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Chapter 1 

Introduction 

Even tough Marchfeld is one of t he driest regions in Austria it is of high importance for the 
country's agricultura l sector [1]. The low amount of precipitation in this part of Austria is 
overcome by irrigation systems. This artificial water supply does not only facilitate agricultural 
production itself but furthermore allows for high yield stability and crop quality, add ing to 
the agricultural importance of the area. Especially in water-scarce regions the management 
of water resources is a delicate topic in need of precise monitoring and management. For the 
Marchfeld region , with agricult ure being the main user of water, this means to estimate the 
need of wat.er supply for crops to sustain optimal yield conditions. Efficient water management 
can not only help to reduce resource consumption but also to impede elution of nitrate which 
further improves water quality of the general area. 

The maintenance of favourable yield condit ions is the fundamental concept of agricultural 
production. Throughout history different kinds of techniques have been developed regarding 
to their cultural and environmental cond itions. Domestication of plant and animal species as 
well as altering of soil , tillage, were among the first developments. Maintenance of soil fertility, 
control of pests and environmental conditions require advanced technologies, all of which aim 
to maintain or increase the output of agricu ltural production. 

Early human civilizations had few possibilities to influence environmental conditions. One of 
them was and still is to overcome lacking amounts of precipitation by applying water to land in 
an artificial way. The earliest records of irrigation systems align with the spread of agricultural 
technology itself. The Sumerian culture developed methods to cultivate barley in an area with 
insufficient rainfall as early as the 6th millennium B .C .. Methods of flooding irrigation were 
used in Ancient Egypt, civilizations in India, Syria, China and America developed conceptual 
similar terrace irrigation. Records of canal irrigation technologies date back to 5th millennium 
B.C. [2]. 

Agriculture advanced with human civilizations, or vice versa. As with other technologies 
great advancements were achieved during the last cent ury. Mechanization star ted to replace 
human labour , constraints of soil fertility were overcome by chemical fertilization and breed
ing of plant species developed further. All of t hese technologies are important contribution to 
today's agricultura l systems. These technologies enabled high productivity of agriculture in var
ious types of environments, ensuring food variety and security. The downside is that, without 
proper management , these techniques also start to effect the surrounding environment in a much 
larger scale [3]. Predicted future development of human population and current environmental 
degradation call for an intensification of agricultural production within given limitation of its 
surroundings. This means a form of "sustainable intensification" has to be achieved. As ex
pressed by Mueller et al. [4] the necessity is to " increase yields on under performing landscapes 
while simultaneously decrease(ingj the environmental impacts of agricultural systems [5] . 
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Advanced (sprinkler) irrigation systems have been introduced towards the end of the nine
teenth century. This lead to both, an increase of agricultural production capacity and to chal
lenges in rural water management. Irrigated agricultural surfaces produce 30 to 50% of the 
world's food crop on 17% of all arable land [6]. These numbers emphasize the high productive 
capacity of artificially irrigated agriculture. Overall 70% of freshwater withdraws are done by 
agricultural irrigation systems. The last decades saw a growth in the use of water resources 
which is predicted to further increase [7]. Water for agricultural irrigation is often pumped from 
ground water storages which has a large effect on the respective water bodies. The discharge 
from certain areas can lower groundwater levels on a large scale. Observation of the ground 
water development in the Middle East resulted in an estimated loss of ground water volumes of 
144 cubic kilometres , equivalent to the amount of water stored in the Dead Sea, within the time 
period from 2003 to 2009. Although the influence of agricultural irrigation systems in these re
lations is not given, most of the discharge is an effect of reduced water supply during droughts, a 
time when water users turn to groundwater supplies [8]. Secondary problems are limited water 
supply for downstream users, water pollution, soil erosion and nutrient elution. Seepage losses 
of an inefficient irrigation system can accumulate in underlying groundwater, leading to water 
logging or salinity problems due to a rise of groundwater levels [9]. For some areas (like the 
one presented in this thesis) future development of climate is expected to result in a decline of 
precipitation rates and an increased likelihood of drought events [10, 11, 12, 13, 14]. 

As suggested by the European Environment Agency the improvement of irrigation systems, 
establishment of farmer advisory services and policy measures are tools to achieve a more 
sustainable use of water resources within the agricultural sector. Adjacent to nutrient manage
ment , efficient water management is considered to be the main component that can contribute 
to production increases (45% to 70% for most crops) thus supplying future food security in a 
sustainable way [4]. The increase in food demand is linked to the increase of human popula
tion. Recent decades brought a tremendous growth of human population from 2.5 billion in the 
1950s to about 7.1 billion early 2013. Regarding food supply and food production the aim is to 
increase water productivity rather than reduce the general amount of water used ("more crop 
per drop") [15, 16]. Efficient irrigation management can also help to reduce the expansion of 
farmland. This is required for the upkeep of increasing agricultural production for food supply 
and security under limiting spatial conditions (competing non-agricultural land-uses). These 
developments can be supported by providing reliable and accurate information of crop water 
requirements to managers and farmers running agricultural irrigation systems. 

Much development has been made in the way water is conveyed from water sources to fields. 
Increases in the efficiency of agricultural production were achieved by building new water ways 
(like the Marchfeldkanal) and developing technologies for the actual application of water to 
fields , like sprinkler irrigation systems. To achieve further efficiency in water use the question of 
water application at field level has to be addressed. This means an estimation of the amount of 
water needed by a given crop has to be performed with precise information about the temporal 
(when?) and spatial (where?) aspect. 

To achieve this goal accurate information about the observed agricultural system is needed. 
Due to the nature of agricultural production the productivity depends highly on spatial and 
temporal factors. A seasonal (temporal) aspect is introduced by vegetation dynamics over the 
four seasons. Spatial variation is related to climatic conditions on large scale, and on smaller 
scale related to other factors like land use, management practices, soil type, fertility, etc. 

Information regarding above mentioned characteristics can be obtained by using Remote 
Sensing (RS) , and more specific , Earth Observation (EO) technologies. It provides the ability 
to acquire information of large areas with relatively short time intervals. Remote Sensing refers 
to the acquisition of information of an object or a phenomenon with no direct physical contact 
to it. Although remote sensing is mainly associated with interpretation of optical imagery 
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from satellite or aircraft t here are many different platforms and applications in different fie lds 
like industrial quality control, security surveillance, medical applications and monitoring of 
hazardous environments and/ or -objects. Amongst the first applications of remote sensing was 
t he mapping of t he land surface, photogrammetry and photo interpretation. T he study of plant 
dynamics using this technology was introduced by Robert Colwell in t he 1950s who used aerial 
colour-infrared photography to identify cereal crop, diseases and other problems in plant sciences 
[17]. 

The development of satelli te- and digital technology later on brought the possibility of satel
lite based Remote Sensing. First photographs of the earth 's surface from space were done by 
the Mercury-Mission in 1965. One year later, 1966, t he "Earth Resources Technology Satellite 
Program" was ini t iated. The name of the program was later changed to "Landsat" (1975) and 
is still continued to this date with t he last satellite launch (Landsat Data Continuity Mission , 
Landsat 8) on February 11 , 2013. Since t hen satellites provided large amounts of data for the 
study of vegetation dynamics. 

The fundamental concept of the study of vegetation dynamics t hrough remote sensing sys
tems is to derive characteristics of plants through t heir reflectance of radiation towards t he 
sensor. A lot of information about the plant-canopy can be obtained by the relation of red 
to near-infra-red reflectance, therefore data for the study of vegetation is mainly acquired by 
multi-spectral, optical sensors. Information recorded by these sensors can be used to determine 
vegetation indices (VI) by few spectral bands only or used for a deduction of biochemical or 
biophysical characteristics through higher spectral resolut ion (empirically or physically based 
methods). 

Biochemical and biophysical parameters like t he t he Leaf Area Index (LAI, one sided surface 
area of green leaves per ground surface area) are a common source of information for the study 
of vegetation status and dynamics and the application of remote sensing in agriculture technolo
gies. These parameters can be derived from VIs which are calculated from measurements in two 
(or more) spectral bands [18]. The majority of VIs is derived from the relat ion of red- to near
infra-red reflectance. For vegetated surfaces this region exhibits a large increase of reflectance. 
T his difference represents a basic VI, where the radiation reflected in near-infra-red is subt racted 
by the radiation reflected in red (Difference vegetation index; DV I = P N IR - P R)' A normal
isation of this index can be achieved by dividing the sum of near infra-red and red reflectance 
leading to the "normalized difference vegetation index"; NDVI = (PNlR - PR)/(PNIR + PR). 
The normalisation helps to eliminate influence of different illumination and serves for better 
comparabili ty. A list of vegetation indices (VIs) is given by Jones et al. [18] Vegetation indices 
help to identify a relal ion from spectral reflectance to actual variables of the observed canopy 
such as b iomass, chlorophyll content or Leaf Area Index. 

Leaf Area Index (LAI) is a key parameter to monitor vegetation dynamics. It is defined 
as t he total one sided area of green leaf per unit ground surface area [19]. LAI is used to 
derive agronomical indicators for various crop management purposes. For instance, LAI maps 
are used in agro-meteorological models to derive the crop water needs (an example of operative 
application is given in Irrisat) [20], to monitor the nit rogen st atus and to apply fertilizer with 
variable rates (e.g., FarmSat), as input in crop models to derive agronomical variables [21 , 
22]. On a larger scale, LAI and other biophysical variables are used, amongst others , for 
yield predict ions aL adminisLraLive level [23, 24, 25]. A general overview of remote sensing 
contributions to agricul t ure is given in [26], EO contributions to irrigation practices are listed 
by Schultz [27]. 

One application of EO technologies (and the focus of this t hesis) is the assessment of water 
requirement of crops. The water requirement of a plant is predetermined by meteorological 
condit ions and the plant's potential to t ranspire water. The spatial and temporal knowledge of 
the crop water requirements can be used for addressing the question of irrigation water require-
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ments. The potent ial of transpiration of crop subtracted by the amount of precipitat ion results 
in the amount of water that needs to be artificially supplied by irrigation systems to avoid water 
stress and achieve optimum yield condit ions (for more det ails see Chapter 2) . Estimations of 
water requirements through ground-based technologies lack the actual real-time measurement of 
crop development over space. Current estimations of Marchfelds water consumption for agricul
t ural irrigation are based on me<Lsu rements of the ground water level or post-hoc measurements 
of applied irrigation and do therefore not measure the real crop water requirement . 

To operationally optimize water use and therefore agricultural output, data about vegetation 
and meteorological conditions have to be obtained contemporary to irrigation practices. This 
can be achieved by monitoring the spatial distribution of crop parameters over the growing 
season by time-series of satellite acquisitions. 

The aim of this thesis is the calculation and mapping of crop water requirements for the 
Marchfeld region during t he vegetation period of 2010. 

As a first step Landsat-5 imagery and agrometeorologica.J dat a was acquired in the Marchfeld
Region. The satellite- imagery was used to estimate t he extent of agricultural surface area. A 
class ifi cation was used to differentiate winter and summer crops. Furthermore mult i- temporal 
VI maps were calculated through satellite imagery. These maps and addit ionally meteorological 
data were applied to estimate t he potential evapotranspiration (ETp) for the area. Secondly 
effective precipitation (Fe) was calculated from records of precipitation using data from local 
agrometeorological stations . In a last step the information was combined to obtain the seasonal 
water requirement for cropped surfaces in the Marchfeld-Region. 

T he methodology offers the possibility to assess the crop water requirement and its spatial 
and temporal distribution for (agricultural) vegetation. This information can be used to support 
water management at catchment scale and to cross check t he yearly water exploitation plans. 
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Chapter 2 

Materials and Methods 

2.1 Overview 

The content of this t hesis is the calculation of crop water consumption in the Marchfeld-Region 
during the year 2010. To perform t his calculation the potential evapotranspiration, effective 
precipitat ion and t he area of cropped surfaces needs t o be estimated . Evapotranspiration (ET) 
is a water loss by evaporation from soil and transpiration from plants and depends on type and 
st atus of vegetation, land cover and meteorological conditions. Precipitation is the main water 
input . The cropped surface a rea is used to calculate t he tot a l covered area and volumes for 
agricultura l crops on district scale. 

