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Abstract 

 

Constitutive modeling for frozen soil is an important topic in frozen soil mechanics 

and construction in permafrost regions. This study, with the help of hypoplasticity 

theory, presents three constitutive models for frozen soils. The first model, called 

extended hypoplastic constitutive model, is obtained by introducing a 

temperature-dependent cohesion tensor and a deformation-related scalar function into 

the pioneer model developed by Wu (1992). Then by simulating some triaxial 

compression tests at different temperatures and confining pressures, the extended 

model is shown to have a good ability in describing the strength behavior and 

volumetric change of frozen soil. However, this model is rate-independent and thus 

cannot account for the loading rate effect and rheological properties of frozen soil. In 

view of this, the second model, named as visco-hypoplastic constitutive model, is then 

developed. This viscous model is obtained by dividing the stress rate into a statical 

and a dynamical part, which are represented by the extended model and a high order 

model with respect to strain, respectively. Then the versatility of this viscous model is 

verified by simulating some compression tests at different loading rates and creep 

tests at different stress levels. The third model, termed hypoplastic creep model, is 

developed especially for the rheological properties of frozen soil. By simulating some 

compression creep tests, this creep model is also shown to be capable of describing 

the creep behaviors of frozen soil, e.g. the time to creep failure and the minimum 

creep rate in the secondary creep stage. Besides, the relaxation of creep strength of 

frozen soil can also be described by this creep model. 

 

Keywords: Frozen soil, Hypoplasticity, Constitutive Model, Rate-dependence, 

Rheological property 
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Zusammenfassung 

 

Die Modellierung von Permafrost-Böden liefert wichtige Beiträge für die 

Bodenmechanik und die Bauwerke in Permafrost Regionen. In dieser Studie werden 

mit Hilfe der Hypoplastizitätstheorie drei Grundlagenmodelle für gefrorene Böden 

präsentiert. Das erste Modell, „ErweitertesHypoplasticConstitutive Model“ genannt, 

wurde, basierend auf dem Pionier-Modell von Wu (1992), durch Erweiterung um 

einen temperaturabhängigen Kohäsionstensor sowie einer verformungsabhängigen 

Skalarfunktion entwickelt. Durch dreiaxiale Kompressionsversuche bei 

unterschiedlichen Temperaturen und unterschiedlichen Radialdrücken konnte gezeigt 

werden, dass sich dieseserweiterte Modell gut zur Beschreibung des 

Festigkeitsverhaltens und der Volumenänderungen von Permafrost-Böden eignet. Da 

bei diesem Modell die Belastungsgeschwindigkeit unberücksichtigt bleibt, ist es nicht 

möglich Belastungseffekte und ihre rheologischen Wirkungen für Permafrost-Böden 

darzustellen. Aus diesem Grunde wurde ein zweites Modell entwickelt. Es wird als 

„Visco-HypoplasticConstitutive Model“ bezeichnet. Dieses viskose Modell wurde 

durch die Aufteilung der Spannungszunahmein einen statischen und einen 

dynamischen Teil gewonnen, bzw. durch ein einfaches und ein höher Grade 

Numerische-Modellzur Berücksichtigung der Spannungsbeschleunigung. Die 

Gültigkeitdieses viskosen Modells wurde durch Kompressionsversuche mit 

unterschiedlichenBelastungsraten,  und mehrere Kriechversuchen geprüft. Das dritte 

Modell, als „HypoplasticCreep Modell“ bezeichnet, wurde speziell für die Simulation 

der rheologischen Eigenschaften von Permafrost-Böden entwickelt. Anhand von 

Druck-Kriechversuchen konnte gezeigt werden, dass dieses Modell ebenso zur 

Beschreibung des Kriechverhaltens von Permafrost-Böden, wiez.B. der Zeit bis zum 

Kriechversagen und der minimalen Kriechrate im sekundären Kriechen,geeignet ist. 

Außerdem kann auch die Spannungsrelaxation von Permafrost-Böden in diesem 
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Modell bestimmtwerden. 

 

 
Schlagworte: Permafrostböden, Hypoplastizität, Geschwindigkeitsabhängig- 

Stoffmodell, rheologischeBodeneigenschaft 
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1 Introduction 

1.1 Statement of problems 

In the past century, a large number of engineering activities have been conducted in 

permafrost regions over the world. For example, Trans-Siberian Railway and 

Qinghai-Tibet Railway, oil pipelines in northwestern Canada and in northeastern 

China, Whittier tunnel in north America and Feng-huo-shan tunnel in western China, 

Bering Strait Crossing planned to connect Siberia with Alaska, and so on. During the 

construction and operation of these projects, the weight of the structure and various 

loads will be transmitted to frozen subsoil (or frozen ground) through foundations, so 

the bearing capacity and deformation of the frozen subsoil should be taken into 

consideration, which is important to the successful construction and safe running. 

From elasticity we know that the equations of motion and continuity, which 

describe the equilibrium and compatible deformation of an element respectively, have 

nothing to do with the material per se. The main task in the assessment of the stability 

of frozen ground is to set up an appropriate constitutive equation (constitutive model) 

which can describe the stress-strain-time relationship for frozen soil. Therefore, study 

of constitutive modeling for frozen soils has become an important topic in frozen soil 

mechanics, which has not only practical value for the construction and maintenance of 

engineering in permafrost regions, but also important scientific significance in 

developing and perfecting frozen soil mechanics. 

1.2 Constitutive models for frozen soils 

In this section, plenty of constitutive models for frozen soils are reviewed. Basically, 

these models can be classified into 2 types: rate-independent and rate-dependent. The 

rate-independent models are developed with the main purpose of describing the 

stress-strain relationship of frozen soil at different test conditions, as will be discussed 
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in Subsection 1.2.1, while the rate-dependent models, besides the same function as the 

rate-independent models, are expected to be able to account for the effect of 

loading-unloading rate and rheological behaviors of frozen soil. However, owing to 

the complexity of the mechanical properties of frozen soil, progress is made mainly in 

a branch of rate-dependent models, namely creep constitutive models, which will be 

talked in Subsection 1.2.2. 

1.2.1 Constitutive models with respect to stress-strain behavior 

A special geomaterial, frozen soil contains ice and unfrozen water which could 

lead to rather complicated mechanical behaviors and bring many difficulties in 

modeling. Nevertheless, constitutive modeling has been a hot spot and attracted 

intensive attention from researchers during the past 40 years. Most of the existing 

constitutive models in this subsection have been developed based on two different 

viewpoints: macro-phenomenological and micro-mechanistic. The former type is 

obtained based on some macroscopic experimental observations at different test 

conditions, while the latter type deals with properties at a micro level, e.g. molecule or 

particle level, and provides knowledge of mechanism that controls macroscopic 

mechanical behavior of frozen soil. It is noteworthy that both the two types can be 

essentially regarded as an extension of the theory of plasticity by combining the effect 

of temperature of frozen soil, even though the latter type is titled micro model. 

Typical examples of the macro-phenomenological models can be found as: under 

small deformation assumption, Cai et al. (1990) decomposed the total strain rate into 

viscoelastic strain rate and plastic strain rate, then proposed a visco-elastoplastic 

constitutive model for frozen soil, which is suitable for monotonic loading and cyclic 

loading; Rong et al. (2005) proposed 2 formulas for calculating Green stress and 

Kirchhoff stress, and developed a constitutive model for frozen soils under finite 

deformation; based on the result of triaxial compression tests on frozen Qinghai-Tibet 

sandy soil, Lai et al. (2009) obtained plastic potential and failure surface with the help 

of orthogonal flow rule, and then proposed an elastoplastic constitutive model for 

frozen sand. It should be mentioned that these models were obtained by analogizing 
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the constitutive models for unfrozen soils within the framework of elastoplasticity, 

more detailed information on these elastoplastic models will be presented in 

Subsection 1.2.3. 

In addition to the macroscopic models talked above, efforts were also made in 

the development of micro-mechanistic constitutive models. Based on continuum 

mechanics and thermodynamics, He et al. (1999) proposed a damage constitutive 

model for frozen soil, in which a damage threshold was determined and dissipation 

potential function was established; Ning and Zhu (2007) built a relationship between 

the elastic constants of soil, water and ice and that of frozen soil mass based on 

mesomechanics of composite materials. Then a constitutive model was developed, 

which could consider the evolution of damage. It is undeniable that these models 

indeed have some advantages in mechanism explanation of the macroscopic behavior 

of frozen soil. However, how to properly evolve the damage factor poses a great 

challenge to the investigators. 

1.2.2 Constitutive models with respect to creep behavior 

As is known to all, creep is one of the most important mechanical properties of 

frozen soil, which may cause instability of infrastructures, such as roadbed, tunnel, etc. 

and natural disasters, e.g. landslide and debris flow, in permafrost regions. Following 

the creep theories for unfrozen soils and metals, large progress is also made in creep 

models for frozen soils upon the results of creep tests at different stress conditions. 

Based on the aging theory developed for the creep of metals, the following power 

relationship was proposed by Vyalov et al. (1962) to describe the creep process of 

frozen soil at constant temperature 

A0·εm = α·tα                           (1.1) 

in which A0, m and α are parameters, t is time. It is found that the above model is only 

valid for the deformation before the tertiary creep stage, especially for a primary creep 

stage dominated process. Besides, the model is not suitable for the case with large 

variation of creep stress. 

By introducing the method proposed by Hult (1966) for the creep of metals, 
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Ladanyi (1972) developed a secondary creep theory for frozen soils, with the purpose 

of using the theory to calculate the bearing capacity of buried footings and anchors. 

The secondary creep theory by Ladanyi (1972) has the following form 

[ ] [ ]( ) ( )
k n

k c
k c

tT T
σ σε ε εσ σ= + ⋅                   (1.2) 

where εk is an arbitrary small standard strain unit introduced only for convenience in 

calculation and plotting of data, cε  is a small arbitrary standard stain rate rendering 

the model a normalized form, σk, σc, k and n are creep parameters, T is temperature. It 

should be noted that this theory is obtained by approximating the creep strain curve in 

the unsteady primary creep stage by a straight line which has the same slope as that in 

the steady secondary creep stage. This signifies that the theory can only account for 

creep process at moderate creep stress when the secondary creep stage is dominant. 

In order to describe the complete three-stage creep process, unified models were 

studied by Assur (1980) and Fish (1982), which can be expressed as 

( ) ( ) exp( )m m me t t t tβ βε ε β=                 (1.3) 

in which tm is the time to creep failure, mε  is the minimum creep strain rate, β is a 

creep parameter dependent on the temperature and water content of frozen soil. It is 

examined by Fish (1982) that creep behaviors at different creep stresses can be 

described by the above model. However, as the time to failure is introduced as a 

known quantity, this model cannot predict the service life or long term stability of the 

structures in permafrost regions, which is also pointed out by Zhu and Carbee (1983). 

Compared to model (1.3), a similar creep model which can also describe the 

three-stage creep process was proposed by Ting (1983). The model has the form of 

t mA e tβε −= ⋅ ⋅                          (1.4) 

in which A, β and m are parameters. Comparison with the primary and secondary 

creep models (see models (1.1) and (1.2)) indicates that the above model makes fairly 

accurate fits of strain (rate) - time behavior of frozen sand. However, this model can 

only be applied for loading conditions which are sufficient large to cause creep 

rupture. 
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Till now, the merits and demerits of each of the above creep models have been 

illustrated. Besides, these representative models can also be found to have the 

following common deficiencies: 1) the models are constructed by creep strain (rate) 

being an explicit function of natural time, if the time approaches infinity, the creep 

strain (rate) will also approach infinity. Obviously, this is in contradiction to the 

results of creep test; 2) the models are developed especially for creep, thus can only 

describe the creep behaviors of frozen soil, the other rheological properties, such as 

strength relaxation and the effect of loading-unloading rate, cannot be accounted for 

effectually. 

1.2.3 Discussion on the existing constitutive models 

In the above two subsections, the advantages and disadvantages of the listed 

constitutive models (including rate-independent and rate-dependent) for frozen soils 

have been analyzed. It is noteworthy that most of the models in Subsection 1.2.1 have 

a physical background of elasticity and plasticity theory, while the creep models in 

Subsection 1.2.2 are mainly based on data fitting, as can be seen from (1.1) - (1.4). 

