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Abstract

A procedure for analyzing the expansion of spherical cavities in cohesive-frictional

and in cohesionless materials is described. The aim is to provide a theoretical frame-

work based on a constitutive law with high-order strain gradient, which takes the

microstructure of soil into consideration. It is demonstrated that the penetration

pressure required to expend a cavity in soil depends on the ratio between the cavity

size and the mean grain diameter of the soil particles. The need for these high-

order formulations originates from the inability of the classical plasticity framework

to account for the underlying microstructure and to explain the observed size ef-

fects. According to the classical theory of cavity expansion, the expansion pressure

remains independent of the cavity size since the governing equations is written in

a dimensionless form, predicting for all the geometrically similar cavities the same

limit pressure. To validate the theory, laboratory experiments with 2, 5 and 10

mm penetrometer diameters are performed on loose and dense sand. Comparison

between experimental results and calculations yields a good agreement for the pen-

etration cone resistance with coefficients of determination of 0.97 and 0.85 for loose

and dense sand respectively .

The above theoretical models have some interesting implications for the growth

of root in soil with high impedance. The seminal roots of most plants thicken when

growing into soil with higher mechanical impedance. This study provides a further

explanation to root thickening, an increase in root diameter may give rise to reduced
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penetration pressure. This implies that enhanced penetration can be obtained by

root thickening even when the turgor pressure remains unchanged.

iii



Zusammenfassung

Ein neues Verfahren zur Untersuchung der Aufweitung sphärischer Hohlräume in

Materialien mit und ohne Kohsion wird beschrieben. Das Ziel ist die Erstellung eines

theoretischen Rahmenkonzepts, basierend auf einem Stoffgesetz mit Verformungs-

gradienten höherer Ordnung, welches die Mikrostruktur des Bodens berücksichtigt.

Wir zeigen, dass der notwendige Eindringungsdruck eines Penetrometers um einen

Hohlraum im Boden zu erweitern vom Verhältnis zwischen Hohlraumgröße und dem

mittleren Korndurchmesser abhängig ist. Die Notwendigkeit für die Formulierung

höherer Ordnung resultiert aus der Tatsache, dass die klassische Plastizitätstheorie

keine charakteristische Länge besitzt. Die klassische Theorie ist nicht in der Lage, die

zugrunde liegende Mikrostruktur zu berücksichtigen sowie beobachtete Größeneffekte

zu erklären. Nach der klassischen Theorie bleibt der Grenzdruck bei der Hohlrau-

maufweitung unabhängig von der Hohlraumgröße, da die zugrunde liegenden Gle-

ichungen dimensionslos formuliert sind, und dementsprechend für alle geometrisch

gleichen Hohlräumen den gleichen Grenzdruck liefert. Zur Validierung der neuen

Theorie wurden Laborversuche mit 2, 5 und 10 mm Penetrometer Durchmesser in

lockerem und dichtem Sand durchgeführt. Der Vergleich zwischen Experimenten

und Berechnungen zeigt gute Übereinstimmung des Penetrationsgrenzdrucks mit

Korrelationskoeffizienten von 0.98 und 0.85 für den lockeren bzw. dichten Sand.

Das beschriebene theoretische Model hat interessante Folgerung für Wurzelwach-

stum in Böden mit hohem Widerstand. Es ist bekannt, dass sich Seminalwurzeln
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der meisten Pflanzen in Böden mit hohem mechanischen Widerstand verdichten.

Unsere Untersuchung bietet eine interessante Erklärung für die Wurzelverdickung.

Eine Erhöhung des Wurzeldurchmessers reduziert den Eindringungsdruck. Dies be-

deutet, dass die Wurzelverdickung ein verbessertes Eindringen ermöglichen kann,

sogar bei gleichbleibendem Turgordruck.
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Chapter 1

Introduction

The growth of plants depends on the capability of their roots to penetrate through

soil to acquire water and nutrient. Growing roots are often subjected to various un-

favorable conditions with the mechanical impedance of soil being the major factor

limiting root growth. The soil mechanical impedance is usually described in terms of

soil strength, which is defined as the amount of force required to move or rearrange

soil particles. In addition to being dependent on textural and mineralogical prop-

erties, soil strength is also strongly dependent on soil moisture content, increasing

rapidly with decreasing soil water content. The most common way to assess soil

strength is to use a soil penetrometer, which characterizes the force needed to drive

a cone of specific size into the soil. Most of the experimental work on the axial forces

developed by roots has been closely associated with penetrometer testing (e.g. Bar-

ley, Farrell and Greacen, 1965; Cockroft, Barley and Greacen, 1969; Whiteley and

Dexter 1981; Bengough and Mullins, 1990a; Bengough, Mullins and Wilson, 1997).

Measurements on soil with penetrometer suggest that root elongation rate is not

so affected by impedance until the penetrometer resistance reaches about 0.3 MPa

(Taylor and Burnett, 1963). By direct measurement of both penetrometer resistance

and root growth, Stolzy and Barley (1968) found that the axial pressure exerted by
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two pea roots was only 80% of that execeted by a probe of 1 mm diameter. Bengough

and Mullins (1991) found that the soil resistance to the 1 mm diameter probe was

between about 4.5 and 7.5 times greater than the measured penetration resistance

to maize roots. This difference between root and probe resistance may be due to a

combination of the root-soil friction being smaller than the soil-metal friction, but

also to the faster rate of penetration of the penetrometer probe (some 65-120 times

faster) (Iijima et al., 2003).

In order to penetrate through soil, roots have to displace soil particles. Theoret-

ically, a growing root exerts radial and axial pressures onto soil (Misra, Dexter and

Alston, 1986a). Consequently, the soil should be denser around and in front of the

growing root than in far field (Dexter, 1987). X-ray photography used to illustrate

the increase in soil density near the root-soil interface shows that the deformation

around the holes made by roots and fine penetrometers is almost cylindrical, with

a small spherical component in the front of the tip (Greacen, Farrell and Forrest,

1967; Greacen and Sands, 1980).

Root penetration was studied as cavity expansion by Farrell and Greacen (1966).

They assume that the pressure on the base of a probe is equal to the pressure required

to form a spherical cavity in the soil. This pressure was explained in terms of shear

strength, cohesion, friction and critical state compressibility of the soil. A similar

analysis was carried out by Misra, Dexter and Alston, (1986b, 1986c) based on

the theory of cavity expansion by Vesic (1972). The soil surrounding the root was

modeled by an elastic, perfectly plastic material.

In soil science, penetration tests are used to characterize the compaction of agri-

culture soils. The penetrometers have typically a diameter between 10 cm and 20 cm,

which are much larger than the usual root diameter of agriculture plants (between

0.2 mm and 2 mm). Theoretical work on the deformation of soil by penetrometer
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probes assumed that the soil strength was unchanged in the proximity of the root

tip (Farrell and Greacen, 1966). However, some laboratory tests with small pen-

etrometers show clear dependence of the penetration pressure on the penetrometer

diameter (Whiteley and Dexter, 1981, Figure 1.1a). A similar effect was showed by

Bolton et al. (1999) (Figure 1.1b). The tests by Bolton and his co-workers were

carried out in a geotechnical centrifuge at an acceleration of 70g. The soil used by

Whiteley and Dexter is a silty soil with a mean grain diameter of about 0.1 mm.

The specimen was prepared by remolding the soil at the water content close to its

plastic limit of about 17.3%. The soil used by Bolton and his co-workers is clean

sand with a mean grain diameter of about 0.9 mm. The penetration resistance in

Figure 1.1a is obtained by normalizing the penetration force with the cross-section

area of the penetrometers. The normalized resistance in Figure 1.1b is defined by

ratio between the penetration pressure and the overburden stress. In both tests the

penetration resistance decreases with increasing penetrometer diameter. For large

diameter the penetration resistance is expected to approach a limit value, which can

be obtained from the classical theory of cavity expansion. Obviously this scale de-

pendence cannot be predicted by the classical theory, since the constitutive equation

does not contain any term with length scale.

In order to account for the scale effect, it is therefore essential to enrich the

classical description of the environment through additional terms that reflect the

phenomena occurring at the scale of the microstructure. Recently, material modeling

including microstructure characteristics has been extensively discussed in literature.

This models are traditionally divided into the Cosserat models, where rotational

degrees of freedom are added to the conventional translational degrees of freedom

(Mühlhaus and Vardoulakis, 1987); integral-type nonlocal models, which use spatial

weighted averages (Bažant and Pijaudier-Cabot, 1987) and gradient models, which
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Figure 1.1: Penetration tests (a) by Whiteley and Dexter (1981) and (b) by Bolton

et al. (1999)
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work with differential operators (Vardoulakis and Aifantis, 1991). An interesting

feature of the gradient plasticity models is that the presence of spatial gradients

of the state variables necessitates additional boundary conditions for the relevant

quantities on the boundary of the plastic zone (Mühlhaus and Aifantis, 1991).

In this study we use an enhanced constitutive equation with high-order strain

gradient to simulate the penetration of plant roots into compacted soils. An internal

length parameter is incorporated, which can be related to some material properties

like the mean grain diameter of soil. A natural way to incorporate such a length

scale into the constitutive law is to postulate that the yield strength depends upon

both strain and strain gradient. Considering that root growth is analogous to the

expansion of spherical cavity, this mechanical model can be used to explain some

scale effect in the interaction between plant root and soil. The soil is modeled as an

elastic-perfectly plastic material. Its response in the elastic region is assumed to obey

the Hooke’s law. Yielding is determined by the Drucker-Prager yield criterion. In

order to test the model formulation, a comparison is made of penetrometer resistance

measurements obtained from laboratory experiments, using probes of different sizes,

with the theoretically predicted cavity expansion pressures, which are based on the

gradient approach.

The thesis is organized as follows. Chapter two presents a review of the variation

in the morphology and architecture of root systems and focuses on the responses of

roots to increased mechanical impedance. Chapter three gives an overview of the

necessary framework of the local plasticity theory which serves as the background

for the development of the gradient plasticity theory and presents some example

of the application of gradient plasticity in localization and size effects problems.

Chapter four describes the application of a Drucker-Prager gradient plasticity model

of the form used by Vardoulakis and Aifantis (1991) to cavity expansion problem.
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Analytical models, for cohesive-frictional and for cohesionless soils, are developed

and used to simulate the penetration of plant roots into the soil. Chapter five

presents the results of laboratory experiments on penetrometer with diameter 2, 5

and 10 mm and discusses the comparison between these results and the theoretical

predictions. Chapter 6 presents a summary of the research, and look into some

possible research extensions.
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Chapter 2

Soil compaction and root growth

2.1 Introduction

An important factor controlling the growth and yield of plants is the ability of the

roots to penetrate through soil to acquire water and nutrients, which in turn has

substantial influence on the development of shoots and yields. The penetration

of a single root depends on the internal properties of the root as well as external

environment conditions (Greacen and Oh, 1972). Where existing soil pores are

smaller than the root diameter, roots are mechanically impeded. Consequently, the

growth rate of the individual roots will be reduced, the diameter of roots increased

and the pattern of branching altered (Bengough and Mullins, 1990b).

This chapter aims to describe the soil mechanical properties such as the com-

paction and soil strength, reviews the essential anatomical and morphological fea-

tures of roots as a background to understand the diverse forms of root systems and,

concentrates on some of the responses of roots and root systems to soil mechanical

properties.
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2.2 Soil compaction

Compaction is an increase in soil bulk density and reduction in pore space, associated

usually with an increase in soil strength (Whalley, Dimitru and Dexter, 1995). These

phenomena results from the rearrangement of soil particles under the weight of

agricultural machinery and animals. Compaction changes the size and the shape

of aggregates and clods, and therefore the total porosity, pore shape and pore size

distribution, which restrict air and water movement into and through the soil. The

degree of soil compaction that may be obtained is related to the soil structure, soil

texture and to the moisture and organic matter content. For mixtures of fine sand

and a silty clay soil, the maximum density for a range of prepared soils is shown in

Table 2.1 (Bodman and Constantin, 1965. Cited by Greacen and Sands, 1980). The

data show the dependence of the bulk density on the soil texture. The bulk density

tends to be lower in soils with higher contents of clay. Soil compaction can affect

Table 2.1: Data for fine sand/silty clay mixtures

Texture: Silty clay Clay loam Sandy clay Sandy loam Loamy

loam sand

Sand/silty clay 0/100 20/80 40/60 60/40 80/20

ρ (g/cm3) 1.42 1.53 1.69 1.77 1.85

Clay (%) 50 40 30 20 10

Liquid limit (%) 57 50 43 37 30

Plastic limit (%) 27 26 25 24 23

plant growth by impacting soil physical, chemical and biological properties. This

properties moderate the growth rate of the root axes, which may be accompanied

by morphological and physiological changes to the root system (Clark, Whalley and
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Figure 2.1: Relation between the soil strength and percentage of cotton taproots

penetrating through cores of four soils. (From Taylor, Roberson and Parker (1966)).

Barraclough, 2003). To assess the effects of soil compaction on the root growth,

some measurements of soil strength and bulk density can be useful. For example,

Taylor, Roberson and Parker (1966) reviewed study describing rooting patterns of

cotton seedling taproots in four different soil that ranged in texture from loam to

loamy sand. They found that high bulk densities, which are varied with soil texture,

greatly reduce the rooting of cotton seedling taproots (Figure 2.1). They found also

that for Columbia loam compacted to bulk density of about 1.3 g/cm3 and at 2/3

bars soil suction, the soil strength, which was about 10 bars, was sufficient to reduce

by more than a half the number of roots penetrating the soil.

2.3 Soil strength

As a result of excessive external stresses, soil undergo irreversible deformation man-

ifested by the sliding of grain over each other. At failure, the shear stress of the soil
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(in fact the skeleton) is called the ultimate strength or shear failure.