The calcu lation of potential evapotranspirat ion in t his t hesis follows the Food and Agricul
ture Organization of the United Nations (FAO ) guidelines (FAO-56 , see Section 2.3.2). This 
calculat ion consists of two main components; 

1. The reference evapotranspiration (ETa) which indicates t he potent ial amount of 
water removed from a standard vegetation surface t hrough t he process of evapotranspiration. 
The varying infl uencing factors are of meteorological nature (solar radiation , wind speed, t em
perature , air humidity) which are measured by local weather stations. Crop specific factors 
(LAI=2 .88, crop height=0.12 , a lbedo=0.23) are kept constant in relat ion to the grass reference 
surface. 

2. The potentia l of t he observed crop t o transact the reference evapotranspiration. The 
capacity of transpiration of a planL is influenced by meteorological and crop specific factors 
like crop type and its development stage and need to be assessed individually to calculate the 
respective potent ial evapotranspirat ion. In the FAO-56 formulation the crop specific fadors 
combined are represented by the crop coefficient (Kc ). 

Reference evapotranspirat ion was calculated by the Penman-Monteith equation using me
teorologica l data from a local weather station. For further calculation of potential crop evapo
transpiration EO data was used in an analyt ical Kc estimation introduced by D 'U rso [28]. Four 
Landsat-5 TM images were acquired to observe crop development during the growing period. 
Two different atmospheric correction software applications for satellite imagery were applied 
(FLAASH - Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes and ATCOR -
Atmospheric Correction). Their performance was evaluated using pseudo-invariant-target com
parison. For t he estimation of Kc: LAI and Albedo are needed. Crop height was set to a fixed 
value. LAI values for the Marchfeld area were derived by estimation from spectral reflectance 
using t he CLAIR model [29]. For calibrat ion reference measurements from t he 2012 growing 
season were used. A set of different techniques was applied to calibrate and validate param-
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eters needed for the calculation. Albedo values were derived from Landsat-TM data through 
the "wavelength integrated ground reflectance" by calculating t he relative contribution of each 
band to the total measured energy for each pixel. The influence of albedo , crop height and LAI 
on the K c calculation was invest igated by a sensitivity analysis. 

K c and ETa data was combined to calculate ETp on a pixel basis. Effective precipitation 
(Pc) was calculated as a range between minimum and maximum estimations. 

The total water requirement of Marchfeld was calculated. The images were first masked 
to agricultural surfaces only by using the CORINE land-cover map [30]. Then t he image time 
series was used to differentiate winter and summer crop. In a final step the water requirement 
for summer cropped surfaces of the Marchfeld-Region was determined. 

The workflow of the methodologies applied in th is thesis is presented in Figure 2.1. 
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Figure 2. 1: Workflow of t he methodology 
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2.2 Test Site Description 

Marchfeld is an area in lower Austria. It is part of the "Vienna Basin" and 1000 km2 in size. 
The area is depicted in Figure 2.2. 

o 

Figure 2.2: Location of the Marchfeld region in Austria. 

Climate Marchfeld is located at the western end of the pannonian climate-region. The yearly 
mean temperature is 10'C and mean duration of sunshine around 1900 hours per year. 

The average annual precipitation is 500-550 mm and can drop to 300 mm making it the 
driest region of Austria. Annual precipitation during the vegetation period (April-September) 
is 200-440 mm. Dry periods (time with no daily precipitation higher than 5 mm) of three weeks 
can occur averagely 5 times per year, longer dry periods of 30-34 days are a yearly occurrence 
[31]. Modelling of future climatic development for Marchfeld and its surrounding regions suggest 
a decrease of precipitation volumes and an expected increase of likelihood for drought events 
[10, 11, 12, 13, 14]. High average wind speeds of about 3 ,5 mls have an amplifying effect of 
the dry climate considering plant transpiration. The climate chart of t he year discussed in this 
thesis is presented in Figure 2.3. 
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Figure 2.3: Climate chart for the Marchfeld Region for the year 2010. Data from: ZAMG, 
Weather Station Grof3-Enzersdorf 

The dominant soil types are Chernozem and Fluvisol, based on the Food and Agriculture 
Organization (FAO) World Soil Classification. The general soil conditions are characterized by 
a humus-rich A horizon and a sandy C horizon, followed by fluvial gravel from the former river 
bed of the Danube [32]. . 

Agriculture The soil consists mainly of fertile aeolian slit deposit which, together with the 
pannonian climate, high solar radiation and flat terrain forms a well qualified region for agri
cultural purposes. Limitations to agricultural performance are low precipitation and a predom
inantly low field capacity of 70 mm and less. This means that the soil can hold only a low 
amount of precipitation thus limiting water supply to the plants in dry periods. The need for 
water varies between crops and development stages. \Vheat and sugar beet are sensitive to water 
shortage in the beginning of the vegetation period whereas Maize encounters most limitations 
during the flowering period. About 65.000 ha of the area in Marchfeld are used for agricultural 
production. The main crops are vegetables (11%), sugar beet (10%) and potatoes (7%). 

Although Marchfeld is the driest regions in the state, it is still one of the primary producers 
of agricultural goods in Austria. This is possible due to irrigation techniques used by farmers to 
compensate lacking amounts of precipitation. In Marchfeld most of the water used for irrigation 
is taken from the ground water. However modernization and intensification of t he agricultural 
sector has resulted in a unbalance of groundwater extraction and replenishment. Thus the 
groundwater levels in the Marchfeld region have dropped steadily (see Figure 2.4) 

The drop of groundwater levels has a profound impact on its surroundings. These impacts 
range from ecological disturbance over limitations in water use to economical restriction in 
the agricultural product ion. To counterbalance the problem of dropping groundwater levels 
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F igure 2.4: Development of Groundwater levels - Deutsch-Wagram 1940-2001. Source: March
f eldkanal 

the Marchfeldkana l-Project was init iated and executed between the years 1986 and 2004. This 
channel system is used to extract water from t he Danube r iver and transport it to the Marchfeld 
Region. The main goals of t his project were to maintain a secure supply of water to the area, 
increase water quality, flood control and revitalisation of flowing water bodies. 

The construction consist of 100 km of Channels and 8 weirs which control surface water flow 
and height. To control ground water levels 22 pumping stations and 7 infiltration basins are 
implemented. In addit ion t he area is equipped with a control system and power supply. An 
overview of the channel system is given in Figure 2.5. In standard operation the rate of inflow 
ranges from 0.5 to 7.6 m3/s . As a result of higher water demand the rate of inflow can rise up 
to 15.2 m3 /s during the growing season [3 1]. The cost of construction was 207,8 Million Euro 
[33]. 

Irrigation W ith only 525 mm of precipitation per year addit ional water supply is needed to 
sustain stable agricultural production in Marchfeld. Of t he 65.000 ha used for agricult ure, 30% 
are irrigated every year. The main water supply for the irrigation system is the groundwater 
body. The withdrawal from groundwater for agricult ural purposes is estimated to be 20-40 Mia. 
m3 per year [34]. 

Irrigation facili ties (pumps, infrastructure) are managed on a municipal level. Water is taken 
eit her from the channel system or from groundwater. The main mode of irrigation is the " Hose
Reel Irrigator" (Figure 2.6 ). Sprinkler irrigation systems are also in use, but to a much lesser 
extent mainly in areas where wa.ter pressure of the supply system is not suffi cient for hose-reel 
irrigation. 
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Figure 2.5: Overwiew of the Marchfeld Area including channel system. Source: Marchfeldkanal 

Figure 2.6: A Hose-Reel irrigation system, which is commonly applied in Marchfeld . Model: 
Bauer Rainstar 
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2.3 Calculation of crop evapotranspiration 

2.3.1 Introduction to crop evapotranspiration 

T he calculation of potential evapotranspirat ion (E Tp) is performed through the crop coefficient 
approach presented in the FAO-56 paper [35] with t he integrat ion of satellite data into the 
calculation as proposed by D'Urso [28] . The two main components in this concept are the 
reference evapotranspiration (ETa) and the crop coefficient (Kc). 

The calculat ion of ETp is obtained as follows; 

The methodology assumes "disease-free. well-fertilized crops, grown in large fields; under op
timum soil water conditions, and achieving full production under the given climatic conditions" 
[35]. 

The reference evapotranspiration (ETa) is the evapotranspiration of a standardized 
vegetated surface area for given climatic conditions within a specified time interval. For details 
see Section 2.3.2. 

The crop coefficient (Kc) is a factor indicating the ratio of potential evapotranspiration 
of crops compared to the reference evapotranspiration . It is defined as 

K - ETp 
C - ETa 

A Kc value of 1 means the evapotranspirat ion of an observed crop is at t he same level as 
t he standard reference surface (grass) . A Kc of 1.2 means the evapotranspirat ion is 20% higher. 
The primary effects t hat distinguish crop from the reference surface are 

• Crop height 

• Albedo 

• Canopy resistance 

• Evaporation from soil 

Kc can be estimated from measurements of actual evapotranspiration and the comparison 
to the reference evepotranspiration of the standard surface. Using this met hodology Kc has 
been calculated for different conditions and can be provided in tables for several crops. As the 
Kc changes with crop development it can be displayed as a Kccurve over time. In the FAO-
56 publication these are are provided for each crop development stage as follows: initia l stage 
((K cini ), mid-season stage (Kcmid ) and end of the late season stage (Kcend) (see Figure 2.7). 
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Figure 2.7: Development stages of an exemplary crop and the corresponding developement of 
Kc over time. (35] 

Some examples of Kc values within the FAO-56 guideline are given in Table 2.1. 

Table 2.1: Reference values of Kc for different crops in three developement stages 
Crop Initial Stage Mid-season Stage Late Stage 

Sugar Beet 0.35 1.2 0.7 
Maize 0.3 1.2 0.5 

Winter Wheat 0.6 0.6 0.9 
Soy Bean 0.5 1.15 0.5 

Potato 0.5 1.15 0.5 
Onion 0.7 1.05 0.75 

Presented tabulated data represent a fixed value suit.able for comparing crop t.ypes under 
general conditions. Crop development is subject to change regarding to local conditions and its 
climate. An indication of possible variability is given in Figure 2.8. The development of Maize 
for example can vary between K c values of 1.1 to 1.4 in full crop development regarding to the 
climatic conditions it is cultivated in. 
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Figure 2.8: R anges of possible K c values for full grown crops under variation of climatic condi
tions 13S} 

The variabili ty of actual K c to tabulated data furt her increases when regarding not only 
climat.ic differences but. also variation in soil t.ype, seeds and management. pract ices . 

Figure 2.9 is an illustrat.ed example for Lhe difference from tabulated t.o actua l dat.a. The 
sample plot of sugar beet in t he Marchfeld-Region does not reach the maximum value of K c= 1. 2 
given by the FAO and is also reaching the senescence stage earlier. 

For a precise estimation of water requirement on regional scale t he K c-value must t herefore 
be dynamically adapted to the study area. In this work, the calculation of Kc is achieved by 
calculation through satellite dat a. 
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Figure 2.9: Developement of Kc values for a sample plot of sugar beet in the Marchfeld-Region 
and the FAO-reference of Kc developement for the same crop 

2.3.2 Reference Evapotranspiration 

The reference evapotranspiration was derived from meteorological data with the use of the 
Penman-Monteith equation. It is physically based and incorporates physiological and aerdoy
namic parameters [35]. 

Penman-Monteith equation 

ETo = 0.4086(Rn-G)+')'~u2(eS-ea) 
6+,),(1 +O.34u2) 

where 
ETo=reference evapotranspiration [mm day - I], 
Rn=net radiation at the crop surface [MJ m - 2 day- I], 
G = soil heat flux density [MJ m - 2 day-I ], 
T=mean daily air temperature at 2m height [C), 
u2=wind speed at 2m height [m S-I], 
es=saturation vapour pressure [kPa], 
ea=actual vapour pressure [kPa], 
es-ea =vapour pressure deficit [kPa] , 
6=slope vapour pressure curve [kPa C- l ], 

,),=psychrometric constant [kPa ·C- l ]. 
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In summary ETa is a function of: Meteorological Data 

• Radiation 

• Temperature 

• Relative Humidity 

• Windspeed 

• Evaporation from Soil 

Crop specific data 

• Leaf Area Index 

• Albedo 

• Crop Height 

The meteorological data is measured in-situ with weather stations. For the reference evapotran
spiration (ETa) the crop specific factors are set to LAI=2.88, Albedo=0.23, hc=0.12. 

Source for meteorological data was the Zwerndorf weather station operated by the "Zen
tralanstalt fur Meteorologie und Geodynamik". ETa estimations for this weather station have 
been cross-checked with another nearby weather station. 