As is well known, elastoplasticity theory, especially plasticity theory, is 

developed originally from metallic materials. In general, an elastoplasticity-based 

model consists of two parts: elastic model and plastic model. To get an elastic model 

is not difficult, the main work is to determinate the elastic constants, for example, 

elastic modulus E and Poisson’s ratio v. However, to get a plastic model is much more 

difficult, especially when the material is in a complex stress state, the main work of 

which includes: i) to define a yield criterion; ii) to describe a flow rule; and iii) to 

determine a hardening law. When dealing with these problems for granular materials, 

e.g. soil, it is much more difficult than dealing for metallic materials. For example, in 

problem i), the yield criterion for granular materials is more difficult to be determined, 

which is mainly because the yield point on the stress-strain curve of granular material 

is not as clear as that for metallic materials. Therefore, the yield criterion for granular 

material is often determined based on hypotheses or numerous tests under different 

stress paths (Li, 2004). 
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In order to solve the other two problems, i.e. determination of flow rule and 

hardening law, let us make a deeper view of the core of plasticity theory, viz. 

pd ( )ij ijgλ= Δ ∂ ∂ε σ , in which g is a hypothetical function of plastic potential. In 

different constitutive models, plastic potential function could be determined with 

plastic strain increment obtained from many tests or with hypothesis-based method 

(Li, 2004), for some materials this potential function even does not exist. For problem 

ii), flow rule is used to determine the direction of plastic strain increment, which is 

stipulated, ponderously by plasticity, perpendicular to the plastic potential surface. 

This is to say, the determination of flow rule (an associated one) will boil down to the 

determination of plastic potential function, which is mainly based, as forementioned, 

on redundant tests or hypothesis. For problem iii), a material is said to be hardened, if 

the yield stress increases with the development of plastic deformation. In plasticity, 

hardening law describes the law of variation of yield criterion with the development 

of plastic deformation. Again, we encounter here the awful problem, yielding of 

granular materials, see problem i). 

The above discussion has illustrated the elements of an elastoplastic constitutive 

model, from which we can see that excessive dependence on experiments or too many 

hypotheses are involved in model development. For example, the yield criterion and 

plastic potential function are determined based on hypothesis or experiments, as well 

as flow rule which is based on the latter. At this stage, we can conclude that it is 

cumbersome to model granular materials with elasticity and plasticity theory. When 

noting that the mechanical behavior of frozen soil is affected by more factors than that 

of normal granular materials, e.g. unfrozen soil, constitutive modeling would become 

more complicated if within the framework of plasticity theory. In light of this, new 

methods for material modeling can be resorted to. 

1.3 Research method in this study 

Hypoplasticity, a new theory developed with the help of continuum mechanics, has 

been becoming quite popular in the study of constitutive models for granular materials. 
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In hypoplasticity, constitutive model is built by stress rate being a tensor function of 

stress state and strain rate according to the representation theorem for isotropic tensor 

function. Compared to traditional elastoplasticity theory, hypoplasticity has many 

advantages in material modeling, such as: 1) the nonlinear stress-strain relationship 

from beginning to end based on hypoplastic model can coincide qualitatively with the 

characteristics of the deformation of granular materials; 2) failure surface and flow 

rule in hypoplasticity can be obtained rigorously in mathematics, rather than by 

assumption or experimental results as in elastoplasticity; 3) distinction between 

loading and unloading is not necessary to be made during numerical calculations, 

since the loading-unloading criterion is hidden in hypoplastic models per se; and 4) 

hypoplastic constitutive equations have a concise structure in mathematics. 

In view of the above advantages of hypoplasticity, plenty of hypoplastic 

constitutive models (Kolymbas, 1985; Wu and Kolymbas, 1990; Wu, 1992; Wu and 

Bauer, 1994; Wu et al., 1996; Herle and Kolymbas, 2004; Huang et al., 2006; Zhang 

et al., 2008) are built for various geomaterials, from which hypoplasticity has been 

proved to be a powerful tool in describing all kinds of properties, such as nonlinear 

mechanical property, dependence on stress path, shear dilation and strain softening of 

geomaterials. So in this study, based on hypoplasticity theory, some constitutive 

models are developed for the special geomaterial - frozen soil. 

1.4 Outline of the study 

Constitutive modeling for frozen soil is the main topic of this study. Before 

proceeding to model, the necessity of modeling and the existing constitutive models 

for frozen soils are analyzed in Section 1. Then in Section 2, by introducing a 

cohesion tensor and a deformation function into the model developed by Wu (1992), 

an extended hypoplastic constitutive model for frozen soil is obtained. By simulating 

some triaxial compression tests at different temperatures and confining pressures, the 

model shows a good ability in describing the strength behavior and volumetric change 

of frozen soil. It should be noted that the model in Section 2 is rate-independent, thus 
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it cannot account for the loading rate effect and rheological properties of frozen soil. 

In view of this, a rate-dependent hypoplastic constitutive model, named as 

visco-hypoplastic constitutive model, is developed in Section 3. This viscous model is 

obtained by dividing the stress rate into a statical and a dynamical part, which are 

formulated by the rate-independent model in Section 2 and a high order model with 

respect to strain acceleration, respectively. Then the versatility of the viscous model is 

examined by simulating some compression tests at different loading rates and creep 

tests at different creep stresses. In Section 4, another rate-dependent hypoplastic 

constitutive model, termed hypoplastic creep model, is developed. By simulating 

some compression creep tests, this creep model is also shown to be capable of 

describing the creep behaviors, as well as relaxation of creep strength of frozen soil. 

In Section 5 the main conclusions of this study are listed, followed by some open 

questions and remarks on each model. The structure chart of this study is shown in 

Figure 1.1. 
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2 An extended hypoplastic constitutive model for frozen soil 

At the beginning of this section, the theoretical background of hypoplasticity is briefly 

introduced. Then, by introducing a temperature-dependent cohesion tensor and a 

scalar function of deformation into the model developed by Wu (1992) for sand, an 

extended hypoplastic constitutive model for frozen soil is obtained. The method for 

determining the parameters in this model is also presented. Using the parameters 

determined with this method, the model is then verified by simulating some triaxial 

compression tests at different temperatures and confining pressures. 

2.1 A brief introduction to hypoplasticity 

Hypoplasticity is a new theory which is developed by many researchers (Kolymbas, 

1985; Dafalias, 1986; Wu and Kolymbas, 1990; Wu, 1992) to study the constitutive 

models for granular materials. In hypoplasticity, the constitutive models are 

developed by means of the representation theorem for isotropic tensor function and 

have a theoretical basis of continuum mechanics. Generally, hypoplastic constitutive 

models are formulated by the stress rate being a nonlinear incremental function of 

stress and strain rate. When the nonlinear terms in the function are removed, the 

model will recover to a hypoelastic one (Truesdell, 1955). 

Hypoplasticity has been widely used in material modeling, plenty of hypoplastic 

constitutive models have been proposed by many investigators (Wu and Bauer, 1994; 

Wu et al., 1996; Herle and Kolymbas, 2004; Zhang et al., 2008) for various granular 

materials, from which the advantages of hypoplasticity in modeling can be 

summarized as: 1) the deformation of granular materials is not decomposed 

factitiously into elastic and plastic part as in elastoplasticity. Hypoplasticity theory 

can describe the nonlinear deformation from the very beginning of loading, this seems 

more appropriate for granular materials, because the deformation of granular 

materials is mainly caused by the unrecoverable relative displacement between grains; 

2) failure criterion, which can only be obtained from experiments or by assumption in 
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plasticity theory, can be derived directly from hypoplastic constitutive equation, 

which not only helps to circumvent the redundant experiments, but also has more 

significance from a mathematical point of view; 3) in hypoplasticity there is no 

concept of plastic potential which is assumed to exist to determine the flow rule in 

plasticity theory. So the flow rule in hypoplasticity is not obtained by perpendicularity 

to the plastic potential surface. Like failure criterion, flow rule can also be derived 

from hypoplastic constitutive equation; 4) loading-unloading criterion is not defined 

additionally as in plasticity theory, but incorporated implicitly in hypoplastic 

constitutive equations per se. This can greatly increase the efficiency of numerical 

simulations based on hypoplastic constitutive models; and 5) compared to 

elastoplastic constitutive equations, hypoplastic constitutive equations are more 

mathematically concise, also less experiments are required to determine the 

parameters in hypoplastic models. 

2.2 Basic ideas of modeling frozen soil with hypoplasticity 

For almost all the macroscopic constitutive models for frozen soils, they have a 

common basis which reads that the frozen soil is regarded as a homogeneous 

continuum, and the ice distributes uniformly in soil mass. This makes it possible to 

model frozen soils with hypoplasticity which is based on continuum mechanics. 

Secondly, many test results (Sayles, 1966; Ladanyi, 1981; Haynes and Karalius, 1977; 

Parameswaran, 1980; Bragg and Andersland, 1981) reveal that the factor which 

governs the mechanical properties of frozen soil is temperature. This can be attributed 

to the following 2 aspects: firstly, the mechanical properties of ice in frozen soil are 

strongly dependent on temperature; secondly, the bonding strength of the interface 

between soil grain and ice is also very sensitive to temperature. From this point of 

view, the strength of frozen soil can be regarded to consist of two parts, namely the 

strength of soil skeleton and ice cementation, see also Goughnour and Andersland 

(1968). Therefore, when the cementation of ice is taken into account, a hypoplastic 

constitutive model for frozen soil can be built based on the hypoplastic models for 
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cohesionless soil. The detailed procedures of modeling will be discussed in the next 

section. 

2.3 Hypoplastic constitutive model for frozen soil 

2.3.1 Framework of hypoplasticity 

In the work by Wu and Kolymbas (1990), a general hypoplastic constitutive 

model was defined by assuming that there existed a tensor function H such that 

( , )=T H T D                            (2.1) 

where T is stress tensor, D is stretching tensor, T  is Jaumann stress rate and is 

defined as 

= + ⋅ − ⋅T T T W W T                        (2.2) 

where W is a spin tensor. 

In order to get a concrete model, constitutive equation (2.1) should be subjected 

to three restrictions. Two of these restrictions are based on general principles of 

continuum mechanics, while the other is based on experimental observations. 

To start with a simple case, the constitutive model is considered to be 

rate-independent, i.e. the natural time should not appear in the constitutive equation. 

For constitutive equation (2.1), this is equivalent to: 

Restriction 1: The function H should be positively homogeneous of the first degree in 

D 

( , ) ( , )λ λ=H T D H T D                        (2.3) 

where λ  is an arbitrary positive scalar. 

The second restriction is based on the following experimental observation made 

by Goldscheider (1982) with a true triaxial apparatus on sand: 

A proportional strain (stress) path starting from a nearly stress free and undistorted 

state yields a proportional stress (strain) path. 

This observation is of fundamental importance for developing constitutive 

equations. Mathematically, it can be expressed by the following restriction. 
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Restriction 2: The function H should be homogeneous in T, i.e. 

( , ) ( , )nλ λ=H T D H T D                        (2.4) 

where λ  is an arbitrary scalar and n denotes the degree of homogeneity. Restriction 

2 implies that the tangential stiffness is proportional to the n th order of the stress 

level (tr )nT , so that experiments conducted under different stress levels can be 

normalized by (tr )nT . 

The third restriction results from the requirement of objectivity of constitutive 

equation (2.1) under rigid rotations. For this requirement, it means 

Restriction 3: The function H should fulfill the following condition of objectivity 

T T T( , ) ( , )=H T D H T DQ Q Q Q Q Q                  (2.5) 

in which Q  is an orthogonal tensor. The requirement of objectivity could be satisfied 

when function H is chosen according to the representation theorem for isotropic 

tensor function. In the most general case, the representation theorem for a tensor 

function with two symmetric tensor variables can be written as (Wang, 1970) 

2 2
0 1 2 3 4 5

2 2 2 2 2 2 2 2
6 7 8

( )

( ) ( ) ( )
ijα α α α α α

α α α

= + + + + + +

+ + + + + +

T T D T D TD DT

T D DT TD D T T D D T

δ
       (2.6) 

where ijδ  is Kronecker delta. The coefficient iα  (i = 0, 1, …, 8) are functions of the 

invariants and joint invariants of T and D. 

