten Abbildung ist nur der hohe Temperaturbereich dargestellt. Der Steifigkeitsunterschied steigt mit zunehmender Temperatur und zeigt sich umso stärker bei der dynamischen Viskosität (siehe Abbildung 56 links). Die Laboralterung deckt daher die Alterungsmechanismen im Feld nicht in ihrer Gesamtheit ab.

Abbildung 59: DSR komplexer Schubmodul – Langzeitalterung Feld/Labor

Abbildung 60: links: DSR Phasenwinkel, rechts: Detailausschnitt Langzeitalterung Feld/Labor

Nicht geklärt ist dabei der mögliche Lösemitteleinfluss auf die Struktur des SBS nach der Rückgewinnung. Das Institut für Materialchemie der TU Wien hat bereits erste Versuche mit einem Fluoreszenzmikroskop (Confocal Laser Scanning Microscopy) durchgeführt. Dabei handelt es sich um ein bildgebendes Verfahren, welches das SBS-Polymer zum Fluoreszieren bringt und so Unterschiede in der SBS-Verteilung sichtbar macht. Erste Ergebnisse zeigen Unterschiede zwischen labor- und rückgewonnenen feldgealterten Bitumen. Auf diesen Umstand wird in dieser Diplomarbeit nicht weiter eingegangen. Der Lösemitteleinfluss wird in einer anderen Diplomarbeit umfassend behandelt.

5.6 3-fach RTFOT-Alterung, eine Alternative zur RTFOT+PAV-Alterung?

Wie bereits in Kapitel 4.1 erläutert, werden sowohl RTFOT als auch PAV für die Simulation der Langzeitalterung im Labor benötigt. Das zusätzliche Erfordernis eines PAVs führt nicht nur zu Mehrkosten im Zuge der Anschaffung, sondern auch zu deutlichem Mehraufwand. Es liegt daher auf der Hand, den RTFOT als möglichen PAV Ersatz zu testen. Als Alterungsdauer wurde die 3-fache Dauer (3x 75+10 Minuten) gewählt. Die Abbildung 61 zeigt den 3-fach-RTFOT im relativen Vergleich zu den erzielten Werten mit RTFOT-und RTFOT+PAV-Alterung für ein PmB 45/80-65 (B029). Dabei befindet sich am linken Ende das RTFOT- und am rechten Ende das RTFOT+PAV-Niveau. Je näher ein Prüfungssymbol beim jeweiligen Niveau liegt, desto mehr entspricht es diesem. Die Ergebnisse des 3-fach-RTFOT-gealterten Bitumens sind über die gesamte Bandbreite zwischen RTFOT und RTFOT+PAV gestreut. Für eine allgemein gültige Aussage über die Eignung des 3-fach-RTFOT als Ersatz für den PAV ist die Untersuchung eines einzigen Bitumens, insbesondere eines PmBs, zu wenig. Für das vorliegende PmB ist die 3-fach-RTFOT-Behandlung zur Beurteilung der Alterung ungeeignet.

Abbildung 61: Ergebnisse der 3-fach-RTFOT Alterung zu RTFOT und RTFOT+PAV für ein PmB 45/80-65

6 Zusammenfassung und Ausblick

Diese Diplomarbeit ist Teil des FFG (Österr. Forschungsförderungsgesellschaft) BRIDGE-Brückenschlagprojekts OEKOPHALT: "Chemisch-physikalische Grundlagen von Bitumenalterung für ökonomisches Recycling von Asphaltmischgut" und schafft die dafür notwendige rheologische Datengrundlage für die, in diesem Projekt geplante Verknüpfung von rheologischen mit chemischen Kennwerten des Bitumens. Nach der Durchführung eines Prüfprogramms mit 12 Bitumenproben (PmB 45/80-65, Polymer: SBS) unterschiedlichen Alterungsgrades (un-, kurzzeit-, und langzeitgealtert) und insgesamt 144 Versuchen wurden die folgenden Fragestellungen behandelt:

(1) Welche Auswirkungen hat die Alterung auf das Bitumen? (Kapitel 5.3 & 5.4)

Bitumen ist unterschiedlichen Alterungsmechanismen unterworfen. Es wird in destillativer, oxidativer und der Strukturalterung unterschieden. Die destillative Alterung findet bei sehr hohen Temperaturen statt (Mischvorgang mit Gestein). Dabei entweichen flüchtige Bestandteile aus dem Bitumen. Die oxidative Alterung findet im gesamten Temperaturspektrum statt, wobei zunehmende Temperatur zu einer Beschleunigung führt. Neben dem Sauerstoff der Luft zählen zu den Oxidantien auch Luftschadstoffe wie bodennahes Ozon und Radikale aus photochemischen Reaktionen. Die Schadstoffe wirken sowohl in ihrer Gasphase als auch gelöst in Wasser und können dabei tiefer in den Asphaltkörper eindringen. Die Wirkung der Sonnenlichteinstrahlung (UV-Anteil!) ist lediglich auf die Oberfläche begrenzt. Die Strukturalterung ist weniger als eine eigene Alterungsform zu betrachten, sondern es handelt sich vielmehr um eine Folge von destillativer und oxidativer Alterung. Die Alterungsprozesse sind irreversibel und führen zu einer Verhärtung des Bitumens. Je härter das Bitumen ist, desto weiter wird die Gebrauchsspanne, auch Plastizitätsspanne genannt, zu höheren Temperaturen verschoben und es kommt zu Ermüdungsrissen im Winter.

- (2) Gibt es Unterschiede zwischen der Alterung in der Umwelt ("Feldalterung") und der simulierten Alterung im Labor? (Kapitel 5.5)
- (3) In weiterer Folge: Beschreiben die Alterungsmethoden RTFOT und PAV die Alterung von polymermodifiziertem Bitumen hinreichend genau? (Kapitel 5.5)

Im Labor mit dem RTFOT und PAV gealtertes Bitumen zeigt bei allen konventionellen als auch GVO-Versuchen zunehmende Verhärtung. Die Ergebnisse der Versuche der feldgealterten Bitumen zeigen mehrere Effekte:

Die Bitumenverhärtung nimmt mit zunehmender Schichtüberdeckung ab. Während das in der Deckschicht eingebaute Bitumen nach längerer Liegezeit dem im Labor langzeitgealterten Bitumen entspricht, sind Bitumen aus Binder- und Tragschicht dem im Labor kurzzeitgealterten Bitumen zuzuordnen. Das ist besonders für das Asphaltrecycling von Bedeutung. Generell passen Labor- und Feldalterung im tiefen und mittleren Temperaturbereich (bis etwa 50 °C) gut zusammen. Im hohen Temperaturbereich weist das laborgealterte Bitumen deutlich höhere Steifigkeiten auf. Dies ist jener Bereich, in dem das netzwerkbildende SBS Polymer seine volle Wirkung entfaltet. Das lässt darauf schließen, dass die Laboralterung das SBS Polymer nicht so degeneriert, wie es im Feld passiert. Das zeigt sich insbesondere beim Erweichungspunkt Ring & Kugel. Während der Erweichungspunkt beim laborgealterten Bitumen mit der Alterung steigt, gibt es keinen analogen Verlauf bei den feldgealterten und keine Übereinstimmung mit den laborgealterten Bitumen. Der Grund liegt in der entgegengesetzten Wirkung der Verhärtung der Bitumenmatrix (Erweichungspunkt steigt) und Degeneration des SBS (Erweichungspunkt sinkt). Nicht geklärt ist dabei der mögliche Lösemitteleinfluss auf die Struktur des SBS nach der Rückgewinnung. Das Institut für Materialchemie der TU Wien hat bereits erste Versuche mit einem Fluoreszenzmikroskop (CLSM) durchgeführt. Dabei handelt es sich um ein bildgebendes Verfahren, welches das SBS-Polymer zum Fluoreszieren bringt und so Unterschiede in der SBS-Verteilung sichtbar macht. Erste Ergebnisse zeigen Unterschiede zwischen labor- und rückgewonnenen feldgealterten Bitumen. Auf diesen Umstand wird in dieser Diplomarbeit nicht weiter eingegangen. Der Lösemitteleinfluss wird in einer nachfolgenden Diplomarbeit umfassend behandelt.

Das rückgewonnene Bitumen aus einem 7 Jahre lang im Labor gelagerten Mischgutsack (Rückstellprobe), welcher dem kurzzeitfeldgealtertem Zustand entsprechen sollte, zeigt unerwartete Ergebnisse. Es ist ähnlich stark verhärtet wie das Bitumen der Deckschicht. Der Grund dafür konnte nicht geklärt werden. Aus früheren Untersuchungen stehen auch Daten einer aus dem Mischgutsack rückgewonnenen Probe zur Verfügung, die bereits ein Jahr nach Fertigstellung (2006) rückgewonnen und geprüft wurde. Das Ergebnis aus dem Jahr 2006 entspricht der RTFOT-Alterung sehr gut. Untersuchungen an einem ähnlich alten Mischgutsack sind in Planung.

Im Vergleich der Prüfmethoden ist besonders das Dynamic Shear Rheometer hervorzuheben, da es mit geringstem Probeneinsatz ein Maximum an Materialkenngrößen über eine große Temperaturspanne liefert. Die Aussagekraft der konventionellen Prüfmethoden ist hingegen nur begrenzt oder am Beispiel des Erweichungspunkts Ring & Kugel nicht zur Bestimmung des Alterungsgrads von SBS-modifiziertes Bitumen geeignet, und liefert bei mitunter hohen Probenmengen nur punktuelle Daten.

(4) Ist die 3-fach-RTFOT-Alterung eine Alternative zur Langzeitalterung mittels RTFOT+PAV? (Kapitel 0)

Für die Simulation der Langzeitalterung im Labor wird sowohl ein RTFOT als auch ein PAV benötigt. Bitumen wird zuerst im RTFOT kurzzeit- und anschließend im PAV langzeitgealtert. Die Idee hinter dem Einsatz der 3-fach-RTFOT-Alterung als Alternative liegt in der Kostenund Zeitersparnis gegenüber der Verwendung eines PAV. Die Prüfungsergebnisse von 3-fach-RTFOT-gealtertem Bitumen liegen jedoch gleichmäßig zwischen jenen von RTFOT- und RTFOT+PAV-gealtertem Bitumen verstreut. Die 3-fach-RTFOT-Alterung ist damit für, mit SBS modifiziertem Bitumen keine Alternative zur RTFOT+PAV-Alterung.