Coulomb (1776) was the first to define an expression for the shear strength of

granular materials, according to the connections that exist between the grains form-

ing the skeleton (connections due to the capillary pressures caused by the interstitial

water content and adsorbed) and skeletal structure (shape and arrangement of the

grains). This expression is given by the following equation

τ = c+ σ tanϕ (2.1)

where τ is the shear stress needed to cause failure, c and ϕ denote the cohesion and

angle of internal friction of the soil (shear parameters) and σ is the normal stress

acting on the failure plane.

Cohesion and internal friction angle are intrinsic properties of the material that

depend on the mineralogy, particle size distribution and geological history. These

two parameters take specific values when the material is purely frictional (c = 0) or

purely cohesive (ϕ = 0). Between these two extreme values, several materials are

found that have properties intermediate as is the case for most natural soils.

2.4 Measuring soil strength

Experimental studies (laboratory and in situ) on the behavior of soils are primarily

intended to provide data on strength and deformability of soils. Various devices can

be used to measure the soil strength. They include the triaxial cell, the direct shear

box, the unconfined compression machine, shear vane and penetrometer.

Traixial load cells are devises, in which a hydrostatic pressure is radially applied

and an additional axial force can be applied to a soil sample. In the direct shear

test, the soil sample is placed into a shear box. Whilst a normal force is applied,

the bottom box is moved sideways. Unlike the triaxial test in which various stress
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M,    upper machined cap; 
S,      inner chamber containing soil-   

seed system; 
T,     sintered glass tension plate; 
B,     outlet connecting soil system to       

atmospheric pressure; 
A,     horizontal manometer controlling 

matric potential ; 
E,     pressure inlet to outer chamber C; 
P,     outlet to constant pressure supply; 
F, R, positions of pairs of O rings; 
D,     coarse porous disk; 
C,     outer chamber. 
    

Constant pressure supply 

Figure 2.2: Schematic diagram of modified triaxial cell used by Collis-George and

Williams (1968)

paths (or strain) can be followed, the direct shear test is carried out with a failure

plane imposed in horizontal direction.

The triaxial cells were modified by many researchers to study the growth of

roots under various stress conditions (e.g. Collis-George and Williams, 1968; Ab-

dalla, Hettiaratchi and Reece, 1969). The triaxial apparatus used by Collis-George

and Williams (1968) was designed to study the germination of Lactuca sativa by

varying independently the matric potential and the effective isotropic stress Figure

2.2). Abdalla, Hettiaratchi and Reece (1969) have modified the triaxial cell that no

provision is made for the deviator stress. The top cap was modified to allow the

shoot to grow out of the rooting medium. The lower end of the cylinder is closed

and has tappings for aeration of the sample and the supply of a nutrient solution.

Later, Richards and Greacen (1986) used a modified cell with a small expanding

latex tube, which simulates the growing root.

In the unconfined compression test, a soil specimen is placed between two platens,
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one of which is fixed and the other movable. A vertical force is then applied. The

force at failure is divided by the cross-sectional area to give the unconfined com-

pressive strength. Compared with the triaxial test, it is not possible to explore the

behavior under three dimensional stress condition.

Vane shear test gives the shearing resistance of cohesive soils. The vane is pushed

vertically into the ground and then rotated. The maximum torque (force times lever

arm) required to rotate the vane is divided by the surface area of the sheared cylin-

der. Vane test results can be severely affected by macro-fabric and the undrained

conditions assumed may not valid if the soil contains permeable layers.

The penetrometer, in both versions with and without measurement of pore watter

pressure, is the most commonly used device for measuring the strength characteris-

tics of soils. The penetrometer consists typically of a cylindrical rod with a conical

tip at one end, and a device for measuring the force at the other (Figure 2.3). The

penetration resistance is the force required to push the cone into the soil divided by

the cross sectional area of its base. Most studies on the effects of compaction on root

growth are based on penetration tests. Root growth rate decreases with increasing

soil resistance to penetration. The growth rate is often found to approach minimum

values when the soil resistance, as measured with a penetrometer, reaches about 2

MPa (Taylor, Roberson and Parker, 1966).

As the probe penetrates the soil, it deforms the soil creating a cavity. The shape

of this cavity is intermediate between a sphere and a cylinder depending on the

shape of the cone (Greacen and Sands, 1980). Farrell and Greacen (1966) reviewed

the mechanics of soil failure associated with the penetration. They pointed out

that the expansion of the cavity took place through compression of the soil around

the penetrometer. In the plastic zone sorrounding the penetrometer, there are three

distinct subzones. In zone I, the soil is compressed to its optimum density (minimum
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Figure 2.3: Schematic diagram of a penetrometer

void ratio), while in zone II, the soil undergoes failure and zone III is a rebound zone,

where the soil behaves as an overconsolidated material. Outside this, is a zone of

elastic compression. As such, the penetration resistance consist of two components:

the pressure required to expand the cavity in the soil, and a frictional resistance to

the probe, so that

qc = σ(1 + tanφ cotα) (2.2)

where σ is the normal stress acting on the cone surface, calculated from the cavity

expansion models in soil, φ is the soil-metal friction angle and α is the semi-angle

of the cone probe. Blunt penetrometer (probe with large cone angles) is related

to spherical cavity expansion, whereas cylindrical cavity is related to finely tapered

probes (probe with narrower cone angles) (Greacen and Sands, 1980). An additional

correction for Equation 2.2 was proposed to take the effect of soil-metal adhesion on
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the cone surface, noted ca into account (Bengough, Campbell and O’Sullivan, 2001):

qc = σ(1 + tanφ cotα) + ca cotα (2.3)

This equation assumes that the soil is homogeneous and isotropic, that the soil-

shaft frictional resistance is negligible, that no soil-body accumulates in front of the

cone and that the stress is distributed uniformly on the cone surface.

Correlations between roots and penetrometers show that the resistance experi-

enced by penetrometers is much larger than that experienced by roots. This may

be due to the different tip geometries of penetrometers and roots but also to the

low root-soil friction (Bengough, Mullins and Wilson, 1997). Moreover, roots are

flexible organs, which tend to change their morphology in response to increasing soil

strength (Whalley, Dumitru and Dexter, 1995).

2.5 Root systems

Angiosperms, or flowering plants, are the plant group of major importance for agri-

cultural use. The angiosperms contains two main classes: monocotyledons and

dicotyledons. Anatomical and physiological differences between these groups are

found in most plant organs, in the shoot as well as the root system.

The primary functions of the roots are anchorage of the plant in the soil and

acquisition of water and nutrients (Fitter, 1996). which in turn has substantial

influence on the development of shoots and on crop yield. People are less familiar

with roots than the more visible flowers, stems, and leaves, but roots are no less

important to the plant.

Different plant species show different root structures (Figure 2.4). Most mono-

cotyledonous plants, such as grasses, have fibrous root systems. This is usually

formed by thin, moderately branching roots growing from the stem. In many di-
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Figure 2.4: Plant root systems: the taproot system and the fibrous root system.

cotyledonous plants, the root enlarges greatly to become the most prominent root of

the plant and is known as a taproot. The taproot develops directly from the radicle

and produces branch called lateral roots (Nabors, 2004).

Materechera, Dexter and Alston (1991) showed that the dicot roots, which have

the largest diameter, are better at penetrating compacted soil layers than monocots.

This could be related to the effects which root diameter may have on root growth

pressure and on the mode of soil deformation during penetration (Materechera et

al., 1992). These results are consistent with those of Mitchell, Ellsworth and Meek

(1995), who also showed that the size of the taproot is more important for the

creation of large continuous biopores, which are effective in water transport and soil

aeration.

Internally, the roots of all cultivated plants are built on the same general plan

and differ from one another only in detail (Figure 2.5). The principal features

which distinguish dicot from monocot roots include the vascular arrangement with

its star-shaped xylem in the stele and the occurrence of significant secondary growth

(Klepper, 1992). In dicotyledonous plant roots, between the xylem and phloem, is
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(a) (b) 

Figure 2.5: Cells of a: (a) dicot and (b) monocot roots cut in transverse section

(Nabors, 2004).

a layer of very small meristematic cells called the vascular cambium. These cells

can divide to produce new xylem and phloem. In this way, the vascular cambium is

responsible for the increase in root diameter. Dicotyledons also form another zone

of meristematic cells in the pericycle, the cork cambium, at about the same time.

The increase in diameter of most monocotyledons roots results from elargement of

cells produced in the apical meristem because a vascular cambium is absent in the

majority of those plants (Dickison, 2000).

The root grows mainly from its tip. As cells are added to the tip by repeated

cell divisions, a young root elongates and leaves behind cells that differentiate and

become the primary roots of the plant. Four areas of the young root are traditionally

recognized. These regions, starting at the tip and moving upwards towards the stem,

are the root cap, zone of active cell division, zone of cell elongation, and zone of

differentiation (Figure 2.6). The exact positions of the last three zones can vary

between species, growth conditions and tissue layers (Leyser and Day, 2003).

The root cap is thought to be a source of lubrication to the growing root apex, and

a means of causing adherence of mature roots to soil particles via the production of
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Figure 2.6: The zones of (A) root cap , (B) cell division (C) cell elongation and (D)

cell differentiation in a longitudinal cut of a maize root. (a) epidermal cell with a

root hair, (b) stele, (c) apical meristem and (d) root cap.

mucilage (Raven and Edwards, 2001). The root cap initially defines the rhizosphere

by its direction of growth, which in turn occurs in response to gradients in soil

conditions and gravity (Hawes et al., 2003). Furthermore, it plays also an important

role in the regulation of root growth rate as affected by mechanical impedance

(Bengough and Mullins, 1990b).

Just behind the root cap, there is a meristematic zone in which the cells are in

a state of active division. Above that is the zone of elongation. The cells located

in this region undergo elongation and enlargement and are responsible for growth

of root. After elongation, the cells differentiate into the typical cell type associated

with the specific location (Forbes and Watson, 1992).

17



2.6 Root responses to mechanical impedance

The response of roots to mechanical impedance has been addressed largely in the

literature (e.g. Barley, 1963; Barley and Greacen, 1967; Atwell, 1988). Generally,

mechanically impeded roots are shorter, thicker than roots grown in loose soil (Ben-

gough, 2003). Studies such as that of Veen (1982) indicate that exposing maize

roots to 40 kPa of pressure resulted in a 75% reduction in root length and a 50%

increase in root diameter. These changes in morphology of impeded roots have been

attributed to both an increase in diameter and the reduction in length of the cortex

cells (Atwell, 1988; Pritchard, 1994). Generally, roots of different species may vary

in their ability to penetrate through compacted soil (Materechera, Dexter and Al-

ston, 1991). This is largely relevant to the thickness of the roots and their tendency

to swell in response to mechanical impedance (Atwell, 1988; Materechera, Dexter

and Alston, 1991; Materechera et al., 1992)

2.6.1 Growth pressure

Roots grow by a process of cell division in the apical meristem just behind the tip,

and cell expansion in a zone just behind the apex (Clark, Whalley and Barraclough,

2003). The rate of this expansion r is often analyzed in terms of the Lockhart

equation as

r = m(P − Y ) (2.4)

where m is the extensibility of the cell wall, P is the turgor pressure, and Y is

a minimum value of P below which the cell will not grow. Assuming that the

permeability of the cells to water is not limiting cell expansion, Greacen and Oh

(1972) modified the equation of Lockhart to include the root penetration resistance
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of the soil σ, such that

r = m(P − Y − σ) (2.5)

If the root is completely impeded, so that the elongation rate is zero, σ reaches a

maximum. The maximum growth pressure that a root can exert is given by setting

r = 0 in equation (2.2).

The first measurements of the growth pressure were reported by Pfeffer (1893).

Since then, many authors have addressed this problem (e.g. Greacen and Oh, 1972;

Aggarwal and Prihar, 1975; Misra, Dexter and Alston, 1986a; Souty, 1987; Clark et

al., 1999). The maximal pressure that can be exerted by roots is ultimately limited

by the turgor pressure in the expanding cells of the root elongation zone (Clark et al.,

1999) which is determined by the osmotic potential in the cell vacuole (Bengough,

Croser and Pritchard, 1997). Greacen and Oh (1972) suggested that root cells may

change their osmotic potential to exert more pressure on the surrounding soil. Atwell

(1988) found an increase of about 27% in the osmotic pressure of lupin roots growing

in compacted sandy clay loam. However, Bengough, Croser and Pritchard (1997)

suggested, from measurements of the cell osmotic potential of mechanically impeded

roots, that the cell wall properties were more important than turgor in regulating

the elongation rate of roots. They emphasized that P , m and Y in (2.4) are not

constants, but are physiological properties that depend on the root environment.

Moreover, several researchers (e.g. Goss and Russell, 1980; Veen, 1982) suggested

that the response of root growth in compacted conditions is hormone mediated and

indicated that ethylene may play a role.

Based on measurement in pea, cotton and sunflower, Misra, Dexter and Alston

(1986a) reported that the maximal root growth pressure σmax was found to increase

with increasing root diameter. Materechera et al. (1992) suggested also that thicker

roots exert higher axial pressure. But, Clark and Barraclough (1999) found no
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significant difference in σmax between dicots (with thicker roots) and monocots. In

general, roots with larger diameter have better ability to penetrate compact soil

(Materechera et al., 1993).