2.3.2 Modeling frozen soil with hypoplasticity 

Bearing in mind that constitutive equation (2.1) should be homogenous in stress 

T, and beginning with the simplest case in assuming that the tensor function is 

homogeneous of the first order in T, Wu (1992) proposed the following hypoplastic 

constitutive equation: 

22
d

1 2 3 4
tr( )(tr )

tr tr tr
c c c c= + + +

TTD TT T D T D D
T T T

             (2.7) 

where ic  (i = 1, …, 4) are dimensionless material parameters; 2tr( )=D D  stands 
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for the Euclidean norm of strain rate tensor; Td is the deviatoric stress tensor and can 

be defined by 

d
1
3 (tr ) ij= −T T T δ                         (2.8) 

Since the original model (2.7) is proposed for cohesionless soil, it should be 

mentioned that the limit surface of this model is a cone with its apex at the origin in 

the principal stress space. Therefore, constitutive equation such as (2.7) allows no 

tensile stress, and is obviously not appropriate for frozen soils which can sustain 

certain tension owing to ice cementation. However, this shortcoming can be removed 

by extending the constitutive equation with a back stress s related to the cohesion of 

frozen soil as 

( , , )=T H T Ds                          (2.9) 

s is assumed to be a diagonal matrix of the rank of 3, and the elements on the 

principal diagonal are identical with each other, whose magnitude can be regarded as 

the cohesion of frozen soil. It is worth noting that different chemical or physical 

causes for cohesion give rise to different material behaviors, in this study, the 

cohesion is only related to the temperature of frozen soil, the effect of water content 

and other factors, such as the chemical properties of soil grain and cementation of the 

soluble salts in frozen soil, are not taken into account. 

Enlightened by the work by Wu et al. (1996) on granular materials and Bauer 

and Wu (1995) on cohesive powders, the hypoplastic constitutive model for frozen 

soil can be constructed in the following way: 

2 2
1 2 ε 3 4 d

tr[( - )[tr( - )] ( - ) ( - ) ( - )
tr( - ) tr( - )

c c f c c⎡ ⎤= + + ⋅ +⎣ ⎦
DT D]T T D T T T

T T
ss s s s
s s

     (2.10) 

in which fε is a deformation-related factor. 

Experimental results on frozen Fairbanks silt by Haynes and Karalius (1977) and 

on frozen sand by Bourbonnais and Ladanyi (1985) show that the shear strength of 

frozen soils depends linearly on temperature when the temperature is not lower than 

-30 °C. In light of this, we assume that the element of s can be related to temperature 

as 
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s = a·θ + b                        (2.11) 

where θ is the temperature of frozen soil, a and b are parameters, which describe the 

effect of temperature on the cohesion of frozen soil. 

The deformation-related factor is given by the following expression: 

fε = 2 – exp(α·l + β)                    (2.12) 

where α and β are parameters related to the existential state, such as temperature and 

stress state of frozen soil, l is the accumulation of deformation and can be obtained 

according to the definition in Wu et al. (1993). 

2.3.3 Calibration of the hypoplastic constitutive model 

Altogether there are 8 parameters to be determined in the extended constitutive 

model. These parameters can be classified into 2 groups: the first group comes from 

the original model (2.7), i.e. material parameters ci (i = 1, …, 4), and the second group 

contains the other 4 parameters, a, b, α and β. 

1. Determination of the material parameters 

The material parameters in constitutive equation (2.7) can be determined from a 

conventional triaxial compression test. For the sake of convenience, the two linear 

terms and two nonlinear terms in (2.7) are abbreviated as L1, L2, N1 and N2, then 

equation (2.7) can be rewritten as 

1 1 2 2 3 1 4 2( ): + ( ): ( ) ( )c c c c= + +T T D T D N T D N T DL L          (2.13) 

Owing to the symmetry of Cauchy stress tensor and strain tensor, equation (2.13) can 

be rewritten into the following two scalar equations 

2 2 2 2
1 1 11 1 2 12 3 3 11 1 3 4 12 1 3T D D D 2D D 2Dc L c L c N c N= + + + + +          (2.14) 

2 2 2 2
3 1 21 1 2 22 3 3 21 1 3 4 22 1 3T D D D 2D D 2Dc L c L c N c N= + + + + +          (2.15) 

When the both sides of equations (2.14) and (2.15) are divided by axial strain 

rate, quantities such as stiffness and Poisson’s ratio can be generated. To this stage, let 

us consider two arbitrary points A and B (in practice, the point at the outset of 

deviatoric stress and the failure point are preferred) on the stress-strain curve and the 

corresponding points A’ and B’ on the axial strain-radial strain curve, as shown in 
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Figure 2.1, from which the tangent modulus, EA and EB, and Poisson’s ratio, vA and 

vB, at the two points can be obtained. As the confining pressure is maintained constant 

during a triaxial compression test, we have 2 3T T 0= =  and E3A = E3B = 0 

( 3 3 3T DE = ). Substituting the relevant quantities at points A (A’) and B (B’) into 

equations (2.14) and (2.15), we can get 

 

 

Fig. 2.1 Schematic curves of triaxial compression test 

(a) deviatoric stress-axial strain; (b) radial strain-axial strain 

 

2 2
1A 1 11 2 12 A 3 11 A 4 12 A1 2 1 2E c L c L v c N v c N v= + + + + +           (2.16) 

2 2
1 21 2 22 A 3 21 A 4 22 A0 1 2 1 2c L c L v c N v c N v= + + + + +          (2.17) 

2 2
1B 1 11 2 12 B 3 11 B 4 12 B1 2 1 2E c L c L v c N v c N v= + + + + +           (2.18) 

2 2
1 21 2 22 B 3 21 B 4 22 B0 1 2 1 2c L c L v c N v c N v= + + + + +          (2.19) 

Then the material parameters ci (i = 1, …, 4) can be obtained by solving the above 

equation system with respect to the variables ci. 

If points A and B are chosen at the outset of deviatoric stress and the failure point, 

respectively, we can get the following information: 1) E1A will be the initial tangent 

modulus of the specimen, i.e. Ei; 2) E1B will be 0, then from (2.18) the stress ratio at 

E1B

vA

A

A'

vB

E1A

B

Axial strain

(a)

(b)

B'
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failure, Rf = T1/T3, can be obtained, which will generate the frictional angle at failure 

(φ) for cohesionless soil according to sinφ = (Rf – 1)/(Rf + 1); 3) vA will be the initial 

Poisson’s ratio (vi) and vB will be the Poisson’s ratio at failure (vf), each can be 

converted into the corresponding dilatancy angle ψi and ψf according to tanψ = 1 + 2·v. 

Therefore it can be seen that the determination of the material parameters ci can be 

replaced by the determination of the initial tangent modulus Ei, initial dilatancy angle 

ψi, frictional angle at failure φ and dilatancy angle at failure ψf, which are well defined 

in soil mechanics. 

 

2. Determination of the introduced parameters 

Here we proceed to determine the parameters in the second group, which 

contains 4 introduced parameters, a, b, α and β. As mentioned above, parameters a 

and b describe the dependence of cohesion on temperature, so a and b can be obtained 

from the relationship between cohesion and temperature (Figure 2.2). Parameter α is 

related to the configuration of stress-strain curve, e.g. strain softening or strain 

hardening; β is a coordination parameter. Considering that temperature is the most 

important factor which governs the mechanical behaviors of frozen soil, and for the 

sake of simplicity, α and β can be calculated with 1

ref1 ( )nα θ θ= −  and 

2

ref( )nβ θ θ= − , respectively. θref is a reference temperature which is used frequently 

in frozen soil mechanics, normally θref has the value of -1 °C (Zhu and Carbee, 1984). 

When different confining pressures are considered, θ in the above expressions for 

calculating α and β can be replaced by mean pressure p, then pref could be regarded as 

the pre-consolidation pressure pc. 
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Fig. 2.2 Determination of parameters a and b 

 

2.4 Verification of the hypoplastic constitutive model 

To this stage, the constitutive model has been formulated and the calibration method 

has been determined, the ensuing question is to check whether this model is capable 

of describing the main mechanical properties, such as strength and deformation 

behaviors of frozen soil. For this purpose, several kinds of laboratory tests have been 

simulated. Owing to the simultaneous control of temperature and pressure is a big 

challenge when conducting experiments on frozen soil, comparisons between 

numerical and experimental results are only made based on conventional triaxial 

compression test, by means of which the simulation procedures are also presented. 

2.4.1 Laboratory triaxial compression test 

Specimen preparation 

A standard sand is used in the compression tests. The maximum and minimum 

diameters of the sand are 2.0 mm and 0.075 mm, respectively. The half-content 

diameter d50 is 0.7 mm. The procedure of specimen preparation can be summarized as: 

firstly, the dry specimens are prepared with a so-called sand pluviation method (the 

sand flows through a nozzle and a series of sieves into a cylindrical mold of 61.8 mm 

in inner-diameter) which could guarantee a relatively uniform bulk density, proved by 

Temperature (oC)

a

b

1

0
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Stetzler-Kaufmann (1983); secondly, sufficient distilled water is provided to be 

sucked by the dry specimen placed in a closed vacuum container; then the specimens 

are frozen quickly to avoid ice lens in a chamber at the temperature of -30 °C. Such 

prepared specimen has a dry unit weight of 18.2 kN/m3, and the dimensions of the 

specimen are 61.8 mm in diameter and 125.0 mm in height. 

 

Test procedures 

All the triaxial compression tests are conducted on a self-developed test 

apparatus, which consists of the following 4 parts: axial loading system, radial loading 

system, cooling system and data acquisition system. The detailed procedures of 

conducting a compression test on frozen soil specimen are listed in below: 

i) pre-cooling. Before testing, the loading cap, pedestal, especially the oil which 

is used to control the temperature and confining pressure should be kept at a 

minus temperature required by the test, this could guarantee that the specimen 

would not melt when installing it; 

ii) installing specimen. When pre-cooling is finished, the specimen will be taken 

out from the mold and packed into a rubber membrane, then installed quickly into 

the chamber of the test machine. Afterwards the chamber will be sealed and 

covered with an insulation shield. With the help of cooling system, the 

temperature of the oil will be maintained at the target value for at least 24 h; 

iii) loading process. When the temperatures around the specimen are stable, a 

hydrostatic pressure of the magnitude of target confining pressure is firstly 

applied to the specimen and kept unchanged, then an axial pressure (deviatoric 

stress) will be applied by a vertical piston with a loading rate of 1.25 mm/min. 

During the whole loading process, the axial stress, axial deformation and radial 

deformation will be recorded automatically by the data acquisition system; 

iv) removing specimen. When the test is finished, the confining oil will be 

recycled, then the specimen will be taken out and the characteristics of 

deformation and failure will be documented. 

According to the above test procedures, some triaxial compression tests on 
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frozen soil at different test conditions are conducted, the test results will be presented 

in the next subsection together with the simulations based on the extended constitutive 

model. 

2.4.2 Simulation of triaxial compression test 

In this subsection, the extended hypoplastic constitutive model is used to 

simulate some triaxial compression tests at different temperatures and confining 

pressures, then the simulated results are compared to the test results in two aspects, 

namely stress-strain relationship and volumetric deformation. 

Based on the extended model (2.10), the governing differential equations for a 

conventional triaxial compression test can be expressed as: 
2 2

1 32 21 1 1 3 3 3
1 1 1 1 3 3 1 2 1 1 3 1 1 4 1 3 ε

1 1 3 3 1 1 3 3

D 2D(T )D 2(T )D 4T [(T ) 2(T )]D (T ) [ (T ) (T T ) ]
(T ) 2(T ) 9 (T ) 2(T )

s sc s s c s c s c f
s s s s

+− + −
= − + − + − + − + −

− + − − + −
   (2.20) 

2 2
1 32 21 1 1 3 3 3

3 1 1 1 3 3 3 2 3 3 3 3 3 4 1 3 ε
1 1 3 3 1 1 3 3

D 2D(T )D 2(T )D 1T [(T ) 2(T )]D (T ) [ (T ) (T T ) ]
(T ) 2(T ) 9 (T ) 2(T )

s sc s s c s c s c f
s s s s

+− + −
= − + − + − + − + −

− + − − + −
   (2.21) 

In the above two equations, the back stress s can be determined based on equation 

(2.11), and factor fε can be calculated according to equation (2.12) by setting l = 0 at 

the beginning of the test. Recalling the boundary conditions for a conventional triaxial 

compression test, i.e. 1) starting from a hydrostatic stress state T0; 2) keeping the 

confining pressure unchanged ( 3T 0= ); and 3) compressing at a constant axial strain 

rate, e.g. D1 = -0.0001 (note that negative sign denotes compression and any positive 

scalar can serve as the norm of strain rate tensor, since the constitutive equation in 

concern is rate-independent.), equations (2.20) and (2.21) contain only two unknowns, 

i.e. 1T  and D3. Therefore the procedures of the simulation can be presented as: i) in 

each time step of the simulation, the radial strain rate D3 is to be calculated from 

equation (2.21); ii) the radial strain rate (increment) obtained in this way will be 

substituted into equation (2.20) to get the axial stress rate (increment); and iii) the 

stress state will be updated to serve as the initial stress state for the simulation in the 

next time step. 