(5) Verändert sich Bitumen durch Lagerung in geschlossenen Metallbehältern? (Kapitel 5.2)

Die Gesamtheit aller konventioneller als auch gebrauchsverhaltensorientierter Prüfungen zeigt keine Veränderungen durch die 7 Jahre lange Lagerung in geschlossenen Metallbehältern.

I. Literaturverzeichnis

- [1] G. Neroth und D. Vollenschaar, Wendehorst Baustoffkunde, Vieweg+Teubner Verlag, Wiesbaden, Deutschland, 2011.
- [2] ÖNORM EN 12597: Bitumen und bitumenhaltige Bindemittel Terminologie, Ausgabe: 01-2001.
- [3] "Wikipedia," [Online]. Available: http://de.wikipedia.org/wiki/Bitumen. [Zugriff am 01 02 2013].
- [4] D. Lesueur, "The colloidal structure of bitumen: Consequences on the reology and on the mechanisms of bitumen modification," *Advances in Colloid and Interface Science, Elsevier B.V.*, Madrid, Spanien, 2009.
- [5] H. Thamfeld, Permanent deformation characterization of asphalt mixes by means of wheel track testing // Doctoral Thesis, Wien, Österreich: Technische Universität Wien, 1990.
- [6] Österreichische Forschungsförderungsgesellschaft mbH, "OEKOPHALT: Chemischphysikalische Grundlagen von Bitumenalterung für ökonomisches Re," Wien, Österreich, 2012.
- [7] H. Grothe und F. Handle, Präsentation zum OEKOPHALT Jour Fixe am 31.01.2013, Wien, Österreich: Institut für Materialchemie, Technische Universität Wien, 2013.
- [8] Institut für Verkehrswissenschaften, Skriptum zur LVA Straßenwesen, Wien, Österreich: Technische Universität Wien, 2013.
- [9] Fehrl, BitVal Phase 1 Report Analysis of Available Data for Validation of Bitumen Tests, Brüssel, Belgien, 2006.
- [10] Ammann Asphalt GmbH, Produkteübersicht Asphalt Mischanlagen, Alfeld, Deutschland, 2011.
- [11] ÖNORM EN 13043: Gesteinskörnungen für Asphalt und Oberflächenbehandlungen für Straßen, Flugplätze und andere Verkehrsflächen, Ausgabe: 12-2002.
- [12] FSV, RVS 08.97.05: Anforderungen an Asphaltmischgut, Wien, Österreich, Ausgabe: 01-2007.
- [13] ÖNORM EN 12697-1: Asphalt Prüfverfahren für Heißasphalt Teil 1: Löslicher Bindemittelgehalt, Ausgabe: 09-2012.
- [14] ÖNORM EN 12697-3: Asphalt Prüfverfahren für Heißasphalt Teil 3: Rückgewinnung des Bindemittels: Rotationsverdampfer, Ausgabe: 04-2005.
- [15] Hochschule Anhalt, GMBU e.V., Entwicklung eines Verfahrens zur Bindemittelrückgewinnung nach Asphaltextraktion mit alternativen Lösemitteln aus nachwachsenden Rohstoffen, Dessau-Roßlau, Deutschland, 06-2012.

- [16] ÖNORM EN 12607-1: Bitumen und bitumenhaltige Bindemittel Bestimmung der Beständigkeit gegen Verhärtung unter Einfluss von Wärme und Luft Teil 1: RTFOT-Verfahren, Ausgabe: 06-2007.
- [17] ÖNORM EN 13398: Bitumen und bitumenhaltige Bindemittel Bestimmung der elastischen Rückstellung von modifiziertem Bitumen, Ausgabe: 10-2010.
- [18] J. LITZKA, R. STROBL, F. PASS und H. AUGUSTIN, Gebrauchsverhaltensorientierte Bitumenprüfung, Mitteilungen des Instituts für Straßenbau und Straßenerhaltung, Heft 9, Technische Universität Wien, Wien, Österreich, 1998.
- [19] ÖNORM EN 14771: Bitumen und bitumenhaltige Bindemittel Bestimmung der Biegekriechsteifigkeit Biegebalkenrheometer (BBR), Ausgabe: 08-2012.
- [20] DIN 52013: Bitumen und bitumenhaltige Bindemittel Bestimmung der Duktilität, Ausgabe: 06-2007.
- [21] ÖNORM EN 1426: Bitumen und bitumenhaltige Bindemittel Bestimmung der Nadelpenetration, Ausgabe: 06-2007.
- [22] ÖNORM EN 1427: Bitumen und bitumenhaltige Bindemittel Bestimmung des Erweichungspunktes Ring- und Kugel-Verfahren, Ausgabe: 06-2007.
- [23] ÖNORM EN 12591: Bitumen und bitumenhaltige Bindemittel Anforderungen an Straßenbaubitumen, Ausgabe: 08-2009.
- [24] ÖNORM EN 12593: Bitumen und bitumenhaltige Bindemittel Bestimmung des Brechpunktes nach Fraaß, Ausgabe: 06-2007.
- [25] ÖNORM EN 13108-1: Asphaltmischgut Mischgutanforderungen Teil 1: Asphaltbeton, Ausgabe: 06-2006.
- [26] ÖNORM EN 13108-5: Asphaltmischgut Mischgutanforderungen Teil 5: Splittmastixasphalt, Ausgabe: 08-2006.
- [27] ÖNORM EN 13108-7: Asphaltmischgut Mischgutanforderungen Teil 7: Offenproriger Asphalt, Ausgabe: 08-2006.
- [28] ÖNORM EN 13302: Bitumen und bitumenhaltige Bindemittel Bestimmung der dynamischen Viskosität von bitumenhaltigem Bindemittel mit einem Viskosimeter mit rotierender Spindel, Ausgabe: 06-2010.
- [29] ÖNORM EN 14023: Bitumen und bitumenhaltige Bindemittel Rahmenwerk für die Spezifikation von polymermodifizierten Bitumen, Ausgabe: 11-2010.
- [30] ÖNORM EN 14769: Bitumen und bitumenhaltige Bindemittel Beschleunigte Langzeit-Alterung mit einem Druckalterungsbehälter (PAV), Ausgabe: 08-2012.
- [31] ÖNORM EN 14770: Bitumen und bitumenhaltige Bindemittel Bestimmung des komplexen Schermoduls und des Phasenwinkels Dynamisches Scherrheometer (DSR), Ausgabe: 08-2012.

- [32] H.-J. Neumann, I. Rahimian und B. Paczynska-Lahme, "Zur Strukturalterung von Bitumen," *BITUMEN, Vol. 54, No.2, Seiten 54-56,* 1992.
- [33] R. Blab und M. Spiegl, "Erweiterte Eignungsprüfung für den bituminösen Oberbau / LB1 Neubau Umfahrung Enns," Projektbericht 0509E, Technische Universität Wien, Wien, Österreich, 2005.
- [34] X. Lu und U. Isacsson, "Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens," FUEL, Vol. 77 No. 9/10, Seiten 961-972, Stockholm, Schweden, 1998.