2.6.2 The rate of elongation of roots

Higher soil strength decreases the elongation rate of roots (Figure 2.7). Barley

(1963) simulated high soil strength by applying radial pressure to roots growing in

fine-grained cohesionless material; the elongation rate fell sharply when the mechan-

ical impedance was increased. Correlations between root elongation rate and root

penetration resistance showed that soil with resistance of about 0.46 MPa can reduce

the root elongation rate of pea root by 56% (Stolzy and Barley, 1968). Bengough,

Mackenzie and Elangwe (1994) showed that when a compressive force is applied

to seedling pea root, root elongation rate decreased by more than 50% within 30

min of increasing the applied force by 100 mN. A smaller increase in growth rate

was observed when the force was removed. Based on measurement in mechanically

impeded pea roots, Croser, Bengough and Pritchard (1999) found a decrease of the

rate at which new cells are added onto a file (i.e. cell flux) and of the final cell length,

which contributed to a slower elongation rate and a shorter zone of elongation.

The response of the root to mechanical impedance and the importance of the

root tip in mediating the response were demonstrated by Goss and Russell (1980)

by observing the response of the seminal axis of maize to small glass ballotini. They

found that the elongation rate of intact maize roots was rapidly reduced by more

than 70% for a period of 10 mminutes after contact with the glass bead, after which

it gradually increased to the initial rate of elongation after 15 minutes. No change

in the rate of elongation was observed in roots which had been decapped.
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Figure 2.7: Root resistance versus elongation rate of pea seedling roots in remoulded

cores of sandy loam soil calculated from Eavis (1967) by Bengough and Mullins

(1991)

2.6.3 The swelling behavior of roots

The growth in compacted soils usually causes morphological changes of roots, such

as larger diameter of roots due to a great enlargement in the cortex in which cells

became shorter in longitudinal direction and wider across, while the stele remains

constant in diameter (Iijima and Kato, 2007, Figure 2.8). In impeded pea roots,

the number of cortical cell layers is increased from 7 to 10 (Croser, Bengough and

Pitchard, 1999), while in lupin roots, the number of cortical cell layers remains

unchanged (Atwell, 1988). Atwell (1988) showed that the radial swelling is primarily

achieved by the yielding of tangential and radial cell walls of the outer cortex. A

similar analysis was carried out by Croser, Bengough and Pritchard (2000), who

found that the changes in cell morphology, which is not associated with a decrease

in cell turgor, appears to be a loosening of cell walls in the radial direction and
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Figure 2.8: Cross section of cotton root under different soil densities: (a) 1.0 Mg/m3,

(b) 1,5 Mg/m3. (From Iijima and Kato, 2007)

a stiffening of walls in the axial direction. In general, thicker roots have higher

buckling resistance (Whiteley and Dexter, 1983b). Moreover, thicker roots may

reduce the axial stress in front of the root tip (Abdalla, Hettiaratchi and Reece,

1969; Richards and Greacen, 1986).

2.6.4 The shrinking behavior of roots

In order to penetrate soil, which contains smaller pores than the tip of growing

root, the root tip region must exert sufficient force to deform the soil. There is

not much information about the minimum size of pore into which a root can grow

without having to enlarge it (Gregory, 2006), but Wiersum (1957) suggested that

the root penetration in such soil is possible only if the pore size exceed the root

size. However, Scholefield and Hall (1985) showed that roots of some grasses e.g.

reygrass, were able to penetrate into rigid pores of a smaller diameter than that

of the root. Under their experimental conditions, seminal axes that were 880µm

in diameter could penetrate rigid pores ≥ 315µm. They found that the thickness
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of the cortical cells was decreased, while the stele remains unchanged. The results

of more recent studies of the growth of maize roots through rigid walls showed in

contrast a thinning of both the cortex and stele (Bengough, Croser and Pritchard,

1997). Bengough and his co-workers suggested that this radial compression may

affect the hydraulic conductivity of roots since the conducting area of xylem vessels

is also decreased.

2.6.5 The branching of roots

Morphological changes in the root system may occur as a results of changes in soil

compaction. Root systems growing in hard soil look very stunted compared with

those grown in loose soil (Bengough, 2003). This may be due to the compression

of soils around expanding roots, which lie within certain distances of root axes

(Dexter, 1987). The effect of mechanical impedance on pea and seedling roots

grown in compacted sandy loam (Barley, Farrell and Greacen, 1965) and on lupin

roots grown in compacted sandy clay loam (Atwell, 1988) was studied. Barley and

his co-workers found a decrease in the production of laterals. Atwell (1988) found

little or no proliferation of laterals due to compaction and the zone of lateral root

growth is sometimes advanced nearer to the apex of the main axis. Goodman and

Ennos (1999) found also no significant difference in the number and weight of first-

order laterals of sunflower and maize due to soil compaction. However, tests with

artificial soil conditions suggest an increase in the number of lateral roots (Goss and

Russell, 1980; Veen, 1982). This may be the result of larger pores being present in

artificial conditions, which is not the case in compacted field conditions.
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2.7 Soil heterogeneity and root growth

Much of the research on the effect of mechanical impedance on root growth has been

concerned with the behavior of roots grown in artificial systems, such as glass, wax

or sand compacted to a certain degree (Abdalla, Hettiaratchi and Reece, 1969; Goss

and Russell, 1980; Bengough and Mullins, 1990b). Responses of roots to conditions

in such laboratory environments may differ greatly from field, which include fine

soil, clods, peds and biopores (i.e. root channels and earthworm tunnels). Such soil

characteristics are not always favorable for root elongation because the mechanical

impedance is not evenly distributed and its heterogeneity induces complex influence

on root systems, plants, and on crop production. However, channels and cracks

can allow the roots to overcome the areas of compacted soil, enabling access to

a larger volume of soil with water and nutrients (Stirzaker, Passioura and Wilms,

1996). Moreover cracks narrower than the diameter of the root increase greatly

the elongation of the root than in bulk soil, by reducing partially the mechanical

impedance (Whiteley and Dexter, 1983a). Materechera et al. (1993) showed that

the vertical biopores are important to the development of roots at depth.

However, excessively large pores and cracks in the soil, which have diameters

many times that of the root, can also have a negative effect on root growth (Pierret,

Moran and Pankhurst, 1999). This may be due to the poor soil-root contact, which

decreases the ability of roots to extract water and nutrients, and perhaps even low

level of growth inhibitors produced by root tip (Passioura, 2002). Furthermore the

existence of continuous biopores gives rises to a clumped root distribution, due to

the difficulties for laterals to penetrate the pore walls. Better plant growth was

obtained when roots were grown in a network of narrow root channels made by

lucerne and reyegrass (Stirzaker, Passioura and Wilms, 1996). Furthermore, lateral

roots show better penetration of the biopore walls because of their orientation and
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thickness (Whiteley and Dexter, 1983a).

2.8 Soil aggregate size and root growth

The ability of roots to penetrate soil depends mainly on the physical properties of

soil, such as soil compaction (Atwell, 1990) and size and strength of soil aggregates

(Misra, Alston and Dexter, 1988; Logsdon, Parker and Reneau, 1987). Donald,

Kay and Miller (1987) sieved aggregates of different sizes (less than 1.6 mm, 1.6

to 3.2 mm, 3.2 to 6.4, 6.4 to 12.8 mm) from a loam to obtain different growing

media. They found that maize plants growing in pots filled with the smallest of the

aggregates grew substantially better than plants growing in the larger aggregates.

Misra, Alston and Dexter (1988) reported also, for cotton and sunflower plants grown

in pots containing aggregates of 6 different sizes (ranging from 1 to 19 mm) that

the total root length was greater with small aggregates. Morphology of roots was

also affected. Logsdon, Parker and Reneau (1987) observed significantly increase

in root diameters within coarser aggregates. This effect of aggregate size on root

growth could be due to an increase in mechanical resistance adjacent to the soil-

root interface with increasing aggregate size (Misra, Alston and Dexter, 1986b,c),

whereas the smaller aggregates did not impede root growth and may be displaced

radially by roots more easily (Whiteley and Dexter, 1984; Logsdon, Parker and

Reneau, 1987).

2.9 Compression of soil around roots

Roots affect the surrounding soil in many aspects. The pressure exerted by growing

roots compresses the soil in their vicinity and locally changes the soil porosity and

bulk density (Greacen and Sands, 1980). Many theoretical studies have been made
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to model the deformation of soil around a growing root (e.g. Farrell and Greacen,

1966; Dexter, 1987; Becher, 1994; Kirby and Bengough, 2002). Farrell and Greacen

(1966) employed the cavity expansion theory to describe the deformation of soil

around roots. The model developped by Dexter (1987) predicts that the density

decreases exponentially with distance from the roots surface. More recently, Becher

(1994) showed that an expanding root compacts the adjacent soil and that this

compaction depends on the initial conditions of the soil as well as on the root size.

Using critical state model and finite element method, Kirby and Bengough (2002)

predicted the greatest stresses to be at the very tip of the root cap. The stresses

decreases with increasing distance from the root apex, and with increasing distance

from the root surface.

Localization of compaction in sandy loam soil adjacent to root channels was first

observed by Barley (1954). Using a radiograph technique, it has been also found that

the bulk densities at the surface of pea, wheat and maize roots increased by 12, 28

and 20 % respectiveley at 3 mm from the root (Braunack and Freebairn,1988. cited

by Young, 1998). Cockroft, Barley and Greacen (1969) reported a 8.5 % decrease

in voids ratio adjacent to pea radicles in clay soil. The increase in bulk density

was also evaluated by radiation techniques around metal probes (Greacen, Farrell

and Forrest, 1967; Bradford, Farrell and Larson, 1971). It has been shown that the

density patterns depend on the probe size and the tip form. Moreover, similar effect

of an expanding cylindrical rubber tube, which simulates a growing root, on the

surrounding granular media was also observed by Evans (1970) and Richards and

Greacen (1986). Generally, the variation in soil density at the root surface, and the

distance from the root surface where the soil is compressed, depends on the root

diameter and the compressibility of the soil (Bengough, 2003).
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2.10 Conclusion

Bulk density and soil strength are two major soil physical factors affecting root

growth. The ability of plant roots to grow inside the compacted zones is closely

related to the mechanical impedance of the soil medium as well as the internal

properties of roots. Plants with greater root diameter (dicots) usually penetrate

the compacted soils better than those with smaller root diameter (moncots). As

response to increasing mechanical impedance, roots become shorter, thicker and the

rate of elongation becomes smaller.

Theoretical studies on root growth based on penetrometer probes usually assum

that the soil is homogeneous. As a consequence, change in penetrometer diameter

does not influence the penetration pressure since the penetration force is propor-

tional to the cross section of the probe. However, penetration tests in uniformly

compacted sieved soil show that the penetration pressure differs from the predicted

theoretical value when the probe diameter approaches the soil grain size. These

observations indicate that the soil microstructures give rise to the size dependence

of the penetration pressure, which is not adequately described by the classical con-

tinuum theory lacking a characteristic length. To avoid these deficiencies, further

research of the phenomena occurring at the root scale is needed taking into account

the microstructural features of the soil.
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Chapter 3

Strain gradient plasticity

3.1 Introduction

Conventional models assume that the material behaves as local continuum. This

implies that the state variable in a single material point depends only on that par-

ticular point and is not influenced by the surrounding material. In reality, however,

no material is ideally local. Such plastic models, based on the standard continuum

theory, fail to provide an objective description of localized deformation since they

possess no material length scale and the typical dimensions of length that appear are

associated with the overall geometry of the domain under consideration (Aifantis,

1999).

To resolve this issues, the introduction of spatial or nonlocal interactions into

the continuum framework is required, which is achieved by taking into considera-

tion of either the gradient of a state variable or a nonlocal state variable. Recently,

several models incorporating material length scales have been proposed. These mod-

els are based on higher-order or nonlocal continuum theories, which are necessary

to explain and simulate the behavior of heterogeneous materials (materials with

microstructure). These models can be classified into three groups
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• Micropolar models, that enhance the kinematic description of deformation by

an additional field of local rotations, which can depend on the rotations corre-

sponding to the displacement field. They display the property that the Cauchy

stress tensor is no longer symmetric and that the so called couple stress ten-

sors are present, which are thermodynamically conjugate to curvature tensors.

The latter are expressed in terms of the spatial gradient of a microrotation

tensor (Mühlhaus and Vardoulakis, 1987; de Borst and Sluys, 1991; Tejchman

and Wu, 1993);

• Nonlocal models, that define state variables in an average form over a represen-

tative finite volume of the body, whose size is a characteristic of the material,

and the material length parameter determines how the value of the variable

at a certain point is weighted (Bažant and Pijaudier Cabot, 1988), and

• Strain gradient models, that characterize the deformation at a material point

not only by the conventional strain but also by the strain gradients. This is

governed by additional differential equations giving rise to additional boundary

conditions for higher-order variables (Aifantis, 1984, 1987; Vardoulakis and

Aifantis, 1991). In this dissertation, only the strain gradient theory will be

used.

This chapter presents the necessary theoretical background of the classical plasticity

theory and the gradient plasticity theory.

3.2 Classical plasticity

The classical theory of plasticity can be viewed as an extension of the theory of elas-

ticity to account for nonlinear material behavior including permanent deformation.
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The constitutive laws are based on: 1) the decomposition of strain into elastic and

plastic parts, 2) the existence of a yield surface in the space of principal stresses, 3)

the accompanying plastic flow rule, and 4) the hardening law. We confine ourselves

to time independent models.

3.2.1 Strain decomposition

The total strain εij can be decomposed into reversible elastic strain εeij and irre-

versible plastic strain εpij as

εij = εeij + εpij (3.1)

The elastic strain is determined traditionally using a generalized Hooke’s Law,

which is expressed as

σij = Cijklε
e
kl (3.2)

where Cijkl represents the elastic stiffness tensor, which, for isotropic materials, is

defined as

Cijkl =
Eν

(1− 2ν)(1 + ν)
δijδkl +

E

(1 + ν)
(δikδjl + δilδjk) (3.3)

where E is the Young’s modulus, ν is the Poisson’s ratio and δ is the Kronecker

delta.