 

Simulating the effect of temperature 
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A series of triaxial compression tests are conducted on frozen soil at a constant 

confining pressure (1.0 MPa) and constant strain rate (1.67×10-4 s-1), however at 

different temperatures, which are -1, -2, -5 and -10 °C. Before the simulation of these 

tests, the parameters in the extended model should be determined. According to the 

stress-strain curve and volumetric deformation curve of the corresponding unfrozen 

standard sand, the required quantities for determination of the material parameters are 

obtained as: the initial tangent modulus Ei = 201.4 MPa, the initial dilatancy angle ψi 

= -43.0°, the frictional angle φ = 33.0° and dilatancy angle at failure ψf = 37°. Based on 

these quantities, the material parameters can be calculated as c1 = -64.5, c2 = -715.7, 

c3 = -647.2, c4 = 1483.0. Besides, based on the cohesion-temperature relationship, the 

introduced parameters can be obtained as: a = 481.0 kPa/°C, b = 1124.0 kPa, n1 = 

0.213, n2 = -1.57. With these parameters and the simulation procedures listed above, 

the triaxial tests at the 4 different temperatures are simulated. The results are shown in 

Figures 2.3-2.4 together with the corresponding experimental results. 

It can be seen from the results that, with the decrease of temperature, the strength 

and the initial tangent modulus of the frozen soil will increase. This is quite easy to be 

understood, for the structure of the frozen soil is enhanced by the increasing 

cementation of ice. Meanwhile, the axial strain at failure has a tendency to decrease. 

This could be explained by the change of phase from a plastic to a brittle type with the 

decrease of soil temperature. Comparison between the simulated and experimental 

results shows that the above behaviors can be well captured by the proposed model. 

For volumetric deformation, it is always a difficult problem to predict. The results of a 

workshop on constitutive models reveal that none of 32 models can get a score higher 

than 40 out of a full mark 100 in predicting volumetric deformation. With the 

proposed model, the simulated volumetric deformation is shown in Figure 2.4, from 

which we can see that the predictions and experimental results agree with each other 

to a large extent. To this stage, we could conclude that the proposed model shows a 

good ability in describing the effect of temperature on the main mechanical behaviors 

of frozen soil. 
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Fig. 2.3 Stress-strain relationship at different temperatures 

 

 
Fig. 2.4 Volumetric deformation at different temperatures 

 

Simulating the effect of confining pressure 

Triaxial compression tests at different confining pressures (0.3, 0.6, 0.8 and 1.0 

MPa) are also simulated. The tests are conducted at the temperatures of -4.0 and 

-6.0 °C and strain rate of 1.67×10-4 s-1. The simulation results are presented in Figures 

2.5-2.8. From Figures 2.5 and 2.7 we can see: i) both the strength and axial strain at 

failure increase with the increase of confining pressure; ii) the degree of strain 

softening tends to decrease as the confining pressure increases. The first observation 

is not difficult to understand, while for the second observation, it can be analogized to 

the results of triaxial tests on over-consolidated and normally consolidated soil in 

conventional soil mechanics. A soil can be regarded as an over-consolidated soil when 
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the present pressure on the soil is less than the pre-consolidation pressure in history, 

otherwise, it will be called normally consolidated soil. Keeping this in mind, when the 

confining pressure increases in triaxial tests, the test soil can be considered to change 

from an over-consolidated state to a normally consolidated state, therefore the degree 

of strain softening will decrease, as the over-consolidated soil is more apt to exhibit 

strain softening in stress-strain curve. By comparing the simulated results with the 

experimental results, we can find that the above observations can be well reproduced 

by the extended constitutive model. 

The volumetric deformations of the specimens at the two temperatures are shown 

in Figures 2.6 and 2.8. From each figure we can see that the frozen soil specimen 

dilates at all confining pressures, the lower the confinement is, the stronger the 

dilation will be. Comparison between the numerical and experimental results indicates 

that the extended model is also capable of describing the characteristic of deformation 

at different confining pressures. 

 

 

Fig. 2.5 Stress-strain relationship at different confinements at -4.0 °C 
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Fig. 2.6 Volumetric deformation at different confinements at -4.0 °C 

 

 
Fig. 2.7 Stress-strain relationship at different confinements at -6.0 °C 

 

 
Fig. 2.8 Volumetric deformation at different confinements at -6.0 °C 
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2.5 Summary 

In this section, an extended hypoplastic constitutive model for frozen soil is 

proposed based on the pioneer model by Wu (1992) and some novel ideas on the 

constitution of the strength of frozen soil. Then, a series of triaxial compression tests 

on frozen soils at different temperatures and confinements are simulated with this 

model. Comparisons between the simulated and experimental results show that the 

main mechanical behaviors of frozen soil, such as strength, axial strain at failure, 

strain softening and volumetric deformation, can be well captured by the extended 

model. 

It should be noted that the model proposed in this section is rate-independent, 

thus it cannot account for the rheological properties of frozen soil, such as creep 

behaviors and loading rate effect, which are actually quite important in practical 

engineering. In view of this, a rate-dependent hypoplastic constitutive model for 

frozen soil will be presented in the next section. 
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3 A visco-hypoplastic constitutive models for frozen soil 

A sound hypoplastic constitutive model was developed in Section 2, which can 

describe the main mechanical behaviors of frozen soils, such as the variation laws of 

strength and volumetric deformation with temperature and confining pressure. 

Admittedly, this model cannot account for time effect, i.e. rheological or viscous 

properties of frozen soil, thus should be attributed to rate-independent constitutive 

model. 

In frozen soil engineering, the loading pattern on structures has become more 

and more complicated with the function richening and scale increasing of structures. 

In order to insure the serviceability of the structures, it is necessary to get a deep 

understanding of the effect of loading pattern, including loading rate, on the 

mechanical properties of the surrounding frozen soils. This is to say, the rheological 

property of frozen soils and rate-effect cannot be ignored, thus study on the 

stress-strain-time relationship of frozen soil, such as creep, relaxation and loading rate 

effect, etc. has become more and more important. Keeping these in mind, this section 

is planned to develop a rate-dependent hypoplastic constitutive model, also named 

here as visco-hypoplastic constitutive model, for frozen soil. 

3.1 Development of the visco-hypoplastic constitutive model 

The hypoplastic constitutive model in the last section is meant primarily to describe, 

we say, the statical behaviors of frozen soil, in which the dominating mechanism is 

friction. However, the same frozen soil may exhibit dynamical or fluid-like behaviors 

under certain condition, in which rate-effect and viscosity would be the major 

characteristics. Such behaviors are of great importance in numerous engineering 

problems. For example, in slope engineering in permafrost regions, many slopes 

exhibit gravity-driven creep movements as a result of the viscous behavior of frozen 

soil. Not only do these movements pose a threat to infrastructure and buildings on or 

below the slope, they may also represent an initial stage of fast landslides or earth 



26 
 

flows with even more detrimental impact. In road engineering, the deformation of 

roadbed can be caused not only by the thaw settlement of frozen subsoil, creep of the 

subsoil is also found to be an important cause of the deformation (Qi et al., 2007). In 

mining engineering, the mining procedure can be described as a continuous unloading 

process with the increase of mining depth, the unloading rate is directly dependent on 

the mining speed, which has a strong effect on the deformation and stability of the 

surrounding frozen soil. And in caving or tunneling engineering under frozen ground, 

excavation is also a complicated unloading process like in mining engineering, 

moreover, the deformation of frozen soil wall is confined by support, which can affect 

stress redistribution and then support duration. Therefore, when conducting such 

engineering activities in which the viscous behaviour or rate-effect cannot be 

neglected, it is necessary to develop a viscous constitutive model for frozen soil. 

3.1.1 Conception of the structure of the viscous model 

It is widely known that many liquids (including water) will briefly react like 

elastic solids when subjected to sudden stress, and conversely, many solids (even 

granite) will flow like liquids, albeit very slowly, even under arbitrarily small stress 

(Kumagai et al., 1978). Traditionally, the description of the fluid-like behavior of 

materials has been made independently from the theories for the solid-like behavior. 

One of the simplest cases, Newtonian fluid, is easy to be associated with for this 

description, which has the following form 

T = ηD                            (3.1) 

where T is Cauchy stress tensor, D is stretching tensor, η is the viscosity coefficient. 

However, Newtonian models within the framework of (3.1) cannot exhibit all normal 

stress differences (Meissner et al., 1989; Goldhirsch and Sela, 1996) in a simple shear 

flow, which would be the cause of Weissenberg effect. 

In the later mechanical theories for the flow of liquid, especially flow of granular 

materials (Goodman and Cowin, 1971, 1972; Savage, 1979; Nunziato et al., 1980; 

Passman et al., 1980), the Cauchy stress T is of the form 

T = f(v, grad v, D)                       (3.2) 
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where v is the grain volume fraction. It is not physically clear why the stress should 

depend on the gradients of v, however, some clues can be found in Savage (1979). It 

should be noted that models of the form (3.2) also have some limitations, they can 

only be applied to slow to moderately fast flows of dense granular materials. A 

detailed discussion of models of the class (3.2) can be found in the work by Massoudi 

(1991). 

Incidentally, the complete representation theorem for the isotropic function of 

stress given by (3.2) should be of the following form 

T = a0I + a1D + a2D2 + a3 grad v  grad v + a4 sym (grad v (D  grad v)) 

+ a5 sym (grad v (D2  grad v))                               (3.3) 

where the coefficients a0, a1, … , a5 are functions of 

ai = f (v; ID; IID; IIID; grad v • grad v, grad v • Dgrad v; grad v • D2grad v)  (3.4) 

with the principal invariants 

ID = trD; IID = ((trD)2 – tr(D2)), IIID = detD           (3.5) 

However, this representation theorem does not help very much in building 

constitutive models owing to its excessive complexity. As a consequence, most the 

early models are based on a part of the representation theorem, which is found to be 

the generalization of Reiner-Rivlin fluid model, and have the structure 

T=α0I+α1D+α2D2                       (3.6) 

The coefficients αi (i = 0, 1, 2) are functions of the principal invariants of D and grain 

volume fraction. However, these models are fraught with internal inconsistency, 

which has been succinctly discussed by Scheiwiller and Hutter (1982). Like the 

Newtonian fluid models, models within the framework of (3.6) can neither explain the 

normal stress effect. 

Hitherto, it can be found without any difficulty that all the above models are 

based on a relationship between stress and strain rate. Besides the deficiencies of their 

own, such models cannot account for the different behaviors for loading and 

unloading, which therefore requires constitutive models to be formulated in a 

relatively complicated form, e.g. containing the rate form of stress or high order 
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derivatives of strain. 

Before we proceed, let us consider some flow patterns in different materials. If 

the flow properties of a material can be completely characterized by a single variable 

viscosity coefficient, e.g. Newtonian flow, then the flow mode of the material under 

any different conditions can be worked out without difficulties in principle. For more 

complicated flows of materials which possess elasticity of volume or of shape to 

guarantee finite rate of shear (Fröhlich and Sack, 1946), they will exhibit properties at 

any instant which depend on their recent rheological history in the sense that the stress 

is not entirely determined by the instantaneous rate of strain. One of these flows is 

Maxwell flow (Maxwell, 1867), in which an additional rate of shear is proportional to 

the rate of application of stress T   at any instant, and the total rate of shear can be 

characterized with 

0 1λη = +D T T                           (3.7) 

Here we can see that the hypoplastic constitutive model proposed in Section 2 has the 

same construction as Maxwell flow. Another flow was considered by Fröhlich and 

Sack (1946) on a system composed of a continuous and a disperse phase, the 

differential equation of flow for which was found to be of the form 

1 0 2( )λ λη+ = +T T D D                       (3.8) 

in which λ1 is the relaxation time, λ2 is the retardation time. By comparing equations 

(3.7) and (3.8) we can see that the D  term in the second equation is comparable with 

the D term and cannot be neglected. In some cases, it is even necessary to consider 

higher time derivatives than the second derivative, for example in oscillatory shearing 

motion of small amplitude, then there being need to consider the equation of the 

following form: 

1 1 0 2 2... ( ...)v vλ λη+ + + = + + +T T T D D D              (3.9) 

where v1, v2,… are additional constants. 