II. Abbildungsverzeichnis

Abbildung 1: links: Bitumen [3], rechts: Bruchstück von Naturasphalt [3]	.9
Abbildung 2: Schematische Darstellung der Bitumenherstellung [ARBIT e.V.]	.9
Abbildung 3: Deformation und Rückformung bei visko-elastischem Materialverhalten [5]	1
Abbildung 4: Terminologie der Kohlenwasserstoff-Bindemittel nach ÖNORM EN 12597 [2] 1	13
Abbildung 5: Kreislauf Ozonbildung [7]	15
Abbildung 6: Schematische Darstellung des Alterungsverlaufs [8] 1	18
Abbildung 7: Schema eines stationären Asphaltmischwerks der Fa. Ammann [10] 1	19
Abbildung 8: Verkehrsdaten 2008 bis 2012 [Land OÖ] 2	23
Abbildung 9: Verwendete Lagen zur Bindemittelrückgewinnung	24
Abbildung 10: links: Rolling Thin Film Oven, rechts oben: Luftlanze und vertikale Drehtrommel, rech	ts
unten: RTFOT-Flaschen	28
Abbildung 11: links: Pressure Aging Vessel, mitte: Druckkessel, rechts: Schalenhalter mit befüllten	
Schalen	<u>29</u>
Abbildung 12: links: Ring & Kugel Automat, rechts oben: Bitumensack, rechts unten: Messingringe	31
Abbildung 13: links: Nadelpenetrometer, rechts: Penetrationsnadeln und -tiegel	32
Abbildung 14: links: Brechpunktautomat, rechts: Biegevorrichtung mit Bitumenplättchen	33
Abbildung 15: Elastische Rückstellung	34
Abbildung 16: links: Rotational Viscometer, rechts: Aluminiumhülse & Spindeln	35
Abbildung 17: links: Dynamic Shear Rheometer, rechts oben: Versuchsdurchführung, rechts unten:	
Messköpfe	37
Abbildung 18: Platte-Platte Messsystem [18]	37
Abbildung 19: Oszillationszyklus [18]	38
Abbildung 20: Links ideal elastisches Verhalten, Rechts ideal viskoses Verhalten [18]	39
Abbildung 21: visko-elastisches Verhalten [18]	39
Abbildung 22: Phasenverschiebungswinkel [18]	11
Abbildung 23: Bending Beam Rheometer	12
Abbildung 24: BBR Versuchsanordnung	13
Abbildung 25: Bitumenbalkenform [18]	14
Abbildung 26: Elastische Rückstellung, Straßenbaubitumen vs. PmB	15
Abbildung 27: DSR -10 bis +80 °C – Vergleich 1 Hz – Straßenbaubitumen vs. PmB	16
Abbildung 28: links: Relative Veränderung des PmB Schubmoduls zum 70/100 rechts: Absolute	
--	
Veränderung des PmB Phasenwinkels zum 70/100 46	
Abbildung 29: links: EP Ring & Kugel, rechts: Nadelpenetration Vergleich 2005/2012	
Abbildung 30: links: Brechpunkt nach Fraaß, Mitte: Elastische Rückstellung, rechts: Duktilität	
Vergleich 2005/2012	
Abbildung 31: links: Dynamische Viskosität, rechts: DSR SHRP +4 bis +40 °C bei 1,59 Hz Vergleich	
2005/2012	
Abbildung 32: DSR SHRP +46 bis +82 °C bei 1,59 Hz – links: G*, rechts: δ Vergleich 2005/2012 48	
Abbildung 33: links: Erweichungspunkt Ring & Kugel, rechts: Nadelpenetration Laboralterung 49	
Abbildung 34: links: Brechpunkt nach Fraaß, rechts: Elastische Rückstellung - Laboralterung 49	
Abbildung 35: links: Duktilität bei 5 °C, rechts: Dynamische Viskosität - Laboralterung	
Abbildung 36: DSR -10 bis +80 °C bei 0,1 Hz links und 10 Hz rechts - Laboralterung 50	
Abbildung 37: BBR bei -12, -18 und -24 °C, li.: Biegekriechsteifigkeit, re.: m-Wert Laboralterung 50	
Abbildung 38: links: DSR Steifigkeitszunahme mit Erhöhung der Frequenz bei B029A rechts: Relative	
Veränderung der Schubmoduli von RTFOT und RTFOT+PAV zum Frischbitumen	
Abbildung 39: links: Absolute Veränderung der Phasenwinkel von RTFOT und RTFOT+PAV zu	
Frischbitumen, rechts: Absolute Veränderung der Phasenwinkel von RTFOT und RTFOT+PAV zu	
Frischbitumen aufgetragen über den komplexen Schubmodul52	
Abbildung 40: Relative Änderung der Biegekriechsteifigkeit von Frischbitumen zu RTFOT und	
RTFOT+PAV	
Abbildung 41: links: Erweichungspunkt Ring & Kugel, rechts: Nadelpenetration - Feldalterung 54	
Abbildung 42: links: Brechpunkt nach Fraaß, rechts: Elastische Rückstellung - Feldalterung	
Abbildung 43: links: Duktilität bei 5 °C, rechts: Dynamische Viskosität - Feldalterung	
Abbildung 44: BBR bei -12, -18 und -24 °C, links: Biegekriechsteifigkeit, rechts: m-Wert	
Abbildung 45: Relative Veränderung der Schubmoduli von Trag-, Binder- und Deckschicht zu	
Frischbitumen bei 1 Hz 55	
Abbildung 46: Relative Veränderung der Schubmoduli von Trag-, Binder-, Deckschicht und dem	
Mischgutsack zu Frischbitumen bei 1 Hz 56	
Abbildung 47: Vergleich, der aus dem Mischgutsack 2005 und 2012 rückgewonnenen Bitumen im	
relativen Vergleich zu RTFOT und RTFOT+PAV 57	
Abbildung 48: Absolute Veränderung der Phasenwinkel von Trag-, Binder-, Deckschicht und	
Mischgutsack zu Frischbitumen bei 0,1 Hz 58	
Abbildung 49: links: Nadelpenetration, rechts: Brechpunkt nach Fraaß Kurzzeitalterung Feld/Labor 59	
Abbildung 50: links: Elastische Rückstellung, rechts: Duktilität bei 5 °C Kurzzeitalterung Feld/Labor 59	
Abbildung 51: links: Dynamische Viskosität, rechts: Biegekriechsteifigkeit bei -12, -18 und -24 °C –	
Kurzzeitalterung Feld/Labor	
Abbildung 52: links: BBR m-Wert bei -12, -18 und -24 °C, rechts: DSR von -10 bis +80 °C bei 1 Hz –	
Kurzzeitalterung Feld/Labor	
Abbildung 53: Vergleich von Feld- und Laboralterung mit konventionellen Prüfmethoden anhand der	
Richtungsfahrbahn 2	
Abbildung 54: links: Nadelpenetration, rechts: Brechpunkt nach Fraaß Langzeitalterung Feld/Labor 61	
Abbildung 55: links: Elastische Rückstellung, rechts: Duktilität bei 5 °C Langzeitalterung Feld/Labor 62	
Abbildung 56: links: Dynamische Viskosität, rechts: BBR Biegekriechsteifigkeit Langzeitalterung	
Feld/Labor	

Abbildung 57: BBR m-Wert bei -12, -18 und -24 °C – Langzeitalterung Feld/Labor	62
Abbildung 58: BBR Biegekriechsteifigkeit – Vergleich Feld/Labor	63
Abbildung 59: DSR komplexer Schubmodul – Langzeitalterung Feld/Labor	64
Abbildung 60: links: DSR Phasenwinkel, rechts: Detailausschnitt Langzeitalterung Feld/Labor	64
Abbildung 61: Ergebn. der 3-fach-RTFOT Alterung zu RTFOT und RTFOT+PAV für ein PmB 45/80-65	65

III. Tabellenverzeichnis

Tabelle 1: EN 12597: Bitumen und bitumenhaltige Bindemittel – Terminologie [2]	8
Tabelle 2: Hauptbestandteile von Bitumen [1]	10
Tabelle 3: Straßenaufbau	23
Tabelle 4: Übersicht der Rückstellproben	24
Tabelle 5: Laborcodierung für Proben der Laboralterung	25
Tabelle 6: Laborcodierung für Proben der Feldalterung	25
Tabelle 7: Proben Gesamtumfang	26
C C C C C C C C C C C C C C C C C C C	

IV. Anhang

Der Anhang enthält die Ergebnisse der durchgeführten Messungen.

Erweichungspunkt	1. Mes	sung	2. Mess	gung	Mittelwert	Ergebnis
Ring & Kugel	Prüfdatum	[°C]	Prüfdatum	[°C]	[°C]	[°C]
8029A	19.06.2012	68,68 68,32	16.07.2012	68,84 69,68	68,88	68,8
B029A_2005	26.03.2005	68,29 68,29	26.03.2005	68,07 68,45	68,28	68,2 ^{**)}
B029B_LRTF	20.06.2012	71,99 73,11	16.07.2012	73,08 72,89	72,77	72,8
VA92_LPAV	02.08.2012	77,27 77,23	14.09.2012	76,67 76,67	96'92	77,0
B029C_LPAV_2005_WH2012	08.08.2012	75,85 75,78	18.09.2012	76,30 76,61	76,14	76,2
B029C_L3RT	21.08.2012	74,08 74,17	18.09.2012	74,25 74,30	74,20	74,2
B029B_F084	22.06.2012	65,62 66,11	27.06.2012	65,65 65,56	65,74	65,8
B029C_F084_DS_R1	16.08.2012	67,20 67,41	23.08.2012	66,30 66,05	66,74	66,8
B029C_F084_BS_R1	20.08.2012	60,80 61,80	21.08.2012	61,36 62,40	61,59	61,6
B029C_F084_TS_R1	18.09.2012	89,69 90,62	18.09.2012	90,17 89,81	90,07	90 ^{*)}
B029C_F084_DS_R2	28.09.2012	68,21 68,21	28.09.2012	68,71 68,61	68,44	68,4
B029C_F084_BS_R2	01.10.2012	62,29 61,93	01.10.2012	62,32 62,41	62,24	62,2
B029C_F084_TS_R2	03.10.2012	72,01 73,23	16.10.2012	72,09 73,45	72,70	72,6
Anmerkungen: Badflüssigkeit: H ₂ O _{dest,} * ⁾ mit Glycerc	10	Prüfgerät:	FRÖWAG Ring u	und Kugelaut	omat 1.640	
Prüfer: Markus Hospodka, **) Thoma	s Riedmayer		**) Strassentest	Baustoff-Prü	ifsysteme Typ 60	16

Eindringtiefe	Messu	ing	Gerundet	Mittelwert	Ergebnis
Nadelpenetration	Prüfdatum	10/mm	10/mm	10/mm	10/mm
B029A	20.06.2012	79,4 79,3	79 79	79,0	79
B029A_2005	05.04.2005	81,0 76,0 77,0	81 76 77	78,0	78 ^{*)}
B029B_LRTF	20.06.2012	51,2 50,5	51 51	51,0	51
B029C_LPAV	03.08.2012	34,0 34,4	34 34	34,0	34
B029C_LPAV_2005_WH2012	24.08.2012	30,2 30,4	30 30	30,0	30
B029C_L3RT	21.08.2012	48,4 47,4	48 47	47,5	48
B029B_F084	22.06.2012	34,1 33,4	34 33	33,5	34
B029C_F084_DS_R1	21.08.2012	33,2 34,4 33,4	33 34 33	33,3	33
B029C_F084_BS_R1	21.08.2012	33,7 35,0 34,6	34 35 35	34,7	35
B029C_F084_TS_R1	19.09.2012	71,8 73,5	72 74	73,0	73
B029C_F084_DS_R2	16.10.2012	28,5 30,3 28,0	29 30 28	29,0	29
B029C_F084_BS_R2	03.10.2012	48,1 49,5 48,2	48 50 48	48,7	49
B029C_F084_TS_R2	03.10.2012	49,0 47,5 47,6	49 48 48	48,3	48
Anmerkungen: Prüfgerät: FRÖWAG Nadelpenetro Prüfer: Markus Hospodka. ^{*)} Thom	meter Typ 1.57 as Riedmayer	71, ^{*)} Straß	entest Typ 31	8/H	

Brechnunkt nach Fraaß	Messung	5	Mittelwert	Ergebnis
Breenpunkt nach Fraab	Prüfdatum	[°C]	[°C]	[°C]
B029A	05.07.2012	-32,6 -32,7	-32,65	-33
B029B_LRTF	09.07.2012	-29,3 -29,5	-29,40	-29
B029C_LPAV	14.08.2012	-25,4 -25,4	-25,40	-25
B029C_LPAV_2005_WH2012	19.09.2012	-19,4 -19,5	-19,45	-19
B029C_L3RT	22.08.2012	-27,6 -30,6	-29,10	-29
B029B_F084	05.07.2012	-19,3 -18,4	-18,85	-19
B029C_F084_DS_R1	21.08.2012	-17,2 -16,9	-17,05	-17
B029C_F084_BS_R1	21.08.2012	-23,2 -23,2	-23,20	-23
B029C_F084_TS_R1	19.09.2012	-22,3 -21,1	-21,70	-22
B029C_F084_DS_R2	16.10.2012	-17,5 -18,4 -16,1	-17,33	-17
B029C_F084_BS_R2	08.10.2012	-21,1 -22,2 -23,2	-22,17	-22
B029C_F084_TS_R2	08.10.2012	-22,0 -24,0 -24,1 -23,1	-23,30	-23
Anmerkungen: Prüfgerät: IWS BPA (Brechpunktau Prüfer: Markus Hospodka	tomat)			