The decomposition of the total strain can be thought of as an expression for the

elastic strain, εeij = εij − εpij. The stress response is related to the elastic strain as

follows

σij = Cijkl(εij − εpij) (3.4)
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Figure 3.1: Evolution of the yield surface in the principal stress space for an elastic-

perfectly plastic material (a) and for an elastoplastic hardenable material (b).

3.2.2 Yield criterion

In the space of principal stresses, there exists a yield surface, inside which the

behavior is completely elastic. This surface is convex and depends on the stress

variables, but can also depend upon other variables, k , often called hardening

parameters. The yield surface is expressed through the following equation

f(σij, k) = 0 (3.5)

Plastic deformation can only occur when the stress state lies on the yield surface

(f > 0 not admissible). In this case, if the yield surface does not change with

stress history, the material is known as a perfectly plastic solid (Figure 3.1a). On

the other hand, if the yield surface evolves during loading, an elastoplastic behavior

with hardening is obtained (Figure 3.1b).
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Figure 3.2: Principle of maximum plastic work

3.2.3 Flow rule

The general framework of thermodynamics postulates the existence of a plastic

potential. The plastic potential, noted g, may also depend on the hardening param-

eters.

The flow rule is called associated, when the yield surface is coincident with the

plastic potential (f = g). The direction of plastic strain vector in the space of

principal strains is perpendicular to the yield surface. This leads to the following

flow rule

dεpij = dλ
∂f

∂σij
(3.6)

where dλ is the plastic multiplier, which can be determined from the hardening law.

This type of material obeys the principle of maximum plastic work. This princi-

ple is reflected by the condition of normality of the plastic strain increment at any

point on the boundary of the convex yield surface corresponding to the following

inequality

(σ∗
ij − σij)dε

p
ij ≥ 0 (3.7)

where σij and σ∗
ij denote the stress tensors corresponding to two points, respectively,

one inside the yield surface and the other on the yield surface (Figure 3.2).
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The flow rule is called non-associated when the direction of plastic strain vector is

perpendicular to the plastic potential g(σij), which is distinct from the yield function

f(σij). The plastic flow rule then takes the form

dεpij = dλ
∂g

∂σij
(3.8)

3.2.4 Hardening Laws

The hardening law governs the evolution of the yield surface in size, shape and/or

location, with the loading history, in such a way that the current stress remains on

the yield surface. This requirement is known as the the consistency condition, and

is mathematically stated as

df(σij, k) = 0 (3.9)

Since the hardening parameter k is a function of the plastic strain, so the consistency

condition can be written as follows

∂f

∂σij
dσij +

∂f

∂k

∂k

∂εpij
dεpij = 0 (3.10)

Isotropic hardening represents a uniform expansion of the yield surface, inde-

pendent of the direction of plastic flow. Classical kinematic hardening represents a

translation of the locus of the yield surface, in stress space, in the direction of plastic

flow. Mixed hardening is used when the two cases mentioned above are combined.

If the yield surface increases in size during loading, the material is said to be

hardening. In contrast, softening is correspond to a decrease of the yield surface.

Drucker’s stability postulate, developed in the 1950s, defines the strain hardening

materials as stable (σijdε
p
ij > 0) and strain softening materials as unstable (σijdε

p
ij <

0). The material behavior with σijdε
p
ij = 0 are in elasticity or perfect plasticity.

33



3.2.5 General stress-strain relations

A general procedure for deriving a complete stress-strain relationship, according to

the characteristics of plastic deformations, must be formulated in the incremental

form. Equation (3.4) can be rewritten as

dσij = Cijkl(dεij − dεPij) (3.11)

Using the general non-associated plastic flow rule of equation (3.8) to express equa-

tion (3.11) in the following form

dσij = Cijkl

(
dεij − dλ

∂g

∂σij

)
(3.12)

Substituting equation (3.12) into the consistency condition (3.10) gives

dλ =
1

H

∂f

∂σij
Cijkldε

p
kl (3.13)

where H is given by

H =
∂f

∂σij
Cijkl

∂g

∂σkl
− ∂f

∂k

∂k

∂εpij

∂g

∂σij
(3.14)

By substituting equation (3.13) into equation (3.12), the complete relation between

the stress and strain increments is obtained as follows

dσij =
(
Cijkl − Cp

ijkl

)
dεkl (3.15)

where Cp
ijkl is the stiffness tensor of plastic behavior defined as

Cp
ijkl =

1

H
Cijmn

∂g

∂σmn

∂f

∂σpq
Cpqkl (3.16)

The above procedure is valid for both isotropic strain hardening and perfectly plastic

solids. For the case of perfectly plastic solids, equation (3.14) takes the following

form

H =
∂f

∂σij
Cijkl

∂g

∂σkl
(3.17)
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3.2.6 Plasticity models

Plasticity models are defined by a yield or failure criterion characterizing the strength

properties of the material. The yield criterion limits the elastic domain during

loading, whereas the failure criterion gives the maximum deviatoric stress that can be

applied. There are a number of models proposed for different materials. Some of the

commonly used yield or failure criteria are the Tresca and Von Mises yield criteria,

which are independent of the hydrostatic stress and, the pressure sensitive yield

criteria, i.e. Mohr-Coulomb and Drucker-Prager yield criteria, which incorporate

the effect of the hydrostatic pressure on the yield surface (see Yu, 2006 and Nakai,

2013).

Tresca criterion

According to the Tresca yield criterion (1864), yielding of a material begins when

the maximum shear stress at a point reaches a critical value k. If σ1, σ2 and σ3 are

the principal stresses, the Tresca criterion can be expressed as

Max {|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|} = 2k (3.18)

where k is a material parameter determined experimentally by a tension test.

In the principal stress space, the yield surface is a prism parallel to the hydrostatic

axis (σ1 = σ2 = σ3)(Figure 3.3a). The section on the deviatoric plane is a regular

hexagon (Figure 3.3b).

Von Mises criterion

In the Von Mises criterion, yielding occurrs when the second invariant of deviatoric

stress, J2 = sijsij/2, reaches a critical value. Von Mises yield criterion is expressed
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Figure 3.3: Tresca yield surface a) in the principal stress space; b) in the deviatoric

plane.

as follows

√
J2 − k = 0 (3.19)

or

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − 6k2 = 0 (3.20)

where k is a material parameter. Alternatively the criterion ca be expressed directly

in terms of the effective stress as

σe − k = 0 (3.21)

where σe =
√

2
3
sijsij is the effective stress and sij = σij − 1

3
σkkδij is the deviatoric

stress tensor. The physical explanation of Von Mises yield criterion is that yielding

begins when the elastic energy of distortion reaches a critical value (Hill, 1950).

Geometrically, Von Mises yield criterion represents a right circular cylinder,

whose generator is equally inclined to the principal stress axes (Figure 3.4a). The

section on the deviatoric plane is a circle (Figure 3.4b).

Mohr-Coulomb yield criterion

According to the Mohr-Coulomb criterion, yielding is assumed to occur when the

shear stress, τ , on any plane reaches a value that depends linearly on the normal
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Figure 3.4: Von Mises yield surface a) in the principal stress space; b) in the devia-

toric plane.

stress, σn, on the same plane (see Sec. 2.3).

In term of the principal stresses (for σ1 ≥ σ2 ≥ σ3), the Mohr-Coulomb yield

criterion can be expressed by

σ1 − σ3 − (σ1 − σ3) sinϕ− 2c cosϕ = 0 (3.22)

where c and ϕ are respectively the cohesion and the friction angle of the material.

In the special case of frictionless materials, for which ϕ = 0, equation (3.22) reduces

to the maximum shear stress criterion of Tresca.

Drucker-Prager yield criterion

The Drucker-Prager criterion, formulated in 1952, is a smooth approximation of the

Mohr-Coulomb criterion (Figure 3.4) and is an extension of the Von Mises crite-

rion, where the influence of the hydrostatic component on failure is introduced by

inclusion of an additional term in the Von Mises expression to give

√
J2 + µI1 − k = 0 (3.23)

where I1 = σii is the first invariant of stress tensor, µ and k are material parameter.

When µ is zero, equation (3.23) reduces to the Von Mises criterion.
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Figure 3.5: Mohr-Coulomb and Drucker-Prager yield criteria.

3.3 Gradient plasticity

Conventional continuum theories assume that stress at a material point is a function

of state variables, such as strain, at the same point. Although this local assumption

has long been proved for homogeneous deformation and stress fields, it is inappro-

priate when the material behavior at this point is influenced by the deformation

of neighboring points. Under these circumstances, standard continuum models fail

to predict the actual material behavior. Not only do to their inability to predict

the influence of the microstructures on the global mechanical behavior of the ma-

terial, but they also suffer from mathematical difficulties for localized deformation

and cannot account for scale effects. These effects can be successfully captured by

continuum theories that include a material length scale, which is closely related to

the microscopical structures such as the mean grain diameter in granular materials

(Vardoulakis and Aifantis, 1989).

The strain gradient plasticity has been formulated to account for length scale-

dependence in plasticity. It was intended primarily to solve problems related to

localization, mesh dependence in certain FE-simulations and to estimate the width

and spacing of shear bands. The basic idea of the gradient plasticity was first

initiated by Aifantis (1984) to describe the width of shear bands in metals. He
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assumed that the yield function of the material is related to the strain gradient in

such way that an additional material length scale can be introduced while leaving

the other features of plasticity theory unchanged.

In an analysis of shear bands of a class of ductile materials with rate independent

response, Coleman and Hodgdon (1985) presented an analytical solution of a one

dimensional non-linear constitutive model with strain gradient. They proposed a

direct gradient modification of the flow rule through the use of the consistency

condition. They included a term that accounts for the spatial derivative of the

accumulated shear strain in the evaluation of the stress field, which becomes the

Laplacian of the accumulated distortion in the three dimensional generalization.

Schreyer and Chen (1986) used a gradient constitutive model in a one dimen-

sional problem to study the relationship between material softening and structural

softening. They proposed a gradient model in which the current yield stress depends

on both the plastic strain and its first spatial gradient.

Vardoulakis and Aifantis (1989; 1991) extended the gradient plasticity model

for frictional/dilatent materials by incorporating the second order strain gradients

into the flow rule, yield condition, and/or dilatancy condition. The extra boundary

conditions associated with the gradient term are obtained using the principle of

virtual work. A complete description of the Aifantis gradient plasticity in connection

with shear band analysis is provided in Mühlhaus and Aifantis (1991). The authors

presented a variational formulation that incorporates the Laplacian of the plastic

consistency parameter in such way that the same interpolation functions for both the

displacements and the plastic parameter are obtained. Extra boundary conditions

are then needed for the plastic strain fields.

A general formulation and a solution algorithm for the gradient dependent plas-

ticity, in a finite element context, have been presented by de Borst and Mühlhaus
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(1992). They presented a mixed formulation with the displacement and the effective

plastic strain treated as nodal unknowns to simulate the strain softening behavior.

Their formulations and algorithms are able to solve two or three dimensional bound-

ary value problems. The same framework has been used by de Borst and Pamin

(1996) in a 2D finite element formulation. Numerical results of plane strain com-

pression illustrates stability after localization and insensitivity to mesh refinement

and alignment for the gradient theory. Recently, the gradient theory was also im-

plemented into meshless methods by Chen, Wu and Belytschko (2000) and finite

difference method by Alehossein and Korinets (2000). Furthermore, Peerlings et al.,

(1998) extended gradient theory to construct a gradient-enhanced damage model

for concrete. Drawing from this inspiration, an implicit gradient model for metal

plasticity has been also developed by Engelen, Geers and Baajens (2003). The au-

thors postulate the dependence of the yield stress on the hardening variable and an

additional quantity, which can be interpreted as a nonlocal hardening variable and

showed numerical simulations with a gradient formulation.

3.3.1 Aifantis’ theory

The simplest form of the strain gradient theory, proposed by Aifantis in the early

1980s, is based on the introduction of the Laplacian of the effective strain εp into the

constitutive expression for the flow stress σ̄. In his model Aifantis assumes that the

actual flow stress is linearly related to the gradient of the equivalent plastic strain

in the form

σ̄(εp,∇2εp) = σ̄(εp)− c∇2εp (3.24)

The corresponding form of the yield function can be written as

f(σ̄(εp,∇2εp)) = f(σ̄(εp))− c∇2εp (3.25)
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where f(σ̄(εp)) is an expression of the flow stress from the classic (or local) model,

εp =
√

2εijεij/3 is the equivalent plastic strain, c is a material parameter with the

dimension of force, which may be calibrated through shear band thickness measure-

ments (Zbib and Aifantis, 1992), and the definition

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(3.26)

for the laplacian operator in polar coordinates.

By making use of the gradient dependence of the yield function in (3.25), the

plastic consistency condition ḟ = 0 becomes the following differential equation

∂f

∂σ
σ̇ +

∂f

∂εp
ε̇p +

∂f

∂∇2εp
∇2ε̇p = 0 (3.27)

According to the classical flow theory, the plastic multiplier defined in (3.6) can be

written as

ε̇p = λ̇n (3.28)

where n is the plastic flow direction tensor. The consistency condition takes then

the form (de Borst and Mülhaus, 1992)

nσ̇ +
∂f

∂λ
λ̇ +

∂f

∂∇2λ
∇2λ̇ = 0 (3.29)

The resulting equation is a differential equation for λ unlike conventional plasticity

where the plastic multiplier can be determined locally from an algebraic equation.