2.4 Satellite Data 

2.4.1 Earth Observation-Data Description 

EO datasets were acquired by two satellites; Landsat-5 TM data was used for the calculation of 
the water consumption. For this calculation a calibrated model is needed to obtain LAI maps. 
For this purpose, a calibration campaign was conducted in 2012 where ground reference LAI
measurements were taken in correspondence to DEIMOS-1 image acquisition. Both datasets 
were geometrically corrected by the data supplier. Landsat-5 TM records data with t he Landsat 
Thermatic Mapper (TM)-Sensor in 7 bands with a spatia l resolut ion of 30 m (in the visible, 
near- and shortwave infrared bands) and 120 m (thermal). DEIMOS records data in 3 spectral 
bands with a spatial resolu tion of 22 m. Table 2.2 shows t he dates of the image acquisit ions for 
the two campaigns 

Table 2.2: Dates of image acquisition used for the est imat ion of crop developement (Landsat-5) 
and calibration of model parameters (DEIMOS-l ) 

Landsat-5 DEIMOS-l 
10.06.2010 17.06.2012 
12.07.2010 30.06.2012 
22.08.2010 01.08.2012 
23.09.2010 20.08.2012 

17 

05.09.2012 
18.09.2012 



2.4.2 Data preparation 

Due to the fact that the atmospheric conditions have a varying influence over time and space 
a correction to account for these effects has to be applied. Two different software tools for 
atmospheric correction (FLAASH and ATCOR) were considered and their performance tested. 
FLAASH and ATCOR are two different software-modules. The aim of these modules is to 
correct recorded at-sensor signal for atmospheric effects through modelling atmospheric param
eters. 

Atmospheric Correction 

The radiance is recorded as a signal at. sensor level. The signal is affected by properties of t.he 
atmosphere that lie between the sensor and its observed target. Since atmospheric properties 
are dynamic, the recorded at-sensor reflectance of a surface will be subject. to variation. The 
variations are of temporal (variation from one image acquisition to another) and spatial (varia
tion within a single image) nature. Furthermore a part of the radiation recorded at the sensor 
is reflected by the atmosphere directly with no interaction of the observed surface (backscat
t ering). The backscattered signal carries no information about the surface area and should be 
eliminated for further processing. 

There are different ways to perform atmospheric correction. The influence of the atmosphere 
can be determined with in situ measurements of the surfaces' reflective properties. Another 
method is to estimate the atmospheric effect on image acquisitions through a model atmosphere . 
The latter approach was used in this thesis . For the atmospheric modelling a set of model 
parameters are needed. These parameters are: 

• Latitude/Longitude 

• Sensor Altitude 

• Acquisition Date/ Time 

• Ground Elevation 

• Visibility 

• Sensor Calibration 

FLAASH is a tool included in the ENVI Image processing software. It is based of MOD
TRAN4 radiative transfer model. The user interface of the ,software is presented in Figure 2.10. 
To apply this correction method imagery data values were converted from digital number to 
radiance and corrected with current radiometric calibration coefficients (bias and gain) using 
the formula: 

LA = Grescal eXQcal + Brecale 

where 
LA=Spectral radiance at sensor [W/ m2srj.lm] 
G r escale=Band-specific gain factor [W/ m2srj.lm/DN] 
Qcal-Band-specific rescaling bias factor [W/ m2 srj.lm] 

Bias and Gain factors are contained in the imagery metadata. 
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F igure 2. 10: T he user interface for the model input parameter wit hin t he FLAASH atmospheric 
correction tool 

Result ing top of t he atmosphere (TOA) rad iance values were t hen used as input to F LA ASH. 
T he resulL was an estimat.ion of t.op of the canopy (TOC) reflectance values . 

ATCOR is also based on MODT RAN4 and is a module in the ERDAS Imagine software_ 
Addit ionally to an application of model atmosphere and its parameters, ATCOR allows the 
iterative choice of the model parameters to match t he corrected pixel reflectance wit h t he 
observed reflectance from a spectral library or from user measurements. T he user inter face for 
comparison of reflectance is presented in F igure 2.11. 
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Figure 2.11: The user interface for check and adjustment of model input and performance within 
the ATCOR atmospheric correction tool 

Comparison of Atmospheric Correction Methods 

To compare the two correction approaches a set of pseudo invariant targets (PITs) was se
lected. The assumption is that spectral response from invariant targets stay the same over time 
thus making it possible to compare the performance of atmospheric correction methods. The 
necessary characteristics of pseudo-invariant targets are [36], [37]: 

• Targets should be available with both high and low radiance 

• Targets should be as homogeneous as possible 

• They should be smooth and horizontal to minimize shadow and directional effects. 

• They should be of large size , to minimise adjacency effects and make them easy to identify 
on different images , and on the ground. 

To compare the correction methods the standard deviation of spectral response of a single 
target over time was measured. 

2.4.3 Data Processing 

The aim of EO data processing is to derive Kc maps for the observed area which are further 
used for the estimation of potential evapotranspiration. EO based Kc values were calculated 
using the approach described by D'Urso [28] . For the estimation of K c, LAI, albedo and crop 
height are needed. 
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Calculation of the leaf area index LAI 

LAI was derived through the Weighted Difference Vegetation Index (WDVI) as follows [29] : 

LAI = Lila In(l - ::~~) 

In this equation two coefficients (LA I", , WDVIoo ) need to be calibrated. The calibration 
of LAIa: was done using ground reference measurements and contemporaneous image datasets 
from the year 2012. The fu ll process is described in Appendix A. 

Calculation of weighted differential vegetation index WDVI 

WDVI can be calculated from EO data as presented by Clevers [29]: 

W DV I = pN J R - C X pR 

The soil line slope (C) represents the slope of the linear relat ionship between bare soil 
reflectance observed in two different wavebands [38]. It was calibrated by a number of samples 
(60 in this study) of bare soil per image. From the respective reflective values in the red and 
near-infrared bands of each sample the soil line slope was derived according to the following 
equation. 

The intercept was set to O. 

Calculation of albedo 

c = pNIR 
pR 

Albedo is defined as the ratio of the reflected radiation of a surface to t.he incoming radiation. 
Albedo depends on the type of surface and angle of incidence of solar radiation. A high reflective 
surface like fresh snow may reach an albedo of 0.95. Low values of 0.05 are common for wet 
bare soils. Vegetation has an albedo of 0.20-0.25 [35] . 

Albedo is used in the calculat ion of the fr action of solar radiation (Rs) thai is not. reflected 
from the surface (net solar radiation - Rns) with Rns = (1 - o:)Rs. 

The calculation for the albedo is done by deriving the relat ive contribution of each band to 
the total measured energy for each pixel. In this operation the surface albedo is substituted 
by the" wavelength-integrated ground reflectance" since the recorded spectral daia only covers 
part of the full spectral region. This operation was performed within the ATCOR module of 
ERDAS Imagine. The formu la applied to derive the wavelength-integrated ground reflectance 
is : 

2.5~m 

J p()")d)" 
a = O_ . ....:31::-'m-::-__ _ 

2. 5~rn 

J d)" 
O.3~m 

Estimation of the crop coefficient (Ke) 

For t he estimation of potential evapotranspiration the EO estimated canopy parameters (albedo, 
LAI, he) can be directly introduced to the FAO Penman-Monteith equation replacing the stan
dard values of the grass reference surface (see Section 2.3.2) . This directly estimates the potential 
ET. Because of its wide use in irrigation practice, it is useful to derive a physically-based basal 
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crop coefficient K e expressed as an explicit function of crop parameters and of meteorological 
data. Assuming a constant crop height t he (polynomial) function relating K e to albedo and 
LAI is: 

Kc = (a4 + b4 X r)LAI4 + (a3 + b3 X r )LAI3 + (a2 + b2 X r)LAI2 + 
(a1 + b1 X r) LAI + (aO + bo X r) 

where 
r=Albedo[%] 

The coefficients a and b are derived by calculat ing ETp with meteorological data at t he t ime 
of the satelli te image acquisition and averaging out t he result ing K e for a period of 5-6 days 
around the date of the image acquisit ion [39]. 
Crop height (he) controls the resistance in canopy aerodynamic properties. Measurements of 
exact crop heights for large areas and over a t ime period of several months are not feasible 
due to considerable work load. Therefore t he crop height was set to a fixed value, which is 
considered to be a satisfactory compromise in estimation of ETp [39]. In this methodology the 
crop height was set to a value of 0.3 m. Since in reality crop height is variable over t ime its 
influence was investigated by performing a sensitivity analysis of Ke to he. The variation of 
Kc with six different he-values over a range of LAI was calculated . This was done by deriving 
a and b coefficients for crop heights of 0.1 m, 0.2 m, 0.25 m, 0.35 m , 0.5 m, 0.75 m and 1 m. 
Their corresponding Ke values were calculated and its variation plotted. A simi lar sensit ivity 
analysis was performed on variat ions of albedo. An estimation of Ke with a constant he of 0.5 
and increasing LAI was done with variation of albedo ranging from 0.1 to 0.4. 

Finally, we estimated the crop water requirement . This was achieved by subtracting effective 
precipitation (Pn) from the potential evapotranspirat ion. If ETp surpasses Pn vegetation enters 
a st age of water deficit. To achieve optimal crop development and yield conditions this deficit 
that has to be balanced out by applying irrigation. 

The crop water requirement (CWR) can be expressed as 

CWR = ETp - Pn 

Effectiveness of precipi tation relies on a number of factors such as : crop type, crop condition , 
soil conditions, irrigation scheduling, characteristics of t he precipitation events (duration, inten
sity, frequency) etc. Since a number of these factors are inaccessible for a regional estimation 
of water deficit the effective precipitation is estimated as a range. The lower end of effective 
precipitation (less water is assimilated by t he plant) is given above (Pnmin) . The upper end 
(Pnmax) was set to: 

Pnmax = P * 0.75 

The lower end of effective precipitation was calculated by applying following formula: 

where 
P=Precipitation [mm] 

Pnmin = (P - 5) * 0.75 
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Estimation of agricultural surface area 

Image classification was used to estimate the cropped area for summer crops in the Marchfeld 
region. As a first step all non-agricultural (urban & natural surfaces , forest , water bodies) 
surfaces were masked. This was done by using the " Corine Land Cover Map" (CLC-Map) 
which holds information of EO based estimation of landcover and usage. A subset of the CLC
map for Marchfeld is presented in Figure 2.12. The CLC-Map was reprojected to UTM WGS 
'84 with overlapping pixel features to imagery data of Landsat (pixel size of 30m). The next 
step was to perform an unsupervised classification. The image acquired on August 22nd was 
selected. The choice for this data was driven by the circumstance that agricultural summer 
crop are expected to be well developed at this time and therefore easily distinguishable from 
surrounding land cover types. Seven clusters were initially selected. The classification was 
followed by a visual interpretation of the different clusters using a false-color composite image 
of the region. During this analysis the clusters were separated into vegetation or soil. One 
cluster resulted in uncertain classification and was further analysed visually based on the crop 
coefficient. The visual interpretation of Kc was done in regard of value, location and extent. 

For further processing two types of area estimations were defined: (1) "General Agricul
tural Area" incorporates all agricultural surfaces, sparse and dense vegetation as well as soil 
into the calculation. 

(2) "Cropped Surfaces" incorporates all pixels clearly classified as " vegetation" , border
effects (mixed-pixels) were excluded. This procedure represents an estimation of irrigation crop 
water requirements of the region. 
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Figure 2.12: A subset of t he Corine Land Cover map for t he Marchfeld Region. Classes were 
aggregated to 4 categories. 
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2.5 Calculation of potential evapotranspiration and water 
requirement 

For the calculation of crop water requirement the raster based Kc value was interpolated to 
obtain daily Kc values. This resulted in 106 (daily) K c values from 10th of July to 23rd of 
September. A daily estimation of ETp was calculated by multiplying interpolated Kc values 
with ETa of the respective day. The result is a raster file with pixel based estimation of ETp 
with 106 layers corresponding to each day from the first image acquisition to the last. A total 
sum of ETp for each pixel was calculated. 10-day time-step ETp aggregations were used to 
calculate the water requirement for t he areas. Effective precipitation values were aggregated 
in the same 10 days time-steps and subtracted from the ETp estimations. The result is the 
magnitude and temporal development of crop water requirement for the observed area 
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Chapter 3 

Results and Discussion 

In the following chapter the results of the methodology are presented and discussed . All tables 
and figures are located adjacent t o the discussion. 