To this stage we can summarize the flow patterns of different materials as: 1) 

Maxwell flow can be considered as a flow with an additional shear rate proportional 

to the rate of application of stress on the basis of Newtonian flow; 2) when the strain 
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acceleration cannot be neglected, the flow studied by Fröhlich and Sack (1946) can be 

regarded as an extension of Maxwell flow. Enlightened by these conclusions, we can 

extend, following a similar approach, the hypoplastic constitutive model given in 

Section 2 to a viscous model, the details will be presented in below. 

At first we assume that the stress and its rate can be decomposed into two parts, 

the first part for statical (rate-independent) behavior and the second part for dynamical 

(rate-dependent) behavior, viz. 

                      (3.10) 

The statical part will be described by the constitutive equation (2.1) with minor 

modification. When rewritten out using T̂ , it has the general form of 

ˆ ˆ ˆ( , )=T H T D                         (3.11) 

Compared to the statical part, the dynamical part is a little more difficult and will be 

talked separately in subsection 3.1.2, followed by the minor modification in the 

statical part in Subsection 3.1.3. 

3.1.2 Dynamic part of the viscous model 

In order to be accorded in form with the statical part (3.11) which is of rate type, 

the dynamical part has to be formulated in rate as well. To this end, let us consider the 

following equation which could be regarded in form as the time differentiation of 

Equation (3.1) provided the viscosity coefficient is a constant 

                            (3.12) 

where D  is the Jaumann stretching rate tensor and can be obtained according to the 

scheme in (2.2), that is 

= + ⋅ − ⋅D D D W W D                       (3.13) 

The Jaumann stretching rate tensor can be compared to the Rivlin-Ericksen tensor 

(Rivlin and Ericksen, 1955; Truesdell and Noll, 1965), which is defined as the 

coefficients An in the Taylor series of the relative right Cauchy-Green strain tensor at 

tτ = : 
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−
=∑C A                 (3.14) 

where the tensor (x, )t τC  describes the deformation at time τ of the element which is 

at x at time t. A recursive relationship between the Rivlin-Ericksen tensors was 

obtained by Rivlin and Ericksen (Rivlin and Ericksen, 1955) as: 

T
1 0

d ,
dn n n nt+ = + + =A A A L L A A I ,  n = 1, 2, …     (3.15) 

where L is the velocity gradient tensor and has the following definition: 

L = T = ( )T, or Lij =  

It can be seen from equations (3.13) and (3.15) that the Jaumann stretching rate tensor 

and high-order Rivlin-Ericksen tensor are similarly constructed in form. 

Rivlin-Ericksen tensors can be obtained directly from the velocity field, without 

having to find the strain tensor. However, an alternative way of calculating 

Rivlin-Ericksen tensors was presented by Phan-Thien (2002), there we could also get 

a deeper understanding of the tensors: they are the high-order stretching rates of a 

fluid element. This is to say, they could be in accord with Jaumann stretching rate 

tensor in essence as we may expect. 

Now let us turn back to the normal stress effect. This effect, which cannot be 

explained by the early models (Goodman and Cowin, 1971; Savage, 1979; Nunziato 

et al., 1980; Passman et al., 1980) as stated above, will be shown by model (3.12) in 

which the Jaumann stretching rate tensor is included. In order to see this, let us 

consider a simple shear flow where the velocity field takes the following form 

1
2 , 0, 0u y v w= γ = =                       (3.16) 

Then the velocity gradient tensor L can be given by 
1
20 0

0 0 0
0 0 0

γ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L                         (3.17) 

In a simple shear flow, the first Rivlin-Ericksen tensor, i.e. twice strain rate tensor, 

can be calculated as 
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1

0 0
[ ] 0 0

0 0 0

γ⎡ ⎤
⎢ ⎥= γ⎢ ⎥
⎢ ⎥⎣ ⎦

A                         (3.18) 

Then the second Rivlin-Ericksen tensor, i.e. the Jaumann stretching rate tensor, can be 

obtained from the first using (3.15) as 

T
2 1 1 1

d
dt= + +A A A L L A  

= 
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 γ γ γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 + γ + γ γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

= 2

0 0
2 0

0 0 0

0⎡ ⎤
⎢ ⎥0 γ⎢ ⎥
⎢ ⎥⎣ ⎦

                                           (3.19) 

It is clear from Expression (3.19) that model (3.12) which contains the Jaumann 

stretching rate tensor can give rise to normal stresses in a simple shear flow. 

Incidentally, in this flow all the other higher-order Rivlin-Ericksen tensors are zero 

and it can be verified for Cauchy-Green strain tensor that 

2
1 2

1C ( ) ( ) ( )2t t tτ τ τ= + − + −I A A               (3.20) 

It has been shown that the model of class (3.12) has a good ability in explaining 

the normal stress effect. However, the assumption of constant viscosity coefficient 

may be too sharp, because in general the viscosity may depend on shear rate. Thus the 

dynamical part of the constitutive equation can be expressed by the following function 

based on (3.12) 

                        (3.21) 

Note that the function  is assumed to be independent of stress, which seems to be 

confirmed by the work in literatures (Bagnold, 1954; Savage and Mckeown, 1983). In 

order to get a concrete dynamical model, some experimental results have to be 

referred to. 

There is an extensive experimental data base in the literature on the flow 

properties of granular materials. One of the most influential pieces of work is due to 

Bagnold (1954), in which the experiments are carried out on suspensions of neutrally 

<
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buoyant particles in a Couette-flow apparatus. Based on the experimental results, 

Bagnold distinguished three flow regimes, namely a macro-viscous regime (low shear 

rate), a grain-inertia regime (high shear rate) and a transitional regime. The 

dependence of the shear and normal stress on the shear rate is found to be linear at 

low shear rate and quadratic at high shear rate. More recent experimental work 

includes that of Savage1983 and Hanes1985. 

Based on the analysis of the above experimental results, a possible form for the 

viscosity coefficient was studied and the dynamical part of the hypoplastic 

constitutive model was presented by Wu (2006) as 

                     (3.22) 

where parameters η1 and η2 in the model cannot be determined by conventional 

experiments, where the stresses are uniform and the strains homogeneous, but to be 

determined by fitting experimental data, as done by Hanes1985. Further analysis 

shows that equation (3.22) can describe fairly well the dependence of viscosity on 

shear rate in granular flow, namely linear dependence at low shear rate and quadratic 

dependence at high shear rate. This dynamical part will be introduced into the viscous 

hypoplastic constitutive model for frozen soil. 

3.1.3 Static part of the viscous model 

The statical part of the hypoplastic constitutive model for frozen soil will be 

formulated based on the rate-independent model proposed in Section 2, which is 

doubtlessly capable, on its own, to describe the main mechanical properties of frozen 

soil, as shown in Section 2.4. However, while it is combined with the above 

dynamical part to describe some rheological properties as well as rate-effect, an 

additional factor based on creep test should be introduced. 

As we all know, creep is one of the most important rheological behaviors of 

frozen soil. However, the complexity of the microstructure change makes it very 

difficult to study the creep properties at microscope level. Based on the creep tests on 

frozen kaolin, Vyalov (1978) reported his first observation on the microstructure 

change of frozen kaolin during creep process, where structure damage and particle 
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orientation factors were introduced to characterize the microstructure changes. 

Another group of uniaxial creep tests on frozen Lanzhou loess was conducted by 

Zhang et al. (1995) at the temperatures of -5 and -10 °C, the water content of the 

specimens is 27-29 % and weight 1.89-1.98 g/m3. The microstructure change of the 

specimen was analyzed with an electron microscope during the three stages of a 

typical creep test, which could be summarized as: 1) in the primary creep stage, the 

microstructure has the form of random permutation of soil grains without any 

structure damage, and the soil lumps are complete; 2) when the specimen enters the 

secondary creep stage, initial damage and radial micro-cracks occur gradually around 

the inherent defects and contact points between grains. Soil grains along the shear 

plane are reoriented and some soil lumps are crushed; and 3) in the tertiary creep 

stage, the reorientation of soil grains along the shear direction will become 

increasingly apparent, with the widening, extension then therefore cutting-through of 

micro-cracks. Zhang et al. (1995) also introduced factors similar to that of Vyalov 

(1978) to describe the evolution of microstructure damage during the creep process. 

In view of the above instructive conclusions drawn from creep test, an additional 

factor, named creep damage factor fcd, will be introduced into the rate-independent 

hypoplastic constitutive model proposed in Section 2. This factor can be formulated 

as 
2

1
cd 1 D d

t

t
f γ τ τ= + ⋅ ( )∫                  (3.23) 

where γ is a parameter relating to the post failure behavior of frozen soil, when no 

failure occurs, γ can be any finite value,  is Macaulay brackets and has the 

definition ( ): | | 2x x x= + . D τ( )  is the second-order time derivative of strain. The 

creep damage factor fcd will enter the rate-independent model in the following form 

2 2
1 2 ε cd 3 4 d

ˆtr[( - ) ]ˆ ˆ ˆ ˆ ˆ[tr( - )] ( - ) ( - ) ( - )ˆ ˆtr( - ) tr( - )
c c f f c c⎡ ⎤= + + ⋅ ⋅ +⎣ ⎦

DT DT T D T T T
T T

ss s s s
s s

    (3.24) 

3.1.4 The complete visco-hypoplastic constitutive model 

When combining the statical part (3.24) and the dynamical part (3.22), the 
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complete constitutive equation for both statical and dynamical behavior of frozen soil 

can be obtained as: 

2 2 2 2
1 2 ε cd 3 4 d 1 2

tr[( - ) ][tr( - )] ( - ) ( - ) ( - ) tr( )
tr( - ) tr( - )

c c f f c c η η⎡ ⎤= + + ⋅ ⋅ + + +⎣ ⎦
DT DT T D T T T D D

T T
ss s s s
s s

 (3.25) 

The above constitutive equation can be applied to the entire process from 

solid-like to fluid-like behavior. Unlike most of the conventional models, where 

constitutive equations for the statical and dynamical regimes are formulated and 

applied separately, the above constitutive equation makes no distinction between 

them. 

To this stage, the visco-hypoplastic constitutive model for frozen soil has been 

set up, the consequent question is how does this viscous model perform. This will be 

checked in the next section. 

3.2 Verification of the visco-hypoplastic constitutive model 

As stated at the beginning of this section, the visco-hypoplastic constitutive model is 

expected to be able to describe some rheological behaviors and the effect of loading 

rate on the mechanical behaviors of frozen soil. In order to check this, both creep tests 

at different stress levels and compression tests at different strain rates on frozen soils 

are simulated with the proposed viscous model in this section. 

3.2.1 Simulation of compression tests at different strain rates 

As previously mentioned, the stability of structures in cold regions can be 

affected to a large extent by the construction speed (loading or unloading rate). In 

order to get a better understanding of the rate-effect on the mechanical behaviors of 

frozen soil, some uniaxial compression tests at different strain rates were conducted 

on frozen Fairbanks silt by Zhu and Carbee (1984). The soil tested has a plastic limit 

of 34.2% and liquid limit of 38.4%. Specimens were prepared by compressing the soil 

to the desired density in acrylic plastic molds and had the dimensions of 70 mm in 

diameter and 152 mm in length. After the specimens were saturated with a vacuum 

pump, they were placed into a freezing cabinet and frozen quickly to avoid ice lens 
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during freezing. 6 different loading rates (50, 5, 1, 0.1, 0.01 and 0.001 cm/min, 

corresponding to the strain rates of 5.5×10-2, 5.5×10-3, 1.1×10-3, 1.1×10-4, 1.1×10-5, 

1.1×10-6 s-1) and 7 different temperatures (-0.5, -1.0, -2.0, -3.0, -5.0, -7.0 and -10.0 °C) 

were employed in these tests. The procedures of the test can be summarized as: firstly, 

the prepared specimens were kept at the same temperature as that planned for the test 

for 12 hours in a constant temperature cabinet; then the sample was placed on a 

screw-driven universal material testing machine to perform the uniaxial compressive 

test at a constant deformation rate and a constant temperature. A data acquisition 

system automatically recorded the axial load and deformation during the entire 

process of the compression test. Then the axial stress and strain were calculated, and 

the corresponding stress-strain curves were plotted. 