The dependence of the yield function on the second order derivatives of the effective

plastic strain requires non-standard boundary conditions. Mühlhaus and Aifantis

(1991) assumed,with the help of the variational principle, appropriate boundary

conditions for the plastic multiplier (∇λ̇ = 0) at the elastic-plastic interface. By

solving the equation (3.29) together with the incremental equilibrium equation, the

gradient plasticity theory is capable of describing the plastic behavior of materials

and capturing the heterogeneity and size effects.
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3.3.2 Strain gradient plasticity interpretation of size effects

The problem of size effect has been investigated by several researchers using gradient

plasticity theory (Zhu, Zbib and Aifantis, 1997; Aifantis, 1999). By introducing the

strain gradients into the constitutive equation, a material length scale is included

into plasticity theory, providing a framework for modeling phenomena with length

scales. As described by Fleck et al. (1994) there are two different size effects

of plastic deformations. The first group is the dependence of material behavior

on the size of the volume under consideration when the material and geometry

shape are kept unchanged. For example, the indentation hardness increases as the

thickness of films is decreased (Nix, 1989). The second category is due to the size and

arrangement of microstructure for example the Hall-Petch hardening effect. This is

due to the fact that the flow stress of a polycrystal is inversely proportional to the

square root of the grain size.

For interpreting size effects in metal matrix composites, Zhu, Zbib and Aifantis

(1997) solved a boundary value problem by FEM. Comparison between the proposed

model predictions and experimental data shows that the strength of metal matrix

composites decreases with increasing particle size of reinforcement for all materials

studied. For soils and concrete, the size effect was discussed by Vardoulakis and

Sulem (1995) and Harris and Sabnis (1999).

Size effects have been also observed for hardening materials on millimeter and

micrometer scales, e.g. bending of thin beams (Stölken and Evans, 1998), torsion

of thin wires (Fleck et al., 1994) and micro indentation (Nix, 1989). The results

of these experiments cannot be described by standard plasticity theories since their

constitutive models possess no material length scale.
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Bending of thin beams

A micro bending test for thin foils was presented by Stölken and Evans (1998). In

their experiments, nickel foils of different thicknesses were subjected to bending.

The deformed radius of curvature of an elastically unloaded foil was measured. The

authors observed an increase in normalized moment for decreasing foil thickness

from 50 µm to 12 µ, which give improved currency of the notion of a size effect for

plasticity at small scales.

Richards (1958) tested beams of mild steel to investigate size effect on yielding

in pure bending. The beams were in five different sizes, which were geometrically

similar. He observed that the value of yield initiation increases significantly as the

specimen size is decreased from the largest to the smallest. Aifantis (1999) showed

that this effect can be described using strain gradient plasticity theory. Due to

∇2ε = 0 in the case of pure bending, he adopted a gradient dependent stress-strain

relation using first and second gradients in the form

σ̄ = σ0 − c1 |∇εp| − c2∇2εp (3.30)

where (σ̄, εp) denote the equivalent stress and strain, σ0 is the tensile yield stress

and (c1, c2) are the gradient coefficients. The rest of the model (strain distribu-

tion, Hooke’s law for the elastic strains etc.) is kept unchanged as in the classical

continuum theory.

Let κ be the curvature of the beam and h its thickness. The axial stress and the

axial strain in the elastic region are given by σ = Eε and ε = κy respectively, where

E is the Young’s modulus and y is the coordinate along the depth of the beam,

measured from the neutral axis.

Using the same relationship of the stress and stain for the equivalent stress and

equivalent strain, Aifantis (1999) assumed that yielding first occurs when the stress
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Figure 3.6: comparison between theory and experiment in yielding behavior in pure

bending (Aifantis, 1999)

at the outer surface of the beam becomes equal to the yield stress value Y then

Y = Eκh/2 = σ0 − c1κ (3.31)

The expression for the dependence of the yield stress Y at the outer surface of the

beam on the height h of its cross-section is therefore obtained as, which is plotted

in Figure 3.6

Y = σ0

(
h/2

(h/2) + (c1/E)

)
(3.32)

Torsion of thin wires

Fleck et al. (1994) observed in micro-torsion of thin copper wires that the scaled

shear strength increases by a factor of 3 as the wire diameter decreases from 170

to 12 µm. In order to fit their experimental data, Aifantis (2003) employed the

gradient-dependent flow stress given by

τ = κ(εp) + c1(εp) |∇εp|2 + c2(εp)∇2εp (3.33)
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Figure 3.7: Comparison between theory and experiment for twisted Cu wires (Aifan-

tis, 2003)

A power law expression is assumed for the homogeneous part of the flow stress

and a similar relation is adopted for the gradient coefficients (κ(εp) = κ0ε
n
p , c1 =

(1/2)(dc2/dεp) and c2 = cεn−1
p ). The size dependent twisting moment M vs. the

surface shear strain of the wire γs (γs = ϕα) is expressed as

M

α3
= 2π

(
κ0

n+ 3
+

c

2α2

)
γns (3.34)

with ϕ denoting the angle of twist per unit length and α the wire radius. Figure

3.7 shows the fitting of experimental results obtained by Aifantis (2003) for the size

dependence for the twisting moment M .

3.3.3 Length scale and strain localization

Strain localization in granular materials has been extensively investigated by many

researchers. Experimental, theoretical and numerical studies in this area show that

the deformation is localized within a confined region, called shear band, where its

thickness is finite and related to the heterogeneous material microstructure (Pamin

and de Borst, 1995). Roscoe (1970) observed the localization phenomenon in dif-
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ferent soils using model tests and the centrifuge technique. Using X-ray techniques,

he showed that the shear band thickness was 8 - 10 times the mean grain diam-

eter. The same technique was used by Vardoulakis and Graf (1985) to measure

the shear band thickness in fine and medium grained sand specimens tested under

plane-strain conditions. The thickness was found about 16 times the mean grain

diameter of the soil. Other techniques have also been used such as stereophoto-

graphic techniques (Desrues, Lanier and Stutz, 1985), Laser techniques (Tatsuoka

et al. 1990), Tomography (Desrues et al., 1996).

The localization of plastic deformation into a shear band was discussed by Rud-

nicki and Rice (1975) and Rice (1976). They treated shear band formulation as

material instabilities by bifurcation theory. They analyzed the emergence and in-

clination of the shear band but they did not consider its thickness since their con-

stitutive theory does not include any length. Aifantis (1984; 1987) and Zbib and

Aifantis (1988) introduced an internal length scale by including strain gradients into

the yield condition of plasticity. Based on the same theory, Vardoulakis and Aifan-

tis (1991) obtained the expression for the thickness of shear band by adding second

order strain gradients into the flow rule and the yield condition. In addition to the

emergence and inclination of the localized zones, the gradient approach is shown to

be able to capture the shear band thickness and the post localization behavior.

The need of strain gradient plasticity originates from the inability of the classical

plasticity models to describe the localization of plastic deformation because the

conventional models possess no material length scales. Within the frame of classical

constitutive theories the numerical simulation of localization exhibit a pathological

mesh-dependency and high sensitivity to constitutive relations (de Borst and Pamin,

1996). Mathematically, the mesh dependence is a direct consequence of the fact

that the solution is not unique and the size of the localization zones is therefore
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defined by the spacing of the discretization (Pamin, 1994). In contrast, due to

the introduction of gradient terms, the aforementioned mathematical difficulties are

removed and therefore, the appropriate differential equations for the deformation

are able to estimate the shear band thickness and spacings.

3.3.4 Conclusion

As a generalization of the classical plasticity theory, strain gradient theory enriches

the classical continuum with additional material length scales to account for the

underlining microstructure of the material. Through this length scale, size effects

or localized plastic deformation that are not captured or explained by standard

theories, can be modeled properly through the introduction of higher order spatial

gradients of strain or internal variables.

Strain gradient plasticity formulations have been developed to avoid false solution

for the localization and excessive mesh dependence, and to describe the experimen-

tally observed size effects such as the effect of wire thickness on torsional response,

the dependence of the initial low stress upon sample size and the dependence of hard-

ness on size of the indenter. Strain gradient theory presents a promising approach

to model the scale effect observed in the growth of plant roots.
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Chapter 4

Cavity Expansion

4.1 Introduction

The problem of cavity expansion in finite or infinite media has attracted much

attention from researchers in both mechanics and material science. Its theoretical

appeal has always been the simplicity of its geometry, which has made it possible

to obtain relatively simple solutions in a number of different materials including

metals, plastics, rocks and soils.

The cavity expansion theory was first developed for applications to metal inden-

tations problems (Bishop et al., 1945; Hill, 1950). Its application to geotechnical

problems came later (e.g. Gibson and Anderson, 1961; Meyerhof, 1951). The analy-

sis of cylindrical and spherical cavity expansions has been widely applied to practical

problems such as the interpretations of pressuremeter tests (Gibson and Anderson,

1961; Vesic, 1972; Palmer, 1972; Houlsby and Withers, 1988; Yu, 1990), the instal-

lation of driven piles (e.g. Randolph, Carter and Wrath, 1979), cone penetration

tests (e.g. Salgado, Mitchell and Jamiolkowski, 1997; Cudmani and Osinov, 2001)

and the bearing capacity of deep foundations (Vesic, 1977; Randolph et al., 1979).

Cavity expansion solutions not only provide valuable predictions for the deformation
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and pressure-expansion behavior of these applications, but also furnish benchmarks

for comparison with experimental data.

Existing studies in this area vary because of differences in the constitutive mod-

els for the stress-strain behavior of the expanding body. Most analyses are mainly

restricted to elastic-perfectly plastic solid. Hill (1950) gave a general solution of

the finite expansion of the spherical cavity in a Tresca material. Chadwick (1959)

presented the solution for an elastic-plastic material with Mohr-Coulomb yield sur-

face obeying the associated flow rule. In both cases the solution were obtained with

the assumption of small deformations and incompressibility of the material in the

plastic zone. Vesic (1972) studied spherical and cylindrical cavities in both cohesive

and frictional soils. He adopted Mohr-Coulomb yield surface with non-associated

flow rule, and suggested a procedure to account for the volume change in the plastic

region.

Carter, Booker and Yeung (1986) presented an analytical solution for the limit

pressure in a non-associated Mohr-Coulomb material. Yu and Houlsby (1991) ex-

tended this theory by introducing large strains in the plastic region, whereas the

elastic region is treated by a small-strain approach. The limit pressure was obtained

as a function of the dilatancy angle, friction angle, elastic moduli and initial stress

state.

Collins and Yu, (1996) provided an analytical study of the large strain undrained

expansion of cylindrical and spherical cavities with critical-state soil models. The

sand response was governed by a state parameter, which depends on the current

void ratio and the current mean stress. The expansion of cavity was considered

from zero initial radius. Durban and Fleck (1997) presented a finite strain analysis

for spherical cavity in a Drucker-Prager material. The material was modeled by a

non-associated deformation theory with arbitrary strain-hardening.
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Essential to the previous theoretical developments is that the constitutive re-

sponse of the materials is described by conventional continuum theory for homo-

geneously deforming media. Thus, they do not include internal length scale, and

unable to model the influence of microstructure since the governing equations can be

written in a dimensionless form, predicting for all geometrically similar cavities the

same limit pressure. To resolve this problem, high-order term must be introduced

into the classical plasticity theory. This extension implicates additional material pa-

rameter, which takes the microstructure of the soil into consideration and therefore,

the observed size dependence can be properly modeled.

To investigate the size effects in a cylindrical and spherical cavities subjected

to internal pressure, Gao (2003a, b) developed an analytical solutions of the cavity

expansion problem using strain gradient plasticity theory with power-law hardening

and von-Mises yield criterion. The stress components were obtained as a function

of the inner radius of the cavity. Similar size dependence behavior was studied by

Tsagrakis et al. (2006) for internally pressurized thick-walled hollow cylinder us-

ing both deformation and flow theories. Zhao, Sheng and Sloan (2007) presented a

numerical analysis on expanded cylindrical cavity using Tresca criterion to describe

the yield behavior. More recently, Zhao (2011) extended his solution to account for

a special class of cohesive-frictional micromorphic media using the Mohr-Coulomb

yield criterion. Gao, Park and Ma (2009) and Collin, Caillerie and Chambon (2009)

have been limited their solutions of cavity expansion problems using gradient elas-

ticity only.

In this chapter, analytical solutions for the expansion of spherical cavity sub-

jected to internal and external pressures are presented. The associated Drucker-

Prager yield criterion is extended to include higher-order strain gradients. Explicit

expressions for the stresses, strain and displacements are derived similar to the the
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work of Gao (2003b).

4.2 Cavity expansion in cohesive-frictional soils

To begin with the development of the gradient dependent constitutive model, recall

the yield function and the plastic potential for the Drucker-Prager model

f =
√
J2 + µI1 − σ̄ (4.1)

g =
√
J2 + µψI1 (4.2)

where I1 = σii is the first invariant of stress tensor, J2 = 1
2
SijSij is the second

invariant of the deviatoric stress Sij = σij − 1
3
σiiδij, σ̄ is the flow stress, µ is the

friction coefficient and µψ is the dilatation factor. Acossiated plasticity is recovered

for µψ = µ and the von Mises model is obtained with µψ = µ = 0. The flow stress

σ̄ is assumed to depend on the higher order strain gradient in the following manner

σ̄ = σ̄(εp)− c∇2εp (4.3)

where εp =
√

2εijεij/3 is the effective plastic strain and c is a gradient-related co-

efficient. The above formulation represents the simplest version of gradient theory

by introducing the higher order term into the yield function while leaving the other

features of plasticity theory unchanged.

Problem formulation

Consider a thick walled spherical cavity of inner radius a and outer radius b subjected

to a uniform pressure p0 on external surface and p on the internal surface (Figure

4.1). Since both the geometry and the load are axisymmetric, all field variables

depend only on the radial displacement u.
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Figure 4.1: Cavity expansion problem

Initially (t = 0) the cavity has an internal and external radii a0 and b0 and a

internal pressure p0. At time t the cavity pressure is increased to p and the cavity

radii increased to a and b respectively.