3 .1 Reference Evapotranspiration 

The reference evapotranspirat ion (ETa) for t he Marchfeld Region in 2010 ranges from 0.07 
mm/day (27. Dec. 2010) to 6.64 mm/day (13. July 2010) with an average of 2.13 mm/ day over 
t he whole year (see Figure 3.1). The highest reference evapot ranpspiration was taking place in 
July with an ETa of 148.5 mm/ month. January exhibits the lowest value with 12.8 mm/ month. 
Summarized monthly values of ETa are presented in Figure 3.2. The highest values of ETa are 
located in t he mid-summer months. Low values of ETa during this period are due to cloud
coverage, low temperatures and other unfavourable condition. Notable is the high variability of 
ETa during the summer months. Unfavourable meteorological conditions in June can result in 
the same ETa as days in March or October . T he estimation of ETa was within the expected 
range of observed climatic conditions. 

The results of ETa calculation from weather data recorded at Zwerndorf were compared to 
the calculation for data recorded at Grol3-Enzersdorf. The two weather stations are approxi
mately 26 km apart. For the observed time period the differences in the estimations reaches 
a maximum of 122.5% on the 25th. of July where Zwerndorf recorded ETp= 1.18 and calcula
tion from Grol3-Enzersdorf weather data resulted in ETp =2.63. Analysis of the weather data 
for Grol3-Enzersdorf showed higher temperature (+0.6°C), a higher wind-speed (+ 1.4 m/s) 
and lower air humidity (-10 %) during that day. Similar variations can be observed for other 
high divergences. On average the calculation of ETp from Grol3-Enzersdorf du ring the image 
acquisition campaign was 2. 16 % higher , with a standard deviat ion of 20.42 %. 
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Figure 3.l: Daily reference evapotranspiration (ETa) for the year 2010 calculated from meteo
rological data collected at Zwerndorf 
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Figure 3.2: Summarized monthly evapotranspirat ion (ETa ) for the year 2010 calculated from 
meteorological data collected at Zwerndorf 
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Figure 3.3: The percentage difference of calculated reference evapotranspiration (ETp) when 
comparing meteo data recorded at Zwerndorf to ETp-calculation from Grol3-Enzersdorf data. 
The timeframe is 10. of June to 23. of September 

3.2 Satellite Data 

3.2.1 Pre-Processing - Atmospheric Correction 

Band specific spectral reflectance 

When analysing the reflection of a vegetated surface , atmospheric correction changes the recorded 
reflectance the most in the 0.45-052 11m region (Band 1 - blue). In this band a decrease can be 
observed after applying atmospheric correction. A similar, but smaller effect takes place in band 
2 (green) and 3 (red). With Band 4 (NIR) the effect is reversed and the recorded reflectance 
p ercentage after correction is higher than TOA recorded values (see Figure 3.4). For analysis 
of a non-vegetated surface the spectral refletance profile of a stone quarry was used (see Figure 
3.5). Except for band 1 (blue) reflectance responds with an increase of values after performing 
atmospheric correction on TOA data. 

28 



40 40 

s, 10.06.2010 30 12.07.2010 

30 30 

25 
~ 

25 

" .-
20 t3 20 ;.: 

S 
0; 

~ 

2 16 '" 15 .c 
10 

0.52·0.60 0.63·0.69 0. 76-0.90 100· 1.75 2 _0~2 .3o o 4~. O .51 0.02·0.60 0.63-0.69 0.76·0.90 L55·1.70 

\Vayelengih (micrometers) \Yayelength (micrometers) 

.O r-----~----~r-----~----_,------, 40 r------.-------.-------r-------r------, 

35 22.08 .2010 30 23.09.2010 

so 30 

25 S 20 

~.'''. . 20 
~ 
~ 15 

0.51·0.60 063·0.69 0 76·0.90 L55·1 70 2.0.·2 S5 0.52·0 60 0.63·0.69 0.76·0.90 L 55· 1.75 

\Vavelength (micrometers) W a yelength (micrometers) 

Figure 3.4: Spectral profiles for reflectance [%] .with and without atmospheric correction for 
PIT # 5 (Forest canopy) taken from four different image acquisitions 
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Figure 3.5: Spectral profiles for radiance [%] with and without atmospheric correction for PIT 
# 9 (Stone quarry) taken from four different image a.cquisitions 
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Stability of atmospheric correction using pseudo-invariant targets 

T he standard deviation of PITs over time was used to estimate the performance of atmospheric 
correction methods . 

The Tables from 3.1 to 3.3 shows the Standard Deviation of PITs over time for 3 d ifferent 
scenarios; Table 3. 1 shows top of the atmosphere data, Table 3.2 reports data atmospherically 
corrected with ATCOR and Table 3.3 reports data atmospherically corrected wit h FLAASH. 
Table 3.4 indicates the normalized difference of variability of all targets over the six spectral 
bands when comparing an atmospheric correction method to top of the atmosphere. 

The results showed an increase of variation after the application of both correction proce
dures. This can be a result of the method used for the analysis and/or an actual limitation 
of software performance. Regarding the former (method used): some of t he variat ion can be 
related to actual change of the pseudo-invariant targets that were set on vegetation canopy. 
This can be observed in Table 3.2 and Table 3.3 where higher percentages of the variation with 
both models applied are coming from Band 4 of the sensor used when comparing to other bands. 
Observed variation in the near-infra-red band is most likely due to actual changes in the p lant 
canopy during the observed t ime period. 

The other reason for an increase in variation might be the selected calibration of model 
parameters and the performance of the correction method. To achieve better performance of 
correction methods it is suggested to obtain in-situ measurements during the image acquisition 
campaign and tune the model parameters in regard of these measurements. Further processing 
was done with the FLAASH-corrected datasets where the analysis of pseudo-invariant targets 
showed a lower variat ion. 

Table 3.1: Standard deviations of PIT reflectance over time for top of the atmosphere (uncor
rected) imagery 

PIT # Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 averag e 
1 1.29 1.82 2.02 3.38 2.55 1.90 2.16 
2 0.82 0.82 0.86 4.53 0.66 1.03 1.45 
3 0.47 0.48 0.50 3.88 0.21 0.44 1.00 
4 0.74 0.30 0.48 2.29 0.46 0.14 0.73 
5 0.43 0.41 0.29 3.87 1.15 0. 58 1.12 
6 0.41 0.56 1.06 0.88 1.35 1.88 1.02 
7 0.27 1.08 1.76 2.71 2.60 2.84 1.88 
8 0.41 1.19 1.40 1.75 1.18 1.78 1.29 
9 1.95 2.10 1.83 1.90 1.89 1.58 1.87 

10 0.47 0.00 0.20 0.55 0.29 0.49 0.33 
average 0.73 0.88 1.04 2.57 1.23 1.27 
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Table 3.2: Standard deviations of PIT reflectance over time for data corrected with ATCOR 

PIT # Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 average 
1 1.87 2.75 2.67 3.99 2.83 2.33 2.74 
2 0.38 0.76 0.74 5.54 0.82 1.15 1.57 
3 0.30 0.65 0.84 4.49 0.08 0.47 1.14 
4 0.71 0.73 0.75 2.37 0.44 0.20 0.87 
5 0.70 0.34 0.32 4.12 1.12 0.59 1.20 
6 1.24 1.86 2.31 1.61 2.15 2.73 1.98 
7 1.89 3.18 3.75 3.40 2.91 2.92 3.01 
8 1.64 2.74 2.96 2.02 1.24 1.73 2.05 
9 2.14 2.24 1.95 2.97 2.28 2.06 2.27 

10 0.54 0.45 0.57 1.53 0.43 0.61 0.69 
average 1.14 1.57 1.69 3.20 1.43 1.48 

Table 3.3: Standard deviations of PIT reflectance over time for data corrected with FLAASH 

PIT # Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 average 
1 1.93 2.56 2.54 3.92 2.79 2.33 2.68 
2 1.24 1.29 1.18 5.09 0.84 1.16 1.80 
3 0.11 0.13 0.41 4.21 0.09 0.38 0.89 
4 0.34 0.25 0.31 2.23 0.34 0.18 0.61 
5 0.36 0.32 0.21 4.04 1.21 0.61 1.12 
6 0.64 0.98 1.30 0.90 1.79 2.42 1.34 
7 0.88 1.67 2.16 3.05 2.96 3.05 2.29 
8 0.88 1.48 1.56 1.70 1.05 1.77 1.41 
9 2.72 2.95 2.66 2.53 2.18 1.97 2.50 

10 0.11 0.29 0.15 0.87 0.46 0.60 0.42 
average 0.92 1.19 1.25 2.85 1.37 1.45 
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Table 3.4: Normalized difference of variability of PIT reflectance when comparing TOA re
flecta.llce to atmopsherically corrected data (ATCOR and FLAASH correction) 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 
ATCOR 0.57 0.79 0.62 0.24 0.16 0.17 

FLAASH 0.27 0.36 0.20 0.11 0.11 0.14 

3.2.2 Data Processing 

Calculation of albedo 

average 
0.43 
0.20 

Albedo values within the processed imagery are varying within 2% in the case of water pixels 
and 80% in the case of clouds. The histogram shows a peak around an albedo value of 10% 
which corresponds with soils and urban structures. Mean values and standard deviations are 
reported in Table 3.5. 

albedo 

albedo 

10.06.2010 

22.08.2010 
x 10~ , 

12.07.2010 

albedo 

23.09 .2010 

albedo 

Figure 3.6: Histograms for the raster based albedo calculation for four image acquisitions 
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Calculation of the leaf area index (LAI) 

The performance of different calibration techniques was validated with LAI ground reference 
measurements. A detailed descript ion of t he approach used was published by Vuolo et a l. [40] 
and can be found in the appendix to this thesis. 

Using the CLAIR model with an image-specific tuning of the soil line slope and W DV 100 and 
a constant LAIC>. coefficient value provided the most accurate and consistent results for WDVI 
based LAI estimation (R2 =0.64, RMSE = 0.86). The other validated calibration techniques 
included seasonal average (constant) values for the soil line slope, W DV 1 00 and LAIC>. (R2 =0.58, 
RMSE = 1.04) and image-specific model parameters for each image acquisition (R2 =0.54 to 0.78, 
RMSE = 0.97 to 0.53 depending on the individual imagery datasets). 

Calculated LAI values range from 0 to 6. A visualisation of pixel based LAI calculations for 
July 12th is given in Figure 3.8. The mean value of LAI over the region of interest varied with 
the season due to vegetation development , land cover dynamics and cultivation practices from 
LAImean=l (23.09.2010) to LAImean = 1.9 (10.06.2010). Modulation of model parameters and 
results of the LAI calculation are presented in Table 3.5. The distribution of LAI values in the 
region of interest are presented in Figure 3.7. One can observe a considerable shift to low LAI 
values in the histogram when compa.ring the first to the second ima.ge acquisition. The observed 
variation is due to senescence and harvest of winter wheat, a primary agricultural product of 
the region. A second peak around an LAI of 1.5 and 3 appear in the third and forth image. 
This is due to subsequent greening up of summer crops and secondary crops following on plots 
antecedently used for winter crop cultivation . 

Table 3.5: Calibrated parameters for the calculation of WDVI and LAI and resulting mean' values 
and standard deviations of resulting LAI calculation for each image acquisition respectively 

Date 
6/10 
7/12 
8/22 
9/23 

Model parameters Albedo LAI 
Soil Line Slope LAI C>. WDVloo mean (J mean 

1.38 0.34 52 10.63 3.13 1.94 
1.34 0.34 56 10.34 2.75 1.30 
1.32 0.34 56 11.38 3.62 1.33 
1.46 0.34 57 10.20 2.85 1.06 
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Figure 3.7: Histograms for the raster based LAI calculation for four image acquisitions 
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Figure 3.8: Visualization of EO estimated LA I-values for the acquisition on 12.07.2010 
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Estimation of the crop coefficient (Kc) 

Results of the a and b coefficient calibration along with mean Kc values and their standard 
deviation for the raster image datasets are given in Table 3.6. Histograms of the Kc raster 
dataset are plotted in Figure 3.9. The calculation of mean values and histograms was done 
using only the" agricultural surface area". Estimated Kc values range from 0.05 to l.5. 
The EO data from June, 6th shows the highest image-wide mean value of Kc=0.97. Mean 
values of Kc are decreasing over t ime with the lowest value (Kc=0.53) at the end of the image 
acquisition campaign. The steady decrease of Kc is a result of crop development and agricultural 
management. The first acquisition captured winter wheat cultivation during the end stage which 
responded correctly with high Kc values at the t ime. Another reason for decreasing Kc is the 
vegetation cycle with declining vitality of vegetation in September. 