Compression tests at 4 different strain rates at the temperature of -3 °C are 

simulated by the proposed visco-hypoplastic constitutive model. The simulation is 

carried out according to the following procedures: 1) an acceleration phase is 

inevitable for an initially stationary specimen to deform afterwards at a constant strain 

rate, the acceleration is assumed to be constant in this phase; 2) when the target strain 

rate is reached, the specimen will be compressed at a constant strain rate till failure 

occurs, the creep acceleration in this phase is 0. Consequently, the model will return 

to the rate-independent one as talked in Section 2. In both phases, the creep damage 

factor fcd can be obtained as 1, thus parameter γ can be any finite value. The other 

parameters in the visco-hypoplastic model and the strain acceleration in the first phase 

are chosen as follows (also in Table 3.1): c1 = -98.31, c2 = -905.48, c3 = -858.98, c4 = 

1146.98, s = 207.1 kPa, β = 0.005, η2 = 10-6 s-1. 

Table 3.1 Parameter in the visco-hypoplastic constitutive model 

D1(s-1) 1.1e-6 1.1e-5 1.1e-4 1.1e-3 

α -0.004 -0.0006 -0.00001 -0.002 

η1 (kPa•s2) 4.6e15 1.3e14 1.95e12 1.65e10 

1D  (s-2) -1.0e-10 -1.0e-8 -1.4e-6 -1.53e-4 
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Fig. 3.1 Stress-strain relationship at different strain rates (-3 °C) 

 
By using the above parameters, the simulated stress-strain relationship of frozen 

Fairbanks silt in uniaxial compression tests at different strain rates is presented in 

Figure 3.1 together with the experimental results. From the experimental results we 

can see that: 1) the strength develops with the deformation of specimen then followed 

by strain softening during each compression test; 2) the responses of the specimen to 

different strain rates are different, the higher the rate is, the tougher the specimen will 

be. Therefore an increase in the strength (as well as the initial tangent modulus) of the 

specimen can be observed with the increase of strain rate; and 3) the strain at failure 

also has a tendency to increase with the strain rate. Comparison between the 

experimental and numerical results shows that all the above changing rules can be 

described quite well by the proposed visco-hypoplastic constitutive model. 

In the work by Zhu and Carbee (1984), the peak compressive strength and initial 

tangent modulus were also analyzed: a logarithmic function and a power function 

were proposed to describe the effect of strain rate on the peak strength and initial 

modulus, respectively. Here these two quantities at different strain rates are also 

obtained with the viscous model, the results are shown in Figures 3.2 and 3.3. It can 

be seen from Figure 3.2 that the peak strength increases approximately linearly with 

the strain rate in a semi-logarithmic coordinate system, which means that a 
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logarithmic relationship can be drawn between the peak strength and strain rate. 

Recalling the relationship obtained by Zhu and Carbee (1984), we can soon note that 

the two relationships are similar to each other. In Figure 3.3 the change of initial 

tangent modulus with strain rate is presented, like the above logarithmic relationship 

obtained in Figure 3.2, a similar logarithmic relationship between the initial modulus 

and strain rate can also be obtained from Figure 3.3. According to the conclusion by 

Zhu and Carbee (1984), a numerical fitting based on a power function is also 

presented in Figure 3.3. By comparing the two curves in Figure 3.3 we can find that it 

seems better to use the logarithmic function to describe the strain rate effect, as done 

by Parameswaran (1980), Wu et al. (1993) and Li et al. (1995). 
 

 

Fig. 3.2 Change of compressive strength with strain rate 
 

 

Fig. 3.3 Change of initial tangent modulus with strain rate 
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3.2.2 Simulation of creep tests at different stress levels 

The creep properties of frozen soil, like creep strength and creep deformation 

characteristics, are important information required in the design of structures in 

permafrost regions, since the long term stability of the structures is heavily dependent 

upon the creep properties of frozen soil. As we may expect, the proposed 

visco-hypoplastic constitutive model should be able to describe the creep properties of 

frozen soils. This will be ascertained by simulating some uniaxial creep tests 

conducted by Orth (1986) at different temperatures and stress levels. 

Karlsruhe Medium sand is chosen as the study material in Orth’s work, the 

particle gravity of this sand is 26.5 kN/m3. In the creep tests, the dry specimens are 

also prepared with the sand pluviation method, as talked in Subsection 2.4.1. The 

prepared specimen has a dry bulk density of 17.2 kN/m3 and water content of 18%. 

The dimensions of the specimen are 10 cm in diameter and also 10 cm in height. All 

the creep tests are carried out in a cold room, which could insure a more uniform 

temperature field in the specimen than a locally cooled device can do. In the tests, 

different temperatures (-2, -5, -10, -15 and -20 °C) are concerned, depending on which, 

different stress levels, from lowest 1.0 MPa to highest 14.0 MPa, are also considered. 

During the uniaxial creep tests, axial strain, axial force (stress) and axial strain rate are 

measured. For more detailed information about the test, the original publication (Orth, 

1986) can be referred to. 

Since all the creep tests are conducted at a constant temperature and constant 

stress level, constant temperature can be easily obtained by controlling the room 

temperature, constant stress level can also be maintained without any difficulty. Here 

the importance should be attached to the process before the target creep stress is 

reached, which can be compared to the process before the target strain rate is reached 

in the compression test at constant strain rate in Subsection 3.2.1, therefore, in order 

to simulate the creep tests, the procedures can be laid out as: 1) a uniform acceleration 

phase in the specimen is also necessary for conducting the creep test, like the 

acceleration phase before compressing the specimen in the above subsection. 
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However, the governing condition for stopping acceleration here is not as clear as that 

in the compression test, where strain rate can be taken as the governing condition, 

here may only by assumption. At the end of this short acceleration phase, the sum of 

the statical and dynamical stress is normally less than the target creep stress, which 

requires 2) a compression phase of constant strain rate. In this phase, the dynamical 

stress will keep constant as a result of the vanishing creep acceleration, the statical 

stress will increase till the sum of the two stresses reaches the target creep stress. The 

model in this phase will recover to the rate-independent type which has already been 

dealt with in Section 2; and 3) when the target creep stress is reached, it will be kept 

constant. Meanwhile, the creep test is initiated. 

 

Table 3.2 Governing equation corresponding to the 3 phases 

Phase Equation Equation type Boundary condition
(Known) Unknown Solving 

method in 
MATLAB 

1 
2Τ = 0  

ordinary 
differential 
equation 

1D , 1D , initial 2D
2D ; 1T̂ , 2T̂  ode45 

2 
2Τ̂ = 0  linear equation 

1D  
2D ; 1T̂  solve 

3 
1

2

Τ = 0

Τ = 0
 

ordinary 
differential 

equation system 

initial 1D  

initial 2D  
1D , 2D ; 1D  

1T̂ , 2T̂  

ode45 

 

 

Corresponding to the above three phases, the governing equation or equation 

system needed to be solved in each phase is listed in Table 3.2. Among the 

three-phase simulations, the most interesting and noteworthy simulation is in phase 3), 

which can be briefly described as: firstly, at the beginning of the first time step, the 

axial strain rate and radial strain rate should be assigned with two initial values, then 

the constitutive model expressed by two ordinary differential equations can be solved, 

the solution will be new values for the axial strain rate and radial strain rate at the end 

of the first time step; secondly, based on the above solution, the creep acceleration, 
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statical stress (rate) and dynamical stress (rate) can be obtained, which are required in 

the calculation of the second time step; finally, the new values for the axial strain rate 

and radial strain rate will serve as the initial values for the calculation of the second 

time step, before which the stress state should be updated. With such iterative 

algorithm, the whole creep process can be simulated. 

In this section, only the creep tests at the temperature of -10 °C are simulated. 

The parameters for simulating the creep tests at different stress levels are obtained as 

follows: c1 = -83.57, c2 = -769.66, c3 = -730.13, c4 = 974.93, s = 3061.9 kPa, β = 

0.005, η2 = 10-6 s-1, the other parameters in the model and some initial conditions for 

each phase are presented in Table 3.3 (for the model recovers to the rate-independent 

one in the second phase, the strain rate in this phase can be any finite value, thus 

omitted in the table). 

 

Table 3.3 Model parameters and initial conditions 

 10000 9000 8000 7000 6000 3000 

α -0.18 -0.006 -0.003 -0.0003 -0.0003 -0.0003 

γ 64200 97200 24200 180200 0.001-0.1 —— 

η1 (kPa•s2) 1.95e12 1.6e12 1.2e12 0.8e12 0.2e12 1.2e11 

STAGE I 

D1 (s-1) -5e-5 -4.24e-5 -3.73e-5 -0.42e-5 -0.1e-5 -0.25e-6 

1D  (s-2) -2e-7 -1.5e-7 -1.312e-7 -0.8e-7 -0.6e-6 -0.15e-6 

STAGE III 

D1 (s-1) -4.3e-5 -3.1e-5 -3e-5 -2.2e-5 -1.2e-5 -1e-5 

D3 (s-1) 2.2e-5 1.5e-5 1.5e-5 1.1e-5 6e-6 5e-6 

 

The simulated axial strain and its rate of the creep tests are presented in Figures 

3.4 and 3.5, respectively. At this stage, it should be noted that, for frozen soils, failure 

in a creep test is often defined as a point with the minimum creep rate in the creep 
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rate-time curve, meanwhile from which the creep rate starts to accelerate. To describe 

this point, two important concepts in creep, namely the minimum creep rate and the 

time to this minimum rate, are often resorted to. These two concepts are also often 

introduced to develop creep models (e.g. Assur, 1980; Fish, 1982) and interpret the 

predictive ability of the models. From Figures 3.4 and 3.5 we can see that the 

specimen experiences a change from a state without failure (for stress level at 3000 

kPa) to a failure state (for all stress levels except 3000 kPa) as the creep stress level 

increases, and the time to failure decreases with the increase of creep stress (note the 

abscissas in Figures 3.4 and 3.5), these properties can be well captured by the 

proposed viscous model. Figures 3.4 and 3.5 also show the three typical stages of the 

creep of frozen Karlsruhe Medium sand. The complete process of the change of strain 

rate can be described as: the strain rate continuously decreases from the outset of the 

creep test until it reaches a minimum, then continuously increases till creep rupture. 

This implies that the secondary creep is, actually, an inflection point in the strain-time 

plot. However, it is often regarded as a “steady-state” creep stage, since the creep rate 

around the minimum rate, or specifically, over a certain time range after the minimum 

rate changes very little in a linear Cartesian coordinate system. It can be seen from the 

comparison results that the evolution of strain and of strain rate through the three 

creep stages can be well reproduced by the visco-hypoplastic model, except for low 

stress level at which small discrepancy occurs. This maybe could attribute to the low 

initial rate at the beginning of the creep test, certain rate level should be maintained to 

keep the creep stress constant in the specimen. 
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Fig. 3.4 Change of creep strain with time at different stress levels 
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Fig. 3.5 Change of creep strain rate with time at different stress levels 

 

Since the proposed visco-hypoplastic constitutive model is formulated in rate 

type, i.e. the total stress rate is composed of the statical stress rate and dynamical 
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rupture comes. As the statical stress changes very little, even unperceivable, at 

relatively low creep stress in the full figure for the complete creep process, the 

detailed change of statical stress is presented in Figure 3.7. From Figure 3.7 we can 

easily realize that the above variation pattern for the statical stress drawn from Figure 

3.6 is further confirmed. However, it should be noted that this conclusion is obtained 

for the case where creep failure occurs. When the specimen does not fail at lower 

creep stress level, e.g. 3000 kPa, only the first stage can be observed, in which the 

statical stress continuously increases to a constant value, as shown in Figure 3.7. 