Considering an element at a radial distance r from the cavity center, the equation

of equilibrium can be expressed as follows

2(σθ − σr) = r
dσr
dr

(4.4)

where σr and σθ are normal stresses in the radial and tangential directions respec-

tively. The radial stress is known on both internal and external boundaries. These

boundary conditions can be written as:

σr|r=a = −p

σr|r=b = −p0 (4.5)

Under infinitesimal deformation, the three nonzero strain components can be written

out readily

εr =
du

dr

εθ = εϕ =
u

r
(4.6)
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Figure 4.2: Cavity during expansion

Equation (4.6) can be used to eliminate the displacement u to give the following

compatibility condition

εr − εθ = r
dεθ
dr

(4.7)

If p0 is sufficiently small, the deformation of soil is purely elastic. Along with in-

creasing to p, a plastic zone around the cavity will develop. The radial distance

of the plastic zone around the cavity is denoted by ρ. The soil beyond the plastic

zone remains in a state of elastic equilibrium. The property of the soil in the elastic

zone is defined by Young’s modulus, E, and Poisson ratio, ν. The soil is assumed to

obey Hookian elasticity until the onset of yield. Yielding of the soil is described by

the Drucker-Prager model. The elastic and plastic regions of the soil are separately

considered.

Elastic solution

As the cavity pressure increases from its initial value, the deformation of the soil is

at first purely elastic. The elastic region can be considered as an elastic thick-walled

hollow sphere of the inner radius ρ and outer radius b, subjected to a uniform internal

pressure pρ = p(ρ). Under conditions of radial symmetry the elastic stress-strain
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relationship may be expressed as:

εr =
1

E
(σr − 2σθ)

εθ = εϕ =
1

E
(−νσr + (1− ν)σθ) (4.8)

The stress and the radial displacement distributions can be expressed as follows (Yu,

2000)

σr = −p0 + (pρ − p0)
(

1

(b/ρ)3 − 1
− 1

(r/ρ)3 − (r/b)3

)
(4.9)

σθ = −p0 + (pρ − p0)
(

1

(b/ρ)3 − 1
+

1/2

(r/ρ)3 − (r/b)3

)
(4.10)

u = r − r0 =
pρ − p0

2G(1/ρ3 − 1/b3)

(
1− 2ν

(1 + ν)b3
r +

1

2r2

)
(4.11)

where G = E/2(1 + ν) is the shear modulus of the material. The corresponding

expressions for the non-vanishing strain distributions can be easily obtained from

(4.11) and (4.6).

In the above expressions for stress, strain and displacement distributions, two

unknown parameters pρ and ρ, are needed to be determined in term of the applied

pressure p using the continuity of the stresses and displacements at the elastic-plastic

interface.

Plastic solution

After the initial yielding at the cavity wall, a zone of soil extending from the cav-

ity wall to a radial distance ρ becomes plastic as the cavity pressure continues to

increase. The boundary-value problem for determining the stress and strain compo-

nents in the plastic zone can be solved analytically by considering the equilibrium

equation, the constitutive equations, and the boundary conditions.
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The Drucker-Prager yield surface is defined for the spherical cavity as

f = σθ − σr +
1

3
µ (σr + 2σθ)− σ̄ (4.12)

Assuming a power hardening low for the flow stress σ̄, the gradient-dependent form

of equation (4.3) can be written as

σ̄ = κεmp − c∇2εp (4.13)

where κ and m are material parameters.

Within the plastic zone, the constitutive equations, with associated flow rule are

given by (Durban and Fleck, 1997)

εr =
(
−1 +

1

3
µ
)
εp

εθ = εϕ =
(

1

3
+

1

3
µ
)
εp (4.14)

Substituting equations (4.14) into equation (4.7) yields

dεp
εp

=
−9

3 + 2µ

dr

r
(4.15)

The gradient term in the constitutive equation needs additional boundary conditions

for the equivalent plastic strain in the following form

εp|r=a = εpa (4.16)

εp|r=ρ =
σy
E

(4.17)

where σy is the yield stress and εpa is a constant to be determined as a part of the

solution.

The solution procedure starts with integrating (4.15) from a to r and after applying

the appropriate boundary condition at the cavity wall, the effective strain is obtained

as

εp = εpa

(
a

r

) 9
3+2µ

(4.18)
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By making use of equation (4.18) into equation (4.17) gives

εpa =
σy
E

(
ρ

a

) 9
3+2µ

(4.19)

Introducing equation (4.18), equation (4.13) becomes

σ̄ = κεmpa

(
a

r

) 9m
3+2µ

− c9(6− 2µ)εpa
(3 + 2µ)2

1

a2

(
a

r

) 15+4µ
3+2µ

(4.20)

Substituting equations (4.20) and (4.12) into equation (4.4) gives

dσr = 2

(
3κεmpa

3 + 2µ

1

r

(
a

r

) 9m
3+2µ

− 3µ

3 + 2µ

1

r
σr − c

27(6− 2µ)εpa
(3 + 2µ)3

1

a2
1

r

(
a

r

) 15+4µ
3+2µ

)
dr

(4.21)

After some algebraic manipulations, the desired differential equation is obtained as

d
(
σrr

6µ
3+2µ

)
= 2r

6µ
3+2µ

(
3κεmpa

3 + 2µ

1

r

(
a

r

) 9m
3+2µ

− c27(6− 2µ)εpa
(3 + 2µ)3

1

a2

(
a

r

) 15+4µ
3+2µ

)
dr

(4.22)

A direct integration of the resulting differential equation (4.22) from a to r leads to

σr = −p
(
a

r

) 6µ
3+2µ

+ 2
κεmpa

3m− 2µ

((
a

r

) 6µ
3+2µ

−
(
a

r

) 9m
3+2µ

)

−2c
27(6− 2µ)εpa

(3 + 2µ)2(15− 2µ)

1

a2

((
a

r

) 6µ
3+2µ

−
(
a

r

) 15+4µ
3+2µ

)
(4.23)

Substituting σr|r=ρ = −pρ into equation (4.23) results in

−pρ = −p
(
a

ρ

) 6µ
3+2µ

+ 2
κεmpa

3m− 2µ

(a
ρ

) 6µ
3+2µ

−
(
a

ρ

) 9m
3+2µ


−2c

27(6− 2µ)εpa
(3 + 2µ)2(15− 2µ)

1

a2

(a
ρ

) 6µ
3+2µ

−
(
a

ρ

) 15+4µ
3+2µ

 (4.24)

On the elasto-plastic interface the stress components given in equations (4.9) and

(4.10) must satisfy the yield condition

σ̄|r=ρ = σy (4.25)
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Substituting the elastic stress solutions (4.9) and (4.10) and the yield condition

(4.12) into equation (4.25) gives the internal pressure required to cause yielding at

the internal boundary as

pρ = p0 +
2(σy + µp0)(b

3 − ρ3)
3b3 + 2µρ3

(4.26)

Inserting equations (4.19) and (4.26) into equation (4.23) gives

p =

(
p0 +

2(σy + µp0)(b
3 − ρ3)

3b3 + 2µρ3

)(
a

ρ

) 6µ
3+2µ

+ 2
κ

3m− 2µ

(
σy
E

)m (ρ
a

) 9m
3+2µ

1−
(
a

ρ

) 9m−6µ
3+2µ


− 2c

27(6− 2µ)

(3 + 2µ)2(15− 2µ)

σy
E

(
ρ

a

) 9
3+2µ 1

a2

1−
(
a

ρ

) 15−2µ
3+2µ

 (4.27)

Using equations (4.19), (4.23) and (4.27) gives the radial stress as

σr = −
(
p0 +

2(σy + µp0)(b
3 − ρ3)

3b3 + 2µρ3

)(
a

ρ

) 6µ
3+2µ

+ 2
κ

3m− 2µ

(
σy
E

)m ((ρ
a

) 6µ
3+2µ

−
(
ρ

r

) 9m
3+2µ

(
r

a

) 6µ
3+2µ

)

− 2c
27(6− 2µ)

(3 + 2µ)2(15− 2µ)

σy
E

(
ρ

a

) 9
3+2µ 1

a2

(a
ρ

) 15−2µ
3+2µ

−
(
a

r

) 15−2µ
3+2µ


(4.28)

The circumferential stress follows from equation (4.12) as

σθ =
3σ̄ + (3− µ)σr

3 + 2µ
(4.29)

Substituting equations (4.18) and (4.19) into equations (4.14) gives the strain com-

ponents as

εr =
(
−1 +

µ

3

)
σy
E

(
ρ

r

) 9
3+2µ

(4.30)

εθ =
(

1

2
+
µ

3

)
σy
E

(
ρ

r

) 9
3+2µ

(4.31)
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Finally, from the geometric equations (4.6) and equation (4.31) the radial displace-

ment is obtained as

u =
(

1

2
+
µ

3

)
rσy
E

(
ρ

r

) 9
3+2µ

(4.32)

All the necessary equations for the determination of the complete pressure expansion

curve and the stress distributions have been derived. For given soil properties E,

ν, µ, κ, m, σy, c, the internal pressure p and the radius ratio a0/b0. The continuity

of the displacements at the elastic-plastic interface can be used to determine the

radius of the elastic-plastic boundary ρ from equations (4.11) and (4.32). εpa and pρ

can afterwards be obtained easily from equations (4.19) and (4.26). Using the above

parameters, the elastic stress and strain distributions can therefore be obtained from

equations (4.9)-(4.11).

Special case

For frictionless materials (φ = 0), the Drucker-Prager criterion reduces to the von

Mises criterion. The solutions for the stress, strain and displacements, based on the

von Mises criterion, can be obtained by setting µ = 0 in the respective expressions.

Equation (4.28) reduces to

σr = −p0 −
2σy
3

(
1− ρ3

b3

)

+ 2

(
κ

3m

(
σy
E

)m (
1− ρ3m

r3m

)
− 6c

5

σy
E

(
ρ

a

)3 1

a2

(
a5

ρ5
− a5

r5

))
(4.33)

The strain and displacement components in (4.30)-(4.32) assume the following form

εr = −σy
E

(
ρ

r

)3

(4.34)

εθ = εϕ =
1

2

σy
E

(
ρ

r

)3

(4.35)

u =
1

2

σy
E

ρ3

r2
(4.36)

The solution by Gao (2003b) is recovered for the same problem with p0 = 0.
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4.3 Cavity expansion in cohesionless soils

As for the expansion of cavity in cohesive-frictional material, let a and b be the

current internal and external radii, as shown in Figure 4.1, and let ρ be the radius

of the plastic boundary. The soil consists of an elastic-perfectly plastic cohesionless

Drucker-Prager material that obeys an associated flow rule. A strain gradient plas-

ticity theory of the form proposed by Vardoulakis and Aifantis (1991) is used, which

can be written as follows

f =
√
J2 + I1µ(εp,∇2εp) (4.37)

which is defined for the spherical cavity as

f = σθ − σr +
3µ(εp,∇2εp)

3 + 2µ(εp,∇2εp)
σr (4.38)

The friction coefficient µ is assumed to be a function of the effective plastic strain

as

µ = µ0 − c∇2εp (4.39)

where µ0 is the initial internal friction coefficient.

Elastic solution

The analysis of spherical cavity expansion in cohesionless soils is analogous to that

for a spherical cavity in cohesive-frictional soils. The elastic solutions of this problem

are given by the equations (4.4)-(4.11)

Plastic solution

After initial yielding takes place at the cavity wall, a plastic zone will form around

the inner cavity wall with an increase in the applied pressure p. The outer radius of
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the plastic zone is denoted by ρ. Within the plastic zone, the constitutive equations

are given by

εr =
(
−1 +

1

3
µ0

)
εp

εθ = εϕ =
(

1

3
+

1

3
µ0

)
εp (4.40)

Substituting equations (4.40) into equation (4.7) yields

dεp
εp

=
−9

3 + 2µ0

dr

r
(4.41)

Integrating equation (4.41) from a to r and making use of (4.16) leads to

εp = εpa

(
a

r

) 9
3+2µ0

(4.42)

Inserting equation (4.42) into equation (4.17) gives

εpa =
σy
E

(
ρ

a

) 9
3+2µ0

(4.43)

Using the gradient-dependent form of (4.39) and introducing (4.43) leads to

µ = µ0 − c
9(6− 2µ0)εpa

(3 + 2µ0)2
1

a2

(
a

r

) 15+4µ0
3+2µ0

(4.44)

dσr
σr

=
−6µ0r

15+4µ0
3+2µ0 + 6α

(3 + 2µ0)r
15+4µ0
3+2µ0 − 6α

1

r
dr (4.45)

with α defined as

α = c
9(6− 2µ0)εpa

(3 + 2µ0)2
1

a2
a

15+4µ0
3+2µ0 (4.46)

After some algebraic manipulations, the differential equation is obtained as

dσr
σr

=
1

3 + 2µ0

−3(3 + 2µ0)

r
+

9r
15+4µ0
3+2µ0

−1

r
15+4µ0
3+2µ0 − 2α

3+2µ0

 dr (4.47)

A direct integration of the resulting differential equation (4.47) from a to r leads to

σr = −pa
3

r3

r
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)εpa
(3+2µ0)2

1
a2
a

15+4µ0
3+2µ0

a
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)εpa
(3+2µ0)2

1
a2
a

15+4µ0
3+2µ0


9

15+4µ0

(4.48)
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Substituting σr|r=ρ = −pρ into equation (4.48) we obtain

−pρ = −pa
3

ρ3

ρ
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)εpa
(3+2µ0)2

1
a2
a

15+4µ0
3+2µ0

a
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)εpa
(3+2µ0)2

1
a2
a

15+4µ0
3+2µ0


9

15+4µ0

(4.49)