Elastische Rückstellung	Messung		Mittelwert	Ergebnis
	Prüfdatum	[cm]	[cm]	[%]
B029A	03.07.2012	18,0 18,3	18,15	91
B029B_LRTF	03.07.2012	17,9 18,0	17,95	90
B029C_LPAV	14.08.2012	16,1 16,3	16,20	81
B029C_LPAV_2005_WH2012	19.09.2012	14,7 15,4	15,05	75
B029C_L3RT	22.08.2012	16,0 16,2	16,10	81
B029B_F084	05.07.2012	15,3 15,4	15,35	77
B029C_F084_DS_R1	21.08.2012	16,2 16,0	16,10	81
B029C_F084_BS_R1	21.08.2012	17,0 17,4	17,20	86
B029C_F084_TS_R1	19.09.2012	19,4 19,3	19,35	97
B029C_F084_DS_R2	16.10.2012	14,2 14,2	14,20	71
B029C_F084_BS_R2	08.10.2012	16,3 16,6	16,45	82
B029C_F084_TS_R2	08.10.2012	17,8 17,9	17,85	89
70/100 (B287A)	12.11.2012	2,5 2,7	2,60	13
PmB 45/80-65 (B288A)	12.11.2012	18,5 18,4	18,45	92
Anmerkungen: Prüfgerät: BUEHL+FAUBEL Prüfer: Markus Hospodka				

Duktilität hai 5 °C	Messung		Mittelwert	Ergebnis
Duktintat ber 5 °C	Prüfdatum	[cm]	[cm]	[cm]
B029A	15.01.2013	26,8 28,9	27,85	28
B029B_LRTF	15.01.2013	11,9 12,7	12,30	12
B029C_LPAV	15.01.2013	4,7 4,8	4,75	5
B029C_LPAV_2005_WH2012	16.01.2013	4,2 -	4,20	4 ^{*)}
B029C_L3RT	15.01.2013	5,8 5,3	5,55	6
B029B_F084	15.01.2013	3,7 3,9	3,80	4
B029C_F084_DS_R1	15.01.2013	5,2 5,1	5,15	5
B029C_F084_BS_R1	16.01.2013	12,9 11,4	12,15	12
B029C_F084_TS_R1	16.01.2013	24,6 24,9	24,75	25
B029C_F084_DS_R2	16.01.2013	3,4 3,5	3,45	3
B029C_F084_BS_R2	16.01.2013	16,6 16,1	16,35	16
B029C_F084_TS_R2	16.01.2013	19,6 20,3	19,95	20
Anmerkungen: ^{*)} Nicht ausreichen Prüfgerät: INFRATEST 20-2346 Duk Prüfer: Markus Hospodka	d Probe für Doppelk tilometer	oestimm	ung	

Dynamische Viskosität

Anmerkungen:

Prüfgerät: BROOKFIELD DV-III Programmable Rheometer

Prüfer: Markus Hospodka, *) Thomas Riedmayer

B02	9A			B02	9A_200)5 ^{*)}		B029B_LRTF					
Prüfe	datum:	20.06.2	012	Prüf	datum:	23.03.20	005	Pr	üfdatum:	19.06.20	012		
Spine	del: SC4	-21		Spin	del: SC4	-27		Sp	indel: SC4	-27			
Temp.	Visc	osity	Speed	Temp.	Visc	osity	Speed	Tem	p. Visc	osity	Speed		
[°C]	[mF	Pa.s]	[RPM]	[°C]	[mF	Pa.s]	[RPM]	[°C]	[mF	Pa.s]	[RPM]		
	3.685		010		3.725		020		6.088		020		
120	3.700	3.688	010	120	3.725	3.721	020	120	6.088	6.088	020		
	3.680		010		3.713		020		6.088		020		
	1.338		020		1.388		020		1.950		020		
135	1.338	1.338	020	135	1.388	1.384	020	135	1.938	1.938	020		
135 1	1.338		020		1.375		020		1.925		020		
	620		020		638		020		813		020		
150	620	620	020	150	638	638	020	150	800	804	020		
	620		020		638		020		800		020		
	350		020		375		020		438		020		
165	348	348	020	165	363	367	020	165	438	438	020		
	348		020		363		020		438		020		
	215		020		238		020		275		020		
180	215	215	020	180	238	238	020	180	263	271	020		
	215		020		238		020		275		020		

B02	9C_LPA	v		B029	OC_LPAV	_2005_V	VH2012	B029C_L3RT					
Prüf	datum: 0	2.08.202	12	Prüf	datum: (8.08.201	12	Prüfd	latum: 🛛	20.08.20	012		
Spin	del: SC4-	27		Spin	del: SC4-	27		Spinc	lel: SC4	-27	-		
Temp.	Visc	osity	Speed	Temp.	Visc	osity	Speed	Temp.	Visc	osity	Speed		
[°C]	[mP	a.s]	[RPM]	[°C]	[mP	a.s]	[RPM]	[°C]	[mP	a.s]	[RPM]		
	11.438		020		11.688		020		9.200		020		
120	11.463	11.454	020	120	11.663	11.688	020	120	9.213	9.209	020		
	11.463		020		11.713		020		9.213		020		
	3.425		020		3.550		020		2.825		020		
135	3.425	3.413	020	135	3.538	3.533	020	135	2.800	2.804	020		
	3.388		020		3.513		020		2.788		020		
	1.250		020		1.300		020		1.063		020		
150	1.238	1.242	020	150	1.288	1.292	020	150	1.063	1.059	020		
	1.238		020		1.288		020		1.050		020		
	575		020		613		020		513		020		
165	588	579	020	165	600	608	020	165	513	513	020		
	575		020		613		020		513		020		
	313		020		338		020		300		020		
180	313	313	020	180	325	333	020	180	288	292	020		
	313		020		338		020		288		020		

B02	9B_F084	1		B02	9C_F084	L_DS_R	L	B029C_F084_BS_R1				
Prüfe	datum: 2	7.06.20	12	Prüfo	datum: 2	3.03.202	12		Prüfc	latum: 1	16.08.20	012
Spine	del: SC4-	27		Spine	del: SC4-	27			Spino	lel: SC4	-27	
Temp.	Visco	osity	Speed	Temp.	Visc	osity	Speed		Temp.	Visc	osity	Speed
[°C]	[mP	a.s]	[RPM]	[°C]	[mP	a.s]	[RPM]		[°C]	[mP	a.s]	[RPM]
	5.525		020		6.650		020			4.100		020
120	5.513	5.517	020	120	6.650	6.642	020		120	4.088	4.087	020
	5.513		020		6.625		020			4.075		020
	1.975		020		2.313		020			1.713		020
135	1.963	1.963	020	135	2.300	2.300	020		135	1.700	1.704	020
	1.950		020		2.288		020			1.700		020
	838		020		963		020			838		020
150	838	833	020	150	963	963	020		150	825	829	020
	825		020		963		020			825		020
	425		020		500		020			450		020
165	425	425	020	165	500	500	020		165	438	442	020
	425		020		500		020			438		020
	250		020		288		020			275		020
180	250	250	020	180	288	288	020		180	275	275	020
	250		020		288		020			275		020

B029	C_F08	4_TS_I	R1	B029C_F084_DS_R2					B029C_F084_BS_R2					
Prüfd	latum:	13.09.2	012	Prüfo	latum:	28.09.2	012		Prüfo	latum:	03.10.2	012		
Spinc	lel: SC4	-27		Spino	lel: SC4	-27			Spino	lel: SC4	-27			
Temp.	Visc	osity	Speed	Temp.	Visco	osity	Speed		Temp.	Visc	osity	Speed		
[°C]	[mP	a.s]	[RPM]	[°C]	[mP	a.s]	[RPM]		[°C]	[mP	a.s]	[RPM]		
	3.375		020		6.913		020			4.900		020		
120	3.375	3.371	020	120	6.913	6.917	020		120	4.888	4.896	020		
	3.363		020		6.925		020			4.900		020		
	1.538		020		2.413		020			1.938		020		
135	1.525 1	1.525	020	135	2.388	2.396	020		135	1.913	1.921	020		
	1.513		020 2.388 2.356	020			1.913		020					
	763		020		975		020			875		020		
150	763	758	020	150	975	975	020		150	863	867	020		
	750		020		975		020			863		020		
	425		020		488		020			463		020		
165	413	417	020	165	488	488	020		165	463	458	020		
	413		020		488		020			450		020		
	275		020		275		020			263		020		
180	275	271	020	180	275	275	020		180	263	263	020		
	263		020		275		020			263		020		

B029C_F084_TS_R2					
Prüfo	latum:	01.10.2	012		
Spine	lel: SC4	-27	r		
Temp.	Visc	osity	Speed		
[°C]	[mP	'a.s]	[RPM]		
	4.438		020		
120	4.425	4.433	020		
	4.438		020		
	1.888		020		
135	1.888	1.888	020		
	1.888		020		
	913		020		
150	913	908	020		
	900		020		
	475		020		
165	488	479	020		
	475		020		
	288		020		
180	300	292	020		
	288		020		

Bending Beam Rheometer	Driifdatum	Biegezug	steifigkeit	S [MPa]		m-Wert [-]	
BBR		-12	-18	-24	-12	-18	-24
B029A	12.07.2012	25	65	142	0,453	0,417	0,355
B029B_LRTF	12., 13., 16.07.2012	37	81	173	0,447	0,429	0,352
B029C_LPAV	03., 07., 08.08.2012	95	119	194	0,378	0,341	0,320
B029C_LPAV_2005_WH2012	03.08.2012	89	118	197	0,379	0,350	0,326
B029C_L3RT	22., 23., 24.08.2012	54	111	237	085,0	0,338	0,273
B029B_F084	13., 16.07.2012	0/	135	237	0,369	0,349	0,315
B029C_F084_D5_R1	17., 20., 21.08.2012	52	154	302	0,341	0,303	0,254
B029C_F084_BS_R1	17., 20., 21.08.2012	74	106	220	0,386	0,333	0,279
B029C_F084_TS_R1	13., 14.09.2012	27	60	130	0,453	0,429	0,383
B029C_F084_DS_R2	08., 10.10.2012	59	130	237	0,371	0,333	0,241
B029C_F084_BS_R2	03., 04., 05.10.2012	41	87	171	0,396	0,374	0,314
B029C_F084_TS_R2	01., 03., 04.10.2012	68	83	186	0,410	0,359	0,336
Anmerkungen:							
Prüfgerät: COESFELD Materialtest Be	ending Beam Rheometer						
Prüfer: Markus Hospodka							