Besides, it can also be seen from Figures 3.6 and 3.7 that the dynamical stress (dash 

line) changes in a manner axially symmetric to that of statical stress, no matter the 

specimen fails or not. Obviously, this will generate a constant total stress, which is 

precisely required by a creep test. 

The changes of the statical and dynamical stress rate at different creep stresses 

are also presented. From Figure 3.8 we can see that, throughout the three typical creep 

stages, the statical stress rate (solid line) decreases all the time. Likewise, three stages 

for the variation of statical stress rate can also be obtained, namely decrease from a 

positive finite value to 0 in the first stage, an approximate 0 in the second stage and 

decrease from 0 to a negative value in the third stage. Owing to the poor 

perceivability in the full figure, detailed change of the stress rates (both statical and 

dynamical) at relatively low stress levels is presented in Figure 3.9, from which we 

can see different patterns of the change of stress rates: if the specimen fails in creep 

test, the statical stress rate will continuously decrease from a positive to a negative, 

otherwise, it will only decrease from a positive to 0 and then stay there. Figures 3.8 

and 3.9 also show that the change manner of the dynamical stress rate is right opposite 

to that of the statical stress rate. This will lead the total stress rate to be 0, i.e. the total 

stress being constant. Again, the creep condition is fulfilled. 

Recalling the definition of creep failure, we know that failure will take place 

when the minimum creep rate occurs, or equivalently, when the creep acceleration 

becomes 0 (opposite signs are necessary on the two sides of 0), the specimen will fail. 

Therefore, the creep acceleration of a value of 0 can be taken as the symbol of failure. 
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In this study, the evolutions of the creep acceleration at different stress levels are 

shown in Figures 3.10 and 3.11. It can be seen that the creep acceleration is negative 

at the beginning of the creep test for all stress levels. With the proceeding of the test, 

the creep acceleration will continuously increase no matter it surpasses 0 or not. It is 

obvious that for the case when the creep acceleration does not surpass 0, e.g. at the 

stress level of 3000 kPa, the specimen will not fail, no matter how long the test lasts. 

Otherwise, creep failure will occur in the specimen, as at relatively high stress levels. 

The failure points are also marked on the acceleration-time curves, it can be seen that 

the time to failure will decrease with the creep stress level, as shown by points A and 

B in Figure 3.11. It can be easily noted that this is consistent with the above 

conclusion. 

 

 

Fig. 3.6 Changes of static and dynamic stress with time at different stress levels 
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Fig. 3.7 Detailed changes of static and dynamic stress at 6000 and 3000 kPa 

 

 
Fig. 3.8 Changes of static and dynamic stress rate with time at different stress levels 
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Fig. 3.9 Detail changes of static and dynamic stress rate with time around failure 

 

 
Fig. 3.10 Change of creep acceleration with time at different stress levels 
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Fig. 3.11 Detail change of creep acceleration around failure 

 

3.3 Discussion on the visco-hypoplastic constitutive model 

A visco-hypoplastic constitutive model is proposed for frozen soil in this section. It is 

interesting that both compression test at different loading rates and creep test can be 

simulated by the model, this is quite infrequent in material modeling. By simulating 

some uniaxial compression tests at different loading rates and creep tests at different 

stress levels, the performance of the model is demonstrated. From the simulation 

results it is easy to find that the proposed model can describe fairly well the viscous 

behaviors of frozen soils, such as rate-dependence of compression strength and strain 

(rate) evolution in a creep test. 

Besides, it is noteworthy that the proposed model can describe the three-stage 

creep process in a unified way, therefore it does not have the limitations of the special 

models which are only valid for one or two of the three stages, e.g. the primary creep 

model only works well for the primary stage of the creep test, and normally 

underestimates the strain and strain rate when the test enters the secondary and 

tertiary stage; the secondary creep model generally overestimates the strain and 

0 600 1200 1800 2400
Time (min)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

3000 kPa
6000 kPa
7000 kPa

AB

Failure point



49 
 

underestimates the strain rate for the primary creep stage, and slightly underestimates 

both the strain and its rate for the tertiary stage. From this point of view, the proposed 

visco-hypoplastic model is superior to either, not only a fairly accurate fit can be 

made for both strain and strain rate, it can also elaborate the evolution of creep 

acceleration through the test. 
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4 A hypoplastic creep model for frozen soil 

As always emphasized in Section 3, the viscous behavior of frozen soil, especially 

creep, is crucial in various engineering activities in permafrost regions, therefore it 

will be never excessive to put effort into the study of the creep of frozen soils. In this 

section, without repeating the importance of creep to the stability of structures on 

frozen ground, another hypoplastic model is developed. The model is formulated by 

introducing a function of deformation into the non-linear terms of the original 

hypoplastic constitutive model proposed by Wu (1992), meanwhile, the Euclidean 

norm of the strain rate in the original model is removed in order to break the strong 

restriction of rate-independence. Like the viscous model in Section 3, the model can 

also describe the three-stage creep process in a unified way. Parameters in the model 

can be obtained from the creep rate curves, and no distinction has to be made between 

the cases with and without failure. The proposed model is then validated by 

simulating some creep tests at different temperatures and stress levels. 

 

4.1 Hypoplastic creep model 

Recalling the original hypoplastic constitutive model proposed by Wu (1992), we 

know that the model is rate-independent, thus cannot describe the creep behavior of 

materials. The reason for this lies in the strong restriction: the stress rate is positively 

homogeneous of the first order in strain rate (see Equation (2.3)). In order to enable 

the model to describe creep behaviors, this restriction should be broken. This can be 

accomplished by removing the Euclidean norm of the strain rate in the non-linear 

terms of the model. Besides, the original model is formulated, based on the second 

restriction, by stress rate being a homogeneous tensor function of stress (see Equation 

(2.4)). Keeping this in mind and noting simultaneously that the creep stress in a creep 

test should be kept constant, i.e. the stress rate during the creep test should be 

maintained at 0, a stress-independent creep strain rate will be obtained from the 
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original model. Obviously, this is in conflict with the creep results obtained at 

different stress levels. Therefore, in order to get an appropriate creep model, the 

second restriction should also be relieved. 

Following the way of dealing with the cohesion of frozen soil in Sections 2 and 3, 

let us consider the following hypoplastic model 

2 2
1 2 3 4 d(D)

tr[( - )[tr( - )] ( - ) ( - ) ( - )
tr( - )

c c f c c⎡ ⎤= + + ⋅ +⎣ ⎦
T D]T T D T T T
T

ss s s s
s

     (4.1) 

in which (D)f  is a scalar function regarding deformation. When multiplying all the 

stress terms or strain rate terms on the right side of (4.1) by any positive scalar, we 

can find that the scalar cannot be picked out as a common factor. Therefore, the two 

restrictions mentioned above are relieved, i.e. model (4.1) is not homogeneous in 

stress or strain rate. The inhomogeneity of model (4.1) renders itself a possibility to 

describe the creep behaviors of frozen soil. 

To this stage, the immediate task is to determine a concrete form for the 

deformation function. For this purpose, let us turn back to the experimental results of 

uniaxial compression creep tests at different stress levels and temperatures (Orth, 

1986), in which the evolution of creep strain rate can be summarized as: for a 

complete three-stage creep process, the strain rate continuously decreases in the 

primary stage, subsequently takes its minimum and then increases continuously in the 

tertiary stage till creep rupture. This kind of evolution can be well described by 

Dlog[ ( )] [log( ) ]
log( )

bf a l d c
l d

= + + +
+

              (4.2) 

where a, b, c and d are parameters depending only on stress at a certain temperature, l 

is the accumulation of deformation as talked in Section 2. Further study of the 

deformation function shows that, the first term on the right side of Equation (4.2) 

dominates in the primary creep stage and the second term is dominant in the tertiary 

creep stage. Similarly constructed constitutive equation can also be found in the work 

by Okubo et al. (1991) for various rocks. 
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4.2 Validation of the hypoplastic creep model 

In this section, we proceed to validate the hypoplastic creep model proposed in 

Section 4.1 by simulating some creep tests (Orth, 1986) at different temperatures and 

stress levels. Before the simulation, the parameters in the hypoplastic creep model 

should be determined according to the creep rate curves. 

 

4.2.1 Determination of the parameters in the creep model 

There are in total 8 parameters in the hypoplastic creep model, namely, 4 

material parameters ci (i = 1, 2, 3, 4) from the original model (Wu, 1992), 4 other 

parameters, a, b, c and d, in the introduced function of deformation. As the Euclidean 

norm of strain rate in the non-linear terms of the original model is removed, it is 

recommended that c3 and c4 in the hypoplastic creep model should be obtained by 

multiplying the original ones by a factor equivalent to the norm, while keep c1 and c2 

unchanged. 

As stated in Section 4.1, the creep rate can be described by Equation (4.2), and 

the first and the second term on the right side of (4.2) dominate in the primary and the 

tertiary creep stage, respectively. Consequently, in the primary creep stage, the creep 

rate can be approximated by 

Dlog[ ( )] [log( ) ]f a l d= +                     (4.3) 

It can be easily found from (4.3) that parameter a can be determined from the slope of 

the creep rate-deformation curve in log-log plot. d is a global translation parameter 

and has no effect on parameter a, thus should be determined in the end. In the tertiary 

creep stage, the creep rate can be approximated by 

Dlog[ ( )]
log( )

bf
l d

=
+

                      (4.4) 

Based on an optimal fit to the experimental results of creep tests, parameter b in (4.4) 

then can be obtained from the intercept at a relatively large time point in the creep rate 

- deformation curve in a twice logarithmic coordinate system. 
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Once parameters a and b are determined, parameters c and d can also be obtained 

by substituting the minimum creep rate and its derivative into (4.2), then solving the 

equation system with respect to variables c and d. 

 

4.2.2 Simulation of compression creep tests 

Two groups of uniaxial compression creep tests at the temperatures of -2 and 

-10 °C are simulated in this section. The tests were conducted by Orth (1986) on 

frozen Karlsruhe medium sand at different creep stresses. For the tests at -2 °C, creep 

stresses from 1000 to 4000 kPa were adopted, while for -10 °C, stresses from 1000 to 

10 000 kPa were used. Taking the tests at the temperature of -10 °C as an example, the 

4 material parameters in the hypoplastic creep model can be obtained as: c1 = -68.82, 

c2 = -673.56, c3 = 0.0768 kPa-1·s-1, c4 = -0.0256 kPa-1·s-1, and the cohesion of the 

frozen sand s = 3061.9 kPa. For the creep stress at 10 000 kPa, the other 4 parameters 

can be obtained according to the calibration process in Subsection 4.2.1 as: a = 

-0.3753, b = -0.1086, c = -8.1151, d = -3.435. When more sets of parameters at other 

creep stresses are determined, see Figure 4.1, it can be easily found that 4 linear 

relationships can be drawn separately between each parameter and creep stress level. 

The 4 relationships are presented in below, in which the creep stress has the 

dimension of [MPa]. It will be interesting to note that, even in the case that no creep 

failure occurs in the specimen, such as 1000 and 3000 kPa at -10 °C, the parameters 

can still be covered by the linear relationships. 

a = 0.066 × T – 1.076 

b = 0.034 × T – 0.462 

c = 0.652 × T – 14.52 

d = 0.522 × T – 8.883 
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Fig. 4.1 Relationships between the parameters and creep stress 

 

Since the parameters in the hypoplastic creep model have been determined, let us 

turn back to the simulation of the creep tests. As is known to all, in a uniaxial 

compression creep test, no radial stress should be applied, meanwhile the axial stress 

should be kept constant, i.e. the axial stress rate will be 0. These points will serve as 

the boundary conditions when solving the governing equations of a uniaxial creep test. 