Initial yielding occurs first at the inner wall of the cavity when the stresses satisfy

the yield condition (4.25) and this happens when the cavity pressure reaches the

following value

pρ =
(3 + 2µ0)b

3

3b3 + 2µ0ρ3
p0 (4.50)

Inserting equations (4.50) into equation (4.49) gives

p = pρ
ρ3

a3

a
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)εpa
(3+2µ0)2

1
a2
a

15+4µ0
3+2µ0

ρ
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)εpa
(3+2µ0)2

1
a2
a

15+4µ0
3+2µ0


9

15+4µ0

(4.51)

Using equations (4.43), (4.48) and (4.51) gives the radial stress as

σr = −(3 + 2µ0)b
3p0

3b3 + 2µ0ρ3
ρ3

r3

r
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)
(3+2µ0)2

1
a2
σy
E

(
ρ
a

) 9
3+2µ0 a

15+4µ0
3+2µ0

ρ
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)
(3+2µ0)2

1
a2
σy
E

(
ρ
a

) 9
3+2µ0 a

15+4µ0
3+2µ0


9

15+4µ0

(4.52)

The circumferential stress follows from equations (4.38) and (4.52) as

σθ = −(3− µ0)b
3p0

3b3 + 2µ0ρ3
ρ3

r3

r
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)
(3+2µ0)2

1
a2
σy
E

(
ρ
a

) 9
3+2µ0 a

15+4µ0
3+2µ0

ρ
15+4µ0
3+2µ0 − 2c

3+2µ0

9(6−2µ0)
(3+2µ0)2

1
a2
σy
E

(
ρ
a

) 9
3+2µ0 a

15+4µ0
3+2µ0


9

15+4µ0

(4.53)

Finally, the strain components and the radial displacement are obtained as

εr =
(
−1 +

µ0

3

)
σy
E

(
ρ

r

) 9
3+2µ0

(4.54)

εθ =
(

1

2
+
µ0

3

)
σy
E

(
ρ

r

) 9
3+2µ0

(4.55)

u =
(

1

2
+
µ0

3

)
rσy
E

(
ρ

r

) 9
3+2µ0

(4.56)
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All the necessary equations for the determination of the complete pressure-expansion

curve and the stress distributions have been derived for given values of the soil

properties E, ν, µ, σy, c, the internal pressure p and the radius ratio a0/b0. This

is accomplished by using the continuity of the displacements at the elastic-plastic

boundary to determine the radius of the elastic-plastic boundary ρ from equations

(4.11) and (4.56). εpa and pρ can afterwards be obtained easily from equations (4.43)

and (4.50). Using the above parameters, the elastic stress and strain distributions

can be obtained from equations (4.9)-(4.11).

4.4 Applications

In order to verify the problem solutions and implementations and to illustrate the

features of the gradient plasticity models, a number of simulations are performed.

In this analysis, the soil is assumed to be dry or fully drained and, the radius of the

region analyzed is set to 500 times the initial radius a of the expanding cavity so

that an infinite soil body can be modeled. For the initial conditions, the pressure p0

= 50 kPa is taken in all the cases.

Consider the internal length scale l and assume that l is a function of the gradient

related coefficient c and the shear modulus G as (Al Hattamleh et al., 2004)

l =

√
c

G
(4.57)

To perform the above calculations, a simple computer code written in FORTRAN

is used. For varying cavity pressure p, the code calculates the stresses, strains and

displacement as functions of the cavity radius using an iterative procedure.

An illustrative flow chart for the load stepping of the elasto-plastic cavity expan-

sion is shown in Figure 4.2.
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Figure 4.3: Flow chart for the load stepping of elastoplastic cavity expansion
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Cohesive-Frictional soils

In the analysis of an expanding cavity in cohesive-frictional material, a constant

value of the friction angle is adopted, only the cohesion exhibits the gradient-

dependence. The parameter m that appears in the expression of the flow stress

is assumed to be 0. The yield function in (4.1) is expressed therefore as

f =
√
J2 + µI1 − (βc0 − c∇2εp) (4.58)

were µ and β are functions of the internal friction angle φ (Yu, 2006)

µ =
2 sinφ√

3(3− sinφ)
(4.59)

β =
6 cosφ√

3(3− sinφ)
(4.60)

and c0 is the initial cohesion. The value of µ and β are defined in a way to match the

Drucker-Prager yield surface with the Mohr-Coulomb yield surface at the triaxial

compression (Figure 3.5).

A simulation is carried out with the material properties listed in Table (4.1).

The pressure-expansion curves are presented in terms of normalized pressure p/p0

and normalized cavity radius a/a0. Noting that the main particle size d50 is used as

the internal length scale l.

The size effect can be appreciated by considering various values of the parameter

l/a. Noting that the case l/a = 0 in Figure 4.4 corresponds to classical plasticity

theory (c = 0) and implies a very large cavity radius compared to the internal length.

Figure 4.4 displays the evolution of the normalized pressure with the increase of the

normalized cavity radius. It is clear that the material exhibits higher resistance as

the cavity radius decreases. In fact, for a given material with constant l, the smaller

is the size the stronger is the response.
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Table 4.1: Cohesive-frictional soil parameters

Young’s modulus E = 18.5 MPa

Poisson ratio ν = 0.2

Friction angle φ = 25 ◦

initial cohesion c0 = 15.5 kPa

Yield stress σy = 500 kPa

Length scale d50 = 0.02 mm

Figure 4.5 shows the influence of the material length on the pressure-expansion

curve. With the increasing value of the material length parameter, the strength

of the material increases significantly. If the strain gradient effect is neglected, all

curves will reduce to a single curve.

The normalized limit pressure vs. the cavity radius a is depicted in Figure 4.6.

The curves are evaluated for both classical (c = 0) and gradient theories. It is clearly

seen that the limit pressure is size dependent when the inner radius a is small. For

large diameter (on the order of 1 mm or above), the limit pressure approaches a

limit value, which can be obtained from the classical theory of cavity expansion.

Obviously, this scale dependence cannot be predicted by the classical theory, since

the constitutive equation does not contain any term with length scale.

Cohesionless soils

To investigate the size dependence of the cohesionless material response, numerical

calculations are carried out using the parameters listed in Table (4.2). In Figure

4.7 remarkable difference in the pressure-expansion curves can be observed. The

limit pressures exhibit a distinctive size effect with the increase of the initial cavity

radii. As for the expansion of cavity in cohesive-frictional material, the value l/a =
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Figure 4.4: Variation of the pressure-expansion response with the cavity radius for

cohesive-frictional soil, l=0.02 mm
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Figure 4.5: Variation of the pressure-expansion response with the material length

scale for cohesive-frictional soil, a0=0.1 mm
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Figure 4.6: Variation of the normalized limit pressure with the cavity radius for

cohesive-frictional soil

Table 4.2: Cohesionless soil parameters

Young’s modulus E = 80 MPa

Poisson ratio ν = 0.3

Friction angle φ = 35 ◦

Yield stress σy = 500 kPa

Length scale d50 = 1.5 mm

0 corresponds to the classical plasticity theory (c = 0), which indicates a very large

cavity radius comparable to the material length scale.

Figure 4.8 contains a representative plot of the normalized pressure as a function

of the normalized cavity radius for increasing material length l. The numerical

results illustrate that when the length parameter takes different values, the material

response curves are different and the material strength increases with the increase

of the length parameter.

Shown in Figure 4.9 are theoretical predictions of the normalized limit pressures
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Figure 4.7: Variation of the pressure-expansion response with the cavity initial

radius for the cohesionless soil, l=1.5 mm
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Figure 4.8: Variation of the pressure-expansion response with the length scale for

the cohesionless soil, a0=1 mm
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Figure 4.9: Variation of the normalized limit pressure with the cavity radius for the

cohesionless soil.

for both classical and gradient materials. The gradient materials show an increase

in the limit pressure with decreasing cavity radius, while no size effect is observed

for the classical ones. This size effect is not captured by classical theory, according

to which the material response should remain constant.

4.5 Conclusion

The framework of strain gradient plasticity theory is used to solve the cavity expan-

sion problem for cohesive-frictional and for cohesionless materials obeying the asso-

ciated Drucker-Prager yield criterion. Analytical solutions are presented to study

the size effects through the incorporation of a length scale in the constitutive de-

scription.

We demonstrate that the penetration pressure required to expend a cavity in soil

depends on the ratio between the cavity size and the mean grain diameter of the soil

particles. This implies that the enhanced gradient theory is successful in capturing

the size effects for small cavities, where the internal length introduced by the gradient

coefficient is comparable to the cavity size. Obviously, this size dependence cannot
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be predicted by the classical theory, since the constitutive equation does not contain

any term with length scale.

The results in this chapter show that the solution of cavity expansion with gradi-

ent plasticity theory captures the salient features of scale effect fairly well in a qual-

itative manner, since the material parameters are assumed without being calibrated

with experiments. In the next chapter, some experimental results are presented and

compared with the theoretical prediction.
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Chapter 5

Experimental investigation and

analysis

5.1 Introduction

A number of soil testing methods have been developed to determine soil properties in

field, static cone penetration test (CPT) is one of the most popular techniques used

for this purpose. CPT was first used by the Swedish State Railways in about 1917

in a study on the bearing resistance of pile foundation in sand (Meigh, 1987). Since

then, cone penetrometers are widely used especially when further improvements

have been incorporated, e.g. the standarized design and size of the apparatus, mea-

surement procedure and data interpretation (Hignett, 2002). While in geotechnical

engineering mainly large penetrometers are used, small sized penetrometers have

been developed for material characterization in agriculture engineering. Miniature

cone penetrometres are used to deduce soil properties and their resistance to root

growth. These penetrometeres often have a diameter ranging from a few millimeters

to about two centimeters.

Numerous correlations linking soil parameters to the measured penetration re-
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sistance have been proposed and they are based on empirical or analytical methods,

in which the cavity expansion methods are commonly used. The relation between

cavity expansion theory and cone penetration test is based on the assumption that

the movement of a blunt probe (α � 30 ◦) through the soil creates a spherical cav-

ity around the cone tip. For sharp penetrometers (α ≺ 5 ◦), a cylindrical cavity

enlargement model is more appropriate (Greacen and Sands, 1980; Whiteley and

Dexter, 1981).

In conventional plasticity theory, in which material is treated as a continuum,

the cavity stress and displacement fields are independent of the absolute geome-

try size. Experiments show, however, that the penetrometer pressure depends on

the penetrometer diameter in the way that, the smaller is the probe diameter the

stronger is the soil response (Whiteley and Dexter, 1981). However, the test data in

the literature are rare. Therefore, we decide to carry out own tests to substantiate

our theory.

This chapter presents the results of a series of penetration tests using penetrom-

eter probes with diameters of 2, 5 and 10 mm (see Figure 5.1). The tests were

performed on loose and dense sand samples under dry conditions. The aim of this

chapter is to investigate the effects of the strain gradient in the penetration of the

probes and, to check whether the gradient plasticity model can capture the size

dependence in penetration tests.

5.2 Soil samples

In order to establish the effect of the penetrometer size on the soil response, some

penetration tests are performed on coarse silica dry sand. The mean grain size (d50)

is approximately 0.9 mm, which is determined by dry sieving. The sand is filled into

a cylindrical mould (8.3 cm in diameter and 14 cm in length) under both loose and
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Figure 5.1: Penetrometers used in the experiments

dense conditions. Sand densities of 1.60 kg/cm3 and 1.75 kg/cm3 were obtained by

measuring the volume of the cylinder and the dry weight of the sand.

5.3 Test Apparatus

The experiments were conducted using a computer-controlled electro mechanical

testing machine (Zwick/Roell, Zmart.Pro), using a 50 N load cell. This machine is

normally used for tensile and/or compression tests on different materials like metals

and synthetic materials. It was adjusted to the specific needs for our experiment.

Its construction consists of a vertical frame that guides a horizontal placed movable

traverse (Figure 5.2). For the penetration test, the penetrometer is attached at right

angles to the end of the load cell. (Figure 5.3).

73



 

Figure 5.2: Testing machine (Zwick/Roell, Zmart.Pro)

 

Figure 5.3: Penetrometer attached to the load cell
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5.4 Test procedure and data processing

The tests were performed in the laboratory of Physics and Materials Science at the

University of Natural Resources and Life Sciences, Vienna. In all experiments the

penetration force of three steel probes of diameters d of 2, 5 and 10 mm and 60 ◦

point angle is measured (Figure 5.3). The tests consist of pushing the penetrometers

into the sand samples at a constant speed of 3 mm/min from z = 0 down to about

7-8 d. The frictional force is estimated by measuring the force required to retract the

probe from the soil after the penetration test is completed. The force acting on the

cone is calculated by subtracting the frictional force from the total force. Each test

(probe diameter and sand density) is repeated ten times under the same conditions

to obtain a main load along the depth. The tests show excellent reproduceability.

The data acquisition and the control of the testing machine was performed using

the software TestXpert II. The displacement was measured with a displacement

transducer.

5.5 Analysis of penetration data

The cone tip resistance qc is defined as the vertical force acting on the cone divided

by the projected area of the cone (qc = F/A). Calculation is based on the main value

of qc of ten tests. In order to estimate the ultimate resistance, the cone penetration

resistance is averaged over selected intervals of depth (Poplin, 1965). The depth

interval is chosen to be approximately one probe diameter. In Figures 5.4 to 5.9 the

statistical results of the cone penetration tests are presented.

For the purpose of statistical analysis, the main cone penetration results over

selected intervals of depth are found to be approximately constant at depths greater

than 5 times d for all penetrometer probes. The ultimate cone resistance is obtained
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Figure 5.4: Mean penetration resistance for 2 mm diameter probe in loose sand (10

penetration replicates). Error bars show ± standard error of results.

by averaging cone resistances data at depths greater than this.