Table 3.6: Coefficients for the calculation of Kc and mean values and standard deviation of 
resulting raster based Kc dataset for each image acquisition respectively 

Calibration coefficients Kc 
Date coefficient # a b mean std 

6/10 0 0.0595 -0.0298 0.97 0.33 
1 0.7939 -0.4982 
2 -0.1855 0.0996 
3 0.0229 -0.0103 
4 -0.0013 0.0005 

7/12 0 0.1224 -0.0546 0.73 0.38 
1 0.9535 -0.5304 
2 -0.2946 0.1431 
3 0.0456 -0.0202 
4 -0.0028 0.0012 

8/22 0 0.0635 -0.0312 0.59 0.43 
1 0.816 -0.4899 
2 -0 .1953 0.0978 
3 0.0246 -0.0101 
4 0.0014 0.0005 

9/23 0 0.0712 -0.0439 0.53 0.39 
1 0.743 -0.4778 
2 -0.1534 0.1061 
3 0.0171 -0.0129 
4 -0 .0009 0.0007 
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Figure 3.9: Histograms for the raster based J{c calculation for four image acquisitions. 
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Figure 3.10: Visualisation of Kc-Values for 22.08.2010 
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F igure 3.11 : Subset of raster-K c-Values on 22.08.2013 limited to agricu ltural areas of the 
Marchfeld-Region 

40 



Sensitivity Analysis 

Figure 3.12 displays the variation of K e values when calculated with different input parameters 
(he, LAI) . Starting off at the same point the curve is increasing in a slope that has a steeper 
inclination with higher he values. All curves saturate around the LAI value of 5. After this 
peak a slight decrease is taking place. 

The percentage difference of Ke presented in Figure 3.13 is a measure of the influence 
of variation over LA!. Differences in Ke estimation increase with LAI values and saturate at 
around LAI= 4.5. The results show possible variation of Ke of up to ±0.15% for high LAI values. 

A similar, but more regular change can be observed for the variation of albedo values in the 
estimation of K c. The variation of albedo for high va.lues of LAI results in a difference of ± 
15% is close to that value (± 13%) for low values. 

The sensitivity analysis showed that the crop height can influence the estimation of K e within 
a maximum range of ± 15% for high values. Low values of LAI show a much lower variation 
when applying different he-values (for LAI= l ; -0.005% to +0.002%). A possible solution to 
minimize the error is to estimate the he over time. To do so additional information about t he 
observed crop (type, sewing date etc.) has to be obtained. 
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Estimation of agricultural surface area 

The 7 data clusters obtained from the image unsupervised classification could be identified 
and grouped in soil and vegetation classes accord ingly One cluster remained uncertain and 
was further investigated . Analysis of Kc values for these areas showed a Kc-variation of 0.01 
to 1.1 with a maximum amount of pixels at Kr.=0 .63. The spatial distribution of pixels in 
this class showed that it identifies "border-effects" around agricultural fields. (see Figure 3.17) 
For the estimation of the "cropped surface area" estimation all classes clearly identifiable as 
vegetation were combined . Mixed-pixels were excluded. "Cropped surface area" incorporated 
all pixels which are assumed to be dense vegetation on agricultural soil. This dense vegetation 
is assumed to be a result of irrigation practice (since dense vegetation would not develop with 
low precipitat ion). 

A subset of the image classification is shown in F igure 3.16 . The total surface area is given 
in Table 3.7. The estimated surface area for general agricult ural areas and summer cropped 
surface are within t he expected range when being compared to other reference values which 
estimate the area extent of summer crops to be around 20 000 ha [41]. 34% of the general 
agricultural area was used for summer crop ("cropped surface") production in the year 2010. 

Table 3.7: Ext.ent of the two types of surface areas classified from sat.ellite data 
Surface Type Area 
General Agricultural Area 62933 ha 
Cropped Surface 21780 ha 
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Figure 3.1 7: A visualization of " Class 4" showing the border effects around fields 
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Figure 3.18: Results of 2 the different area estimations displayed as K c-values on 22.08.2013 

3.3 Calculation of potential evapotranspiration 

The seasonal evapotranspiration is presented in Figure 3.1 9. The distribution of values within 
the region of interest is presented in Figure 3.20. The" General Agricultural Area" responds with 
a larger amount of pixels for low ETp values than the "Cropped Surface Area" and vice versa 
because regions with low potential for evapotranspiration (uncropped surfaces) were masked in 
t he classification process. F ields with high potential evapotranspiration are located throughout 
the Marchfeld-Area. These fields correspond with overall high K c values over time as depicted 
in Figure 3.21 and Figure 3.22. This indicates high plant vigour during the time of the image 
acquisition campaign, which coincides with the development of summer crops. Winter crops , 
like winter wheat are covered only in t heir end- and senescence stage and do thus not contribute 
decisively to high seasonal ETp rates. On average, ETp is 272 mm from June 10th to September 
September 23rd for t he the General Agricul tural Area. When analysing the Cropped Surface 
Area only the mean value is expectedly higher with 398.44 mm (see Figure 3.20). The maximum 
value is 560mm. This amount of total potential evapotranspirat ion for 4 months represents 
closely total precipitation of a full year in this region evident ly illustrat ing the need for irrigation. 

For further analysis the daily potential evapotranspirat ion was aggregated to 10 days time
steps for the " General Agricultural Area" and for the" Cropped Surface Area" . T he results are 
given in Table 3.8 and plotted in Figure 3.23. The "Cropped Surface" area shows a potential 
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evapotranspiration ranging from 58.6 mm/ 10 days at the end of July to 19.6 mm at t he end 
of t he observed t ime period. The " General Agricultural Area" has an overall lower potential 
for the evapotranspiration. The maximum is 40.6 mm and the minimum 12.5 mm. Potential 
evapot ranspirat ion is increased during t he summer months due to higher temperatures, higher 
radiation and advanced plant development . This can be observed in Figure 3.23 as an incline 
of E Tp in the beginning of t he observed t ime interval for the cropped surface area. This effect 
is reversed later in the observed t ime period when , additionally to a reduction of ETo, crops 
are either entering a senescence stage or are being harvested. Both events lower the potential 
evapotranspiration of the surface (also expressed in the lowering of K c) . 

The total potential evapotranspiration calculated for the extent of t he respective surface 
area is given in Table 3.9. 
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Figure 3.19: Seasonal potential evapotranspiration of the agricultural area in Marchfeld from 
June 10th to September 23rd 
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F igure 3.20: Histogram for t he cumulated evapotranspirat ion raster-image (see F igure 3. 19) . 
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F igure 3.21: Location of sample points displayed in F igure 3.22 
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Table 3.8: Estimated ETp values over t ime for two surface estimations. General A. A. =General 
Agricultura l Area. Date Format = M/ DD 

ETp [mm] 6/10 6/20 6/30 7 / 10 
Cropped Surface 32.8 40.4 53.6 58.6 
General A . A . 36.2 35.7 40.6 39.0 

50 

7/20 
48.0 
29.4 

7/30 
40.2 
23.8 

8/9 8/19 8/29 9/8 
41.6 38.9 21.8 19.3 
24.2 22.5 13.0 12.5 
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F igure 3_23: ETp estimation for cropped surface area and the general agricultural area of the 
Marchfeld Region 

Table 3.9: The total ETp for the observed time frame of two area estimations 
Surface Type Total potential evapotranspiration 
General Agricultural Area 174.29 Mio. m· 
Cropped Surface 86.09 Mio. m3 

3.4 Calculation of effective precipitation and water re
quirements 

3.4.1 Calculation of effective precipitation 

To account for a number of unknown factors like soil type, soil conditions, crop type, irrigation 
management etc . effective precipitation for the region was given as a range between a minimum 
and a maximum estimation. The estimations of effective precipitation cumulated to 10-day 
t ime intervals resulted in minimum of 0 (Pemin and Pemax) and maxima of Pemin = 23.8 and 
Pemax = 39.5. The maxima were observed in the beginning of t he growing season following 
a sharp decrease in the following months. A second peak can be observed at t he end of July 
where effective precipitation was estimated to be within a range of 23.7 to 39 .5 mm (see Figure 
3.24). With 759.5 mm annual precipitation was higher t han the long-term average of 550 mm. 
An overview of t he Pe-estimations is given in Table 3.10. 
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3.4.2 Calculation of water requirements 

T he estimation of water requirement was done for cumulated periods (lO-day) and resulted in 
surplus values of +19.6 mm to a deficit of -50.4 mm. Water deficit is the highest from mid-June 
to beginning of July (-34.1 to -50.3 mm/ 10 days). During this time agricultural crop was well 
developed and meteorological conditions allowed for high evapotranspirat ion wh ile precipi tation 
was low. Towards the end of July the water deficit was lowered due to increasing precipitation 
and a decrease of potential evapotranpsirat ion of agricultural crops (harvest or senescence) . 
Figure 3.25 plots the cumulated periods for the observed time frame. 

The total estimation of water deficit for cropped surfaces in the agricultural region of 
Marchfeld from June 10th to September 23rd in the year 2010 ranges from -32.02 to -52.8 
Mio. m 3 . 

Estimations of groundwater withdrawals for agricultural irrigation within t he Marchfeld re
gion were performed by the Marchfeldkanal Company. The est imat ions for the last 20 years 
vary between -9.8 to -45.1 Mio. m3 . These fi gures are a result of measurements of groundwater 
level fluctuations for representative test-sites. The Ma.n.:hfeldkanal Company attempts to est i
mate the withdrawal for irr igation purposes by limiting the time frame to summer periods were 
distinct drops in t he groundwater levels can be observed (in assumpt ion that these drops are a 
result of irrigation practices) . T his way the irrigation season for the year 2010 was estimated 
to start on J une 24th and to end on July 17th. The estimation of groundwater withdrawal for 
irrigation for this time period is 14.5 Mio. m3 . 

For comparison the EO based estimation presented in t his thesis was limited to the same 
t ime frame and resulted in a crop water requirement of 21.8 to 24.5 Mio m3 . 

When comparing the two estimation it has to be taken into account that the calculation by 
the Marchfcldkanal-Company aims to represent actual applied irrigation whereas the calcu lation 
presented in t h is thesis aims to represent the maximum water requirement of crops. Furthermore 
presented method incorporated the cropped surface area in its fu ll extent whereas irrigation 
infrastructure can be assumed to only cover a fraction of the same surface. 

Table 3.10: Estimated values for precipitation, effective precipitation and the resulting water 
balance for each calculation of effect ive precipitation for the cropped surface area of Marchfeld 
in t he year 2010 aggregated in 10 day time steps . Date format = M/ DD 

[mm] II 6/10 6/20 6/30 7/10 7/20 7 /30 8/9 8/19 8/29 9/8 
P r ecipitation 70 1 9 33 47 53 46 23 36 13 
Pemin 36 0 3 20 22 24 23 8 16 2 
Wat er req. 3 -40 -50 -39 -26 -16 -19 -31 -6 -17 
Pemax 52 1 7 24 35 39 35 17 27 10 
Water req 20 -39 -47 -34 -13 -1 -7 -21 5 -9 
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Figure 3.25: Water requirement of the cropped surface area in the Marchfeld region in the year 
2010 aggregated in 10 days time-steps 
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Chapter 4 

Conclusion 

This thesis describes the estimation of water requirements in the context of agricultural pro
duction in the water-scarce environment of Marchfeld. 

Reference evapotranspiration was calculated from meteorological data recorded at the ZAMG 
weather station in Zwerndorf by applying the FAO-56 Penman-Monteith equation. A time series 
of Landsat-5 observations was acquired for deriving information about the extent of the surface 
area for crops, the crop coefficient. and the potential evapotranspiration. In a pre-processing step 
the EO dataset was atmospherically corrected with two software tools (FLAASH, ATCOR) and 
their performance was compared by analysis of pseudo-invariant targets. EO data was used for 
calculation of albedo (wavelength integrated ground reflectance) and LAI (through the CLAIR
model). A sensitivity analysis was performed to evaluate the influence of different. parameters on 
the calculation of the crop coefficient. Meteorological and EO data were combined to calculat.e 
potential evapotranspiration. The EO dataset was further used in a classification to estimate 
the extent of the agricultural surface area. A range of plant effective precipitation was calculated 
from meteorological data. The water requirement for the region during the observed time period 
was then calculated. 