Keeping these points in mind, the axial strain rate in a uniaxial compression creep test 

can be calculated according to (4.1) as: 

3 4
1 1 1

1 2

4
9 DD s ) ( )

c c
f

c c
+

= − (Τ − ⋅
+

                    (4.5) 

Substituting (4.2) into (4.5) then taking the logarithm of both sides of the equation, we 

can get 

3 4
1 1 1

1 2

4
9log(D ) [log( ) ] log[ s )]

log( )
c cba l d c

l d c c
+

= + + + + − (Τ −
+ +

         (4.6) 

Substituting the parameters determined for different creep stresses at -10 °C, the axial 

strain rate can be obtained from (4.6). Furthermore, when integrating the axial strain 

rate such obtained, we can get the axial strain for different creep stresses. The changes 
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of the simulated axial strain and axial strain rate at -10 °C are presented in Figure 4.2 

and 4.3, respectively. From these two figures we can see that: 1) the specimen 

experiences only the primary creep stage at low creep stress (e.g. 1000 and 3000 kPa), 

in which the creep strain will increase continuously with time, but the increase rate 

becomes lower and lower, as shown in Figure 4.3; 2) while at relatively high creep 

stress (e.g. 7000 and 8000 kPa), typical three-stage creep curve can be observed. In 

these tests, the creep strain increases continuously and the creep rate firstly decreases 

and then increases with an almost constant creep rate (steady-state) in between which 

can be seen clearly in a Cartesian coordinate system; and 3) at higher creep stress (e.g. 

10 000 kPa), the creep strain increases sharply with time and the creep rate changes in 

a similar pattern to that at relatively high stress in the log-log coordinate system, but 

without the creep stage of constant rate in the Cartesian coordinate system, i.e. the 

primary creep stage is followed closely by the tertiary creep stage. Comparison 

between the experimental and numerical results in Figures 4.2 and 4.3 shows that the 

above variation patterns of creep strain and creep rate can be well described by the 

hypoplastic creep model. Besides, it can be seen from Figure 4.3 that, in the case of 

failure, the time to creep failure decreases with creep stress, this can also be well 

captured by the model. 

The hypoplastic creep model also shows a good ability in describing the effect of 

temperature on the creep behavior of frozen Karlsruhe medium sand. For the results 

of the compression creep tests at the temperature of -2 °C, the simulation procedures 

are analogous to that at the temperature of -10 °C. The simulated results are shown in 

Figures 4.4 and 4.5, which can be regarded as a further validation of the creep model. 

Based on Figures 4.2-4.5, the effect of temperature on the creep behavior of frozen 

sand can be summarized as: 1) the strength properties of the frozen sand are enhanced 

when the temperature decreases, i.e. higher stress is required for the creep failure at 

lower temperature; 2) the steady-state creep stage is shortened as the temperature 

decreases, see Figures 4.2 and 4.4. This implies that the mechanical behavior of 

frozen sand will change from a plastic type to a brittle type, which leads to 3) the 

creep rate after failure increases faster at lower temperature, see Figures 4.3 and 4.5. 
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Similar conclusions can also be found in the publications by Andersland and Akili 

(1967), Sayles (1968), Eckardt (1982) and Fish (1994). 

 

 
Fig. 4.2 Evolution of axial strain at different stress levels at -10 °C 

 

 
Fig. 4.3 Evolution of axial strain rate at different stress levels at -10 °C 
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Fig. 4.4 Evolution of axial strain at different stress levels at -2 °C 

 

 

Fig. 4.5 Evolution of axial strain rate at different stress levels at -2 °C 
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and decrease of long term strength. If a creep process contains the tertiary creep stage, 

then creep failure can be defined as a point at which the tertiary creep stage begins, 

while for the case without the tertiary stage, certain creep strain, e.g. 20%, is often 

taken as the failure criterion. Many creep test results (Rein et al., 1975; Orth, 1986; 

Wu and Ma, 1994) show that the time to failure changes a lot when different creep 

stresses are used in creep tests, in turn we can say, the strength of frozen soil in creep 

tests will change with the time to failure. For example, when frozen soil fails in a 

short period of time, the creep strength will be relatively high (the stress leading to 

such a quick failure of frozen soil is regarded as the instantaneous strength), with the 

increase of the time to failure, the creep strength will continuously decrease to a series 

of long-term strengths, and then tend towards a constant value, which is often referred 

to as ultimate of long-term strength. Hence, when plotting the creep strength of frozen 

soil against the corresponding time to failure, a relaxation curve can be obtained. 

The relaxation curve of the creep strength of frozen Karlsruhe medium sand is 

presented in Figure 4.6, from which we can see clearly that the creep strength 

decreases continuously with time from the instantaneous strength to the ultimate of 

long-term strength. The whole relaxation process can be divided into 3 stages, namely 

strong relaxation stage, slight relaxation stage and relatively steady stage. 

Corresponding to each stage, the magnitude of the relaxation rate will decrease fast, 

slow and then asymptotically approach 0. Based on the hypoplastic creep model 

presented in Section 4.1, a unified relaxation equation for the creep strength of frozen 

Karlsruhe medium sand can be obtained as 

flog b
at d= −                         (4.7) 

in which tf is the time to failure, a, b and d are parameters dependent on creep stress at 

a certain temperature, as talked in (4.2). It can be easily known from (4.7) that the 

creep strength is related to the time to failure by a logarithmic function. By comparing 

the results calculated with (4.7) to the experimental data on creep strength, as shown 

in Figure 4.6, we can find that the relaxation equation is capable of describing the 

decrease of creep strength of frozen Karlsruhe medium sand over a certain time range. 
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Similar relaxation equations were also proposed by Vyalov (1962) for frozen soils, 

and by Brostow et al. (1993) for metals and polymers. 

As temperature is the crucial influence factor on the mechanical properties of 

frozen soil, the temperature effect on the relaxation of creep strength is also presented 

in Figure 4.6. It can be seen from Figure 4.6 that, at the same time to failure, the creep 

strength will increase with the decrease of temperature from -2 to -10 °C. Besides, 

temperature decrease will lead the mechanical behavior of frozen soil to a brittle type 

from a plastic type. Therefore the relatively steady stage in the relaxation process will 

be delayed at lower temperature, as shown in Figure 4.7, the relaxation rate of creep 

strength at -2 °C approaches 0 earlier than that at -10 °C. Such conclusions are also 

obtained by Wu and Ma (1994) in the tests on frozen calcareous clay over a broader 

temperature range from -2 to -15 °C. 

 

 
Fig. 4.6 Relaxation of the creep strength of frozen Karlsruhe Medium sand 
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Fig. 4.7 Relaxation rate of the creep strength at different temperatures 

 

 
Fig. 4.8 Steady-state creep rate vs. creep stress at different temperatures 
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results (Ladanyi, 1972; Mellor and Cole, 1982; Ting, 1983) indicate that the steady 

flow rate hinges on the creep stress level. If the creep stress is less than the ultimate of 

long-term creep strength, the steady flow rate will tend towards 0; while the creep 

stress is greater than the ultimate, the flow rate will increase with the difference 

between the creep stress and the ultimate strength, i.e. T – Tu. Hence, when the 

steady-state creep stage is dominant in the whole creep process, it will be significative 

to study the steady flow rate, for which would play an important role in developing a 

secondary creep model. 

The change of the steady flow rate of frozen Karlsruhe medium sand with creep 

stress is presented in the log-log plot in Figure 4.8, from which an approximately 

linear relationship can be observed, and the slopes of the lines for different 

temperatures change not so much and have an average of 8.92. Assuming that the 

relationship between the steady flow rate and the creep stress can be described by a 

power function, then the exponent of the power function will be identical with the 

slope of the lines. Similar results were also reported by Thompson and Sayles (1972) 

on frozen Fairbanks silt with a slope of 4.0 and by Ting (1983) on frozen Manchester 

fine sand with an average slope of 9.88. 
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5 Conclusion and discussion 

Three constitutive models are developed for frozen soils in this study based on the 

hypoplastic constitutive model proposed by Wu (1992) for sand. The commonality of 

the three models is that a cohesion tensor is introduced to account for the tensile 

properties of frozen soils. In this ending section, the main conclusions of this study 

will be listed in the first part, followed by some open questions about each model in 

the second part. 

5.1 Main work and conclusions 

The main work and conclusions of this study can be summarized as 

(1) By introducing a cohesion tensor and a scalar function related to deformation into 

the model by Wu (1992), an extended hypoplastic constitutive model is proposed 

for frozen soil, as shown in Section 2. Simulation results indicate that this model 

is capable of describing the effects of temperature and confining pressure on the 

mechanical properties of frozen soils. These are realized by the linear dependence 

of the cohesion tensor on temperature and its inherent stress-dependence of the 

proposed model. It should be noted that this model is rate-independent, therefore 

cannot take into account the rheological properties of frozen soil. 

(2) Based on the rate-independent hypoplastic constitutive model in Section 2, a 

rate-dependent hypoplastic constitutive model, named as visco-hypoplastic 

constitutive model, is developed in Section 3 to account for the rheological 

behaviors, such as rate effect and creep behavior, of frozen soils. This viscous 

model is obtained by dividing the stress rate into a statical and a dynamical part, 

which are represented by the rate-independent model in Section 2 and a high 

order model with the term of strain acceleration, respectively. Then the versatility 

of the viscous model is verified by simulating some compression tests at different 

loading rates and some creep tests at different creep stresses. Hence, such model 

could be used to evaluate the effect of construction/excavation rate on the 
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stability of structures in frozen ground engineering. It can be further noted that 

the viscous model can describe the complete three-stage creep process in a 

unified way, rather than simulating each creep stage separately as done by 

secondary or tertiary creep models. 

(3) Another rate-dependent hypoplastic constitutive model, termed hypoplastic creep 

model, is developed in Section 4. The model parameters, which can be 

determined from a creep rate curve with the tertiary creep stage, are found to 

have a linear relationship with the creep stress, regardless of failure occurs or not. 

By simulating some compression creep tests at different temperatures and creep 

stresses, the hypoplastic creep model shows a good ability in describing the creep 

behaviors of frozen soil, e.g. the time to creep failure and the minimum creep rate 

in the steady-state creep stage. Besides, the relaxation of creep strength of frozen 

soil can also be described by this creep model, which will help to evaluate the 

service life of structures in permafrost regions. 

 

5.2 Open questions and discussion 

Although several constitutive models have been developed for frozen soils in this 

study, there are still some problems worthy of attention and need to be declared, such 

as the limitation of the models, feasible extension or reasonable improvement to the 

models. These problems are presented in below. 

(1) The three constitutive models for frozen soils in this study are isotropic, but in 

general, the natural frozen soils are anisotropic or transverse isotropic. Therefore, 

anisotropic constitutive models could be considered as a research target in the 

future work. 

(2) As is known to all, the strength of granular materials, e.g. soil, will be enhanced 

when the stress level increases. However, this is not always correct for frozen soil. 

Specifically, at a relatively low stress range, the strength of frozen soil will 

increase with stress level. With the further increase of stress level, the strength of 
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frozen soil will decrease, as the ice in the intergranular pores will melt owing to 

the high stress (Chamberlain et al., 1972; Parameswaran and Jones, 1981; Ma et 

al., 1995). Such peculiar phenomenon cannot be described by the models in this 

study. Therefore, special efforts may still be needed for modeling frozen soils 

under high stress. 

(3) In the simulation of the triaxial compression tests on frozen silt in Section 2, small 

discrepancy occurs in the description of volumetric deformation. The reason for 

this may lie in: homogeneous deformation is assumed throughout the simulation 

in which the specimen is regarded as one element, while in the laboratory test, the 

main deformation will concentrate within the shear bands in the specimen after a 

short period of homogeneous deformation. In view of this, an extension of the 

hypoplastic constitutive model in Section 2 may be taken into account in order to 

perform a multi-scale analysis of the specimen. 

(4) The visco-hypoplastic constitutive model in Section 3 has been proved to have a 

good performance, it can describe not only creep tests at different stresses, but 

also compression tests at different loading rates. However, the calibration of the 

model is a challenge. In the simulations in Section 3, the model parameters are 

obtained by fitting experimental data. Hence, some effective methods for 

determining the parameters are still in need. 

(5) The visco-hypoplastic constitutive model, owing to the existence of a high order 

term of strain, cannot be implemented into the conventional numerical methods in 

geotechnical engineering, such as the finite element method and finite difference 

method. However, recalling the process of developing the viscous model, see 

Section 3.1, we can know that the high order part has an origin from fluid 

mechanics. Hence, instead of the conventional numerical methods, a promising 

alternative will be the Particle-in-Cell method, for which is relatively intuitive 

and straightforward to implement and could also be applied to problems on fluid 

and granular materials (Harlow et al., 1964; Cummins and Brackbill, 2002), in 

addition to plasma physics. 
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