Dynamic Shear Rheometer DSR

Anmerkungen: Prüfgerät: HAAKE MARS II Modular Rheometer

Prüfgeometrie: PP08, 2 mm Spalt

Prüfprogramm: +4 bis +40 °C bei 1,592 Hz

Prüfer: Markus Hospodka

B02	9A			
Prüf	datum: 16.08.2	012		
Temp.	G*	* 	δ	
[°C]	[Pa]	[°]]
1	593.000	502 500	51,2	E1 2
4	594.000	555.500	51,3	51,5
10	383.000	383.500	53,4	E2 /
10	384.000		53,4	55,4
16	204.000	202 500	56,8	EC 9
10	203.000	203.500	56,8	50,0
22	97.700	97 600	60,1	60.2
22	97.500	97.000	60,2	00,2
70	43.700	42 550	62,7	62.0
20	43.400	45.550	62,8	02,0
24	19.100	10 100	64,1	64.1
54	19.100	19.100	64,1	04,1
40	8.600	0 500	64,4	64.4
40	8.580	8.590	64,4	04,4

B029B_LRTF Prüfdatum: 21.08.2012					
Temp.	G	*	δ	;	
[°C]	[P	a]	[°]	
4	1.230.000	1 225 000	42,7	42.0	
4	1.220.000	1.225.000	43,1	42,3	
10	797.000	707 000	45,3	45.4	
10	797.000	/9/.000	45,5	45,4	
16	447.000		48,7	10.0	
10	444.000	445.500	48,9	48,8	
22	226.000	225 500	52,4	52.5	
22	225.000	225.500	52,5	52,5	
20	105.000	104 500	55,8	55.0	
20	104.000	104.500	55,9	5,55	
24	47.300	47 150	58,5	F0 F	
54	47.000	47.150	58,5	58,5	
10	21.300	24.250	60,2	60.0	
40	21.200	21.250	60,2	60,2	

B029C_LPAV					
Prüf	datum: 04.09.2	012			
Temp.	G*	* 	δ		
[°C]	[Pa]	[°]]	
1	1.720.000	1 720 000	35,7	25.0	
4	1.720.000	1.720.000	35,8	33,0	
10	1.210.000	1.200.000	37,4	27.6	
10	1.190.000		37,7	57,0	
16	733.000	720 500	40,4	40 F	
10	728.000	750.500	40,5	40,5	
22	411.000	400 500	43,6	12.7	
22	408.000	409.500	43,8	45,7	
20	215.000	214.000	47,0	47.1	
28	213.000	214.000	47,1	47,1	
24	107.000	100 500	50,2	50.2	
34	106.000	106.500	50,2	50,2	
40	52.500	53.450	52,8	53.0	
40	52.400	52.450	52,9	52,9	

B029C_LPAV_2005_WH2012						
Prüfd	l atum: 10.08.2	2012				
Temp.	G	*	8	5		
[°C]	[P	a]	[°]		
1	1.700.000	1 700 000	35,9	26.0		
4	1.700.000	1.700.000	36,0	30,0		
10	1.230.000	1.225.000	37,3	27 5		
10	1.220.000		37,6	37,5		
16	753.000	750 000	40,3	40.4		
10	747.000	750.000	40,5	40,4		
22	420.000	419 500	43,7	12 0		
22	417.000	418.500	43,8	43,0		
20	217.000	216 500	47,1	47.2		
20	216.000	210.500	47,2	47,2		
24	109.000	100 000	50,3	E0 4		
34	109.000	109.000	50,4	50,4		
40	54.400	FA 350	52,9	F2 0		
40	54.300	54.350	53,0	53,0		

B029C_L3RT					
Prüf	datum: 20.08	.2012			F
Temp.	G	*	5	5	Ter
[°C]	[Pa	a]	['	']	[°
1	1.630.000	1.630.00	38,1	29.2	
4	1.630.000	0	38,2	30,2	
10	1.110.000	1.105.00	40,0	40.1	
10	1.100.000	0	40,2	40,1	
16	648.000	647 000	43,2	12.2	
10	646.000	647.000	43,3	43,3	
22	351.000	240 500	46,5	16.6	
22	348.000	549.500	46,7	40,0	
28	173.000	172 000	49,9	50.0	
20	173.000	175.000	50,0	50,0	
24	83.400	82 200	52,9	E2 0	
54	83.000	85.200	53,0	55,0	
40	39.900	20 900	55,2	FF 2	
40	39.700	59.800	55,3	55,5	

B029B_F084					
Prüf	datum: 20.08	.2012			
Temp.	G	*	٤	5	
[°C]	[Pa	a]	['	']	
4	2.160.000	2.155.00	34,0	2/1 1	
4	2.150.000	0	34,2	54,1	
10	1.510.000	00 1.510.00 00 0	36,4	26 E	
10	1.510.000		36,5	50,5	
16	918.000	00	40,0	40.1	
10	911.000	914.500	40,2	40,1	
22	488.000	496 500	44,7	11 0	
22	485.000	460.500	44,8	44,0	
20	233.000	222 500	49,7	10.0	
20	232.000	232.500	49,8	49,0	
24	106.000	106 000	54,2	F4 2	
54	106.000	108.000	54,3	54,5	
10	46.900	46.000	58,1	F0 1	
40	46.900	40.900	58,1	58,1	

B029C_F084_DS_R1					
Prüf	datum: 16.08	.2012			
Temp.	G	*	8	5	
[°C]	[Pa	a]	['	°]	
1	1.770.000	1.770.00	38,7	20.0	
t	1.770.000	0	38,8	50,0	
10	1.220.000	1.215.00	40,8	41.0	
10	1.210.000	0	41,1	41,0	
16	701.000	coo ooo	44,9	45.0	
16	697.000	099.000	45,0	45,0	
22	367.000	266 500	49,2	10.2	
22	366.000	300.300	49,2	43,2	
20	175.000	174 500	53,5	52.6	
20	174.000	174.500	53,6	55,0	
24	81.300	91 100	57,1	57.2	
54	80.900	81.100	57,2	57,2	
40	37.200	27 100	60,0	60.0	
40	37.000	37.100	60,0	80,0	

B02	B029C_F084_BS_R1						
Prüf	datum: 17.08	.2012					
Temp.	G	*	δ	5			
[°C]	[Pa	a]	[°]			
4	834.000	924 500	45,8	1E 0			
4	835.000	834.500	45,8	45,0			
10	578.000	577.000	47,5	17 6			
10	576.000		47,6	47,0			
16	332.000	221 500	50,7	50.7			
10	331.000	331.500	50,7	50,7			
22	171.000	170 500	54,1	EA 1			
22	170.000	170.500	54,1	54,1			
20	79.800	70 500	57,3	E7 4			
28	79.200	79.500	57,4	57,4			
24	36.000	35.000	59 <i>,</i> 8	50.0			
54	35.800	35.900	59 <i>,</i> 9	59,9			
40	16.400	16 250	61,2	61.2			
40	16.300	10.350	61,3	01,3			

B029	C_F084_TS	_R1		
Prüfd	atum: 13.09	.2012		
Temp.	G	*	ξ	5
[°C]	[P	a]	['	']
1	550.000	E 40 E 00	47,2	47.2
4	549.000	549.500	47,3	47,5
10	370.000	368.500	49,2	40.2
10	367.000		49,3	49,5
16	210.000	200 500	52,2	52.2
10	209.000	209.500	52,3	52,5
22	106.000	105 500	55,3	EE 4
22	105.000	105.500	55,4	55,4
20	49.300	40.200	58,0	E0 0
28	49.100	49.200	58,0	58,0
24	22.600	22 550	59,8	50.0
34	22.500	22.550	59,9	59,9
10	10.500	10 500	60,8	60.8
40	10.500	10.500	60,8	00,8

B029C_F084_DS_R2					
Prüf	datum: 28.09	9.2012			
Temp.	G	*	٤	5	
[°C]	[P	a]	['	']	
4	1.990.000	1 990 000	36,4	26 5	
4	1.990.000	1.990.000	36,5	50,5	
10	1.410.000	1 410 000	38,6	20 7	
10	1.410.000	1.410.000	38,7	50,7	
16	867.000	005 000	42,0	42.1	
10	863.000	865.000	42,1	42,1	
22	475.000	474 000	46,2	46.2	
22	473.000	474.000	46,3	40,5	
20	238.000	227 500	50,6	F0 6	
20	237.000	257.500	50,6	50,6	
24	115.000	114 500	54,5	FA C	
54	114.000	114.500	54,6	54,0	
40	54.700	F4 F00	57,8	F7 0	
40	54.300	54.500	57,9	57,9	

B029C_F084_BS_R2									
Prüfdatum: 03.10.2012									
Temp.	G	*	ξ	5					
[°C]	[P	a]	['	<u>']</u>					
1	922.000	920 000	43,2	12.2					
4	918.000	920.000	43,4	43,5					
10	650.000	640.000	45,0	4E 1					
10	648.000	649.000	45,1	45,1					
16	389.000	200.000	48,0	10 1					
10	387.000	568.000	48,1	40,1					
22	205.000	204 500	51,6	E1 7					
22	204.000	204.500	51,7	51,7					
20	96.900	06 600	55,1	FF 3					
20	96.300	90.000	55,3	55,2					
24	44.500	44 400	58,1	F0 7					
54	44.300	44.400	58,2	50,2					
10	19.900	10 000	60,2	60.2					
40	19.900	19.900	60,2	00,2					

B029C_F084_TS_R2									
Prüfdatum: 10.10.2012									
Temp.	G	*	8	j					
[°C]	[P	a]	[°]					
4	773.000	771 000	44,7	11.0					
4	769.000	//1.000	44,9	44,0					
10	512.000	E11 000	46,9	47.0					
10	510.000	511.000	47,0	47,0					
16	294.000	202.000	50,0	FO 1					
10	292.000	293.000	50,1	50,1					
22	152.000	151 500	53 <i>,</i> 4	F2 4					
22	151.000	151.500	53,4	55,4					
20	72.000	71 950	56,5	FC C					
28	71.700	/1.850	56,6	50,0					
24	33.200	22.050	59,1	F0 1					
34	32.900	33.050	59,1	59,1					
10	15.000	44.050	60,8						
40	14.900	14.950	60,8	60,8					

Dynamic Shear Rheometer DSR

Anmerkungen:

Prüfgerät: HAAKE MARS II Modular Rheometer **Prüfgeometrie:** PP25, 1 mm Spalt

Prüfprogramm: +46 bis +82 °C bei 1,592 Hz

Prüfer: Markus Hospodka, ^{*)} Thomas Riedmayer

B029/	4			
Prüfda	atum: 19.06.2	012		
Temp.	G*	۶ (δ	
[°C]	[Pa	ı]	[°]
46	19.300	19 250	63,0	63.0
40	19.200	19.230	63,0	03,0
52	10.400	10 250	62,5	62.6
52	10.300	10.550	62,6	02,0
58	5.870	5 855	62,3	67.2
50	5.840	2.022	62,3	02,5
64	3.470	2 /55	62,1	62.1
04	3.440	5.455	62,1	02,1
70	2.060	2 060	61,9	61.9
70	2.060	2.000	61,9	01,5
76	1.290	1 295	61,1	61.2
70	1.280	1.205	61,2	01,2
02	847	010	58,8	E0 0
02	848	040	58,8	50,0

B029	B029A_2005 ^{*)}									
Prüfc	Prüfdatum: 24.03.2005									
Temp.	G	*	δ	5						
[°C]	[P	a]	[°]]						
16	18.010	19 015	61,6	61 6						
40	18.020	10.015	61,5	01,0						
E 2	9.722	0 729	61,1	61.1						
52	9.734	3.720	61,1	01,1						
EO	4.795	4 705	61,1	61 1						
20	4.795	4./33	61,1	01,1						
64	2.823	2 010	61,3	61.2						
04	2.812	2.010	61,3	01,5						
70	1.681	1 671	61,2	61.2						
70	1.661	1.0/1	61,3	01,5						
76	1.080	1.064	60,3	60.2						
/0	1.048	1.004	60,3	00,5						
02	722	700	57,1	57.0						
82	677	700	57,0	57,0						

B029B_LRTF								
Prüfdatum: 20.06.2012								
Temp.	G*	*	δ					
[°C]	[Pa	a]	[°]				
16	38.500	28 / 50	60,3	60.4				
40	38.400	56.450	60,5	00,4				
E 2	20.400	20.250	60,6	60.6				
52	20.300	20.550	60,6	60,6				
го	11.100	11 100	60,8	60.9				
58	11.100	11.100	60,8	60,8				
C A	6.370	6 255	61,1	61.1				
64	6.340	0.355	61,1	61,1				
70	3.670	2.005	61,4	C1 A				
70	3.660	3.005	61,4	61,4				
76	2.230	2 220	61,7	61 7				
76	2.210	2.220	61,7	01,7				
02	1.380	4 200	61,9	61.0				
82	1.380	1.380	61,9	61,9				

B029B_LRTF_2005 ^{*)}									
Prüfdatum: 24.03.2005									
Temp.	G	*	8	5					
[°C]	[P	a]	[°]					
16	37.570	27 505	59,0	59.0					
40	37.620	37.395	59,0	39,0					
52	19.290	10 100	59,1	EQ 1					
52	19.090	19.190	59,1	59,1					
FO	10.340	10 225	59,3	F0 2					
50	10.330	10.555	59,3	59,5					
64	5.990	E 096	59,8	F0 9					
04	5.981	5.980	59,8	59,0					
70	3.276	2 276	60,5	60 F					
70	3.275	5.270	60,5	60,5					
76	2.082	2 092	61,1	61 1					
70	2.083	2.085	61,1	01,1					
00	1.211	1 217	61,2	(1.2					
82	1.223	1.217	61,2	01,2					

B029	C_LPAV				B029	C_LPAV_20	05_WH201	2	
Prüfd	atum: 13.08	.2012			Prüfd	atum: 13.08	.2012		
Temp.	G	G* δ		Temp.	Temp. G*			δ	
[°C]	[P	a]	[°]	[°C]	[P	a]	[°]	
16	117.000	117.000	54,5	E A E	16	127.000	127.000	54,8	E4 9
40	117.000	117.000	54,5	54,5	40	127.000	127.000	54,8	54,0
50	60.300	60.250	55,9	56.0	52	64.200	64 250	56,3	56.2
52	60.200	00.250	56,0	50,0	52	64.300	04.250	56,3	50,5
58	31.900	31 850	57,0	57.0	58	34.100	34 100	57,2	573
50	31.800	51.850	57,0	57,0	50	34.100	54.100	57,3	57,5
64	17.600	17.550	58,1	58 1	64	18.500	18,450	58,2	58 3
04	17.500	17.550	58,1	50,1	01	18.400	10.450	58,3	50,5
70	9.690	9.665	59,0	59.1	70	10.200	10.200	59,4	59.4
	9.640		59,1			10.200		59,4	,.
76	5.470	5.465	60,4	60.5	76	5.770	5.775	60,8	60.8
	5.460		60,6	/ -	_	5.780		60,8	, -
82	3.190	3.190	62,1	62.2	82	3.470	3.450	62,4	62.5
	3.190		62,2	02,2		3.430		62,5	/-
			,					,	
B029	C_L3RT		,		B029	B_F084		, i	
B029 Prüfda	C_L3RT atum: 20.08	.2012	<i>,</i>		B029 Prüfd	B_F084 atum: 22.06	.2012	· 1	
B029 Prüfda Temp.	C_L3RT atum: 20.08 G	.2012	δ		B029 Prüfd Temp.	B_F084 atum: 22.06	.2012 *	δ	
B029 Prüfd Temp. [°C]	C_L3RT atum: 20.08 G [P	.2012 * a]	م ۵ [°	; ;]	B029 Prüfd Temp. [°C]	B_F084 atum: 22.06 G [P	.2012 * a]	δ [°]	
B029 Prüfd Temp. [°C]	C_L3RT atum: 20.08 G [P 92.600	.2012 * a]	δ [° 56,4]	B029 Prüfd Temp. [°C]	B_F084 atum: 22.06 [G [P 99.400	.2012 * a]	δ [°] 61,5	61 5
B029 Prüfd Temp. [°C] 46	C_L3RT atum: 20.08 G [P 92.600 92.500	.2012 * a] 92.550	δ [° 56,4 56,5	;] 56,5	B029 Prüfd Temp. [°C] 46	B_F084 atum: 22.06 [G 99.400 99.700	.2012 * a] 99.550	δ [°] 61,5 61,5	61,5
B029 Prüfda Temp. [°C] 46	C_L3RT atum: 20.08 [G [P 92.600 92.500 47.800	.2012 * a] 92.550	δ [° 56,4 56,5 57,4	56,5	B029 Prüfd Temp. [°C] 46	B_F084 atum: 22.06 [G 99.400 99.700 46.200	.2012 * a] 99.550	δ [°] 61,5 61,5 63,5	61,5
B029 Prüfd Temp. [°C] 46 52	C_L3RT atum: 20.08 G [P 92.600 92.500 47.800 47.900	.2012 * a] 92.550 47.850	δ [° 56,4 56,5 57,4 57,5	5] 56,5 57,5	B029 Prüfd Temp. [°C] 46	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200	.2012 * a] 99.550 46.200	δ [°] 61,5 61,5 63,5 63,5 63,6	61,5
B029 Prüfd Temp. [°C] 46 52	C_L3RT atum: 20.08 G [P 92.600 92.500 47.800 47.900 25.400	.2012 * a] 92.550 47.850	δ [° 56,4 56,5 57,4 57,5 58,3	5 56,5 57,5	B029 Prüfd Temp. [°C] 46 52	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000	.2012 * a] 99.550 46.200	δ [°] 61,5 61,5 63,5 63,6 63,6 64,9	61,5 63,6
B029 Prüfd Temp. [°C] 46 52 58	C_L3RT atum: 20.08 [G 92.600 92.500 47.800 47.900 25.400 25.400	.2012 * a] 92.550 47.850 25.400	δ [° 56,4 56,5 57,4 57,5 58,3 58,3	5 56,5 57,5 58,3	B029 Prüfd Temp. [°C] 46 52 58	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100	.2012 * a] 99.550 46.200 22.050	δ [°] 61,5 61,5 63,5 63,6 63,6 64,9 64,9	61,5 63,6 64,9
B029 Prüfd Temp. [°C] 46 52 58 64	C_L3RT atum: 20.08 G 92.600 92.500 47.800 47.800 47.900 25.400 25.400 13.900	.2012 * a] 92.550 47.850 25.400	ه [° 56,4 56,5 57,4 57,5 58,3 58,3 58,3 59,2	56,5 57,5 58,3	B029 Prüfd Temp. [°C] 46 52 58	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200	.2012 * a] 99.550 46.200 22.050	δ [°] 61,5 61,5 63,5 63,6 64,9 64,9 66,1	61,5 63,6 64,9
B029 Prüfd Temp. [°C] 46 52 58 64	C_L3RT atum: 20.08 G [P 92.600 92.500 47.800 47.900 25.400 25.400 13.900 13.800	.2012 * a] 92.550 47.850 25.400 13.850	δ 56,4 56,5 57,4 57,5 58,3 58,3 58,3 59,2 59,2	56,5 57,5 58,3 59,2	B029 Prüfd Temp. [°C] 46 52 58 64	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200 11.200	.2012 * a] 99.550 46.200 22.050 11.200	δ [°] 61,5 61,5 63,5 63,6 64,9 64,9 64,9 66,1 66,1	61,5 63,6 64,9 66,1
B029 Prüfd Temp. [°C] 46 52 58 64 70	C_L3RT atum: 20.08 G [P 92.600 92.500 47.800 47.800 47.900 25.400 25.400 13.900 13.800 7.780	.2012 * a] 92.550 47.850 25.400 13.850 7.775	δ [° 56,4 56,5 57,4 57,5 58,3 58,3 58,3 58,3 59,2 59,2 60,3	56,5 57,5 58,3 59,2 60,4	B029 Prüfd Temp. [°C] 46 52 58 64 70	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200 11.200 5.710	.2012 * a] 99.550 46.200 22.050 11.200 5.710	δ [°] 61,5 61,5 63,5 63,6 64,9 64,9 64,9 66,1 66,1 67,8	61,5 63,6 64,9 66,1
B029 Prüfd Temp. [°C] 46 52 58 64 70	C_L3RT atum: 20.08 G 92.600 92.500 47.800 47.800 25.400 25.400 13.900 13.800 7.780 7.770	.2012 * a] 92.550 47.850 25.400 13.850 7.775	5 6,5 56,5 57,4 57,5 58,3 58,3 58,3 59,2 59,2 60,3 60,4	56,5 57,5 58,3 59,2 60,4	B029 Prüfd Temp. [°C] 46 52 58 64 70	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200 11.200 5.710 5.710	.2012 * a] 99.550 46.200 22.050 11.200 5.710	δ [°] 61,5 61,5 63,5 63,6 64,9 64,9 64,9 66,1 66,1 66,1 67,8 67,8	61,5 63,6 64,9 66,1 67,8
B029 Prüfd Temp. [°C] 46 52 58 64 70 70	C_L3RT atum: 20.08 G [P 92.600 92.500 47.800 47.900 25.400 25.400 13.900 13.800 7.780 7.770 4.520	.2012 * a] 92.550 47.850 25.400 13.850 7.775 4.515	δ 56,4 56,5 57,4 57,5 58,3 58,3 58,3 59,2 59,2 60,3 60,4 61,8	56,5 57,5 58,3 59,2 60,4 61,8	B029 Prüfd Temp. [°C] 46 52 58 64 70 70	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200 11.200 5.710 5.710 3.080	2012 * a] 99.550 46.200 22.050 11.200 5.710 3.085	δ [°] 61,5 61,5 63,5 63,6 64,9 64,9 64,9 66,1 66,1 66,1 67,8 67,8 67,8	61,5 63,6 64,9 66,1 67,8 69,9
B029 Prüfd Temp. [°C] 46 52 58 64 70 70	C_L3RT atum: 20.08 G [P 92.600 92.500 47.800 47.800 25.400 25.400 25.400 13.900 13.800 7.780 7.770 4.520 4.510	.2012 * a] 92.550 47.850 25.400 13.850 7.775 4.515	δ [° 56,4 56,5 57,4 57,5 58,3 58,3 58,3 59,2 59,2 60,3 60,4 61,8 61,8	56,5 57,5 58,3 59,2 60,4 61,8	B029 Prüfd Temp. [°C] 46 52 58 64 70 76	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200 11.200 11.200 5.710 5.710 3.080 3.090	2012 * a] 99.550 46.200 22.050 11.200 5.710 3.085	δ [°] 61,5 61,5 63,5 63,6 64,9 64,9 64,9 66,1 66,1 67,8 67,8 69,8 69,8 69,9	61,5 63,6 64,9 66,1 67,8 69,9
B029 Prüfd Temp. [°C] 46 52 58 64 70 76 82	C_L3RT atum: 20.08 G 92.600 92.500 47.800 47.800 25.400 25.400 13.900 13.800 7.780 7.770 4.520 4.510 2.680	.2012 * a] 92.550 47.850 25.400 13.850 7.775 4.515 2.670	ه 56,5 56,5 57,4 57,5 58,3 58,3 59,2 59,2 60,3 60,4 61,8 61,8 61,8	56,5 57,5 58,3 59,2 60,4 61,8	B029 Prüfd Temp. [°C] 46 52 58 64 70 70 76	B_F084 atum: 22.06 [G 99.400 99.700 46.200 46.200 22.000 22.100 11.200 11.200 5.710 5.710 5.710 3.080 3.090 1.730	.2012 * a] 99.550 46.200 22.050 11.200 5.710 3.085 1 730	δ [°] 61,5 63,5 63,6 64,9 64,9 66,1 66,1 66,1 67,8 67,8 67,8 69,8 69,9 72,1	61,5 63,6 64,9 66,1 67,8 69,9