The highest potential evapotranspiration for the full observed time period from June 10th 
to September 23rd was 560 mm. The total estimated water requirement ranged from 32.02 to 
52.8 Mio. m3 . The observed peak of water deficit (5 mm/day) was observed at the end of June. 

Further improvement of the methodology can be achieved at the step of atmospheric correc
tion and assessment of effective precipitation. For the former; accompanying measurements for 
model input and reference could help to improve the performance. For the latter; the variation 
of soil types and their storage capacity must be incorporated. The Marchfeld-Region has a great 
variation of soil-types; implementation of this aspect is of particular importance when working 
on field scale since soil conditions and thus water requirements will vary from field to field. A 
prerequisite for this is the availability of data on soil types and soil conditions. 

The type of information generated with this methodology can be used at field or regional 
scale. It generates information about the crop surface in a temporal and spatial dimension. 
Providing precise information about the observed region can help managers at regional scale 
and farmers in their decision making progress. Regions of high water demand can be identified 
and allocation of resources properly managed. A critical factor for agricultural production is the 
high water deficit at the start of the growing season. If not managed properly this circumstance 
could lead to water stress and further effect plant vigour and ultimately yield stability. In an 
extended context the data on crop development itself (e.g.: LAI, Kc) can be used as additional 
source of information. This data can be used to compare different fields, soil types , seed types , 
management practices and vegetation periods to one another. EO-data of agricultural regions 
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can also be used in applications other than estimation of water requirements such as biomass-, 
yield estimation, cropland mapping and others. 

For improvement of agricult ural management practices t his data has to be relayed to farmer 
level in an accessible and user friendly way. Moreover t he informat ion needs to be provided in 
a t imely matter for the farmer to react duly on possible stress conditions. 
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Abstract: This work evaluates different procedures for the application of a semi-empirical 

model to derive time-series of Leaf Area Index (LAI) maps in operation frameworks. For 

demonstration, multi-temporal observations of DEIMOS-l satellite sensor data were used. 

The datasets were acquired during the 2012 growing season over two agricultural regions in 

Southern Italy and Eastern Austria (eight and five multi-temporal acquisitions, respectively). 

Contemporaneous field estimates of LAI (74 and 55 measurements, respectively) were 

collected using an indirect method (LAI-2000) over a range of LAI values and crop types. 

The atmospherically corrected reflectance in red and near-infrared spectral bands was used 

to calculate the Weighted Difference Vegetation Index (WDVI) and to establish a 

relationship between LAI and WDVI based on the CLAIR model. Bootstrapping 

approaches were used to validate the models and to calculate the Root Mean Square Error 

(RMSE) and the coefficient of detennination (R2) between measured and predicted LAI, as 

well as corresponding confidence intervals. The most suitable approach, which at the same 

time had the minimum requirements for fieldwork, resulted in a RMSE of 0.407 and R2 of 

0.88 for Italy and a RMSE of 0.86 and R2 of 0.64 for the Austrian test site. Considering 
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this procedure, we also evaluated the transferability of the local CLAIR model parameters 

between the two test sites observing no significant decrease in estimation accuracies. 

Additionally, we investigated two other statistical methods to estimate LAI based on: 

(a) Support Vector Machine (SVM) and (b) Random Forest (RF) regressions. Though the 

accuracy was comparable to the CLAIR model for each test site, we observed severe 

limitations in the transferability of these statistical methods between test sites with an 

increase in RMSE up to 24.5% for RF and 38.9% for SVM. 

Keywords: LAI; DEIMOS; satellite time-series; calibration; WDVI; Random Forest; 

Support Vector Machine; regression 

1. Introduction 
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In the recent years, the use of satellite sensor data has become more common in precision 

agriculture technologies [1], and various operational services are being developed within the Global 

Monitoring for Environment and Security (GMES) initiative [2]. In this context, the data users (i.e. , 

farmers, large and small scale agri-businesses) are mostly interested in monitoring the spatial 

distribution of some crop characteristics over the growing season and time-series of satellite 

acquisitions at high spatial resolution are a major source of infonnation. 

A key vegetation parameter attracting most interest is the Leaf Area Index (LA I), defined as the 

total one-sided area of green leaf area per unit ground surface area [3]. LAI is used to derive 

agronomical indicators for various crop management purposes. For instance, LAI maps are used in 

agro-meteorological models to derive the crop water needs (an example of operative application is 

given in Irrisat) [4], to monitor the nitrogen status and to apply fertilizer with variable rates (e.g., 

FarmSat), as input in crop models to derive agronomical variables [5,6] . On a larger scale, LAI and 

other biophysical variables are used for example for yield predictions at administrative level [7-9]. A 

general overview of remote sensing contributions to agriculture is given in [10]. 

Two groups of techniques have been commonly applied for the estimation of the LAI from optical 

satellite sensor data using semi-empirical/statistical approaches (i.e ., vegetation indices, VI) or physical 

based approaches of leaf-canopy radiative transfer model (RTM) inversion [11,12]. Most of the 

empirical or statistical equations, such as regressions between spectral reflectance, vegetation indices 

(VI) or shape indices (e.g., red edge) and field measurements [13-15], employ data in two or more 

wavebands, usually red and near-infrared [16,17]. VIs are often the only option for the retrieval of LA I 

with limited spectral information (such as in the case of DE 1M OS-1 data with only three spectral bands). 

A prerequisite for the quantitative analysis of time-series of satellite sensor data is to perform 

radiometric and atmospheric corrections [18], if possible using reliable instantaneous atmospheric 

measurements (such as aerosol optical thickness, water vapor content) and/or the spectral reflectance of 

known ground targets either derived from ground measurements (surface andlor atmospheric conditions) 

or from consolidated library data [19,20]. Several approaches have been proposed for performing 

atmospheric corrections. An operative procedure is based on the use of look-up-tables (LUT) with 

pre-calculated atmospheric RTM simulations for different satellite sensor types [20,21]. However, 
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model assumptions and simplifications often lead to inaccuracies in the estimated top-of-canopy (TOC) 

reflectance measurements [22]. 

The inherent inaccuracy of TOC reflectance data can be accounted for by using image-specific 

calibration procedures to estimate LAI. A typical example is the use of soil line-based VIs in place of 

intrinsic VIs [23]: in this case the image-specific tuning of the soil line slope parameter can be used 

to increase the consistency in the analysis of atmospherically corrected products, especially for 

time-series datasets. 

In this study, the application of image-specific calibration procedures to estimate LAI was tested. 

We used satellite time-series from DEIMOS-l data, an operational satellite in the DMC constellation, 

acquiring radiance in three spectral bands (green, red and near-infrared) at 22 m spatial resolution. 

DEIMOS-I satellite is equipped with a wide-image-swath sensor (630 km), providing a large coverage 

and overlap between scenes and therefore increasing the revisit time and the probability of capturing 

cloud-free images. Considering the available spectral resolution of the sensor, we selected a simple 

LA] retrieval approach based on a VI using the CLAIR model [24]. This approach has been tested 

using canopy reflectance model data [24], field-based reflectance measurements [25] and satellite data 

in a number of studies [4,26]. 

The main goal of this work was to evaluate different operational strategies to identity the 

parameters of the semi-empirical CLAIR model to estimate LAI. Within this main goal , we assessed 

the transferability of the model parameters between test sites. For comparison, two relatively novel 

statistical methods were also investigated using Random Forest (RF) and Support Vector Machine 

(SVM) regressions. 

In addressing these issues, the study provides recommendations for deriving consistent time-series 

maps of LAI in operational frameworks at moderate (22 m) spatial resolution with limited spectral 

information. Other statistical LA! mapping approaches are presented in other papers of this special 

issue [27]. 

2. Materials and Methods 

2.1. Overview 

The described methodology provides an operational perspective to identify the parameters of the 

semi-empirical CLAIR model [24,28] for deriving consistent time-series LAI maps. A set of 

DEIMOS-I satellite sensor data were acquired over two agricultural regions in Southern Italy and 

Eastern Austria during one growing season. Contemporaneous field estimates of LAl were collected 

for a number of fields and crops. Using this dataset, three operational procedures were tested (Table 1). 

First, we considered a test site specific application based on seasonal average (constant) values of the 

CLAIR model parameters, namely the soil line slope, the WDVI", (representing the asymptotically 

limiting value for the Weighted Difference Vegetation Index (WDVJ) when LAI tends to infinity) and 

the ex extinction and scattering coefficient. Secondly, we derived the model parameters for each 

satellite acquisition separately. Finally, we tested an intermediate solution based on an image-specific 

estimation of the parameters that can be extracted directly from the images (i. e., soil line slope and 

WDVIoo) and on a seasonal average (constant) value of the parameter that requires contemporaneous 
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field measurements (i.e., the ex coefficient). Additionally, we evaluated the transferability of local 

models between the two test sites. For comparison, two other statistical methods to estimate LAI were 

also investigated: Random Forest (RF) and Support Vector Machine (SVM) regressions. 

Table 1. Summary of the three procedures to derive the CLAIR model parameters. The 

'soil line slope' represents the slope of the linear relationship between red and near-infrared 

reflectance of bare soil pixels. The WDVloo is the asymptotically limiting value for the 

Weighted Difference Vegetation Index (WDVI) when LAI tends to infinity and ex is the 

extinction and scattering coefficient of the CLAIR model. A fourth procedure consisted in 

transferring the model parameters from one test site to another. 

Procedures 

2 

3 

Transferability 

2.2. Field Experimental Campaigns 

Soil Line Slope 

constant 

image-specific 

image-specific 

image-specific 

WDVIx 

Constant 

image-specific 

image-specific 

image-specific 

constant 

image-specific 

constant 

constant 

The field and satellite data used in this study were acquired in the context of two field campaigns 

carried out in two agricultural regions located in Southern Italy and in Eastern Austria during the 2012 

growing season. The Italian field campaign was undertaken at the 500 km2 'Piana del Sele' and at the 

3820 km2 'Piana del Volturno' sites in the Campania region of Southern Italy (Figure 1) (Lat. 

40.52°N, Long. 15.000 E). The two sites are large agricultural regions and are characterized by irrigated 

agriculture (mainly forage crops, fruit trees and vegetables) with an average field size of about 

2 ha [29]. The first site is characterized by very different soil types including Mollisols, Alfisols, 

Inceptisols and Entisols [30] according to the United States Department of Agriculture (USDA) 

soil taxonomy; the second plain is an alluvial formation with soil types varying from Entisols to 

Vertisols [31]. The average annual precipitation is about 800 mm, mostly concentrated during the 

winter months, with dry and warm summers. Maximum reference evapotranspiration rates, generally 

occurring during the second half of July, range between 3 and 5 mm/d [32]. 

The Austrian field campaign was undertaken at the 1000 km2 'Marchfeld region' in Lower Austria 

(Lat. 48.200 N, Long. 16.72°E). The dominant soil types are Chernozem and Fluvisol, based on the 

Food and Agriculture Organization (FAO) World Soil Classification. The general soil conditions are 

characterized by a humus-rich A horizon and a sandy C horizon, followed by fluvial gravel from the 

former river bed of the Danube [33]. The region is characterized by a semi-arid climate with an 

average annual precipitation of 500-550 mm that can drop to 300 mm making it the driest region of 

Austria. Precipitation during the growing season (April-September) is 200-440 mm. Irrigation in 

Lower Austria has made it possible to establish a variety of crops thus contributing to the importance 

of Marchfeld in agricultural production. About 65000 ha of the area in Marchfeld are used for 

agricultural production. The main crops are vegetables (11 %), sugarbeet (10%) and potatoes (7%). 