In order to check the presented gradient plasticity model for cohesionless materi-

als (Section. 4.3), numerical simulations of cone penetration tests have been carried

out and compared to the experimental results.

By expanding a cavity of finite radius, a limiting pressure σ is achieved. This

limiting pressure is related to the cone tip stress qc as follows

qc = σ(1 + tanφ cotα) (5.1)

where α = 30◦ is the cone semi-angle and tanφ is the coefficient of soil-probe friction.

This parameter (tanφ) is taken as 0.20 for loose sand and as 0.22 for dense sand

(Tejchman, 1989).

The material parameters entering the scale dependent constitutive equation are

estimated approximately from the triaxial tests conducted by Schöfer (2012) with

loose and dense sand. These parameters are listed in the Table 5.1. Noting that

the yield stress σy is obtained from the intersection of the tangent line of the initial
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Figure 5.5: Mean penetration resistance for 5 mm diameter probe in loose sand (10

penetration replicates). Error bars show ± standard error of results.

 

 

Figure 5.6: Mean penetration resistance for 10 mm diameter probe in loose sand

(10 penetration replicates). Error bars show ± standard error of results.
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Figure 5.7: Mean penetration resistance for 2 mm diameter probe in dense sand (10

penetration replicates). Error bars show ± standard error of results.

 

 

 

Figure 5.8: Mean penetration resistance for 5 mm diameter probe in dense sand (10

penetration replicates). Error bars show ± standard error of results.
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Figure 5.9: Mean penetration resistance for 10 mm diameter probe in dense sand

(10 penetration replicates). Error bars show ± standard error of results.

portion with the line tangent to the stress-strain curve at large displacement for

loose sand. For dense sand, the yield stress is obtained from the intersection of the

initial tangent line with the horizontal line of the maximum stress.

Table 5.1: Soil parameters for numerical calculations

E [MPa] ν φ [◦] σy [kPa] d50 [mm]

Loose sand 10 0.3 33 330 0.9

Dense sand 30 0.4 38 520 0.9

The initial stress p0 is assumed to be equal to the horizontal stress σH = K0γz

acting at depth z, where K0 is the coefficient of earth pressure at rest [≈ (1− sinφ)]

and γ is the unit weight of the sand. This is the stress that acts on the plane

perpendicular to the penetration direction (Houlsby and Hitchman, 1988).
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  Figure 5.10: Yield stress for loose sand

3= 200kPa 

 

 

  

Figure 5.11: Yield stress for dense sand
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5.6 Results and discussion

In Figures 5.12 and 5.13 the cone penetrometer resistance calculated using the strain

gradient theory are plotted against penetrometer area together with the experimen-

tal results. According to the results, it can be seen that the cone resistance are

affected by the penetrometer sizes. The penetration resistance for the probe of 2

mm diameter is about 45% greater than that of the 5 mm probe for loose sand and

of about 56% greater for dense sand. It is also shown that as the penetrometer

diameter increases, the two curves representing the experimental results as well as

that representing the predicted results converge approximately to a value, which

seems to be independent of the penetrometer size.

As a second remark on the test results, the effect of the bulk density of the sand

samples on the cone resistance using the different penetrometers is clearly seen in the

curve represented in Figure 5.14 . An increase of the bulk density leads to increased

cone pressure for the two sand samples. For example, for 2 mm probe diameter,

the difference between the cone penetration resistance for dense and loose is about

73%. This indicates that for dense sand, the forces necessary to move or rearrange

the particles of the soil by the penetrometer tends to be higher.

Statistical analysis (Coefficient of determination R2, Absolute error) was used

for comparison between the theoretical predictions and experimental results for soil

penetration resistance. A simple linear regression analysis was conducted using

Microsoft Excel 2010 to determine whether there is a correlation between the results

(Figures 5.15 and 5.16). The best fit to the experimental data was found with the

loose sand with a coefficient of determination R2 of 0.98 and an absolute error of

0.01 (see Figure 5.15). A perusal of Figure 5.16 shows that the difference between

theory and experiment is larger for dense sand. This may be due to the fact that

the measured cone resistance with 10 mm diameter is found to be greater than that
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Figure 5.12: Cone penetration resistance vs. penetrometer area for loose sand

measured with 5 mm probe which is not predicted theoretically. The difference

between the predicted and measured values of the cone resistance may be because

the effect of the chamber size and boundary conditions. Schnaid and Houlsby (1991)

studied the effect of the chamber ratio (the diameter of the chamber divided by the

diameter of the cone) and found out that the effect of the chamber ratio is more

pronounced for dense and medium sand. A significant effect was also reported in

centrifuge tests on dense sand for a chamber ratio of about 8.85 (Bolton et al., 1999).

The results may also have been caused by the influence of cone to particle size ratio.

Gui and Bolton (1998) studied this effect in centrifuge tests on dense coarse sand

and concluded that a grain size effect was found when ratio falls below about 20.

5.7 Conclusion

A set of three probes with diameters of 2, 5 and 10 mm was used to perform CPT on

loose and on dense dry sand samples. After statistical evaluations, the ultimate cone

tip resistance is determined from the profile of CPT data by taking the main cone
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Figure 5.13: Cone penetration resistance vs. penetrometer area for dense sand
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Figure 5.14: Dependence of cone penetration on the bulk density
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Figure 5.15: Comparison between theoretical and experimental results for loose sand
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Figure 5.16: Comparison between theoretical and experimental results for dense

sand
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tip resistance at a depth greater than 5 times of probe diameter. A strain gradient

plasticity theory is used to simulate the penetration precess in order to study the

feature of the theory to predict the size effects in penetration tests. Comparison

between the theoretical predictions and experimental results shows good agreement.

The tests on loose sand show better agreement with the theory than dense sand.

Better agreement between the predicted and measured responses could be achieved

if the boundary conditions and grain size effects were taken into account.

The increase of the penetrometer diameter is associated by a decrease of the

penetration resistance. For large diameter, the pressure is expected to approach

a limit value, which is independent of the penetrometer size. Moreover, the tests

show that the penetrometer resistance increases with increasing sand bulk density.

Larger force is required to penetrate through compacted soil. This indicates that

the penetration resistance varies not only with the size of the probe but also with

the density of the soil.
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Chapter 6

General discussion and conclusions

This dissertation presented a formulation of two gradient plasticity models to sim-

ulate the penetration of plant roots into compacted soils. Considering that root

growth is analogous to the expansion of spherical cavity, an elastoplastic analysis

for cavity expansion in cohesive-frictional and in cohesionless soils is investigated.

The soil is modeled as an elastic-perfectly plastic material, its elastic response is

assumed to obey the Hooke’s law and its yielding is determined by the associated

Drucker-Prager yield criterion. The analysis of the numerical results leads to the

conclusion that the penetration pressure required to expand a cavity in soil de-

pends on the ratio between the cavity size and the mean grain diameter of the soil

particles. Within the framework of the classical theory of cavity expansion, the

penetration force is proportional to the cross section of the root and therefore, an

increase in root diameter does not provides any advantage. Due to the introduction

of a material length into the constitutive relationship, it is shown that the cavity

pressure exhibits a distinctive size effect with the increase of the cavity size in the

way that, the smaller is the cavity size the stronger is the soil response. In addition,

an increase of the expansion response is shown for increasing the material length

parameter. The models show also a largely stronger gradient dependent response
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that is not accounted for by the classical theory. In both models, the solutions

approach the classical solutions asymptotically if the internal length introduced by

the gradient coefficient is small comparable to the cavity size.

The effect of the characteristic material length as well as the effect of the cav-

ity size were previously studied within the framework of the strain gradient theory.

Existing solutions of the cavity expansion problem vary because of differences in

the constitutive models for the stress-strain behavior of the expanding body (Gao,

2003a; Gao, 2003b; Tsagrakis et al., 2006; Zhao, Sheng and Sloan, 2007; Zhao,

2011). However, no applications of this theory are known to cavity size effects using

Drucker-Prager yield criterion. Gao (2003a, b) has developed an analytical solutions

of the cavity expansion problems using strain gradient plasticity theory with power-

law hardening and von-Mises yield criterion. These solutions have been successfully

used to analyze the size effects in terms of the maximum effective stress. Since the

Drucker-Prager yield criterion is an extension of the von-Mises yield criterion to

account for the hydrostatic stress, the solution presented in this thesis for cohesive-

frictional soils reduces to the solutions of Gao (2003b) for the same problem. It is

noted that, Gao (2003b) did not employ his solution to investigate the influences

of the cavity size and the microstructural properties on the pressure-expansion re-

sponse, which are presented in our study. Similar cavity size dependence behavior

was also captured by Tsagrakis et al. (2006) for internally pressurized thick-walled

hollow cylinder using both deformation and flow theories. The stress-strain curves

show a decreasing material response with increasing cavity size for the both theory

versions.

Using the strain gradient theory of the form proposed by Fleck and Hutchinson

(1997, 2001) in conjunction with the Mohr-Coulomb yield criterion, Zhao (2011) has

developed a numerical method to solve both cylindrical and spherical cavity expan-

87



sion problems in micromorphic media. His work is a generalization of a previous

work presented by Zhao, Sheng and Sloan (2007). In order to investigate the effect

of the internal length scale on the expansion response, Zhao (2011) found that the

use of larger values of internal length scale produces a stronger pressure-expansion

curve. However, in contrast to our study, he found that the ultimate pressures at

the fully plastic yielding stage appear to be roughly the same for all cases of the

internal length scales, but he did not give any explanation to the observed response.

Other theories are also used to solve the cavity expansion problem such as strain

gradient elasticity (Collin, Caillerie and Chambon, 2009; Gao, Park and Ma, 2009)

and strain gradient elastoplasticity (Zervos, Papanastasiou and Vardoulakis, 2001).

These theories introduce also gradient terms of the strain in the evolution equations

for state variables. Collin, Caillerie and Chambon (2009) proposed an analytical

solution for the thick-walled cylinder problem of an isotropic elastic second gradient

medium. They showed that in micro-scales the stresses in a homogenous cylinder

are completely different from the values predicted by classical elasticity when the

microstructure effects become predominant (i.e. the internal length scale is much

larger than the thickness of the cylinder). Gao, Park and Ma (2009) have derived

a closed-form solution using a simplified strain gradient elasticity theory. The au-

thors have concluded that microstructural effects can be quantitatively large and the

classical elasticity solution may not be accurate for materials exhibiting significant

microstructure dependence. Zervos, Papanastasiou and Vardoulakis (2001) have

introduced an elastic and a plastic material length parameters in the elastoplastic

governing equations. In order to predict the existence of the cavity size effect, the

authors have shown that the scale effect fades out rapidly with increasing cavity

size. In concluding remarks, it is noted that the results of many of the previous

solutions are in agreement with the results presented in this study, which proves
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the applicability of our solutions. Finally, it should be also noted that many of the

previous works did not experimentally test the solutions proposed.

In order to validate the model formulation presented in our work for cohesionless

soils , a selection of results obtained from laboratory experiments on penetrometer

with 2, 5 and 10 mm diameters is compared with the simulations of the expanding

cavity. Statistical manipulations were derived to estimate the ultimate cone tip

resistance from the profile of CPT data. A Goodness of fit analysis including the

coefficients of determination and the absolute errors were performed to compare

the predicted and measured results. It is shown that the model predicts cone tip

pressure values that are in remarkable agreement with the experimental results. The

best fit to the experimental data was found with the loose sand with a coefficient of

determination R2 of 0.98. Better correlation between the predicted and measured

responses could be achieved for dense sand if the boundary conditions and grain

size effects were taken into account. This implies the capability of the gradient

approach to capture the size dependence of the soil response better than with the

conventional theory. This latter is shown to be a special case when the dimension

of the microstructure is negligible compared with the cavity size.

This study provides a further explanation for root thickening. Larger root di-

ameter gives rise to lower penetration pressure. The driving force is known to be

provided by the turgor pressure in the root cells. When faced with increasing me-

chanical impedance, plant roots may choose either to increase the turgor pressure

while keeping the root diameter unchanged or to increase the root diameter while

keeping the turgor pressure unchanged. Plant root may of course increase both the

diameter and the turgor pressure simultaneously. Note that the turgor pressure

(about 1 MPa) is not unlimited and is mainly dictated by the behavior of the cell

walls. Therefore, it makes sense to increase the root diameter instead of the turgor
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pressure. Some experiments in plant science indicate that the turgor pressure does

not show remarkable change when roots are mechanically impeded (Clark, Whal-

ley and Barraclough, 2003). For constant turgor pressure, the penetration force

will be proportional to the cross section area of the roots. However, root growth

is enhanced by the reduced penetration resistance from the soil. Finally, it should

be noticed that the interaction between root and soil is not purely mechanical. In

general, compaction changes not only the mechanical strength of soil but also its

water potential, which requires hydro-mechanically coupled analyses.

Some additional qualitative aspects could be investigated for further research.

The first consists to account for the non-associative mechanical behavior of the soil,

which is needed to capture properly the inelastic volume effects (dilatancy). As it

will be difficult to solve this problem analytically, the proposed constitutive models

and the modified form of governing equations can be implemented into a finite

element code.

Additionally, the initial material properties used in the models are assumed to

be constant throughout the simulation. To this end, a constitutive law that properly

accounts for the changes of these parameters is required. Moreover, the influence of

soil microstructure on the elastic properties of the soil can be further investigated.

Experimental works can be carried out done for other types of soils, taking into

consideration the grain size and the chamber size effects as well as the water content

of the soil at different confining pressure, thereby the usefulness of the two models

developed in this thesis can be validated. More work should be also done for the

determination of the model parameters and the gradient term from the tests results.
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