B029C_F084_DS_R1 Prüfdatum: 16.08.2012								
Temp.	G	*	δ	;				
[°C]	[P	a]	[°]				
46	86.900	86 950	61,8	61.8				
40	87.000	80.550	61,8	01,0				
50	41.500	41 600	63,2	62.2				
52	41.700	41.600 63,3		05,5				
EQ	20.700	20 650	64,4	64.4				
20	20.600	20.050	64,4	04,4				
64	10.700	10 700	65,5	6E E				
04	10.700	10.700	65,5	05,5				
70	5.700	5 720	66,9	66.0				
70	5.740	5.720	66,8	00,9				
76	3.160	2 155	68,5	69 E				
70	3.150	5.155	68 <i>,</i> 5	06,5				
0 2	1.820	1 820	70,3	70.2				
02	1.820	1.020	70,3	70,5				

B029C_F084_BS_R1									
Prüfdatum: 17.08.2012									
Temp.	G	*	δ	5					
[°C]	[P	a]	[°	']					
46	38.100	38 050	61,6	61 7					
40	38.000	58.050	61,7	01,7					
52	20.200	20 200	62,6	67.6					
52	20.200	20.200	62,6	02,0					
58	10.800	10 900	64,3	64 3					
50	10.800	10.800	64,3	04,3					
64	5.890	5 800	66,5	66 5					
04	5.890	5.890	66,5	00,5					
70	3.220	2 220	68,8	68.8					
70	3.240	5.250	68,8	00,0					
76	1.860	1 960	70,8	70.9					
70	1.860	1.000	70,8	70,8					
01	1.100	1 005	72,3	77.2					
02	1.090	1.092	72,3	72,5					

B029C_F084_TS_R1									
Prüfdatum: 14.09.2012									
Temp.	G	*	δ	5					
[°C]	[P	a]	[°]					
16	28.000	29 100	60,3	60.4					
40	28.200	28.100	60,4	00,4					
53	14.900	14 000	61,2	61.2					
52	14.900	14.900	61,2	01,2					
EQ	8.000	7 090	62,7	62.9					
20	7.960	7.980	62 <i>,</i> 8	02,0					
64	4.390	4 200	64,3	64.2					
04	4.390	4.590	64,3	04,5					
70	2.520	2 515	65,1	6E 1					
70	2.510	2.515	65,1	05,1					
76	1.510	1 510	65,0	65.0					
70	1.510	1.510	65,0	05,0					
02	956	055	63,6	62.6					
82	954	300	63,6	03,0					

B029C_F084_DS_R2									
Prüfdatum: 28.09.2012									
Temp.	G	*	δ	5					
[°C]	[P	a]	[°]					
16	137.000	127 000	60,3	60.2					
40	137.000	137.000	60,3	00,5					
50	63.700	62 000	62,8						
52	64.100	63.900	62,8	62,8					
EO	31.000	20.000	64,6	64.6					
20	30.800	50.900	64,6	04,0					
64	15.400	15 250	66,3	66.2					
04	15.300	15.350	66,3	00,3					
70	7.860	7 0 2 5	68,0	68.0					
70	7.790	7.825	68,0	68,0					
70	4.170	4 1 7 0	69,9	60.0					
76	4.170	4.170	69,9	69,9					
	2.310	2.245	72,0	72.0					
82	2.320	2.315	72,0	72,0					

B0290 Prüfda	C_F084_BS_ tum: 03.10.	_R2 2012			B0290 Prüfda	F084TS_ tum: 04.10.	_R2 2012		
Temp.	G	*	δ	5	Temp.	G	*	8	5
[°C]	[P	a]	°]]	[°C]	[P	a]	[°]
46	46.900	46 900	61,1	61 1	16	37.900	37 800	61,3	61.4
40	46.900	40.500	61,1	01,1	40	37.700	57.800	61,5	01,4
52	24.200	24 200	61,7	61 7	50	19.700	10 700	62,5	62 5
52	24.200	24.200	61,7 61 ,	61,7	52	19.700	19.700	62,5	02,5
го	12.800	13 800	62,9	62.0	F 0	10.500	10 550	64,4	64.4
58	12.800	12.800	62,9	62,9	56	10.600	10.550	64,4	64,4
C1	7.100	7 075	64,7	64.9	64	5.780	E 766	66,9	66.0
04	7.050	7.075	64,8	64,8	04	5.730	5./55	66,9	66,9
70	3.930	2 020	67,2	67.2	70	3.160	2 155	69,5	60 F
70	3.930	5.950	67,2	07,2	70	3.150	5.155	69,5	69,5
76	2.280	2 265	69,7	60.7	76	1.780	1 705	71,7	71 7
70	2.250	2.205	69,7	69,7	70	1.790	1./85	71,7	/1,/
0.2	1.330	1 220	72,1	70.4	01	1.070	1.005	73,1	72.4
82	1.330	1.330	72,1	72,1	82	1.060	1.065	73,0	/3,1

Dynamic Shear Rheometer DSR

Anmerkungen: Prüfgerät: HAAKE MARS II Modular Rheometer Prüfgeometrie: PP25, 1 mm Spalt Prüfprogramm: -10 bis +80 °C bei 0.1, 1 und 10 Hz Prüfer: Markus Hospodka

B029A

Prüfdatun	Prüfdatum: 15.06.2012												
Freq. [Hz] 0,1				1			10						
Temp. [°C]	G* [Pa]	δ [°]		G* [Pa]	δ [°]		G* [Pa]	δ [°]					
-10	7.427.500	2,8		7.922.000	1,2		9.630.000	0,7					
0	5.296.000	11,8		6.886.000	4,3		8.958.000	1,8					
10	1.596.000	40,4		4.176.000	18,8		7.276.000	6,8					
20	219.800	58 <i>,</i> 9		1.007.000	48,2		3.662.000	26,1					
30	34.360	60,8		169.000	60,8		849.200	52 <i>,</i> 5					
40	7.494	59 <i>,</i> 8		35.900	62,1		187.100	62,8					
50	2.182	59,0		10.310	61,6		52.360	64,2					
60	787	56,8		3.691	61,8		18.550	64,1					
70	342	52,8		1.524	61,6		7.723	64,4					
80	188	48,4		727	58,7		3.593	64,8					

B029B_LI Prüfdatun	B029B_LRTF Prüfdatum: 05.07.2012												
Freq. [Hz]	0,1		1		10								
Temp.	G*	δ	G*	δ	G*	δ							
[°C]	[Pa]	[°]	[Pa]	[°]	[Pa]	[°]							
-10	7.852.500	2,3	8.390.000	1,0	10.220.000	0,6							
0	5.946.000	8,6	7.386.000	3,4	9.424.000	1,5							
10	2.296.000	30,5	4.820.000	13,9	7.881.000	5,5							
20	396.200	51,8	1.477.000	38,7	4.296.000	20,2							
30	67.080	57,4	297.400	54,6	1.262.000	43,7							
40	14.320	58,1	64.820	59,0	308.000	57,0							
50	4.148	58 <i>,</i> 6	18.980	59,8	91.350	61,0							
60	1.414	59,0	6.537	60,4	31.430	62,1							
70	549	59 <i>,</i> 3	2.579	61,2	12.530	62,7							
80	249	58,7	1.140	61,6	5.608	63,6							