Within these two large and relatively flat regions, LAI was estimated within 400 m2 elementary 

sampling units (ESU) that were relatively homogeneous in terms of both vegetation type and growth 

stage. The center of each ESU was geo-Iocated by means of a GPS, with an accuracy of ±3-5 m. 
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Figure 1. Selected study regions. The study was carried out in an agricultural region 

located in the Eastern part of Austria (,Marchfeld region') and in two areas (,Piana del 

Sele' and 'Piana del Volturno ' ) located in the Campania region in Southern Italy. 
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For the Italian case study, LAI was sampled within ESUs over a period of three months 

(July-September 2012) in correspondence of each satellite acquisition for a total of 74 multi-temporal 

measurements comprising II ESUs (5 alfalfa and 6 maize fields in 'Piana del Sele') and 8 ESUs (3 

alfalfa and 5 maize fields in 'Piana del Volturno'). LAl values within the 19 ESUs ranged between 0.2 

and 4.9 with a mean of2.4 and a standard deviation of 1.2. 

LAI in the 'Marchfeld region' was sampled within 55 ESUs for a range of crops including maize 

(10 ESUs), sugarbeet (7 ESUs), vineyards (7 ESUs), carrots (5 ESUs) and other crops (26 ESUs). LAI 

values within the 55 ESUs ranged between 0. 1 and 5.8 with a mean of 2.2 and a standard deviation of 

1.36. A summary of the field and satellite data acquisitions is given in Table 2. 

LAI was estimated using the Plant Canopy Analyzer LAI-2000 [34]. Measurements were made 

during early morning and late afternoon under diffuse light conditions to minimize the effects of direct 

sunlight otherwise leading to LAI underestimation [35]. A view cap of 180 degrees was used to 

physically limit the sensor field-of-view and 'thus to reduce interference due to the presence of an 

operator. There are some limitations in this type of indirect measurements technique [36]. On the one 

hand, the LAI-2000 sensor does not distinguish photosynthetically active leaf tissue from other plant 

elements, such as stems, flowers or senescent leaves. This leads to overestimated LA!. On the other 

hand, the ' clumping effect', i.e., non-random positioning of canopy elements, is also neglected by the 

measurement device causing LAI underestimation. Hence, some compensation can be assumed [37]. 

The LAI recorded using the LAI-2000 sensor represents a measure close to the effective Plant Area 

Index ('PAle') for reasons discussed above [37]. The average LAI, resulting from three replications of 
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one above-canopy and nine below-canopy measurements, was taken as representative measure for 

each ESU. The three replications (for a total of 27 measurements) were sampled randomly within the 

ESU. The same sampling protocol was used in Austria and in Italy and throughout the three months 

field campaigns. 

Table 2. Timing of the field campaigns and satellite acquisitions with corresponding 

statistics of the LAI measurements. Note that acquisitions were not always performed 

during the same dates in the two areas (Sele and Volturno) of the Italian test site. 

LAI 
Field Campaign Dates Satellite Acquisition Dates No. of Samples 

Min Max Mean 

Italy (Sele II Volturno) 

04/07 04/07 II 07/07 I I 0.20 3.32 1.32 

11107 10107 II 13/07 12 0.25 3.77 1.78 

17/07 20107 11 20107 12 0.39 4.62 2.36 

26/07 29107 12 0.44 4.08 2.72 

31 /07 05 /08 7 1.63 3.39 2.95 

07/08 11108 7 0.63 4.13 2.95 

13/08 18/08 10 0.74 4.92 3.16 

10/09 09109 3 2.43 2.84 2.68 

Austria (Marchfeld) 

04/07 9 0.44 4.48 2.18 

02/08 20 0.11 4.52 1.75 

22/08 Coincident with field campaigns 10 0.15 3.31 1.82 

07/09 6 1.79 5.79 2.83 

21109 10 0.93 5.10 2.96 

2.3. Satellite Data 

Multispectral data were acquired from DEIMOS- l, a satellite in the DMC constellation. The sensor 

records radiance in three broad spectral bands corresponding to green, red, and near-infrared parts of 

the electromagnetic spectrum at a ground sampling distance (GSD) of 22 m. Five and eight scenes 

were acquired during the 2012 growing season (Table 2) for the Austrian and for the Italian case 

studies, respectively. Satellite images were provided orthorectified to sub-pixel accuracy (~10 m) 

using ground control points and the Shuttle Radar Topography Mission (SRTM v3) data as digital 

elevation model. The image data were atmospherically corrected by using A TCOR-2 [20]. For the 

Austrian test site, during the image acquisition campaign, five reference measurements of ground 

spectral reflectance (bare soils, dry and dense vegetation) were taken in correspondence of one satellite 

acquisition (August 2nd). A subset of these measurements was used to perform the atmospheric 

correction. The other subset was used to validate the results of the correction algorithm. The 

atmospheric correction for the other images in the time-series was cross-checked by observation of 

pseudo-invariant targets within the study area [19]. A similar procedure was used for the Italian test 

site and the accuracy of the atmospheric correction was checked against a set of reference pixels 

containing identifiable pseudo-invariant ground targets (i.e. , asphalt, sea water, concrete and sand) 

with known reflectance values from a spectral library [20]. 
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Figure 2. An example of the time-series of DEIMOS-l satellite sensor data for an area in the 

Marchfeld region (Austria). Five images were acquired to monitor the crop development 

during the growing season (June- September). The images were atmospherically corrected 

using ATCOR-2. RGB composites correspond to Near-infrared, Red and Green channels. 
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2.4. Estimation of Leaf Area Index 
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In this study, we selected a simple semi-empirical model and two statistical methods to estimate 

LAI. In all cases, we used the TOC (atmospherically corrected) reflectance data. Regarding the 

semi-empirical model, two spectral bands (red and near-infrared) were used to calculate the Weighted 

Difference Vegetation Index (WDVI), which was related to LAI through an inverse exponential 

relationship using the CLAIR model [24,28]. Regarding the statistical methods two models were 

applied: the first based on a regression tree algorithm using Random Forest (RF) and the second based 

on a linear kernel Support Vector Machine (SVM) regression. 

2.4.1. Semi-Empirical Estimation of LAI with the CLAIR Model 

The CLAIR model is based on an inverse exponential relationship between LAl and the WDVl, 

which was derived using field spectral radiometer data experimentally [24,28]. This relationship is 

built upon a simplified reflectance model of the light extinction through the vegetation canopy. The 

WDVl is calculated from the reflectance in red (Pred) and near-infrared (Pnir) as follows : 

WDVI Psnir = Pnir - Pred * -
Psred 

(1) 

where Ps ni/Ps red represents the 'soil line slope' , a linear relationship between red and near-infrared 

reflectance of bare soils [38]. The soil line slope parameter accounts for the effects of the soil 

background on the calculation of the vegetation index and it has to be determined for each test site [23]. 

Based on the WDVI, LAI is determined according to the following equation [28]: 

LAI = - - * In 1 - --1 ( WDVI) 
a WDVI"" 

(2) 

where a is an extinction and scattering coefficient and WDVIoo is the asymptotically limiting value for 

the WDVI. The two model parameters (WDVIoo and the 0: coefficient) can be estimated empirically 

using a set of LAl values from field measurements and contemporaneous reflectance values from 

satellite sensor data [24]. Generally, WDVIoo is derived directly from the image data considering the 

maximum WDVI value for vegetated areas in correspondence of saturation (LAI < 6). The 0: 
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coefficient can be calibrated using a regression analysis technique applied to observed and estimated 

LAI values [4]. This latter parameter describes the canopy architecture and it is dependent on the crop 

type and the corresponding Leaf Angle Distribution (LAD) value. 

Different values of the parameters in Equation (2) can be found in the literature. For instance, 

Clevers [25] reported an ex value ranging between 0.252 and 0.53 and WDVI", ranging between 68.6 

and 57.9 for vegetative and generative growth stages of barley respectively. 

In this study, we visually selected about 40-60 sample points of bare soils within each of the 

acquired satelIite image data and the reflectance of these points was used for calculation of the soil line 

slope. The soil line slope was then used to calculate the WDVI. The WDVI", value was extracted for 

each image. Then, we derived the ex coefficient using an unconstrained nonlinear optimization method, 

which minimizes the Root Mean Square Error (RMSE) (our cost function) between measurements and 

predictions of LAI values. An initial ex value of 0.35 was used as first guess based on previous 

campaigns for the Italian test site. We checked different starting values, which always converged at the 

same final result. 

We tested three different procedures (Table 1) to derive a set of ex and WDVl", values to be applied 

throughout the growing season. Firstly we considered a test site specific estimation of the empirical 

parameters of Equations (J) and (2) obtaining one seasonal average (constant) value of the soil line 

slope and of WDVloo • The ex coefficient was derived using the pooled set of LAI measurements 

acquired during the three months campaign. In this way, the time-series field and satellite datasets 

were considered as a unique dataset. This procedure was repeated independently for each of the two 

test sites under investigation. In this case, we would perform field measurements for each new test site 

only during the first year or during short field campaigns before the operational activities. Once 

calibrated, the model parameters could be applied to the newly acquired images, without further need 

for field work. 

The second procedure consisted in deriving a set of image-specific model parameters for each new 

satellite acquisition. In this case, we calibrated the ex coefficient using only the LA I measurements 

acquired in correspondence of each acquisition. To avoid introducing biases related to measurements 

taken on different dates, we did not consider antecedent measurements. This procedure represents the 

most intensive and time consuming approach, in which we would need field campaigns for each new 

satellite overpass for the estimation of image-specific a coefficients. Similarly, we would extract a 

certain number of points from each image in order to calculate the soil line slope and the WDVloo • 

Differently, a constant ex value to be applied throughout the growing season for each test site was 

considered as third procedure. This represents an intermediate solution in terms of resources required 

since we retain the same approach of the second case for deriving image-specific soil line slope and 

WDVI", values. 

These three procedures reflect possible practical approaches for applying the CLAIR model in order 

to derive time-series of LAl maps in nearly real-time (48 h from satellite acquisitions) and for 

operational campaigns. For instance, the CLAIR model has been used to derive LAl for the calculation 

of crop water requirements in irrigation advisory services [4] . 

Considering the feasible size of the field datasets for this kind of analysis (74 and 55 measurements 

for Italy and Austria, respectively), the validation of the model performance was achieved by 

resampling the field dataset using a bootstrapping approach with 200 repetitions [39] in order to 
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provide an unbiased estimation of the model accuracy [40]. To quantify the model prediction 

accuracies we used the following statistical measures: RMSE, the coefficient of determination (R2) 

between measured and predicted LAI and the confidence intervals. 

2.4.2. Statistical Based Approaches for the Estimation of LAI: SUPp'ort Vector Machine (SVM) and 

Random Forest (RF) Regression 

A second group of techniques were applied for the estimation of LAI based on statistical models 

established using (1) a least-squares version of a support vector machine (SVM) regression and (2) a 

regression tree using Random Forest (RF) algorithm. 

SVMs have been developed in the framework of statistical learning theory by Vapnik [41] for 

classification purposes and have been recently extended to regression problems [42]. SVMs have been 

applied for the estimation of LAI in previous studies [43-46] providing satisfactory results . A 

comprehensive tutorial for SVM regression was provided by [47]. In this study we used a SVM 

implemented by [48] as a Matlab toolbox. We selected a linear kernel function, which provided better 

results compared to polynomial or radial basis functions. 

RF is an ensemble algorithm developed by Breiman [49]. It consists of several regression trees; 

each tree is trained on a bootstrap sample of the training dataset and the majority vote is taken for the 

RF prediction. Random subsets of input variables are used to train the regression tree. The algorithm 

provides an internal unbiased estimate of the efTor using the so-called 'out-of-bag' (OOB) samples. RF 

has been successfully used in several classification problems but limited application to biophysical 

vegetation parameters retrieval can be found in the literature [50,51]. In this study we used a Matlab 

implementation of RF [52] with a default set of model parameters (no. of trees = 500; no. of input 

variables randomly chosen at each split = 2). 

For both SVM and RF, the regressions were established using LAI measurements and atmospherically 

corrected reflectance values in green, red and near-infrared bands. Additionally, date-specific WDVI 

and WDVI,,,, values were used as input variables. This set of variables provided the most stable and 

accurate results compared to using seasonal average of WDVI and WDVI,,,, values or reflectance only. 

In the case of SVM, we first optimized the regularization parameter y of SVM model using a simplex 

search method and a leave-one-out cross validation approach with the experimental LAl dataset. Then, 

two models (one for each test site) were applied to the experimental datasets to calculate RMSE and 

R2. In the case of RF, the model performance was calculated using the RMSE obtained from the 

average OOB Mean Square Error (MSE) over 500 trees. A pseudo-coefficient of determination 

(pseudo-R2) was calculated as follows: 1 - MSE/variance (LAI). 