B029C_L Prüfdatur	B029C_LPAV Prüfdatum: 04.09.2012												
Freq. [Hz]	0,1			1			10						
Temp. [°C]	G* [Pa]	δ [°]		G* [Pa]	δ [°]		G* [Pa]	δ [°]					
-10	8.062.500	1,6		8.460.000	0,8		9.380.000	0,5					
0	6.778.000	4,7		7.735.000	2,1		8.498.000	1,1					
10	4.014.000	16,1		6.041.000	7,1		7.398.000	3,2					
20	1.200.000	37,4		3.059.000	22,2		5.817.000	10,4					
30	246.400	50,3		878.300	41,7		2.762.000	27,0					
40	53.320	54,5		214.300	51,8		829.500	44,5					
50	13.940	56,2		58.790	55,5		250.200	53,5					
60	4.372	58,6		19.140	57,3		84.540	57,3					
70	1.494	61,8		6.959	59,3		31.740	59,4					
80	541	66,5		2.731	61,9		13.000	61,2					

B029C_L Prüfdatur	B029C_LPAV_2005_WH2012 Prüfdatum: 05.09.2012													
Freq. [Hz]	0,1			1			10							
Temp.	G*	δ		G*	δ		G*	δ						
[°C]	[Pa]	[°]		[Pa]	[°]		[Pa]	[°]						
-10	8.090.000	1,5		8.480.000	0,7		9.355.556	0,5						
0	6.822.000	4,5		7.780.000	2,0		8.521.000	1,0						
10	4.094.000	15,9		6.116.000	6,9		7.626.000	3,1						
20	1.202.000	37,8		3.091.000	22,3		5.918.000	10,3						
30	241.400	50,8		873.100	42,2		2.778.000	27,2						
40	51.200	54,8		207.200	52,3		811.500	45,2						
50	13.400	56,6		56.460	55,7		241.000	54,0						
60	4.152	59,2		18.350	57,5		81.340	57,5						
70	1.436	62,6		6.747	59,6		30.860	59,4						
80	528	66,8		2.671	62,6		12.880	61,2						

B029C_L3 Prüfdatun	B029C_L3RT Prüfdatum: 18.09.2012												
Freq. [Hz]	0,1			1			10						
Temp. [°C]	G* [Pa]	δ [°]		G* [Pa]	δ [°]		G* [Pa]	δ [°]					
-10	7.605.000	1,8		7.958.000	0,9		8.602.000	0,5					
0	6.376.000	5,4		7.592.000	2,3		9.051.000	1,2					
10	3.452.000	20,0		5.691.000	8,7		7.505.000	3,7					
20	856.600	42,5		2.519.000	27,1		5.219.000	12,9					
30	162.000	53,0		626.500	46,3		2.200.000	32,2					
40	34.660	55 <i>,</i> 8		145.300	54,3		604.600	49,0					
50	9.354	57,3		40.370	56,7		178.300	56,2					
60	2.974	59,7		13.340	58,2		60.160	58,7					
70	1.058	63,1		5.031	60,2		23.340	60,2					
80	398	68,0		2.053	63,1		9.988	61,9					

B029B_F Prüfdatur	B029B_F084 Prüfdatum: 27.06.2012												
Freq. [Hz]	0,1		1		10								
Temp. [°C]	G* [Pa]	δ [°]	G* [Pa]	δ [°]	G* [Pa]	δ [°]							
-10	8.067.500	1,3	8.387.000	0,7	10.090.000	0,5							
0	6.988.000	4,0	7.797.000	1,8	9.876.000	1,0							
10	4.312.000	15,1	6.324.000	6,3	8.769.000	2,7							
20	1.222.000	40,3	3.240.000	22,2	6.267.000	9,6							
30	197.400	57,0	820.400	46,2	2.808.000	28,4							
40	34.640	62,6	169.700	58,7	764.600	49,2							
50	7.494	65,4	39.020	63,4	198.300	60,0							
60	2.024	69,3	11.030	65,5	59.270	64,2							
70	612	73,7	3.632	68,5	20.100	66,4							
80	217	75,3	1.328	72,3	7.838	68,5							

B029C_F Prüfdatun	B029C_F084_DS_R1 Prüfdatum: 24.08.2012												
Freq. [Hz]	0,1		1		10								
Temp. [°C]	G* [Pa]	δ [°]	G* [Pa]	δ [°]	G* [Pa]	δ [°]							
-10	7.857.500	1,5	8.170.000	0,7	9.608.571	0,5							
0	6.782.000	4,4	7.591.000	1,8	8.795.714	1,0							
10	4.020.000	17,7	6.058.000	6,9	7.830.000	2,8							
20	989.800	45,1	3.002.000	25,4	6.051.000	10,5							
30	162.600	58,9	731.100	49,6	2.737.000	30,5							
40	29.760	62,7	148.100	60,3	710.700	51,9							
50	6.942	64,8	35.670	63,4	185.800	61,5							
60	1.942	68,0	10.520	65,2	55.760	64,7							
70	618	71,5	3.584	67,5	19.630	66,1							
80	224	73,7	1.362	70,6	7.794	67,8							

B029C_F Prüfdatur	B029C_F084_BS_R1 Prüfdatum: 03.09.2012													
Freq. [Hz]	0,1		1		10									
Temp. [°C]	G* [Pa]	δ [°]	G* [Pa]	δ [°]	G* [Pa]	δ [°]								
-10	7.827.500	1,9	8.248.000	0,9	10.062.500	0,5								
0	6.386.000	6,2	7.436.000	2,6	9.461.000	1,3								
10	3.104.000	23,7	5.478.000	10,0	8.011.000	4,1								
20	649.000	48,3	2.161.000	31,9	5.211.000	14,7								
30	108.000	57,9	471.500	51,9	1.872.000	37,2								
40	20.860	60,7	97.210	59,3	457.400	54,5								
50	5.064	65,1	24.880	61,5	122.000	60,9								
60	1.406	70,8	7.793	64,5	39.090	62,8								
70	445	74,9	2.742	69,0	14.750	64,5								
80	169	75,8	1.051	73,2	6.208	67,5								

B029C_F0 Prüfdatum	B029C_F084_TS_R1 Prüfdatum: 19.09.2012												
Freq. [Hz]	0,1			1			10						
Temp. [°C]	G* [Pa]	δ [°]		G* [Pa]	δ [°]		G* [Pa]	δ [°]					
-10	7.214.000	3,3	7	7.788.000	1,4		9.345.556	0,8					
0	4.992.000	12,1	6	5.613.000	4,7		8.314.000	2,0					
10	1.564.000	37,8	(1)	3.909.000	18,7		6.868.000	7,4					
20	250.800	55,4	1	L.039.000	44,5		3.450.000	25,1					
30	42.160	59 <i>,</i> 3		194.800	57 <i>,</i> 6		881.800	48,9					
40	9.184	61,2		43.050	60,5		210.600	59,5					
50	2.408	66,4		12.140	61,9		59.380	62,4					
60	713	70,9		4.166	65,7		21.110	63,3					
70	247	71,0		1.554	70,0		8.664	65,5					
80	109	68,4		655	70,8		3.955	68,6					

B029C_F Prüfdatun	B029C_F084_DS_R2 Prüfdatum: 10.10.2012													
Freq. [Hz]	0,1			1			10							
Temp. [°C]	G* [Pa]	δ [°]		G* [Pa]	δ [°]		G* [Pa]	δ [°]						
-10	7.885.000	1,2		8.153.000	0,6		9.007.778	0,4						
0	6.938.000	3,5		7.637.000	1,5		8.490.000	0,8						
10	4.650.000	13,4		6.363.333	5,4		7.243.000	2,3						
20	1.480.000	38,3		3.727.000	19,4		5.895.000	7,9						
30	267.800	55,9		1.105.000	43,5		3.416.000	24,1						
40	51.340	62,0		246.600	57,2		1.080.000	45,7						
50	11.400	65,3		59.090	62,6		296.100	58,2						
60	2.976	69,1		16.440	65,6		87.880	63,6						
70	873	73,7		5.286	68,5		29.450	66,4						
80	275	78,9		1.889	72,0	L	11.200	68,7						

B029C_F0 Prüfdatum	B029C_F084_BS_R2 Prüfdatum: 03.10.2012												
Freq. [Hz]	0,1		1		10								
Temp. [°C]	G* [Pa]	δ [°]	G* [Pa]	δ [°]	G* [Pa]	δ [°]							
-10	7.626.000	2,1	8.030.000	1,0	9.302.000	0,6							
0	6.102.000	6,8	7.198.000	2,8	8.040.000	1,3							
10	2.880.000	25,4	5.212.000	10,8	7.261.000	4,4							
20	563.400	49,8	1.968.000	33,7	4.813.000	15,8							
30	90.400	58,5	408.000	53,4	1.659.000	39,3							
40	18.160	60,8	85.460	59,7	408.700	55,7							
50	4.532	65,0	22.220	61,4	109.000	61,4							
60	1.304	70,9	7.228	64,2	35.960	62,7							
70	415	76,2	2.645	68,4	14.040	64,1							
80	149	79,7	1.060	72,3	6.174	66,8							

B029C_F Prüfdatun	B029C_F084_TS_R2 Prüfdatum: 01.10.2012													
Freq. [Hz]	0,1			1			10							
Temp. [°C]	G* [Pa]	δ [°]		G* [Pa]	δ [°]		G* [Pa]	δ [°]						
-10	7.565.000	2,1		7.997.000	1,0		8.577.000	0,6						
0	6.082.000	6,8		7.260.000	2,9		9.127.000	1,3						
10	2.786.000	26,3		5.204.000	11,3		7.609.000	4,6						
20	525.000	50,2		1.861.000	34,9		4.851.000	16,7						
30	85.060	58,2		379.700	53 <i>,</i> 6		1.571.000	40,4						
40	17.400	60,8		81.260	59,4		384.800	55,8						
50	4.374	65,3		21.700	61,4		105.700	61,1						
60	1.260	69,6		7.062	64,7		35.290	62,6						
70	406	70,9		2.494	68,6		13.510	64,7						
80	160	70,1		980	70,8		5.739	67,5						