3. Results and Discussion 

3.1. Identification of the CLAIR Model Parameters and LAI Estimation Accuracy 

Procedure 1: the soil line slope and of the asymptotic limiting value for the WDVI (WDVL,,,), along 

with the dates for field campaigns and satellite acquisitions are presented in Table 3. The a coefficient 

was derived using a bootstrap approach with 200 resampling of the experimental LAI dataset. The 

RMSE and R2 between measured and predicted LAl and the corresponding a coefficient were taken as 
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the median values of the 200 bootstrap estimations. Prediction accuracies are presented in Table 4. The 

scatterplots between field and satellite estimates of LA! are shown in Figure 3. Applying this first 

procedure resulted in a RMSE of 0.817 and a R2 of 0.57 for the study region in Italy. For Austria, the 

RMSE was 1.037 and R2 was 0.57. It can be observed that the distance from the 1: 1 line increases with 

higher values of both measured and estimated LA!. In addition, the variation of the actual estimates 

increases along with the LA I-value, an effect which was greatly reduced for the study region in Italy 

by using the second procedure. As expected, the RMSE for the Austrian case study was higher given 

the larger variability of the crop types in this area compared to Italy. 

Procedure 2: the LA! measurements from the last two field campaigns (31/07 and 07/08,13/08 and 

10/09) and the corresponding image data for the Italian test site were combined in a single dataset due 

to a limited number of field measurements. Similarly, the LAI and image data from the last campaign 

(07/09 and 21/09) for the Austria test site were combined. The number of LAI measurements used for 

each image-specific calibration, including LAI statistics (minimum, maximum and mean values) is 

provided in Table 2. 

The scatterplots between field and satellite estimates of LAI are shown in Figure 4. Varying the soil 

line slope and thus WDVI values helped to improve WDVI based LAI estimation. Using the 

parameters (soil line slope and WDVLx») listed in Table 3 resulted in an RMSE of 0.388 and R2 of 0.89 

for the test site in Italy (Table 4). In addition, the higher variation of LAI estimation could be reduced 

when compared to the first procedure. For the Austrian test site the RMSE was 0.82 and R2 was 0.66. 

Analyzing the data presented in Table 4, we noticed that the range of variability of the ex values (0.08) 

in the Austria test site is greater than the Italian one (0.04). This explains the larger RMSE observed in 

Austria as a consequence of the large crop variability in this area. In spite of this, larger errors are 

observed only for LAI values greater than 3. 

Procedure 3: results are presented in Table 4 and in Figure 5. A constant ex coefficient value 

throughout the growing seasons and image-specific variation of soil line slope and WDVIoo resulted in 

a RMSE of 0.407 and R2 of 0.88 for Italy and a RMSE of 0.86 and R2 of 0.64 for the Austrian test site. 

No substantial changes in the performance of the LAl estimation were observed when comparing this 

procedure to the full image-specific procedure. The slight increase in the RMSE is compensated by the 

reduced field work requirements of this approach. 

3.2. Parameterization o/Support Vector Machine and Random Forest (RF) Regressions and LA! 

Estimation Accuracy 

The results of the SVM tuning provided a y value of 0.5435 and 0.2998 for Italy and Austria, 

respectively. The application of tuned models (one for each test site) to the experimental datasets 

resulted in a RMSE of 0.394 and 0.785 for the Italian and for the Austria test sites, respectively. R2 

resulted in 0.86 for Italy and 0.69 for Austria. The application of the RF regression achieved a RMSE 

(OOB) of 0.502 ± 0.027 and R2 of 0.82 for the Italian case study and a RMSE of 0.860 ± 0.017 and R2 

of 0.63 for the Austrian case study. Compared to the CLAIR model performance, SVM achieved 

comparable accuracy for procedures 2 (Figure 4) and 3 (Figure 5) with image-specific soil line slope 

and WDVL,., values. On the contrary, RF reported slightly lower accuracies for the Italian case study. 
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However, the error estimates obtained from the OOB samples might be more realistic compared to the 

RMSE estimates for SYM. 

Table 3. Soil line slope and WDYIoo values for each satellite image in the two study 

regions. The seasonal averages correspond to the constant values used in procedure 1. 

Image-specific soil line slope and WDVI,,, values were used for procedure 2 and 3. 

Italy 

Seasonal average 

Seasonal Min-Max 

image I 

image 2 

Image 3 

image 4 

Image 5 

Image 6 

image 7 

Image 8 

Austria 

Seasonal average 

Seasonal Min-Max 

Image I 

Image 2 

Image 3 

image 4 

Image 5 

EO Acquisition Dates 

(Sele II Volturno) 

04/07 II 07/07 

10/07 II 13/07 

20107 II 20107 

29/07 

05108 

11108 

18/08 

09/09 

(Marchfeld) 

04/07 

02/08 

22/08 

07/09 

21109 

Soil Line Slope WDVI~ 

1.35 0.518 

1.24-1.42 0.469--0.588 

1.37 II 1.33 0.493 11 0.488 

1.38 11 1.32 0.50 II 0.495 

1.37 11 1.42 0.469 II 0.538 

1.33 II 1.37 0.56 

1.33 II 1.38 0.485 

1.24 1 1.38 0.588 

1.30 II 1.38 0.48 II 0.525 

1.31 0.54 

1.47 0.596 

1.41- 1.64 0.57--0.61 

1.64 0.57 

1.41 0.61 

1.47 0.60 

1.43 0.60 

1.41 0.60 

Table 4. Statistics of the CLAIR model accuracy based on the experimental field dataset. 

Procedure Case Study Dataset RMSE R2 a 
Italy Combined image 1-8 0.82 ± 0.0 1 0.58 0.32 ± 0.01 

Austria Combined image 1- 5 1.04 ± 0.03 0.58 0.39 ± 0.02 

Italy Image I 0.23 ± 0.02 0.95 0.34 ± 0.02 

Image 2 0.24 ± 0.01 0.96 0.35 ± 0.01 

Image 3 0.24 ± 0.0 1 0.97 0.37 ± 0.01 

Image 4 0.49 ± 0.03 0.75 0.34 ± 0.02 

Image 5 & Image 6 0.44 ± 0.02 0.74 0.33 ± 0.01 

2 image 7 & Image 8 0.54 ± 0.03 0.82 0.36 ± 0.02 

Austria Image I 0.79 ± 0.05 0.66 0.32 ± 0.03 

Image 2 0.85 ± 0.03 0.64 0.40 ± 0.04 

Image 3 0.53 ± 0.04 0.78 0.32 ± 0.02 

image 4 & image 5 0.97 ± 0.04 0.54 0.32 ± 0.02 

Italy Combined image i -8 0.41 ± 0.004 0.88 0.35 ± 0.01 
3 

Austria Combined image i - 5 0.86 ± 0.01 0.64 0.34 ± 0.02 
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Figure 3. Procedure 1: scatterplots of the LAI estimation for the Italian case study (a) and 

for the Austria case study (b). Vertical error bars correspond to the Standard Error on LAI 

(SEL) measurements for each ESU. Horizontal error bars correspond to the Standard Error 

on LAl predictions and it was estimated using resampling with 200 bootstraps. 
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Figure 4. Procedure 2: scatterplots of the LAI estimation for the Italian case study (a) and 

for the Austria case study (b). 
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Figure 5. Procedure 3: scatterplots of the LAI estimation for the Italian case study (a) and 

for the Austria case study (b). 
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3.3. Transferability of LA! Estimation Models from One Test Site to Another 

+ 
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To test the transferability of the CLAIR model parameters from one test site to another we used the 

results obtained from the procedure 3 (see Table 1) based on image-specific soil line slope and 

WDV1,J, seasonal- and test site-specific ex coefficients. An example of the LAI time-series maps 

derived with this procedure is presented in Figure 6. 

Figure 6. An example of the LAI time-series of DEIMOS-l satellite sensor data for an 

area in the Marchfeld region (Austria). The maps were derived using the CLAIR model 

with an image-specific tuning of the soil line slope and WDVIoo and a constant ex 

coefficient value. 
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The reciprocal exchange of the calibrated models resulted in a RMSE of 0.412 and R2 of 0.88 for 

the Italian test site. The RMSE for the Austrian test site was 0.855 with R2 of 0.64. Both datasets 

responded a slight LAI underestimation starting from measured LAY values of 2.3 and higher. 

Percentage variations in the RMSE compared to test site specific models were lower than 0.5%. 
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Similarly, we tested the transferability of the SVM and RF regressions between test sites. The 

application of RF models provided a RMSE of 0.747 when transferring to Italian case study and a 

RMSE of 0.906 for the Austrian case study. In this case, we observed poorer prediction power 

compared to test site specific models, with a percentage increase in the RMSE up to 24.5%. 

The mutual application of the SVM regression models provided a RMSE of 0.783 and of 0.808 for 

the Italian and Austrian case study respectively, with a percentage increase of the RMSE up 38.9% 

compared to test site specific models. A summary of the results is provided in Table 5. 

Table 5. Transferability between test sites (IT: Italy; AT: Austria) of the CLAIR model, 

Random Forest and Support Vector Machine regressions. The parameters of the CLAIR 

model used in this comparison were derived following the procedure 3. 

LAI Estimation R2 Variations in RMSE (%) 
Transferability RMSE 

Methods Compared to Test Site Specific Models 

IT with AT model 0.412 0.88 +0.2% 
CLAIR model 

AT with IT model 0.855 0.64 - 0.5% 

IT with AT model 0.747 0.75 +24.5% 
Random Forest 

AT with IT model 0.906 0.61 +4.6% 

IT with AT model 0.783 0.79 +38.9% 
Support Vector Machine 

A T with IT model 0.808 0.69 +2.3% 

4. Conclusions 

In this study, we described a methodology to derive consistent time-series of Leaf Area Index (LAI) 

maps using an exponential relationship (CLAIR model) between LAI and the soil-line based Weighted 

Difference Vegetation Index (WDVI). The study analyzed different procedures for estimating the 

CLAIR model parameters (soil line slope, WDVIoo and a coefficient) and highlighted the operational 

aspects of these approaches. We tested a seasonal average (constant) and an image-specific tuning to 

increase the consistency in the analysis of atmospherically corrected time-series images. Additionally, 

we applied two other statistical methods based on Random Forest (RF) and Support Vector Machine 

(SVM) regressions. These two algorithms, applied in several remote sensing problems have proved 

particularly useful in recent years for land cover classification. However, few studies can be found in 

the remote sensing literature for their application to biophysical parameter prediction problems. 

The experimental analysis was conducted using a set of DEIMOS- l satellite sensor data acquired 

over two agricultural regions in Southern Italy and Eastern Austria. In particular, these data were 

acquired in the context of two satellite-based irrigation advisory services; LAl maps are used as input 

in agro-meteorological models to derive crop water needs. This information is delivered directly to the 

farmers for water management purposes in nearly real time. The Italian case study represents already 

an operational service, while the Austrian site is a test-bed for further development and testing 

transferability of models and procedures from different environments, agricultural and management 

practices. Although limited to one sate11ite type only, this dataset offered the possibility to evaluate the 

transferability of the model parameters from one test site to another. This is particularly relevant in 

case no field measurements are available. 
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Using the CLAIR model with an image-specific tuning of the soil line slope and WDVL.o and a 

constant ex coefficient value provided the most accurate and consistent results (RMSE = 0.407 and 0.86 

for Italy and Austria respectively). Notably, this approach has the minimum requirements for 

fieldwork. Considering this procedure, we also evaluated the transferability of the local model 

parameters between the two test sites observing a decrease in estimation accuracies smaller than 0.5%. 

RF and SVM regressions provided comparable results for each test site. However, we observed severe 

limitations in the transferability of these statistical methods between test sites with an increase in 

RMSE up to 24.5% for RF and 38.9% for SVM. 

This work indicates that the CLAIR model can provide satisfactory accuracy if an adequate model 

parameterization is performed; results achieved here (with a limited number of spectral inputs) do not 

justify the use of advanced regression techniques (such as RF and SVM) compared to simple and 

robust semi-empirical relationships. One advantage of the semi-empirical model used in this study is 

that its parameters have a physical denotation and it is possible to interpret and explain the model 

behavior. In addition, it has the advantage of not requiring a priori crop map information. This 

additional layer could be used, if available, to perform a crop specific calibration of the extinction and 

scattering coefficient (a). However, this would require additional fieldwork to achieve a statistically 

significant number of measurements for each crop type. 
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